Property A and duality in linear programming

Andrzej Nagórko
joint work with G. C. Bell (UNCG)

University of Warsaw
1. What is ... property A?

2. Property A as a linear problem and the dual problem

3. Examples: primal and dual solutions

4. Primal relaxation: Cheeger constant

5. Applications: hypercubes and graphs with large girth
What is ... property A?
Property A was introduced in 2000 and turns out to be of great importance in many areas of mathematics [1]. Perhaps the most striking example is the following implication that follows from results in [4].

If group G has Property A then the Novikov conjecture is true for all closed manifolds with fundamental group G.

The Novikov conjecture asserts homotopy invariance of higher signatures of smooth manifolds. Is is one of most important unsolved problems in topology.

Graph as a metric space

Path-length metric on a graph.

- Graphs are oriented \((E \subset V \times V)\).
- We allow infinite distance.
- If \(ij \in E\) is used to denote an edge, then \(i\) is the source and \(j\) is the target vertex of \(ij\).
Optimization Problem I. Let $G = (V, E)$ be a graph and let $S \geq 0$. Find minimal $\epsilon = \epsilon_{S,G}$ (variation) and a family $\{\xi_i : V \to \mathbb{R}\}_{i \in V}$ of functionals (probability measures) such that

1. Each ξ_i is a probability measure, i.e.

 $$\|\xi_i\|_1 = 1 \text{ and } \xi_i \geq 0 \text{ for each } i \in V;$$

2. Variation on edge ij does not exceed ϵ, i.e.

 $$\|\xi_i - \xi_j\|_1 \leq \epsilon \text{ for each } ij \in E;$$

3. Each ξ_i is supported by $B(i, S)$, i.e.

 $$\text{supp } \xi_i = \{j \in V : \xi_i(j) > 0\} \subset B(i, S) \text{ for each } i \in V,$$

 where $B(i, S)$ is ball of radius S centered at i.
Optimization Problem I. Find minimal $\varepsilon_{S,G} > 0$ with functionals ξ_i on G satisfying

1. $\|\xi_i\|_1 = 1$ and $\xi_i \geq 0$ for each $i \in V$;
2. $\|\xi_i - \xi_j\|_1 \leq \varepsilon$ for each $ij \in E$;
3. $\text{supp} \xi_i = \{j \in V: \xi_i(j) > 0\} \subset B(i, S)$ for each $i \in V$.

This is optimal solution with objective $\varepsilon = \frac{2}{3}$.

Optimality of the solution is not trivial to show.
Optimization Problem I. Find minimal $\varepsilon_{S,G} > 0$ with functionals ξ_i on G satisfying

1. $\|\xi_i\|_1 = 1$ and $\xi_i \geq 0$ for each $i \in V$;
2. $\|\xi_i - \xi_j\|_1 \leq \varepsilon$ for each $ij \in E$;
3. $\text{supp} \xi_i = \{j \in V : \xi_i(j) > 0\} \subset B(i,S)$ for each $i \in V$.

Property A

Let G be a graph and for each $S \geq 0$ let $\varepsilon_{S,G}$ be the minimal variation of probability measures on G at scale S, i.e. the solution of Optimization Problem I at scale S. We say that G has property A iff

$$\lim_{S \to \infty} \varepsilon_{S,G} = 0.$$
Property A

Let G be a graph and for each $S \geq 0$ let $\varepsilon_{S,G}$ be the minimal variation of probability measures on G at scale S, i.e. the solution of Optimization Problem I at scale S. We say that G has property A iff

$$\lim_{S \to \infty} \varepsilon_{S,G} = 0.$$
Property A

Let G be a graph and for each $S \geq 0$ let $\varepsilon_{S,G}$ be the minimal variation of probability measures on G at scale S, i.e. the solution of Optimization Problem I at scale S. We say that G has property A iff

$$\lim_{S \to \infty} \varepsilon_{S,G} = 0.$$

• To prove property A for G it is enough to find upper bounds $\varepsilon_{S,G} \leq \hat{\varepsilon}_{S,G}$ such that

$$\lim_{S \to \infty} \hat{\varepsilon}_{S,G} = 0.$$
Property A

Let G be a graph and for each $S \geq 0$ let $\varepsilon_{S,G}$ be the minimal variation of probability measures on G at scale S, i.e. the solution of Optimization Problem I at scale S. We say that G has **property A** iff

$$\lim_{S \to \infty} \varepsilon_{S,G} = 0.$$

- To prove property A for G it is enough to find upper bounds $\varepsilon_{S,G} \leq \hat{\varepsilon}_{S,G}$ such that

$$\lim_{S \to \infty} \hat{\varepsilon}_{S,G} = 0.$$

- To prove that G does not have property A we have to show that

$$\limsup_{S \to \infty} \varepsilon_{S,G} > 0.$$ so we have to consider optimal solutions $\varepsilon_{G,S}$.

A. Nagórko
• If $S \geq \text{diam } G$, then $\varepsilon_{S,G} = 0$, so property A is trivial for finite graphs.
• If \(S \geq \text{diam} \, G \), then \(\varepsilon_{S,G} = 0 \), so property A is trivial for finite graphs.

Theorem

Let \(G \) be a graph and assume that \(G = \bigcup_{n \in \mathbb{N}} G_n \), with \(G_1 \subset G_2 \subset G_3 \subset \cdots \) an ascending sequence of convex subgraphs of \(G \). Let \(\varepsilon_{S,G_n} \) be the minimal variation of probability measures at scale \(S \) for graph \(G_n \). Graph \(G \) has property A iff

\[
\lim_{S \to \infty} \lim_{n \to \infty} \varepsilon_{S,G_n} = 0.
\]
• If $S \geq \text{diam } G$, then $\varepsilon_{S,G} = 0$, so property A is trivial for finite graphs.

Theorem

Let G be a graph and assume that $G = \bigcup_{n \in \mathbb{N}} G_n$, with $G_1 \subset G_2 \subset G_3 \subset \cdots$ an ascending sequence of convex subgraphs of G. Let ε_{S,G_n} be the minimal variation of probability measures at scale S for graph G_n. Graph G has property A iff

$$\lim_{S \to \infty} \lim_{n \to \infty} \varepsilon_{S,G_n} = 0.$$

Important case: disjoint sum of finite subgraphs.
Graph G has property A iff
\[\lim_{S \to \infty} \lim_{n \to \infty} \epsilon_{S,G_n} = 0. \]

To check that
\[\lim_{S \to \infty} \lim_{n \to \infty} \epsilon_{S,G_n} \neq 0 \]
we need a lower bound on ϵ_{S,G_n}.
Property A as a linear problem and the dual problem
Optimization Problem I. Find minimal $\varepsilon_{S,G} > 0$ with functionals ξ_i on G satisfying

1. $\|\xi_i\|_1 = 1$ and $\xi_i \geq 0$ for each $i \in V$;
2. $\|\xi_i - \xi_j\|_1 \leq \varepsilon$ for each $ij \in E$;
3. $\text{supp} \xi_i = \{j \in V : \xi_i(j) > 0\} \subset B(i, S)$ for each $i \in V$.

Primal problem.

minimize e

subject to

$\sum_{j \in V} x_{i,j} = 1$ for each $i \in V$,

$x_{i,j} = 0$ for each $i \in V, j \in V \setminus B(i, S)$,

$x_{j,k} - x_{i,k} \leq e_{ij,k}$ for each $ij \in E, k \in V$,

$x_{i,k} - x_{j,k} \leq e_{ij,k}$ for each $ij \in E, k \in V$,

$\sum_{k \in V} e_{ij,k} \leq e$ for each $ij \in E$,

$x_{i,j}, e_{ij,k}, e \geq 0$
The dual problem

Dual problem.

maximize \[\sum_{i \in V} \eta_i \]
subject to
\[\sum_{ij \in E} \kappa_{ij} \leq 1 \]
\[\varphi_{k,ij} \leq \kappa_{ij} \text{ for each } ij \in E, k \in V, \]
\[-\varphi_{k,ij} \leq \kappa_{ij} \text{ for each } ij \in E, k \in V, \]
\[\sum_{mi \in E, m \in V} \varphi_{k,mi} - \sum_{im \in E, m \in V} \varphi_{k,im} \geq \eta_i \text{ for each } k \in V, i \in B(k, S), \]
\[\eta_i, \varphi_{k,ij}, \kappa_{ij} \in \mathbb{R}, \kappa_{ij} \geq 0 \]
Primal vs dual

Primal

\[
\begin{align*}
\min & \quad e \\
\text{s.t.} & \quad \sum_{j \in V} x_{i,j} = 1, \\
& \quad x_{i,j} = 0, \\
& \quad x_{j,k} - x_{i,k} \leq e_{ij,k}, \\
& \quad x_{i,k} - x_{j,k} \leq e_{ij,k}, \\
& \quad \sum_{k \in V} e_{ij,k} \leq e, \\
& \quad x_{i,j}, e_{ij,k}, e \geq 0
\end{align*}
\]

Dual

\[
\begin{align*}
\max & \quad \sum_{i \in V} \eta_i \\
\text{s.t.} & \quad \sum_{ij \in E} \kappa_{ij} \leq 1, \\
& \quad \varphi_{k,ij} \leq \kappa_{ij}, \\
& \quad -\varphi_{k,ij} \leq \kappa_{ij}, \\
& \quad \sum_{mi \in E, m \in V} \varphi_{k,mi} - \sum_{im \in E, m \in V} \varphi_{k,im} \geq \eta_i, \\
& \quad \eta_i, \varphi_{k,ij} \in \mathbb{R}, \kappa_{ij} \geq 0
\end{align*}
\]
Examples: primal and dual solutions
\[\|\xi_1 - \xi_0\|_1 = |\xi_1(0) - \xi_0(0)| + |\xi_1(1) - \xi_0(1)| + |\xi_1(2) - \xi_0(2)| + |\xi_1(3) - \xi_0(3)| \leq \varepsilon \]

\[\Downarrow \]

\[-\frac{1}{12} (\xi_1(0) - \xi_0(0)) + \frac{1}{12} (\xi_1(1) - \xi_0(1)) + \frac{1}{4} (\xi_1(2) - 0) - \frac{1}{4} (0 - \xi_0(3)) \leq \frac{1}{4} \varepsilon \]
Theorem

Dual problem at scale S is dual to Primal problem at scale S. In particular, for each admissible solution of each problem, we have

$$\sum_{i \in V} \eta_i \leq e$$

and the optimal solutions are equal.
Square graph - solution by hand
Cube graph, $S = 2$, primal solution
Cube graph, $S = 2$, dual solution
Primal relaxation: Cheeger constant
Capacity and supply is implicit if we know flows

Note that the capacity κ and supply η is implicit in the solution of the dual problem as the optimal values for chosen pseudo-flows φ_i can be easily computed.

Dual Problem

$$\text{maximize} \quad \sum_{i \in V} \eta_i$$

subject to

$$\sum_{ij \in E} \kappa_{ij} \leq 1,$$

$$\varphi_{k,ij} \leq \kappa_{ij} \quad \text{for each } ij \in E, k \in V,$$

$$-\varphi_{k,ij} \leq \kappa_{ij} \quad \text{for each } ij \in E, k \in V,$$

$$\sum_{mi \in E, m \in V} \varphi_{k,mi} - \sum_{im \in E, m \in V} \varphi_{k,im} \geq \eta_i \quad \text{for each } k \in V, i \in B(k, S),$$

$$\eta_i, \varphi_{k,ij} \in \mathbb{R}, \quad \kappa_{ij} \geq 0$$
Averaged solutions

Theorem

Let G be a graph. Let Γ be a group that acts on G by automorphisms. If Γ acts transitively both on edges and on vertices of G, then there exists an optimal solution of the dual problem such that $\eta_i = \eta_j$ for each $i, j \in V$ and $\varepsilon_{ij} = \frac{1}{|E|}$ for each $ij \in E$.

This is not always the case.
Averaged solutions

Theorem

Let G be a graph. Let Γ be a group that acts on G by automorphisms. If Γ acts transitively both on edges and on vertices of G, then there exists an optimal solution of the dual problem such that $\eta_i = \eta_j$ for each $i, j \in V$ and $\varepsilon_{ij} = \frac{1}{|E|}$ for each $ij \in E$.

This is not always the case.
Forced equal capacities and supplies

\[
\sigma_{k,i} = \sum_{m_i \in E, m \in V} \varphi_{k,m_i} - \sum_{i \in E, m \in V} \varphi_{k,im}
\]

<table>
<thead>
<tr>
<th></th>
<th>\sigma_{0,i}</th>
<th>\sigma_{1,i}</th>
<th>\sigma_{2,i}</th>
<th>\sigma_{3,i}</th>
<th>\sigma_{4,i}</th>
<th>\sigma_{5,i}</th>
<th>\sigma_{6,i}</th>
<th>\sigma_{7,i}</th>
<th>\min_k \sigma_{k,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_0 = 1/28</td>
</tr>
<tr>
<td>1</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_1 = 1/28</td>
</tr>
<tr>
<td>2</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_2 = 1/28</td>
</tr>
<tr>
<td>3</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_3 = 1/28</td>
</tr>
<tr>
<td>4</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_4 = 1/28</td>
</tr>
<tr>
<td>5</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_5 = 1/28</td>
</tr>
<tr>
<td>6</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_6 = 1/28</td>
</tr>
<tr>
<td>7</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
<td>\eta_7 = 1/28</td>
</tr>
</tbody>
</table>
\[
\sum = \frac{2}{7}
\]
The dual problem with extra constraints

Uniform flows.

maximize $|V| \cdot \eta$

subject to

$\varepsilon_{ij,k} \leq \frac{1}{|E|}$ for each $ij \in E, k \in V,$

$-\varepsilon_{ij,k} \leq \frac{1}{|E|}$ for each $ij \in E, k \in V,$

$\sum_{j \in V, ji \in E} \varepsilon_{ji,k} - \sum_{j \in V, ij \in E} \varepsilon_{ij,k} \geq \eta$ for each $k \in V, i \in B(k, S),$

$\eta, \varepsilon_{ij,k} \in \mathbb{R}$
3 × 3 grid, Uniform Flows problem at scale $S = 1$
Let \(S \subset V \). The **edge boundary of** \(S \) is \(\partial S = E[S, V \setminus S] \). For \(S \neq \emptyset \) we let
\[
\varphi(S) = \frac{|\partial S|}{|S|}
\]
be the **isoperimetric number of** \(S \).

Let \(S \geq 0 \) be a scale on a graph \(G \). We let
\[
\gamma(G, S) = \min_{T \subset B(i, S), i \in V, T \neq \emptyset} \varphi(T)
\]
be the **Cheeger constant** of \(G \) at scale \(S \).
Theorem

The optimal solution of Uniform Flow problem at scale S is equal to

$$\frac{|V|}{|E|} \gamma(G, S),$$

the Cheeger constant of G at scale S multiplied by $\frac{|V|}{|E|}$.

Minimal isoperimetric number over $B(k, S)$

Minimal isoperimetric number

maximize \(\eta \)

subject to

\(\varepsilon_{ij} \leq 1 \) for each \(ij \in E \),

\(-\varepsilon_{ij} \leq 1 \) for each \(ij \in E \),

\[
\sum_{j \in V,i \in E} \varepsilon_{ji} - \sum_{j \in V,i \in E} \varepsilon_{ij} \geq \eta \text{ for each } i \in B(k, S),
\]

\(\eta, \varepsilon_{ij} \in \mathbb{R} \)
Minimal isoperimetric number - the dual

minimize \ \ \ \ \sum_{ij \in E} |a_i - a_j|

subject to

\sum_{i \in S} a_i = 1,$

\begin{align*}
a_i &= 0 \text{ for each } i \in V \setminus B(k, S), \\
a_i &\geq 0 \text{ for each } i \in B(k, S)
\end{align*}

Theorem

There exists an optimal solution of the above problem with all non-zero values equal.
Minimal isoperimetric number over $B(k, S)$

Minimal isoperimetric number - the dual

\[
\text{minimize} \quad \sum_{ij \in E} |a_i - a_j|
\]

subject to

\[
\sum_{i \in S} a_i = 1,
\]

\[
a_i = 0 \quad \text{for each } i \in V \setminus B(k, S),
\]

\[
a_i \geq 0 \quad \text{for each } i \in B(k, S)
\]

For such solution, if we take $T = \{i : a_i > 0\}$, then the value of the objective function is $\frac{|\partial T|}{|T|} = \eta(T)$. But this is the isoperimetric number of T - and it is the minimal one.
Therefore the minimal isoperimetric number dual is equivalent to:

Minimal isoperimetric number - the dual reinterpreted

Maximize η such that for each $T \subset B(k, S)$ we have

$$\eta \leq \frac{|\partial T|}{|T|}.$$

This is the Cheeger constant. Remember that we rescaled the original problem by $\frac{|E|}{|V|}$.
The dual problem to Uniform flows

Uniform flows - Cheeger constant times $\frac{|V|}{|E|}$.

maximize $|V| \cdot \eta$

subject to

$$\varepsilon_{ij,k} \leq \frac{1}{|E|} \text{ for each } ij \in E, k \in V,$$

$$-\varepsilon_{ij,k} \leq \frac{1}{|E|} \text{ for each } ij \in E, k \in V,$$

$$\sum_{j \in V, ji \in E} \varepsilon_{ji,k} - \sum_{j \in V, ij \in E} \varepsilon_{ij,k} \geq \eta \text{ for each } k \in V, i \in B(k, S),$$

$$\eta, \varepsilon_{ij,k} \in \mathbb{R}$$
For each $S > 0$ find $\epsilon_{S,G}$ and a family of functionals $\{\psi_i\}$ on G satisfying

1. $\{\psi_i\}$ has norm 1 on average, i.e.
 \[
 \frac{1}{|V|} \left\| \sum_{i \in V} \psi_i \right\|_1 = 1,
 \]
 and $\psi_i \geq 0$ for each $i \in V$.

2. $\{\psi_i\}$ has ϵ-variation on average, i.e.
 \[
 \frac{1}{|E|} \sum_{ij \in E} \sum_{k \in V} |\psi_i(k) - \psi_j(k)| = \frac{1}{|E|} \sum_{ij \in E} \|\psi_i - \psi_j\|_1 \leq \epsilon.
 \]

3. $\text{supp } \psi_i \subset B(i, S)$ for each $i \in V$.

If $\lim_{S \to \infty} \epsilon_{S,G} = 0$, then G has mean property A.
Applications: hypercubes and graphs with large girth
Theorem

Let Q_n be the n-dimensional hypercube graph. The minimal variation of probability measures for Q_n at scale S is

$$\varepsilon_{S,Q_n} = \frac{2 \binom{n-1}{S}}{\sum_{k=0}^{S} \binom{n}{k}}.$$
Theorem

Let Q_n be the n-dimensional hypercube graph. The minimal variation of probability measures for Q_n at scale S is

$$
\varepsilon_{S,Q_n} = \frac{2^{n-1}}{\sum_{k=0}^{S} \binom{n}{k}}.
$$

For $n = 3, S = 2$ we have

$$
\varepsilon = \frac{2 \cdot \binom{2}{2}}{\binom{3}{0} + \binom{3}{1} + \binom{3}{2}} = \frac{2}{7}.
$$

(We found this number before.)
Corollary (P. Nowak, [2])

The disjoint union

$$\bigsqcup_{n \in \mathbb{N}} \{0, 1\}^n$$

with ℓ_1 metric does not have property A.

Proof.
The proof follows from the observation that for each $S \geq 0$ we have

$$\lim_{n \to \infty} \frac{2^n - 1}{\sum_{k=0}^S \binom{n}{k}} = 2.$$
Some experimental results and a quiz

Connected simple graphs with 12 edges (29503 graphs)

Top 12 solutions, $S = 1$, computation time 154.6743s (3 cores).
Some experimental results and a quiz

Connected simple graphs with 12 edges (29503 graphs)

Top 12 solutions, $S = 2$, computation time 207.7706s (3 cores).
Theorem
Let $G(d, c)$ be a d-regular graph with girth c. Let $2S + 1 < c$. The minimal variation of probability measures for $G(d, c)$ at scale S is

$$\frac{2(d - 1)^S(2 - d)}{2 - d(d - 1)^S}.$$

Corollary (R. Willett, [3])
Suppose d_i is a bounded sequence of integers with $d_i \geq 3$ and suppose c_i is a sequence of integers going to infinity. Then, the disjoint union of the graphs $G(d_i, c_i)$ fails to have property A.

Proof.
The proof follows from the observation that

$$\lim_{S \to \infty} \frac{2(d - 1)^S(2 - d)}{2 - d(d - 1)^S} = 2 - \frac{4}{d}.$$
Thank you for your attention!

P. Nowak and G. Yu.
What is . . . property A?

P. W. Nowak.
Coarsely embeddable metric spaces without Property A.

R. Willett.
Property A and graphs with large girth.

G. Yu.
The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space.