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ABSTRACT. Suppose that p, g, » > 1 satisfy the condition — = — + —. The paper
p q r

contains the identification of the best constants cp g, and Cp ¢, in the estimates

l9llp,c0 < cpgrllfllalv™lles llgllp < Cpgrllfllgliv™ |l

where f is an arbitrary Hilbert-space valued martingale, g is its transform by a pre-
dictable sequence v, and v* is the maximal function of v. This is extended to the
more general context of differential subordination for continuous-time processes.

1. INTRODUCTION

The motivation for the results studied in this paper comes from a very natural ques-
tion about the boundedness of martingale transforms. Let us start with the necessary
background and notation. Suppose that (2, F,P) is a probability space, equipped with
a discrete-time filtration (F,),>0, i-e., a nondecreasing family of sub-o-fields of F. Let
f = (fn)n>0 be a martingale taking values in a given separable Hilbert space H, with
norm and scalar product denoted by |-| and (-, -), respectively: with no loss of generality,
we may and do assume that H = ¢2. The difference sequence (df,,),>0 associated with f
is defined by dfy = fo and df, = f, — fu_1 for n > 1. Let g = v- f be a transform of f by
a predictable sequence v = (vy,),>0 with values in {—1,1}: that is, we have dg,, = v,df,
for all n > 0 and the predictability of v means that for each n, the term v,, is measurable
with respect to F(,_1)vo. Then, as Burkholder proved in [6], for any 1 < p < oo there is
an absolute constant C), for which

(L.1) lglly < Cpll flp-

Here we have used the notation || f||, = sup,>¢ ||fnllp- The best constant C, above was
identified in the later work [8] of Burkholder: we have C, = p* — 1, where p* = max{p, p'}
(here and in what follows, p’ = p/(p — 1) is the harmonic conjugate to p). This result is
a starting point for numerous extensions. For example, one can study a version of (1.1)
under the assumption of the so-called differential subordination. Recall that a martingale
g is said to be differentially subordinate to f, if for any n > 0 we have the inequality
|dgn| < |dfy| almost surely. Of course, if g = v - f is the transform of f by a predictable
sequence v with values in [—1, 1], then g is differentially subordinate to f. Burkholder [8]
proved that under this less restrictive domination, the L, estimate holds with the same
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constant p* — 1. Another extension concerns the weak—type analogue of (1.1): one can
ask, for any 1 < p < oo, about the best constant c, in the inequality

(1.2) 19llp.00 < cpll fllp-

Here [|€]|p.00 = Supy=o(APP(J€] > A))Y/P and ||g]|p.c0 = sup,, [|gnllp.co- This problem was
answered by Burkholder [8] for 1 < p <2 and Suh [19] for p > 2.

Theorem 1.1. Suppose that g is differentially subordinate to f. Then the estimate (1.2)
holds with the constant

P =

{Z/F(p+ 1) if1<p<2,
-

pP=1/2 if p> 2.
The constant is already the best possible if H = R and g is assumed to be a transform of

f by the deterministic sequence v, = (—1)", n=0,1, 2, ....

From the viewpoint of applications, it is sometimes convenient to consider a different
norming of weak L, spaces. Define

€loe = sup {P(A)”P-l / 5|d1P>} 7

where the supremum is taken over all events A € F of positive probability. It is easy
to prove that for 1 < p < oo we have || - ||p.c0 < ||| llp.oo Sp || - [Ip,0o (here and below,
the symbol A <, B means that there is a constant x, depending only on p, such that
A < kB). The question about the optimal weak-type constant under this different
norming was answered in [15].

Theorem 1.2. Suppose that g is differentially subordinate to f. Then for any 1 < p < 0o
we have [[|g]|p.c0 < &l fllp, where

1 /2p—1\\""" |
ar=1Gr(3=)) s
pP=1/2 if p>2.

The constant is already the best possible if H = R and g is assumed to be a transform of
f by the deterministic sequence v, = (—1)", n=0,1,2, ....

So, we see that the constants ¢, and c;) are the same for p > 2, and we have the strict
inequality ¢, < ¢, in the range 1 < p < 2; actually, we see that c], explodes as p | 1.

We should point out that the above strong- and weak—type estimates have numerous
interesting applications in harmonic analysis. For example, they can be used in the study
of unconditional constants for bases in L, or the boundedness properties of wide classes
of Fourier multipliers. The literature on the subject is very extensive, we mention here
the works [2], the interested reader is referred also to the bibliographic details contained
in these papers.

All the results for martingale transforms formulated above concerned the case in which
v was bounded by 1. There is a very interesting question about strong- and weak-type
estimates under the assumption that the transforming sequence belongs to L, for some
given r < co. More specifically, the above question is to study, for given parameters p, ¢
and 7 satisfying J = £ + 1, the optimal constants Cj, 4. and ¢, 4, in the inequalities

(1.3) HQHP < Cp,q,r”quHU*”T
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and

(1.4) glllp.c0 < cpqrll fllallv” |l

Here v* is the maximal function of v, defined by v* = sup,, |v,|. To the best of our
knowledge, this question is completely open. One of the main results of this paper is to
give the answer in the full range of parameters. In the formulation below, ¢ is a certain
special concave function on [0, c0), precisely described in Theorem 5.1.

Theorem 1.3. Suppose that g is the transform of f by a predictable sequence v and let
1< p,q, r<oo be parameters satisfying % = % + % Then the estimates (1.3) and (1.4)
hold with

p—1 if p>2,
Cpar=4(@—-1)"" ifp<qg<2,

1 otherwise

and
(Pt /2)MP if p>2,
! 1o _ gl 1/p’
nar =4 (1) (ommo0r) ip<a<

1 otherwise.

The constants are the best possible even if H = R.

There is a natural question whether the above theorem can be extended to the context
of differential subordination. In particular, one needs to provide an appropriate domi-
nation principle which would generalize transforming by L.-valued sequences. We will
prove the following statement.

Theorem 1.4. Suppose that f, g are martingales and v is the predictable sequence such
that g is differentially subordinate to v - f. Then for any parameters 1 < p,q,r < oo
satisfying % = % + 1, the estimates (1.3) and (1.4) hold true.

Note that by a simple limiting argument, the above theorem yields the aforementioned
sharp weak— and strong—type inequalities of Burkholder and Suh.

In fact, one can establish a version of Theorem 1.4 in the continuous-time setting. To
set up the appropriate context, suppose that the probability space (£, F,P) is complete
and equip it with a right-continuous filtration (F;);>¢ such that Fy contains all sets of
probability zero. Let X, Y be two adapted cadlag martingales taking values in a separable
Hilbert space H. Define the square bracket of X by [X] = >77%[X7], where X7 stands
for the j-th coordinate of X (in H = ¢3) and [X7] is the usual quadratic variation process
of the real-valued martingale X7 (see Chapters VI and VII in Dellacherie and Meyer [10]
or Chapter 4 in Métivier [11] for details). Given a real predictable process H, the symbol
H - X will denote the stochastic integral of H with respect to X, i.e.,

t
(H-X)t:HoXo—i-/ H,-dX,, t>0.
0+

Clearly, this notion is the continuous-time extension of the concept of martingale trans-
forms considered above. Following Bafiuelos and Wang [4] and Wang [20], we say that YV’
is differentially subordinate to X, if the difference [X]; — [Y]; is nonnegative and nonde-
creasing as a function of t. Note that this definition is consistent with the discrete-time
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differential subordination discussed above. Indeed, if we treat discrete-time martingales
f and g as continuous-time processes (with the use of the embedding X; = f|; and
Y; = g|¢), t > 0), then g is differentially subordinate to f if and only if X and Y satisfy
the above condition. Consequently, the following result generalizes Theorems 1.3 and
1.4. In analogy to the discrete-time context, we use the notation || X||, = sup;>¢ [|X¢|lps
1 oo = $UPy50 [ Xelllpo and H* = sup,g [Hyl.

Theorem 1.5. Suppose that X, Y are H-valued martingales and let H be a left-continuous
process such that Y is differentially subordinate to H - X. Then for any parameters
1< p,q,7 < oo satisfying ;1) = % + % we have the sharp estimates

(1.5) 1YNlp < Cpqrl| XIlalH" |
and
(1.6) Y llp,00 < cparll XNl H |-

We see that in the above statement we consider integrands H with left-continuous
trajectories. This is slightly more restrictive than the predictability condition which is
typically imposed in the context of stochastic integrals. The reason is that the analysis
of the behavior of H* will be based on It6’s formula, for which this enhanced regularity
seems to be necessary.

Let us say a few words about our approach. Typically, estimates for differentially
subordinate martingales are studied with the use of the so-called Burkholder’s method
(sometimes referred to as the Bellman function method, especially in the analytic context).
Roughly speaking, the technique allows to deduce a given estimate from the existence of
a certain special function on H x H, enjoying appropriate size and concavity constraints
(see [14] for the detailed exposition). Let us briefly describe the idea in the context of
transforms. Suppose that V' : R x R — R is a given Borel function and we are interested
in the estimate

(1.7) EV (fn,gn) <0, n=0,1,2,...,

where f is an arbitrary real-valued martingale and ¢ is its transform by the deterministic
sequence ((—1)™),>o (typically, one imposes some additional boundedness properties on
f which guarantee that the above expectations exist). To prove the estimate, one searches
for a special function U : R x R — R which enjoys the following three properties:

1° We have U(z,x) < 0 for all z;
2° We have U > V on R x R;
3° The function U is concave along lines of slope +1.

Then the condition 3° implies that the process (U(fn,gn))n>0 is a supermartingale,
which combined with 2° and 1° yields the desired bound: for any integer n we have

A similar argument works for Hilbert-space valued martingales satisfying the differential
subordination. One can also extend the approach to the continuous-time setting, but then
instead of the above chain of inequalities, one needs to apply Itd’s formula (see [20]). A
beautiful feature of the approach is that the implication can be reversed: the validity of
the estimate (1.7) implies the existence of a function U satisfying the appropriate set of
requirements. Thus one can try to implement the method in the search of sharp versions
of various inequalities.
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Let us emphasize here that the set of slopes allowed in 3° is precisely the set in which
the transforming sequence takes values. There seems to be no extension of Burkholder’s
method which would allow the control the L,.-norm of the sequence v. Thus, our first
problem is to modify the approach so that it becomes applicable to the above strong-
and weak—type estimates. As we shall see, this can be done by proving slightly stronger
estimates involving the ‘product processes’” H} X, Y/H?, and then splitting them ap-
propriately. These stronger inequalities will be established with the classical form of
Burkholder’s method.

The paper is organized as follows. The next section is devoted to two special estimates
which serve as ‘building blocks’ in the proofs of (1.5) and (1.6). The strong—type estimate
(1.5) is established in Section 3, we also prove the sharpness of (1.3) there. The last two
sections contain the proof of the weak—type estimate (1.6) and address the sharpness of
(1.4).

2. TWO AUXILIARY INEQUALITIES

Introduce the domain D = {(x,y) € HxH : |z|+|y| < 1} and let uy, uoo : HXH — R
be two special functions, given by

S ()
WEYE 1221 if (ny) €D

and
0 if (z,y) € D,
(lyl =1)* = =[* if (z,y) ¢ D.

The function u; was invented by Burkholder in [8], it played the key role in the proof of
the weak—type (1,1) estimate for martingale transforms. To the best of our knowledge,
the function u., first appeared in [1] and it can be regarded as an appropriate dual to u.
See the monograph [14] for the detailed discussion and much more on the subject.

Later on, we will need the following property of these functions. Namely, if (x,y) € D
and h, k € H satisfy |k| < |h|, then

Uoo (T,Y) = {

(2.1) w(z+h,y+k) <ui(z,y) + (wiz(z,y), h) + (uiy(z,y), k)
and similarly,
(2.2) Uoo (T 4 hy Y + k) < oo (@, ) + (Uooa (2,Y), B) + (Uooy (2, Y), k).

Here %14, U1y, Uocx and Uy stand for the appropriate partial derivatives of u; and teo.
Note that (2.2) is equivalent to saying that ue(z + h,y + k) < 0.

Before we proceed, let us record a useful fact, proved by Wang in [20] (see Lemma 1
there). In what follows, the symbol A& = & — &_ stands for the jump of a process £
at a time t. Furthermore, for an arbitrary martingale £, we will write £¢ for its unique
continuous part. See [10, 11] for detailed exposition.

Lemma 2.1. If Y is differentially subordinate to X, then Y ¢ is differentially subordinate
to X¢ and with probability 1 we have |Yy| < | Xo| and |AY| < |AXy| for all ¢ > 0.

We are ready for the main result of this section. In what follows, H7} is the cadlag
maximal function of H, defined by H}, = inf,-; H].
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Theorem 2.2. Lett > 0. Suppose that X, Y are martingales and H is a left-continuous
process such that Y is differentially subordinate to H - X.
(i) If Hy is bounded away from zero, then

(2.3) Euy (X, Y;/Hf,) <O0.
(i) If H X, and Y; are square integrable, then
(2.4) Fuoe (Hf, X1, Y;) < 0.

Proof of (2.3). Introduce the stopping time 7 = inf{s > 0: (X,,Y,/H},) ¢ D}, with the
usual convention inf () = +00. Let us start with the obvious identity

Euy (X, K/H;Jr) = Euy (X, }/t/H:+)X{T§t} + Euy (X, K/H:+)X{T>t}~

Note that wj(z,y) < 1 — 2|z| for all z, y € H. Therefore, using the supermartingale
property of (1 — 2| X|)s>0, we may write

]E’U,l(Xt, Y;/H:_;_)X{Tﬁt} < E(l - 2|Xt|)X{7—§t}
<EQ1 =2/ X )X {r<ty = Bua (X7, Y2 /HY )X r<ty

which combined with the preceding identity gives
Euy (X, Yi/Hyy ) < Bug(Xone, Yone/Hrpgy)-

Hence it is enough to prove that the right-hand side is nonpositive. To this end, denote
Zs = (X, Ys/H},) and apply Ito’s formula to obtain

(2.5) uy (Xonts Yene/Hing ) = To+ 1 + I + 13/2 + 1y,
where

Iy = u1(Xo, Yo/Hg ),

TAL TAL ng
]1:/ ulz(Zsf)'dXs"’_/ M-dYS,
0

*

+ 0+ s
TAL Y. Y.
I :—/ wy(Zs_) -~ dH, + wiy(Zs_) -~ AHY,
2T B et OES:TM wlZo) G A
TAL TAt
b= [ wn(Zo) A [ (20D AV
0+ 0+
14 = Z |:u1(Z5) - UI(ZS—) - <u17;(Zs—)aAXs> - <u1y(Zs—)v (AK)/H:>:|
0<s<TAL

Let us make several helpful observations here. The quantity [; and the integral in I is
just the sum of all first-order terms, while the expression I3 is the sum of all second-order
terms (note that for (z,y) € D we have ui,y(z,y) = 0, so the mixed integral does not
appear in I3). The second half of I and the whole I, correspond to the jump part.

Let us study the behavior of the terms Iy through I,. By the differential subordi-
nation of Y to H - X, we have |Yy| < |Ho||Xo| < Hg, |Xo| and hence Iy < 0 (indeed,
we have ui(x,y) < 0if |y| < |z]). The stochastic integrals in I; are martingales (as
processes indexed by t), since by the definition of 7, Z_ is bounded on (0,7]. The
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term I is nonpositive: indeed, we have uy,(Zs_) - Ys— = 2|Y,_|?/H_ > 0, the process
<H§+ — Y 0cu<s AH;+> is nondecreasing, and
- s>0

TAL Y.
I, = —/ Upy(Zs_) - —— H: — AH?
2 o 1y( ) (H:‘)Q + Z +

+ 0<u<s
Next, we compute that

TNt TNt
L= -2 / d[X]° + 2 / (H:)~2d[Y]e <0,
0+ 0+

by the differential subordination and Lemma 2.1 above. Finally, each summand ap-
pearing in I is nonpositive, by virtue of (2.1) applied to (z,y) = Zs— and (h,k) =
(AX,, (AYs)/HY) (the estimate |k| < |h| follows by the differential subordination of Y to
H - X: see Lemma 2.1).

Putting all the above facts together, we get the desired assertion. g
Proof of (2.4). Let 7 =inf{s > 0: (H} X,,Ys) & D}. The first step is to show that
(26) ]EUOO(H:At+XTAt7 Y‘r/\t) S 0.

To this end, we write the trivial identity
EUOO(H:/\t+XT/\t7 Y‘r/\t)
= Bttoo (H gy Xonts Yont) X {rsty + Btioo (H7 p i Xont, Yone) X {r<t}-

The first summand on the right is equal to zero: by the definitions of u., and the stop-
ping time 7, the random variable under the expectation vanishes. To handle the second
summand, we apply, on the set {7 < t}, the inequality (2.2) with x = H*X,_, y =Y, _,
h = HXAX, and k = AY,. Note that |k| < |h|, by Lemma 2.1 and hence we get
Uoo (HF X, Y;) < 0. Thus, we also have uo (H} X;,Y;) <0, since uq(,y) decreases as
|| increases. Integrating, we get Euo (HY, X7, Y7)x(r<¢ < 0, which proves (2.6).

The next step is to establish the inequality

(2.7) Euoe (Hy X, Y:) < Btioo (HZ p iy Xrnes Yone),

or equivalently,

(2.8) Boo (Hyy X, Vo)X {r<ty < B (H7 X7, Yo )X (r<ty-

To show this bound, note that us(x,y) < (Jy| — 1)? — |z|? for all (z,y) € H, and hence
Euoo (Hfy X1, Vi) X r<ty S E((Yi] = 1)% = [HL X)) X fr<ty-

Arguing as above, by Doob’s optional sampling theorem and the supermartingale property
of the process (1 — 2|Y;|)s>0, the estimate (2.8) will follow if we manage to prove that

(2.9) E([Y:? = [H Xi|*) X (r<ty SE(Y7? = [H X *) X (r<ty-

This is done by It6’s formula. The calculations are essentially the same as in the proof of
(2.3) and hence we omit the details. O
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3. STRONG—TYPE ESTIMATES

3.1. Proof of (1.5). With no loss of generality, we may assume that X is bounded in L,
and H* € L,, since otherwise there is nothing to prove. Furthermore, we may assume that
H, is bounded away from zero, replacing it with |Hy|+¢ and letting € | 0 at the very end
of the proof. These assumptions imply that for each ¢ the random variables H;, X; and Y;
belong to L,. Indeed, we have ||H; X;||, < || X||q||[H*|| by Young’s inequality, while Y" is
handled with the use of Burkholder-Gundy inequality and the differential subordination:

([ zran.) -

% 1/2 1/2 * *
< H: X121 < WXL 2Nl H e S 1X ol H o

Now we consider separately three cases.

1/2
Yl <o YD <

(3.1)

The case p > 2. If p = 2, the claim follows from (3.1): all the intermediate inequalities
hold with the constant 1. Hence we may restrict ourselves to p strictly bigger than 2.
Consider the functions U, V : H x H — R given by

Viz,y) = [yl" = (p = DP|[?
and
Uz,y) =p*2(p = P (lyl = (0 = D) (|| + [y~
Burkholder [9] showed that we have the majorization

(3.2) U>Vv on H x H.
The function U has the following remarkable representation in the language of wuq:
Ueg) =y [ 2 s/ Ay
0

where o, = p3~P(p — 1)P(p — 2)/2 (see [1]). Therefore, by (2.4) and Fubini’s theorem,

(3.3) EU(H{ X1, Y;) <0,  t>0.
To see that Fubini’s theorem is applicable, note that
0 if 2| + [yl < 1,
luoo (@, <9 5 2 s
|z[* + |y if ||+ [y] > 1,

which implies
(3.4) /O X uoo (/X y/ M) AN Sp (212 + [y12) (2] + [y~ Sp 2P + [y[P.

Since H}, X; and Y; belong to L,, we have the necessary integrability and (3.3) follows.
Thus, by (3.2), we conclude that EV (H; X;,Y;) <0, or

Yellp < (p = DIHZ Xellp < (p = DIXlg[[H]:-
Since t was arbitrary, the inequality is established.

The case p < ¢ < 2. We may actually assume that ¢ < 2, the case ¢ = 2 follows from
a limiting argument. The reasoning goes along similar to those above, but we need some
additional effort. Let Uy, V, : H x H — R be defined by

q* 1

q—1

Volz,y) = lyl* = (¢ =) z[% Uylz,y) = (g = Dlyl = 2|l + [y)*~*.
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As shown by Burkholder in [9], we have
(3.5) U, 2V, on H x H.
Furthermore, the function U, admits the representation (cf. [1])

Uy(sy) = a / Ay (/A /A A,
0

where a, = ¢379(2 — ¢)/2. Now it is natural to try to use (2.3) and Fubini’s theorem
to obtain EU,(Xy,Y;/H,) < 0 for all t > 0. The function U, enjoys an appropriate
boundedness: we have

iy ()| < 4 120 T E T L+ 1yl <1,
Tyl i e 4yl > 1
and hence
(3.6) / Ny (/A /)N g J2]7 + [y,
0

So, to use Fubini’s theorem, we need to establish the L,-boundedness of the process Y/H .
This, in contrast to the previous situation, does not seem to follow from Burkholder-
Gundy inequality. To overcome this difficulty, we apply localization. Given an arbitrary
positive integer M, consider the stopping time

oy =inf{s > 0: |Xs| + |Ys/HI| > M}.

By the differential subordination of Y to H - X, we have
AYo, JH2)| = [AYo, |/ HE, < [AX
which implies that |Yo, ne/Hy, a¢l < M + |AXo, a¢l, in particular, Yo, A¢/HJ, A and

o

hence also Y, at/Hj, it Delong to L. The stopped martingale Y7 is differentially
subordinate to H™ - XM g0 (2.3) and Fubini’s theorem give

(3'7) EUCI(XUM/\tvYUM/\t/H;M/\tJr) <0, t>0.
Combining this estimate with (3.5), we get EV,(Xo,,ats Youne/Hy,, ate) < 0 and hence
1Yorntllp < 1Yornt/He o nes gl Hg o nes llr
< (g = V)M XomnellgHy i e < (g = 1) X gl H ]

Letting M — oo and t — oo, we get the claim, by Fatou’s lemma.

M JM|’

The case p < 2 < q. For this choice of p and ¢, the assertion will follow by applying
(1.5) twice, in the range already covered by the above considerations. Specifically, take
s =2p/(2—p), a =71(2-p)/(2p) < 1 and write the stochastic integral H - X in the

alternative form
H,
/thXt /|Ht°*|Ht|adXt,
t

i.e., as the stochastic integral of the process |H|® with respect to the martingale H|H|~“-
X. So, Y is differentially subordinate to |H|* - (H|H|~® - X), and hence (1.5), applied
with 1/p=1/2+1/s (then Cp 2 s =1, as we have shown above), gives

1Yl < |HIHIZ - X|LIH) s = [[HIH]7 - X|I1E ).
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The term |H|H|™* - X||2 is again handled by (1.5). Namely, we have 1/2 = 1/q +
(¢ —2)/(2q) and Cs.g,(2¢)/(g-2) = 1, 50

VL Xy < Xl ™ g g2 = Il 07270,

Putting all the above facts together, we get the desired estimate.

3.2. Sharpness for martingale transforms. Observe that the best constant in (1.3) is
at least one, for all p, ¢, r satisfying 1/p = 1/q+1/r: this is easily seen by considering the
constant sequences f = g = v = 1. Therefore, the estimate (1.3) is sharp for p < 2 < ¢
and from now on we may assume that p > 2 or p < g < 2. Actually, by the lemma below,
we may restrict ourselves to the first possibility.

Lemma 3.1. Let CI"  denote the optimal constant in (1.3), restricted to real-valued

PsasT
martingales. Then we have C'" = C' . for all p,q and r satisfying 1/p=1/q+ 1/r.

D,q,T q'.p',r

Proof. Recall that p’ = p/(p— 1) is the Holder conjugate to p. Assume that ¢ = (¢n)n>0
is an arbitrary L,-bounded, real-valued martingale with ||, <1 and let ¢ = (¥ )n>0
be the transform of ¢ by v. Since the martingale differences are orthogonal, we may write

Egnon =E Y dgdor =B dfsdip = B fuihy.
k=0 k=0

However, we have 1/¢' = 1/p’ 4+ 1/r, so
Efothn < Ifallaltnlle < CFp wllfallallellp vl < CFp o fllglv*[lr-
q.p, a.p,

Combining this with the previous identity and using the fact that ¢ was chosen arbitrarily,
we conclude that ||gnll, < CE || fll4llv* |- and hence, taking the supremum over n, we

obtain that C}7, . < CJ/ , . Switching from (p,q) to (¢’,p’), we get the reverse bound.

The proof is complete. O

Thus, from now on, we assume that p > 2 and proceed to the construction of the
appropriate extremal examples. The analysis splits naturally into several steps.

Step 1. The filtered probability space. Assume that the probability space is the interval
(0,1] with its Borel subsets and the Lebesgue measure. Let a > g and 0 < § < a~!
be fixed parameters, and set @ = 1 — ad. We start with defining a certain decreasing
sequence (pp)n>o with values in (0, 1]. Namely, for any n > 0 we put

Q"+ Q! _ Pan F Ponto

pon = Q"  and  papi =

2 2
This sequence gives rise to the filtration (F,),>0 such that for a fixed n, the o-field F,
is generated by the intervals (0, p,], (0,pn—1], (0,pn—2], ..., (0, po]. That is, the atoms of
Fn are precisely (0,pnl, (Pn;Pn—1], (Pn—1,Pn—2]; -+, (P1,po]-

Step 2. The variable f. Introduce the function (random variable) f : (0,1] — R by

LS
f = Z(l + 5)n (X(pszrl,pzn] - X(P2n+2,P2n+1]> :
n=0

Note that f is measurable with respect to o(F, : n > 0). It is easy to check that f is
integrable, it actually belongs to L, at least for sufficiently small §. Indeed, we compute
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directly that

E|f|q — Z(l + (5)"q(p2n _p2n+2) = a(sz |:(]. + 5)q(1 . ad) n <,
n=0 n=0

where the last inequality follows from the estimate a > ¢ (which guarantees that the ratio
of the geometric series is less than 1). Furthermore, note that if a is chosen close to ¢,

then 5
: 9 — |3 a = a
}%EU‘ %%1_(1+5)q(1_a5) a—q

and hence

lim li — 0.
;ﬁ;(;ﬁ;l\fllq 00

Step 3. On the martingale (f,)n>0 generated by f. For any nonnegative integer n, we
let f, = E(f|F.). By the very definition of f and (F,)n>0, we check that

f o 0 on (07p2n}7
T on (p2ns 1l

Indeed, on (0, p2,] we have

1 P2n
fon = 7/ fdz =0,
(0, p2n]l Jo
by symmetry: for each k, the point por11 is the middle of (pogio,por)- Similarly, we get

1-Q "
Fomsn = —m(l +0) on (0, p2n1),

f on (p2n+17 1]

To check the first formula, note that [}*"** f = 0 (as we have seen above), so on (0, p2n+1],

1 P2n+1 f 2 D2n+1 f
"0, paned]| dz = 7/ dz
fon+1 [(0, p2n+1]] /0 Qn + Qn+t o

2
=—— (14 o))" n - n
Q" +Qn+1( )" (P2n+1 = Pans2)
1-Q
= ——(14+6"
1+Q( w0
Passing to the difference sequence df, we obtain that dfy = fo =0 and
1 —
d i _m(l +4)"™  on (0,pan+1],
lfon+1 = (1+0)" on (P2n-+1,P2n),
0 on (ana 1]a
1-Q
(145" n+2],
1+Q( + )2Q on (0, pan+2]
dfon+2 = q _ 14+6)" ——
(1+0) 70 on (Pan+2,P2n+1],
0 on (pan+1,1]

forn=0,1,2,....
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Step 4. The predictable sequence v and its properties. We introduce v = (v,)n>0 by
vo = 1 and, for n > 0,

Vang1 = —(1 + 5)nQ/TX(0,pzn]a Vante = (1+ 5)nq/r><(0,p2n+1]'
Obviously, v is predictable: we have (0,p,] € F, for each n. Furthermore, on the set
(Pn+1,pn] we have |vg| < || < Juo| < .ot < |upg1] and vpgo = Vpysz = ... = 0.
Consequently,

VF = Z(l + 5)nq/TX(p2n+2,pzn] _ |f|q/r7
n=0
so o*|l- = | £4'" and hence in particular || f|4l[v* ||, = | f]14".

Step 5. On the transform. Let g be the transform of f by v. We will compute the
explicit formula for g on each interval of the form (p,y1,p,]. We start with an even n.
Directly from the above construction, we see that dfs,,12 = 0 on (p2n+1,p2s] and hence

Gon+2 = Gan+1 = Vodfo +vidfi + ... + vandfon + Vong1dfonsr
_20-Q)
1+Q
_ 2(1 — Q) . (1 +5)”(1+q/r) —1 _ (1 + 6)n(1+q/r)
1+Q (1+6)tHa/r —1
2 1-Q 4| 2 1-Q
1+Q (1+09)t+a/r—1 1+Q (1+)t+a/r—1

On (pant2,pan+1] the calculations are similar, but slightly more complicated: we get

[1 + (1 + 5)14—‘1/7‘ + ...+ (1 + 5)("—1)(14“1/7")} _ (1 + 6)"(14'(1/7")

=(1 +5)n(1+q/r) {

Gon+2 = Vodfo + vidfi + ... + vapnt1dfons1 + Vontodfonto

21 - Q) 1 1) (tba/r
— 1 14+ 5)1+a/r 1+ §)(n=D(+a/7)
0 14+ (14 6) 97+ (1+) }
1-Q 2Q
4+ %146 n(l+q/r) _ 1+6 n(l+q/r) 2%
1+ Q( ) ( ) 1+Q
2 1-Q 2 1-Q
= (1 + §)"(+a/7) . —1| = .
(1+9) 1+Q (+o)Ha/r —1 1+Q (+o)yFa/r —1
21-0Q)
4+ = (144 ”(1+Q/T).
1+Q (1+9)
Finally, note that dg,+1 = dgnt+2 = ... = 0 on (pn,pn—1]. Therefore, we have that g, the
pointwise limit of (g, )n>0, can be rewritten in the form g = g1 + ¢@ + ¢ where
> 2 1-Q
1 — (1+q/7) . _
g - Zo(l + 6)” a“r |:1 + Q (1 + 5)1+q/7« -1 1:| X(p2n+27p2n]’

@ _ _ ZOO 2 1-@
T T T Q oyt — Xl
, —2(1-Q)
(3 — 22T %1 4 g\nita/r)
g E 170 (1+46)

X(p2n+2 71’271«#1} °
n=0
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Step 6. The analysis of g'). Observe that [g(1)| = | f|2/P- ﬁ . (H_é;f% — 1] and

the expression in the square brackets enjoys the following behavior:

lim L 1-@Q —1}:11111( 2a0 —1): U
-0 |14+ Q (1+0)HHe/r—1 50 \ (2 —ad)((1+d6)t+a/m —1) r+q
The limit ra/(r + q) — 1 can be made arbitrarily close to rq¢/(r+q) —1=p—1,if a is
chosen sufficiently close to ¢. Consequently,

(1) (1)
lim lim ”g ”P — lim imM
alq 10 ||f\|g/1’ alq 510 || flqllv* |-

=p—1.

Now we will show that the contribution of the variables ¢(» and ¢(®) is negligible. Note

that
@) = 2(1-Q)
(1+Q)((L+o)t+a/r —1)
is deterministic and converges to ra/(r + q) as § — 0. Combining this with the analysis
at the end of Step 2, we see that

l®ly _ o N9l

lg

lim lim Jp = dmlim e = 0.
alg 610 || ||/ alg 810 || fllqllv* [l
Finally, note that |¢(®)| < Q(ET_QQ)UWP, and hence
(3) (3)
hnlhnl”g HP = lim li Hg HP =0.

=limlim ———— =
alg 510 || £|4/P  ala 510 || fllqllv* ]l
[1f1lq

Step 7. Completion of the proof. Let us put the above facts together. We fix ¢ > 0
and take a > ¢ such that

ra
-1-(p-1)|<e.
s (r-1)
Then for sufficiently small § we have
(1) (2) (3)
P L P L M
I1f1lqllv* [l I1f1lqllo* [l [1f1lqllo* [l

and hence ol
gllp
Y = |
[ £ llgllo* [l

Since € was arbitrary, the sharpness follows.

— 4e.

4. WEAK-TYPE ESTIMATES, p > 2

4.1. Proof of (1.6). Asin the case of strong—type estimates, we may and do assume that
| X1l < oo and ||[H*||, < oo; we may also assume that the norms are strictly positive
since otherwise, the claim is obvious. Then HY X and Y belong to L,, as we checked in
the preceding section. Consider the functions U, V on H x H, given by

1—1)71
Uz, ) = 6, / NP 2/, y/A)dA

and

pp—l
2

V(z,y)=p(yl—-1+1/p), — |z[?,
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where 3, = pP(p — 1)>7P(p — 2) /4. It was proved in [3| that
(4.1) U>V  onHxH

Applying (2.4) and Fubini’s theorem, we get EV (H; X;,Y;) < EU(H; X;,Y;) < 0 for
t > 0. Fubini’s theorem is applicable, since

1*1)71 00
/ N oo (/A y/ VA < / N g (/A /N S, 2P+ [yl?,
0 0

as we already verified in (3.4). Therefore, we obtain

E(p|Y; <P mgr x,p < P x| Ee |
(pIYe| = p+ 1)+ < - EHL X |P < ——[IX[ZIH]I7.
Fix an arbitrary event A of positive probability. Then
P! .
E@Yel —p+ D1a <E(pYi| —p+ 1)+ < [ XTI H 7,

2
or equivalently,
-2
* p—- 1
[ e < P x e+ )

The differential subordination of Y to H - X is preserved if we multiply X and Y by a
fixed positive constant A\. Applying the above estimate to the modified triple AX, \Y
and H, we obtain

PP’ p—1
3 [ Wiide < B g+ 2=pa).
A

Dividing both sides by A and optimizing over A (specifically, the best choice is A =
(2P(A) /P~ )PIX G HIE (|7, we get

Pt 1/p -
[ wlap < (Z5) I B
This yields |[|Y|[p.c0 < (pP71/2)Y?| X||4||H*]|,, since A and t were arbitrary.

4.2. Sharpness for martingale transforms. The calculations are quite similar to those
appearing in the previous section. We take 6 > 0, fix a positive integer N and set
Q =1—(p—1)¢d/p. Then we define the sequence (p,, ), >0 as before and consider the prob-
ability space ((0,1],58(0,1), |-|). We consider the o-algebras Fo, Fi, ..., Fan as previously,
and ]:2N+1 = ]:2N+2 = ...is the o-field with atoms (O,pQN/2], (pQN/2,p2N], (pzN,pQNfl],
(pgN_l,pgN_Q], cey (pl,po], that is, Foy+1 = Fonaa = ... = o(Fen, (O,pgN/Q]). Con-
sider the function f given by the finite sum

N-1
f= Z (1+o)" (X(p2n+1,p2n] - X(p2n+27p2n+1]) + 1+ 5)N (X(O,Pw/ﬂ - X(?zN/ZPzN])'
n=0

This function is measurable with respect to Fon1 and satisfies
N-1
Elf]* = Z (14 6)™(pan — pant2) + (14 6)pay
(4.2) n=0
1446)1Q —Q
<(QL+ 6NN . (1+9'Q0=@Q :
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It is easy to see that the formulas for df,, n = 0, 1, 2,..., 2N, are the same as in the
previous section. This follows from the fact that f has not been changed on (p2y, 1] and
it still has a vanishing integral on (0, p2n]. To complete the description of the difference
sequence, note that dfan11 = fX(0,pon] and dfani2 = dfoniz = ... =0.

The transforming sequence v = (vy,)n>0 is given by vo = 1; forn =0, 1,2, ...,N -1
we put Va1 = —(140)""X(0,psn) and Vapio = (1+6)"Y X (0 p,. ) finally, for n > 2N
we set v, = (1 + 5)N‘1/7"X(0’p2N]. So, in comparison to the formulas from the previous
section, we see that vg, vy, ..., voy are the same. Consequently, we may repeat the
analysis and obtain that v* = |f|?/"; furthermore, on (0, pay /2] we have

gan+1 = vodfo + vidfi + ... + vany1dfona
_ 2(11;62@) L (14 0)H9/ 44 (14 8)N-DO+a/m] 4 (1 4 g)NO+a/D)
N(1 r
_20-Q) A+)NI 1 s,
1+Q (14 6)1+a/r —1

Denoting the latter expression by A, we see that

llglllp.co _ Mglllpoo o ANO.p2n /217 A( (1+6)99Q -1 )””
Ifllallvslle rpste = e~ \2QA+6)N((1+d)2-1))

where the last inequality is due to (4.2). Now we need to perform an appropriate limiting
procedure. Letting N — oo, the latter expression converges to

2(1-Q) (1+6)2Q—1 \"*
((1+Q)((1+5)1+‘1”— D “) (2Q((1+5)q 1>) |

Now if we let 6 — 0, the above quantity tends to p - (2p)~1/? = (pP~1/2)V/P. This yields
the desired lower bound for the weak—type constant.

5. WEAK-TYPE ESTIMATES, p < 2

5.1. Proof of (1.4). If ¢ > 2, then the estimate follows at once from the strong—type
bound: we have

Y 0o < MY llp < IXIqlLH ]l

The main difficulty lies in proving the weak—type inequality for 1 < p < ¢ < 2; one
easily checks that 1 < 7/ < ¢ in such a case. Fix X, Y and H as in the statement; we
may assume that || X, < oo, [[H*||, < oo and |Hy| is bounded away from zero. Then
IY]l, < oo, by the strong—type estimate which we have established in Section 3.

We will make use of Burkholder’s method: this time the definitions of the appropriate
special functions are much more involved. To avoid notational confusion, in our con-
siderations below we will use the letter a for the number ' = r/(r — 1). Consider the
differential equation

(5.1) a2 —a)¢(z) + o= q(qg— 1)a?2¢(x)*~".
We have the following fact, which appears as Theorem 2.1 in [16].

Theorem 5.1. There exists a unique nondecreasing, concave solution ¢ : [0,00) — [0, 00)
of (5.1) satisfying $(0) > 0 and ¢'(t) — 0, ¢(t) — o0, as t — oo.
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From now on, ¢ stands for the solution described in the above theorem. Let & :
[¢(0),00) — [0,00) be the inverse to t — t + ¢(t). We have ¢(®(t)) + ®(t) = ¢, which in
particular yields

(5.2) p@1) <t and  ¢(@(1)P(H) <1
for ¢t > 0. For the notational convenience, let us distinguish the constant

L. _ 20
' 2

and consider the auxiliary kernel

w() = a(22—a)

We are ready for the definitions of the functions V, U : H x H — R which will lead us to
the weak—type estimate. Set

V(xvy) = (|y|a - La,q)+ - “T|q

SBT3 (BT (NN, A >0,

and

(5.3) Ulz,y) = /4) :) W\ (/A y/A)dA.

One can derive the explicit formula for U, but it will not be needed in our considerations.
The only property which matters to us is the majorization of V' by U (see Lemma 3.5 in
[17]). Furthermore, by (5.2) we have w(\) <oq A7 ! and hence, computing as in (3.6),

o0
/¢< WO /A IO Sl + ol
0

Thus by (2.3), Fubini’s theorem and the majorization U >V,
(5.4) EV(X, Y, /H, ) <EU(X.,Y:/H{) <0, t>0.

Now we argue as in the case p > 2. For an arbitrary event A of positive probability, we
may write

]E(|Yt/Ht*+|a - La,q)lA < E(|K/H;+|a - La,q)+ < E|Xt|qa

where the last passage is equivalent to (5.4). Therefore, we get
[ /AP < X+ L P,

The differential subordination of Y to H - X is not affected if we multiply X and Y by a
fixed positive constant A. Therefore, the above inequality gives

/ Yo/ Hy, |*dP < A X]|8 + AL, ,P(A),
A

and the optimization over \ yields

1—a/q
* o q « o —o
[ ear < (or,) xRy,
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Consequently, recalling that « is the Holder conjugate to r, we may write

1/«
[ il < ( / m/H:mdP) T
A A

’ 1-1/p
g\ r’ X 1-1/;
<(4)" (Lotea) XL R

r
This is precisely the desired weak—type bound, since A and ¢ were chosen arbitrarily.
5.2. Sharpness for martingale transforms. As previously, we may restrict ourselves

to the case 1 < p < g < 2: for ¢ > 2, the constant is 1, which is achieved for f = g =v = 1.
Fix € > 0. Our starting point is the strong—type estimate

el < Ko gl fllgs
where f is an arbitrary L,-bounded martingale and ¢ is its transform by the deterministic
sequence w, = (—1)", n = 0,1, 2, .... The optimal value of the constant K, , was

identified in [16]: it is equal to ¢p ¢ and the almost-extremal examples have the following
structure: see Figure 1 below to gain some intuition. Fix a small parameter 6 > 0. The
pair (f, ) starts from (¢(0)/2,¢$(0)/2) and at the first move it goes to (0,#(0)) or to
(¢(0),0). Then the evolution is governed by the following rules:

- if (f, ) lies on one of the curves y = ¢(z) or y = —¢(x), it stops ultimately;

- if we have (f, ») = (x,0) for some = > 0, then the pair jumps, along the line of slope
1, to (z + 6, 0) or onto the curve y = —¢(z);

- if we have (f,¢) = (z + 6,9) for some z > 0, then the pair jumps, along the line of
slope —1, to (z + 24, 0) or onto the curve y = ¢(x).

FI1GURE 1. The structure of the extremal examples. The dots e indicate
the possible locations of the pair (f, ¢).
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Let us gather some basic information about f and ¢, which will be needed later. First,
the martingales are unbounded, but they are both bounded in L,. Furthermore, it can
be extracted from [16] that

im el _

610 [ fllg
Next, we make some observations concerning the behavior of the differences dfy, dfi, . ...
We easily see that with probability 1, first several differences are positive; then there is a
negative term; and then the remaining differences are zero. Let us be more specific. We
have dfy = ¢(0)/2 > 0 and then there are two possible scenarios:

P,q,T*

(a) dfs = —4(0)/2 and dfs = dfs = ... = 0; then (df)* = $(0)/2 and * = = B(0);

(b) dfy = ¢(0)/2. Then there is an integer m > 2 such that dfs = dfs = ... = df;,—1 =
60 >0, dfrn, < 0 and dfy11 = dfmy2 = ... = 0. In this case, we have (df)* = |df,»| and
¢* = |l = (df)".

We define the transforming sequence v by vo = ¢(0)" ~1, v; = —¢(0)” ~* and v, =

(=1)"[@n_1|" " for n > 2. Obviously, this sequence is predictable and we have v* =
(") =1 = |p|”" 1. To understand the behavior of g, note that in the scenario (a),

g=6(0)" " 6(0)/2 = $(0)" - (—=¢(0)/2) = $(0)" = |¢|"".
On the other hand, in the scenario (b) we have vodfy + vidf; = 0 and
g = vadfa + v3dfs + ... + vy dfi,.

But the sequence (v,,),>0 is alternating and (|v,|)n>0 is nondecreasing, while dfs = dfs =
... =dfm—1 = 6 and df,, < 0. Consequently, |g| > |vm||dfm| = v*(df)* > (1 —e)v*p* =
(1 —€)|e|”, if § is sufficiently small. Putting all these facts together, we obtain the
inequality

19lllp,00 = /Q gldP > (1 = 2)E[p|" = (1 =e)llellmllv*llr = (1 =) (cpgr — I fllgllo" s,

provided 0 is sufficiently small. This is precisely the desired claim, since £ can be chosen
arbitrarily small.
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