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Abstract

Let h = (hk)k≥0 denote the Haar system of functions on [0, 1]. It is well known that h forms an

unconditional basis of Lp(0, 1) if and only if 1 < p < ∞, and the purpose of this paper is to study

a substitute for this property in the case p = 1. Precisely, for any λ > 0 we identify the best

constant β = βh(λ) ∈ [0, 1] such that the following holds. If n is an arbitrary nonnegative integer

and a0, a1, a2, . . ., an are real numbers such that
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for any sequence ε0, ε1, ε2, . . ., εn of signs. A related bound for an arbitrary basis of L1(0, 1)

is also established. The proof rests on the construction of the Bellman function corresponding to

the problem.

1. Introduction

Our motivation comes from a very natural question about h = (hn)n≥0, the Haar

system on [0, 1]. Recall that this collection of functions is given by (we identify a

set with its indicator function):

h0 = [0, 1), h1 = [0, 1/2) − [1/2, 1),

h2 = [0, 1/4) − [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8) − [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1)

and so on. A classical result of Schauder [12] states that the Haar system forms

a basis of Lp = Lp(0, 1), 1 ≤ p < ∞ (throughout, the underlying measure will
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be the Lebesgue measure). That is, for every f ∈ Lp there is a unique sequence

a = (an)n≥0 of real numbers satisfying ||f −
∑n

k=0 akhk||p → 0. Let βp(h) be

the unconditional constant of h, i.e. the least β ∈ [1,∞] with the property

that if n is a nonnegative integer and a0, a1, . . . , an are real numbers such that

||
∑n

k=0 akhk||p ≤ 1, then

(1.1)
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for all choices of signs εk ∈ {−1, 1}. Using Paley’s inequality [10], Marcinkiewicz

[3] proved that βp(h) < ∞ if and only if 1 < p < ∞. This fact and its various

extensions turned out to be very useful in the study of singular integrals, stochastic

integrals, the structure of Banach spaces and in several other areas of mathematics.

It follows from the results of Olevskǐi [7], [8] that the Haar system is extremal in

the following sense: if e is another basis of Lp, then

(1.2) βp(h) ≤ βp(e), 1 < p < ∞.

Lindenstrauss and Pe lczyński [2] gave a different proof of this fact, using Liapunoff’s

theorem on the range of a vector measure. The precise value of βp(h) was deter-

mined by Burkholder: we have

βp(h) = p∗ − 1, 1 < p < ∞,

where p∗ = max{p, p/(p− 1)}. The original proof of this formula, presented in [1],

is quite complicated and technically involved (for the clarification and much more,

see the recent paper of Vasyunin and Volberg [13]). The idea rests on the so-called

Bellman function method, a powerful tool which has its roots at the optimal control

theory. Namely, Burkholder studies the following more general problem: for any

1 < p < ∞, F, G ∈ R and M ≥ |F |, set

(1.3) B(F, G, M) = sup
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where the supremum is taken over all n, all a1, a2, . . ., an ∈ R and ε1, ε2, . . .,

εn ∈ {−1, 1} such that ||F +
∑n

k=1 akhk||p ≤ M . The function B turns out to
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satisfy a certain second-order partial differential equation, which was successfully

solved by Burkholder. Coming back to the original problem, it can be proved that

βp(h) = sup
M≥1

B(1, 1, M)

M
= p∗ − 1.

We will be interested in finding an appropriate substitute for the above consid-

erations in the limit case p = 1. We need to find the right replacement for the

p-th norm appearing in (1.1) and (1.3), and this will be accomplished by the use

of a distribution function. To be more precise, suppose that F, G are given real

numbers and let M ≥ |F |. We will determine the least constant B(F, G, M) with

the property that if n is a nonnegative integer and a1, a2, . . . , an are real numbers

such that ||F +
∑n

k=1 akhk||1 ≤ M , then
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≤ B(F, G, M).

This gives very precise information on the “unconditional” behavior of the Haar

series in L1. We will also establish related sharp one-sided bounds (obtained ear-

lier by Nazarov et. al. [4] using a slightly different approach) and present some

interesting estimates for other types of bases of L1(0, 1), which can be regarded as

weak analogues of Olevskǐi’s inequality (1.2).

A few words about the proof and the organization of the paper are in order.

Our approach rests on the Bellman function method, which is described in the next

section. Section 3 contains the study of the one-sided estimate and can be regarded

as the preparation for Section 4, where we determine the explicit formula for the

above function B. The final part part of the paper contains some further results

concerning weak unconditional constants for arbitrary bases of L1(0, 1).

2. Bellman function method

We start with the description of the main tool used in the proofs of our results.

The technique is well-known and appears in numerous papers in the literature, so

we will be brief. For much more detailed exposition, examples and connections we

refer the interested reader to the papers [5], [6], [13], [14] and [15].
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Let V : R × R → R be a fixed function and put

D = {(F, G, M) ∈ R × R × [0,∞) : |F | ≤ M}.

For any (F, G, M) ∈ D, introduce the class C(F, G, M) which consists of all pairs

(f, g) of functions on [0, 1], which are of the form

f = F +

n
∑

k=1

akhk, g = G +

n
∑

k=1

εkakhk

for some n, some a1, a2, . . . , an ∈ R and ε1, ε2, . . . , εn ∈ {−1, 1}, and such that

||f ||1 ≤ M . We define the Bellman function B : D → R ∪ {∞} by

(2.1) B(F, G, M) = sup

{
∫ 1

0

V (f(x), g(x)) dx : (f, g) ∈ C(F, G, M)

}

.

Observe that the problem described in the previous section can be rewritten in the

above form, with V (x, y) = 1{|y|≥1}.

The fundamental property of the function B is described in the statement below.

Theorem 2.1. The function B is the smallest function on D for which the two

following conditions hold:

(a) (Majorization) We have B(F, G, M) ≥ V (F, G) for all (F, G, M) ∈ D.

(b) (Diagonal concavity) For any (F−, G−, M−), (F+, G+, M+) ∈ D such that

|F+ − F−| = |G+ − G−|, we have

B

(

F− + F+

2
,
G− + G+

2
,
M− + M+

2

)

≥
1

2
B(F−, G−, M−) +

1

2
B(F+, G+, M+).

(2.2)

Proof. Let us start with showing that B satisfies (a) and (b). The first condition

follows immediately from the observation that the functions f ≡ F , g ≡ G belong

to C(F, G, M). To prove the second property, pick (f−, g−) ∈ C(F−, G−, M−) and

(f+, g+) ∈ C(F+, G+, M+) and splice them together into one pair, given by

(f(x), g(x)) =















(f−(2x), g−(2x)) if x < 1/2,

(f+(2x − 1), g+(2x − 1)) if x ≥ 1/2.
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From the structure of the Haar system, we see that there is a finite N such that

f =
F− + F+

2
+

N
∑

k=1

akhk, g =
G− + G+

2
+

N
∑

k=1

bkhk.

The assumption |F+ − F−| = |G+ − G−| implies that a1 = ±b1. Furthermore, for

any n ≥ 2 we have an = ±bn, since, by the structure of the Haar system, an, bn

are the corresponding coefficients of the functions f− and g−, or the functions f+

and g+ (depending on whether the support of hn is contained in the left or in the

right half of [0, 1)). Finally, by the triangle inequality, we have

||f ||1 ≤
1

2
||f−||1 +

1

2
||f+||1 ≤

M− + M+

2
,

which gives (f, g) ∈ C((F− + F+)/2, (G− + G+)/2, (M− + M+)/2). In consequence,

B

(

F− + F+

2
,
G− + G+

2
,
M− + M+

2

)

≥

∫ 1

0

V (f(x), g(x)) dx

=
1

2

∫ 1

0

V (f−(x), g−(x)) dx +
1

2

∫ 1

0

V (f+(x), g+(x)) dx.

Since the pairs (f−, g−), (f+, g+) were arbitrary elements of C(F−, G−, M−) and

C(F+, G+, M+), respectively, the condition (b) follows.

Next, suppose that B : D → R is any function satisfying the properties (a) and

(b). Pick (F, G, M) ∈ D and a pair (f, g) ∈ C(F, G, M). There is a nonnegative

integer N and appropriate coefficients ak and εk such that

f = F +

N
∑

k=1

akhk and g = G +

N
∑

k=1

εkakhk.

For any n ≥ 0, let fn = F +
∑n

k=1 akhk, gn = G +
∑n

k=1 εkakhk and Mn be,

respectively, the projections of f , g and |f | on the space spanned by h0, h1, . . . , hn.

Note that |fn| ≤ Mn almost everywhere, which can be showed, for example, by the

use of a backward induction. The key step lies in proving that for all n ≥ 0,

∫ 1

0

B(fn+1(x), gn+1(x), Mn+1(x)) dx ≤

∫ 1

0

B(fn(x), gn(x), Mn(x)) dx.
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To do this, let I denote the support of hn+1. The functions B(fn, gn, Mn) and

B(fn+1, gn+1, Mn+1) coincide on [0, 1) \ I, so it suffices to show that

∫

I

B(fn+1(x), gn+1(x), Mn+1(x)) dx ≤

∫

I

B(fn(x), gn(x), Mn(x)) dx.

However, fn, gn and Mn are constant on I; denote the corresponding three values by

x, y and z, respectively. Then the triple (fn+1, gn+1, Mn+1) equals (x + an+1, y +

εn+1an+1, z + bn+1) on the left half of I and (x − an+1, y − εn+1an+1, z − bn+1)

on the right half of this interval (here bn+1 is the appropriate coefficient of |f |).

Consequently, the above estimate can be transformed into the equivalent bound

1

2
B(x + an+1, y + εn+1an+1, z + bn+1)

+
1

2
B(x − an+1, y − εn+1an+1, z − bn+1) ≤ B(x, y, z),

which follows immediately from (b). Thus, by (a),

∫ 1

0

V (f(x), g(x))dx ≤

∫ 1

0

B(f(x), g(x), |f(x)|) dx

=

∫ 1

0

B(fN (x), gN (x), MN (x)) dx

≤

∫ 1

0

B(f0(x), g0(x), M0(x)) dx

= B(F, G, ||f ||1).

However, we have ||f ||1 ≤ M and the class C(F, G, M) grows when we increase the

third parameter. Therefore,

∫ 1

0

V (f(x), g(x))dx ≤ B(F, G, M)

and taking the supremum over all (f, g) yields the desired bound B ≤ B. This

proves the claim.

Before we proceed, let us make here several observations. Let us first take a

look at the diagonal concavity of B, i.e., the condition (b) above. Obviously, it is

equivalent to the following statement:
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(b’) For any (F, G, M) ∈ D, any ε ∈ {−1, 1} and m ∈ R, the function

ξ : t 7→ B(F + t, G + εt, M + mt)

is mid-point concave on the interval {t : (F + t, G + εt, M + mt) ∈ D}.

In all the situations we are interested in, the function V is nonnegative and hence

bounded from below. Thus, by (a), the function B also has this property and its

mid-point concavity implies that it is merely concave.

A natural question is: given V , how to find the corresponding function B? Let us

now present some intuitive observations which may be helpful during the search. We

would also like to point out here that similar argumentation appears, for example,

in the analysis of optimal stopping problems [11]. See also [14] for more detailed

discussion and examples. The “state space” D can be split into two sets:

D1 = {(F, G, M) : B(F, G, M) = V (F, G)},

D2 = {(F, G, M) : B(F, G, M) > V (F, G)}

(in the theory of the optimal stopping, these are the so-called the stopping and the

continuation region, respectively). Since B is the least diagonally concave majorant

of V , it seems plausible to assume the following. For each (F, G, M) ∈ D2 there is

a direction along which B is locally linear (otherwise, roughly speaking, it would

be possible to make B smaller). More precisely, for such (F, G, M), there are ε ∈

{−1, 1} and m ∈ R such that t 7→ B(F + t, G + εt, M + mt) is linear for t lying

in some neighborhood of 0. In other words, the whole set D2 can be “foliated”

into line segments of appropriate slope along which the function B is linear. If

B is twice differentiable on D2, this yields the following second-order differential

equation which should be satisfied by B: for each (F, G, M) ∈ D2,

det







BFF + 2BFG + BGG BFM + BGM

BFM + BGM BMM






(F, G, M) = 0

or

det







BFF − 2BFG + BGG BFM − BGM

BFM − BGM BMM






(F, G, M) = 0.



8 ADAM OSȨKOWSKI

Sometimes this system of differential equations can be explicitly solved: see e.g. [1],

[13], [14], and this brings the candidate for the Bellman function. Then one proves

rigorously that the function has all the desired properties.

Our approach will be slightly different and will not rest on solving the above

system of differential equations. We will guess the right formula for B by indicating

the appropriate foliation of the set D2.

3. One-sided bound

This section is devoted to the analysis of the function

B
o(F, G, M) = sup

{

|{x ∈ [0, 1] : g(x) ≥ 1}| : (f, g) ∈ C(F, G, M)

}

.

We will use the technique described in the preceding section, with the choice

V (F, G) = 1{G≥1}. The calculations will be rather easy and we will gain some

information which will be needed in the study of the two-sided case. We would

like to stress here that the result is not new: it has already been established by

Nazarov, Reznikov, Vasyunin and Volberg in an unpublished paper [4], with the

use of similar methods.

3.1. An explicit formula for B
o

Let B : D → R be given by

B(F, G, M) =















1 if G + M ≥ 1,

1 − (1−G−M)2

(1−G)2−F 2 if G + M < 1.

Theorem 3.1. We have B
o ≤ B.

Proof. By Theorem 2.1, it suffices to verify that the function B satisfies the

conditions (a) and (b’). The majorization

B(F, G, M) ≥ 1{G≥1}

is straightforward. Indeed, the estimate is obvious for G + M ≥ 1, while for

remaining (F, G, M), we observe that

(1 − G − M)2

(1 − G)2 − F 2
≤

(1 − G − M)2

(1 − G)2 − M2
=

1 − G − M

1 − G + M
≤ 1
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and hence B(F, G, M) ≥ 0 = 1{G≥1}. To check the property (b’), fix (F, G, M) ∈ D

with G + M < 1, let ε ∈ {−1, 1} and m ∈ R. Define ξ = ξF,G,M,ε,m by

ξ(t) = B(F + t, G + εt, M + mt).

for t such that (F + t, G + εt, M + mt) ∈ D. It is easy to check that this function is

of class C1, and we must prove that it is concave. Fix t belonging to the domain of

ξ and let F̃ = F + t, G̃ = G + εt and M̃ = M + mt. If G̃ + M̃ > 1, then ξ′′(t) = 0;

if G̃ + M̃ < 1, then |F̃ | ≤ M̃ < 1 − G̃ and a straightforward computation gives

ξ′′(t) = −
2

(G̃ − 1)2 − F̃ 2

(

m + ε −
(M̃ + G̃ − 1)(2G̃ε − 2ε − 2F̃ )

(G̃ − 1)2 − F̃ 2

)2

≤ 0.

This yields the desired concavity, since ξ is smooth.

Theorem 3.2. We have B
o ≥ B.

Proof. The function B
o is the least function on D which satisfies (a) and (b’).

Observe that B
o(F, G, M) = B

o(−F, G, M) for all F, G, M , since otherwise the

formula (F, G, M) 7→ min{Bo(F, G, M), Bo(−F, G, M)} would define a function sat-

isfying (a) and (b’), but smaller than B
o. In consequence, it suffices to prove the

inequality B
o(F, G, M) ≥ B(F, G, M) for positive F only. For the sake of clarity,

we split the reasoning into several steps.

Step 1. If G ≥ 1, then B
o(F, G, M) ≥ V (F, G) = 1 = B(F, G, M).

Step 2. Now suppose that G < 1, but F + G ≥ 1. Below, we will frequently use

the following argument: we will write the point (F, G, M) as a convex combination

of appropriate two points (at which we have already proved the majorization), and

then apply the diagonal concavity (2.2), thus obtaining the desired lower bound for

B
o(F, G, M). Here, for any p ∈ (0, 1), we have

B
o(F, G, M)

≥ p B
o(0, F + G, M − F ) + (1 − p)Bo

(

F

1 − p
, G −

p

1 − p
F, M +

p

1 − p
F

)

≥ p B
o(0, F + G, M − F ) ≥ p,
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where the latter passage is due to Step 1 considered above. Since p was arbitrary,

we obtain that B
o(F, G, M) ≥ 1 = B(F, G, M) provided F + G ≥ 1.

Step 3. Suppose that F + G < 1 and F = M . Then, by the diagonal concavity,

we may write

B
o(F, G, M) ≥

2F

F − G + 1
B

o

(

F − G + 1

2
,
−F + G + 1

2
,
F − G + 1

2

)

+
1 − F − G

F − G + 1
B

o(0, G − F, 0)

≥
2F

F − G + 1
= B(F, G, M),

where in the last estimate we have used Step 2 and the fact that B
o is nonnegative.

Step 4. Finally, let F + G < 1 and F < M . Fix p ∈ (0, 1) and put

F+ =
F

1 − p
+

p

1 − p

1 − F − G

2
, M+ =

M

1 − p
−

p

1 − p

1 − F − G

2
.

We have

(3.1) M+ − F+ =
M − F − p(1 − F − G)

1 − p
.

Therefore, if M + G ≥ 1, then the latter numerator is nonnegative for all p, and

the diagonal concavity of B
o gives

B
o(F, G, M) ≥ pB

o

(

F + G − 1

2
,
F + G + 1

2
,

1 − F − G

2

)

+ (1 − p)Bo(F+, G − (F+ − F ), M+)

≥ p,

(3.2)

in view of Step 2. Letting p → 1 gives B
o(F, G, M) ≥ 1 = B(F, G, M). On

the other hand, if M + G < 1, then the expression in (3.1) vanishes for p =

(M − F )/(1 − F − G) ∈ (0, 1) and hence, repeating the first inequality from (3.2)

and using Steps 2 and 3, we get

B
o(F, G, M) ≥ p + (1 − p)

2F+

F+ − (G − (F+ − F )) + 1

=
M − F

1 − F − G
+

1 − G − M

1 − F − G

M + F

1 + F − G

= B(F, G, M).
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This completes the proof of the desired estimate.

3.2. On the search of the Bellman function

Here we sketch some steps which led us to the discovery of the function B above.

First, it is more convenient to work with

B(F, G, M) = sup
{

∣

∣{x ∈ [0, 1] : g(x) ≥ 0}
∣

∣ : (f, g) ∈ C(F, G, M)
}

,

which is related to B
o via the identity B

o(F, G, M) = B(F, G − 1, M) for all

(F, G, M) ∈ D. Consequently, by Theorem 2.1, we see that B is diagonally concave

and satisfies the majorization

(3.3) B(F, G, M) ≥ 1{G≥0}.

Furthermore, directly from its definition, we see that B enjoys the homogeneity-

type property

(3.4) B(±αF, αG, αM) = B(F, G, M), α > 0.

This follows immediately from the observation that

|{x ∈ [0, 1] : g(x) ≥ 0}| = |{x ∈ [0, 1] : αg(x) ≥ 0}|

combined with the equivalence (f, g) ∈ C(F, G, M) if and only if (±αf, αg) ∈

C(αF, αG, αM). In particular, this gives that the function x 7→ B(x,−x, x) is

constant on (0,∞). On the other hand, this function is concave on R, in view of

the diagonal concavity of B. In consequence, we get

(3.5) B(1/2,−1/2, 1/2) ≥ B(0, 0, 0) = 1

(the latter equality follows from (3.3) and the obvious bound B ≤ 1). The next

step in the analysis is to introduce the function

b(x, y) = B

(

x + 1

2
,
x − 1

2
, y

)

,
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given on D = {(x, y) ∈ R
2 : y ≥ |x+1

2 |}. Using (3.4), we see that for F 6= ±G,

b

(

F + G

F − G
,

M

F − G

)

= B(F, G, M) = B(−F, G, M) = b

(

F − G

F + G
,−

M

F + G

)

,

from which we infer that b satisfies

(3.6) b (x, y) = b

(

1

x
,−

y

x

)

.

Furthermore, since B is diagonally concave, we have that b is a concave function,

and the majorization (3.3) implies that b(x, y) ≥ 1{x≥1} ≥ 0. The condition (3.5)

implies that b(0, 1/2) ≥ 1; hence, using the concavity of b along the halflines starting

from (0, 1/2) and contained in D, we infer that b(x, y) ≥ 1 (and hence b(x, y) = 1)

provided y ≥ −x/2 + 1/2. Thus, all we need is to identify the explicit formula for

b on the set

Ω = {(x, y) ∈ D : y ≤ −x/2 + 1/2}.

It is easy to show that b(−1, 0) = B(0,−1, 0) = 0: indeed, C(0,−1, 0) contains only

the constant pair. The line segment which joins (−1, 0) and (0, 1/2) is a part of the

boundary of Ω, so it seems plausible to guess that b is linear along this segment:

b(2y − 1, y) = 2y for y ∈ [0, 1/2].

Next, we assume that b is of class C1 in the interior of Ω. By (3.6), we may

restrict our search to the triangle Ω ∩ {(x, y) : x ≥ −1}. Let us try to identify

the foliation F of b restricted to this set (i.e., split the triangle into the union of

maximal segments along which b is linear). We already know that the segment with

the endpoints (0, 1/2) and (−1, 1), as well as the boundary segment with endpoints

(−1, 0), (0, 1/2), belong to the foliation. Now pick a segment I ∈ F which contains

the point (−1, y) for a given y ∈ (0, 1). If I intersects one of the two boundary

segments (call it J), at a point different from (0, 1/2), then b must be linear in the

triangle spanned by I and J (i.e., the convex hull of I ∪ J). In particular, this

implies that b must be linear along the segment which joins (−1, y) with (0, 1/2).

Consequently, we see that the only foliation is possible, namely, the fan of segments

from the vertex (0, 1/2). This implies

b(−1, y) − 1 = −bx(−1, y) + by(−1, y)

(

y −
1

2

)

.



INEQUALITIES FOR THE HAAR SYSTEM 13

On the other hand, differentiating (3.6) with respect to x at the point (−1, y),

y ∈ (0, 1), yields

2bx(−1, y) = yby(−1, y).

If we combine the two latter identities, we obtain the following differential equation.

If ϕ(y) = b(−1, y), y ∈ [0, 1], we have

ϕ(y) − 1 = ϕ′(y) ·
y − 1

2
.

Therefore, ϕ(y) = K(y−1)2 +1 for some parameter K. Moreover, we already know

that ϕ(0) = B(0,−1, 0) = 0; this yields K = −1 and hence

b(x, y) = (1 + x)b

(

0,
1

2

)

− xb

(

−1,
1 + x − 2y

2x

)

= 1 −

(

x−1
2 + y

)2

x

for (x, y) ∈ Ω, x ∈ [−1, 0]. By (3.6), the same formula is valid on the whole Ω. This

gives us the candidate

B(F, G, M) = B(F, G − 1, M) = b

(

F + G − 1

F − G + 1
,

M

F − G + 1

)

studied in the previous subsection.

4. Two-sided bound

We turn to the proof of the main result of this paper. We will provide the explicit

formula for the function

B(F, G, M) = sup

{

|{x ∈ [0, 1] : |g(x)| ≥ 1}| : (f, g) ∈ C(F, G, M)

}

.

This will be accomplished by the technique described in Section 2, with V (F, G) =

1{|G|≥1}.
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4.1. An explicit formula for B

Introduce the following subsets of D:

D1 = {(F, G, M) : |F | + |G| ≥ 1}

∪

{

(F, G, M) : |F | + |G| < 1, M ≥
1

2
(F 2 − G2 + 1)

}

,

D2 = {(F, G, M) : |F | + |G| < 1, M < F 2 − G2 + |G|},

D3 =

{

(F, G, M) : |F | + |G| < 1, F 2 − G2 + |G| ≤ M <
1

2
(F 2 − G2 + 1)

}

.

Note that if |F | + |G| < 1, then F 2 − G2 + |G| < 1
2 (F 2 − G2 + 1); thus the subsets

are pairwise disjoint. Let B : D → R be given by

(4.1) B(F, G, M) =































1 on D1,

1 − (1−|G|−M)2

(1−|G|)2−F 2 on D2,

2M − F 2 + G2 on D3.

Theorem 4.1. We have B ≤ B.

Proof. As previously, we verify that the function B satisfies the conditions

(a) and (b’). The first of them is very easy: if |G| ≥ 1, then |F | + |G| ≥ 1 and

B(F, G, M) = V (F, G); for |G| < 1 it is not difficult to see that B takes nonnegative

values only. To check (b’), fix (F, G, M) ∈ D, ε ∈ {−1, 1}, m ∈ R and consider the

function

ξ(t) = B(F + t, G + εt, M + mt),

given on the interval {t : (F + t, G+εt, M +mt) ∈ D}. The domain of this function

can be split into a finite family (Ik) of intervals which have the property that on

each Ik, ξ coincides with ξ1, ξ2 or ξ3. Here ξ1(t) ≡ 1,

ξ2(t) = 1 −
(1 − |G + εt| − M − mt)2

(1 − |G + εt|)2 − (F + t)2

and

ξ3(t) = 2M + 2mt − (F + t)2 + (G + εt)2.

It is not difficult to check that the function ξ is continuous and that ξ1 and ξ3

are concave on R. Furthermore, if ξ = ξ2 on Ik, then by the definition of D2
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we infer that G + tε is bounded away from 0; this implies that ξ2|Ik
is concave

(see the one-sided case, this function has already appeared there, with |G + tε|

replaced by G + tε). This implies that ξ is concave on each of the intervals Ik.

Furthermore, B is C1-smooth on the boundary between D2 and D3 (on the surface

M = F 2 − G2 + |G|) and any point which belongs to ∂D1 ∩ ∂D2, automatically

lies in ∂D3. Therefore, to get the concavity of ξ on the whole domain, it suffices

to check only the jumps of its first derivative on the boundary between D1 and D3

(formally, we need to look at the one-sided derivatives of ξ at those t, for which

(F +t, G+εt, M+mt) ∈ ∂D1∩∂D3). However, the derivatives behave appropriately,

since B equals 1 on D1 and B < 1 on D3. This completes the proof.

Theorem 4.2. We have B ≥ B.

Proof. Arguing as in the setting of the one-sided estimate, it suffices to show

the desired bound for nonnegative F and G only. Of course, the function B ma-

jorizes the Bellman function B
o corresponding to the one-sided estimate. Conse-

quently, the desired inequality holds for G + M ≥ 1 and for (F, G, M) ∈ D2 (if

the second possibility occurs, we obtain equality or the trivial bound B ≤ 1). Now

suppose that G + M < 1 and M ≥ 1
2 (F 2 −G2 + 1), so that B(F, G, M) = 1. Then

M > F 2 − G2 + G (see the sentence below the definitions of D1 − D3) and hence

F < G: indeed, otherwise we would have 2M − F 2 + G2 = M + (M − F 2 + G2) <

M + G < 1. Obviously, we have

B(F, G, M) ≥ B

(

F, G,
F 2 − G2 + 1

2

)

and we can express the point on the right as the following convex combination:

(

F, G,
F 2 − G2 + 1

2

)

=
1 − F + G

2
· (F−, G−, M−) +

1 + F − G

2
· (F+, G+, M+),

where

F− = F −
1 + F − G

2
, G− = G +

1 + F − G

2
, M− = |F−| = −F−

and

F+ = F +
1 − F + G

2
, G+ = G −

1 − F + G

2
, M+ = F+.
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Since |F+ − F−| = |G+ − G−|, (2.2) gives

B(F, G, M) ≥
1 − F + G

2
B(F−, G−, M−) +

1 + F − G

2
B(F+, G+, M+).

But M− + |G−| = M+ + |G+| = 1, so B(F±, G±, M±) ≥ 1, by the above reasoning.

This yields the desired bound B(F, G, M) ≥ 1 = B(F, G, M). Finally, suppose that

M +G < 1 and (F, G, M) ∈ D3, and consider the maximal line segment of the form

I = {(F + s, G − s, M + s) : s ∈ (t−, t+)},

contained in D3. It is not difficult to derive that

t+ =
F 2 − G2 + 1 − 2M

2(1 − F − G)
, t− = −

M − (F 2 − G2 + G)

2(1 − F − G)
.

The endpoint of I, corresponding to s = t−, lies in ∂D2; the other endpoint belongs

to ∂D1. We have already verified the majorization on D1 ∪D2, so

B(F, G, M) ≥
−t−

t+ − t−
B(F + t+, G − t+, M + t+)

+
t+

t+ − t−
B(F + t−, G − t−, M + t−)

≥
−t−

t+ − t−

(

2(M + t+) − (F + t+)2 + (G − t+)2
)

+
t+

t+ − t−

(

2(M + t−) − (F + t−)2 + (G − t−)2
)

= 2M − F 2 + G2.

This completes the proof.

4.2. On the search of the Bellman function

Again, we write down the definition of B:

B(F, G, M) = sup
{

|{x ∈ [0, 1] : |g(x)| ≥ 1}| : (f, g) ∈ C(F, G, M)
}

.

In comparison to the one-sided case, the situation is more difficult since the function

B does not seem to have any homogeneity-type property. Nevertheless, it majorizes
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the Bellman function corresponding to the one-sided estimate, which gives

(4.2) B(F, G, M) ≥















1 if |G| + M ≥ 1,

1 − (1−|G|−M)2

(1−|G|)2−F 2 if |G| + M < 1.

This, in particular, yields

(4.3) B(F, G, M) = 1 provided |G| + M ≥ 1.

Next, we proceed as follows. Fix a ∈ (0, 1) and consider the function

b(x, y) = B

(

x + a

2
,
x − a

2
, y

)

,

given on the set
{

(x, y) ∈ R
2 : y ≥

∣

∣

x+a
2

∣

∣

}

. This function is concave and, by (4.3),

we have b(x, y) = 1 for y ≥ 1−
∣

∣

x−a
2

∣

∣. Thus all we need is to determine the formula

for b on the parallelogram P =
{

(x, y) :
∣

∣

x+a
2

∣

∣ ≤ y < 1 −
∣

∣

x−a
2

∣

∣

}

(see Figure 1).

Figure 1. The parallelogram P .

Directly from the concavity of b, we obtain that b(x, y) = 1 if (x, y) lies on

or above the dotted diagonal of P - precisely, the line segment with endpoints
(

−1, 1−a
2

)

and
(

1, 1+a
2

)

- due to the fact that b equals 1 when evaluated at the

sides of P lying above this segment. For (x, y) lying below the diagonal we have,

by (4.2),

b(x, y) ≥ ζ(x, y) = 1 −

(

1 −
∣

∣

x−a
2

∣

∣− y
)2

(1 − a)(1 + x)
.

Let us search for the least concave majorant of ζ. Some experiments lead to the

following idea. Take an interval I with endpoints
(

1, 1+a
2

)

and
(

t,− t+a
2

)

, where
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t ∈ (−1,−a] (see Figure 1). It is easy to check that ζ is not concave along this

interval and that the least concave majorant of ζ|I is given by

b0(x, y) =















ζ(x, y) if (x, y) ∈ I, y < a
2 −

(

1
2 − a

)

x,

2y − ax if (x, y) ∈ I, y ≥ a
2 −

(

1
2 − a

)

x.

Assuming b = b0 for all (x, y) below the diagonal, we obtain the candidate for the

Bellman function, given by (4.1).

5. A weak unconditional constant for an arbitrary basis of L1(0, 1)

The estimates obtained in the previous sections can be used to obtain some interest-

ing bounds for an arbitrary basis of L1(0, 1). For any sequence e = (e0, e1, e2, . . .)

in L1(0, 1) and λ > 0 we define the weak unconditional constant βe(λ) as the

least number β with the following property. If n is a nonnegative integer and

a0, a1, . . . , an are real numbers such that ||
∑n

k=0 akek||1 ≤ 1, then

(5.1)

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

n
∑

k=0

εkakek(x)

∣

∣

∣

∣

∣

≥ λ

}∣

∣

∣

∣

∣

≤ β

for all choices of signs εk ∈ {−1, 1}. If we plug λak in the place of ak above,

k = 0, 1, . . . , n, we see that the results of Section 3 imply that

βh(λ) = min

{

2

λ
, 1

}

(see also [1]). The main theorem of this section gives a related estimate for a

different choice of a basis of L1, which should be compared to (1.2).

Theorem 5.1. If e is a basis of L1(0, 1), then βe(λ) ≥ βh(λ) for all λ > 0.

In the proof of this statement we will need the following auxiliary fact. Roughly

speaking, it says that any finite subsequence of Haar functions can be approximated

using pairwise disjoint blocks of elements of e.

Lemma 5.2. Let e = (en)n≥0 be an arbitrary basis of L1(0, 1). Suppose that

(hk)N
k=0 is a finite collection of Haar functions. Then for any δ > 0 there is an

increasing sequence (nk)N+1
k=0 of integers, a sequence (bn)

nN+1−1
n=0 or real numbers
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and two sequences (fn)
nN+1−1
n=0 , (rn)

nN+1−1
n=0 of real-valued functions on (0, 1) such

that the following holds:

(i) we have the decomposition

nk+1−1
∑

n=nk

bnen = fk + rk, k = 0, 1, 2, . . . , N,

(ii) we have ||rk||1 ≤ δ for k = 0, 1, 2, . . . , N ,

(iii) there is a measure-preserving transformation T : [0, 1] → [0, 1] such that

fk(Tx) = hk(x) for all x ∈ (0, 1) and k = 0, 1, 2, . . . , N .

This result can be obtained by a slight modification of the construction presented

in Olevskǐi [9]; see also Theorem 3 in [7] and references therein. We omit the details.

Proof of Theorem 5.1. Pick arbitrary λ, κ > 0 and γ ∈ (0, 1). There is a

nonnegative integer N , a sequence a0, a1, . . ., aN of real numbers and a sequence

ε0, ε1, . . ., εN of signs such that

(5.2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

akhk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ 1

and

(5.3)

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

N
∑

k=0

εkakhk(x)

∣

∣

∣

∣

∣

≥
λ + 1 − γ

γ

}
∣

∣

∣

∣

∣

≥ βh

(

λ + 1 − γ

γ

)

− κ.

Now we apply Lemma 5.2 to the finite family (hk)N
k=0 of Haar functions and a fixed

δ > 0. As the result we obtain the corresponding sequence (nk)N
k=0, the coefficients

(bn)n≥0 and the appropriate functions (fk)k≥0 and (rk)k≥0. Putting ãk = γak for

k = 0, 1, . . . , N , we obtain, by Lemma 5.2,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

ãk

nk+1−1
∑

n=nk

bnen

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

ãkfk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

ãkrk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

ãkhk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+ δ

N
∑

k=0

|ak|

= γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

akhk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+ δ

N
∑

k=0

|ak| ≤ 1,

(5.4)
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provided δ is sufficiently small (it suffices to take δ < (1 − γ)
(

∑N

k=0 |ak|
)−1

: see

(5.2)). In consequence, we get

(5.5)

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

N
∑

k=0

εkãk

nk+1−1
∑

n=nk

bnen(x)

∣

∣

∣

∣

∣

≥ λ

}∣

∣

∣

∣

∣

≥ I − II,

where

I =

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

N
∑

k=0

εkãkfk(x)

∣

∣

∣

∣

∣

≥ λ + 1 − γ

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

N
∑

k=0

εkakhk(x)

∣

∣

∣

∣

∣

≥
λ + 1 − γ

γ

}∣

∣

∣

∣

∣

≥ βh

(

λ + 1 − γ

γ

)

− κ,

by virtue of (5.3), and

II =

∣

∣

∣

∣

∣

{

x ∈ [0, 1] :

∣

∣

∣

∣

∣

N
∑

k=0

εkãkrk(x)

∣

∣

∣

∣

∣

≥ 1 − γ

}
∣

∣

∣

∣

∣

≤ (1 − γ)−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=0

εkãkrk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
γδ

1 − γ

N
∑

k=0

|ak|,

by Chebyshev’s inequality. Thus, combining (5.4) and (5.5), we see that

βe(λ) ≥ βh

(

λ + 1 − γ

γ

)

− κ −
γδ

1 − γ

N
∑

k=0

|ak|.

Therefore, letting δ → 0 and then γ → 1, κ → 0, we obtain βe(λ) ≥ βh(λ), since

the function βh is continuous. This completes the proof.

Remark 5.3. It is easy to see that when λ > 2, then there is a basis e for which

we have the strict inequality βe(λ) > βh(λ). In fact, it is not difficult to construct

a basis e for which βe ≡ 1. For example, let h be the Haar system. Consider the

basis e such that for any n ≥ 0,

e2n = h0 − 2−n−1 (h0 + h1 + 2h2 + 4h4 + . . . + 2nh2n)

is the indicator function of the set [2−n−1, 1), and ek = hk for remaining k. Suppose

that λ is a given positive number and let n be an integer satisfying 2n+3 ≥ λ. Then

|| − 2n+2e2n + 2n+2e2n+1||1 = 1 and for any x ∈ [2−n−1, 1) we have the inequality

2n+2e2n(x) + 2n+2e2n+1(x) = 2n+3 ≥ λ. Letting n → ∞ yields βe(λ) = 1, directly
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from the definition of the weak unconditional constant. Thus, the function βe is

identically 1.
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