
INEQUALITIES FOR NONCOMMUTATIVE WEAKLY DOMINATED

MARTINGALES AND APPLICATIONS

YONG JIAO, ADAM OS�KOWSKI, LIAN WU, AND YAHUI ZUO

Abstract. Motivated by the results from the classical probability theory, we intro-
duce the concepts of tangency and weak domination of noncommutative martingales.
Then we establish the weak-type and strong-type estimates arising in this context. The
proof rests on a novel Gundy-type decomposition which is of independent interest. We
also show the corresponding square function inequalities under the assumption of the
weak domination. The results strengthen recent works on noncommutative di�eren-
tially subordinate martingales ([10, 14]), which in turn, give rise to a new application
in harmonic analysis: a weak-type estimate (along with a completely bounded version)
for the directional Hilbert transform associated with a quantum tori.

1. Introduction

The purpose of this paper is to study weak-type and strong-type estimates for non-
commutative martingales under a certain mild domination relation, and provide some
applications in harmonic analysis. To present this topic from the appropriate per-
spective, we will �rst discuss some results which were obtained in the commutative
setting about twenty-thirty years ago. Suppose that (Ω,F ,P) is a classical proba-
bility space, �ltered by (Fn)n≥0, a nondecreasing sequence of sub-σ-�elds of F . Let
x = (xn)n≥0, y = (yn)n≥0 be two adapted real-valued martingales, with the associated
di�erence sequences dx = (dxn)n≥0, dy = (dyn)n≥0 de�ned by dx0 = x0, dy0 = y0

and dxn = xn − xn−1, dyn = yn − yn−1 for all n ≥ 1. The problem of comparing
the sizes of x and y (measured by norms in various function spaces), under certain
domination relations expressed in terms of dx and dy, has a long history and goes
back to the classical results for sums of mean-zero independent random variables (cf.
[25]). One of fundamental examples is that of the di�erential subordination. Following
Burkholder [4, 5], we say that y is di�erentially subordinate to x, if for any n ≥ 0 we
have |dyn| ≤ |dxn| almost surely. This type of domination generalizes another crucial
concept of the so-called martingale transforms. Recall that y is a transform of x, if there
exists a predictable sequence v = (vn)n≥0 such that dyn = vndxn for each n ≥ 0. Here
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by predictability we mean that for any n the random variable vn is F(n−1)∨0-measurable.
Clearly, if the terms vn are assumed to be bounded in absolute value by 1, then y is
di�erentially subordinate to x.
The di�erential subordination implies many important and interesting estimates be-

tween x and y. Here is a fundamental result due to Burkholder. For a survey over
related estimates we refer the reader to [5, 28, 29].

Theorem 1.1. Suppose that x, y are martingales such that y is di�erentially subordi-
nate to x.

(i) For any n ≥ 0 we have
‖yn‖L1,∞ ≤ 2‖xn‖L1 ,

and the constant 2 is the best possible. It is already optimal in the context of
martingale transforms.

(ii) For any n ≥ 0 and any 1 < p <∞ we have

‖yn‖Lp ≤ (p∗ − 1)‖xn‖Lp ,
where p∗ = max{p, p/(p − 1)}. The inequality is sharp, already for martingale
transforms.

This statement is a starting point for many applications, including bounds for wide
classes of Fourier multipliers, properties of unconditional constants and the geometry
of Banach spaces. We refer the reader to, for instance, [1, 4, 5] and references therein.
One can also study analogous weak-type and strong-type estimates under di�erent

dominations. Let us brie�y discuss two examples which will serve as the motivation
for our research. The concept of tangent sequences appeared in the work of Kwapie«
and Woyczy«ski [23] and gave rise to the powerful technique of decoupling which has
proved to be a very e�cient tool in the study of sums of independent random variables
and random chaoses. Recall that two sequences (un)n≥0, (vn)n≥0 of real-valued random
variables, adapted to a given �ltration (Fn)n≥0, are said to be tangent, if for each n ≥ 0
the conditional distributions of un and vn given Fn−1 coincide (we set F−1 = {∅,Ω}).
This is equivalent to saying that for any n ≥ 0 and any bounded Borel function f , we
have the identity

En−1f(un) = En−1f(vn),

where En−1 is the conditional expectation with respect to Fn−1. For the tangent se-
quences, we have the following estimates proved in [27, 28] (see also [9] and [23, 24]).

Theorem 1.2. Let x, y be martingales with tangent di�erence sequences.

(i) There exists a universal constant C such that

(1.1) ‖yn‖L1,∞ ≤ C‖xn‖L1 , n = 0, 1, 2, . . . .

(ii) For any 1 < p <∞ there is a constant Cp depending only on p such that

(1.2) ‖yn‖Lp ≤ Cp‖xn‖Lp , n = 0, 1, 2, . . . .

Furthermore, the orders Cp = O((p− 1))−1 as p→ 1+ and Cp = O(p) as p→∞
are the best possible.
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Theorems 1.1 and 1.2 were generalized signi�cantly in [27]. The type of domination
considered there is less restrictive than both the di�erential subordination and the
tangency. Following [24], we say that a martingale y is weakly dominated by x, if for
any n ≥ 0 and any λ > 0 we have

En−1(|dyn| − λ)+ ≤ En−1(|dxn| − λ)+.

There is an equivalent and perhaps a little more transparent reformulation of this
condition: for any n ≥ 0 and any nondecreasing convex function f : [0,∞)→ R with a
linear growth at in�nity we have

(1.3) En−1f
(
|dyn|

)
≤ En−1f

(
|dxn|

)
.

The aforementioned result of [27] asserts that the estimates (1.1) and (1.2) hold true
if y is assumed to be weakly dominated by x; in addition, the optimal orders of Cp
as p → 1+ or p → ∞ are the same. Actually, as already pointed out in [27], the
domination (1.3) can be further relaxed by restricting to some special functions f . For
the sake of clarity, we will formulate this as a separate statement. Let us distinguish
the function ϕ : R→ [0,∞) given by the formula

(1.4) ϕ(s) =

{
s2 if |s| ≤ 1,

2|s| − 1 if |s| > 1.

Theorem 1.3. [27] Let x, y be martingales and ϕ be as de�ned in (1.4).

(i) Suppose that for any n ≥ 0 and any λ > 0,

En−1ϕ(λ|dyn|) ≤ En−1ϕ(λ|dxn|).
Then for any n = 0, 1, 2, . . . we have

‖yn‖L1,∞ ≤ 6‖xn‖L1

and

‖yn‖Lp ≤ 3(p− 1)−1‖xn‖Lp , 1 < p < 2.

(ii) Suppose that p ≥ 2 and for any n ≥ 0 we have

En−1|dyn|2 ≤ En−1|dxn|2 and En−1|dyn|p ≤ En−1|dxn|p.
Then there exists an absolute constant C such that for any n = 0, 1, 2, . . .

‖yn‖Lp ≤ Cp‖xn‖Lp .

For related results under di�erent types of dominations and their applications to the
theory of multiple stochastic integrals, we refer the reader to the monograph [24].
On the other hand, as we know, the theory of noncommutative martingales has been

developed signi�cantly and applied in various topics of harmonic analysis. The begin-
ning of the theory dates back to the seminal paper [32] of Pisier and Xu, which contains
the description of the general framework and an appropriate form of Burkholder-Gundy
estimates. Another paper which turned out to be fundamental to the development of
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the area is Junge's work [16] devoted to Doob's maximal estimate in the noncom-
mutative context. Since the appearance of these two articles, the topic has gained
considerable interest from the mathematical community and has been applied in nu-
merous contexts of harmonic analysis. The literature is extremely extensive here and
it is impossible to give even a brief survey. We refer the interested reader to the works
[2, 3, 6, 12, 17, 18, 19, 20] and the references therein. Particularly, in a recent paper [10],
the notion of di�erential subordination was generalized to the noncommutative setting
and a non-classical version of Theorem 1.1 was formulated. See also the references
[11, 13, 14] for other works on noncommutative di�erentially subordinated martingales
and their applications in harmonic analysis.
Following the above line of research, the main purpose of this paper is to study non-

commutative weakly dominated martingales and explore some possible applications in
harmonic analysis. We should mention that some progress on noncommutative tangent
and weakly dominated martingales has been already carried out in [12], which enabled
a successful treatment of strong-type estimates in the range p ≥ 2. Unfortunately, the
general approach introduced there has not allowed the study of weak-type estimates or
the strong-type bounds for 1 < p < 2: these inequalities were shown to fail under the
tangency or the weak domination condition introduced there (see the next section for
the detailed discussion). In the present paper, we overcome this di�culty and complete
the study on the topic. It should be emphasized that this development requires the in-
vention of new ideas and techniques. It turns out that in the range 1 < p < 2, one needs
to work with a `stronger' version of the weak domination. Actually, the phenomenon
that one has to work under di�erent assumptions (a weaker for p ≥ 2, a stronger for
1 ≤ p < 2) has been already discovered and explained by the �rst three authors in [10].
Working under the `stronger' weak domination, we show the weak-type estimates and
the strong-type bounds for 1 < p < 2. These results, combined with [12, Theorem 5.5],
can be regarded as a noncommutative version of Theorem 1.3. Our approach mainly
depends on a new type of Gundy's decomposition which is designed for the study of
the context of the weak domination. In addition, we complement the above analysis by
showing the weak- and strong-type (p, p) inequalities (with 1 < p < 2) for noncommu-
tative martingales and the square functions of the weakly dominated processes. The
proof mainly relies on a new endpoint inequality of a triangular truncated operator (see
Proposition 4.6 below) and the variant of Gundy's decomposition mentioned above.
We should mention that our main results strengthen recent works on noncommutative
di�erentially subordinated martingales ([10, 14]).
Similar to the classical case, the weak domination is less restrictive than the di�er-

ential subordination considered in [10] and hence it should possess a wider range of
applications. Exploiting the machinery developed for noncommutative weakly domi-
nated martingales, we establish a weak-type estimate and also a completely bounded
version for the directional Hilbert transform associated with a quantum tori. These
statements do not seem to follow from weak-type estimate for di�erentially subordinate
martingales and hence the weak domination does provide a wider range of applications.
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The paper is organized as follows. In the next section we recall some basic informa-
tion on operator algebras which will be needed in our further considerations. Section
3 includes a new description of a Gundy type decomposition for weakly dominated
martingales which is di�erent from the versions in [14, 30] and is of independent inter-
est. Section 4 contains the study of estimates for noncommutative weakly dominated
martingales. The last section is devoted to applications: a weak-type estimate and also
a completely bounded version for the directional Hilbert transform associated with a
quantum tori.

2. Preliminaries

We start with some basic facts from the operator theory, for the detailed exposition
of the subject we refer the reader to [21, 22, 36]. Throughout the paper, M is a von
Neumann algebra equipped with a semi�nite normal faithful trace τ . We assume that
M is a subalgebra of the algebra of all bounded operators acting on some Hilbert space
H. A closed densely de�ned operator a on H is said to be a�liated withM if u∗au = a
for all unitary operators u in the commutant M′ of M. A closed densely de�ned
operator a on H a�liated with M is said to be τ -measurable if for any ε > 0 there
exists a projection e such that e(H) is contained in the domain of x and τ(I−e) < ε; here
and below, I denotes the identity operator. The set of all τ -measurable operators will
be denoted by L0(M, τ). The trace τ can be extended to a positive tracial functional
on the positive part L+

0 (M, τ) of L0(M, τ) and this extension is still denoted by τ . For
a given family (ei)i∈I of projections, the symbol

∧
i∈I ei will denote the intersection of

the family, i.e., the projection onto
⋂
i∈I ei(H). Next, suppose that a is a self-adjoint

τ -measurable operator and let a =
∫∞
−∞ λdeλ stand for its spectral decomposition. For

any Borel subset B of R, the spectral projection of a corresponding to the set B is
de�ned by IB(a) =

∫∞
−∞ χB(λ)deλ.

For 0 < p <∞, we recall that the noncommutative Lp-space (cf. [8, 26]) associated
with (M, τ) is de�ned by

Lp(M, τ) = {x ∈ L0(M, τ) : τ(|x|p) <∞}
and equipped with the (quasi-)norm

‖x‖Lp(M) = (τ(|x|p))1/p,

where |x| = (x∗x)1/2 is the modulus of x. For p = ∞, the space Lp(M, τ) coincides
withM with its usual operator norm. Recall also that the weak Lp-space Lp,∞(M, τ)
is de�ned by

Lp,∞(M, τ) :=

{
x ∈ L0(M, τ) : sup

λ
λpτ(I[λ,∞)(|x|)) <∞

}
and the associated quasi-norm reads

‖x‖Lp,∞(M) := sup
λ
λτ(I[λ,∞)(|x|))1/p.
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For simplicity, we write ‖ · ‖p, ‖ · ‖p,∞ to replace ‖ · ‖Lp(M), ‖ · ‖Lp,∞(M) in the following.
We will also need some basic facts from the theory of Orlicz spaces. Let Φ : R→ R+

be an Orlicz function, i.e., an even convex function such that Φ(0) = 0 and Φ(∞) =∞.
Given 1 ≤ p ≤ ∞, an Orlicz function Φ is p-convex (respectively, p-concave) if the
function t 7→ Φ(t1/p) is convex (respectively, concave) on (0,∞). Any Orlicz function
Φ gives rise to the corresponding Orlicz space LΦ(0, α) (where α ∈ (0,∞] is a given
parameter), de�ned as the class of all measurable functions f on (0, α) such that

‖f‖LΦ
= inf

{
λ > 0 :

∫ α

0

Φ

(
|f(t)|
λ

)
dt

}
≤ 1.

To de�ne the operator version of this space, recall that for any t > 0 and any measurable
operator x, the associated generalized singular numbers are given by

µt(x) = inf
{
s > 0 : τ

(
I(s,∞)(|x|)

)
≤ t
}
.

Now, we say that the operator x belongs to the Orlicz space LΦ(M), if its generalized
singular numbers t 7→ µt(x) belong to LΦ(0, τ(I)).
We now turn our attention to the general setup of noncommutative martingales.

Suppose that (Mn)n≥0 is a �ltration, i.e., a nondecreasing sequence of von Neumann
subalgebras of M whose union is weak∗-dense in M. Then for any n ≥ 0 there is a
normal conditional expectation En fromM ontoMn, satisfying

(i) En(axb) = aEn(x)b for all a, b ∈Mn and x ∈M;
(ii) τ ◦ En = τ .

It is straightforward to check that the conditional expectations satisfy the tower prop-
erty EmEn = EnEm = Emin(m,n) for all nonnegative integers m and n. Furthermore, since
En is trace preserving, it can be extended to a contractive projection from Lp(M, τ)
onto Lp(Mn, τn) for all 1 ≤ p ≤ ∞, where τn is the restriction of τ toMn.
A sequence x = (xn)n≥0 in L1(M) is called a noncommutative martingale (with

respect, or adapted to (Mn)n≥0), if for any n ≥ 0 we have the equality

En(xn+1) = xn.

The associated di�erence sequence is de�ned as in the commutative case, with the use
of the formulae dx0 = x0 and dxn = xn − xn−1 for n ≥ 1. If for some given 1 ≤ p ≤ ∞
we have x = (xn)n≥0 ⊂ Lp(M) and

‖x‖p = sup
n≥0
‖xn‖p <∞,

then x is said to be a bounded Lp-martingale. An important identi�cation is in order.
Suppose that 1 ≤ p < ∞ and x = (xn)n≥0 is a martingale given by xn = En(x∞) for
some operator x∞ ∈ Lp(M). Then x is a bounded Lp-martingale and ‖x‖p = ‖x∞‖p.
Conversely, if 1 < p < ∞, then every bounded Lp-martingale converges in Lp(M),
and so is given by some operator x∞ as previously. Consequently, one can identify the
space of bounded Lp-martingales with the space Lp(M) in the case 1 < p < ∞, with
the identi�cation given by x 7→ x∞.
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Next, let us present some background on noncommutative Hardy spaces. Following
[32], we de�ne the column and row versions of square functions relative to a martingale
x = (xn)n≥1:

Sc,n(x) =
( n∑
k=1

|dxk|2
)1/2

, Sc(x) =
( ∞∑
k=1

|dxk|2
)1/2

.

and

Sr,n(x) =
( n∑
k=1

|dx∗k|2
)1/2

, Sr(x) =
( ∞∑
k=1

|dx∗k|2
)1/2

.

For 1 ≤ p ≤ ∞, the column martingale Hardy space Hc
p(M) (resp. the row martingale

Hardy space Hr
p(M)) is de�ned to be the space of all martingales x for which Sc(x) ∈

Lp(M) (resp. Sr(x) ∈ Lp(M)) under the norm, ‖x‖Hcp = ‖Sc(x)‖p (resp. ‖x‖Hrp =
‖Sr(x)‖p). For 0 < p < 1, Hc

p(M) (resp. Hr
p(M)) is the completion of all �nite

martingale x ∈ L2(M) under the quasi-norm ‖·‖Hcp (resp. ‖·‖Hrp). The noncommutative
martingale Hardy spaces Hp(M) are de�ned as follows: if 0 < p < 2, we set

Hp(M) = Hc
p(M) +Hr

p(M),

and equip it with the (quasi) norm

‖x‖Hp = inf
{
‖y‖Hcp + ‖z‖Hrp

}
,

where the in�mum is taken over all decomposition x = y + z with y ∈ Hc
p and z ∈

Hr
p(M). When 2 ≤ p <∞, we put

Hp(M) = Hc
p(M) ∩Hr

p(M)

and consider the norm
‖x‖Hp = max

{
‖x‖Hcp , ‖x‖Hrp

}
.

Now we will discuss the notion of tangency, following [12].

De�nition 2.1. Two adapted sequences a = (an)n≥0 and b = (bn)n≥0 of self-adjoint
operators are said to be tangent, if for any n ≥ 0 and any bounded Borel function f on
R we have

En−1f(an) = En−1f(bn).

The following result was established in [12], which can be regarded as a noncommu-
tative version of Theorem 1.3 (ii).

Theorem 2.2. Let p ≥ 2 and suppose that x, y are self-adjoint, L2-bounded martingales
such that for each n = 0, 1, 2, . . . we have

(2.1) En−1|dyn|2 ≤ En−1|dxn|2 and En−1|dyn|p ≤ En−1|dxn|p.
Then

‖yn‖p ≤ Cp‖xn‖p, n = 0, 1, 2, . . . ,

for some constant Cp depending only on p. Furthermore, Cp = O(p) as p→∞, which
is already optimal in the classical case.
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In particular, the Lp estimates hold for martingales with tangent di�erences: indeed,
the condition (2.1) exploits only two special convex functions f(s) = s2 and f(s) = sp.
From this viewpoint, the tangency assumption is too strong for the moment estimates.
On the contrary, the paper [12] contains a striking counterexample showing that under
the tangency requirement, the weak-type and the strong-type bounds fail for 1 < p < 2.
More speci�cally, for any constant κ there are two martingales x = (xn)n≥0 and y =
(yn)n≥0 such that |dxn| = |dyn| for each n, and

τ(I[1,∞)(|yN |))
‖xN‖L1(M)

> κ,
‖yN‖Lp(M)

‖xN‖Lp(M)

> κ

provided N is su�ciently large. This shows that the notion of tangency must invoke
some deeper structure hidden in the di�erence sequences dx and dy. We propose the
following.

De�nition 2.3. Two sequences (un)n≥0, (vn)n≥0 of self-adjoint operators are said to
be strongly tangent, if for any n, any projection R ∈ Mn−1 and any bounded Borel
function f on R we have

τ(f(RunR)) = τ(f(RvnR)).

In the classical setting, this reduces to the standard tangency. We will prove below
the weak-type (1, 1) and strong-type (p, p) (1 < p < 2) estimates for martingales whose
di�erence sequences are strongly tangent. Actually, we will study these estimates under
less restrictive notion of weak domination, whose classical version was discussed in the
introductory section.

De�nition 2.4. Let x = (xn)n≥0, y = (yn)n≥0 be two martingales. Then y is weakly
dominated by x, if for any n ≥ 0, any projection R ∈ Mn−1 and any convex function
f : [0,∞)→ R with a linear growth at in�nity we have

(2.2) τ(f(RdynR)) ≤ τ(f(RdxnR)).

We will even show more: we will study the weak-type and strong-type estimates
assuming that (2.2) holds only for some selected functions f . (Compare to Theorem
1.3).

3. New Gundy-type decomposition

The primary goal of this section is to establish a new type of Gundy's decomposition
which enables the e�cient study of martingales under the weak domination. This will be
one of main tools in our considerations. For the historical perspective, let us mention
that Gundy's decomposition for noncommutative martingales was �rst considered in
[30, Theorem 2.1]. However, as we will see below, the version given there does not seem
to combine nicely with the notion of weak domination.
Recall that the function ϕ is given by (1.4). We will prove the following statement.
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Theorem 3.1. Let x = (xk)
n
k=0, y = (yk)

n
k=0 be self-adjoint martingales such that y is

weakly dominated by x. Then for any given number λ > 0, there exist three martingales
α, β and γ satisfying the following properties:

(i) y = α + β + γ;
(ii) the martingale α satis�es

∑n
k=0 τ

(
ϕ(dαk/λ)

)
≤ 6
√

3 τ(|xn/λ|);
(iii) β and γ are L1-martingales with

max

{
λτ
( n∨
k=0

supp|dβk|
)
, λτ

( n∨
k=0

supp |dγk|
)}}

≤ τ(|xn|).

In the proof of the above statement, we will work with several di�erent quadratic-
linear functions: one of them is ϕ already de�ned in (1.4), we will also need ψ, η : R→
[0,∞) given by the formulas

ψ(s) =

{
s2 if |s| ≤ 1,

|s| if |s| > 1
and η(s) =

{
s2 if |s| ≤ 1,

3|s| − 2 if |s| > 1.

We start with two auxiliary trace inequalities.

Lemma 3.2. For any self-adjoint operators u, v satisfying ‖u‖L1 <∞ and ‖v‖∞ ≤ 1,
we have

(3.1) 2τ(uv) ≤ τ
(
ϕ(|u|)

)
+ τ(|v|2)

and

(3.2) τ
(
η(u)

)
≥ τ

(
η(v)

)
+ τ
(
η′(v)(u− v)

)
+

1

2
√

3
τ
(
ϕ(u− v)

)
.

Proof. To show (3.1), we �rst establish its pointwise version: for a ∈ R and b ∈ [−1, 1]
we have

(3.3) 2ab ≤ ϕ(|a|) + b2.

If |a| ≤ 1, then the estimate is equivalent to the obvious bound 2ab ≤ a2 + b2. If
|a| > 1, then 0 < |a| − 1 ≤ |a| − |b|; squaring both sides we get an inequality equivalent
to 2|ab| ≤ 2|a| − 1 + b2, from which (3.3) follows. Now we turn to the noncommutative
setting. By standard approximation, we may and do assume that u =

∑m
j=1 ajej,

v =
∑n

k=1 bkfk for some scalars (aj)
m
j=0, (bk)

n
k=0 and some sequences of orthogonal

projections (ej)
m
j=0 and (fk)

n
k=0 satisfying

∑m
j=0 ej =

∑n
k=0 fk = I. Using (3.3) and the
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fact that τ(ef) ≥ 0 for any projections e, f , we may write

2τ(uv) = 2
m∑
j=1

n∑
k=1

τ(ejfk)ajbk

≤
m∑
j=1

n∑
k=1

τ(ejfk)ϕ(|aj|) +
m∑
j=1

n∑
k=1

τ(ejfk)b
2
k

=
m∑
j=1

τ(ej)ϕ(|aj|) +
n∑
k=1

τ(fk)b
2
k

= τ
(
ϕ(|u|)

)
+ τ(|v|2),

so (3.1) is proved.
Now we verify (3.2). Again we start with a certain pointwise estimate: for any a ∈ R

and b ∈ [−1, 1] we have

(3.4) η(a) ≥ η(b) + η′(b)(a− b) + (1 + |a|)−1(a− b)2.

(note the slight di�erence between the last term above and the last term in (3.2); we
will comment on it in Remark 3.3 below). If |a| ≤ 1, then the inequality is equivalent
to (a− b)2 ≥ (1 + |a|)−1(a− b)2, which is evident. If |a| > 1, then the estimate reads

3|a| − 2 ≥ b2 + 2b(a− b) +
(a− b)2

1 + |a|
.

However, the right-hand side can be transformed into

a2 − (a− b)2 +
(a− b)2

1 + |a|
= |a|

[
|a| − (a− b)2

1 + |a|

]
≤ |a|

[
|a| − (|a| − 1)2

1 + |a|

]
=
|a|(3|a| − 1)

1 + |a|
,

which is easily shown to be not bigger than 3|a| − 2. Therefore, the pointwise bound
(3.4) is established; let us rewrite it in the form

(3.5) η(a) ≥ η(b) + η′(b)a− η′(b)b+ (1 + |a|)−1a2 − 2(1 + |a|)−1ab+ (1 + |a|)−1b2.

By the approximation of operators u, v by �nite linear combinations of projections, the
above estimate implies

τ
(
η(u)

)
≥ τ

(
η(v)

)
+ τ
(
η′(v)(u− v)

)
+ τ
(
(1 + |u|)−1u2

)
− τ
(
2(1 + |u|)−1uv + (1 + |u|)−1v2

)
= τ
(
η(v)

)
+ τ
(
η′(v)(u− v)

)
+ τ
(
(1 + |u|)−1(u− v)2

)
,

(3.6)

by the tracial property. Now, we have

(1 + |u|)2 ≤ 3 +
3

2
|u− v + v|2 ≤ 3 + 3|u− v|2 + 3|v|2 ≤ 6 + 3|u− v|2,

and hence by the operator monotonicity of the function t 7→ t−1/2, we get

(1 + |u|)−1 ≥ (6 + 3|u− v|2)−1/2.
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Consequently,

τ
(
(1 + |u|)−1(u− v)2

)
≥ τ

(
(6 + 3|u− v|2)−1/2(u− v)2

)
and hence, in order to get (3.2), it su�ces to prove a simple pointwise estimate

(6 + 3s2)−1/2s2 ≥ 1

2
√

3
ϕ(s), s ∈ R.

If |s| ≤ 1, then 6 + 3s2 ≤ 9 < 12 and ϕ(s) = s2, so the estimate holds. If |s| > 1, then
the inequality becomes

s2

√
6 + 3s2

≥ 2|s| − 1

2
√

3
,

or, after squaring and some simple manipulations, 4|s|3 + 8|s| ≥ 9s2 + 2. But

4|s|3 + 8|s| ≥ 4|s|
(
s2 +

3

2

)
+ 2 ≥ 4

√
6s2 + 2 ≥ 9s2 + 2,

so the claim follows. �

Remark 3.3. Let us explain the reason why we have studied the estimate (3.4) instead
of

(3.7) η(a) ≥ η(b) + η′(b)(a− b) +
1

2
√

3
ϕ(b− a).

The crucial fact is that (3.4) admits the alternative reformulation (3.5), in which each
term is of the form F (a)G(b) for some Borel functions F and G. Such a factorization
allows the immediate passage to the operator version (3.6), as we have seen in the proof
of (3.1). On the contrary, the more natural bound (3.7) does not have this structural
property and hence the direct passage to the operator counterpart seems problematic.

The next lemma describes a simple but powerful control of di�erence sequence over
a martingale.

Lemma 3.4. For any self-adjoint martingale x = (xk)
n
k=0 we have

τ
(
ψ(xn)

)
≤ 4

3

n∑
k=0

τ
(
ϕ(dxk)

)
.

Proof. Consider the operator z = xnI[−1,1](xn) + xn|xn|−1IR\[−1,1](xn) and let (zk)
n
k=0 =

(Ekz)nk=0 be the associated martingale. Then, using the orthogonality of the martingale
di�erence sequences, we have the identity

τ
(
ψ(xn)

)
= τ(xnzn) =

n∑
k=0

τ(dxkdzk).
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By Lemma 3.2 and the orthogonality again,
n∑
k=0

τ(dxkdzk) = 2
n∑
k=0

τ(dxk(dzk/2))

≤
n∑
k=0

τ
(
ϕ(dxk)

)
+

1

4

n∑
k=0

τ(dz2
k)

=
n∑
k=0

τ
(
ϕ(dxk)

)
+

1

4
τ(z2)

≤
n∑
k=0

τ
(
ϕ(dxk)

)
+

1

4
τ
(
ψ(xn)

)
.

Here the last bound follows from the trivial estimate

z2 = |xn|2I[−1,1](xn) + IR\[−1,1](xn) ≤ ψ(xn).

Putting all the above facts together, we get the desired assertion. �

Now we will introduce the sequences of Cuculescu projections associated with the
martingale x = (xk)

n
k=0 at level 1 (cf. [7]). De�ne R = (Rk)

n
k=−1, D = (Dk)

n
k=0 and

U = (Uk)
n
k=0 by the following recursive procedure: R−1 = I and

Rk = Rk−1I(−1,1)(Rk−1xkRk−1),

Uk = Rk−1I(−∞,−1](Rk−1xkRk−1),

Dk = Rk−1I[1,∞)(Rk−1xkRk−1),

for k = 0, 1, 2, . . . , n. Directly from the de�nition, we see that the operators Rk and
Rk−1xkRk−1 commute for each k; moreover, −UkxkUk and DkxkDk are positive opera-
tors. We will also need the simple estimate

τ(I −Rn) ≤ τ((I −Rn)|xn|), n = 0, 1, 2, · · ·
(see e.g. [10]).
Now we are going to exploit the following estimate.

Lemma 3.5. For any L1-bounded self-adjoint martingale x = (xk)
n
k=0 we have∣∣∣∣∣

∣∣∣∣∣
n∑
k=0

(Rk−1 −Rk)|Rk−1xkRk−1|

∣∣∣∣∣
∣∣∣∣∣
L1(M)

≤ τ
(
(I −Rn)|xn|

)
.

Proof. First, note that by the commuting property of Rk and Rk−1xkRk−1 we may write

(Rk−1xkRk−1)2 = Rk−1xkRk−1xkRk−1

= (Rk−1 −Rk)xkRk−1xkRk−1 +RkxkRk−1xkRk−1

= (Rk−1 −Rk)xk(Rk−1 −Rk)xk(Rk−1 −Rk) +RkxkRkxkRk

=
(
(Rk−1 −Rk)xk(Rk−1 −Rk)

)2
+
(
RkxkRk

)2
,
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which implies

(Rk−1 −Rk)|Rk−1xkRk−1|(Rk−1 −Rk) = |(Rk−1 −Rk)xk(Rk−1 −Rk)|.

Now, by the commuting properties of the projections Rn, Un and Dn, we can write

(Rk−1 −Rk)xk(Rk−1 −Rk) = (Rk−1 −Rk)Rk−1xkRk−1

= (Uk +Dk)Rk−1xkRk−1

= UkxkUk +DkxkDk.

As we have already mentioned above, the operator UkxkUk is negative and DkxkDk is
positive. Therefore, the triangle inequality and the martingale property of x give

τ
(
|(Rk−1 −Rk)xk(Rk−1 −Rk)|

)
≤ −τ(UkxkUk) + τ(DkxkDk)

= −τ(UkxnUk) + τ(DkxnDk)

≤ τ
(
Uk|xn|Uk + τ(Dk|xn|Dk

)
= τ
(

(Uk +Dk)|xn|
)

= τ
(

(Rk−1 −Rk)|xn|
)
.

From this estimate, we conclude that∥∥∥∥∥
n∑
k=0

(Rk−1 −Rk)|Rk−1xkRk−1|

∥∥∥∥∥
L1(M)

≤
n∑
k=0

∥∥(Rk−1 −Rk)|Rk−1xkRk−1|
∥∥
L1(M)

=
n∑
k=0

τ
(∣∣(Rk−1 −Rk)xk(Rk−1 −Rk)

∣∣)
≤

n∑
k=0

τ
(
(Rk−1 −Rk)|xn|

)
= τ
(
(I −Rn)|xn|

)
.

The claim is proved. �

We will also need the following auxiliary result, which is, in a sense, a converse to
Lemma 3.4.

Lemma 3.6. We have

τ
((
RnxnRn

)2
+ (I −Rn)(3|xn| − 2)

)
≥ 1

2
√

3

n∑
k=0

τ
(
ϕ
(
Rk−1dxkRk−1

))
.

Proof. Pick k ∈ {1, 2, . . . , n} and plug u = Rk−1xkRk−1 and v = Rk−1xk−1Rk−1 into
(3.2). We have the identity

τ
(
η′(v)(u− v)

)
= 2τ

(
Rk−1xk−1Rk−1dxkRk−1

)
= 0,
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since Rk−1, xk−1 ∈Mk−1 and Ek−1dxk = 0; consequently, (3.2) gives

τ
(
η
(
Rk−1xkRk−1

))
≥ τ

(
η
(
Rk−1xk−1Rk−1

))
+

1

2
√

3
τ
(
ϕ
(
Rk−1dxkRk−1

))
.

However, directly from the de�nition of Cuculescu projections, we have

η
(
Rk−1xkRk−1

)
= Rk(Rk−1xkRk−1)2 + (Rk−1 −Rk)

(
3|Rk−1xkRk−1| − 2

)
= η(RkxkRk) + (Rk−1 −Rk)

(
3|Rk−1xkRk−1| − 2

)
,

which combined with the preceding estimate yields

τ
(
η
(
RkxkRk

))
≥ τ

(
η
(
Rk−1xk−1Rk−1

))
+

1

2
√

3
τ
(
ϕ
(
Rk−1dxkRk−1

))
− τ
(

3(Rk−1 −Rk)|Rk−1xkRk−1|
)

+ 2τ(Rk−1 −Rk).

Therefore, summing over k, we get

τ
(
η
(
RnxnRn

))
≥ τ

(
η
(
R0x0R0

))
+

1

2
√

3

n∑
k=1

τ
(
ϕ
(
Rk−1dxkRk−1

))
− 3

n∑
k=1

τ
(

(Rk−1 −Rk)|Rk−1xkRk−1|
)

+ 2τ(R0 −Rn).

Now, observe that

τ
(
η(R0x0R0) + 3(I −R0)|x0|

)
≥ τ

(
ψ(dx0)

)
+ 2τ(I −R0)

≥ (2
√

3)−1τ
(
ϕ(dx0)

)
+ 2τ(I −R0),

and hence the previous inequality leads to

τ
(
η
(
RnxnRn

))
≥ 1

2
√

3

n∑
k=0

τ
(
ϕ
(
Rk−1dxkRk−1

))
− 3

n∑
k=0

τ
(

(Rk−1 −Rk)|Rk−1xkRk−1|
)

+ 2τ(I −Rn).

It remains to apply Lemma 3.5 and use the identity η
(
RnxnRn

)
= (RnxnRn)2 to get

the assertion. �

Now we are ready to show Gundy's decomposition.

Proof of Theorem 3.1. By homogeneity, we may and do assume that λ = 1. For each
0 ≤ k ≤ n, we de�ne 

dαk := Rk−1dykRk−1;

dβk := (I −Rk−1)dykRk−1;

dγk := dyk(I −Rk−1).
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Obviously, dα, dβ and dγ are martingale di�erences relative to (Mk)
n
k=0. Denoting

the associated martingales by α, β and γ, we easily see that y = α + β + γ, so the
required property (i) is satis�ed. To check (ii), note that since y is weakly dominated
by x, we have

τ(ϕ(dαk)) = τ
(
ϕ
(
Rk−1dykRk−1

))
≤ τ

(
ϕ
(
Rk−1dxkRk−1

))
= τ
(
ϕ
∣∣Rk−1dxkRk−1

∣∣).
Based on the fact that −I ≤ Rk−1dxkRk−1 ≤ I, we get |Rk−1dxkRk−1| ≤ 1, so by
Lemma 3.6 and homogeneity we obtain

n∑
k=0

τ
(
ϕ(dαk)

)
≤ 2
√

3τ
(

(RnxnRn)2 + (I −Rn)(3|xn| − 2)
)
.

Setting x+
n = xnI[0,∞)(xn) and x−n = x+

n − xn, we see that x±n ≥ 0 and hence

τ((RnxnRn)2) = τ(RnxnRnxn)

= τ(RnxnRnx
+
n ) + τ

(
(−RnxnRn)(x−n )

)
≤ τ(Rnx

+
n ) + τ(Rnx

−
n ) = τ(Rn|xn|).

Combining this with the previous estimate, we get
n∑
k=0

τ
(
ϕ(dαk)

)
≤ 2
√

3τ
(

3|xn| − 2(I −Rn)
)

= 6
√

3τ(|xn|)− 4
√

3τ(I −Rn) ≤ 6
√

3τ(|xn|).

This veri�es (ii) and it remains to handle (iii). The left support of dβk satis�es

`(dβk) ≤ I −Rk−1 ≤ I −Rn.

Therefore,

(3.8) τ

(
n∨
k=0

`(dβk)

)
≤ τ(I −Rn) ≤ τ ((I −Rn)|xn|) .

A similar analysis of the right support of dγn yields

(3.9) τ(r(γn)) ≤ τ

(
n∨
k=0

`(dγk)

)
≤ τ(I −Rn) ≤ τ ((I −Rn)|xn|) ,

which completes the proof. �

4. Inequalities for noncommutative weak dominated martingales

Based on our new Gundy-type decomposition, we turn our attention to the investiga-
tion of the weak-type and strong-type inequalities. This section is split into two parts,
devoted to estimates for weakly dominated martingales and square function inequalities
for weakly dominated martingales, respectively.
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4.1. Estimates for weakly dominated martingales. Our main result can be for-
mulated as follows. Recall the function ϕ given in (1.4).

Theorem 4.1. Suppose that x = (xn)n≥0, y = (yn)n≥0 are two self-adjoint martingales
such that for any n ≥ 0 and any projection R ∈Mn−1 we have

τ
(
ϕ(RdynR)

)
≤ τ

(
ϕ(RdxnR)

)
.

(Here we assume thatM−1 = RI.) Then we have the estimate

(4.1) τ
(
I[3,∞)(|yn|)

)
≤ 8
√

3τ(|xn|), n = 0, 1, 2, . . . .

Remark 4.2. The above result give us the noncommutative version of Theorem 1.3 (i): if
x and y are self-adjoint martingales such that for any n ≥ 0, any projection R ∈Mn−1

and any λ > 0 we have

τ
(
ϕ(λRdynR)

)
≤ τ

(
ϕ(λRdxnR)

)
,

then
‖yn‖1,∞ ≤ 24

√
3‖xn‖1, n = 0, 1, 2, . . . .

As we mentioned earlier, the noncommutative version of Theorem 1.3 (ii) was already
given in the paper [12].

Proof of Theorem 4.1. Fix n and consider the �nite martingales (xk)
n
k=0, (yk)

n
k=0. We

apply Theorem 3.1 with λ = 1, obtaining the decomposition y = α + β + γ. By the
well-known properties of a distribution function, we have

τ
(
I[3,∞)(|yn|)

)
≤ τ

(
I[1,∞)(|αn|)

)
+ τ

(
I[1,∞)(|βn|)

)
+ τ

(
I[1,∞)(|γn|)

)
.

Inspecting the proof of Theorem 3.1, we may write down the re�ned estimate

(4.2) τ
(
I[1,∞)(|αn|)

)
≤ τ

(
ψ(αn)

)
≤ 4

3

n∑
k=0

τ
(
ϕ(dαk)

)
≤ 8
√

3τ(|xn|)−
16
√

3

3
τ(I −Rn).

Furthermore, again by Theorem 3.1, we deduce that

(4.3) τ
(
I[1,∞)(|βn|)

)
≤ τ

( n∨
k=0

`(dβk)
)
≤ τ(I −Rn)

and

(4.4) τ
(
I[1,∞)(|γn|)

)
≤ τ(r(γn)) ≤ τ

( n∨
k=0

`(dγk)
)
≤ τ(I −Rn).

Plugging (4.2), (4.3) and (4.4) into the previous estimate, we get the desired claim. �

To establish the corresponding Lp bound, we need to introduce several auxiliary
objects. Let x = (xk)

n
k=0, y = (yk)

n
k=0 be two self-adjoint martingales. For a �xed

λ > 0, let (Rλ
k)nk=−1 be the sequence of projections as before, built on the martingale

x/λ: that is, we have Rλ
−1 = I and, for any k = 0, 1, 2, . . . , n,

Rλ
k = Rλ

k−1I(−λ,λ)(R
λ
k−1xkR

λ
k−1).
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Next, we recall a slight modi�cation of projections introduced by Randrianantoanina
(see e.g., [33, 34]). For any 0 ≤ k ≤ n and i ∈ Z, we set

(4.5) qi,k :=
∞∧
`=i

R2`

k and πi,k := qi,k − qi−1,k.

The family {qi,k}k,i is decreasing on n and increasing on i. Therefore, for every k =
0, 1, 2, . . . , n, (πi,k)i∈Z is a sequence of pairwise disjoint projections satisfying the trivial
but crucial identity that for every k ∈ Z,

j∑
i=−∞

πi,k = qj,k

where the convergence of the series is relative to the strong operator topology. The
properties and more details about the Cuculescu projections and the family of projec-
tions {qi,k} can be found in [33, 34].
Equipped with the above notation, we establish the following auxiliary distributional

estimate.

Lemma 4.3. For any i ∈ Z, we have

τ
(
I[3·2i,∞)(|yn|)

)
≤ 8
√

3

3
· 2−2iτ(qi,nxnqi,nxnqi,n) + 24

√
3 · 2−iτ

(
(I − qi,n)|xn|

)
.

Proof. A careful look at the proof of Theorem 4.1, together with a homogenization
argument, reveals that we have actually proved the stronger inequality

τ
(
I[3,∞)(|yn|/λ)

)
≤ 8
√

3

3
τ
(
λ−2(Rλ

nxnR
λ
n)2 + 3λ−1(I −Rλ

n)|xn|
)
.

Applying the above estimate with λ = 2i, we get

τ
(
I[3·2i,∞)(|yn|)

)
≤ 8
√

3

3
· 2−2iτ(R2i

n xnR
2i

n xnR
2i

n ) + 8
√

3 · 2−iτ
(
(I −R2i

n )|xn|
)
.

Following the argument in the proof of [14, Lemma 2.5(iii)], we obtain

τ
(
R2i

n xnR
2i

n xnR
2i

n

)
≤ τ(qi,nxnqi,nxnqi,n) + 6 · 2iτ ((I − qi,n)|xn|) .

Since qi,n is a subprojection of R2i

n , we get

τ
(
I[3·2i,∞)(|yn|)

)
≤ 8
√

3

3
· 2−2iτ(qi,nxnqi,nxnqi,n) + 24

√
3 · 2−iτ

(
(I − qi,n)|xn|

)
.

This completes the proof. �

Using the above distributional estimate, we can get the following strong-type inequal-
ities by the same reasoning as in [10, 14]. We omit the details.
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Corollary 4.4. Let 1 < p < 2. Suppose that x = (xn)n≥0, y = (yn)n≥0 are martingales
such that for any n ≥ 0 and any projection R ∈Mn−1 and any λ > 0 we have

τ(ϕ(λRdynR)) ≤ τ(ϕ(λRdxnR)).

Then we have the estimate

‖yn‖p ≤ Cp‖xn‖p, n = 0, 1, 2, · · · ,
with Cp = O((p− 1)−1) as p→ 1.

4.2. Estimates for the square functions of weakly dominated martingales.

Next, we proceed to the following weak-type estimate for the square functions of weakly
dominated martingales.

Theorem 4.5. Suppose that x is a self-adjoint L2-martingale and y is a self-adjoint
martingale that is weakly dominated by x. Then there exist two martingales yr and yc

such that y = yc + yr and we have∥∥Sc(yc)∥∥1,∞ +
∥∥Sr(yr)∥∥1,∞ ≤ K

∥∥x∥∥
1
,

for some absolute constant K.

To prove Theorem 4.5, we need some preparation. Let P = {pi}mi=1 be a �nite sequence
of mutually disjoint projections in M. We denote by T (P) the triangular truncation
with respect to P, which acts on an arbitrary operator a ∈ L0(M, τ) by

T (P)a =
∑

1≤i≤j≤m

piapj.

The proof of Theorem 4.5 will depend on the following endpoint inequalities for this
object.

Proposition 4.6. Let Φ be a p-convex and q-concave Orlicz function with 1 ≤ p ≤ q ≤
2. If (Pk)k≥1 is a family of �nite sequences of mutually disjoint projections and (ak)k≥1

is a sequence in LΦ(M), then

sup
λ>0

Φ(λ)τ
(
I(λ,∞)

(∑
k≥1

|T (Pk)ak|2
)1/2)

.p,q
∑
k≥1

τ (Φ(|ak|)) .

Before showing Proposition 4.6, we �rstly recall and establish several lemmas.

Lemma 4.7. [15, Page 133] Let 1 ≤ p ≤ q < ∞ and Φ be a p-convex and q-concave
Orlicz function. Then

Φ(t) 'p,q
∫ ∞

0

min{(ts)p, (ts)q}dν(s)

for some positive measure ν.

Here and below, (ei,j)i,j≥1 will denote the collection of matrix units of B(`2): for any
i, j ≥ 1, ei,j is the element of B(`2) whose all entries in the matrix representation are
equal to zero, except for that standing in the intersection of i-th row and j-th column.



INEQUALITIES FOR NONCOMMUTATIVE MARTINGALES 19

Lemma 4.8. Let Φ be a p-convex and q-concave Orlicz function with 1 ≤ p ≤ q <∞.
Assume that M and N are semi�nite von Neumann algebras. For k ≥ 1, let Tk :
Lp(M) + Lq(M)→ Lp,∞(N ) + Lq,∞(N ) be linear operators such that
(4.6)∥∥∥∑

k≥1

Tk(xk)⊗ ek,1
∥∥∥
Lr,∞(M⊗B(`2))

.r
∥∥∥∑
k≥1

xk ⊗ ek,k
∥∥∥
Lr(M⊗B(`2))

(
xk ∈ Lr, r = p, q

)
.

Then for any sequence (xk)k≥1 ∈ LΦ(M), we have

(4.7) sup
λ>0

Φ(λ)τ ⊗ tr
(
I(λ,∞)

(∣∣∣∑
k≥1

Tk(xk)⊗ ek,1
∣∣∣)) .p,q τ ⊗ tr

(
Φ
(∣∣∣∑

k≥1

xk ⊗ ek,k
∣∣∣).

Proof. Without loss of generality, we assume that xk are positive operators. Let us
�rst show the result for Φp,q(t) := min{tp, tq}. For each k ≥ 1, set pk = I[0,1](xk). Let
x =

∑
k≥1 xk ⊗ ek,k and p̃ =

∑
k≥1 pk ⊗ ek,k = I[0,1](x). Fix λ > 0. Then we have

τ ⊗ tr
(
I(2λ,∞)

(∣∣∣∑
k≥1

Tk(xk)⊗ ek,1
∣∣∣))

≤ τ ⊗ tr
(
I(λ,∞)

(∣∣∣∑
k≥1

Tk(xkpk)⊗ ek,1
∣∣∣))+ τ ⊗ tr

(
I(λ,∞)

(∣∣∣∑
k≥1

Tk(xkp
⊥
k )⊗ ek,1

∣∣∣)).
Using the assumption (4.6), we get

τ ⊗ tr
(
I(2λ,∞)

(∣∣∣∑
k≥1

Tk(xkpk)⊗ ek,1
∣∣∣))

≤ λ−q
∥∥∥∑
k≥1

xkpk ⊗ ek,k
∥∥∥q
q

+ λ−p
∥∥∥∑
k≥1

xkp
⊥
k ⊗ ek,k

∥∥∥p
p

= ‖xp̃‖qq + ‖xp̃⊥‖pp.

It is clear that ‖xp̃‖qq = τ ⊗ tr
(
Φp,q(xp̃)

)
and ‖xp̃⊥‖pp = τ ⊗ tr

(
Φp,q(xp̃

⊥)
)
. Therefore,

Φp,q(λ)τ⊗tr
(
I(2λ,∞)

(∣∣∣∑
k≥1

Tk(xk)⊗ek,1
∣∣∣)) ≤ τ⊗tr(Φp,q(x)) = τ⊗tr

(
Φ
(∑
k≥1

xk⊗ek,k
))
.

Observe that Φp,q(2t) ≤ 2q−1Φp,q(t) for t > 0. Taking the supremum over λ, we get the
estimate (4.7) for Φp,q:

sup
λ>0

Φp,q(λ)τ
(
I(λ,∞)

(∣∣∣∑
k≥1

Tk(xk)⊗ ek,1
∣∣∣)) ≤ 2q−1τ ⊗ tr

(
Φp,q

(∑
k≥1

xk ⊗ ek,k
))
.
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For general Φ, by Lemma 4.7 and the above estimate, we have

Φ(λ)τ ⊗ tr
(
I(λ,∞)

(∣∣∣∑
k≥1

Tk(xk)⊗ ek,1
∣∣∣))

'p,q
∫ ∞

0

Φp,q(λs)τ
(
I(λs,∞)

(∣∣∣∑
k≥1

Tk(sxk)⊗ ek,1
∣∣∣))dν(s)

.q

∫ ∞
0

τ ⊗ tr
(

Φp,q

(∑
k≥1

sxk ⊗ ek,k
))
dν(s)

'p,q τ ⊗ tr
(

Φ
(∑
k≥1

xk ⊗ ek,k
))
.

The desired assertion follows. �

Proof of Proposition 4.6. It is easy to see that T (Pk) is linear for any k ≥ 1. According
to [33, Proposition 1.6],∥∥∥∑

k≥1

T (Pk)(xk)⊗ ek,1
∥∥∥

1,∞
.r
∥∥∥∑
k≥1

xk ⊗ ek,k
∥∥∥

1

(
xk ∈ L1(M)

)
.

Moreover, since triangular truncations are contractive in L2(M), it follows that∥∥∥∑
k≥1

T (Pk)(xk)⊗ ek,1
∥∥∥

2
.r
∥∥∥∑
k≥1

xk ⊗ ek,k
∥∥∥

2

(
xk ∈ L2(M)

)
.

The desired result now follows from Lemma 4.8. �

Now we are ready to show the weak-type estimate for square functions of weakly
dominated martingales.

Proof of Theorem 4.5. Recall the projections qi,n, πi,n de�ned as in (4.5). For n ≥ 0,
we set {

p0,n := q0,n

pi,n := πi,n for i ≥ 1.

The martingales yc and yr are de�ned from their respective martingale di�erence se-
quences as follows:

(4.8)



dyc0 :=
∑

0≤i≤j

pi,0dy0pj,0;

dycn :=
∑

0≤i≤j

pi,n−1dynpj,n−1 for n ≥ 1;

dyr0 :=
∑

0≤j<i

pi,0dy0pj,0;

dyrn :=
∑

0≤j<i

pi,n−1dynpj,n−1 for n ≥ 1.
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Clearly, y = yc + yr. Since x is an L2-martingale, by the weak domination assumption,
y is also an L2-martingale. By the L2-boundedness of triangular truncations, it is also
clear that yc and yr are L2-martingales. However, since yc and yr are not self-adjoint
martingales, neither of them can be weakly dominated by x and hence we need some
additional e�ort.
We present the argument for ‖Sc(yc)‖1,∞. The argument takes advantage of the

new version of Gundy's decomposition that interacts well with the weak domination
presented in the previous section. It su�ces to show that there exists a constant K
such that for any k ≥ 0,

(4.9) 2kτ
(
I[2k,∞)

(
Sc(y

c)
))
≤ K‖x‖1.

Fix such a k, pick 0 < δ < 1, let π = qk,N and write Sc,N(yc) = Sc,N(yc)π+Sc,N(yc)(I−
π). By the well-known properties of a distribution function, we have

τ
(
I[2k,∞)

(
Sc,N(yc)

))
≤ τ

(
I[δ2k,∞)

(
|Sc(yc)π|

))
+ τ
(
I[(1−δ)2k,∞)

(
|Sc(yc)(I − π)|

))
≤ τ

(
I[δ2k,∞)

(
|Sc,N(yc)π|

))
+ τ(I − π).

(4.10)

The trace τ(1 − π) is controlled by 2−k‖xN‖1. On the other hand, we note that

πS2
c,N(yc)π = π(S

(k)
c,N(yc))2π, where S

(k)
c,N(yc) denotes the truncated square function

S
(k)
c,N(yc) =

(∣∣∣ ∑
0≤i≤j≤k

pi,1dy1pj,1

∣∣∣2 +
N∑
n=2

∣∣∣ ∑
0≤i≤j≤k

pi,n−1dynpj,n−1

∣∣∣2)1/2

.

We refer to the proof of [33, Proposition A] for this fact. Next, we consider the decom-
position of y according to the Gundy-type decomposition from Lemma 3.1, using the
parameter λ = 2k. We simply denote R2k

n by Rk
n. This gives dyn = dαn + dβn + dγn,

where for each k,

dαn = Rk
n−1dynR

k
n−1, dβn = (I −Rk

n−1)dynR
k
n−1, dγn = dyn(I −Rk

n−1).

As in [30], for n ≥ 0, set P
(k)
n := (pi,n)ki=0. Then we see that

S
(k)
c,N(yc) =

(∣∣T P
(k)
1 (dy1)

∣∣2 +
N∑
n=2

∣∣T P
(k)
n−1(dyn)

∣∣2)1/2

.

We make the following crucial observation. Since dβn is left-supported by I − Rk
n−1,

it is also left-supported by I − qk,n−1 =
∑

l≥k+1 pk,n−1, which implies T P
(k)
n−1(dβn) =

0. Similarly, by using the right support projections, we see that T P
(k)
n−1(dγn) = 0.

Therefore,

S
(k)
c,N(yc) =

(∣∣T P
(k)
1 (dα1)

∣∣2 +
N∑
n=2

∣∣T P
(k)
n−1(dαn)

∣∣2)1/2

.
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Since the function ϕ(| · |) is 1-convex and 2-concave, applying Proposition 4.6, we get

τ
(
I[2kδ,∞)

(
|Sc,N(yc)π|

))
= τ
(
I[δ2k,∞)

(
|S(k)
c,N(yc)π|

))
≤ τ

(
I[δ2k,∞)

(∣∣T P
(k)
1 (dα1)

∣∣2 +
N∑
n=2

∣∣T P
(k)
n−1(dαn)

∣∣2)1/2)
= τ
(
I[δ,∞)

(∣∣T P
(k)
1 (2−kdα1)

∣∣2 +
N∑
n=2

∣∣T P
(k)
n−1(2−kdαn)

∣∣2)1/2)
.p,q ϕ(δ)−1

N∑
n=1

τ
(
ϕ(|2−kdαn|)

)
.

Using Lemma 3.1 (ii), we get

τ
(
I[2kδ,∞)

(
|Sc,N(yc)π|

))
. ϕ(δ)−12−k‖xN‖1.

Combining the above estimates, we conclude that

τ
(
I[2k,∞)

(
|Sc,N(yc)|

))
. (ϕ(δ)−1 + 1)2−k‖xN‖1.

Letting δ → 1 and taking N →∞, we obtain the desired result. The proof is complete.
�

Remark 4.9. Arguing as in the proof of Lemma 4.3, one can show the distributional
inequality for Sc(y

c). More precisely, for every n ≥ 0 and i ∈ Z we have

(4.11) τ
(
I[2i,∞)

(
Sc,n(yc)

))
. 2−2i

∥∥qi,nxnqi,n∥∥2

2
+ 2−iτ

(
I − qi,n)|xn|

)
.

The same applies to the distribution function of Sr(y
r).

According to the above remark, we can also establish the following strong-type in-
equality the square functions of weakly dominated martingales.

Corollary 4.10. Let 1 < p < 2. Suppose that x is a self-adjoint L2-martingale and
y is a self-adjoint martingale that is weakly dominated by x. Then there exist two
martingales yr and yc such that y = yc + yr and for every 1 < p < 2 we have:∥∥yc∥∥Hcp +

∥∥yr∥∥Hrp ≤ Cp
∥∥x∥∥

p

with Cp = O((p− 1)−1) as p→ 1. The order is best possible.
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5. An application: a weak type inequality for the Hilbert transform

on a quantum tori

In this section, we will apply the estimates established in the previous section to the
study of the Hilbert transform on a quantum tori Tdθ. Recall that the Lp and c.b. Lp
bounds in this context were given in [6], however, the method used there can not be
applied to get the corresponding weak type (1, 1) inequality. We will solve this problem
with the help of Theorem 4.1.
Let us start with introducing the necessary background and notation. Let d ≥ 2

be a �xed dimension and let θ = (θkj)1≤j,k≤d be a real skew-symmetric d × d matrix.
The associated d-dimensional noncommutative torus Aθ is de�ned as the universal C∗-
algebra generated by the collection of d unitary operators U1, U2, . . ., Ud which satisfy
the commutation relation

UkUj = e2πiθkjUjUk, j, k = 1, 2, . . . , d.

It is not di�cult to see that since the operators Uk are unitary, we must also have

UjU
∗
k = e2πiθkjU∗kUj, j, k = 1, 2, . . . , d.

Set U = (U1, U2, . . . , Ud) and for m = (m1,m2, . . . ,md) ∈ Zd, consider the monomial

Um = Um1
1 Um2

2 . . . Umd
d .

Any operator of the form

(5.1) x =
∑
m∈Zd

αmU
m, αm ∈ C,

with only a �nite number of non-vanishing coe�cients αm, is called a polynomial. The
involution algebra of such polynomials is dense in Aθ. Furthermore, for any polynomial
x of the form (5.1), we de�ne τ(x) = α0. It can be shown that τ extends to a faithful
tracial state on Aθ. The d-dimensional quantum torus Tdθ is de�ned as the w∗-closure
of Aθ in the GNS representation of τ ; the state τ extends to a normal faithful tracial
state on Tdθ and we will use the same letter for this extension. We would like to point
out that the choice of the matrix (θkj)1≤j,k≤d with all entries equal to zero gives the
classical d-dimensional torus Td.
We turn our attention to the Hilbert transforms arising in the above context. For a

given nonzero vector a ∈ Rd, we de�ne the Hilbert transform in the direction a by the
formula

Ha

(∑
m

αmU
m

)
=
∑
m

sgn〈m, a〉αmUm,

where 〈·, ·〉 denotes the usual scalar product in Rd and we use the convention sgn 0 = 0.
Here we assume that the sequence (αm)m∈Zd possesses only a �nite number of nonzero
terms. Using the martingale inequalities developed in the previous sections, we will
establish the following weak-type bound for Ha; for the Lp and c.b. Lp counterparts of
this result, we refer the reader to [6].
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Theorem 5.1. For any a ∈ Rd \ {0}, we have the estimate

‖Haf‖L1,∞(Tdθ) ≤ 96
√

3‖f‖L1(Tdθ).

Proof. By homogeneity and straightforward approximation/decomposition arguments,
it is enough to show that for an arbitrary self-adjoint polynomial f we have the estimate

τ
(
I[3,∞)(|Haf |)

)
≤ 8
√

3‖f‖L1(Tdθ).

Fix such a polynomial: f =
∑

m∈Zd αmU
m. We have

(5.2) f ∗ =
∑
m∈Zd

αm(Um)∗ =
∑
m∈Zd

αmU
−md
d U

md−1

d−1 . . . U−m1
1 =

∑
m∈Zd

αmσmU
−m,

for some elements σm of the unit circle in C (coming from the commutation relation in
Tdθ): consequently, α−m = αmσm for all m ∈ Zd. Note that since almost all coe�cients
αm are zero, we may assume that a ∈ Zd, by a simple stretching and approximation.
Suppose further that

(5.3) f+ =
∑

m:〈m,a〉≥0

αmU
m

is the analytic part of f with respect to a: we will compose f+ with an appropriate
probabilistic component which will allow us to pass to martingale theory. We will divide
our arguments into several steps.

Step 1. Appropriate martingales x and y. Assume that (Ω,G,P) is a classical probabil-
ity space and let B = (Bt)t≥0 be a Brownian motion in C, starting from the origin and
stopped upon reaching the boundary of the unit disc. Denote by (Gt)t≥0 the (classical)
�ltration generated by B: for any t ≥ 0, Gt is the σ-�eld generated by the random vari-
ables Bs, s ∈ [0, t]. Consider the product von Neumann algebra N = L∞(Ω,G,P)⊗Tdθ,
equipped with the �ltration L∞(Ω,Gt,P)⊗Tdθ and the standard tensor trace ν = E⊗ τ .
The operator f+ gives rise to the adapted process on this new von Neumann algebra,
given by

Xt =
1

2

∑
m:〈m,a〉=0

αm1⊗ Um +
∑

m:〈m,a〉>0

αmB
〈m,a〉
t ⊗ Um, t ≥ 0,

where 1 is the random variable identically equal to 1. Next, we introduce the sequence
(τn)n≥0 of (classical) stopping times, given by τ0 = 0 and

τn+1 = inf{t > τn : ‖Xt −Xτn‖L∞(N ) ≥ 1/4}, n = 0, 1, 2, . . . ,

with the usual convention inf ∅ = +∞. Finally, for any n = 0, 1, 2, . . ., we de�ne the
self-adjoint operators xn = Xτn+X∗τn and yn = i(Xτn−X∗τn). Observe that the de�nition
makes perfect sense also if τn =∞, since B∞ is a well-de�ned random variable.
Let us study certain important properties of x and y. Note that if n is an arbitrary

positive integer, then Bn is a martingale, as the composition of the holomorphic function
z 7→ zn and the analytic martingale B. This has two important consequences. First, we
conclude that x and y are self-adjoint martingales relative to the �ltration (Fn)n≥0 =
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(Nτn)n≥0. Second, note that for any n ≥ 1 and any k, m ∈ Zd with 〈k, a〉 ≥ 0 and
〈m, a〉 ≥ 0, we have

(5.4) E
((
B〈k,a〉τn −B〈k,a〉τn−1

)(
B〈m,a〉τn −B〈m,a〉τn−1

)
|Gτn−1

)
= 0,

where E stands for the classical expectation with respect to the probability measure P.
This implies that for any projection R ∈ Fn−1 we have

(5.5) ν(R(Xτn −Xτn−1)R(Xτn −Xτn−1)R) = ν(R(X∗τn −X
∗
τn−1

)R(X∗τn −X
∗
τn−1

)R) = 0.

Indeed, the trace ν(R(Xτn −Xτn−1)R(Xτn −Xτn−1)R) is the (possibly in�nite) sum of
the elements of the form

βj,k,mν
((
B〈k,a〉τn −B〈k,a〉τn−1

)(
B〈m,a〉τn −B〈m,a〉τn−1

)
ξj,k,m ⊗ U j

)
,

where βj,k,m are scalars and ξj,k,m are random variables measurable with respect to Gτn−1 .
By (5.4), each such term vanishes and hence ν(R(Xτn −Xτn−1)R(Xτn −Xτn−1)R) = 0.
The second equality in (5.5) follows by passing to the adjoint operator.

Step 2. Weak domination between martingales x and y. Now we will verify that mar-
tingales x, y constructed above satisfy the weak domination condition of Theorem 4.1.
First, since B starts from zero, we have dy0 = 0 and hence the requirement

τ(ϕ(dy0)) ≤ τ(ϕ(dx0))

is obvious. Next, observe that for each n ≥ 1, the di�erences dxn and dyn are bounded
by 1 (this is actually the purpose of the introduction of the stopping times τ0, τ1, τ2,
. . .). Therefore, if R is an arbitrary projection in Fn−1, then ‖RdxnR‖L∞(N ) ≤ 1 and
‖RdynR‖L∞(N ) ≤ 1, which in particular implies that

ν(ϕ(RdxnR)) = ν(RdxnRdxnR) and ν(ϕ(RdynR)) = ν(RdynRdynR).

However, directly from (5.5), we infer that

ν(RdxnRdxnR)

= ν
(
R(Xτn −Xτn−1 +X∗τn −X

∗
τn−1

)R(Xτn −Xτn−1 +X∗τn −X
∗
τn−1

)R
)

= −ν
(
R
(
Xτn −Xτn−1 −

(
X∗τn −X

∗
τn−1

))
R
(
Xτn −Xτn−1 −

(
X∗τn −X

∗
τn−1

))
R
)

= ν(RdynRdynR),

and hence the weak-type estimate (4.1) gives

(5.6) ν
(
I[3,∞)(|Xτn −X∗τn|)

)
≤ 8
√

3ν
(
|Xτn +X∗τn|)

)
.
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Step 3. The relation between x, y and f , Haf . Note that∥∥∥∥∥∥
∑

m:〈m,a〉>0

αmB
〈m,a〉
τn ⊗ Um −

∑
m:〈m,a〉>0

αmB
〈m,a〉
∞ ⊗ Um

∥∥∥∥∥∥
L2(N )

= ν

( ∑
m:〈m,a〉>0

αm(Bτn −B∞)〈m,a〉 ⊗ Um
)∗( ∑

m:〈m,a〉>0

αm(Bτn −B∞)〈m,a〉 ⊗ Um
)

= ν

( ∑
m:〈m,a〉>0

αmαm(Bτn −B∞)〈m,a〉(Bτn −B∞)〈m,a〉 ⊗ (Um)∗Um


=

∑
m:〈m,a〉>0

αmσmE
(

(Bτn −B∞)〈m,a〉(Bτn −B∞)〈m,a〉
)
τ(U−mUm),

where σm are as in (5.2). Recall that only a �nite number of the coe�cients αm are
nonzero. Letting n→∞, since Bτn converges to B∞ in L2(Ω,G,P), we have the L2(N )
convergence

Xτn −X∗τn →
∑

m:〈m,a〉>0

αmB
〈m,a〉
∞ ⊗ Um −

∑
m:〈m,a〉>0

αmB
〈m,a〉
∞ ⊗ (Um)∗

=
∑

m:〈m,a〉>0

αmB
〈m,a〉
∞ ⊗ Um −

∑
m:〈m,a〉>0

αmσmB
〈m,a〉
∞ ⊗ U−m.

However, as we have observed above, we have αmσm = α−m, since the polynomial is
self-adjoint. Furthermore, the random variable B∞ is uniformly distributed on the unit
circle, so B∞ = B−1

∞ . Therefore, we may rewrite the above convergence in the more
concise form

Xτn −X∗τn →
∑
m∈Zd

αm sgn〈m, a〉B〈m,a〉∞ ⊗ Um.

A similar argument gives

Xτn +X∗τn →
∑
m∈Zd

αmB
〈m,a〉
∞ ⊗ Um

and hence (5.6) yields
(5.7)

ν

(
I[3,∞)

(∣∣∣∣∣∑
m∈Zd

αm sgn〈m, a〉B〈m,a〉∞ ⊗ Um

∣∣∣∣∣
))
≤ 8
√

3ν

(∣∣∣∣∣∑
m∈Zd

αmB
〈m,a〉
∞ ⊗ Um

∣∣∣∣∣
)
.
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It remains to prove that this is the desired weak-type bound. Pick an arbitrary positive
integer k and observe that

ν

(∑
m∈Zd

αmB
〈m,a〉
∞ ⊗ Um

)k


=
∑

m1,m2,...,mk∈Zd
αm1αm2 . . . αmkE(B〈m1+m2+...+mk,a〉

∞ )τ(Um1Um2 . . . Umk).

Now if m1 +m2 + . . .+mk 6= 0, then the trace τ(Um1Um2 . . . Umk) vanishes; otherwise,

we have E(B
〈m1+m2+...+mk,a〉
∞ ) = 1. In both cases, we see that

E(B〈m1+m2+...+mk,a〉
∞ )τ(Um1Um2 . . . Umk) = τ(Um1Um2 . . . Umk)

and hence, plugging this above, we get

ν

(∑
m∈Zd

αmB
〈m,a〉
∞ ⊗ Um

)k
 = τ

(∑
m∈Zd

αm ⊗ Um

)k
 .

Consequently, for any polynomial P on C we have

ν

(
P

(∑
m∈Zd

αmB
〈m,a〉
∞ ⊗ Um

))
= τ

(
P

(∑
m∈Zd

αm ⊗ Um

))

and hence
∑

m∈Zd αmB
〈m,a〉
∞ ⊗Um and

∑
m∈Zd αm⊗Um have the same distribution func-

tions. Similarly, it can be checked that the distributions of
∑

m∈Zd αm sgn〈m, a〉B〈m,a〉∞ ⊗
Um and

∑
m∈Zd αm sgn〈m, a〉 ⊗ Um also coincide.

Step 4. Conclusion. Putting all the steps above, we deduce that

τ
(
I[3,∞)(|Haf |)

)
= τ

(
I[3,∞)

∣∣∣∑
m

sgn〈m, a〉αmUm
∣∣∣)

≤ 8
√

3τ

(∣∣∣∑
m

αmU
m
∣∣∣) = 8

√
3τ(|f |).

The proof is complete. �

As proved in [6], the Hilbert transform on quantum tori is completely Lp bounded
for 1 < p < ∞. That is, for any such p, the map idSp ⊗Ha : Lp(B(`2)⊗Tdθ) →
Lp(B(`2)⊗Tdθ) is bounded:

‖Ha‖cb := ‖idSp ⊗Ha‖Lp(B(`2)⊗Tdθ)→Lp(B(`2)⊗Tdθ) <∞.

Here Sp stands for the Schatten p-class, i.e., the noncommutative Lp -space associated
with B(`2) with the standard trace. See [31] for more on the subject. We would like to
point out that essentially the same reasoning as in the proof of Theorem 5.1 leads to
the following weak-type estimate.



28 YONG JIAO, ADAM OS�KOWSKI, LIAN WU, AND YAHUI ZUO

Theorem 5.2. For any a ∈ Rd \ {0} we have the estimate

‖idS1 ⊗Ha‖L1(B(`2)⊗Tdθ)→L1,∞(B(`2)⊗Tdθ) ≤ 96
√

3.

Proof. We need to implement an additional matrix component. Recall that (ei,j)i,j≥1

denotes the collection of matrix units in B(`2). Consider the self-adjoint operator

f =
∑
i,j≥1

∑
m∈Zd

αi,jm ei,j ⊗ Um ∈ B(`2)⊗Tdθ,

with only a �nite number of nonzero coe�cients αm. We will be done if we manage to
show that

(5.8) τ
(
I[3,∞)

(
|
(
idS1 ⊗Ha

)
f |
))
≤ 8
√

3‖f‖L1(B(`2)⊗Tdθ).

As before, we may assume that a ∈ Zd. Consider the product von Neumann algebra
N = L∞(Ω,G,P)⊗B(`2)⊗Tdθ, equipped with the �ltration L∞(Ω,Gt,P)⊗B(`2)⊗Tdθ and
the standard tensor trace ν = E ⊗ tr ⊗ τ . De�ne the associated `analytic' process as
follows

Xt =
n∑

i,j=1

1

2

∑
m:〈m,a〉=0

αi,jm 1⊗ ei,j ⊗ Um +
∑

m:〈m,a〉>0

αi,jmB
〈m,a〉
t ⊗ ei,j ⊗ Um

 , t ≥ 0.

Following the argument in the proof of Theorem 5.1, we introduce the stopping times
with respect to the new von Neumann algebra N , given by τ0 = 0 and

τn+1 = inf{t > τn : ‖Xt −Xτn‖L∞(N ) ≥ 1/4}, n = 0, 1, 2, . . . .

De�ne self-adjoint operators xn = Xτn + X∗τn and yn = i(Xτn − X∗τn). Then x, y are
martingales relative to (Fn)n≥0 = (Nτn)n≥0 and the identity (5.4) gives

ν(R(Xτn −Xτn−1)R(Xτn −Xτn−1)R) = ν(R(X∗τn −X
∗
τn−1

)R(X∗τn −X
∗
τn−1

)R) = 0,

for any projection R ∈ Fn−1. By the de�nition of (τn)n≥0, this implies the weak
domination between x and y. Consequently, we have

ν
(
I[3,∞)(|Xτn −X∗τn|)

)
≤ 8
√

3ν
(
|Xτn +X∗τn|)

)
.

Now the same calculation as before yields the L2(N ) convergence

Xτn −X∗τn →
∑
m∈Zd

αi,jm sgn〈m, a〉B〈m,a〉∞ ⊗ ei,j ⊗ Um

and

Xτn +X∗τn →
∑
m∈Zd

αi,jmB
〈m,a〉
∞ ⊗ ei,j ⊗ Um.
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But for any positive integer k, a straightforward expansion reveals that

ν

(∑
m∈Zd

αi,jmB
〈m,a〉
∞ ⊗ ei,j ⊗ Um

)k
 = (tr ⊗ τ)

(∑
m∈Zd

αi,jm ei,j ⊗ Um

)k
 ,

and

ν

(∑
m∈Zd

αi,jm sgn〈m, a〉B〈m,a〉∞ ⊗ ei,j ⊗ Um

)k


= (tr ⊗ τ)

(∑
m∈Zd

αi,jm sgn〈m, a〉ei,j ⊗ Um

)k
 .

Therefore, the distributions of
∑

m∈Zd α
i,j
mB

〈m,a〉
∞ ⊗ eij ⊗ Um and

∑
m∈Zd α

i,j
m eij ⊗ Um

coincide; the same is true for the pair
∑

m∈Zd α
i,j
m sgn〈m, a〉B〈m,a〉∞ ⊗ eij ⊗ Um and∑

m∈Zd α
i,j
m eij sgn〈m, a〉 ⊗ Um. Thus, the proof of (5.8) is �nished. �

Remark 5.3. As we mentioned before, the weak domination is less restrictive than
the di�erential subordination considered in [10] and hence it should possess a wider
range of applications. The above two theorems may serve as a nice illustration of
this phenomenon: these statements do not seem to follow from weak-type estimate for
di�erentially subordinate martingales.
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