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Abstract. Suppose that p, q, r ≥ 1 satisfy the condition
1

p
=

1

q
+

1

r
. The paper

contains the identi�cation of the best constants cp,q,r and Cp,q,r in the estimates

∥g∥p,∞ ≤ cp,q,r∥f∥q∥v∗∥r, ∥g∥p ≤ Cp,q,r∥f∥q∥v∗∥r
where f is an arbitrary Hilbert-space valued martingale, g is its transform by a pre-
dictable sequence v, and v∗ is the maximal function of v. This is extended to the
more general context of di�erential subordination for continuous-time processes.

1. Introduction

The motivation for the results studied in this paper comes from a very natural ques-
tion about the boundedness of martingale transforms. Let us start with the necessary
background and notation. Suppose that (Ω,F ,P) is a probability space, equipped with
a discrete-time �ltration (Fn)n≥0, i.e., a nondecreasing family of sub-σ-�elds of F . Let
f = (fn)n≥0 be a martingale taking values in a given separable Hilbert space H, with
norm and scalar product denoted by | · | and ⟨·, ·⟩, respectively: with no loss of generality,
we may and do assume that H = ℓ2. The di�erence sequence (dfn)n≥0 associated with f
is de�ned by df0 = f0 and dfn = fn− fn−1 for n ≥ 1. Let g = v · f be a transform of f by
a predictable sequence v = (vn)n≥0 with values in {−1, 1}: that is, we have dgn = vndfn
for all n ≥ 0 and the predictability of v means that for each n, the term vn is measurable
with respect to F(n−1)∨0. Then, as Burkholder proved in [6], for any 1 < p <∞ there is
an absolute constant Cp for which

(1.1) ∥g∥p ≤ Cp∥f∥p.
Here we have used the notation ∥f∥p = supn≥0 ∥fn∥p. The best constant Cp above was
identi�ed in the later work [8] of Burkholder: we have Cp = p∗−1, where p∗ = max{p, p′}
(here and in what follows, p′ = p/(p− 1) is the harmonic conjugate to p). This result is
a starting point for numerous extensions. For example, one can study a version of (1.1)
under the assumption of the so-called di�erential subordination. Recall that a martingale
g is said to be di�erentially subordinate to f , if for any n ≥ 0 we have the inequality
|dgn| ≤ |dfn| almost surely. Of course, if g = v · f is the transform of f by a predictable
sequence v with values in [−1, 1], then g is di�erentially subordinate to f . Burkholder [8]
proved that under this less restrictive domination, the Lp estimate holds with the same
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constant p∗ − 1. Another extension concerns the weak�type analogue of (1.1): one can
ask, for any 1 ≤ p <∞, about the best constant cp in the inequality

(1.2) ∥g∥p,∞ ≤ cp∥f∥p.

Here ∥ξ∥p,∞ = supλ>0(λ
pP(|ξ| ≥ λ))1/p and ∥g∥p,∞ = supn ∥gn∥p,∞. This problem was

answered by Burkholder [8] for 1 ≤ p ≤ 2 and Suh [19] for p > 2.

Theorem 1.1. Suppose that g is di�erentially subordinate to f . Then the estimate (1.2)
holds with the constant

cpp =

{
2/Γ(p+ 1) if 1 ≤ p ≤ 2,

pp−1/2 if p > 2.

The constant is already the best possible if H = R and g is assumed to be a transform of
f by the deterministic sequence vn = (−1)n, n = 0, 1, 2, . . ..

From the viewpoint of applications, it is sometimes convenient to consider a di�erent
norming of weak Lp spaces. De�ne

|∥ξ∥|p,∞ = sup

{
P(A)1/p−1

∫
A

|ξ|dP
}
,

where the supremum is taken over all events A ∈ F of positive probability. It is easy
to prove that for 1 < p < ∞ we have ∥ · ∥p,∞ ≤ |∥ · ∥|p,∞ ≲p ∥ · ∥p,∞ (here and below,
the symbol A ≲p B means that there is a constant κ, depending only on p, such that
A ≤ κB). The question about the optimal weak�type constant under this di�erent
norming was answered in [15].

Theorem 1.2. Suppose that g is di�erentially subordinate to f . Then for any 1 < p <∞
we have |∥g∥|p,∞ ≤ c′p∥f∥p, where

(c′p)
p =


(
1

2
Γ

(
2p− 1

p− 1

))p−1

if 1 < p ≤ 2,

pp−1/2 if p > 2.

The constant is already the best possible if H = R and g is assumed to be a transform of
f by the deterministic sequence vn = (−1)n, n = 0, 1, 2, . . ..

So, we see that the constants cp and c′p are the same for p ≥ 2, and we have the strict
inequality cp < c′p in the range 1 < p < 2; actually, we see that c′p explodes as p ↓ 1.

We should point out that the above strong- and weak�type estimates have numerous
interesting applications in harmonic analysis. For example, they can be used in the study
of unconditional constants for bases in Lp or the boundedness properties of wide classes
of Fourier multipliers. The literature on the subject is very extensive, we mention here
the works [2], the interested reader is referred also to the bibliographic details contained
in these papers.

All the results for martingale transforms formulated above concerned the case in which
v was bounded by 1. There is a very interesting question about strong- and weak�type
estimates under the assumption that the transforming sequence belongs to Lr for some
given r <∞. More speci�cally, the above question is to study, for given parameters p, q
and r satisfying 1

p = 1
q + 1

r , the optimal constants Cp,q,r and cp,q,r in the inequalities

(1.3) ∥g∥p ≤ Cp,q,r∥f∥q∥v∗∥r
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and

(1.4) |∥g∥|p,∞ ≤ cp,q,r∥f∥q∥v∗∥r.
Here v∗ is the maximal function of v, de�ned by v∗ = supn |vn|. To the best of our
knowledge, this question is completely open. One of the main results of this paper is to
give the answer in the full range of parameters. In the formulation below, ϕ is a certain
special concave function on [0,∞), precisely described in Theorem 5.1.

Theorem 1.3. Suppose that g is the transform of f by a predictable sequence v and let
1 < p, q, r < ∞ be parameters satisfying 1

p = 1
q + 1

r . Then the estimates (1.3) and (1.4)

hold with

Cp,q,r =


p− 1 if p > 2,

(q − 1)−1 if p < q < 2,

1 otherwise

and

cp,q,r =


(pp−1/2)1/p if p > 2,( q
r′

)1/r′
(
r′(2− r′)

2(q − r′)
ϕ(0)r

′
)1/p′

if p < q < 2,

1 otherwise.

The constants are the best possible even if H = R.

There is a natural question whether the above theorem can be extended to the context
of di�erential subordination. In particular, one needs to provide an appropriate domi-
nation principle which would generalize transforming by Lr-valued sequences. We will
prove the following statement.

Theorem 1.4. Suppose that f , g are martingales and v is the predictable sequence such
that g is di�erentially subordinate to v · f . Then for any parameters 1 < p, q, r < ∞
satisfying 1

p = 1
q + 1

r , the estimates (1.3) and (1.4) hold true.

Note that by a simple limiting argument, the above theorem yields the aforementioned
sharp weak� and strong�type inequalities of Burkholder and Suh.

In fact, one can establish a version of Theorem 1.4 in the continuous-time setting. To
set up the appropriate context, suppose that the probability space (Ω,F ,P) is complete
and equip it with a right-continuous �ltration (Ft)t≥0 such that F0 contains all sets of
probability zero. Let X, Y be two adapted càdlàg martingales taking values in a separable
Hilbert space H. De�ne the square bracket of X by [X] =

∑∞
j=0[X

j ], where Xj stands

for the j-th coordinate of X (in H = ℓ2) and [Xj ] is the usual quadratic variation process
of the real-valued martingale Xj (see Chapters VI and VII in Dellacherie and Meyer [10]
or Chapter 4 in Métivier [11] for details). Given a real predictable process H, the symbol
H ·X will denote the stochastic integral of H with respect to X, i.e.,

(H ·X)t = H0X0 +

∫ t

0+

Hs · dXs, t ≥ 0.

Clearly, this notion is the continuous-time extension of the concept of martingale trans-
forms considered above. Following Bañuelos and Wang [4] and Wang [20], we say that Y
is di�erentially subordinate to X, if the di�erence [X]t − [Y ]t is nonnegative and nonde-
creasing as a function of t. Note that this de�nition is consistent with the discrete-time
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di�erential subordination discussed above. Indeed, if we treat discrete-time martingales
f and g as continuous-time processes (with the use of the embedding Xt = f⌊t⌋ and
Yt = g⌊t⌋, t ≥ 0), then g is di�erentially subordinate to f if and only if X and Y satisfy
the above condition. Consequently, the following result generalizes Theorems 1.3 and
1.4. In analogy to the discrete-time context, we use the notation ∥X∥p = supt≥0 ∥Xt∥p,
|∥X∥|p,∞ = supt≥0 |∥Xt∥|p,∞ and H∗ = supt≥0 |Ht|.

Theorem 1.5. Suppose that X, Y are H-valued martingales and let H be a left-continuous
process such that Y is di�erentially subordinate to H · X. Then for any parameters
1 < p, q, r <∞ satisfying 1

p = 1
q + 1

r we have the sharp estimates

(1.5) ∥Y ∥p ≤ Cp,q,r∥X∥q∥H∗∥r
and

(1.6) |∥Y ∥|p,∞ ≤ cp,q,r∥X∥q∥H∗∥r.

We see that in the above statement we consider integrands H with left-continuous
trajectories. This is slightly more restrictive than the predictability condition which is
typically imposed in the context of stochastic integrals. The reason is that the analysis
of the behavior of H∗ will be based on Itô's formula, for which this enhanced regularity
seems to be necessary.

Let us say a few words about our approach. Typically, estimates for di�erentially
subordinate martingales are studied with the use of the so-called Burkholder's method
(sometimes referred to as the Bellman function method, especially in the analytic context).
Roughly speaking, the technique allows to deduce a given estimate from the existence of
a certain special function on H×H, enjoying appropriate size and concavity constraints
(see [14] for the detailed exposition). Let us brie�y describe the idea in the context of
transforms. Suppose that V : R×R → R is a given Borel function and we are interested
in the estimate

(1.7) EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . ,

where f is an arbitrary real-valued martingale and g is its transform by the deterministic
sequence ((−1)n)n≥0 (typically, one imposes some additional boundedness properties on
f which guarantee that the above expectations exist). To prove the estimate, one searches
for a special function U : R× R → R which enjoys the following three properties:

1◦ We have U(x, x) ≤ 0 for all x;
2◦ We have U ≥ V on R× R;
3◦ The function U is concave along lines of slope ±1.

Then the condition 3◦ implies that the process (U(fn, gn))n≥0 is a supermartingale,
which combined with 2◦ and 1◦ yields the desired bound: for any integer n we have

EV (fn, gn) ≤ EU(fn, gn) ≤ EU(f0, g0) = EU(f0, f0) ≤ 0.

A similar argument works for Hilbert-space valued martingales satisfying the di�erential
subordination. One can also extend the approach to the continuous-time setting, but then
instead of the above chain of inequalities, one needs to apply Itô's formula (see [20]). A
beautiful feature of the approach is that the implication can be reversed: the validity of
the estimate (1.7) implies the existence of a function U satisfying the appropriate set of
requirements. Thus one can try to implement the method in the search of sharp versions
of various inequalities.
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Let us emphasize here that the set of slopes allowed in 3◦ is precisely the set in which
the transforming sequence takes values. There seems to be no extension of Burkholder's
method which would allow the control the Lr-norm of the sequence v. Thus, our �rst
problem is to modify the approach so that it becomes applicable to the above strong-
and weak�type estimates. As we shall see, this can be done by proving slightly stronger
estimates involving the `product processes' H∗

+X, Y/H∗
+, and then splitting them ap-

propriately. These stronger inequalities will be established with the classical form of
Burkholder's method.

The paper is organized as follows. The next section is devoted to two special estimates
which serve as `building blocks' in the proofs of (1.5) and (1.6). The strong�type estimate
(1.5) is established in Section 3, we also prove the sharpness of (1.3) there. The last two
sections contain the proof of the weak�type estimate (1.6) and address the sharpness of
(1.4).

2. Two auxiliary inequalities

Introduce the domain D = {(x, y) ∈ H×H : |x|+ |y| < 1} and let u1, u∞ : H×H → R
be two special functions, given by

u1(x, y) =

{
|y|2 − |x|2 if (x, y) ∈ D,

1− 2|x| if (x, y) ̸∈ D

and

u∞(x, y) =

{
0 if (x, y) ∈ D,

(|y| − 1)2 − |x|2 if (x, y) ̸∈ D.

The function u1 was invented by Burkholder in [8], it played the key role in the proof of
the weak�type (1,1) estimate for martingale transforms. To the best of our knowledge,
the function u∞ �rst appeared in [1] and it can be regarded as an appropriate dual to u1.
See the monograph [14] for the detailed discussion and much more on the subject.

Later on, we will need the following property of these functions. Namely, if (x, y) ∈ D
and h, k ∈ H satisfy |k| ≤ |h|, then

(2.1) u1(x+ h, y + k) ≤ u1(x, y) + ⟨u1x(x, y), h⟩+ ⟨u1y(x, y), k⟩

and similarly,

(2.2) u∞(x+ h, y + k) ≤ u∞(x, y) + ⟨u∞x(x, y), h⟩+ ⟨u∞y(x, y), k⟩.

Here u1x, u1y, u∞x and u∞y stand for the appropriate partial derivatives of u1 and u∞.
Note that (2.2) is equivalent to saying that u∞(x+ h, y + k) ≤ 0.

Before we proceed, let us record a useful fact, proved by Wang in [20] (see Lemma 1
there). In what follows, the symbol ∆ξt = ξt − ξt− stands for the jump of a process ξ
at a time t. Furthermore, for an arbitrary martingale ξ, we will write ξc for its unique
continuous part. See [10, 11] for detailed exposition.

Lemma 2.1. If Y is di�erentially subordinate to X, then Y c is di�erentially subordinate
to Xc and with probability 1 we have |Y0| ≤ |X0| and |∆Yt| ≤ |∆Xt| for all t ≥ 0.

We are ready for the main result of this section. In what follows, H∗
+ is the càdlàg

maximal function of H, de�ned by H∗
t+ = infs>tH

∗
s .
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Theorem 2.2. Let t ≥ 0. Suppose that X, Y are martingales and H is a left-continuous
process such that Y is di�erentially subordinate to H ·X.

(i) If H0 is bounded away from zero, then

(2.3) Eu1(Xt, Yt/H
∗
t+) ≤ 0.

(ii) If H∗
t+Xt and Yt are square integrable, then

(2.4) Eu∞(H∗
t+Xt, Yt) ≤ 0.

Proof of (2.3). Introduce the stopping time τ = inf{s ≥ 0 : (Xs, Ys/H
∗
s+) ̸∈ D}, with the

usual convention inf ∅ = +∞. Let us start with the obvious identity

Eu1(Xt, Yt/H
∗
t+) = Eu1(Xt, Yt/H

∗
t+)χ{τ≤t} + Eu1(Xt, Yt/H

∗
t+)χ{τ>t}.

Note that u1(x, y) ≤ 1 − 2|x| for all x, y ∈ H. Therefore, using the supermartingale
property of (1− 2|Xs|)s≥0, we may write

Eu1(Xt, Yt/H
∗
t+)χ{τ≤t} ≤ E(1− 2|Xt|)χ{τ≤t}

≤ E(1− 2|Xτ |)χ{τ≤t} = Eu1(Xτ , Yτ/H
∗
τ+)χ{τ≤t},

which combined with the preceding identity gives

Eu1(Xt, Yt/H
∗
t+) ≤ Eu1(Xτ∧t, Yτ∧t/H

∗
τ∧t+).

Hence it is enough to prove that the right-hand side is nonpositive. To this end, denote
Zs = (Xs, Ys/H

∗
s+) and apply Itô's formula to obtain

(2.5) u1(Xτ∧t, Yτ∧t/H
∗
τ∧t+) = I0 + I1 + I2 + I3/2 + I4,

where

I0 = u1(X0, Y0/H
∗
0+),

I1 =

∫ τ∧t

0+

u1x(Zs−) · dXs +

∫ τ∧t

0+

u1y(Zs−)

H∗
s

· dYs,

I2 = −
∫ τ∧t

0+

u1y(Zs−) ·
Ys−
(H∗

s )
2
dH∗

s+ +
∑

0<s≤τ∧t

u1y(Zs−) ·
Ys−
(H∗

s )
2
∆H∗

s+,

I3 =

∫ τ∧t

0+

u1xx(Zs−) · d[X]cs +

∫ τ∧t

0+

u1yy(Zs−)(H
∗
s )

−2 · d[Y ]cs,

I4 =
∑

0<s≤τ∧t

[
u1(Zs)− u1(Zs−)− ⟨u1x(Zs−),∆Xs⟩ − ⟨u1y(Zs−), (∆Ys)/H

∗
s ⟩
]

Let us make several helpful observations here. The quantity I1 and the integral in I2 is
just the sum of all �rst-order terms, while the expression I3 is the sum of all second-order
terms (note that for (x, y) ∈ D we have u1xy(x, y) = 0, so the mixed integral does not
appear in I3). The second half of I2 and the whole I4 correspond to the jump part.

Let us study the behavior of the terms I0 through I4. By the di�erential subordi-
nation of Y to H · X, we have |Y0| ≤ |H0||X0| ≤ H∗

0+|X0| and hence I0 ≤ 0 (indeed,
we have u1(x, y) ≤ 0 if |y| ≤ |x|). The stochastic integrals in I1 are martingales (as
processes indexed by t), since by the de�nition of τ , Z− is bounded on (0, τ ]. The
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term I2 is nonpositive: indeed, we have u1y(Zs−) · Ys− = 2|Ys−|2/H∗
s− ≥ 0, the process(

H∗
s+ −

∑
0<u≤s ∆H

∗
u+

)
s≥0

is nondecreasing, and

I2 = −
∫ τ∧t

0+

u1y(Zs−) ·
Ys−
(H∗

s )
2
d

H∗
s+ −

∑
0<u≤s

∆H∗
u+

 .

Next, we compute that

I3 = −2

∫ τ∧t

0+

d[X]cs + 2

∫ τ∧t

0+

(H∗
s )

−2d[Y ]cs ≤ 0,

by the di�erential subordination and Lemma 2.1 above. Finally, each summand ap-
pearing in I4 is nonpositive, by virtue of (2.1) applied to (x, y) = Zs− and (h, k) =
(∆Xs, (∆Ys)/H

∗
s ) (the estimate |k| ≤ |h| follows by the di�erential subordination of Y to

H ·X: see Lemma 2.1).
Putting all the above facts together, we get the desired assertion. □

Proof of (2.4). Let τ = inf{s ≥ 0 : (H∗
s+Xs, Ys) ̸∈ D}. The �rst step is to show that

(2.6) Eu∞(H∗
τ∧t+Xτ∧t, Yτ∧t) ≤ 0.

To this end, we write the trivial identity

Eu∞(H∗
τ∧t+Xτ∧t, Yτ∧t)

= Eu∞(H∗
τ∧t+Xτ∧t, Yτ∧t)χ{τ>t} + Eu∞(H∗

τ∧t+Xτ∧t, Yτ∧t)χ{τ≤t}.

The �rst summand on the right is equal to zero: by the de�nitions of u∞ and the stop-
ping time τ , the random variable under the expectation vanishes. To handle the second
summand, we apply, on the set {τ ≤ t}, the inequality (2.2) with x = H∗

τXτ−, y = Yτ−,
h = H∗

τ∆Xτ and k = ∆Yτ . Note that |k| ≤ |h|, by Lemma 2.1 and hence we get
u∞(H∗

τXτ , Yτ ) ≤ 0. Thus, we also have u∞(H∗
τ+Xτ , Yτ ) ≤ 0, since u∞(x, y) decreases as

|x| increases. Integrating, we get Eu∞(H∗
τ+Xτ , Yτ )χ{τ≤t} ≤ 0, which proves (2.6).

The next step is to establish the inequality

(2.7) Eu∞(H∗
t+Xt, Yt) ≤ Eu∞(H∗

τ∧t+Xτ∧t, Yτ∧t),

or equivalently,

(2.8) Eu∞(H∗
t+Xt, Yt)χ{τ≤t} ≤ Eu∞(H∗

τ+Xτ , Yτ )χ{τ≤t}.

To show this bound, note that u∞(x, y) ≤ (|y| − 1)2 − |x|2 for all (x, y) ∈ H, and hence

Eu∞(H∗
t+Xt, Yt)χ{τ≤t} ≤ E

(
(|Yt| − 1)2 − |H∗

t+Xt|2
)
χ{τ≤t}.

Arguing as above, by Doob's optional sampling theorem and the supermartingale property
of the process (1− 2|Ys|)s≥0, the estimate (2.8) will follow if we manage to prove that

(2.9) E
(
|Yt|2 − |H∗

t+Xt|2
)
χ{τ≤t} ≤ E

(
|Yτ |2 − |H∗

τ+Xτ |2
)
χ{τ≤t}.

This is done by Itô's formula. The calculations are essentially the same as in the proof of
(2.3) and hence we omit the details. □
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3. Strong�type estimates

3.1. Proof of (1.5). With no loss of generality, we may assume that X is bounded in Lq

andH∗ ∈ Lr, since otherwise there is nothing to prove. Furthermore, we may assume that
H0 is bounded away from zero, replacing it with |H0|+ε and letting ε ↓ 0 at the very end
of the proof. These assumptions imply that for each t the random variables H∗

t+Xt and Yt
belong to Lp. Indeed, we have ∥H∗

t+Xt∥p ≤ ∥X∥q∥H∗∥r by Young's inequality, while Y is
handled with the use of Burkholder-Gundy inequality and the di�erential subordination:

∥Yt∥p ≲p ∥[Y ]
1/2
t ∥p ≤

∥∥∥∥∥
(∫ t

0

(H∗
s )

2d[X]s

)1/2
∥∥∥∥∥
p

≤ ∥H∗
t+[X]

1/2
t ∥p ≤ ∥[X]

1/2
t ∥q∥H∗

t+∥r ≲q ∥X∥q∥H∗∥r.

(3.1)

Now we consider separately three cases.

The case p ≥ 2. If p = 2, the claim follows from (3.1): all the intermediate inequalities
hold with the constant 1. Hence we may restrict ourselves to p strictly bigger than 2.
Consider the functions U, V : H×H → R given by

V (x, y) = |y|p − (p− 1)p|x|p

and
U(x, y) = p2−p(p− 1)p−1(|y| − (p− 1)|x|)(|x|+ |y|)p−1.

Burkholder [9] showed that we have the majorization

(3.2) U ≥ V on H×H.
The function U has the following remarkable representation in the language of u∞:

U(x, y) = αp

∫ ∞

0

λp−1u∞(x/λ, y/λ)dλ,

where αp = p3−p(p− 1)p(p− 2)/2 (see [1]). Therefore, by (2.4) and Fubini's theorem,

(3.3) EU(H∗
t+Xt, Yt) ≤ 0, t ≥ 0.

To see that Fubini's theorem is applicable, note that

|u∞(x, y)| ≤

{
0 if |x|+ |y| ≤ 1,

|x|2 + |y|2 if |x|+ |y| > 1,

which implies

(3.4)

∫ ∞

0

λp−1|u∞(x/λ, y/λ)|dλ ≲p (|x|2 + |y|2)(|x|+ |y|)p−2 ≲p |x|p + |y|p.

Since H∗
t+Xt and Yt belong to Lp, we have the necessary integrability and (3.3) follows.

Thus, by (3.2), we conclude that EV (H∗
t+Xt, Yt) ≤ 0, or

∥Yt∥p ≤ (p− 1)∥H∗
t+Xt∥p ≤ (p− 1)∥X∥q∥H∗∥r.

Since t was arbitrary, the inequality is established.

The case p < q ≤ 2. We may actually assume that q < 2, the case q = 2 follows from
a limiting argument. The reasoning goes along similar to those above, but we need some
additional e�ort. Let Uq, Vq : H×H → R be de�ned by

Vq(x, y) = |y|q − (q − 1)−q|x|q, Uq(x, y) =
q2−q

q − 1
((q − 1)|y| − |x|)(|x|+ |y|)q−1.
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As shown by Burkholder in [9], we have

(3.5) Uq ≥ Vq on H×H.

Furthermore, the function Uq admits the representation (cf. [1])

Uq(x, y) = αq

∫ ∞

0

λq−1u1(x/λ, y/λ)dλ,

where αq = q3−q(2− q)/2. Now it is natural to try to use (2.3) and Fubini's theorem
to obtain EUq(Xt, Yt/H

∗
t+) ≤ 0 for all t ≥ 0. The function Uq enjoys an appropriate

boundedness: we have

|u1(x, y)| ≤

{
|x|2 + |y|2 if |x|+ |y| ≤ 1,

|x|+ |y| if |x|+ |y| > 1

and hence

(3.6)

∫ ∞

0

λq−1|u1(x/λ, y/λ)|dλ ≲q |x|q + |y|q.

So, to use Fubini's theorem, we need to establish the Lq-boundedness of the process Y/H
∗
+.

This, in contrast to the previous situation, does not seem to follow from Burkholder-
Gundy inequality. To overcome this di�culty, we apply localization. Given an arbitrary
positive integer M , consider the stopping time

σM = inf{s ≥ 0 : |Xs|+ |Ys/H∗
s | ≥M}.

By the di�erential subordination of Y to H ·X, we have

|∆(YσM
/H∗

σM
)| = |∆YσM

|/H∗
σM

≤ |∆XσM
|,

which implies that |YσM∧t/H
∗
σM∧t| ≤ M + |∆XσM∧t|, in particular, YσM∧t/H

∗
σM∧t, and

hence also YσM∧t/H
∗
σM∧t+, belong to Lq. The stopped martingale Y σM is di�erentially

subordinate to HσM ·XσM , so (2.3) and Fubini's theorem give

(3.7) EUq(XσM∧t, YσM∧t/H
∗
σM∧t+) ≤ 0, t ≥ 0.

Combining this estimate with (3.5), we get EVq(XσM∧t, YσM∧t/H
∗
σM∧t+) ≤ 0 and hence

∥YσM∧t∥p ≤ ∥YσM∧t/H
∗
σM∧t+∥q∥H∗

σM∧t+∥r
≤ (q − 1)−1∥XσM∧t∥q∥H∗

σM∧t+∥r ≤ (q − 1)−1∥X∥q∥H∗∥r.

Letting M → ∞ and t→ ∞, we get the claim, by Fatou's lemma.

The case p < 2 < q. For this choice of p and q, the assertion will follow by applying
(1.5) twice, in the range already covered by the above considerations. Speci�cally, take
s = 2p/(2 − p), α = r(2 − p)/(2p) < 1 and write the stochastic integral H · X in the
alternative form ∫

HtdXt =

∫
|Ht|α

Ht

|Ht|α
dXt,

i.e., as the stochastic integral of the process |H|α with respect to the martingale H|H|−α ·
X. So, Y is di�erentially subordinate to |H|α · (H|H|−α ·X), and hence (1.5), applied
with 1/p = 1/2 + 1/s (then Cp,2,s = 1, as we have shown above), gives

∥Y ∥p ≤
∥∥H|H|−α ·X

∥∥
2
∥(H∗)α∥s =

∥∥H|H|−α ·X
∥∥
2
∥H∗∥r/sr .
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The term
∥∥H|H|−α · X

∥∥
2
is again handled by (1.5). Namely, we have 1/2 = 1/q +

(q − 2)/(2q) and C2,q,(2q)/(q−2) = 1, so∥∥H|H|−α ·X
∥∥
2
≤ ∥X∥q∥(H∗)1−α∥2q/(q−2) = ∥X∥q∥H∗∥r(q−2)/(2q)

r .

Putting all the above facts together, we get the desired estimate.

3.2. Sharpness for martingale transforms. Observe that the best constant in (1.3) is
at least one, for all p, q, r satisfying 1/p = 1/q+1/r: this is easily seen by considering the
constant sequences f = g = v ≡ 1. Therefore, the estimate (1.3) is sharp for p ≤ 2 ≤ q
and from now on we may assume that p > 2 or p < q < 2. Actually, by the lemma below,
we may restrict ourselves to the �rst possibility.

Lemma 3.1. Let Ctr
p,q,r denote the optimal constant in (1.3), restricted to real-valued

martingales. Then we have Ctr
p,q,r = Ctr

q′,p′,r for all p, q and r satisfying 1/p = 1/q + 1/r.

Proof. Recall that p′ = p/(p− 1) is the Hölder conjugate to p. Assume that φ = (φn)n≥0

is an arbitrary Lp′ -bounded, real-valued martingale with ∥φ∥p′ ≤ 1 and let ψ = (ψn)n≥0

be the transform of φ by v. Since the martingale di�erences are orthogonal, we may write

Egnφn = E
n∑

k=0

dgkdφk = E
n∑

k=0

dfkdψk = Efnψn.

However, we have 1/q′ = 1/p′ + 1/r, so

Efnψn ≤ ∥fn∥q∥ψn∥q′ ≤ Ctr
q′,p′,r∥fn∥q∥φ∥p′∥v∗∥r ≤ Ctr

q′,p′,r∥f∥q∥v∗∥r.

Combining this with the previous identity and using the fact that φ was chosen arbitrarily,
we conclude that ∥gn∥p ≤ Ctr

q′,p′,r∥f∥q∥v∗∥r and hence, taking the supremum over n, we

obtain that Ctr
p,q,r ≤ Ctr

q′,p′,r. Switching from (p, q) to (q′, p′), we get the reverse bound.
The proof is complete. □

Thus, from now on, we assume that p > 2 and proceed to the construction of the
appropriate extremal examples. The analysis splits naturally into several steps.

Step 1. The �ltered probability space. Assume that the probability space is the interval
(0, 1] with its Borel subsets and the Lebesgue measure. Let a > q and 0 < δ < a−1

be �xed parameters, and set Q = 1 − aδ. We start with de�ning a certain decreasing
sequence (pn)n≥0 with values in (0, 1]. Namely, for any n ≥ 0 we put

p2n = Qn and p2n+1 =
Qn +Qn+1

2
=
p2n + p2n+2

2
.

This sequence gives rise to the �ltration (Fn)n≥0 such that for a �xed n, the σ-�eld Fn

is generated by the intervals (0, pn], (0, pn−1], (0, pn−2], . . ., (0, p0]. That is, the atoms of
Fn are precisely (0, pn], (pn, pn−1], (pn−1, pn−2], . . ., (p1, p0].

Step 2. The variable f . Introduce the function (random variable) f : (0, 1] → R by

f =

∞∑
n=0

(1 + δ)n
(
χ(p2n+1,p2n] − χ(p2n+2,p2n+1]

)
.

Note that f is measurable with respect to σ(Fn : n ≥ 0). It is easy to check that f is
integrable, it actually belongs to Lq, at least for su�ciently small δ. Indeed, we compute
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directly that

E|f |q =

∞∑
n=0

(1 + δ)nq(p2n − p2n+2) = aδ

∞∑
n=0

[
(1 + δ)q(1− aδ)

]n
<∞,

where the last inequality follows from the estimate a > q (which guarantees that the ratio
of the geometric series is less than 1). Furthermore, note that if a is chosen close to q,
then

lim
δ→0

E|f |q = lim
δ→0

aδ

1− (1 + δ)q(1− aδ)
=

a

a− q

and hence

lim
a↓q

lim
δ↓0

∥f∥q = ∞.

Step 3. On the martingale (fn)n≥0 generated by f . For any nonnegative integer n, we
let fn = E(f |Fn). By the very de�nition of f and (Fn)n≥0, we check that

f2n =

{
0 on (0, p2n],

f on (p2n, 1].

Indeed, on (0, p2n] we have

f2n =
1

|(0, p2n]|

∫ p2n

0

fdx = 0,

by symmetry: for each k, the point p2k+1 is the middle of (p2k+2, p2k). Similarly, we get

f2n+1 =

−1−Q

1 +Q
(1 + δ)n on (0, p2n+1],

f on (p2n+1, 1].

To check the �rst formula, note that
∫ p2n+2

0
f = 0 (as we have seen above), so on (0, p2n+1],

f2n+1 =
1

|(0, p2n+1]|

∫ p2n+1

0

fdx =
2

Qn +Qn+1

∫ p2n+1

p2n+2

fdx

= − 2

Qn +Qn+1
(1 + δ)n(p2n+1 − p2n+2)

= −1−Q

1 +Q
(1 + δ)n.

Passing to the di�erence sequence df , we obtain that df0 = f0 = 0 and

df2n+1 =


−1−Q

1 +Q
(1 + δ)n on (0, p2n+1],

(1 + δ)n on (p2n+1, p2n],

0 on (p2n, 1],

df2n+2 =


1−Q

1 +Q
(1 + δ)n on (0, p2n+2],

−(1 + δ)n · 2Q

1 +Q
on (p2n+2, p2n+1],

0 on (p2n+1, 1]

for n = 0, 1, 2, . . ..
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Step 4. The predictable sequence v and its properties. We introduce v = (vn)n≥0 by
v0 ≡ 1 and, for n ≥ 0,

v2n+1 = −(1 + δ)nq/rχ(0,p2n], v2n+2 = (1 + δ)nq/rχ(0,p2n+1].

Obviously, v is predictable: we have (0, pn] ∈ Fn for each n. Furthermore, on the set
(pn+1, pn] we have |v0| ≤ |v1| ≤ |v2| ≤ . . . ≤ |vn+1| and vn+2 = vn+3 = . . . = 0.
Consequently,

v∗ =

∞∑
n=0

(1 + δ)nq/rχ(p2n+2,p2n] = |f |q/r,

so ∥v∗∥r = ∥f∥q/rq and hence in particular ∥f∥q∥v∗∥r = ∥f∥q/pq .

Step 5. On the transform. Let g be the transform of f by v. We will compute the
explicit formula for g on each interval of the form (pn+1, pn]. We start with an even n.
Directly from the above construction, we see that df2n+2 = 0 on (p2n+1, p2n] and hence

g2n+2 = g2n+1 = v0df0 + v1df1 + . . .+ v2ndf2n + v2n+1df2n+1

=
2(1−Q)

1 +Q

[
1 + (1 + δ)1+q/r + . . .+ (1 + δ)(n−1)(1+q/r)

]
− (1 + δ)n(1+q/r)

=
2(1−Q)

1 +Q
· (1 + δ)n(1+q/r) − 1

(1 + δ)1+q/r − 1
− (1 + δ)n(1+q/r)

= (1 + δ)n(1+q/r)

[
2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
− 1

]
− 2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
.

On (p2n+2, p2n+1] the calculations are similar, but slightly more complicated: we get

g2n+2 = v0df0 + v1df1 + . . .+ v2n+1df2n+1 + v2n+2df2n+2

=
2(1−Q)

1 +Q

[
1 + (1 + δ)1+q/r + . . .+ (1 + δ)(n−1)(1+q/r)

]
+

1−Q

1 +Q
(1 + δ)n(1+q/r) − (1 + δ)n(1+q/r) · 2Q

1 +Q

= (1 + δ)n(1+q/r)

[
2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
− 1

]
− 2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1

+
2(1−Q)

1 +Q
(1 + δ)n(1+q/r).

Finally, note that dgn+1 = dgn+2 = . . . = 0 on (pn, pn−1]. Therefore, we have that g, the
pointwise limit of (gn)n≥0, can be rewritten in the form g = g(1) + g(2) + g(3), where

g(1) =

∞∑
n=0

(1 + δ)n(1+q/r)

[
2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
− 1

]
χ(p2n+2,p2n],

g(2) = −
∞∑

n=0

2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
χ(p2n+2,p2n],

g(3) =

∞∑
n=0

2(1−Q)

1 +Q
(1 + δ)n(1+q/r)χ(p2n+2,p2n+1].
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Step 6. The analysis of g(j). Observe that |g(1)| = |f |q/p ·
[

2
1+Q · 1−Q

(1+δ)1+q/r−1
− 1

]
and

the expression in the square brackets enjoys the following behavior:

lim
δ→0

[
2

1 +Q
· 1−Q

(1 + δ)1+q/r − 1
− 1

]
= lim

δ→0

(
2aδ

(2− aδ)((1 + δ)1+q/r − 1)
− 1

)
=

ra

r + q
− 1.

The limit ra/(r + q) − 1 can be made arbitrarily close to rq/(r + q) − 1 = p − 1, if a is
chosen su�ciently close to q. Consequently,

lim
a↓q

lim
δ↓0

∥g(1)∥p
∥f∥q/pq

= lim
a↓q

lim
δ↓0

∥g(1)∥p
∥f∥q∥v∗∥r

= p− 1.

Now we will show that the contribution of the variables g(2) and g(3) is negligible. Note
that

|g(2)| = 2(1−Q)

(1 +Q)((1 + δ)1+q/r − 1)

is deterministic and converges to ra/(r + q) as δ → 0. Combining this with the analysis
at the end of Step 2, we see that

lim
a↓q

lim
δ↓0

∥g(2)∥p
∥f∥q/pq

= lim
a↓q

lim
δ↓0

∥g(2)∥p
∥f∥q∥v∗∥r

= 0.

Finally, note that |g(3)| ≤ 2(1−Q)
1+Q |f |q/p, and hence

lim
a↓q

lim
δ↓0

∥g(3)∥p
∥f∥q/pq

= lim
a↓q

lim
δ↓0

∥g(3)∥p
∥f∥q∥v∗∥r

= 0.

Step 7. Completion of the proof. Let us put the above facts together. We �x ε > 0
and take a > q such that ∣∣∣∣ ra

r + q
− 1− (p− 1)

∣∣∣∣ < ε.

Then for su�ciently small δ we have

∥g(1)∥p
∥f∥q∥v∗∥r

> p− 1− 2ε,
∥g(2)∥p

∥f∥q∥v∗∥r
< ε,

∥g(3)∥p
∥f∥q∥v∗∥r

< ε

and hence
∥g∥p

∥f∥q∥v∗∥r
> p− 1− 4ε.

Since ε was arbitrary, the sharpness follows.

4. Weak-type estimates, p ≥ 2

4.1. Proof of (1.6). As in the case of strong�type estimates, we may and do assume that
∥X∥q < ∞ and ∥H∗∥r < ∞; we may also assume that the norms are strictly positive
since otherwise, the claim is obvious. Then H∗

+X and Y belong to Lp, as we checked in
the preceding section. Consider the functions U , V on H×H, given by

U(x, y) = βp

∫ 1−p−1

0

λp−1u∞(x/λ, y/λ)dλ

and

V (x, y) = p (|y| − 1 + 1/p)+ − pp−1

2
|x|p,
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where βp = pp(p− 1)2−p(p− 2)/4. It was proved in [3] that

(4.1) U ≥ V on H×H.
Applying (2.4) and Fubini's theorem, we get EV (H∗

t+Xt, Yt) ≤ EU(H∗
t+Xt, Yt) ≤ 0 for

t ≥ 0. Fubini's theorem is applicable, since∫ 1−p−1

0

λp−1|u∞(x/λ, y/λ)|dλ ≤
∫ ∞

0

λp−1|u∞(x/λ, y/λ)|dλ ≲p |x|p + |y|p,

as we already veri�ed in (3.4). Therefore, we obtain

E(p|Yt| − p+ 1)+ ≤ pp−1

2
E|H∗

t+Xt|p ≤ pp−1

2
∥X∥pq∥H∗∥pr .

Fix an arbitrary event A of positive probability. Then

E(p|Yt| − p+ 1)1A ≤ E(p|Yt| − p+ 1)+ ≤ pp−1

2
∥X∥pq∥H∗∥pr ,

or equivalently, ∫
A

|Yt|dP ≤ pp−2

2
∥X∥pq∥H∗∥pr +

p− 1

p
P(A).

The di�erential subordination of Y to H · X is preserved if we multiply X and Y by a
�xed positive constant λ. Applying the above estimate to the modi�ed triple λX, λY
and H, we obtain

λ

∫
A

|Yt|dP ≤ λp
pp−2

2
∥X∥pq∥H∗∥pr +

p− 1

p
P(A).

Dividing both sides by λ and optimizing over λ (speci�cally, the best choice is λ =
(2P(A)/pp−1)1/p∥X∥−1

q ∥H∗∥−1
r ), we get∫

A

|Yt|dP ≤
(
pp−1

2

)1/p

∥X∥q∥H∗∥r · P(A)1−1/p.

This yields |∥Y ∥|p,∞ ≤ (pp−1/2)1/p∥X∥q∥H∗∥r, since A and t were arbitrary.

4.2. Sharpness for martingale transforms. The calculations are quite similar to those
appearing in the previous section. We take δ > 0, �x a positive integer N and set
Q = 1−(p−1)qδ/p. Then we de�ne the sequence (pn)n≥0 as before and consider the prob-
ability space ((0, 1],B(0, 1), |·|). We consider the σ-algebras F0, F1, . . ., F2N as previously,
and F2N+1 = F2N+2 = . . . is the σ-�eld with atoms (0, p2N/2], (p2N/2, p2N ], (p2N , p2N−1],
(p2N−1, p2N−2], . . ., (p1, p0], that is, F2N+1 = F2N+2 = . . . = σ(F2N , (0, p2N/2]). Con-
sider the function f given by the �nite sum

f =

N−1∑
n=0

(1 + δ)n
(
χ(p2n+1,p2n] − χ(p2n+2,p2n+1]

)
+ (1 + δ)N

(
χ(0,p2N/2] − χ(p2N/2,p2N ]

)
.

This function is measurable with respect to F2N+1 and satis�es

E|f |q =

N−1∑
n=0

(1 + δ)qn(p2n − p2n+2) + (1 + δ)qNp2N

≤ (Q(1 + δ)q)N · (1 + δ)qQ−Q

(1 + δ)qQ− 1
.

(4.2)
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It is easy to see that the formulas for dfn, n = 0, 1, 2, . . . , 2N , are the same as in the
previous section. This follows from the fact that f has not been changed on (p2N , 1] and
it still has a vanishing integral on (0, p2N ]. To complete the description of the di�erence
sequence, note that df2N+1 = fχ(0,p2N ] and df2N+2 = df2N+3 = . . . = 0.

The transforming sequence v = (vn)n≥0 is given by v0 ≡ 1; for n = 0, 1, 2, . . . , N − 1

we put v2n+1 = −(1+ δ)nq/rχ(0,p2n] and v2n+2 = (1+ δ)nq/rχ(0,p2n+1]; �nally, for n > 2N

we set vn = (1 + δ)Nq/rχ(0,p2N ]. So, in comparison to the formulas from the previous
section, we see that v0, v1, . . ., v2N are the same. Consequently, we may repeat the
analysis and obtain that v∗ = |f |q/r; furthermore, on (0, p2N/2] we have

g2N+1 = v0df0 + v1df1 + . . .+ v2N+1df2N+1

=
2(1−Q)

1 +Q

[
1 + (1 + δ)1+q/r + . . .+ (1 + δ)(N−1)(1+q/r)

]
+ (1 + δ)N(1+q/r)

=
2(1−Q)

1 +Q
· (1 + δ)N(1+q/r) − 1

(1 + δ)1+q/r − 1
+ (1 + δ)N(1+q/r).

Denoting the latter expression by λ, we see that

|∥g|∥p,∞
∥f∥q∥v∗∥r

=
|∥g|∥p,∞
∥f∥1+q/r

q

≥ λ|(0, p2N/2]|1/p

∥f∥q/pq

≥ λ

(
(1 + δ)qQ− 1

2Q(1 + δ)qN ((1 + δ)q − 1)

)1/p

,

where the last inequality is due to (4.2). Now we need to perform an appropriate limiting
procedure. Letting N → ∞, the latter expression converges to(

2(1−Q)

(1 +Q)((1 + δ)1+q/r − 1)
+ 1

)(
(1 + δ)qQ− 1

2Q((1 + δ)q − 1)

)1/p

.

Now if we let δ → 0, the above quantity tends to p · (2p)−1/p = (pp−1/2)1/p. This yields
the desired lower bound for the weak�type constant.

5. Weak-type estimates, p < 2

5.1. Proof of (1.4). If q ≥ 2, then the estimate follows at once from the strong�type
bound: we have

|∥Y |∥p,∞ ≤ ∥Y ∥p ≤ ∥X∥q∥H∗∥r.
The main di�culty lies in proving the weak�type inequality for 1 < p < q < 2; one
easily checks that 1 < r′ < q in such a case. Fix X, Y and H as in the statement; we
may assume that ∥X∥q < ∞, ∥H∗∥r < ∞ and |H0| is bounded away from zero. Then
∥Y ∥p <∞, by the strong�type estimate which we have established in Section 3.

We will make use of Burkholder's method: this time the de�nitions of the appropriate
special functions are much more involved. To avoid notational confusion, in our con-
siderations below we will use the letter α for the number r′ = r/(r − 1). Consider the
di�erential equation

(5.1) α(2− α)ϕ′(x) + α = q(q − 1)xq−2ϕ(x)2−α.

We have the following fact, which appears as Theorem 2.1 in [16].

Theorem 5.1. There exists a unique nondecreasing, concave solution ϕ : [0,∞) → [0,∞)
of (5.1) satisfying ϕ(0) > 0 and ϕ′(t) → 0, ϕ(t) → ∞, as t→ ∞.
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From now on, ϕ stands for the solution described in the above theorem. Let Φ :
[ϕ(0),∞) → [0,∞) be the inverse to t 7→ t+ ϕ(t). We have ϕ(Φ(t)) + Φ(t) = t, which in
particular yields

(5.2) ϕ(Φ(t)) ≤ t and ϕ′(Φ(t))Φ′(t) ≤ 1

for t > 0. For the notational convenience, let us distinguish the constant

Lα,q =
(2− α)ϕ(0)α

2

and consider the auxiliary kernel

w(λ) =
α(2− α)

2
ϕ(Φ(λ))α−3ϕ′(Φ(λ))Φ′(λ)λ2, λ > 0.

We are ready for the de�nitions of the functions V, U : H×H → R which will lead us to
the weak�type estimate. Set

V (x, y) =
(
|y|α − Lα,q

)
+
− |x|q

and

(5.3) U(x, y) =

∫ ∞

ϕ(0)

w(λ)u1(x/λ, y/λ)dλ.

One can derive the explicit formula for U , but it will not be needed in our considerations.
The only property which matters to us is the majorization of V by U (see Lemma 3.5 in
[17]). Furthermore, by (5.2) we have w(λ) ≲α,q λ

q−1 and hence, computing as in (3.6),∫ ∞

ϕ(0)

w(λ)|u1(x/λ, y/λ)|dλ ≲α,q |x|q + |y|q.

Thus by (2.3), Fubini's theorem and the majorization U ≥ V ,

(5.4) EV (Xt, Yt/H
∗
t+) ≤ EU(Xt, Yt/H

∗
t+) ≤ 0, t ≥ 0.

Now we argue as in the case p > 2. For an arbitrary event A of positive probability, we
may write

E
(
|Yt/H∗

t+|α − Lα,q

)
1A ≤ E(|Yt/H∗

t+|α − Lα,q)+ ≤ E|Xt|q,

where the last passage is equivalent to (5.4). Therefore, we get∫
A

|Yt/H∗
t+|αdP ≤ ∥X∥qq + Lα,qP(A).

The di�erential subordination of Y to H ·X is not a�ected if we multiply X and Y by a
�xed positive constant λ. Therefore, the above inequality gives∫

A

|Yt/H∗
t+|αdP ≤ λq−α∥X∥qq + λ−αLα,qP(A),

and the optimization over λ yields∫
A

|Yt/H∗
t+|αdP ≤ q

α

(
α

q − α
Lα,q

)1−α/q

∥X∥αq P(A)1−α/q.
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Consequently, recalling that α is the Hölder conjugate to r, we may write∫
A

|Yt|dP ≤
(∫

A

|Yt/H∗
t+|αdP

)1/α

∥H∗∥r

≤
( q
r′

)1/r′
(

r′

q − r′
Lr′,q

)1−1/p

∥X∥q∥H∗∥rP(A)1−1/p.

This is precisely the desired weak�type bound, since A and t were chosen arbitrarily.

5.2. Sharpness for martingale transforms. As previously, we may restrict ourselves
to the case 1 < p < q < 2: for q ≥ 2, the constant is 1, which is achieved for f = g = v ≡ 1.

Fix ε > 0. Our starting point is the strong�type estimate

∥φ∥r′ ≤ Kr′,q∥f∥q,
where f is an arbitrary Lq-bounded martingale and φ is its transform by the deterministic
sequence wn = (−1)n, n = 0, 1, 2, . . .. The optimal value of the constant Kr′,q was
identi�ed in [16]: it is equal to cp,q,r and the almost-extremal examples have the following
structure: see Figure 1 below to gain some intuition. Fix a small parameter δ > 0. The
pair (f, φ) starts from (ϕ(0)/2, ϕ(0)/2) and at the �rst move it goes to (0, ϕ(0)) or to
(ϕ(0), 0). Then the evolution is governed by the following rules:

· if (f, φ) lies on one of the curves y = ϕ(x) or y = −ϕ(x), it stops ultimately;
· if we have (f, φ) = (x, 0) for some x > 0, then the pair jumps, along the line of slope

1, to (x+ δ, δ) or onto the curve y = −ϕ(x);
· if we have (f, φ) = (x + δ, δ) for some x > 0, then the pair jumps, along the line of

slope −1, to (x+ 2δ, 0) or onto the curve y = ϕ(x).

Figure 1. The structure of the extremal examples. The dots • indicate
the possible locations of the pair (f, φ).
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Let us gather some basic information about f and φ, which will be needed later. First,
the martingales are unbounded, but they are both bounded in Lq. Furthermore, it can
be extracted from [16] that

lim
δ↓0

∥φ∥r′
∥f∥q

= cp,q,r.

Next, we make some observations concerning the behavior of the di�erences df0, df1, . . ..
We easily see that with probability 1, �rst several di�erences are positive; then there is a
negative term; and then the remaining di�erences are zero. Let us be more speci�c. We
have df0 = ϕ(0)/2 > 0 and then there are two possible scenarios:

(a) df1 = −ϕ(0)/2 and df2 = df3 = . . . = 0; then (df)∗ = ϕ(0)/2 and φ∗ = φ = ϕ(0);
(b) df1 = ϕ(0)/2. Then there is an integer m ≥ 2 such that df2 = df3 = . . . = dfm−1 =

δ > 0, dfm < 0 and dfm+1 = dfm+2 = . . . = 0. In this case, we have (df)∗ = |dfm| and
φ∗ = |φ| ≥ (df)∗.

We de�ne the transforming sequence v by v0 = ϕ(0)r
′−1, v1 = −ϕ(0)r′−1 and vn =

(−1)n|φn−1|r
′−1 for n ≥ 2. Obviously, this sequence is predictable and we have v∗ =

(φ∗)r
′−1 = |φ|r′−1. To understand the behavior of g, note that in the scenario (a),

g = ϕ(0)r
′−1 · ϕ(0)/2− ϕ(0)r

′−1 · (−ϕ(0)/2) = ϕ(0)r
′
= |φ|r

′
.

On the other hand, in the scenario (b) we have v0df0 + v1df1 = 0 and

g = v2df2 + v3df3 + . . .+ vmdfm.

But the sequence (vn)n≥0 is alternating and (|vn|)n≥0 is nondecreasing, while df2 = df3 =
. . . = dfm−1 = δ and dfm < 0. Consequently, |g| ≥ |vm||dfm| = v∗(df)∗ > (1 − ε)v∗φ∗ =

(1 − ε)|φ|r′ , if δ is su�ciently small. Putting all these facts together, we obtain the
inequality

|∥g|∥p,∞ ≥
∫
Ω

|g|dP ≥ (1− ε)E|φ|r
′
= (1− ε)∥φ∥r′∥v∗∥r ≥ (1− ε)(cp,q,r − ε)∥f∥q∥v∗∥r,

provided δ is su�ciently small. This is precisely the desired claim, since ε can be chosen
arbitrarily small.
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