
SHARP Lp → Lq,∞ ESTIMATES

FOR THE HILBERT TRANSFORM

TOMASZ GA��ZKA AND ADAM OS�KOWSKI

Abstract. For any 1 < q < p < ∞, we identify the best constant Kp,q with
the following property. If H is the Hilbert transform on the unit circle T and
A ⊂ T is an arbitrary measurable set, then∫

A
|Hf |dm ≤ Kp,q∥f∥Lp(T,m)m(A)1−1/q .

The proof rests on the construction of certain special superharmonic functions
on the plane, which are of independent interest.

1. Introduction

Our motivation comes from a very basic question about the Hilbert transform
H on the unit circle T ≃ (−π, π]. Recall that this operator is given by the singular
integral

Hf(eit) = p.v.

∫ π

−π

f(s) cot
t− s

2
dmT(s) for f ∈ L1(T).

Here and below, the integrals and norms on T are taken with respect to mT, the
normalized Haar measure on the circle. A classical result of M. Riesz [11] asserts
that H is bounded as an operator on Lp(T) when 1 < p < ∞. For p = 1 the
boundedness fails, but we have the substitute

mT({θ ∈ T : |Hf(θ)| ≥ 1}) ≤ C∥f∥L1(T),

proved by Kolmogorov in [7]: that is, H satis�es the weak-type (1, 1) estimate. The
precise values of the above Lp norms were evaluated by Pichorides [10] and Cole
(unpublished; see [4]). Speci�cally, we have

∥H∥Lp(T)→Lp(T) = cot
π

2p∗
, 1 < p < ∞,

where p∗ = max{p, p′} and p′ = p/(p − 1) denotes the conjugate exponent to p.
Furthermore, as shown by Davis [3], the weak (1,1) norm is

(1.1) ∥H∥L1(T)→L1,∞(T) =
1 + 1

32 + 1
52 + 1

72 + . . .

1− 1
32 + 1

52 − 1
72 + . . .

= 1.347 . . . .

This gives rise to a very natural and very interesting question about the norms of H
on other function spaces. Janakiraman [6] (see also [8]) extended (1.1) and proved
that for 1 ≤ p ≤ 2 we have the weak-type bound

∥H∥Lp(T)→Lp,∞(T) =

(
1

π

∫
R

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)−1/p

,
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where

(1.2) ∥φ∥Lp,∞(T) = sup
λ>0

λmT({θ ∈ T : |φ(θ)| ≥ λ})1/p.

For p > 2, the problem of the explicit identi�cation of ∥H∥Lp(T)→Lp,∞(T) is open,
to the best of the authors' knowledge. In [9], a variant of this problem was studied,
under the following equivalent norming of the Lorentz space Lp,∞, 1 < p < ∞:

(1.3) ∥φ∥Lp,∞(T) = sup

{
1

m(E)1−1/p

∫
E

|φ|dmT : E ⊆ T, mT(E) > 0

}
.

Theorem 1.1. Under the above norming, for 1 < p < ∞ we have

∥H∥Lp(T)→Lp,∞(T) =



[
2p

′+2Γ(p′ + 1)

πp′+1

∞∑
k=0

(−1)k

(2k + 1)p′+1

]1/p′

if 1 < p ≤ 2,

[
2p

′+2Γ(p′ + 1)

πp′

∞∑
k=0

1

(2k + 1)p′

]1/p′

if 2 < p < ∞.

All the estimates mentioned above carry over, with unchanged constants, to the
nonperiodic case (i.e., to the context of Hilbert transform on the real line).

The main objective of this paper is to study the weak-type estimates in the case
of di�erent exponents, when the Hilbert transform is considered as an operator
from Lp to Lq,∞, p ̸= q. Obviously, this problem makes sense only if q < p (for
q > p the norm is in�nite). To formulate our main result, we need to introduce an
auxiliary object. Given 0 < p < ∞, let ωp : [0, 1] → [0,∞) be the Lp-modulus of
continuity of the function u 7→ 1

π ln | tan πu
4 |, u ∈ (−2, 2):

(1.4) ωp(t) =

(
1

4

∫ 2

−2

∣∣∣∣ 1π ln

∣∣∣∣tan π(s+ t)

4

∣∣∣∣− 1

π
ln

∣∣∣∣tan π(s− t)

4

∣∣∣∣∣∣∣∣p ds)1/p

.

We will prove the following fact.

Theorem 1.2. For any 1 < q < p < ∞ we have the sharp estimate

(1.5) ∥Hf∥Lq,∞(T) ≤ Kp,q∥f∥Lp(T),

where

Kp,q =


[
2p

′+2Γ(p′ + 1)

πp′+1

∞∑
k=0

(−1)k

(2k + 1)p′+1

]1/p′

if 1 < p ≤ 2,

sup
0<t≤1

(
t−1/q′ωp′(t)

)
if p > 2.

So, we see that if 1 < p ≤ 2, the weak norm does not change if we vary q: we have
the identity Kp,q = ∥H∥Lp(T)→Lp,∞(T). Roughly speaking, this is a consequence of
two facts: (i) for 1 < p ≤ 2, the extremal functions for (1.5) are the same; (ii) the
�maximal sets� E for ∥Hf∥Lq,∞(T) (i.e., those for which the suprema de�ning the
norms are attained, see (1.3)), coincide with T. On the contrary, for p > 2 there
is a nontrivial dependence on q. There is a natural question whether, for p > 2,
the constant can be expressed in a more explicit form, but we believe that this is
not possible. Another natural question concerns the possibility of extending the
result to R or Z (in the case q < p). The answer is negative, since both spaces have
in�nite measure. Here is a quick example for R (a similar calculation for Z is left to
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the reader). We pick a positive number a and consider the characteristic function
f = χ[−a,a]. Then HRf , the nonperiodic Hilbert transform of f , equals

HRf(x) =
1

π
log

|x+ a|
|x− a|

(see [5], p. 251) and hence

∥HRf∥Lq,∞(R) ≥
1

|[0, a]|1−1/q

∫ a

0

|HRf |dx =
2 ln 2

π
· a1/q.

Since ∥f∥Lp(R) = (2a)1/p, the ratio ∥HRf∥Lq,∞(R)/∥f∥Lp(R) tends to in�nity as
a → ∞; thus the weak-type bound fails to hold.

Our approach will rest on the construction of a certain special superharmonic
function on the strip {z ∈ C : |Re z| ≤ 1}, which will satisfy an appropriate
majorization condition: see Section 2. This function will directly lead us to the
desired estimate, and its sharpness will be obtained by the construction of the
extremal examples.

2. A special superharmonic function

In our argumentation below, we will often use the identi�cation C ≃ R2 and
switch from z = x + iy to (x, y) and back; this should not lead to any confusion.
Throughout, a > 0 and 1 < p ≤ 2 are �xed parameters. Consider the planar
domain D = Da = ([−1, 1] × R) \ {(0, y) : |y| ≥ a} and let H = Ha be the map
given by

(2.1) H(z) = i

(
eπa−iπz − 1

eπa − e−iπz

)1/2

, z ∈ C.

Here we use the following branch of the square root on the complex plane: (reiφ)1/2 =
r1/2eiφ/2, where r ≥ 0 and φ ∈ (−π, π]. It is easy to check that H is a con-
formal mapping which sends the interior of D onto the open upper half-plane
R2

+ := R × (0,∞). Next, let U = Up,a : R2
+ → R be given by the Poisson in-

tegral

U(α, β) = 1

π

∫
R

β

(t− α)2 + β2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − Cχ{| ln |t||≤πa/2}

)
dt,

where

C = Cp,a = (4 sinh(πa/2))−1

∫
R

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt.

Obviously, the function U is harmonic and satis�es the boundary behavior

(2.2) lim
β↓0

U(α, β) =
∣∣∣∣ 1π ln

∣∣∣∣eπaα2 − 1

eπa − α2

∣∣∣∣∣∣∣∣p − Cχ{| ln |α||≤πa/2}

for α ∈ R\{±e±πa/2, 0}. Finally, let U = Up,a be a function de�ned on the interior
of D by the formula

U(x, y) = U(H(x, y)).

Then U is harmonic, being the composition of a harmonic function with a conformal
mapping. Furthermore, by (2.2), we have

lim
(x,y)→(±1,u)

U(x, y) = |u|p − C
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and

lim
(x,y)→(0,u)

U(x, y) = |u|p for |u| ≥ a.

In other words, U is the continuous solution to the Dirichlet problem{
∆U = 0 inside D,

U(x, y) = |y|p − C|x| for (x, y) ∈ ∂D.

In particular, the function U satis�es the symmetry condition

(2.3) U(x, y) = U(|x|, |y|) for (x, y) ∈ D

(this can be also proved directly, by performing appropriate substitutions in the
integral de�ning U).

The function U is of fundamental importance to our considerations. The re-
maining part of this section is devoted to the study of the properties of U which
will be needed later. We start with a technical lemma.

Lemma 2.1. We have

lim
β→∞

β

π

∫
R

t4 + 3t2β2

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt =

2pap−1(eπa − e−πa)

π
.

Proof. We will use twice the following simple property of the Poisson integral: if
f : R → R is a locally integrable function satisfying limx→±∞ f(x) = M , then

(2.4) lim
β→∞

1

π

∫
R

βf(t)

t2 + β2
dt = M.

This implies

lim
β→∞

β

π

∫
R

3t2

t2 + β2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt

= lim
t→∞

3t2
(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
.

(2.5)

Furthermore, integrating by parts and applying (2.4) again, we obtain

− lim
β→∞

2β

π

∫
R

t4

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt

= − lim
β→∞

β

π

∫
R

1

t2 + β2

{
t3
(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)}′

dt

= − lim
t→∞

{
t3
(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)}′

,

which added to (2.5) gives

lim
β→∞

β

π

∫
R

t4 + 3t2β2

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt

= − lim
t→∞

t3
(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)′

=
2pap−1(eπa − e−πa)

π
. □

In the lemma below, we establish an appropriate �smooth-�t� property at the
point (0, a).

Lemma 2.2. We have limy↑a Uy(0, y) = pap−1.
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Proof. The equality follows from the de�nition of C. Observe that U(0, y) =
U(H(0, y)) and

H(0, y) = i

(
eπa+πy − 1

eπa − eπy

)1/2

is purely imaginary. Consequently,

Uy(0, y) = Uβ

(
0,

(
eπa+πy − 1

eπa − eπy

)1/2
)

·Hy(0, y).

For brevity, let us denote
(

eπa+πy−1
eπa−eπy

)1/2
by β. Clearly, when y increases to a, then

β tends to in�nity. Furthermore, we compute directly that

Hy(0, y) ∼
π

2

(eπa+πy − 1)1/2

(eπa − eπy)3/2
· eπy ∼ πeπa

2(e2πa − 1)
β3,

where the symbol ∼ above means that the ratio of the expressions on both sides of
it tends to 1 as y ↑ a. Consequently, we see that

lim
y↑a

Uy(0, y) =
πeπa

2(e2πa − 1)
lim
β→∞

Uβ(0, β)β
3.

By the de�nition of U , we compute that U(0, β) equals

1

π

∫
R

β

t2 + β2

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p dt− 2C

π

[
arctan(eπa/2/β)− arctan(e−πa/2/β)

]
.

A direct di�erentiation with respect to β yields(
arctan(eπa/2/β)

)′
= − eπa/2

eπa + β2
= −eπa/2

β2
+O(β−4)

and (
arctan(e−πa/2/β)

)′
= − e−πa/2

e−πa + β2
= −e−πa/2

β2
+O(β−4),

which implies

d

dβ

{
2C

π

[
arctan(eπa/2/β)− arctan(e−πa/2/β)

]}
=

2C(−eπa/2 + e−πa/2)

πβ2
+O(β−4).

Furthermore,

d

dβ

{
1

π

∫
R

β

t2 + β2

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p dt}
=

d

dβ

{
1

π

∫
R

β

t2 + β2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt

}
=

1

π

∫
R

t2 − β2

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt = I1 + I2,

where

I1 = − 1

β2
· 1
π

∫
R

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt =

2C(−eπa/2 + e−πa/2)

πβ2
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and

I2 =
1

β2
· 1
π

∫
R

t4 + 3t2β2

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt.

Putting the above facts together, we obtain

lim
β→∞

Uβ(0, β)β
3 = lim

β→∞

β

π

∫
R

t4 + 3t2β2

(t2 + β2)2

(∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p − ap
)
dt.

It remains to use the previous lemma to get the claim. □

Lemma 2.3. We have Uy(x, y) ≤ pyp−1 for x ∈ [−1, 1] and y ≥ 0.

Proof. Fix an arbitrary point (x, y) belonging to the half-strip (0, 1) × R. The
function U is continuous on [0, 1]× R, so we have

U(x, y) =

∫
{0,1}×R

U(u, v)dµx,y(u, v),

where µx,y is the harmonic measure on {0, 1} × R with respect to the point (x, y).
Since [0, 1]× R is invariant with respect to vertical translations, we also have

U(x, y + h) =

∫
{0,1}×R

U(u, v + h)dµx,y(u, v)

and hence, by Lebesgue's dominated convergence theorem,

Uy(x, y) = lim
h→0

U(x, y + h)− U(x, y)

h
=

∫
{0,1}×R

Uy(u, v)dµx,y(u, v).

Since y 7→ Uy(0, y) and y 7→ Uy(1, y) are continuous, we conclude that Uy extends
to a continuous function on [0, 1] × R, and hence also to a continuous function on
[−1, 1]×R. Now, consider the upper half-strip S+ = ((−1, 1)×(0,∞))\{(0, y) : y ≥
a}. The crucial observation is that on the boundary of S+, Uy coincides with the
function W (x, y) = pyp−1, which is superharmonic in the interior of S+. Indeed,
the equalities Uy(±1, y) = pyp−1 and Uy(0, y) = pyp−1 for y ≥ a are obvious, while
Uy(x, 0) = 0 follows from the symmetry condition (2.3). Since Uy is continuous on
S+, we obtain Uy ≤ W on S+, which completes the proof. □

Lemma 2.4. We have Uyy ≥ 0 in the interior of D and limy↓a Ux(0+, y) =
Ux(0, a) = 0.

Proof. Fix arbitrary (x, y), (x, y + δ) ∈ D, where δ ∈ (0, a) is a small positive
number. Consider the auxiliary domain Da,δ = ((−1, 1) × R) \ {(0, v) : v ≥ a −
δ or v ≤ −a}. Since Da,δ and its translation iδ+Da,δ are contained in the interior
of D, we may write

Uy(x, y) =

∫
∂Da,δ

Uy(u, v)dµ
Da,δ
x,y (u, v)

and

Uy(x, y + δ) =

∫
∂Da,δ

Uy(u, v + δ)dµ
Da,δ
x,y (u, v),

so

Uy(x, y + δ)− Uy(x, y) =

∫
∂Da,δ

(
Uy(u, v + δ)− Uy(u, v)

)
dµ

Da,δ
x,y (u, v).
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But the integrand is nonnegative. Indeed, if u = ±1, or u = 0 and |v + δ|, |v| ≥ a,
then Uy(u, v + δ)− Uy(u, v) = p|v + δ|p−1 sgn(v + δ)− p|v|p−1 sgn(v) ≥ 0. If u = 0
and v + δ ≥ a > v, then v ≥ 0 (here we use the assumption δ < a) and by the
previous lemma,

(2.6) Uy(u, v + δ)− Uy(u, v) ≥ p|v + δ|p−1 sgn(v + δ)− p|v|p−1 sgn(v) ≥ 0.

Finally, if v + δ > −a ≥ v, then by the symmetry of U we have Uy(u, v + δ) −
Uy(u, v) = Uy(u,−v)− Uy(u,−v − δ) ≥ 0, by (2.6). Consequently, we have shown
that for each x ∈ [−1, 1], the function Uy(x, ·) is nondecreasing, which yields the
�rst part of the claim. To handle the second part, note that Uxx = −Uyy ≤ 0 in the
interior of D. Furthermore, by the symmetry condition (2.3), we have Ux(0, y) = 0
for |y| < a. These two facts imply U(x, y) ≤ U(0, y) for all x ∈ [−1, 1] and
y ∈ (−a, a), which, by the continuity of U , is also true for y = a. This gives
Ux(0+, a) ≤ 0; to see that both sides are equal, note that if U(·, a) had a concave
cusp at x = 0, then we would have limy↑a Uy(0, y) = ∞, by elementary facts about
harmonic functions. This proves that Ux(0, a) = 0.

Next, we will show that the function y 7→ Ux(0+, y) is nonincreasing on [a,∞).
Pick y′ > y > a. By the previous lemma we may write, for any x ∈ (0, 1),

U(x, y′)− U(0, y′)

x

=
U(x, y′)− U(x, y) + U(x, y)− U(0, y) + U(0, y)− U(0, y′)

x

≤
∫ y′

y
psp−1ds+ U(x, y)− U(0, y) + yp − (y′)p

x

=
U(x, y)− U(0, y)

x
.

Hence, letting x ↓ 0 gives the desired monotonicity Ux(0+, y′) ≤ Ux(0, y); in partic-
ular, this shows that the limit limy↓a Ux(0+, y) exists and is at most zero. However,
if we had limy↓a Ux(0+, y) = M < 0, then we would have Ux(0+, y) ≤ M for all
y > a and the estimate Uxx ≤ 0 would imply that

U(x, y) ≤ U(0, y) + Ux(0+, y)x ≤ yp +Mx

for all y > a and x ∈ (0, 1). Letting y ↓ a, we would obtain Ux(0+, a) ≤ M , a
contradiction. □

Remark 2.5. The second half of the above lemma can be computed directly. Let
us brie�y outline the proof. We start from the observation that if x ↓ 0, then

H(x, a) ∼
(

(e2πa − 1)2

2e2πa(1− cosπx)

)1/4(
1√
2
,
1√
2

)
∼ (β, β),

for β =
(
sinh a
πx

)1/2 → ∞. A direct di�erentiation shows that both the real and

the imaginary parts of Hx(x, a) are equal and behave like β3, up to a universal
multiplicative constant. Consequently, it is enough to show that

(2.7) lim
β→∞

(Ux(β, β) + Uy(β, β))β
3 = 0.
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For simplicity, denote g(t) =
∣∣∣ 1π ln

∣∣∣ eπat2−1
eπa−t2

∣∣∣∣∣∣p−ap and note that K = limt→∞ t2g(t)

is �nite. Some tedious, but rather straightforward computations reveal that

Ux(β, β) + Uy(β, β) =
1

π

∫
R

(β − t)2 − β2 + 2β(t− β)

((β − t)2 + β2)2
g(t)dt

− C

π

[
− eπa/2

β2 + (β − eπa/2)2
+

e−πa/2

β2 + (β − e−πa/2)2

+
e−πa/2

β2 + (β + e−πa/2)2
− eπa/2

β2 + (β + eπa/2)2

]

=
1

π

∫
R

t2 − 2β2

((β − t)2 + β2)2
g(t)dt+

C

π

[
2β−2 sinh

πa

2
+O(β−4)

]
and hence, by the very de�nition of C, the limit in (2.7) equals

lim
β→∞

β3

π

∫
R

(
t2 − 2β2

((β − t)2 + β2)2
+

1

2β2

)
g(t)dt

= lim
β→∞

β

π

∫
R

t4 − 4βt3 + 10β2t2

((β − t)2 + β2)2
g(t)dt− lim

β→∞

β

π

∫
R

8tβ3

((β − t)2 + β2)2
g(t)dt = I1 − I2.

As for the I1, the calculations are simple and similar to Lemma 2.1. The substitu-
tion t = βs yields

β

π

∫
R

t4 − 4βt3 + 10β2t2

((β − t)2 + β2)2
g(t)dt =

β

π

∫
R

t2 − 4βt+ 10β2

((β − t)2 + β2)2
[
t2g(t)

]
dt

=
1

π

∫
R

s2 − 4s+ 10

((1− s)2 + 1)2
[
(sβ)2g(sβ)

]
ds.

It is not di�cult to see that we can pull the limit inside the integral, obtaining

I1 = K 1
π

∫
R

s2−4s+10
((1−s)2+1)2 ds = 4K. Next, we rewrite the expression I2 in the form

I2 = lim
β→∞

β

π

∫
R

8β3

t((β − t)2 + β2)2
[
t2g(t)

]
dt.

If we bound the integral away from the singularity point 0, then we perform calcu-
lations similar to those above, obtaining

lim
β→∞

β

π

∫
R\[−ε,ε]

8β3

t((β − t)2 + β2)2
[
t2g(t)

]
dt

= lim
β→∞

1

π

∫
R\[−ε/β,ε/β]

8

s((1− s)2 + 1)2
[
(sβ)2g(sβ)

]
ds

= p.v.
1

π

∫
R

8K

s((1− s)2 + 1)2
ds = 4K.

Near the singularity point, it is enough to notice that t2g(t) = O(t4) (as t → 0), so

lim
β→∞

β

π

∫ ε

−ε

8β3

t((β − t)2 + β2)2
[
t2g(t)

]
dt = 0.

Hence, subtracting I1 from I2, we obtain that the limit in (2.7) equals 4K−4K = 0.

The following statement is the main result of the section.
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Theorem 2.6. The function U is a superharmonic majorant of the function V :
D → R given by V (x, y) = |y|p − C|x|.

Proof. To show the superharmonicity, it is convenient to use some basic facts from
stochastic analysis. Fix an arbitrary ball K ⊂ [−1, 1]×R of center (x, y) and radius
r. Let B = (B(1), B(2)) be a two-dimensional Brownian motion started at (x, y)
and stopped upon reaching the boundary of K. The function U is of class C2 on
(0, 1)× R, of class C1 on [0, 1]× R and satis�es (2.3), so Itô's formula gives

(2.8) U(Bt) = U(|B(1)
t |, B(2)

t ) = U(|B(1)
0 |, B(2)

0 ) + I1 +
1

2
I2,

where

I1 =

∫ t

0

Ux(|B(1)
s |, B(2)

s )d|B(1)|s +
∫ t

0

Uy(|B(1)
s |, B(2)

s )dB(2)
s ,

and

I2 =

∫ t

0

∆U(|B(1)
s |, B(2)

s )ds.

Note that d|B(1)|s = sgn(B
(1)
s )dB

(1)
s +dℓs, where ℓ is the local time of B(1) at zero.

Since the local time is a monotone process which increases on the set {t : B(1)
t = 0}

and Ux(0+, y) ≤ 0 for all y, we have∫ t

0

Ux(|B(1)
s |, B(2)

s )d|B(1)|s=
∫ t

0

Ux(|B(1)
s |, B(2)

s ) sgn(B(1)
s )dB(1)

s +

∫ t

0

Ux(0, B
(2)
s )dℓs

≤
∫ t

0

Ux(|B(1)
s |, B(2)

s ) sgn(B(1)
s )dB(1)

s .

But the latter integral, as well as the second integral in I1, has zero expectation:
this follows at once from the properties of stochastic integrals. Finally, I2 vanishes,
since U is harmonic inside [0, 1]×R. Thus, taking the expectation in (2.8), we obtain
EU(Bt) ≤ U(|B(1)

0 |, B(2)
0 ) = U(x, y). Letting t → ∞ yields the superharmonicity,

since the random variable B∞ is uniformly distributed at the boundary of K.
Concerning the majorization U(x, y) ≥ V (x, y), let us �rst show it for x ∈ {0, 1}

and y ≥ 0. We have U(1, y) = V (1, y) for all y, and U(0, y) = V (0, y) for |y| ≥ a.
The estimate U(0, y) ≥ V (0, y), for y ∈ [0, a], follows at once from the equality
Uy(0, a) = Vy(0, a) (see Lemma 2.2) and the estimate Uy(0, y) ≤ pyp−1 proved in
Lemma 2.3. Now we extend the majorization to x ∈ {0, 1} and y ∈ R, using the
symmetry of U and V . Since U is harmonic on [0, 1]×R and V is subharmonic on
this strip, we deduce the estimate U ≥ V on [0, 1]×R; �nally, using the symmetry
with respect to the variable x, we obtain the majorization on the full range. □

3. Proof of Theorem 1.2

3.1. Proof of (1.5). If 1 < p ≤ 2, then ∥H∥Lp(T)→Lq,∞(T) ≤ ∥H∥Lp(T)→Lp,∞(T) ≤
Kp,q, where the last estimate was established in [2]. Therefore, we may restrict
ourselves to the case p > 2. Now we split the argument into two parts.

Step 1. An auxiliary estimate. First we will show that for an arbitrary measur-
able function f bounded in absolute value by 1 we have

(3.1) ∥Hf∥p
′

Lp′ (T) ≤
(
ωp′
(
∥f∥L1(T)

))p′

.
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To this end, let u, v be the harmonic extensions of f and Hf to the unit disc
D, obtained by integration against the appropriate Poisson kernel; then v(0) = 0

and u + iv is a holomorphic function on D. Let U = Up′,a be the special function
constructed in the previous section (note that the conjugate exponent p′ is used,
the parameter a will be speci�ed in a moment). Then the composition U(u, v) is
superharmonic and hence∫

T
U(u, v)dmT ≤ U(u(0), v(0)) = U(u(0), 0).

By Theorem 2.6, the left-hand side is not smaller than
∫
T V (u, v)dmT. Furthermore,

Lemma 2.4 combined with the superharmonicity of U gives that the function x 7→
U(x, 0) is concave on [−1, 1]. Applying (2.3), the maximal value of this function is
U(0, 0). Putting all the above facts together, we obtain∫

T
|v|p

′
− Cp′,a|u|dmT ≤ U(0, 0),

or ∥Hf∥p
′

Lp′ (T) ≤ U(0, 0) + Cp′,a∥f∥L1(T). It is high time to specify a: we plug

a = 2
π ln

(
tan

(
π
4

(
∥f∥L1(T) + 1

)))
, obtaining

U(0, 0) = U(0, 1)

=
1

π

∫
R

1

t2 + 1

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p
′

dt− 2Cp′,a

π

[
arctan eπa/2 − arctan e−πa/2

]
=

1

π

∫
R

1

t2 + 1

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p
′

dt− Cp′,a∥f∥L1(T).

Inserting this into the previous bound, we see that

∥Hf∥p
′

Lp′ (T)≤
1

π

∫
R

1

t2 + 1

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

eπa − t2

∣∣∣∣∣∣∣∣p
′

dt=
1

π

∫ π/2

−π/2

∣∣∣∣ 1π ln

∣∣∣∣eπa tan2 s− 1

eπa − tan2 s

∣∣∣∣∣∣∣∣p
′

ds.

But by the de�nition of a, we have eπa/2 = tan
(
π
4

(
∥f∥L1(T) + 1

))
, so

eπa tan2 s− 1

eπa − tan2 s
=

eπa/2 tan s− 1

eπa/2 − tan s
· e

πa/2 tan s+ 1

eπa/2 + tan s

= tan
(π
4
(∥f∥L1(T) + 1) + s

)
· tan

(π
4
(∥f∥L1(T) + 1)− s

)
.

The latter expression, considered as a function of s, is π-periodic. Therefore, plug-
ging it above and substituting s := s+ π

4 in the integral, we get

∥Hf∥p
′

Lp′ (T) ≤
1

π

∫ π/2

−π/2

∣∣∣Ψ(s+ π

4
∥f∥L1(T)

)
−Ψ

(
s− π

4
∥f∥L1(T)

)∣∣∣p′

ds,

where Ψ(u) = 1
π ln |tanu| . By a simple change of variables in the latter expression,

we obtain (3.1).

Step 2. Proof of (1.5). Let q ∈ (1, p), pick an arbitrary function f ∈ Lp(T) and
let E be a measurable subset of T satisfying mT(E) > 0. Since the adjoint of H is
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equal to −H, we have∫
E

|Hf |dmT =

∫
T
Hf sgn(Hf)χEdmT = −

∫
T
fH
(
sgn(Hf)χE

)
dmT

≤ ∥f∥Lp(T)
∥∥H( sgn(Hf)χE

)∥∥
Lp′ (T) ,

where we use the convention sgn(0) = 1. Now we apply the estimate (3.1) for
the function sgn(Hf)χE : note that the function takes values in [−1, 1], so the
application is permitted. The L1-norm of this function is not bigger than mT(E),
so we obtain

1

mT(E)1−1/q

∫
E

|Hf |dmT ≤ ∥f∥Lp(T) ·mT(E)−1/q′ωp′(mT(E)) ≤ Kp,q∥f∥Lp(T).

This is the desired weak-type inequality.

3.2. Proof of ∥H∥Lp(T)→Lq,∞(T) ≥ Kp,q, the case p ≤ 2. Consider the conformal
map F : D → [−1, 1]× R, given by

F (z) =
2i

π
log

[
iz − 1

z − i

]
+ 1.

Then F maps the unit circle onto the boundary {−1, 1} × R. We easily check the
following explicit formulas on T:

φ(eit) := ReF (eit) = −χ{|t|≤π/2} + χ{|t|>π/2}

and

Hφ(eit) = ImF (eit) =
2

π
ln

∣∣∣∣1 + sin t

cos t

∣∣∣∣ .
Set f = −|Hφ|p′−2Hφ. Since φ takes values in {−1, 1}, we have

∥Hf∥Lq,∞(T) ≥
1

mT(T)

∫
T
HfφdmT = −

∫
T
fHφdmT =

∫
T
|Hφ|p

′
dmT.

However, we compute that

∥Hφ∥p
′

Lp′ (T) =

∫ π

−π

∣∣∣∣ 2π ln

∣∣∣∣1 + sin t

cos t

∣∣∣∣∣∣∣∣p′
dt

2π
=

1

π

∫
R

∣∣ 2
π log |t|

∣∣p′

t2 + 1
dt

=
2p

′+1

πp′+1

∫ ∞

0

| log t|p′

t2 + 1
dt =

2p
′+1

πp′+1

∫ ∞

−∞

|s|p′
es

e2s + 1
ds

=
2p

′+2

πp′+1

∫ ∞

0

sp
′
e−s

∞∑
k=0

(−e−2s)kds =
2p

′+2

πp′+1
Γ(p′ + 1)

∞∑
k=0

(−1)k

(2k + 1)p′+1

= Kp′

p,q.

Combining this with the preceding estimate, we obtain

∥Hf∥Lq,∞(T) ≥ ∥Hφ∥Lp′ (T) · ∥Hφ∥p
′−1

Lp′ (T) = Kp,q∥f∥Lp(T).

Hence the constant Kp,q in (1.5) cannot be improved.
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3.3. Proof of ∥H∥Lp(T)→Lq,∞(T) ≥ Kp,q, the case p > 2. Fix an arbitrary param-

eter T belonging to (0, 1] and set a = 2
π ln

(
tan π(T+1)

4

)
> 0. Let G be a conformal

mapping which sends the unit disc D onto the set D and satis�es G(0) = 0. Finally,

put φ = ReG|T, E = {φ ̸= 0} and f = −|Hφ|p′−2Hφ. Note that φ ∈ {0,±1},
which gives∫

E

|Hf |dmT ≥
∫
T
HfφdmT = −

∫
T
fHφdmT =

∫
T
|Hφ|p

′
dmT.

To evaluate the latter integral, we apply appropriate conformal changes of variables.
First, note that ∫

T
|Hφ|p

′
dmT =

∫
∂D

|v|p
′
dµ(0,0)(u, v).

Next, recall the mapping H de�ned in (2.1). It sends D onto the upper halfplane
R2

+ and 0 to i. Since dt
π(1+t2) is the harmonic measure on ∂R2

+ with respect to i,

the latter integral equals∫
∂R2

+

| Im(H−1(0, t))|p
′ dt

π(1 + t2)
=

1

π

∫
R

1

1 + t2

∣∣∣∣ 1π ln

∣∣∣∣eπat2 − 1

t2 − eπa

∣∣∣∣∣∣∣∣p
′

dt =
(
ωp′(T )

)p′

.

(To see the last equality, repeat the calculations appearing in �3.1.) A similar
reasoning reveals that

mT(E) =

∫
T
|φ|dmT =

4

π
arctan eπa/2 − 1 = T.

Putting all the above facts together, we obtain

∥Hf∥Lq,∞(T) ≥
1

mT(E)1−1/q

∫
E

|Hf |dmT ≥
∥Hφ∥Lp′ (T)

mT(E)1−1/q
· ∥Hφ∥p

′−1

Lp′ (T)

≥ T−1/q′ωp′(T )∥f∥Lp(T).

Taking the supremum over all T , we see that the constant in (1.5) is indeed the
best possible.
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