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Abstract. Let X be a BMO martingale with continuous paths and let 2 ≤ q ≤ p <
∞ be given parameters. The paper contains the proof of the Lorentz-norm inequality

‖X∞‖p,q ≤ 2−1/p (p/q)(q+1)/q Γ(q + 1)1/q‖X‖BMO,

and the constant is shown to be the best possible.

1. Introduction

Martingales of bounded mean oscillation play a prominent role in probability theory
and stochastic analysis, and provide an e�cient tool for the study of Hp spaces (e.g.,
via Fe�erman's duality theorem [4], John-Nirenberg inequalities [8] or the integrability
properties of associated exponential local martingales [9]). Although the origins of the
BMO class go back to the analytic setting, the passage to the probabilistic context reveals
some additional underlying structure and enables further applications (e.g., in �nancial
mathematics: see [2], [3] or [5]). The purpose of this paper is to study a certain sharp
Lorentz-norm estimate for this class of processes.

Let us �x the notation. Suppose that (Ω,F ,P) is a complete probability space,
equipped with a �ltration (Ft)t≥0, a nondecreasing family of sub-σ-�elds of F , such
that F0 contains all the events of probability zero. Let X = (Xt)t≥0 be an adapted,
continuous-path real-valued martingale. Following [6], the martingale X belongs to the
space BMO, if it is uniformly integrable and its seminorm

‖X‖BMO = sup
t≥0

∥∥∥E[|X∞ −Xt|2
∣∣Ft]1/2∥∥∥

∞

is �nite. The seminorm admits the equivalent formula

(1.1) ‖X‖2BMO = sup
t≥0

essup

(
E(X2

∞|Ft)−X2
t

)
,

which makes the mean oscillation easier to handle (see below). The BMO martingales
have very strong integrability properties (for an overview, see e.g. the book by Kazamaki
[9]) and the question about the identi�cation of best constants in the corresponding esti-
mates has been studied intensively in the recent literature. Let us brie�y discuss several
important achievements in this direction: although most of them have been obtained in
the analytic context, the passage to the probabilistic setting is immediate. One of the
�rst results in this area is that of Slavin [15] and Slavin and Vasyunin [16], which gives
the optimal constant in the integral form of John-Nirenberg inequality. Precisely, these
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works contain the proof of the exponential estimate

E exp(X∞ −X0) ≤ exp(−‖X‖BMO)

1− ‖X‖BMO
.

Furthermore, this bound is sharp in the sense that for each ε < 1 there is a martingale
X satisfying ‖X‖BMO = ε, X0 = 0 and E exp(X∞) = e−ε/(1 − ε). In particular, there
is no exponential inequality of the above type when ‖X‖BMO ≥ 1. The next important
result, due to Vasyunin [20] and Vasyunin and Volberg [21], concerns the classical form
the John-Nirenberg estimate. Namely, if ε := ‖X‖BMO <∞, then we have

P(|X∞ −X0| ≥ λ) ≤


1 if 0 ≤ λ ≤ ε,
ε2/λ2 if ε ≤ λ ≤ 2ε,

e2−λ/ε/4 if λ ≥ 2ε,

and for each value of ε and λ, equality can be attained. Optimizing over λ, one obtains
the sharp weak-type inequality

(1.2) ‖X∞ −X0‖p,∞ ≤ Cp‖X‖BMO.

Here Cp = 1 if 0 < p < 2 and Cp = p2−2/pe2/p−1 otherwise, and

‖ξ‖p,∞ = sup
λ>0

λ [P(|ξ| ≥ λ)]
1/p

stands for the usual weak p-th quasinorm. We also mention here a related work of Slavin
and Vasyunin [17], which establishes, among other things, the sharp Lp estimate

(1.3) ‖X∞ −X0‖p ≤ cp‖X‖BMO,

where cp = 1 for 0 < p ≤ 2 and cp =
(
p
2Γ(p)

)1/p
otherwise. We also refer the interested

reader to the papers [7], [11], [12], [13] for the further development of the subject.
It should be emphasized here that all the results discussed have been obtained with

the use of the so-called Bellman function method, a powerful technique used widely in
various problems of analysis and probability. Roughly speaking, the approach reduces
the problem of proving a given estimate for BMO martingales to the search of a certain
special function, enjoying appropriate majorization and concavity conditions. We will
brie�y outline the method in Section 2 below, and we refer the interested reader to the
works [7], [10], [14] and [18] for the general description.

The purpose of this paper is to continue the above direction of research. Motivated
by (1.2) and (1.3), one may ask about best constants in the corresponding Lorentz-norm

estimates for BMO martingales. We need some additional de�nitions. Given a random
variable ξ, its nonincreasing rearrangement ξ∗ : (0, 1]→ [0,∞) is de�ned by

ξ∗(t) = inf
{
λ ≥ 0 : P(|ξ| > λ) ≤ t

}
.

Now, given 0 < p, q < ∞, the Lorentz space Lp,q = Lp,q(Ω,F ,P) is the family of all
(equivalence classes of) random variables ξ for which

‖ξ‖p,q =

(∫ 1

0

(t1/pξ∗(t))q
dt

t

)1/q

<∞.

See e.g. [1] for more on the subject. The main result of this paper is the following.
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Theorem 1.1. Suppose that 2 ≤ q ≤ p < ∞. Then for any continuous-path BMO

martingale X we have

(1.4) ‖X∞ −X0‖p,q ≤ 2−1/p (p/q)
(q+1)/q

Γ(q + 1)1/q‖X‖BMO.

The constant is the best possible.

We would like to point out that the direct application of the Bellman function method
is not possible for (1.4). One of the contributions of this paper is the introduction of
an additional splitting argument which combined with the Bellman function method
yields the claim. Unfortunately, our approach works in the limited range of exponents
2 ≤ q ≤ p <∞, the analysis for remaining p, q requires the development of new ideas.

The rest of the paper is organized as follows. In the next section we discuss brie�y the
Bellman function method and exhibit the obstacles which arise in the proof of (1.4). The
Lorentz-norm estimate is established in Section 3. The last part of the paper is devoted
to the sharpness of the inequality: we show that the constant cannot be replaced by a
smaller one.

2. On the approach

As we have mentioned in the previous section, the Bellman function method allows to
study inequalities for BMO martingales by constructing certain special functions. The
argument goes as follows. Suppose that c is a constant and V : R → [0,∞) is a given
Borel function. Assume further that we want to establish the estimate

(2.1) EV (X∞) ≤ c
for all continuous-path BMO martingales X satisfying ‖X‖BMO ≤ 1 and X0 = 0. To
handle this problem, we introduce, for any ε > 0, the parabolic domain

Dε = {(x, y) ∈ R2 : x2 ≤ y ≤ x2 + ε2}
and let B : D1 → [0,∞) be a continuous function enjoying the following requirements:

1◦ We have B(0, y) ≤ c for all y ∈ [0, 1].
2◦ We have the majorization B(x, x2) ≥ V (x) for all x ∈ R.
3◦ The function B is locally concave, i.e., it is concave along any line segment entirely

contained in D1.

We have the following fact.

Theorem 2.1. If there is a function B satisfying 1◦, 2◦ and 3◦, then (2.1) holds.

Proof. Fix a BMO martingale X satisfying ‖X‖BMO ≤ 1 and X0 = 0. Suppose �rst
that the BMO norm is less than 1: ‖X‖BMO = ε < 1, and consider the auxiliary process
Yt = E(X2

∞|Ft), t ≥ 0. Note that the pair (X,Y ) takes values in Dε ⊂ D1 and the
composition B(X,Y ) makes sense: here (1.1) comes into play. The key argument is the
application of Itô's formula to B(X,Y ); however, B does not have to be of class C2, so
an additional molli�cation argument is required (see e.g. [19], formula (5.3)). Namely, let
g be a nonnegative C∞ radial function on R2, supported on the unit ball and satisfying∫
R2 g = 1. Given δ ∈ (0, (1 − ε)/3), we consider the function Bδ : Dε → R given by the
convolution-type expression

Bδ(x, y) =

∫
[−1,1]2

B(x− δu, y + δ − 2xδu+ δ2u2 − δv)g(u, v)dudv.



4 �UKASZ KAMI�SKI AND ADAM OS�KOWSKI

Note that the integrand is well-de�ned: we have(
y + δ − 2xδu+ δ2u2 − δv

)
− (x− δu)2 = y − x2 + δ − δv ∈ [0, 1]

for v ∈ [−1, 1]. The function Bδ is of class C∞ and, by the very de�nition, it inherits the
local concavity and nonnegativity. Furthermore, since g is radial,

Bδ(0, y) =

∫
[−1,1]2

B(−δu, y + δ + δ2u2 − δv)g(u, v)dudv

=

∫
[−1,1]2

B(−δu, y + δ + δ2u2 − δv) +B(δu, y + δ + δ2u2 − δv)

2
g(u, v)dudv

≤
∫
[−1,1]2

B(0, y + δ + δ2u2 − δv)g(u, v)dudv ≤ c.

Here in the third passage we have used the concavity of B along the horizontal line
segment joining (±δu, y+ δ+ δ2u2− δv), and the last passage is due to 1◦. Consequently,
Itô's formula gives, for any t,

(2.2) Bδ(Xt, Yt) = Bδ(X0, Y0) + I1 + I2/2 + I3

(note the essential inclusion (X,Y ) ∈ Dε), where

I1 =

∫ t

0

Bδx(Xs, Ys−)dXs +

∫ t

0

Bδy(Xs, Ys−)dYs,

I2 =

∫ t

0

Bδxx(Xs, Ys−)d〈X,X〉s + 2

∫ t

0

Bδxy(Xs, Ys−)d〈X,Y c〉s

+

∫ t

0

Bδyy(Xs, Ys−)d〈Y c, Y c〉s,

I3 =
∑

0<s≤t

[
Bδ(Xs, Ys)−Bδ(Xs, Ys−)−Bδx(Xs, Ys−)∆Ys

]
.

Here we have used the fact that X has continuous trajectories; however, on contrary, Y
does not have to possess this regularity. This forces us to write the left limits Ys−, the
continuous part Y c and the jump term I3 in the expressions above.

Let us study the behavior of the terms I1, I2 and I3. Both stochastic integrals in I1 are
local martingales; let (τn)n≥1 be a common localizing sequence. Then, replacing t with
τn ∧ t in I1, we get EI1 = 0, by the properties of stochastic integrals. Furthermore, since
Bδ is locally concave, the term I2 (also, with t replaced by τn∧ t) is nonpositive: this can
be seen by approximating the integrals with Riemann sums. Finally, by the concavity
of the function Bδ(x, ·) for any �xed x ∈ R, we conclude that each summand in I3 (and
hence also the whole I3) is nonpositive. Thus, integrating both sides of (2.2), we get

EBδ(Xτn∧t, Yτn∧t) ≤ EBδ(X0, Y0) = EBδ(0, Y0) ≤ c,
since Bδ satis�es 1◦ as well, as we have showed above. Therefore, letting n→∞, t→∞
and applying Fatou's lemma, we obtain EBδ(X∞, Y∞) ≤ c. However, B is continuous, so
we have the pointwise convergence Bδ → B as δ → 0. Consequently, by Fatou's lemma
again, the estimate EB(X∞, Y∞) ≤ c holds. Now, we have obtained this bound under the
assumption ‖X‖BMO < 1 (see the beginning of the proof). However, if the BMO norm
of X is equal to 1, then the estimate is still valid: by Fatou's lemma,

EB(X∞, Y∞) ≤ lim inf
ε↑1

EB(εX∞, ε
2Y∞) ≤ c.
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It remains to note that by the very de�nition of Y , we have Y∞ = X2
∞ almost surely.

Hence, by 2◦, we obtain the desired estimate EV (X∞) ≤ c. �

The above interplay between the existence of the special function B and the validity
of (2.1) is the key to the proofs of all the inequalities mentioned in the previous section.
However, the Bellman function method has a serious limitation: it enables the study
of estimates which are of the integral form (2.1) only. It is clear that because of the
appearance of the Lorentz norm, the inequality (1.4) cannot be rewritten in such a shape.
To overcome this di�culty, we will use a two-step procedure. First, suppose that Φ,
Ψ : [0,∞)→ [0,∞) are functions satisfying the Young-type estimate

(2.3) uqvq/p−1 ≤ Φ(u) + Ψ(v)

for all u ≥ 0 and v > 0. Assuming that X0 = 0 and ‖X‖BMO < 1 we get, by the direct
integration,

(2.4) ‖X∞‖qp,q =

∫ 1

0

(X∗∞(s))qsq/p−1ds ≤
∫ 1

0

Φ
(
X∗∞(s)

)
ds+

∫ 1

0

Ψ(s)ds.

Note that the second integral
∫ 1

0
Ψ(s)ds is a constant. The second step is to prove the

sharp bound of the form

(2.5)

∫ 1

0

Φ
(
X∗∞(s)

)
ds ≤ cp,q.

Observe that this estimate is of the `integral' form (2.1) and can be studied with the use
of Bellman function method described above. Combining these two steps, we will get
the desired claim. The argument may seem simple, but note that it is absolutely not
clear whether the functions Φ, Ψ can be chosen so that we obtain the best constant in
(1.4). We have managed to show that this is the case in the range 2 ≤ q ≤ p < ∞.
Actually, the choice will be highly nontrivial and the formulas for the functions will be
quite complicated.

3. Proof of (1.4)

We start with the de�nition of two special Young functions (some steps which lead to
their discovery are discussed in Remark 4.2 below). Fix 2 ≤ q ≤ p < ∞ and introduce
Φ = Φp,q, Ψ = Ψp,q : [0,∞)→ [0,∞) by

Φ(s) = 21−q/p
∫ sq

0

exp

(
p− q
p

u1/q
)
du

and

Ψ(t) =

{
(− ln(2t))qtq/p−1 − Φ(ln(2t)) if t < 1/2,

0 if t ≥ 1/2.

We will show that Φ and Ψ satisfy the appropriate version of Young's inequality. We
include the straightforward proof for the sake of completeness.

Lemma 3.1. The estimate (2.3) holds true.

Proof. Fix v > 0, substitute r = uq and consider the function ξ : [0,∞)→ R, given by

ξ(r) = rvq/p−1 − Φ(r1/q)−Ψ(v).
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We compute that ξ′(r) = vq/p−1− 21−q/p exp
(
(p− q)r1/q/p

)
. Therefore, if v ≥ 1/2, then

ξ is decreasing and ξ(r) ≤ ξ(0) = 0. On the other hand, if v < 1/2, then ξ attains its
maximal value at r = (− ln(2v))q: ξ(r) ≤ ξ((− ln(2v))q) = 0. �

Now we will introduce the Bellman function associated with the estimate (2.5). This
bound is of the form (2.1), with V (x) = Φ(|x|) and

(3.1) c = cp,q = 2−q/p (p/q)
q

Γ(q + 1).

Recall the parabolic domain D1 = {(x, y) ∈ R2 : x2 ≤ y ≤ x2 + 1} and let B : D1 → R
be given by the formula

B(x, y) =

cp,qy if 2|x| ≤ y ≤ 2,

Φ(ν + |x|)− ν
∫ 1

0

Φ′
(
ν + |x| − lnu

)
du otherwise.

Here, for brevity, we used the notation ν =
√

1− y + x2 − 1.
This function is continuous, it is even of class C1: we have

lim
y↑2|x|

B(x, y) = |x|
∫ 1

0

Φ′(− lnu)du = cp,qy

and

lim
y↑2|x|

By(x, y) =
1

2

∫ 1

0

Φ′′(− lnu)du = cp,q.

Next, we will check that the function enjoys the required conditions 1◦, 2◦ and 3◦. The
�rst property is obviously satis�ed. The majorization 2◦ is also true: we have B(x, x2) =
Φ(|x|). The concavity condition 3◦ is veri�ed in a separate lemma below.

Lemma 3.2. The function B is locally concave on D1.

Proof. Since B is of class C1, it is enough to check that D2B, the Hessian matrix of B, is
negative-de�nite (at all points from the interior of D1, at which B is twice di�erentiable).
If 2|x| < y < 2, then there is nothing to prove: the Hessian is a zero matrix. If the
point (x, y) satis�es y < 2|x| or y ≥ 2, then we easily see that there exists a (short) line

segment of slope a = 2x(1 +
√

1− y + x2/|x|) passing through (x, y) along which B is
linear. Therefore,

(3.2) Bxx(x, y) + 2aBxy(x, y) + a2Byy(x, y) = 0.

Next, a direct di�erentiation and integration by parts yields

By(x, y) =
1

2

∫ 1

0

Φ′′(
√

1− y + x2 + |x| − 1− lnu)du,

Bxy(x, y) =
1

2

(
x√

1− y + x2
+

x

|x|

)∫ 1

0

Φ′′′
(√

1− y + x2 + |x| − 1− lnu
)
du

and

Byy(x, y) = − 1

4
√

1− y + x2

∫ 1

0

Φ′′′
(√

1− y + x2 + x− 1− lnu
)
du.
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Hence Bxy(x, y) = aByy(x, y), which combined with (3.2) yields Bxx(x, y) = aBxy(x, y)
and implies that the determinant of D2B(x, y) is equal to 0. To show that the Hessian is
negative de�nite, it remains to note that Byy(x, y) < 0. This follows from the fact that

Φ′′′(s) = q21−q/p exp

(
p− q
p

s

)
sq−3

[(
p− q
p

)2

s2 + 2

(
p− q
p

)
(q − 1) + (q − 1)(q − 2)

]
is positive for all s > 0. Here the assumption q ≥ 2 plays a key role. �

We are ready for the proof of the Lorentz-norm estimate.

Proof of (1.4). Pick an arbitrary continuous BMO martingale X. With no loss of gener-
ality, we may assume that X0 = 0, replacing X with X −X0 if necessary. Similarly, we
may assume that ‖X‖BMO = 1, by homogeneity of (1.4). Applying (2.3), we obtain∫ 1

0

(
X∗∞(t)

)q
tq/p−1dt ≤

∫ 1

0

[
Φ
(
X∗∞(t)

)
+ Ψ(t)

]
dt = EΦ

(
|X∞|

)
+

∫ 1

0

Ψ(t)dt.

The Bellman function method implies that the �rst integral does not exceed cp,q given
by (3.1). Furthermore, we derive that∫ 1

0

Ψ(t)dt =

∫ 1/2

0

(− ln(2t))qtq/p−1dt−
∫ 1/2

0

Φ(− ln(2t))dt

= 2−q/p (p/q)
q+1

Γ(q + 1)− cp,q,

which combined with the above estimate gives∫ 1

0

(
X∗∞(t)

)q
tq/p−1dt ≤ 2−q/p (p/q)

q+1
Γ(q + 1).

This is precisely (1.4). �

4. Sharpness

Now we will show that the constant in (1.4) is the best possible: this will be accom-
plished by the construction of appropriate examples. We begin with an auxiliary notation.
Let W = (Wt)t≥0 be the standard one-dimensional Brownian motion started at zero and

let W t = sup0≤s≤t |Ws|, t ≥ 0, be the maximal function of W . Consider the stopping
times

σ = inf{t > 0 : |Wt| = 1/2}, τ = inf
{
t > σ : |Wt|+ 1 ≤W t ∨ 1

}
,

with the standard convention inf ∅ = +∞. Finally, put Xt = Wτ∧t for t ≥ 0; then X is
a continuous-path martingale, by Doob's optional sampling theorem. We will show that
for this choice, both sides of (1.4) become equal.

Lemma 4.1. The martingale X is uniformly integrable and satis�es X0 = 0, ‖X‖BMO =
1 and X∗∞(s) = (− ln(2s))+ for s ∈ (0, 1].

Proof. The equality X0 = 0 is obvious. Now we will show that X is bounded in L2. To
this end, observe that the process

ζt =

{
0 if t ≤ σ,
(Xt ∨ 1)2 − 2(Xt ∨ 1)|Xt| if t > σ,
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is a martingale; this follows at once from Itô's formula (note that after the time σ, the
process X does not change its sign; thus the non-di�erentiability of | · | does not matter).
Here, in analogy to the above notation, X is the maximal function of X. Consequently,
by Doob's optional sampling theorem and the de�nition of τ , we obtain

0 = −Eζσ∨t = E
[
2(Xσ∨t ∨ 1)|Xσ∨t| − (Xσ∨t ∨ 1)2

]
≥ E

[
(Xσ∨t ∨ 1)2 − 2(Xσ∨t ∨ 1)

]
≥ 1

2
E(Xσ∨t ∨ 1)2 − 2.

Thus, by Lebesgue's monotone convergence theorem, we get

EX2

∞ ≤ E(X∞ ∨ 1)2 <∞,

which yields the desired L2-boundedness (and the uniform integrability) of X. In partic-
ular, the almost sure limit X∞ exists. Next, apply Doob's optional sampling theorem to
obtain E(ζσ∨t|Fs) = ζs ≥ −X2

s for arbitrary s < t. Letting t→∞ and using Lebesgue's
dominated convergence theorem, the L2 boundedness of X and the de�nition of τ , we get

E(−X2
∞ + 1|Fs) = E(ζ∞|Fs) ≥ −X2

s .

This yields ‖X‖BMO ≤ 1, since s was arbitrary. To get the formula for the nonincreasing
rearrangement X∗∞, consider the auxiliary martingale

ξt =

{
e if t ≤ σ,
2 exp

(
Xt ∨ 1

) (
|Xt|+ 1−Xt ∨ 1

)
if t > σ.

Fix λ > 0 and introduce the stopping time η = inf{t ≥ 0 : Xt > λ+1}. It follows directly
from the de�nition of X that {|X∞| > λ} = {η <∞}. Since the martingale (ξη∧t)t≥0 is
bounded, we have e = Eξη. Now on the set {η < ∞} we have ξη = 2eλ+1; on the other

hand, on the complement {η =∞}, we have ξη = ξ∞ = 2 exp
(
X∞ ∨ 1

) (
|X∞|+1−X∞∨

1
)

= 0, by the de�nition of τ . Thus, we �nally obtain e = 2eλ+1P(η <∞), i.e.,

P(|X∞| > λ) = e−λ/2.

This yields the formula for X∗∞. �

It remains to note that for the martingale X constructed above, both sides of (1.4) are
equal. Indeed, we have

‖X∞‖p,q =

(∫ 1

0

(− ln(2s))q+s
q/p−1ds

)1/q

= 2−1/p (p/q)
(q+1)/q

Γ(q + 1)1/q

= 2−1/p (p/q)
(q+1)/q

Γ(q + 1)1/q‖X‖BMO,

which yields the desired sharpness.

Remark 4.2. There is a very natural question about the motivation for the formulas for
the special Young functions Φ and Ψ used above. The �rst observation is that if such
functions exist, then the intermediate bounds (2.4) and (2.5) should also be sharp. In
other words, we postulate the existence of a martingale X for which equality is attained
in both these estimates. Let us take a look at the �rst bound. If the equality holds there,
then both sides of (2.3), with u = X∗∞(s) and v = s, should also be equal. However, by a
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direct di�erentiation, the estimate (2.3) becomes an equality if quq−1vq/p−1 = Φ′(u), and
coming back to the nonincreasing rearrangement X∗∞, we obtain

(4.1) qX∗∞(s)q−1sq/p−1 = Φ′(X∗∞(s)).

Therefore, if we knew the explicit formula for the nonincreasing rearrangement X∗∞, this
would lead us to the derivative of Φ and hence also the function Φ itself; the formula for
the second function, Ψ, would then be immediate and would follow from the fact that
equality holds in (2.3) for u = X∗∞(s) and v = s.

So, all we need is the explicit formula for X∗∞; here the second inequality (2.5) comes
into play. After some thought and a little experimentation, one comes up with the
exemplary martingale X presented above. Actually, the same martingale yields equality
in (1.3) for p ≥ 2. Plugging the identity X∗∞(s) = (− ln(2s))+ into (4.1), we obtain the
functions Φ and Ψ de�ned at the beginning of Section 3.

We should point out here that the assumption p ≥ q ≥ 2 is essential here: without
this condition, we still obtain the function Φ, but then the associated Bellman function
does not have the required local concavity (see the end of proof of Lemma 3.2). In other
words, roughly speaking, we either lose too much when splitting (1.4) into (2.4) and (2.5)
(i.e., one should make the passage in one step), or the above exemplary X is not the right
choice.
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