"The tragedy of the commons" in the dynamic context

Agnieszka Wiszniewska-Matyszkiel

agnese@mimuw.edu.pl

UNIVERSITY OF WARSAW

Faculty of Mathematics, Informatics and Mechanics
Institute of Applied Mathematics and Mechanics

Kolokwium Wydziałowe MIM UW
11 March 2021
The tragedy of the commons

Agnieszka Wiszniewska-Matyszkiel

Games
Nash eq.
Stackelberg eq.
Pareto opt.
Example-static
The tragedy

Dynamic games
A simple model
Objectives

Bellman
Revised sufficient condition

Social optimum
Nash equilibrium
Nash equilibria for \(n \) players
Finite horizon truncation

Enforcing optimality
Carrying capacity

Numerics

Continuous time
Conclusions
The tragedy of the commons in the dynamic context

Agnieszka Wiszniewska-Matyszkiel

Games
Nash eq.
Stackelberg eq.
Pareto opt.
Example-static
The tragedy

Dynamic games
A simple model
Objectives

Bellman
Revised sufficient condition

Social optimum
Nash equilibrium
Nash equilibria for \(n \) players
Finite horizon truncation

Enforcing optimality
Carrying capacity
Numerics
Continuous time
Conclusions

Extraction of a common fishery
The motivating example

Extraction of a common fishery with possibility of extinction, division into Exclusive Economic Zones
The motivating example

Extraction of a common fishery with possibility of extinction, division into Exclusive Economic Zones and inherent constraints
The motivating example

Extraction of a common fishery with possibility of extinction, division into Exclusive Economic Zones and inherent constraints with possibility to model many fishermen.
The motivating example

Extraction of a common fishery with possibility of extinction, division into Exclusive Economic Zones and inherent constraints with possibility to model many fishermen by the simplest possible model.
What is the game?

- Any situation of **decision making** by at least two **agents**
What is the game?

- Any situation of decision making by at least two agents (called players),
What is the game?

- Any situation of **decision making** by at least two **agents** (called **players**), each of them having his/her own aim
What is the game?

- Any situation of **decision making** by at least two **agents** (called **players**), each of them having his/her own aim (represented by **maximization** of his/her **payoff**),
What is the game?

- Any situation of decision making by at least two agents (called players), each of them having his/her own aim (represented by maximization of his/her payoff), with the realization of that aim influenced by the other’s choices (the payoff is a function of the whole strategy profile –
What is the game?

- Any situation of decision making by at least two agents (called players), each of them having his/her own aim (represented by maximization of his/her payoff), with the realization of that aim influenced by the other’s choices (the payoff is a function of the whole strategy profile – choice of strategies of all players).
What is the game?

- Any situation of decision making by at least two agents (called players), each of them having his/her own aim (represented by maximization of his/her payoff), with the realization of that aim influenced by the other’s choices (the payoff is a function of the whole strategy profile – choice of strategies of all players).

- At least 2 agents + sets to choose from + aim + interaction.
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \(\mathcal{I} \) (usually finite or a continuum), players’ sets of available strategies \(\mathcal{S}_i \), and player’s payoff functions \(J_i \).
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \(\mathbb{I} \) (usually finite or a continuum), players’ sets of available strategies \(S_i \) and player’s payoff functions \(J_i \).

- The payoff functions are defined on the set of strategy profiles, i.e. \(S = \times_{i \in \mathbb{I}} S_i \).
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \mathbb{I} (usually finite or a continuum), players’ sets of available strategies S_i and player’s payoff functions J_i.
- The payoff functions are defined on the set of strategy profiles, i.e. $S = \times_{i \in \mathbb{I}} S_i$.
- With auxiliary notation $[S_i, \tilde{S}_{\sim i}]$ to denote the profile of strategies \tilde{S} with strategy of player i replaced by S_i we define Nash equilibrium.
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \(\mathbb{I} \) (usually finite or a continuum), players’ sets of available strategies \(S_i \) and player’s payoff functions \(J_i \).

- The payoff functions are defined on the set of strategy profiles, i.e. \(S = \times_{i \in \mathbb{I}} S_i \).

- With auxiliary notation \([S_i, \bar{S}_i]\) to denote the profile of strategies \(\bar{S} \) with strategy of player \(i \) replaced by \(S_i \) we define Nash equilibrium.

- A strategy profile \(\bar{S} \) is a Nash equilibrium iff for all \(i \in \mathbb{I} \)
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \mathcal{I} (usually finite or a continuum), players’ sets of available strategies S_i and player’s payoff functions J_i.
- The payoff functions are defined on the set of strategy profiles, i.e. $S = \prod_{i \in \mathcal{I}} S_i$.
- With auxiliary notation $[S_i, \bar{S}_{\sim i}]$ to denote the profile of strategies \bar{S} with strategy of player i replaced by S_i we define Nash equilibrium.
- A strategy profile \bar{S} is a Nash equilibrium iff for all $i \in \mathcal{I}$ (a.e. for the continuum of players case) $J_i(\bar{S}_i) \geq J_i([s_i, \bar{S}_{\sim i}])$ for every $s_i \in S_i$.
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \(\mathbb{I} \) (usually finite or a continuum), players’ sets of available strategies \(S_i \) and player’s payoff functions \(J_i \).
- The payoff functions are defined on the set of strategy profiles, i.e. \(S = \times_{i \in \mathbb{I}} S_i \).
- With auxiliary notation \([S_i, \bar{S}_{\sim i}]\) to denote the profile of strategies \(\bar{S} \) with strategy of player \(i \) replaced by \(S_i \) we define Nash equilibrium.
- A strategy profile \(\bar{S} \) is a Nash equilibrium iff for all \(i \in \mathbb{I} \) (a.e. for the continuum of players case) \(J_i(\bar{S}_i) \geq J_i([s_i, \bar{S}_{\sim i}]) \) for every \(s_i \in S_i \)
- i.e. every player maximizes payoff given the strategies of the other players
A short introduction to game theory

- A game in strategic form is defined by a triple: the set of players \mathbb{I} (usually finite or a continuum), players’ sets of available strategies S_i and player’s payoff functions J_i.

- The payoff functions are defined on the set of strategy profiles, i.e. $S = \times_{i \in \mathbb{I}} S_i$.

- With auxiliary notation $[S_i, \bar{S}_{\sim i}]$ to denote the profile of strategies \bar{S} with strategy of player i replaced by S_i we define Nash equilibrium.

- A strategy profile \bar{S} is a Nash equilibrium iff for all $i \in \mathbb{I}$ (a.e. for the continuum of players case)

 $J_i(\bar{S}_i) \geq J_i([s_i, \bar{S}_{\sim i}])$ for every $s_i \in S_i$

 i.e. every player maximizes payoff given the strategies of the other players

 or best responds to the strategies of the others.
A short introduction to game theory cont.

- We can write it as a fixed point of the following multivalued correspondence $B : \mathcal{S} \rightarrow \mathcal{S}$, called the best response correspondence defined by

$$B_i(S) = \text{Argmax}_{s_i \in \mathcal{S}_i} J_i([s_i, S_{-i}]).$$
A short introduction to game theory cont.

- We can write it as a fixed point of the following multivalued correspondence $B : S \rightarrow S$, called the best response correspondence defined by $B_i(S) = \text{Argmax}_{s_i \in S_i} J_i([s_i, S_{\sim i}])$. (In fact, B_i depends nontrivially only on $S_{\sim i}$, so we are going to abuse notation sometimes and write $B_i(S_{\sim i})$ if needed.)
- A profile \bar{S} is a Nash equilibrium iff $\bar{S} \in B(\bar{S})$.

A short introduction to game theory cont.

- We can write it as a fixed point of the following multivalued correspondence $B : \mathcal{S} \rightarrow \mathcal{S}$, called the best response correspondence defined by $B_i(S) = \text{Argmax}_{s_i \in \mathcal{S}_i} J_i([s_i, S_{\sim i}])$. (In fact, B_i depends nontrivially only on $S_{\sim i}$, so we are going to abuse notation sometimes and write $B_i(S_{\sim i})$ if needed.)
- A profile \tilde{S} is a Nash equilibrium iff $\tilde{S} \in B(\tilde{S})$.
- So, calculation of a Nash equilibrium requires solving a set of optimization problems in players’ strategy spaces.
A short introduction to game theory cont.

- We can write it as a fixed point of the following multivalued correspondence $B : \mathcal{S} \rightrightarrows \mathcal{S}$, called the best response correspondence defined by
 $$B_i(S) = \arg\max_{s_i \in S_i} J_i([s_i, S_{\sim i}]).$$
 (In fact, B_i depends nontrivially only on $S_{\sim i}$, so we are going to abuse notation sometimes and write $B_i(S_{\sim i})$ if needed.)

- A profile \bar{S} is a Nash equilibrium iff $\bar{S} \in B(\bar{S})$.

- So, calculation of a Nash equilibrium requires solving a set of optimization problems in players’ strategy spaces coupled by finding a fixed point of the resulting best response correspondence in the space of strategy profiles.
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a **Stackelberg equilibrium**.
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.
What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

A profile \(\bar{S} \) is a Stackelberg equilibrium iff there exists a selection \(b_2 \in B_2 \) such that \(\bar{S}_2 \in b_2(\bar{S}_1) \).
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

- A profile \bar{S} is a Stackelberg equilibrium iff there exists a selection $b_2 \in B_2$ such that $\bar{S}_2 \in b_2(\bar{S}_1)$ and $\bar{S}_1 \in \text{Argmax} J_1(S_1, b_2(S_1))$.

$S_1 \in S_1$
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

- A profile \bar{S} is a Stackelberg equilibrium iff there exists a selection $b_2 \in B_2$ such that $\bar{S}_2 \in b_2(\bar{S}_1)$ and $\bar{S}_1 \in \text{Argmax } J_1(S_1, b_2(S_1)).

- A nested optimization!
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

- A profile \bar{S} is a Stackelberg equilibrium iff there exists a selection $b_2 \in B_2$ such that $\bar{S}_2 \in b_2(\bar{S}_1)$ and $\bar{S}_1 \in \text{Argmax} J_1(S_1, b_2(S_1))$.

- A nested optimization!

- For more than two players there may be different level of hierarchy or some players at the same level:
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

- A profile \tilde{S} is a Stackelberg equilibrium iff there exists a selection $b_2 \in B_2$ such that $\tilde{S}_2 \in b_2(\tilde{S}_1)$ and $\tilde{S}_1 \in \text{Argmax}_{S_1} J_1(S_1, b_2(S_1)).$

- A nested optimization!

- For more than two players there may be different level of hierarchy or some players at the same level: e.g. a leader and many followers playing Nash between them given the leader’s strategy (and the leader knows it and takes into its calculation).
A short introduction to game theory cont. 2

- What if players either do choose their strategies sequentially, there is a hierarchy or one of them has informational advantage (i.e. s/he can calculate the best response function of the other player or players). Then, instead of Nash, we consider a Stackelberg equilibrium.

- For two players: the first mover/better informed/higher in hierarchy player 1 – the leader, the other, player 2, behaving as at a Nash equilibrium – the follower.

- A profile \tilde{S} is a Stackelberg equilibrium iff there exists a selection $b_2 \in B_2$ such that $\tilde{S}_2 \in b_2(\tilde{S}_1)$ and $\tilde{S}_1 \in \text{Argmax}_{S_1} J_1(S_1, b_2(S_1))$.

- A nested optimization!

- For more than two players there may be different level of hierarchy or some players at the same level: e.g. a leader and many followers playing Nash between them given the leader’s strategy (and the leader knows it and takes into its calculation). So, an optimization nested with a set of optimizations coupled by a fixed point...
We are also interested in **Pareto optimal profiles**, i.e., profiles \bar{S} such that there exists no profile S with

- $J_i(S) \geq J_i(\bar{S})$ for all i
A short introduction to game theory cont. 3

- We are also interested in **Pareto optimal profiles**, i.e. profiles \bar{S} such that there exists no profile S with
 - $J_i(S) \geq J_i(\bar{S})$ for all i (a.e. for the continuum of players)
We are also interested in **Pareto optimal profiles**, i.e. profiles \(\bar{S} \) such that there exists no profile \(S \) with

- \(J_i(S) \geq J_i(\bar{S}) \) for all \(i \) (a.e. for the continuum of players)
- \(J_i(S) > J_i(\bar{S}) \) for some \(i \)
We are also interested in **Pareto optimal profiles**, i.e. profiles \tilde{S} such that there exists no profile S with
- $J_i(S) \geq J_i(\tilde{S})$ for all i (a.e. for the continuum of players)
- and $J_i(S) > J_i(\tilde{S})$ for some i (in a set of positive measure for the continuum of players).
A short introduction to game theory cont. 3

- We are also interested in **Pareto optimal profiles**, i.e. profiles \bar{S} such that there exists no profile S with
 - $J_i(S) \geq J_i(\bar{S})$ for all i (a.e. for the continuum of players)
 - and $J_i(S) > J_i(\bar{S})$ for some i (in a set of positive measure for the continuum of players).

- If the payoffs are monetary (and side payments are possible) then the most obvious Pareto optimal profile is the profile which maximizes $\sum_{i \in I} \frac{J_i(S)}{\#I}$.
We are also interested in Pareto optimal profiles, i.e. profiles \(\bar{S} \) such that there exists no profile \(S \) with

- \(J_i(S) \geq J_i(\bar{S}) \) for all \(i \) (a.e. for the continuum of players)
- and \(J_i(S) > J_i(\bar{S}) \) for some \(i \) (in a set of positive measure for the continuum of players).

If the payoffs are monetary (and side payments are possible) then the most obvious Pareto optimal profile is the profile which maximizes \(\sum_{i \in \mathbb{I}} \frac{J_i(S)}{\# \mathbb{I}} \) (or its continuous equivalent for the continuum of players).
A short introduction to game theory cont. 3

- We are also interested in Pareto optimal profiles, i.e. profiles \bar{S} such that there exists no profile S with
 - $J_i(S) \geq J_i(\bar{S})$ for all i (a.e. for the continuum of players)
 - and $J_i(S) > J_i(\bar{S})$ for some i (in a set of positive measure for the continuum of players).

- If the payoffs are monetary (and side payments are possible) then the most obvious Pareto optimal profile is the profile which maximizes $\sum_{i \in \mathbb{I}} \frac{J_i(S)}{\# \mathbb{I}}$ (or its continuous equivalent for the continuum of players). We call such a profile the social optimum.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$. So, $J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1$, J_2 analogously.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$. So, $J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1$, J_2 analogously.

- The best response correspondences $B_1(S_2) = \text{Argmax}(100 - (S_1 + S_2))S_1 - 10S_1 = \left\{ \frac{90 - S_2}{2} \right\}$, $B_2(S_1)$ analogously.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$. So, $J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1$, J_2 analogously.

- The best response correspondences $B_1(S_2) = \text{Argmax}_{S_1 \geq 0} (100 - (S_1 + S_2))S_1 - 10S_1 = \left\{ \frac{90 - S_2}{2} \right\}$, $B_2(S_1)$ analogously.

- The Nash equilibrium given by $\begin{cases} S_1 = \frac{90 - S_2}{2}, \\ S_2 = \frac{90 - S_1}{2} \end{cases}$.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$. So, $J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1$, J_2 analogously.

- The best response correspondences $B_1(S_2) = \text{Argmax}_{S_1 \geq 0} (100 - (S_1 + S_2))S_1 - 10S_1 = \left\{ \frac{90-S_2}{2} \right\}$, $B_2(S_1)$ analogously.

- The Nash equilibrium given by $\begin{cases} S_1 = \frac{90-S_2}{2} \\ S_2 = \frac{90-2S_1}{2} \end{cases}$. So, $S_1 = S_2 = 30$ with price 40.
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, \(S_i = \mathbb{R}_+ \), linear costs of fishing \(10S_i \), price dependent on the amount of fish on the market \(100 - (S_1 + S_2) \). So,

\[
J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1, \quad J_2
\]

analogously.

- The best response correspondences

\[
B_1(S_2) = \underset{S_1 \geq 0}{\text{Argmax}} (100 - (S_1 + S_2))S_1 - 10S_1 = \left\{ \frac{90 - S_2}{2} \right\},
\]

\[
B_2(S_1) \text{ analogously.}
\]

- The Nash equilibrium given by

\[
\begin{aligned}
S_1 &= \frac{90 - S_2}{2}, \\
S_2 &= \frac{90 - S_1}{2}.
\end{aligned}
\]

So,

\(S_1 = S_2 = 30 \) with price 40.

- The social optimum

\[
\begin{aligned}
\text{Argmax} & (100 - (S_1 + S_2))S_1 - 10S_1 + (100 - (S_1 + S_2))S_2 - 10S_2 \equiv ((S_1, S_2) : S_1 + S_2 = 45), \text{ price 55.}
\end{aligned}
\]
Example: a static fishery in an unconstrained word

- A fishery with two identical fishing firms, $S_i = \mathbb{R}_+$, linear costs of fishing $10S_i$, price dependent on the amount of fish on the market $100 - (S_1 + S_2)$. So,
 \[J_1(S_1, S_2) = (100 - (S_1 + S_2))S_1 - 10S_1, \]
 J_2 analogously.

- The best response correspondences
 \[B_1(S_2) = \operatorname{Argmax}_{S_1 \geq 0} (100 - (S_1 + S_2))S_1 - 10S_1 = \left\{ \frac{90 - S_2}{2} \right\}, \]
 \[B_2(S_1) \] analogously.

- The Nash equilibrium given by
 \[
 \begin{cases}
 S_1 = \frac{90 - S_2}{2} \\
 S_2 = \frac{90 - S_1}{2}
 \end{cases}
 \]
 So, $S_1 = S_2 = 30$ with price 40.

- The social optimum
 \[
 \operatorname{Argmax}_{S_1, S_2 \geq 0} (100 - (S_1 + S_2))S_1 - 10S_1 + (100 - (S_1 + S_2))S_2 - 10S_2 = \{(S_1, S_2) : S_1 + S_2 = 45\}, \]
 price 55. So, if additionally, $S_1 = S_2$, then higher profits for both.
Example: a static fishery cont.

- The Stackelberg equilibrium: After calculating $B_2(S_1)$, the leader optimizes

$$S_1 \in \text{Argmax}\left(100 - \left(S_1 + \frac{90-S_1}{2}\right)\right)S_1 - 10S_1 = 45.$$
Example: a static fishery cont.

- The **Stackelberg equilibrium**: After calculating $B_2(S_1)$, the leader optimizes

\[
S_1 \in \text{Argmax}(100 - \left(S_1 + \frac{90 - S_1}{2} \right))S_1 - 10S_1 = 45.
\]

\[
S_1 \geq 0
\]

\[
S_2 = \frac{90 - S_1}{2} = 22.5.
\]
Example: a static fishery cont.

- The **Stackelberg equilibrium**: After calculating $B_2(S_1)$, the leader optimizes

 $$S_1 \in \text{Argmax} \left(100 - \left(S_1 + \frac{90 - S_1}{2} \right) \right) S_1 - 10S_1 = 45.$$

 $$S_2 = \frac{90 - S_1}{2} = 22.5.$$ Price 32.5.
Example: a static fishery cont.

- The **Stackelberg equilibrium**: After calculating $B_2(S_1)$, the leader optimizes
 \[
 S_1 \in \text{Argmax}\left(100 - \left(S_1 + \frac{90-S_1}{2}\right)\right)S_1 - 10S_1 = 45.
 \]
 \[
 S_1 \geq 0
 \]
 \[
 S_2 = \frac{90-S_1}{2} = 22.5. \text{ Price 32.5.}
 \]
- The leader extracts more than at a Nash equilibrium and gets more payoff that at the symmetric cooperative solution and it makes the follower extract as in the symmetric cooperative solution and get less payoff than at Nash.
- That may be only the matter of informational advantage and kindly informing the follower about the resulting choice!
"The tragedy of the commons"

- Philosophically:

§ Philosophically:

- The logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat...

- § In games related to extraction of common (or interrelated) resources: the fact that the social optimum is not a Nash equilibrium and a/the Nash equilibrium (often unique) is not Pareto optimal and it yields payoffs smaller for all players than the social optimum.

- § Usually solved by enforcement: changing a game by adding a benevolent social planner – a Stackelberg leader modifying payoffs of the rest of the players by e.g. a tax in order that the previous social optimum is a Nash equilibrium given his strategy.
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species),
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon"
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat...
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat... and who is going to control the wardens...
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat... and who is going to control the wardens...

- In games related to extraction of common (or interrelated) resources: the fact that the social optimum is not a Nash equilibrium
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat... and who is going to control the wardens...

- In games related to extraction of common (or interrelated) resources: the fact that the social optimum is not a Nash equilibrium and a/the Nash equilibrium (often unique) is not Pareto optimal and
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat... and who is going to control the wardens...

- In games related to extraction of common (or interrelated) resources: the fact that the social optimum is not a Nash equilibrium and a/the Nash equilibrium (often unique) is not Pareto optimal and it yields payoffs smaller for all players than the social optimum.
"The tragedy of the commons"

- Philosophically: (Hardin 1968) the logic of pursuing individual benefit in commons without constraints results in overexploitation (and sometimes extinction of the harvested species), and it is worse for everybody compared to the result of "mutual coercion, mutually agreed upon" but even then there is a temptation to cheat... and who is going to control the wardens...

- In games related to extraction of common (or interrelated) resources: the fact that the social optimum is not a Nash equilibrium and a/the Nash equilibrium (often unique) is not Pareto optimal and it yields payoffs smaller for all players than the social optimum.

- Usually solved by enforcement: changing a game by adding a benevolent social planner – a Stackelberg leader modifying payoffs of the rest of the players by e.g. a tax in order that the previous social optimum is a Nash equilibrium given his strategy.
"The tragedy of the commons" – where?

- common or interrelated fisheries,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
- space debris,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
- space debris,
- congestion of frequencies,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
- space debris,
- congestion of frequencies,
- congestion of earth,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gases emission,
- air and water pollution,
- space debris,
- congestion of frequencies,
- congestion of earth,
- antimicrobial resistance problem,
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
- space debris,
- congestion of frequencies,
- congestion of earth,
- antimicrobial resistance problem,
- human behaviour concerning e.g. wearing masks during current epidemics.

But they all are dynamic problems!
"The tragedy of the commons" – where?

- common or interrelated fisheries,
- the greenhouse gasses emission,
- air and water pollution,
- space debris,
- congestion of frequencies,
- congestion of earth,
- antimicrobial resistance problem,
- human behaviour concerning e.g. wearing masks during current epidemics.

But they all are dynamic problems!
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in \mathbb{X}$.

Games
- Nash eq.
- Stackelberg eq.
- Pareto opt.
- Example-static
- The tragedy

Dynamic games
- A simple model
- Objectives
- Bellman
 - Revised sufficient condition
- Social optimum
- Nash equilibrium
 - Nash equilibria for n players
 - Finite horizon truncation
- Enforcing optimality
- Carrying capacity
- Numerics
- Continuous time
- Conclusions
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in \mathbb{X}$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set \mathcal{D}_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in X$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set D_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.
Dynamic games

- Dynamic games are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in X$.
- Strategies are functions which describe what to do, i.e. which decision from a decision set D_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.
- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.
- while the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.
Dynamic games

- **Dynamic games** are games played over time set T, continuous or discrete, finite or infinite, with additional state variable $x \in X$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set D_i to choose at each time instant in T. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.

- while the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.

- Like in optimal control, strategies can be open loop (functions of time, initial condition fixed)
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in \mathbb{X}$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set \mathcal{D}_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.

- While the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.

- Like in optimal control, strategies can be open loop (functions of time, initial condition fixed), feedback (function of state)
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in X$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set D_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.

- While the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.

- Like in optimal control, strategies can be open loop (functions of time, initial condition fixed), feedback (function of state or state and time, initial condition arbitrary),
Dynamic games

- **Dynamic games** are games played over time set \mathbb{T}, continuous or discrete, finite or infinite, with additional state variable $x \in \mathbb{X}$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set \mathcal{D}_i to choose at each time instant in \mathbb{T}. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.

- While the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.

- Like in optimal control, strategies can be open loop (functions of time, initial condition fixed), feedback (function of state or state and time, initial condition arbitrary), history-dependent...
Dynamic games

- **Dynamic games** are games played over time set T, continuous or discrete, finite or infinite, with additional state variable $x \in X$.

- Strategies are functions which describe what to do, i.e. which decision from a decision set D_i to choose at each time instant in T. At least measurability needed in continuous time.

- The trajectory of the state variable for discrete time is defined by the strategy profile using a difference/differential equation.

- While the payoff is the sum/integral of discounted current payoffs plus a terminal payoff.

- Like in optimal control, strategies can be open loop (functions of time, initial condition fixed), feedback (function of state or state and time, initial condition arbitrary), history-dependent... depending on information structure considered.
Dynamic games – surprise 1

- Unlike in optimal control, information structure matters!
Dynamic games – surprise 1

- Unlike in optimal control, information structure matters! Usually open loop and feedback Nash equilibria do not lead to the same state trajectories!
Dynamic games – surprise 1

- Unlike in optimal control, information structure matters! Usually open loop and feedback Nash equilibria do not lead to the same state trajectories!

For the hare slightly slower than the wolf no open loop Nash equilibrium while quite obvious feedback Nash equilibrium.

- Open loop Nash equilibria do not have good properties
Dynamic games – surprise 1

- Unlike in optimal control, information structure matters! Usually open loop and feedback Nash equilibria do not lead to the same state trajectories!

For the hare slightly slower than the wolf no open loop Nash equilibrium while quite obvious feedback Nash equilibrium.

- Open loop Nash equilibria do not have good properties: if one player makes an error at one time instant, the suboptimal solution path is further chosen or the new solution has to be recalculated.
Dynamic games – surprise 1

- Unlike in optimal control, **information structure matters**! Usually open loop and feedback Nash equilibria do not lead to the same state trajectories!

For the hare slightly slower than the wolf no open loop Nash equilibrium while quite obvious feedback Nash equilibrium.

- Open loop Nash equilibria do not have good properties: if one player makes an error at one time instant, the suboptimal solution path is further chosen or the new solution has to be recalculated.

- Feedback Nash equilibria are resilient to such errors - this is called **subgame perfection**.
Dynamic games – surprise 1

- Unlike in optimal control, **information structure matters**! Usually open loop and feedback Nash equilibria do not lead to the same state trajectories!

For the hare slightly slower than the wolf no open loop Nash equilibrium while quite obvious feedback Nash equilibrium.

- Open loop Nash equilibria do not have good properties: if one player makes an error at one time instant, the suboptimal solution path is further chosen or the new solution has to be recalculated.

- Feedback Nash equilibria are resilient to such errors - this is called **subgame perfection**.
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems.
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces.
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).
- The choice of information structure determines the choice of the solution method.

Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).

The choice of information structure determines the choice of the solution method.
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).

- The choice of information structure determines the choice of the solution method: a coupled set of Bellman/Hamilton-Jacobi-Bellman equations (for feedback) vs a coupled set of necessary conditions given by KKT multipliers or Pontryagin Maximum Principle (for open loop).
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).
- The choice of information structure determines the choice of the solution method: a coupled set of Bellman/Hamilton-Jacobi-Bellman equations (for feedback) vs a coupled set of necessary conditions given by KKT multipliers or Pontryagin Maximum Principle (for open loop). Generally they yield different results!
Dynamic games cont.

- Finding a Nash equilibrium requires solving a set of parametrized optimal control problems with parameters in the feedback strategy spaces coupled by finding a fixed point of the resulting best response correspondence (in the space of strategy profiles).

- The choice of information structure determines the choice of the solution method: a coupled set of Bellman/Hamilton-Jacobi-Bellman equations (for feedback) vs a coupled set of necessary conditions given by KKT multipliers or Pontryagin Maximum Principle (for open loop). Generally they yield different results!

- For some problems with a continuum of players, also a decomposition method (introduced and developed in A. Wiszniewska-Matyszkiewicz: Positivity 2002, C& C 2003, IGTR 2002, 2003, JOTA 2014) can be used and the results for open loop and feedback are equivalent in a wider class of problems (JOTA 2014).
Definition of feedback Stackelberg equilibrium is not straightforward – "the best response to every strategy of the leader" – is not a well posed problem!
Dynamic games – surprise 2

- Definition of feedback Stackelberg equilibrium is not straightforward – ”the best response to every strategy of the leader” – is not a well posed problem!
- There are various generalizations.
Definition of feedback Stackelberg equilibrium is not straightforward – ”the best response to every strategy of the leader” – is not a well posed problem!

There are various generalizations. Some of them are not subgame perfect, some of them may result in a need to recalculate the leader’s strategy during the game (and, consequently the follower’s).
The complexity of the problem results in the fact that we still do not know much about equilibria of dynamic games in feedback form.
The complexity of the problem results in the fact that we still do not know much about equilibria of dynamic games in feedback form.

- **Linear quadratic dynamic games (LQDG)** with linear state equation and quadratic current and terminal payoffs are most extensively studied (besides fully linear games) and have good economic interpretation.
Dynamic games cont.2

- The complexity of the problem results in the fact that we still do not know much about equilibria of dynamic games in feedback form.

- **Linear quadratic dynamic games (LQDG)** with linear state equation and quadratic current and terminal payoffs are most extensively studied (besides fully linear games) and have good economic interpretation.

- So, let’s add the inherent constraints to LQDG and we will have a nice model, with quite standard and nice results.
"The tragedy" in a simple model – the motivating example revisited

"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \(\mathbb{R}_+ \).
"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \mathbb{R}_+.
- **Discrete time, infinite horizon (first).**
"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \mathbb{R}_+.
- Discrete time, infinite horizon (first).
- At each time moment, player i extracts amount $s_i \geq 0$, these s_i, in common, constitute a static profile s.
'The tragedy” in a simple model – the motivating example revisited

- The set of states of the resource is \(\mathbb{R}_+ \).
- **Discrete time, infinite horizon (first).**
- At each time moment, player \(i \) extracts amount \(s_i \geq 0 \), these \(s_i \), in common, constitute a static profile \(s \).
- **Constraint**: given state \(x \), the decisions have to fulfil \(s_i \in [0, cx] \).
"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \mathbb{R}_+.
- **Discrete time, infinite horizon (first).**
- At each time moment, player i extracts amount $s_i \geq 0$, these s_i, in common, constitute a static profile s.
- **Constraint**: given state x, the decisions have to fulfil $s_i \in [0, cx]$.
- Each of the players has **cost function** $\text{cost}(s_i) = fs_i + \frac{1}{2}s_i^2$.

"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \(\mathbb{R}_+ \).

- **Discrete time, infinite horizon (first).**

- At each time moment, player \(i \) extracts amount \(s_i \geq 0 \), these \(s_i \), in common, constitute a static profile \(s \).

- **Constraint**: given state \(x \), the decisions have to fulfil \(s_i \in [0, cx] \).

- Each of the players has **cost function** \(\text{cost}(s_i) = fs_i + \frac{1}{2}s_i^2 \).

- The catch is sold at a **common market**.
"The tragedy" in a simple model – the motivating example revisited

- The set of states of the resource is \mathbb{R}_+.
- **Discrete time, infinite horizon (first).**
- At each time moment, player i extracts amount $s_i \geq 0$, these s_i, in common, constitute a static profile s.
- **Constraint**: given state x, the decisions have to fulfil $s_i \in [0, cx]$.
- Each of the players has **cost function** $\text{cost}(s_i) = fs_i + \frac{1}{2}s_i^2$.
- The catch is sold at a **common market at a price** $\text{price}(s) = A - u$,
"The tragedy” in a simple model – the motivating example revisited

- The set of states of the resource is \(\mathbb{R}_+ \).

- Discrete time, infinite horizon (first).

- At each time moment, player \(i \) extracts amount \(s_i \geq 0 \), these \(s_i \), in common, constitute a static profile \(s \).

- Constraint: given state \(x \), the decisions have to fulfil \(s_i \in [0, cx] \).

- Each of the players has cost function
 \[
 \text{cost}(s_i) = fs_i + \frac{1}{2}s_i^2 .
 \]

- The catch is sold at a common market at a price
 \[
 \text{price}(s) = A - u ,
 \]
 where \(u \) is the aggregate extraction of \(s \).
”The tragedy” in a simple model – the motivating example revisited

- The set of states of the resource is \mathbb{R}_+.

- Discrete time, infinite horizon (first).

- At each time moment, player i extracts amount $s_i \geq 0$, these s_i, in common, constitute a static profile s.

- Constraint: given state x, the decisions have to fulfil $s_i \in [0, cx]$.

- Each of the players has cost function $\text{cost}(s_i) = fs_i + \frac{1}{2}s_i^2$.

- The catch is sold at a common market at a price $\text{price}(s) = A - u$, where u is the aggregate extraction of s.

- Aggregate extraction influences also the state of the resource.
The model – cont.

- Increasing number of players does not mean introducing additional users,
The model – cont.

- Increasing number of players does not mean introducing additional users,
- but decomposing the decision making structure
• Increasing number of players does not mean introducing additional users,

• but decomposing the decision making structure (the whole world – . . . – continents – countries – . . . – firms).
The model – cont.

- Increasing number of players does not mean introducing additional users,
- but decomposing the decision making structure (the whole world – ... – continents – countries – ... – firms).
Increasing number of players does not mean introducing additional users,

but decomposing the decision making structure (the whole world – . . . – continents – countries – . . . – firms).
The model – cont.

- Increasing number of players does not mean introducing additional users,
- but decomposing the decision making structure (the whole world – … – continents – countries – … – firms).

"The tragedy of the commons" in the dynamic context

Agnieszka Wiszniewska-Matyszkiel

Games
Nash eq.
Stackelberg eq.
Pareto opt.
Example-static
The tragedy
Dynamic games
A simple model
Objectives
Bellman
Revised sufficient condition
Social optimum
Nash equilibrium
Nash equilibria for n players
Finite horizon truncation
Enforcing optimality
Carrying capacity
Numerics
Continuous time
Conclusions
Increasing number of players does not mean introducing additional users,

but decomposing the decision making structure (the whole world – … – continents – countries – … – firms).
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$.
The model – cont.2

- To model this, the set of players \mathbb{I} is \{1, \ldots, n\} or [0, 1]
- and players are measured by the uniform normalized measure on each \mathbb{I}.
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$.
- and players are measured by the uniform normalized measure on each \mathbb{I}.
- Consequently, the aggregate extraction $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players.
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$
- and players are measured by the uniform normalized measure on each \mathbb{I}.
- Consequently, the aggregate extraction

 $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players
 and $u = \int_{[0,1]} s_i d\lambda(i)$ (λ means the Lebesgue measure)
 in the case of continuum of players.
To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$ and players are measured by the uniform normalized measure on each \mathbb{I}.

Consequently, the aggregate extraction

$$u = \sum_{i=1}^{n} \frac{s_i}{n}$$

in the case of n players and

$$u = \int_{[0,1]} s_i d\lambda(i)$$

(λ means the Lebesgue measure) in the case of continuum of players.

Rule of growth with fishing

$$X_i(t + 1) = (1 + \xi)X(t) - U(t)$$

(generalized later).
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$
- and players are measured by the uniform normalized measure on each \mathbb{I}.
- Consequently, the aggregate extraction $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players and $u = \int_{[0,1]} s_i d\lambda(i)$ (λ means the Lebesgue measure) in the case of continuum of players.
- Rule of growth with fishing $X_i(t + 1) = (1 + \xi)X(t) - U(t)$ (generalized later).
- To make depletion possible, we set $c = (1 + \xi)$.
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$
- and players are measured by the uniform normalized measure on each \mathbb{I}.
- Consequently, the aggregate extraction

 $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players

 and $u = \int_{[0,1]}^{\infty} s_{i} d\lambda(i)$ (λ means the Lebesgue measure) in the case of continuum of players.
- Rule of growth with fishing

 $X_i(t+1) = (1 + \xi)X(t) - U(t)$ (generalized later).
- To make depletion possible, we set $c = (1 + \xi)$.
- Discounting by a discount factor $\beta = \frac{1}{1+\xi}$ (the golden rule).
To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$ and players are measured by the uniform normalized measure on each \mathbb{I}.

Consequently, the aggregate extraction
\[u = \sum_{i=1}^{n} \frac{s_i}{n} \] in the case of n players and
\[u = \int_{[0,1]} s_i d\lambda(i) \] (\(\lambda\) means the Lebesgue measure) in the case of continuum of players.

Rule of growth with fishing
\[X_i(t+1) = (1 + \xi)X(t) - U(t) \] (generalized later).

To make depletion possible, we set $c = (1 + \xi)$.

Discounting by a discount factor $\beta = \frac{1}{1+\xi}$ (the golden rule).

Current payoff of player i: $P_i(s) = \text{price}(s)s_i - \text{cost}(s_i)$
The model – cont.2

- To model this, the set of players I is $\{1, \ldots, n\}$ or $[0, 1]$
- and players are measured by the uniform normalized measure on each I.
- Consequently, the aggregate extraction $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players
 and $u = \int_{[0,1]} s_i d\lambda(i)$ (λ means the Lebesgue measure) in the case of continuum of players.
- Rule of growth with fishing
 $X_i(t+1) = (1 + \xi)X(t) - U(t)$ (generalized later).
- To make depletion possible, we set $c = (1 + \xi)$.
- Discounting by a discount factor $\beta = \frac{1}{1+\xi}$ (the golden rule).
- Current payoff of player i: $P_i(s) = \text{price}(s) s_i - \text{cost}(s_i)$ (auxiliary notation $P(s_i, u)$ or $P(s_i, s_{\sim i})$).
The model – cont.2

- To model this, the set of players \mathbb{I} is $\{1, \ldots, n\}$ or $[0, 1]$
- and players are measured by the uniform normalized measure on each \mathbb{I}.
- Consequently, the aggregate extraction $u = \sum_{i=1}^{n} \frac{s_i}{n}$ in the case of n players
 and $u = \int_{[0,1]} s_i d\lambda(i)$ (λ means the Lebesgue measure) in the case of continuum of players.
- Rule of growth with fishing
 $X_i(t+1) = (1 + \xi)X(t) - U(t)$ (generalized later).
- To make depletion possible, we set $c = (1 + \xi)$.
- Discounting by a discount factor $\beta = \frac{1}{1 + \xi}$ (the golden rule).
- Current payoff of player i: $P_i(s) = \text{price}(s)s_i - \text{cost}(s_i)$
 (auxiliary notation $P(s_i, u)$ or $P(s_i, s_{\sim i})$).
- So we have a linear-quadratic dynamic game with linear state-dependent constraints on controls.
Objectives

We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.

- The objective—payoff function of player i is

\[
J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t \text{ (for feedback controls).}
\]
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.
- The objective—payoff function of player i is

$$J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t \text{ (for feedback controls).}$$

- We want to calculate the social optima,
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.
- The objective—payoff function of player i is
 $$J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t$$ (for feedback controls).
- We want to calculate the social optima,
 - i.e. profiles which maximize aggregate payoff;
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.
- The objective—payoff function of player i is
 \[
 J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t
 \]
 (for feedback controls).
- We want to calculate the social optima,
 - i.e. profiles which maximize aggregate payoff;
- and Nash equilibria,
 - i.e. profiles at which each player maximizes their payoff given strategies of remaining players.
Objectives

- We consider feedback strategies—choices of decisions as functions of state, $S_i(x)$.
- The objective—payoff function of player i is
 \[J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t))) \beta^t \] (for feedback controls).
- We want to calculate the social optima,
 - i.e. profiles which maximize aggregate payoff;
- and Nash equilibria,
 - i.e. profiles at which each player maximizes their payoff given strategies of remaining players.
- Calculation of both require solving dynamic optimization problems.
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.

- The objective—payoff function of player i is

\[J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t \] (for feedback controls).

- We want to calculate the social optima,
 - i.e. profiles which maximize aggregate payoff;

- and Nash equilibria,
 - i.e. profiles at which each player maximizes their payoff given strategies of remaining players.

- Calculation of both require solving dynamic optimization problems.

- In the case of Nash equilibrium, a set of dynamic optimization problems.
Objectives

- We consider feedback strategies – choices of decisions as functions of state, $S_i(x)$.
- The objective—payoff function of player i is
 \[J_i(S) = \sum_{t=0}^{\infty} P_i(S(X(t)))\beta^t \] (for feedback controls).
- We want to calculate the social optima,
 - i.e. profiles which maximize aggregate payoff;
- and Nash equilibria,
 - i.e. profiles at which each player maximizes their payoff given strategies of remaining players.
- Calculation of both require solving dynamic optimization problems.
- In the case of Nash equilibrium, a set of dynamic optimization problems coupled by finding a fixed point in the space of feedback strategy profiles.
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\tilde{t}, \bar{x}, U) = \sum_{t=\tilde{t}}^{\infty} g(X(t), U(X(t), t), t) \delta^{t-\tilde{t}}$, where δ is the discount factor.
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\tilde{t}, \tilde{x}, U) = \sum_{t=\tilde{t}}^{\infty} g(X(t), U(X(t), t), t)\delta^{t-\tilde{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\bar{t}, \bar{x}, U) = \sum_{t=\bar{t}}^{\infty} g(X(t), U(X(t), t), t) \delta^{t-\bar{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\bar{t}) = \bar{x}$.
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\tilde{t}, \bar{x}, U) = \sum_{t=\tilde{t}}^{\infty} g(X(t), U(X(t), t), t)\delta^{t-\tilde{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\bar{t}) = \bar{x}$.
 - We assume $J(\tilde{t}, \bar{x}, U)$ is always well defined, although it can be $-\infty$.
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\bar{t}, \bar{x}, U) = \sum_{t=\bar{t}}^{\infty} g(X(t), U(X(t), t), t) \delta^{t-\bar{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\bar{t}) = \bar{x}$.
 - We assume $J(\bar{t}, \bar{x}, U)$ is always well defined, although it can be $-\infty$.

- If a function $V : X \times \mathbb{N} \rightarrow \mathbb{R}$ fulfils the Bellman equation:
 - $(BE) \ V(x, t) = \sup_{u \in U} g(x, u, t) + \delta \ V(f(x, u, t), t + 1)$
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\bar{t}, \bar{x}, U) = \sum_{t=\bar{t}}^{\infty} g(X(t), U(X(t), t), t)\delta^{t-\bar{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\bar{t}) = \bar{x}$.
 - We assume $J(\bar{t}, \bar{x}, U)$ is always well defined, although it can be $-\infty$.

- If a function $V : \mathbb{X} \times \mathbb{N} \rightarrow \mathbb{R}$ fulfils the Bellman equation:
 - (BE) $V(x, t) = \sup_{u \in U} g(x, u, t) + \delta V(f(x, u, t), t + 1)$ with the terminal condition:
 - (TC) for every trajectory X, $\limsup_{t \rightarrow \infty} V(X(t), t) \delta^t = 0$
Standard infinite horizon Bellman sufficient condition

For a dynamic optimization problem

- maximize $J(\tilde{t}, \bar{x}, U) = \sum_{t=\tilde{t}}^{\infty} g(X(t), U(X(t), t), t) \delta^{t-\tilde{t}}$,
- for X defined by $X(t+1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\tilde{t}) = \bar{x}$.
- We assume $J(\tilde{t}, \bar{x}, U)$ is always well defined, although it can be $-\infty$.

If a function $V : X \times \mathbb{N} \rightarrow \mathbb{R}$ fulfils the Bellman equation:

- \((\text{BE})\) $V(x, t) = \sup_{u \in \mathcal{U}} g(x, u, t) + \delta V(f(x, u, t), t + 1)$ with the terminal condition:
- \((\text{TC})\) for every trajectory X, $\limsup_{t \to \infty} V(X(t), t) \delta^t = 0$

then V is the value function of the dynamic optimization problem,
Standard infinite horizon Bellman sufficient condition

- For a dynamic optimization problem
 - maximize $J(\bar{t}, \bar{x}, U) = \sum_{t=\bar{t}}^{\infty} g(X(t), U(X(t), t), t)\delta^{t-\bar{t}}$,
 - for X defined by $X(t + 1) = f(X(t), U(X(t), t), t)$ with initial condition $X(\bar{t}) = \bar{x}$.
 - We assume $J(\bar{t}, \bar{x}, U)$ is always well defined, although it can be $-\infty$.

- If a function $V : \mathbb{X} \times \mathbb{N} \rightarrow \mathbb{R}$ fulfils the Bellman equation:
 - (BE) $V(x, t) = \sup_{u \in \mathbb{U}} g(x, u, t) + \delta \cdot V(f(x, u, t), t + 1)$ with the terminal condition:
 - (TC) for every trajectory X, $\limsup_{t \to \infty} V(X(t), t) \delta^t = 0$

- then V is the value function of the dynamic optimization problem, while any selection from the Argmax of the rhs. of the (BE) is an optimal control.
Revised sufficient condition

- (TC) can be replaced by
- (TC’)
 - (a) for every admissible trajectory X
 \[
 \limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0
 \]
Revised sufficient condition

- (TC) can be replaced by
- (TC’)
 - (a) for every admissible trajectory X
 $$\limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0$$
 - (b) and if $\limsup_{t \to \infty} V(X(t), t) \delta^t < 0$,
Revised sufficient condition

- (TC) can be replaced by
- (TC’)
 - (a) for every admissible trajectory X
 $$\limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0$$
 - (b) and if $\limsup_{t \to \infty} V(X(t), t) \delta^t < 0$, then $J(t, x, U) = -\infty$
 for every U such that trajectory X is corresponding to it.
Revised sufficient condition

- (TC) can be replaced by
- (TC’)
 - (a) for every admissible trajectory X
 $$\limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0$$
 - (b) and if $\limsup_{t \to \infty} V(X(t), t) \delta^t < 0$, then $J(t, x, U) = -\infty$
 for every U such that trajectory X is corresponding to it.

Revised sufficient condition

- \((\text{TC})\) can be replaced by
- \((\text{TC}')\)
 - (a) for every admissible trajectory \(X\)
 \[
 \limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0
 \]
 - (b) and if \(\limsup_{t \to \infty} V(X(t), t) \delta^t < 0\), then \(J(t, x, U) = -\infty\)
 for every \(U\) such that trajectory \(X\) is corresponding to it.

- (b) is necessary!
Revised sufficient condition

- **(TC)** can be replaced by
- **(TC’)**
 - **(a)** for every admissible trajectory X
 $$\limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0$$
 - **(b)** and if $\limsup_{t \to \infty} V(X(t), t) \delta^t < 0$, then $J(t, x, U) = -\infty$
 for every U such that trajectory X is corresponding to it.

- **(b)** is necessary! and **(a)** is also necessary under very week condition
Revised sufficient condition

> (TC) can be replaced by
> (TC’)
> (a) for every admissible trajectory X
> $\limsup_{t \to \infty} V(X(t), t) \delta^t \leq 0$
> (b) and if $\limsup_{t \to \infty} V(X(t), t) \delta^t < 0$, then $J(t, x, U) = -\infty$

for every U such that trajectory X is corresponding to it.

> (b) is necessary! and (a) is also necessary under very week condition

Social optimum

- The solution is symmetric.
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function $V(x) = hx^2 + gx + k$ (by undetermined coefficient method).
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function $V(x) = hx^2 + gx + k$ (by undetermined coefficient method).
- By considering the point of 0 derivative in rhs. of (BE), we obtain two possible h, negative or 0, then g (unique only for nonzero h) and, consequently, unique k.
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function \(V(x) = hx^2 + gx + k \) (by undetermined coefficient method).
- By considering the point of 0 derivative in rhs. of \((BE)\), we obtain two possible \(h \), negative or 0, then \(g \) (unique only for nonzero \(h \)) and, consequently, unique \(k \).
- Of all those solutions, only \(V(x) = hx^2 + gx \) with negative \(h \) solves \((BE)\) on the whole domain!
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function \(V(x) = hx^2 + gx + k \) (by undetermined coefficient method).
- By considering the point of 0 derivative in rhs. of (BE), we obtain two possible \(h \), negative or 0, then \(g \) (unique only for nonzero \(h \)) and, consequently, unique \(k \).
- Of all those solutions, only \(V(x) = hx^2 + gx \) with negative \(h \) solves (BE) on the whole domain!
- For this \(V \), the optimum of the rhs. of (BE) is \(\xi x \),
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function $V(x) = hx^2 + gx + k$ (by undetermined coefficient method).
- By considering the point of 0 derivative in rhs. of (BE), we obtain two possible h, negative or 0, then g (unique only for nonzero h) and, consequently, unique k.
- Of all those solutions, only $V(x) = hx^2 + gx$ with negative h solves (BE) on the whole domain!
- For this V, the optimum of the rhs. of (BE) is ξx,
- which results in constant state trajectory.
Social optimum

- The solution is symmetric.
- We solve the problem assuming quadratic value function \(V(x) = hx^2 + gx + k \) (by undetermined coefficient method).
- By considering the point of 0 derivative in rhs. of (BE), we obtain two possible \(h \), negative or 0, then \(g \) (unique only for nonzero \(h \)) and, consequently, unique \(k \).
- Of all those solutions, only \(V(x) = hx^2 + gx \) with negative \(h \) solves (BE) on the whole domain!
- For this \(V \), the optimum of the rhs. of (BE) is \(\xi x \), which results in constant state trajectory.
- But \(V(x) = hx^2 + gx \) with negative \(h \) which solves (BE) (and it is the only quadratic solution of it) is not the value function.
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
- It holds also for $n = 1$, i.e. simple dynamic optimization problem.
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
- It holds also for \(n = 1 \), i.e. simple dynamic optimization problem.
- Of course, (TC') is not fulfilled.
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
- It holds also for \(n = 1 \), i.e. simple dynamic optimization problem.
- Of course, (TC') is not fulfilled.
- The Bellman equation, if we neglect constraints, has also continuum of linear solutions, \(gx + \hat{k} \) for arbitrary \(g \).
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
- It holds also for $n = 1$, i.e. simple dynamic optimization problem.
- Of course, (TC’) is not fulfilled.
- The Bellman equation, if we neglect constraints, has also continuum of linear solutions, $gx + \hat{k}$ for arbitrary g.
- The solution corresponding to the quadratic V is ξx. It guarantees sustainability – so it is not enough to check (TC) along the trajectory corresponding to maximizer of rhs of (BE), as it is sometimes done.

§ The only quadratic solution of (BE) is not the value function!

§ It holds also for $n = 1$, i.e. simple dynamic optimization problem.

§ Of course, (TC’) is not fulfilled.

§ The Bellman equation, if we neglect constraints, has also continuum of linear solutions, $gx + \hat{k}$ for arbitrary g.

§ The solution corresponding to the quadratic V is ξx. It guarantees sustainability – so it is not enough to check (TC) along the trajectory corresponding to maximizer of rhs of (BE), as it is sometimes done.
Counterexample!!!

- The only quadratic solution of (BE) is not the value function!
- It holds also for $n = 1$, i.e. simple dynamic optimization problem.
- Of course, (TC’) is not fulfilled.
- The Bellman equation, if we neglect constraints, has also continuum of linear solutions, $gx + \hat{k}$ for arbitrary g.
- The solution corresponding to the quadratic V is ξx. It guarantees sustainability – so it is not enough to check (TC) along the trajectory corresponding to maximizer of rhs of (BE), as it is sometimes done.
- The solutions with nonzero g also violate (TC’).
Counterexample!!!

- The only quadratic solution of \((\text{BE})\) is not the value function!
- It holds also for \(n = 1\), i.e. simple dynamic optimization problem.
- Of course, \((\text{TC}')\) is not fulfilled.
- The Bellman equation, if we neglect constraints, has also continuum of linear solutions, \(gx + \hat{k}\) for arbitrary \(g\).
- The solution corresponding to the quadratic \(V\) is \(\xi x\). It guarantees sustainability – so it is not enough to check \((\text{TC})\) along the trajectory corresponding to maximizer of rhs of \((\text{BE})\), as it is sometimes done.
- The solutions with nonzero \(g\) also violate \((\text{TC}')\).
- \(g = 0\) does not solve \((\text{BE})\) for small \(x\).
Counterexample!!!

- The only quadratic solution of \((BE)\) is not the value function!
- It holds also for \(n = 1\), i.e. simple dynamic optimization problem.
- Of course, \((TC')\) is not fulfilled.
- The Bellman equation, if we neglect constraints, has also continuum of linear solutions, \(gx + \hat{k}\) for arbitrary \(g\).
- The solution corresponding to the quadratic \(V\) is \(\xi x\). It guarantees sustainability – so it is not enough to check \((TC)\) along the trajectory corresponding to maximizer of rhs of \((BE)\), as it is sometimes done.
- The solutions with nonzero \(g\) also violate \((TC')\).
- \(g = 0\) does not solve \((BE)\) for small \(x\).
- There is also a solution with the only piecewise quadratic \(V\) that fulfils both \((BE)\) and \((TC)\).
Social optimum cont.

Theorem 1

(a) The value function per player is

\[
\bar{V}(x) = \begin{cases}
\hat{g} \cdot x + \frac{\hat{n}}{2} \cdot x^2 & \text{if } x \in (0, \frac{\hat{S}}{\xi}), \\
\tilde{k} & \text{otherwise,}
\end{cases}
\]
social optimum cont.

Theorem 1

(a) The value function per player is

$$\bar{V}(x) = \begin{cases} \hat{g} \cdot x + \frac{\hat{h}}{2} \cdot x^2 & \text{if } x \in (0, \frac{\hat{s}}{\xi}), \\ \tilde{k} & \text{otherwise,} \end{cases}$$

for $\hat{s} = \frac{A-f}{3}$, $\hat{h} = -3 \xi (1 + \xi)$, $\hat{g} = (A - f)(1 + \xi)$, and $\tilde{k} = \frac{(A-f)^2(1+\xi)}{6\xi}$.
Social optimum cont.

Theorem 1

(a) The value function per player is

\[\bar{V}(x) = \begin{cases}
\hat{g} \cdot x + \frac{\hat{h}}{2} \cdot x^2 & \text{if } x \in (0, \frac{\hat{s}}{\xi}), \\
\tilde{k} & \text{otherwise},
\end{cases} \]

for \(\hat{s} = \frac{A-f}{3} \), \(\hat{h} = -3 \xi (1 + \xi) \), \(\hat{g} = (A - f)(1 + \xi) \), and \(\tilde{k} = \frac{(A-f)^2(1+\xi)}{6\xi} \).

and it is independent of the number of players (both \(n \geq 1 \) and continuum).
Social optimum cont.

Theorem 1

(a) The value function per player is

\[
\bar{V}(x) = \begin{cases}
\hat{g} \cdot x + \frac{\hat{h}}{2} \cdot x^2 & \text{if } x \in (0, \frac{\hat{s}}{\xi}), \\
\tilde{k} & \text{otherwise},
\end{cases}
\]

for \(\hat{s} = \frac{A-f}{3} \), \(\hat{h} = -3 \xi \ (1 + \xi) \), \(\hat{g} = (A-f)(1 + \xi) \), and \(\tilde{k} = \frac{(A-f)^2(1+\xi)}{6\xi} \).

and it is independent of the number of players (both \(n \geq 1 \) and continuum).

![Figure: Value function per player for social optimum](image)
Social optimum cont. 2

Theorem 1 cont. (b) A profile defined by

$$\hat{S}_i^{SO}(x) = \begin{cases} \xi x, & x \in (0, \hat{s}), \\ \hat{s} & \text{otherwise}, \end{cases}$$

is the unique social optimum both for n players and the continuum of players.

Figure: Strategy of each player at social optimum
Social optimum cont. 2

Theorem 1 cont. (b) A profile defined by

\[\hat{S}_i^{SO}(x) = \begin{cases} \xi x, & x \in (0, \hat{s}) \\ \hat{s} & \text{otherwise,} \end{cases} \]

is the unique social optimum both for \(n \) players and the continuum of players.

Figure: Strategy of each player at social optimum

For piecewise defined \(\bar{V} \) and \(\mathbf{s} \), the Bellman equation has to be checked again!
Nash equilibrium for continuum of players

- Different method of calculation
Nash equilibrium for continuum of players

- Different method of calculation – a decomposition method (a dynamic game decomposed into a sequence of static games).
Nash equilibrium for continuum of players

- Different method of calculation – a decomposition method (a dynamic game decomposed into a sequence of static games).
Nash equilibrium for continuum of players

- Different method of calculation – a decomposition method (a dynamic game decomposed into a sequence of static games).

Figure: Strategy of each player at the Nash equilibria
Nash equilibrium for continuum of players

- Different method of calculation – a decomposition method (a dynamic game decomposed into a sequence of static games).

Figure: Strategy of each player at the Nash equilibria

- Exploitation many times larger than at the social optimum.
Nash equilibrium for continuum of players

Theorem 2 (a) The profile defined by

\[\hat{S}_i^{\text{NE}}(x) = \begin{cases} \frac{A-f}{2} & \text{otherwise}, \\ (1 + \xi) x & \text{for } x \leq \hat{x}_1, \end{cases} \]

for \(\hat{x}_1 = \frac{A-f}{2(1+\xi)} \), is the only feedback Nash equilibrium profile (up to measure equivalence).
Nash equilibrium for continuum of players

Theorem 2 cont. (b) The function defined by

\[
\bar{V}_i^{\text{NE}}(x) = \begin{cases}
P_{\text{depl}}(x), & \text{for } x \leq \hat{x}_1 \\
\frac{\sum_{k=1}^{N} (A-f)^2 \beta^{k-1}}{8} + \beta^N P_{\text{depl}} \left((1 + \xi)^N x - \frac{(A-f) \sum_{k=1}^{N} \beta^{k-1}}{2} \right) & \text{for } x \in (\hat{x}_N, \hat{x}_1) \\
\frac{(A-f)^2}{8} \cdot \frac{(1+\xi)}{\xi} & \text{otherwise},
\end{cases}
\]

for \(P_{\text{depl}}(x) = P(1 + \xi) x, (1 + \xi) x \) (payoff resulting from immediate depletion of the resource) and \(\hat{x}_N = \frac{A-f}{2} \sum_{k=1}^{N} \beta^k \) for \(N \geq 1 \), is the value function for optimization problem for the continuum of players game.

Figure: Value function at Nash equilibrium for continuum of players
Value function through a magnifying glass

Figure: Value function at Nash equilibrium for continuum of players – zoomed view
Nash equilibrium for continuum of players cont2.

Theorem 2 cont. (c) For \(x \in (\hat{x}_N, \hat{x}_{N+1}] \) with \(\hat{x}_0 = 0 \), the resource will be depleted/extracted in \(N + 1 \) stages, while for \(x \geq \hat{x}_\infty = \lim_{N \to \infty} \hat{x}_N \), the resource will never be depleted.

![Graph showing the number of time moments to resource exhaustion at Nash equilibrium for continuum of players](image-url)

Figure: Number of time moments to resource exhaustion at Nash equilibrium for continuum of players
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.
- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.
Nash equilibria for \(n \) players

- For \(n \) players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as \(x \) increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.

- Any attempt to determine the symmetric solution...
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.
- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.
- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.
- Any attempt to determine the symmetric solution (with possibly infinitely many "switches") assuming continuity (with respect to state) of: the value functions
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.
- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.
- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.
- Any attempt to determine the symmetric solution (with possibly infinitely many ”switches”) assuming continuity (with respect to state) of: the value functions or the equilibrium strategies
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.

- Any attempt to determine the symmetric solution (with possibly infinitely many ”switches”) assuming continuity (with respect to state) of: the value functions or the equilibrium strategies or the rhs of the Bellman equation along the optimal equilibrium strategy...
Nash equilibria for \(n \) players

- For \(n \) players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as \(x \) increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.

- Any attempt to determine the symmetric solution (with possibly infinitely many "switches") assuming continuity (with respect to state) of: the value functions or the equilibrium strategies or the rhs of the Bellman equation along the optimal equilibrium strategy or another function related to depletion of resources.
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.

- Any attempt to determine the symmetric solution (with possibly infinitely many "switches") assuming continuity (with respect to state) of: the value functions or the equilibrium strategies or the rhs of the Bellman equation along the optimal equilibrium strategy or another function related to depletion of resources was unsuccessful.
Nash equilibria for n players

- For n players, a similar value function to that for continuum of players, with number of stages to depletion nonstrictly increasing as x increases, can be expected.

- However, it is not possible for analogous form of equilibrium strategies, piecewise linear with two intervals.

- The only thing we were able to prove (with reasonable length of proof) is that the number of pieces in both equilibrium and value function is greater than two.

- Any attempt to determine the symmetric solution (with possibly infinitely many ”switches”) assuming continuity (with respect to state) of: the value functions or the equilibrium strategies or the rhs of the Bellman equation along the optimal equilibrium strategy or another function related to depletion of resources was unsuccessful. So...
Nash equilibria for n players continued

- Let us skip the continuity assumption
Nash equilibria for n players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
Nash equilibria for \(n \) players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - discontinuous at the points at which the number of time moments to depletion changes;
Nash equilibria for \(n \) players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - **discontinuous** at the points at which the number of time moments to depletion changes;
 - constant strategies and value function for \(x \) above some level;
Nash equilibria for n players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - discontinuous at the points at which the number of time moments to depletion changes;
 - constant strategies and value function for x above some level;
 - proving that requires more compound tools than the continuum of players Nash equilibrium and any social optimum;
Nash equilibria for \(n \) players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - discontinuous at the points at which the number of time moments to depletion changes;
 - constant strategies and value function for \(x \) above some level;
 - proving that requires more compound tools than the continuum of players Nash equilibrium and any social optimum;
 - a symmetric piecewise linear Nash equilibrium, if it exists, is discontinuous (and we can state its general form up to location the points of discontinuity and checking the Bellman inclusion for the discontinuous, non-quasi concave function at the rhs.) and
Nash equilibria for n players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - discontinuous at the points at which the number of time moments to depletion changes;
 - constant strategies and value function for x above some level;
 - proving that requires more compound tools than the continuum of players Nash equilibrium and any social optimum;
 - a symmetric piecewise linear Nash equilibrium, if it exists, is discontinuous (and we can state its general form up to location the points of discontinuity and checking the Bellman inclusion for the discontinuous, non-quasi concave function at the rhs.) and
 - it is a limit of Nash equilibria for finite horizon truncations of the game
Nash equilibria for \(n \) players continued

- Let us skip the continuity assumption and allow the Nash equilibrium strategies to be
 - discontinuous at the points at which the number of time moments to depletion changes;
 - constant strategies and value function for \(x \) above some level;
 - proving that requires more compound tools than the continuum of players Nash equilibrium and any social optimum;
 - a symmetric piecewise linear Nash equilibrium, if it exists, is discontinuous (and we can state its general form up to location the points of discontinuity and checking the Bellman inclusion for the discontinuous, non-quasi concave function at the rhs.) and
 - it is a limit of Nash equilibria for finite horizon truncations of the game
 - and the irregularity is inherited from finite horizon truncations of the game.
Nash equilibria in the $n = 2$ players truncated game

- So, we analyse truncations
Nash equilibria in the \(n = 2 \) players truncated game

Nash equilibria in the $n = 2$ players truncated game

- In the **two stage truncation** of the game
Nash equilibria in the \(n = 2 \) players truncated game

- In the two stage truncation of the game: a continuum of...
Nash equilibria in the $n = 2$ players truncated game

- In the two stage truncation of the game: a continuum of discontinuous symmetric equilibria
Nash equilibria in the $n = 2$ players truncated game

- In the two stage truncation of the game: a continuum of discontinuous symmetric equilibria and no continuous symmetric equilibrium!
Nash equilibria in the $n = 2$ players truncated game

- In the two stage truncation of the game: a continuum of discontinuous symmetric equilibria and no continuous symmetric equilibrium!

Figure: Two stage truncation of the game

(a) two symmetric Nash equilibria
Nash equilibria in the $n = 2$ players truncated game

- In the two stage truncation of the game: a continuum of discontinuous symmetric equilibria and no continuous symmetric equilibrium!

Figure: Two stage truncation of the game

(a) two symmetric Nash equilibria

(b) two symmetric Nash equilibria—zoomed view
Nash equilibria in the $n = 2$ players truncated game

Figure: Two stage truncation of the game—the value functions at two symmetric Nash equilibria
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \[P(s_i, s_{\sim i}) \sim P(s_i, s_{\sim i}) - T(s_i, x) \]
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax

 \[P(s_i, s_{\sim i}) \sim P(s_i, s_{\sim i}) - T(s_i, x) \]

 in order to obtain socially optimal profile as a Nash equilibrium in the modified game.
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \(P(s_i, s_{-i}) \sim P(s_i, s_{-i}) - T(s_i, x) \) in order to obtain socially optimal profile as a Nash equilibrium in the modified game.
- The rate of linear tax
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \(P(s_i, s_{\sim i}) \rightarrow P(s_i, s_{\sim i}) - T(s_i, x) \) in order to obtain socially optimal profile as a Nash equilibrium in the modified game.
- The rate of linear tax \(T(s_i, x) = \tau(x)s_i \)
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \(P(s_i, s_{-i}) \rightarrow P(s_i, s_{-i}) - T(s_i, x) \) in order to obtain socially optimal profile as a Nash equilibrium in the modified game.
- The rate of linear tax \(T(s_i, x) = \tau(x)s_i \) enforcing social optimality
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \(P(s_i, s_{~i}) \rightarrow P(s_i, s_{~i}) - T(s_i, x) \) in order to obtain socially optimal profile as a Nash equilibrium in the modified game.
- The rate of linear tax \(T(s_i, x) = \tau(x)s_i \) enforcing social optimality in the continuum of players game.
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a **regulatory tax**

 \[P(s_i, s_{\sim i}) \sim P(s_i, s_{\sim i}) - T(s_i, x) \]

 in order to obtain socially optimal profile as a Nash equilibrium in the modified game.

- The rate of **linear tax** \(T(s_i, x) = \tau(x)s_i \) enforcing social optimality in the **continuum of players** game is given by

 \[
 \tau(x) = \begin{cases}
 A - f - 2\xi x & \text{if } x \leq \frac{A - f}{3\xi}, \\
 \frac{A - f}{3} & \text{otherwise}.
 \end{cases}
 \]
Enforcing social optimality by a tax or tax-subsidy system

- Introduction of a regulatory tax
 \((P(s_i, s_{\sim i}) \sim P(s_i, s_{\sim i}) - T(s_i, x))\) in order to obtain socially optimal profile as a Nash equilibrium in the modified game.

- The rate of linear tax \((T(s_i, x) = \tau(x)s_i)\) enforcing social optimality in the continuum of players game is given by
 \[
 \tau(x) = \begin{cases}
 A - f - 2\xi x & \text{if } x \leq \frac{A - f}{3\xi} , \\
 \frac{A - f}{3} & \text{otherwise}.
 \end{cases}
 \]

Figure: Rate of tax enforcing social optimality for continuum of players
Enforcing social optimality by a tax – cont.

- Variable tax rate?

Enforcing optimality by a tax – cont.

- Variable tax rate?

It is not a problem, since:

- if from time 0 on the regulator chooses the tax rate τ, then the state is constantly x_0 and the resulting Nash equilibrium is equal to social optimum in the initial problem;

- generally, if instead of “tax” we use the term “environmental levy”, then increasing the levy as the state of the environment deteriorates seems justified.

The resulting tax paid is: $\text{State (x)} \times 10^4$

<table>
<thead>
<tr>
<th>State (x)</th>
<th>Tax enforcing social optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure: Tax enforcing social optimality for continuum of players
Enforcing social optimality by a tax – cont.

- Variable tax rate? It is not a problem
Enforcing social optimality by a tax – cont.

- Variable tax rate? It is not a problem, since:
 - if from time 0 on the regulator chooses the tax rate $\tau(x_0)$, then the state is constantly x_0 and the resulting Nash equilibrium is equal to social optimum in the initial problem;

- Variable tax rate? It is not a problem, since:
 - if from time 0 on the regulator chooses the tax rate $\tau(x_0)$, then the state is constantly x_0 and the resulting Nash equilibrium is equal to social optimum in the initial problem;
Enforcing social optimality by a tax – cont.

- Variable tax rate? It is not a problem, since:
 - if from time 0 on the regulator chooses the tax rate \(\tau(x_0) \), then the state is constantly \(x_0 \) and the resulting Nash equilibrium is equal to social optimum in the initial problem;
 - generally, if instead of "tax" we use the term "environmental levy", then increasing the levy as the state of the environment deteriorates seems justified.
Enforcing social optimality by a tax – cont.

- Variable tax rate? It is not a problem, since:
 - if from time 0 on the regulator chooses the tax rate \(\tau(x_0) \), then the state is constantly \(x_0 \) and the resulting Nash equilibrium is equal to social optimum in the initial problem;
 - generally, if instead of ”tax” we use the term ”environmental levy”, then increasing the levy as the state of the environment deteriorates seems justified.

- The resulting tax paid is

![Graph](image)

Figure: Tax enforcing social optimality for continuum of players
Enforcing social optimality by a tax – cont.

- If we consider a **tax-subsidy system** with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \]
Enforcing social optimality by a tax – cont.

- If we consider a **tax-subsidy system** with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \] - then the results are equivalent

"The tragedy of the commons" in the dynamic context

Agnieszka Wiszniewska-Matyszkiewicz

Games
- Nash eq.
- Stackelberg eq.
- Pareto opt.
- Example-static
- The tragedy

Dynamic games
- A simple model
- Objectives

Bellman
- Revised sufficient condition

Social optimum
- Nash equilibrium
- Nash equilibria for \(n \) players
- Finite horizon truncation

Enforcing optimality
- Carrying capacity
- Numerics
- Continuous time

Conclusions
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \]
 – then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \),
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \] – then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \]
 then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.

- If we consider the tax rate \(\tau \) calculated for the continuum of players.

"The tragedy of the commons" in the dynamic context

Agnieszka Wiszniewska-Matyszkiel

<table>
<thead>
<tr>
<th>Games</th>
<th>Nash eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stackelberg eq.</td>
</tr>
<tr>
<td></td>
<td>Pareto opt.</td>
</tr>
<tr>
<td></td>
<td>Example-static</td>
</tr>
<tr>
<td></td>
<td>The tragedy</td>
</tr>
</tbody>
</table>

Dynamic games
A simple model
Objectives
Bellman
Revised sufficient condition
Social optimum
Nash equilibrium
Nash equilibria for \(n \) players
Finite horizon truncation
Enforcing optimality
Carrying capacity
Numerics
Continuous time
Conclusions
Enforcing social optimality by a tax – cont.

- If we consider a **tax-subsidy system** with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_{i}^{SO}) \]
 – then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_{i}^{SO} \)), but no tax is paid.

- If we consider the **tax rate** \(\tau \) calculated for the continuum of players but consider taxing overexploitation only
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \]
 then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.

- If we consider the tax rate \(\tau \) calculated for the continuum of players but consider taxing overexploitation only
 i.e. \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO})^+ \]
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with \(T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \) – then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.

- If we consider the tax rate \(\tau \) calculated for the continuum of players but consider taxing overexploitation only

 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO})^+ \]

 then the tax rate \(\tau(x) \) enforces social optimality for every number of players \(n \).
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \]
 then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.

- If we consider the tax rate \(\tau \) calculated for the continuum of players but consider taxing overexploitation only

 i.e.
 \[T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO})^+ \]

 then the tax rate \(\tau(x) \) enforces social optimality for every number of players \(n \).

- So, the continuum of players model helped us to solve the problem of enforcement for \(n \) players.
Enforcing social optimality by a tax – cont.

- If we consider a tax-subsidy system with \(T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO}) \) – then the results are equivalent (i.e. the same \(\tau \) enforces \(\bar{S}_i^{SO} \)), but no tax is paid.

- If we consider the tax rate \(\tau \) calculated for the continuum of players but consider taxing overexploitation only
 i.e. \(T(s_i, x) = \tau(x)(s_i - \bar{S}_i^{SO})^+ \)
 then the tax rate \(\tau(x) \) enforces social optimality for every number of players \(n \).

- So, the continuum of players model helped us to solve the problem of enforcement for \(n \) players although we are not able to calculate the Nash equilibrium for \(n \) players.
Extensions of the model and introducing carrying capacity

- All the above results remain valid
Extensions of the model and introducing carrying capacity

- All the above results remain valid if we appropriately modify the dynamics of the state above in order to take into account the carrying capacity of the environment.
Be careful with numerics!

- Solving (BE) numerically is costly.
Be careful with numerics!

- Solving (BE) numerically is costly.
- A class of optimal control problems (i.e. \(n = 1 \)), analogous to our social optimality but for a whole interval of possible discount factors (a slightly more impatient decision makers): for a candidate \(V^f \) for the value function calculated analogously as in Theorem 1 and a control \(S^f \) from the rhs of the (BE) with \(V^f \), for every \(\epsilon > 0 \), there is a discount factor close to the golden rule such that the Bellman equation is fulfilled everywhere besides an \(\epsilon \)-neighbourhood of 0, while \(S^f \) is far from the optimal control while \(V^f \) from the value function on the set of all reasonable states (i.e. below \(\hat{s} \)).

- Nested induction (backward and forward) plus concave analysis needed to derive the optimal control analytically – piecewise linear with infinitely many pieces.

We considered a model from similar class in continuous time to model a cryptocurrency mining game.
Continuous time

- We considered a model from similar class in continuous time to model a cryptocurrency mining game.
- General theory for such problems still not developed (viscosity solutions for infinite horizon, sufficiency and necessity, etc.)
Conclusions ”The tragedy of the commons” in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
Conclusions “The tragedy of the commons” in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
- Problems of feedback Nash equilibria require solving a set of coupled parametrized dynamic optimization problems, with strategies of the others as parameters.
Conclusions "The tragedy of the commons" in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
- Problems of feedback Nash equilibria require solving a set of coupled parametrized dynamic optimization problems, with strategies of the others as parameters.
- Problems of feedback Stackelberg equilibria are even more complicated.
Conclusions ”The tragedy of the commons” in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
- Problems of feedback Nash equilibria require solving a set of coupled parametrized dynamic optimization problems, with strategies of the others as parameters.
- Problems of feedback Stackelberg equilibria are even more complicated.
- Only few classes of such games have been solved and some proofs are still incomplete.
Conclusions “The tragedy of the commons” in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
- Problems of feedback Nash equilibria require solving a set of coupled parametrized dynamic optimization problems, with strategies of the others as parameters.
- Problems of feedback Stackelberg equilibria are even more complicated.
- Only few classes of such games have been solved and some proofs are still incomplete.
- Models lack realistic constraints.
Conclusions "The tragedy of the commons" in dynamic context

- To model most of the tragedy of the commons problems, tools of dynamic games are required, especially feedback Nash and Stackelberg equilibria.
- Problems of feedback Nash equilibria require solving a set of coupled parametrized dynamic optimization problems, with strategies of the others as parameters.
- Problems of feedback Stackelberg equilibria are even more complicated.
- Only few classes of such games have been solved and some proofs are still incomplete.
- Models lack realistic constraints.
- Adding even very inherent constraints can change the solutions drastically, with several surprises.
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available)
Conclusions – LQ games with constraints

- After imposing **natural constraints** (by the amount of resource available) and making **exhaustion possible**, ...
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.
- The calculated unique socially optimal profile,
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.
- The calculated unique socially optimal profile, independent on the number of players,

§ After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.

§ The calculated unique socially optimal profile, independent on the number of players,
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.

- The calculated unique socially optimal profile, independent on the number of players, guarantees sustainability for every initial state.
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.

- The calculated unique socially optimal profile, independent on the number of players, guarantees sustainability for every initial state.

- This calculation indicates that we have to be very careful about terminal condition for Bellman equation.
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.

- The calculated unique socially optimal profile, independent on the number of players, guarantees sustainability for every initial state.

- This calculation indicates that we have to be very careful about terminal condition for Bellman equation.

- Social optimum for this problem is a simple counterexample to the correctness of commonly used skipping checking terminal condition.
Conclusions – LQ games with constraints

- After imposing **natural constraints** (by the amount of resource available) and making **exhaustion possible**, a linear quadratic game of resource extraction yields results which are **contrary to standard results** in LQ dynamic games.

- The calculated **unique socially optimal profile**, independent on the number of players, guarantees **sustainability** for every initial state.

- This calculation indicates that we have to be very careful about **terminal condition** for Bellman equation.

- Social optimum for this problem is a simple **counterexample** to the correctness of commonly used skipping checking terminal condition — the only "nice" solution of (BE) is not the value function),
Conclusions – LQ games with constraints

- After imposing natural constraints (by the amount of resource available) and making exhaustion possible, a linear quadratic game of resource extraction yields results which are contrary to standard results in LQ dynamic games.

- The calculated unique socially optimal profile, independent on the number of players, guarantees sustainability for every initial state.

- This calculation indicates that we have to be very careful about terminal condition for Bellman equation.

- Social optimum for this problem is a simple counterexample to the correctness of commonly used skipping checking terminal condition — the only ”nice” solution of (BE) is not the value function), which it started a research on necessity of the terminal condition.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for \(n \) players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for \(n \) players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for n players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.

Discontinuity appears already in the two stage truncation of the game.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for n players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.

Discontinuity appears already in the two stage truncation of the game.

The results are unchanged if the linear dynamic is modified above some level to capture carrying capacity of the environment.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for n players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.

Discontinuity appears already in the two stage truncation of the game.

The results are unchanged if the linear dynamic is modified above some level to capture carrying capacity of the environment.

We also found tax rate of linear tax enforcing social optimality.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for n players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.

Discountinuity appears already in the two stage truncation of the game.

The results are unchanged if the linear dynamic is modified above some level to capture carrying capacity of the environment.

We also found tax rate of linear tax enforcing social optimality.

We can calculate such a tax although we cannot calculate Nash equilibria for the original problem.
Nash equilibrium for the continuum of players case is piecewise linear with value function piecewise quadratic with infinitely many pieces, non-monotone, non-differentiable.

For Nash equilibrium for \(n \) players, if it exists, it is piecewise linear with infinitely many pieces and infinitely many points of discontinuity – negative results proved for regular solutions. We can calculate them up to discontinuity points.

Discountinuity appears already in the two stage truncation of the game.

The results are unchanged if the linear dynamic is modified above some level to capture carrying capacity of the environment.

We also found tax rate of linear tax enforcing social optimality.

We can calculate such a tax although we cannot calculate Nash equilibria for the original problem.

The continuum of players game helps to find solutions for \(n \) players games!
Thank you for your attention!