Divide and...
Problem

Given nonsingular $L \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^{N}$, find $x \in \mathbb{R}^{N}$ satisfying

\[
\begin{align*}
L_{11}x_1 + L_{12}x_2 + \ldots + L_{1N}x_N &= b_1, \\
L_{21}x_1 + L_{22}x_2 + \ldots + L_{2N}x_N &= b_2, \\
\vdots &\\
L_{N1}x_1 + L_{N2}x_2 + \ldots + L_{NN}x_N &= b_N,
\end{align*}
\]
System of linear equations

Problem

Given nonsingular \(L \in \mathbb{R}^{N \times N} \) and \(b \in \mathbb{R}^N \), find \(x \in \mathbb{R}^N \) satisfying

\[
\begin{align*}
L_{11}x_1 + L_{12}x_2 + \cdots L_{1N}x_N &= b_1, \\
L_{21}x_1 + L_{22}x_2 + \cdots L_{2N}x_N &= b_2, \\
&\vdots \\
L_{N1}x_1 + L_{N2}x_2 + \cdots L_{NN}x_N &= b_N,
\end{align*}
\]

Can anything be more boring?
Find $x \in \mathbb{R}^N$ such that

$$Lx = b$$

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
Find $x \in \mathbb{R}^N$ such that

$$Lx = b$$

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
- Cramer’s rule (much) more costly: $O(N!)$
A solved problem?

Find $x \in \mathbb{R}^N$ such that

$$Lx = b$$

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
- Cramer’s rule (much) more costly: $O(N!)$
- Complexity: still an open question
A solved problem?

Find \(x \in \mathbb{R}^N \) such that

\[Lx = b \]

- Gaussian elimination known for about 2000 years; costs \(O(N^3) \)
- Cramer’s rule (much) more costly: \(O(N!) \)
- Complexity: still an open question
 - We know \(O(N^\omega) \) algorithms exist with \(\omega < 3 \).
Strassen’s matrix multiply

- Matrix–matrix multiplication $X = L \cdot B$ as complex as solving $Lx = b$
Strassen’s matrix multiply

- Matrix–matrix multiplication $X = L \cdot B$ as complex as solving $Lx = b$
- **Divide and**...

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\
L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\
B_{21} & B_{22} \end{bmatrix}
\]
Strassen’s matrix multiply

- **Divide and...**

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix} = \begin{bmatrix}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{bmatrix} \cdot \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

Naively,

\[
X_{11} = L_{11}B_{11} + L_{12}B_{21} \\
X_{12} = L_{11}B_{12} + L_{12}B_{22} \\
X_{21} = L_{21}B_{11} + L_{22}B_{21} \\
X_{22} = L_{21}B_{12} + L_{22}B_{22}.
\]

gives a recursive “divide-and-conquer” algorithm.

- **Complexity:** still \(O(N^3)\).
Strassen’s matrix multiply

- **Divide and... think again:**

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix} = \begin{bmatrix}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{bmatrix} \cdot \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

Reduce number of matrix multiplications to seven!

\[
X_{11} = P_1 + P_4 - P_5 + P_7 \\
X_{12} = P_3 + P_5 \\
X_{21} = P_2 + P_4 \\
X_{22} = P_1 + P_3 - P_2 + P_6,
\]

\[
P_1 = (L_{11} + L_{22})(B_{11} + B_{22}), \\
P_2 = (L_{21} + L_{22})B_{11} \\
\vdots \\
P_7 = (L_{12} - L_{22})(B_{21} + B_{22})
\]

Complexity: \(O(N^{\log_2 7}) \approx O(N^{2.808...}) \)

Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^N$ such that

$$Lx = b.$$
Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^N$ such that

$$Lx = b.$$

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.
Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^N$ such that

$$Lx = b.$$

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds i.e. ≈ 32 years

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.
Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^N$ such that

$$Lx = b.$$

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds i.e. ≈ 32 years
- needed 10^{13} bytes of memory

if straightforward Gaussian elimination (e.g. LAPACK's DGESV) was used.
Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^N$ such that

$$Lx = b.$$

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds i.e. ≈ 32 years
- needed 10^{13} bytes of memory i.e. $\approx 9,000$ GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.
1. Large systems of linear equations: where do they come from?

2. Systems with (lots of) structure: finite elements for PDEs

3. Solving large sparse systems

4. A sidenote: another class of structured sparse matrices

5. Domain decomposition for PDEs

6. Splitting equations

7. Summing up
Large systems of linear equations: where do they come from?
The beauty of sparse matrices

Economic problem

$N = 15,575$
Quantum chromodynamics

$N = 3,072$

QCD@conf5_0-4x4-10. 3072 nodes, 59904 edges.
Macroeconomic problem

$N = 206,500$
KKT system, nonconvex optimization

\[N = 16,554 \]
Financial portfolio optimization

\[N = 74,752 \]
Structural engineering, finite element

\[N = 15,449 \]
Structural engineering, finite element

$N = 15,449$
This is how a sparse matrix *really* looks like:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rsa</td>
<td>63929</td>
<td>444</td>
<td>10024</td>
<td>53461</td>
</tr>
<tr>
<td></td>
<td>(11I7)</td>
<td></td>
<td>(16I5)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>48</td>
<td>70</td>
<td>103</td>
</tr>
<tr>
<td>327</td>
<td>358</td>
<td>391</td>
<td>423</td>
<td>454</td>
</tr>
<tr>
<td>679</td>
<td>711</td>
<td>742</td>
<td>775</td>
<td>807</td>
</tr>
<tr>
<td>1030</td>
<td>1063</td>
<td>1095</td>
<td>1126</td>
<td>1147</td>
</tr>
<tr>
<td>1356</td>
<td>1396</td>
<td>1438</td>
<td>1479</td>
<td>1519</td>
</tr>
<tr>
<td>1807</td>
<td>1848</td>
<td>1888</td>
<td>1930</td>
<td>1971</td>
</tr>
<tr>
<td>2257</td>
<td>2299</td>
<td>2340</td>
<td>2380</td>
<td>2422</td>
</tr>
<tr>
<td>2679</td>
<td>2704</td>
<td>2734</td>
<td>2763</td>
<td>2791</td>
</tr>
</tbody>
</table>

	4875		160383	
48	871			
199	231			
262	295			
903	934			
1216	1245			
1273	1315			
1519	1602			
1642	1684			
1725	1765			
1971	2053			
2094	2134			
2176	2217			

	615	646
25	2874	
295	3037	

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.409672687144694E-14</td>
<td>-0.270324344694379E-11</td>
<td>0.462322806286147E-14</td>
</tr>
<tr>
<td>-0.125103474334186E-15</td>
<td>-0.157968969372661E-11</td>
<td>0.120545535566847E-14</td>
</tr>
<tr>
<td>-0.415025707341799E-14</td>
<td>-0.518149596242225E-12</td>
<td>0.850962616131678E-13</td>
</tr>
<tr>
<td>-0.209551074847814E-12</td>
<td>-0.107421047460559E-11</td>
<td>0.340867474174134E-12</td>
</tr>
<tr>
<td>-0.371312672815900E-13</td>
<td>-0.562016116896941E-12</td>
<td>0.811101830369373E-13</td>
</tr>
<tr>
<td>0.198413464034039E-12</td>
<td>-0.375360224439469E-12</td>
<td>0.141281556760829E-13</td>
</tr>
<tr>
<td>-0.805393690795621E-12</td>
<td>0.267683729453480E-11</td>
<td>0.861749802483021E-16</td>
</tr>
<tr>
<td>-0.113997243532461E-15</td>
<td>-0.423020243608237E-12</td>
<td>-0.143670337426812E-13</td>
</tr>
<tr>
<td>0.830097314588988E-12</td>
<td>-0.580299367504821E-12</td>
<td>-0.811121342725180E-13</td>
</tr>
<tr>
<td>-0.198394255770204E-12</td>
<td>-0.107673095703232E-11</td>
<td>-0.340570288494983E-12</td>
</tr>
<tr>
<td>0.124288644083145E-13</td>
<td>-0.501209266056193E-12</td>
<td>-0.852387929702163E-13</td>
</tr>
<tr>
<td>0.209644642907451E-12</td>
<td>0.454179546572026E-10</td>
<td>0.256700564218941E-11</td>
</tr>
<tr>
<td>0.248365328762197E-16</td>
<td>0.885615735926505E-11</td>
<td>0.482064121963914E-13</td>
</tr>
<tr>
<td>0.109981819279385E-14</td>
<td>-0.598541997591639E-11</td>
<td>-0.124576307872633E-11</td>
</tr>
<tr>
<td>0.463130261987941E-14</td>
<td>-0.198244879116781E-10</td>
<td>-0.70847666179811E-12</td>
</tr>
</tbody>
</table>
Parabolic diffusion-convection-reaction, finite element

\[N = 525, 825 \]
Fluid dynamics, finite element

\[N = 2,017,169 \]
Systems with (lots of) structure: finite elements for PDEs
A model PDE: diffusion equation

Find $u : \mathbb{R}^d \supset \Omega \to \mathbb{R}$ satisfying

$$- \text{div}(\rho(x)\nabla u(x)) = f(x) \quad \forall x \in \Omega,$$

$$u(x) = 0 \quad \forall x \in \partial \Omega.$$

For example: u — temperature, ρ — thermal conductivity, f — external heating
A model PDE: diffusion equation

Find \(u : \mathbb{R}^d \supset \Omega \to R \) satisfying

\[
- \text{div}(\rho(x)\nabla u(x)) = f(x) \quad \forall x \in \Omega,
\]

\[
u(x) = 0 \quad \forall x \in \partial\Omega.
\]

For example: \(u \) — temperature, \(\rho \) — thermal conductivity, \(f \) — external heating

Assume \(\rho(x) = 1 \).
Find $u : \mathbb{R}^d \supset \Omega \rightarrow \mathbb{R}$ satisfying
\[- \Delta u(x) = f(x) \quad \forall x \in \Omega,\]
\[u(x) = 0 \quad \forall x \in \partial \Omega.\]

Problem

Find $u \in H_0^1(\Omega)$ such that
\[
\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H_0^1(\Omega).
\]
Problem

Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H^1_0(\Omega).$$
Problem

Find $u \in H^1_0(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H^1_0(\Omega).
$$

Problem (discrete)

Find $u_h \in V_h \subset H^1_0(\Omega)$ such that

$$
\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f \, v_h \, dx \quad \forall v_h \in V_h.
$$

Here V_h is finite dimensional. How to choose it?
Problem

Find \(u \in H^1_0(\Omega) \) such that

\[
\int_\Omega \nabla u \cdot \nabla v \, dx = \int_\Omega f v \, dx \quad \forall v \in H^1_0(\Omega).
\]

Problem (discrete)

Find \(u_h \in V_h \subset H^1_0(\Omega) \) such that

\[
\int_\Omega \nabla u_h \cdot \nabla v_h \, dx = \int_\Omega f v_h \, dx \quad \forall v_h \in V_h.
\]

Here \(V_h \) is finite dimensional. How to choose it?

Divide and... approximate wisely.
Divide Ω into smaller elements:

- Triangulation \mathcal{T}_h consisting of elements κ.
Divide Ω into smaller elements:

- Triangulation \mathcal{T}_h consisting of elements κ.

$$V_h = \{ v \in C(\Omega) \cap H^1_0(\Omega) : v|_\kappa \in P_1(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \subset H^1_0(\Omega)$$
Finite elements

- Triangulation \mathcal{T}_h consisting of elements κ.

$$V_h = \{ v \in C(\Omega) \cap H^1_0(\Omega) : v|_\kappa \in P_1(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \subset H^1_0(\Omega)$$

More generally,

$$V^p_h = \{ v \in C(\Omega) \cap H^1_0(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$
Consider true solution to $-\Delta u = f$:
Experiment: h–approximation vs p–approximation

Consider true solution to $-\Delta u = f$:

How well can it be approximated by the finite element method?
Finite element h–approximation vs p–approximation

fixed $p = 1$

decrease h

fixed $h = 1/2$

increase p

$h = 1/2$
N=9

$p = 1$
N=9
h–approximation vs p–approximation

fixed $p = 1$

$h = 1/2$
N=9

fixed $h = 1/2$

$p = 1$
N=9
h–approximation vs p–approximation

\begin{align*}
\text{fixed } p &= 1 \\
\text{fixed } h &= 1/2 \\
N &= 25
\end{align*}

$h = 1/2^2$
N=25

$p = 2$
N=25
h–approximation vs p–approximation

fixed $p = 1$

$h = 1/2^3$
$N=81$

fixed $h = 1/2$

$p = 3$
$N=49$
h–approximation vs p–approximation

- **fixed $p = 1$**
 - $h = 1/2^4$
 - $N = 289$

- **fixed $h = 1/2$**
 - $p = 4$
 - $N = 81$
h–approximation vs p–approximation

fixed $p = 1$

$h = 1/2^5$

N=1089

fixed $h = 1/2$

$p = 5$

N=121
More finite elements...

Periodic Table of the Finite Elements

Arnold, Logg (2014) SIAM News
What are discontinuous finite elements?

'Continuous' finite elements:

\[V_h = \{ v \in C(\Omega) : v|_k \in P_p(k) \quad \forall k \in T_h \} \subset H^1_0(\Omega) \]
'Discontinuous' finite elements:

\[V_h^p = \{ v \in L^2(\Omega) : v|_{\kappa} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \not\subset H^1_0(\Omega) \]

...allow for using discontinuous basis functions.
Discontinuous finite elements

'Discontinuous' finite elements:

\[V_h^p = \{ v \in L^2(\Omega) : v|_{\kappa} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \nsubseteq H_0^1(\Omega) \]

...allow for using discontinuous basis functions.

More degrees of freedom, but: easy \(h \)–refinement and \(p \)–refinement (nonconforming elements allowed by design)
DGFEM approximation of the model problem

Problem

Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

$u_h, v_h \in V^p_h = \{ v \in L^2(\Omega) : v|_{\kappa} \in P_p(\kappa) \quad \forall \kappa \in T_h \}$

$$\sum_{\kappa \in T_h} \int_{\kappa} \nabla u_h \cdot \nabla v_h \, dx$$

$$= (f, v_h)_\Omega$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find \(u \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in H^1_0(\Omega).
\]

Problem (DGFEM approximation)

\(u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v|_{\kappa} \in P_p(\kappa) \quad \forall \kappa \in T_h \} \)

\[
\sum_{\kappa \in T_h} \int_{\kappa} \nabla u_h \cdot \nabla v_h \, dx + \sum_{e \in E_h} \int_e \frac{\gamma_p^2}{h} [u_h] \cdot [v_h] \, d\sigma
\]

\[
= (f, v_h)_\Omega
\]

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find \(u \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H^1_0(\Omega).
\]

Problem (DGFEM approximation)

\(u_h, v_h \in V_p^h = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \} \)

\[
\sum_{\kappa \in T_h} \int_{\kappa} \nabla u_h \cdot \nabla v_h \, dx + \sum_{e \in E_h} \int_{e} \gamma p^2 h \{[u_h] \cdot [v_h] \} \, d\sigma
\]

\[
- \sum_{e \in E_h} \int_{e} \{ \nabla u_h \}_{\omega} \cdot [v_h] \, d\sigma
\]

\[= (f, v_h)_\Omega\]

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find \(u \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H^1_0(\Omega).
\]

Problem (DGFEM approximation)

\(u_h, v_h \in V^p_h = \{ v \in L^2(\Omega) : v|_\kappa \in P^p(\kappa) \quad \forall \kappa \in T_h \} \)

\[
\sum_{\kappa \in T_h} \int_{\kappa} \nabla u_h \cdot \nabla v_h \, dx + \sum_{e \in E_h} \int_e \frac{\gamma p^2}{h} [u_h] \cdot [v_h] \, d\sigma
\]

\[
- \sum_{e \in E_h} \int_e \{\nabla u_h\}_\omega \cdot [v_h] \, d\sigma
\]

\[
- \sum_{e \in E_h} \int_e \{\nabla v_h\}_\omega \cdot [u_h] \, d\sigma = (f, v_h)_\Omega
\]

Divide and... reconnect (weakly).

Problem

\[\text{Find } u \in H_0^1(\Omega) \text{ such that} \]
\[\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \forall v \in H_0^1(\Omega). \]

Problem (DGFEM approximation)

\[u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v|_{\kappa} \in P_p(\kappa) \, \forall \kappa \in \mathcal{T}_h \} \]

\[A_h(u_h, v_h) \equiv \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \nabla u_h \cdot \nabla v_h \, dx + \sum_{e \in \mathcal{E}_h} \int_{e} \gamma_{h}^{p^2} [u_h] \cdot [v_h] \, d\sigma \]
\[- \sum_{e \in \mathcal{E}_h} \int_{e} \{\nabla u_h\}_\omega \cdot [v_h] \, d\sigma \]
\[- \sum_{e \in \mathcal{E}_h} \int_{e} \{\nabla v_h\}_\omega \cdot [u_h] \, d\sigma = (f, v_h)_\Omega \]

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find \(u \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} \nabla u \cdot \nabla \nu \, dx = \int_{\Omega} f \, \nu \, dx \quad \forall \nu \in H^1_0(\Omega).
\]

Problem (DGFEM approximation)

\(u_h, \nu_h \in V^p_h = \{ \nu \in L^2(\Omega) : \nu|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \} \)

\[
A_h(u_h, \nu_h) = \sum_{\kappa \in T_h} \int_{\kappa} \nabla u_h \cdot \nabla \nu_h \, dx + \text{...interface terms...} = (f, \nu_h)_\Omega
\]

Divide and... reconnect (weakly).

FEM/DGFEM stiffness matrix

Find $u_h \in V_h^p$ such that

$$A_h(u_h, v_h) = (f, v_h)_\Omega \quad \forall v_h \in V_h^p.$$

Let $V_h^p = \text{span}\{\phi_1, \ldots, \phi_N\}$ and expand $u_h = \sum_i u_i \phi_i$.
Find \(u_h \in V_h^p \) such that

\[
\mathcal{A}_h(u_h, v_h) = (f, v_h)_\Omega \quad \forall v_h \in V_h^p.
\]

Let \(V_h^p = \text{span}\{\phi_1, \ldots, \phi_N\} \) and expand \(u_h = \sum_i u_i \phi_i \).

Then \(u = [u_1, \ldots, u_N] \in \mathbb{R}^N \) satisfies

\[
Lu = b
\]

where

\[
L_{ij} = \mathcal{A}_h(\phi_i, \phi_j), \quad i, j = 1, \ldots, N.
\]
Find \(u_h \in V_h^p \) such that
\[
A_h(u_h, v_h) = (f, v_h)_\Omega \quad \forall v_h \in V_h^p.
\]

Let \(V_h^p = \text{span}\{\phi_1, \ldots, \phi_N\} \) and expand \(u_h = \sum_i u_i \phi_i \).

Then \(u = [u_1, \ldots, u_N] \in \mathbb{R}^N \) satisfies
\[
Lu = b
\]

where
\[
L_{ij} = A_h(\phi_i, \phi_j), \quad i, j = 1, \ldots, N.
\]

Properties of stiffness matrix \(L \):

- symmetric and positive definite: \(L = L^T > 0 \)
- \(N \) can be as **large** as one can afford (\(h \searrow 0, \ p \nearrow \text{large} \))
- **sparse**: each row has only a few nonzero elements
Solving large sparse systems
Approximate solution to $Lx = b$ is a reasonable choice.
Approximate solution to $Lx = b$ is a reasonable choice.

Model iteration:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n) \quad (\text{damped Jacobi iteration})$$

$L = D - A$, \hspace{1cm} (D is the diagonal of L)
No need for Gaussian elimination

Approximate solution to $Lx = b$ is a reasonable choice.

Model iteration:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n) \quad (damped \ Jacobi \ iteration)$$

$$L = D - A, \quad (D \ is \ the \ diagonal \ of \ L)$$

Divide and... be patient: for $L = L^T > 0$,

- with optimal damping τ, convergence driven by the condition number

$$\kappa = \frac{\lambda_{\text{max}}(D^{-1}L)}{\lambda_{\text{min}}(D^{-1}L)}$$

- error reduction:

$$\|x_{n+1} - x\| \lesssim \frac{\kappa - 1}{\kappa + 1} \|x_n - x\|$$

$$= \gamma$$
Iterative solution of $Lx = b$

- Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

- Error reduction factor $\gamma = \frac{\kappa - 1}{\kappa + 1}$ depends on $\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} (D^{-1}L)$

- If $D^{-1}L$ is ill-conditioned: $\kappa \gg 1 = \Rightarrow \gamma \approx 1$.

- Our L from finite element method is ill-conditioned: $p \rightarrow \infty$, $h \downarrow 0$ and $\kappa(L) = O(p^4/h^2)$.

- Divide and... use a good preconditioner P.

- If $D^{-1}L$ is well-conditioned: $\kappa \approx 1 = \Rightarrow \gamma \ll 1$.
Iterative solution of $Lx = b$

- Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

- error reduction factor $\gamma = \frac{\kappa - 1}{\kappa + 1}$ depends on $\kappa = \frac{\lambda_{\text{max}}(D^{-1}L)}{\lambda_{\text{min}}(D^{-1}L)}$
Iterative solution of $Lx = b$

- Model iterative method:
 $$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

- error reduction factor $\gamma = \frac{\kappa - 1}{\kappa + 1}$ depends on $\kappa = \frac{\lambda_{\text{max}}(D^{-1}L)}{\lambda_{\text{min}}(D^{-1}L)}$

Problem
If $D^{-1}L$ is ill–conditioned: $\kappa \gg 1 \Rightarrow \gamma \approx 1$.

Our L from finite element method is ill–conditioned: $p \rightarrow \infty$, $h \rightarrow 0$ and $\kappa(L) = O\left(\frac{p^4}{h^2}\right)$.

$D^{-1}L$ is ill–conditioned, too. Divide and... use a good preconditioner P.

If $D^{-1}L$ is well–conditioned: $\kappa \approx 1 \Rightarrow \gamma \ll 1$.

Iterative solution of $Lx = b$

- Model iterative method:
 \[x_{n+1} = x_n + \tau D^{-1}(b - Lx_n) \]

- Error reduction factor $\gamma = \frac{\kappa - 1}{\kappa + 1}$ depends on $\kappa = \frac{\lambda_{\text{max}}(D^{-1}L)}{\lambda_{\text{min}}(D^{-1}L)}$

Problem

If $D^{-1}L$ is ill-conditioned: $\kappa \gg 1 \implies \gamma \approx 1$.
Iterative solution of \(Lx = b \)

- Model iterative method:
 \[
 x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)
 \]

- Error reduction factor \(\gamma = \frac{\kappa - 1}{\kappa + 1} \) depends on \(\kappa = \frac{\lambda_{\text{max}}(D^{-1}L)}{\lambda_{\text{min}}(D^{-1}L)} \)

Problem

If \(D^{-1}L \) is ill-conditioned: \(\kappa \gg 1 \implies \gamma \approx 1. \)

Our \(L \) from finite element method is ill-conditioned: \(p \uparrow \infty, h \downarrow 0 \) and \(\kappa(L) = O(p^4/h^2) \)

\(D^{-1}L \) is ill-conditioned, too.
Iterative solution of $Lx = b$

- Model iterative method:

$$x_{n+1} = x_n + \tau P^{-1}(b - Lx_n)$$

- error reduction factor $\gamma = \frac{\kappa - 1}{\kappa + 1}$ depends on $\kappa = \frac{\lambda_{\text{max}}(P^{-1}L)}{\lambda_{\text{min}}(P^{-1}L)}$

Problem

If $P^{-1}L$ is ill–conditioned: $\kappa \gg 1 \implies \gamma \approx 1$.

Our L from finite element method is ill–conditioned: $p \nearrow \infty$, $h \searrow 0$ and

$$\kappa(L) = O(p^4/h^2)$$

$D^{-1}L$ is ill–conditioned, too.

Divide and... use a good preconditioner P.

If $P^{-1}L$ is well–conditioned: $\kappa \approx 1 \implies \gamma \ll 1$.
Simple **preconditioned** iteration:

\[x_{n+1} = x_n + P^{-1}(b - Lx_n) \]

Ideally, \(P \) should:

- be easy to construct,
- be easy to invert (i.e. solving a system with \(P \) is cheap),
- reduce the condition number: \(\kappa(P^{-1}L) \ll \kappa(L) \).

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).
What makes a good preconditioner?

Simple **preconditioned** iteration:

\[x_{n+1} = x_n + P^{-1}(b - Lx_n) \]

Ideally, \(P \) should:

- be easy to construct,
- be easy to invert (i.e. solving a system with \(P \) is cheap),
- reduce the condition number: \(\kappa(P^{-1}L) \ll \kappa(L) \).

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: \(P = I \) does not satisfy all requirements.
What makes a good preconditioner?

Simple **preconditioned** iteration:

\[x_{n+1} = x_n + P^{-1}(b - Lx_n) \]

Ideally, \(P \) should:

- be easy to construct,
- be easy to invert (i.e. solving a system with \(P \) is cheap),
- reduce the condition number: \(\kappa(P^{-1}L) \ll \kappa(L) \).

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: \(P = L \) does not satisfy all requirements as well.
Guidelines for choosing efficient P

$L = L^T > 0$, so choose $P = P^T > 0$.

- Impose spectral equivalence: if exist C_0, $C_1 > 0$ independent of h, p, ..., such that

\[C_0 x^T P x \leq x^T L x \leq C_1 x^T P x \implies \kappa(P^{-1}L) \leq \frac{C_1}{C_0}. \]

→ This makes the number of iterations independent of problem size.

- Think globally, act locally: embrace parallelism.
 → This makes each iteration fast.
A sidenote: another class of structured sparse matrices
Pretty drawing graphs

Spider’s messy net: how to draw it *nicely*?
Graph Laplacians: pretty drawing graphs

- Assume edges are elastic threads, obeying (linear!) Hooke’s law
• Assume edges are elastic threads, obeying (linear!) Hooke’s law
• Fix positions of some nodes
Graph Laplacians: pretty drawing graphs

- Assume edges are identical elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes
- Solve for other positions:
Graph Laplacians: pretty drawing graphs

- Assume edges are identical elastic threads, obeying (linear!) Hooke’s law
- Fix positions of some nodes
- **Solve** for other positions:

![Graph Laplacians diagram](image)
Graph Laplacian

Simple, unidirected, weighted graph \((V, E)\) (e.g. social network, transport network, electric circuit, ...)

- Vertices \(V = \{1, \ldots, N\}\)
- Edge between \(i, j \in V\) denoted \((i, j)\); the set of all edges: \(E\);
- **Degree** of vertex \(i\) is
 \[
 D_{ii} = \sum_{j: (i, j) \in E} w_{ij}.
 \]
- Adjacency matrix: \(A_{ij} = w_{ij}\) if \((i, j) \in E\); zero otherwise.
- **Graph Laplacian**: \(L = D - A\);
 equivalently
 \[
 L = L^T \geq 0
 \]
 \[
 x^T L x = \sum_{(i, j) \in E} w_{ij} (x_i - x_j)^2.
 \]
Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs

Some graphs have very large number of vertices N. But then usually every node is connected to only a few others: the graph is sparse: $\forall i \ L_{ij} \neq 0$ only for several j. We experienced this browsing through the Sparse Matrix Collection!
Graph Laplacian

Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)

Some graphs have very large number of vertices N. But then usually every node is connected to only a few others: the graph is sparse: $\forall i \ L_{ij} \neq 0$ only for several j.
Graph Laplacian

Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
Graph Laplacian

Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration)
Graph Laplacian

Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually every node is connected to only a few others: the graph is sparse: $\forall i L_{ij} \neq 0$ only for several j. We experienced this browsing through the Sparse Matrix Collection!
Graph Laplacian

Reasons to solve systems $Lx = b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually every node is connected to only a few others: the graph is sparse:

$$\forall i \quad L_{ij} \neq 0 \text{ only for several } j$$

We experienced this browsing through the *Sparse Matrix Collection!*
Domain decomposition for PDEs
What makes a good preconditioner?

We are solving

\[Lx = b \]

with \(L = L^T > 0 \).

Simple **preconditioned** iteration:

\[x_{n+1} = x_n + P^{-1}(b - Lx_n) \]

\(P \) must:

- be easy to construct,
- be easy to invert (i.e. solve a system with \(P \)),
- reduce the condition number: \(\kappa(P^{-1}L) \ll \kappa(L) \).

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).
Guidelines for choosing efficient P

$L = L^T > 0$, choose $P = P^T > 0$.

- Impose spectral equivalence:
 \[C_0 x^T P x \leq x^T L x \leq C_1 x^T P x \implies \kappa(P^{-1} L) \leq \frac{C_1}{C_0}. \]

- Use full processing power: embrace parallelism.
Domain decomposition

Divide and... solve smaller problems in parallel.
Then „glue” them together.

Source: MSC/PARASOL
Additive Schwarz method

Problem

Find \(u_h \in V_h \) such that

\[
A_h(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h.
\]
Additive Schwarz method

Problem
Find $u_h \in V_h$ such that

$$A_h(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

Divide and... add:

- Space decomposition:

$$V_h = V_0 + V_1 + \ldots + V_N.$$
Problem

Find $u_h \in V_h$ such that

$$A_h(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

Divide and... add, and solve in parallel.

- Space decomposition:

$$V_h = V_0 + V_1 + \ldots + V_N.$$

- Local solution operators $T_i : V_h \to V_i$ such that

$$A_h(T_i u_i, v_i) = A_h(u_i, v_i) \quad \forall v_i \in V_i.$$
Theorem (Divide and... maintain stability)

Let \(T = T_0 + T_1 + \ldots + T_N \). Suppose that the following hold:

Stable decomposition: \(\exists \ C > 0 \ \exists \ u_i \in V_i, u = \sum_i u_i \)

\[
\sum_i A_h(u_i, u_i) \leq C A_h(u, u) \quad \forall u \in V_h
\]

Strengthened Cauchy–Schwarz ineq.: \(\exists 0 \leq E_{ij} \leq 1 \ \forall 1 \leq i, j \leq N \)

\[
A_h(u_i, u_j) \leq E_{ij} \cdot A_h(u_i, u_i)^{1/2} \cdot A_h(u_j, u_j)^{1/2} \quad \forall u_i \in V_i, u_j \in V_j,
\]

Local stability: \(\exists \omega > 0 \ \forall 0 \leq i \leq N \)

\[
A_h(u_i, u_i) \leq \omega A_h(u_i, u_i) \quad \forall u_i \in V_i
\]

Then

\[
\kappa(T) \leq C \omega (\rho(E) + 1).
\]

Additive/Multiplicative Schwarz method

30 years of successful applications:

- overlapping domain decomposition
- substructuring domain decomposition
- multigrid
- building block of PETSc parallel linear solvers library

Smith, Bjørstad, Gropp (1996) *Domain decomposition*
Toselli, Widlund (2005) *Domain decomposition methods—algorithms and theory*
Balay (1995–) *PETSc Users Manual*
“Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize”

- World’s fastest supercomputer Sunway TaihuLight, 10M cores

http://awards.acm.org/bell
"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World’s fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns

http://awards.acm.org/bell
“Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize”

- World’s fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns
- “In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency.”

http://awards.acm.org/bell
"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World’s fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns
- "In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency."
- Additive Schwarz at the core of computation

http://awards.acm.org/bell
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} . \]
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \} . \]
Non-overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \} \].

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Is there no overlap between subdomains?
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \ \forall \kappa \in \mathcal{T}_h \} . \]

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \ j \neq i \} \]

Is there no overlap between subdomains? Not really:
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in T_h \} \].

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Is there no overlap between subdomains? Not really:

\[A_h(u, v) \equiv \sum_{\kappa \in T_h} \int_{\kappa} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} \frac{\gamma p^2}{h} [u][v] \, d\sigma + \ldots \text{ etc.} \]
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v_{|\kappa} \in P_p(\kappa) \quad \forall \kappa \in T_h \} \]
$V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \}$.

Coarse space: $V_0 = V_q H$, where $H \geq H_q, q \leq p$.

Divide and aggregate.
Non-overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}. \]

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Divide and... aggregate.
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in T_h \}. \]

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Divide and... aggregate.
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v_{|_\kappa} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} . \]

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Divide and... aggregate.

\(\Omega_i\)

N subdomains
Non–overlapping domain decomposition for DGFEM

\[V_h^p = \{ v \in L^2(\Omega) : v|_\kappa \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \]

Decomposition:

\[V_h^p = \sum_{i=1}^{N} V_i \]

where

\[V_i = \{ v \in V^p_h : v = 0 \text{ on } \Omega_j, \quad j \neq i \} \]

Coarse space:

\[V_0 = V^q_{\mathcal{H}}, \quad \text{where } \mathcal{H} \geq H, \quad q \leq p. \]

Divide and... aggregate.

\(N \) subdomains, \(\mathcal{M} \) coarse space cells.
Theorem

Let $T = T_0 + \sum_{i=1}^{N} T_i$ be the preconditioned operator. Then

$$\kappa(T) = O\left(\frac{\mathcal{H}^2}{hH} \cdot \frac{p^2}{\max\{q, 1\}}\right)$$

Bound independent of discontinuities in the coefficient, extended to nonconforming meshes and varying polynomial degree.

K. (2016) Num. Meth. PDEs
DGFEM additive Schwarz condition estimate

Key condition for the coarse space V_0:

Divide and... maintain approximation:

$$\forall u \in V_h \quad \exists u_0 \in V_0:$$

$$\sum_{n=1}^{\mathcal{M}} \left(\frac{q_n^2}{H_n^2} \| u - u_0 \|_{0,D_n}^2 + \| u - u_0 \|_{D_n}^2 \right) \leq \text{Const} \cdot \mathcal{A}_h(u, u).$$

K. (2016) *Num. Meth. PDEs*
DGFEM additive Schwarz condition estimate

Key condition for the coarse space V_0:

Divide and... maintain approximation:

\[\forall u \in V_h \; \exists u_0 \in V_0 : \]

\[\sum_{n=1}^{M} \left(\frac{q_n^2}{\mathcal{H}_n^2} \| u - u_0 \|_{0,D_n}^2 + \| u - u_0 \|_{D_n}^2 \right) \leq \text{Const} \cdot \mathcal{A}_h(u, u). \]

Open questions:

- Optimal balance between \mathcal{H} and H, p and q?
- How does it depend on the computer architecture?

K. (2016) *Num. Meth. PDEs*

What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) × 1084 nodes (Cray XC40, at ICM UW)

or...
What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) \times 1084 \text{ nodes (Cray XC40, at ICM UW)}

or...

2560 cores, 1.6 GHz, 8 GB \text{ (NVIDIA GTX 1080, in your PC)}
Suppose subdomain = single finite element.

Then # parallel tasks = # subdomains = # finite elements = N.

Theorem

Let $T = T_0 + \sum_{i=1}^{N} T_i$ be the preconditioned operator. Then

$$
\kappa(T) \lesssim \max_{n=1,\ldots,M} \left\{ \frac{H_n^2}{\min_{\kappa \in T_h(D_n)} h_\kappa^2} \right\}.
$$

Bound independent of discontinuities in the coefficient (under certain assumptions).

Extreme parallelism

Suppose subdomain = single finite element.

Then \# parallel tasks = \# subdomains = \# finite elements = \(N \).

Theorem

Let \(T = T_0 + \sum_{i=1}^{N} T_i \) be the preconditioned operator. Then

\[
\kappa(T) \lesssim \frac{\mathcal{H}^2}{h^2}.
\]

Bound independent of discontinuities in the coefficient (under certain assumptions).

Splitting equations
Block systems

System with nonsingular, symmetric 2×2 block matrix:

$$
\mathcal{L} \begin{bmatrix} u \\ p \end{bmatrix} \equiv \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}.
$$
Block systems

System with nonsingular, symmetric 2×2 block matrix:

$$
\mathcal{L} \begin{bmatrix} u \\ p \end{bmatrix} \equiv \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}.
$$

Examples of “natural” block decomposition:

- $A > 0$, $C = 0$
 - Stokes equations,
 - mixed methods for elliptic PDEs,
- $A > 0$, $C < 0$
 - structured methods for elliptic PDEs:
- $A > 0$, $C > 0$
 - linear elasticity mixed discretization
 - stabilized mixed methods
- A indefinite, $C > 0$
 - time harmonic Maxwell equations
A family of preconditioners

For ill-conditioned L, use preconditioner P, and solve iteratively

$$P^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = P^{-1} \begin{bmatrix} F \\ G \end{bmatrix}$$

K. (2011) *Efficient preconditioned [...] PDEs*
A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1} \begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_1 = \begin{bmatrix} I & \quad & \quad & \quad \\ c B A_0^{-1} & I & \quad & \quad \\ & & A_0 & S_0 \\ & & & I \end{bmatrix} \begin{bmatrix} I & d A_0^{-1} B^T \\ & & I & \quad \\ & & & I \end{bmatrix}$$

K. (2011) *Efficient preconditioned [...] PDEs*

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1} \begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_1 = \begin{bmatrix} I & A_0^{-1} \\ cB & I \end{bmatrix} \begin{bmatrix} A_0 & \phantom{\mathbf{d}A_0^{-1}B^T} \\ S_0 & \phantom{\mathbf{I}} \end{bmatrix} \begin{bmatrix} I & \mathbf{d}A_0^{-1}B^T \\ \phantom{\mathbf{I}} & \mathbf{I} \end{bmatrix}$$

or

$$\mathcal{P}_2 = \begin{bmatrix} I & \mathbf{d}B^T S_0^{-1} \\ \phantom{\mathbf{I}} & \mathbf{I} \end{bmatrix} \begin{bmatrix} A_0 & \phantom{\mathbf{I}} \\ S_0 & \phantom{\mathbf{I}} \end{bmatrix} \begin{bmatrix} I & \phantom{\mathbf{cS_0^{-1}B}} \\ \mathbf{c}S_0^{-1}B & \mathbf{I} \end{bmatrix},$$

K. (2011) *Efficient preconditioned [...] PDEs*

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1} \begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_1 = \begin{bmatrix} I & 0 \\ cB\mathcal{A}_0^{-1} & I \end{bmatrix} \begin{bmatrix} \mathcal{A}_0 & \mathcal{S}_0 \\ I & 0 \end{bmatrix} \begin{bmatrix} I & d\mathcal{A}_0^{-1}B^T \\ \mathcal{I} & I \end{bmatrix}$$

or

$$\mathcal{P}_2 = \begin{bmatrix} I & dB^T\mathcal{S}_0^{-1} \\ \mathcal{I} & I \end{bmatrix} \begin{bmatrix} \mathcal{A}_0 & \mathcal{S}_0 \\ \mathcal{I} & I \end{bmatrix} \begin{bmatrix} I & \mathcal{cS}_0^{-1}B \\ \mathcal{I} & I \end{bmatrix},$$

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

K. (2011) Efficient preconditioned [...] PDEs

Choosing the ingredients: c, d parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Form of \mathcal{P}</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>block-diagonal</td>
<td>$\begin{bmatrix} A_0 \ S_0 \end{bmatrix}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>block-triangular</td>
<td>$\begin{bmatrix} A_0 \ B & -S_0 \end{bmatrix}$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>block symmetric indefinite</td>
<td>$\begin{bmatrix} A_0 & B^T \ B & BA_0^{-1}B^T - S_0 \end{bmatrix}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>primal-based penalty</td>
<td>$\begin{bmatrix} A_0 - B^T S_0^{-1}B & B^T \ B & -S_0 \end{bmatrix}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Choosing the ingredients: A_0, S_0 preconditioners

Let us define a block diagonal matrix and a norm

$$\mathcal{J} = \begin{bmatrix} A_0 & 0 \\ 0 & S_0 \end{bmatrix}, \quad \| \begin{bmatrix} u \\ p \end{bmatrix} \|_{\mathcal{J}}^2 = \| u \|_{A_0}^2 + \| p \|_{S_0}^2 = u^T A_0 u + p^T S_0 p.$$

Divide and... keep balance:

stability and continuity

$$\exists m_0, m_1 > 0 \quad m_0 \| x \|_{\mathcal{J}} \leq \| Lx \|_{\mathcal{J}^{-1}} \leq m_1 \| x \|_{\mathcal{J}} \quad \forall x,$$

mixed continuity

$$\exists b_0 > 0 \quad | p^T B u \| \leq b_0 \| u \|_{A_0} \| p \|_{S_0} \quad \forall u, \forall p,$$

inner product definiteness

$$\mathcal{H} > 0$$

spectral equivalence

$$\exists h_0, h_1 > 0 \quad h_0 \| x \|_{\mathcal{H}} \leq \| x \|_{\mathcal{J}} \leq h_1 \| x \|_{\mathcal{H}}, \quad \forall x.$$
It is known that the convergence speed of PCR iteration depends on

$$\kappa = \frac{\max |\lambda(P^{-1}L)|}{\min |\lambda(P^{-1}L)|}.$$

Theorem
If λ is an eigenvalue of $P^{-1}L$, then

$$\frac{1}{2m_0(1 + b_0^2)} \leq |\lambda| \leq 2m_1(1 + b_0^2).$$

This has direct implications to preconditioning Stokes equation or certain multiphysics systems of PDEs.

Smears (2017) *IMA Journal of Numerical Analysis*
Summing up
Divide and… ?
Divide and...

- reconnect wisely
Divide and...

- reconnect wisely
- solve parts in parallel
Divide and...

- reconnect wisely
- solve parts in parallel
- keep balance
Divide and...

- reconnect wisely
- solve parts in parallel
- keep balance
- maintain stability or approximation
Selected active research areas

• preconditioners for nonstandard finite elements
• algorithms for new computer architectures
• communication avoiding parallel methods/preconditioners
• domain decomposition for nonlinear problems
• nonsymmetric/indefinite linear systems
• robust methods for graph Laplacians