SHARP MAXIMAL INEQUALITY FOR STOCHASTIC INTEGRALS

ADAM OSEKOWSKI

Abstract. Let $X = (X_t)_{t \geq 0}$ be a nonnegative supermartingale and $H = (H_t)_{t \geq 0}$ be a predictable process with values in $[-1,1]$. Let Y denote the stochastic integral of H with respect to X. The paper contains the proof of the sharp inequality

$$\sup_{t \geq 0} ||Y_t||_1 \leq \beta_0 ||\sup_{t \geq 0} X_t||_1,$$

where $\beta_0 = 2 + (3e)^{-1} = 2.1226\ldots$ A discrete-time version of this inequality is also established.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, which is filtered by a nondecreasing right-continuous family $(\mathcal{F}_t)_{t \geq 0}$ of sub-σ-fields of \mathcal{F}. Assume that \mathcal{F}_0 contains all the events of probability 0. Suppose $X = (X_t)_{t \geq 0}$ is an adapted real-valued right-continuous semimartingale with left limits. Let Y be the Itô integral of H with respect to X,

$$Y_t = H_0 X_0 + \int_{(0,t]} H_s dX_s, \quad t \geq 0,$$

where H is a predictable process with values in $[-1,1]$. Let $||Y||_1 = \sup_{t \geq 0} ||Y_t||_1$ and $X^* = \sup_{t \geq 0} |X_t|$.

The objective of this paper is to compare the first moments of Y and X^*. In [4], Burkholder introduced a method of proving related maximal inequalities for martingales and obtained the following sharp estimate.

Theorem 1.1. If X is a martingale and Y is as above, then we have

$$||Y||_1 \leq \gamma ||X^*||_1,$$

where $\gamma = 2.536\ldots$ is the unique solution of the equation

$$\gamma - 3 = - \exp\left(\frac{1-\gamma}{2}\right).$$

The constant is the best possible.

Using Burkholder’s techniques, we find the best constant in the inequality (1.1) in case X is a nonnegative supermartingale. The main result of the paper is the following.

2000 Mathematics Subject Classification. Primary: 60H05. Secondary: 60G42.

Key words and phrases. Martingale, supermartingale, martingale transform, norm inequality, stochastic integral, maximal inequality.

Partially supported by MEiN Grant 1 PO3A 012 29.
Theorem 1.2. Suppose \(X \) is a nonnegative supermartingale and \(Y \) is as above. Then the inequality
\[
||Y||_1 \leq \beta_0||X^*||_1
\]
holds true with \(\beta_0 = 2 + (3e)^{-1} = 2.1226 \ldots \). The constant is the best possible. It is already the best possible if \(X \) is assumed to be a nonnegative martingale.

As usual, the inequality for stochastic integrals is accompanied by its discrete-time version. Suppose \((\Omega, \mathcal{F}, P)\) is a probability space, equipped with filtration \((\mathcal{F}_n)_{n \geq 0}\). Let \(f = (f_n)_{n \geq 0} \) be an adapted nonnegative supermartingale and \(g = (g_n)_{n \geq 0} \) be its transform by a predictable sequence \(v = (v_n)_{n \geq 0} \) bounded in absolute value by 1. That is,
\[
f_n = \sum_{k=0}^{n} df_k, \quad g_n = \sum_{k=0}^{n} v_k df_k, \quad n = 0, 1, 2, \ldots
\]
By predictability of \(v \) we mean that \(v_0 \) is \(\mathcal{F}_0 \)-measurable and for any \(k \geq 1 \), \(v_k \) is measurable with respect to \(\mathcal{F}_{k-1} \). Let \(f_n^* = \max_{k \leq n} f_k \) and \(f^* = \sup_{k} f_k \).

A discrete-time version of Theorem 1.2 can be stated as follows.

Theorem 1.3. Let \(f, g, \beta_0 \) be as above. Then we have
\[
||g||_1 \leq \beta_0||f^*||_1,
\]
and the constant \(\beta_0 \) is the best possible. It is already the best possible if \(f \) is assumed to be a nonnegative martingale.

The paper is organized as follows. In the next section we describe the Burkholder’s method. Section 3 is devoted to the proofs of the maximal inequalities. In the last section we complete the proofs of Theorem 1.2 and Theorem 1.3 by showing that the constant \(\beta_0 \) cannot be replaced by a smaller one.

2. The upper class of functions

Throughout this section we deal with the discrete-time setting. We start with some reductions. Standard approximation arguments (see page 350 of [4]) show that it is enough to prove Theorem 1.3 under an additional assumption that the supermartingale \(f \) is simple, i.e. for any \(n \) the variable \(f_n \) takes only a finite number of values and there is \(N \) such that \(f_N = f_{N+1} = f_{N+2} = \ldots \) with probability 1. Then, clearly, every transform \(g \) of \(f \) is also simple and the pointwise limits \(f_\infty, g_\infty \) exist. Furthermore, with no loss of generality, we may restrict ourselves to the special transforms \(g \) (called \(\pm 1 \) transforms), namely, those with all \(v_n \) being deterministic and taking values in \(\{-1, 1\} \): see Lemma A.1 on page 60 in [3] and observe \((f^*)_* = f_*^\prime \) on page 61. Finally, note that in order to prove inequality (1.2), it suffices to show that for any \(f, g \) as above and any integer \(n \) we have
\[
E|g_n| \leq \beta_0 E f_n^*.
\]
To describe Burkholder’s method, let us consider the following general problem, first in the martingale setting: let \(D = [0, \infty) \times \mathbb{R} \times [0, \infty) \) and \(V : D \to \mathbb{R} \) be any Borel function satisfying \(V(x, y, z) = V(x, y, x \vee z) \). Suppose we want to prove the inequality
\[
EV(f_n, g_n, f_n^*) \leq 0
\]
for all nonnegative integers \(n \) and all pairs \((f, g)\), where \(f \) is a simple nonnegative martingale and \(g \) is its \(\pm 1 \) transform.

The key idea is to study the family \(\mathcal{U} \) of all functions \(U : D \to \mathbb{R} \) satisfying the following three properties.

\[
U(x, y, z) = U(x, y, x \lor z) \quad \text{if} \quad (x, y, z) \in D,
\]

\[
V(x, y, z) \leq U(x, y, z) \quad \text{if} \quad (x, y, z) \in D
\]

and, furthermore, if \((x, y, z) \in D, \varepsilon \in \{-1, 1\}, \alpha \in (0, 1)\) and \(t_1, t_2 \geq -x \) with \(\alpha t_1 + (1 - \alpha) t_2 = 0 \), then

\[
\alpha U(x + t_1, y + \varepsilon t_1, z) + (1 - \alpha) U(x + t_2, y + \varepsilon t_2, z) \leq U(x, y, z).
\]

The interplay between the class \(\mathcal{U} \) and the maximal inequality (2.1) is described in the theorem below. It is a simple modification of Theorems 2.2 and 2.3 in [4] (see also Section 11 in [2] and Theorem 2.1 in [3]) to the case of nonnegative supermartingales. We omit the proof, as it requires only some minor changes.

Theorem 2.1. The inequality (2.1) holds for all \(n \) and all pairs \((f, g)\) as above if and only if the class \(\mathcal{U} \) is nonempty. Furthermore, if \(\mathcal{U} \) is nonempty, then there exists the least element in \(\mathcal{U} \), given by

\[
U^0(x, y, z) = \sup \{ \mathbb{E} V(f_\infty, g_\infty, f^* \lor z) \}.
\]

Here the supremum runs over all the pairs \((f, g)\), where \(f \) is a simple nonnegative martingale, \(\mathbb{P}(\{f_0, g_0\} = (x, y)) = 1 \) and \(dg_k = \pm df_k \) almost surely for all \(k \geq 1 \).

In case \(f \) is assumed to be a nonnegative supermartingale, we can proceed in a similar manner. For a given \(V \), consider the inequality (2.1). Suppose we want it to be valid for any \(n \), any nonnegative supermartingale \(f \) and any \(\pm 1 \) transform \(g \).

Let \(\mathcal{U}' \) be a subclass of \(\mathcal{U} \) containing those functions, which satisfy

\[
U(x, y, z) \geq U(x - \delta, y \pm \delta, z) \quad \text{if} \quad (x, y, z) \in D, \delta \in [0, x].
\]

The analogue of Theorem 2.1 is as follows (the straightforward proof is omitted).

Theorem 2.2. The inequality (2.1) holds for all \(n \) and all pairs \((f, g)\) as above if and only if the class \(\mathcal{U}' \) is nonempty.

Now we turn to (1.2) and assume from now on, that the function \(V \) is given by

\[
V(x, y, z) = V(x, y, x \lor z) = y - \beta(x \lor z),
\]

where \(\beta > 0 \) is a fixed number. The inequality (2.1) reads

\[
\mathbb{E} |g_n| \leq \beta \mathbb{E} f_n^*.
\]

Denote by \(\mathcal{U}(\beta), \mathcal{U}'(\beta) \) the classes \(\mathcal{U}, \mathcal{U}' \) corresponding to this choice of \(V \).

The rest of this section is devoted to the last part of Theorem 1.3. Let \(\beta(\text{possup}) \) (resp. \(\beta(\text{posmar}) \)) be the smallest constant \(\beta \) in the inequality (2.7), when \(f \) is assumed to run over the class of all nonnegative supermartingales (resp. nonnegative martingales).

Theorem 2.3. We have \(\beta(\text{posmar}) = \beta(\text{possup}) \).
Proof. We only need the inequality \(\beta = \beta(\text{posmar}) \geq \beta(\text{possup}) \), as the reverse one is trivial. By Theorem 2.2, it suffices to prove that the class \(\mathcal{U}(\beta) \) is nonempty. Theorem 2.1 guarantees the existence of the minimal element \(U^0 \) of the class \(\mathcal{U}(\beta) \), given by (2.5). By definition we get the following properties of \(U^0 \).

(2.8) \[U^0(x, y, z) = U^0(x, -y, z), \]
(2.9) \[U^0(1, -1, 1) = U^0(1, 1, 1) \leq 0, \]
(2.10) \[U^0(\alpha x, \alpha y, \alpha z) = \alpha U^0(x, y, z) \quad \text{for any } \alpha > 0. \]

The equality (2.8) is clear, (2.9) follows from the fact that for any pair \((f, g)\) as in Theorem 2.1, starting from \((1, 1)\) or from \((1, -1)\), we have that \(g \) is a \(\pm 1 \) transform of \(f \) and therefore, by (2.7), we have \(EV(f_n, g_n, f^*_n) \leq 0 \) for any \(n \). For (2.10), we use the fact that \(V \) is homogeneous.

We will prove that the function \(U : D \to \mathbb{R} \) given by

(2.11) \[U(x, y, z) = U^0(x, y, z) - U^0(1, 1, 1)x \]

belongs to \(\mathcal{U} \). The conditions (2.2), (2.3) and (2.4) hold true for \(U \), since they are satisfied for \(U^0 \) and, by (2.9), we have \(U \geq U^0 \). It remains to prove (2.6). Note that \(U \) satisfies \(U(x, y, z) = U(x, -y, z) \), \(U(1, -1, 1) = U(1, 1, 1) = 0 \) and is homogeneous. Fix \(y \in \mathbb{R} \), \(0 \leq x \leq z \), \(\varepsilon \in \{-1, 1\} \) and let \(\delta \in (0, x] \), \(t > z - x \). Use (2.4) with \(t_1 = -\delta \), \(t_2 = t \) and \(\alpha = t/(t + \delta) \) to obtain

\[
\frac{t}{t + \delta} U(x - \delta, y - \varepsilon \delta, z) + \frac{\delta}{t + \delta} U(x + t, y + \varepsilon t, z) \leq U(x, y, z).
\]

By homogeneity of \(U \), this gives

(2.12) \[\frac{t}{t + \delta} U(x - \delta, y - \varepsilon \delta, z) + \frac{\delta(x + t)}{t + \delta} U(1, y + \varepsilon t, 1) \leq U(x, y, z). \]

Now we let \(t \to \infty \); the inequality (2.6) will follow if we show that

(2.13) \[\lim_{s \to 1} U(1, s, 1) \geq U(1, 1, 1) = 0. \]

For \(s > 1 \), use (2.4) with \(x = z = 1 \), \(y = s \), \(\varepsilon = -1 \), \(t_1 = -1 \), \(t_2 = (s - 1)/2 \) and get

\[
U(1, s, 1) \geq \frac{s - 1}{s + 1} U(0, s + 1, 1) + \frac{2}{s + 1} U\left(\frac{s + 1}{2}, \frac{s + 1}{2}, \frac{s + 1}{2}\right) \geq \frac{s - 1}{s + 1}(s + 1 - \beta),
\]

the latter inequality being a consequence of (2.3) and the homogeneity of \(U \). For \(0 < s < 1 \), apply (2.12) to \(x = z = 1 \), \(y = s \), \(\varepsilon = -1 \), \(\delta = (1 - s)/2 \) and \(t = 2s/(1 - s) \) (so that \((y + \varepsilon t)/(x + t) = -s \)) to obtain

\[
U(1, s, 1) \geq \frac{2}{s + 1} U\left(\frac{1 + s}{2}, \frac{1 + s}{2}, 1\right).
\]

Now we use the fact that, by (2.4), the function \(s \mapsto U(s, s, 1) \) is concave and therefore continuous. This completes the proof of (2.13) and, in consequence, we have \(U \in \mathcal{U}(\beta_0) \), so this class is nonempty. All that is left is to use Theorem 2.2. \(\square \)

Thus, to establish the inequality (1.2), we need to find an element \(U \) in \(\mathcal{U}(\beta_0) \). This will be done in the next section.
3. The proofs of the inequalities (1.1) and (1.2)

Here we construct the special function U corresponding to the maximal inequality (1.2). This is the main section of the paper.

Let S denote the strip $[-1, 1] \times \mathbb{R}$. Consider the following subsets of S.

$$D_1 = \{(x, y) : 0 \leq x < \frac{2}{3}, x + y \geq \frac{2}{3}\},$$

$$D_2 = \{(x, y) : \frac{2}{3} \leq x \leq 1, x - y \leq \frac{2}{3}\},$$

$$D_3 = \{(x, y) : 0 \leq x < \frac{2}{3}, y \geq 0, x + y \leq \frac{2}{3}\},$$

$$D_4 = \{(x, y) : \frac{2}{3} < x \leq 1, y \geq 0, x - y > \frac{2}{3}\}.$$

Let the function u be defined on S by the condition $u(x, y) = u(|x|, |y|)$ and

$$u(x, y) = \begin{cases}
 y - \beta_0 + x \left\{ \exp\left[-\frac{3}{2}(y + x - \frac{3}{2})\right] + 1 \right\}, & (x, y) \in D_1, \\
 y - \beta_0 + \left(\frac{3}{4} - x \right) \exp\left[-\frac{3}{2}(y - x + \frac{3}{2})\right] + x, & (x, y) \in D_2, \\
 y - \beta_0 - x \log\left[\frac{3}{2} (x + y) \right] + 2x, & (x, y) \in D_3, \\
 -\beta_0 - \frac{1}{4} (2 - 2x - y) (3 - 3x + 3y)^{1/2} + \frac{14}{9}, & (x, y) \in D_4.
\end{cases}$$

A function defined on the strip S is said to be diagonally concave if it is concave on the intersection of S with any line of slope 1 or -1. The proof of the following statement is just a matter of elementary calculations.

Lemma 3.1. For any real number y we have

(3.1) $u(0, y) = |y| - \beta_0$, $u(1, y) \geq |y| - \beta_0$,

(3.2) u is diagonally concave,

(3.3) $u(1, \cdot)$ is convex,

(3.4) $u(1 - \delta, y \pm \delta) \leq u(1, y)$ for any $\delta \in [0, 1]$,

(3.5) $u(1, 1) = 0$.

Define $U : D \to \mathbb{R}$ by

$$U(x, y, z) = (x \vee z) u\left(\frac{x}{x \vee z}, \frac{y}{x \vee z} \right).$$

We have the following statement.

Lemma 3.2. The function U belongs to $U(\beta_0)$.

This fact can be proved exactly in the same manner as Lemma 3.1 in [4]. We omit the details. Now we are ready to prove the maximal inequalities.

Proof of the inequality (1.2): It is an immediate consequence of Theorem 2.1, Theorem 2.3 and Lemma 3.2. □

Proof of inequality (1.1): This follows by approximation argument. See Section 16 of [2], where it is shown how the result of Bichteler [1] can be used to deduce the estimates for stochastic integrals from their discrete-time versions. □
4. Sharpness

Clearly, we need only to focus on the sharpness of (1.2), since it immediately implies that β_0 is also the best possible in (1.1).

Let $\beta = \beta(\text{posmar})$. By Theorem 2.3, we need to prove $\beta \geq \beta_0$. This can be done by constructing an appropriate example. However, we take a different approach.

By Theorem 2.1, the class $U(\beta)$ is nonempty, we can consider its minimal element U_0 and, as we have already proved, the function U given by (2.11) belongs to $U'(\beta)$. Define $u : S \to \mathbb{R}$ by

\begin{equation}
(4.1) \quad u(x, y) = U(x, y, 1).
\end{equation}

The conditions (2.3), (2.4) and (2.6) imply that

\begin{equation}
(4.2) \quad u(x, y) \geq |y| - \beta,
\end{equation}

\begin{equation}
(4.3) \quad u \text{ is diagonally concave},
\end{equation}

\begin{equation}
(4.4) \quad u(x, y) \geq u(x - \delta, y \pm \delta) \text{ for } \delta \in [0, x]
\end{equation}

and, moreover, we have

\begin{equation}
(4.5) \quad u(1, 1) = U(1, 1, 1) = 0.
\end{equation}

Furthermore, note that for any y, by definition of U_0,

\begin{equation}
(4.6) \quad u(0, y) = U_0(0, y, 1) = |y| - \beta,
\end{equation}

since the only nonnegative martingale starting from 0 is the constant one.

We will show that the existence of u satisfying the properties (4.2) – (4.6) implies $\beta \geq \beta_0$. This will be done in several steps. Set $B(x) = u(1, x + 1/3)$ and $C(x) = u(2/3, x)$.

Step 1. By properties (4.3) and (4.6), we have

\begin{equation}
\begin{aligned}
&u\left(\frac{2}{3} + \delta, 2k\delta + \delta\right) \geq (1 - 3\delta)C(2k\delta) + 3\delta B(2k\delta), \\
&C((2k + 2)\delta) \geq \frac{2}{2 + 3\delta} u\left(\frac{2}{3} + \delta, 2k\delta + \delta\right) + \frac{3\delta}{2 + 3\delta} (2k\delta + 2\delta + \frac{2}{3} - \beta),
\end{aligned}
\end{equation}

from which we deduce that

\begin{equation}
(4.7) \quad C((2k + 2)\delta) \geq \frac{2(1 - 3\delta)}{2 + 3\delta} C(2k\delta) + \frac{6\delta}{2 + 3\delta} B(2k\delta) + \frac{3\delta}{2 + 3\delta} (2k\delta + 2\delta + \frac{2}{3} - \beta).
\end{equation}

Furthermore, (4.3) and (4.4) yield

\begin{equation}
B(2k\delta) \geq u(1 - \delta, 2k\delta + \delta + \frac{1}{3}) \geq (1 - 3\delta)B((2k + 2)\delta) + 3\delta C((2k + 2)\delta).
\end{equation}

Multiply this inequality throughout by $\alpha > 0$ and add it to (4.7). We obtain

\begin{equation}
C((2k + 2)\delta)(1 - 3\alpha\delta) - \alpha(1 - 3\delta)B((2k + 2)\delta)
\end{equation}

\begin{equation}
\geq \frac{2(1 - 3\delta)}{2 + 3\delta} C(2k\delta) - \left(\alpha - \frac{6\delta}{2 + 3\delta}\right)B(2k\delta) + \frac{3\delta}{2 + 3\delta} ((2k + 2)\delta + \frac{2}{3} - \beta),
\end{equation}

or, equivalently, after substitution

\begin{equation}
(4.8) \quad \overline{B}(t) = B(t) - t - \frac{2}{3} + \beta, \quad \overline{C}(t) = C(t) - t - \frac{2}{3} + \beta,
\end{equation}
we get
\[
\mathcal{C}((2k + 2)\delta) - \frac{\alpha(1 - 3\delta)}{1 - 3\alpha\delta} \mathcal{B}((2k + 2)\delta)
\geq \frac{2(1 - 3\delta)}{(2 + 3\delta)(1 - 3\alpha\delta)} \left[\mathcal{C}(2k\delta) - \frac{2\alpha + 3\alpha\delta - 6\delta}{2(1 - 3\delta)} \mathcal{B}(2k\delta) \right] + \frac{2\delta}{1 - 3\alpha\delta} (\alpha - \frac{2}{2 + 3\delta}).
\]
\[(4.9)\]

Step 2. Now we will use the inequality \((4.9)\) several times. The choice
\[
\alpha = \frac{5 + \sqrt{9 - 24\delta}}{2(2 + 3\delta)}
\]
gives
\[
\alpha(1 - 3\delta) = \frac{2\alpha + 3\alpha\delta - 6\delta}{2(1 - 3\delta)}
\]
and using \((4.9)\) for \(k = 1, k = 2, \ldots, l\) yields
\[
\mathcal{C}(2k\delta) - \frac{\alpha(1 - 3\delta)}{1 - 3\alpha\delta} \mathcal{B}(2k\delta)
\geq \left[\frac{2(1 - 3\delta)}{(2 + 3\delta)(1 - 3\alpha\delta)} \right]^{k-1} \left[\mathcal{C}(2\delta) - \frac{\alpha(1 - 3\delta)}{1 - 3\alpha\delta} \mathcal{B}(2\delta) \right] + \eta,
\]
\[(4.10)\]
where
\[
\eta = \frac{2\delta}{1 - 3\alpha\delta} (\alpha - \frac{2}{2 + 3\delta}) \sum_{r=0}^{k-1} \left[\frac{2(1 - 3\delta)}{(2 + 3\delta)(1 - 3\alpha\delta)} \right]^r
= \frac{2(2\alpha + 3\alpha\delta - 2)}{-9 + 6\alpha + 9\alpha\delta} \left\{ \left[\frac{2(1 - 3\delta)}{(2 + 3\delta)(1 - 3\alpha\delta)} \right]^{k-1} - 1 \right\}.
\]

Now fix \(K > L \geq 0\) with \(L/K\) rational. Then we may find arbitrarily large integers \(k\) and \(l\) such that \(K = 2k\delta\) and \(L = 2l\delta\) for some \(\delta > 0\). Letting \(k, l \to \infty\), we have \(\delta \to 0, \alpha \to 2^{\pm 1}\) and \((4.10)\) leads to
\[
\mathcal{C}(K) - \alpha \mathcal{B}(K) + \frac{4(\alpha - 1)}{-9 + 6\alpha} \geq \exp \left(\frac{(K - L)\left(-9 + 6\alpha \right)}{4} \right) \left[\mathcal{C}(L) - \alpha \mathcal{B}(L) + \frac{4(\alpha - 1)}{-9 + 6\alpha} \right].
\]

Now we come back to the original functions \(B, C\). For \(\alpha = 2\), the inequality above takes form
\[
(4.11) \quad C(K) + K + 2 - \beta - 2B(K) \geq \exp \left(\frac{3}{4} (K - L) \right) [C(L) + L + 2 - \beta - 2B(L)],
\]
while for \(\alpha = 1/2\), we get
\[
(4.12) \quad 2C(K) - K + \beta - B(K) \geq \exp \left(\frac{-3}{2} (K - L) \right) [2C(L) - L + \beta - B(L)].
\]

Step 3. This is the final part. By \((4.2)\) and \((4.4)\), we have \(B(K) \geq K + \frac{1}{2} - \beta\) and \(B(K) \geq C(K)\). Plugging these estimates into \((4.11)\) we get that for any \(L,
\[
(4.13) \quad C(L) + L + 2 - \beta - 2B(L) \leq 0.
\]
Furthermore, the conditions \((4.3)\) and \((4.6)\) yield
\[
(4.14) \quad C(0) \geq \frac{2}{3} B(0) + \frac{1}{3} u(0, \frac{2}{3}) = \frac{2}{3} B(0) + \frac{1}{3} \left(\frac{2}{3} - \beta \right).
\]
Combining (4.14) with (4.13) applied to \(L = 0 \) gives

\[
0 \geq C(0) + 2 - \beta - 2B(0) \geq -\frac{4}{3}B(0) - \frac{4}{3}\beta + \frac{20}{9},
\]

which implies

\[
\beta + B(0) \geq \frac{5}{3}. \tag{4.15}
\]

The inequality (4.13), applied to \(L = 2/3 \), gives

\[
C(\frac{2}{3}) \leq \beta - \frac{8}{3}, \tag{4.16}
\]

since \(B(2/3) = 0 \), due to (4.5). Now use (4.12) for \(K = 2/3 \) and \(L = 0 \) to obtain

\[
2C(\frac{2}{3}) - \frac{2}{3} + \beta \geq \frac{1}{e}(2C(0) + \beta - B(0)).
\]

Combining this estimate with (4.14), (4.15) and (4.16) yields

\[
3\beta - 6 \geq \frac{1}{e}\left(\frac{5}{9} + \frac{4}{9}\right) = \frac{1}{e},
\]

or \(\beta \geq 2 + (3e)^{-1} \). This completes the proof of the sharpness of the inequality (1.2).

Acknowledgement: The results were obtained while the author was visiting Université de Franche-Comté in Besançon, France.

References

Department of Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

Current address: Laboratoire de Mathematiques, Université de Franche-Comté, Rue de Gray 16, Besançon 25030 Cedex, France

E-mail address: ados@minuw.edu.pl