The Weak Ramsey Property

Wiesław Kubiś

http://www.math.cas.cz/kubis/

Topology and Set Theory Seminar
University of Warsaw

16 December 2020
Joint work (in progress) with

Adam Bartoš
Tristan Bice
Keegan Dasilva Barbosa
Motivation
Motivation

Theorem (Kechris, Pestov, Todorcevic 2005)

Let \mathcal{F} be a relational Fraïssé class with the Fraïssé limit U and let $G = \text{Aut}(U)$ be endowed with the pointwise convergence topology. TFAE:

(a) G is extremely amenable.
(b) \mathcal{F} has the Ramsey property and the ordering property.

$G \leq S_{\infty}$

closed
F consists of finite structures with relations

- F is hereditary
- F has the joint embedding property, the amalgamation property, and ctly many types.

Homogeneity:

\[\sim \]

\[\text{AE}_F \]

\[\text{Aut}(U) \uparrow \text{Emb}(A, U) \]

\[g, gf, f \]
Categories

Categories will be denoted by letters \mathcal{G}, \mathcal{C}, \mathcal{L}, etc. Given a category \mathcal{C} and two objects $A, B \in \text{Obj}(\mathcal{C})$ the set of all \mathcal{C}-arrows from A to B will be denoted by $\mathcal{C}(A, B)$.
Categories

Categories will be denoted by letters \mathcal{G}, \mathcal{C}, \mathcal{L}, etc.

Given a category \mathcal{C} and two objects $A, B \in \text{Obj}(\mathcal{C})$ the set of all \mathcal{C}-arrows from A to B will be denoted by $\mathcal{C}(A, B)$.

The setup

We shall work with a pair $\langle \mathcal{G}, \mathcal{L} \rangle$, where \mathcal{L} is a category and \mathcal{G} is its full subcategory. We shall assume that $\text{Obj}(\mathcal{L})$ consists of all colimits of chains (sequences) in \mathcal{G} and all \mathcal{L}-arrows are monic.

We assume \mathcal{G} is directed, i.e., for every $a, b \in \text{Obj}(\mathcal{G})$ there is $c \in \text{Obj}(\mathcal{G})$ with

$$\mathcal{G}(a, c) \neq \emptyset \neq \mathcal{G}(b, c).$$
Definition

Fix $\alpha : a \rightarrow a'$ in \mathcal{G}. We say that \mathcal{G} has the weak amalgamation property (WAP) at α if for every \mathcal{G}-arrows $f : a' \rightarrow x$, $g : a' \rightarrow y$ there are \mathcal{G}-arrows $f' : x \rightarrow w$ and $g' : y \rightarrow w$ satisfying

$$f' \circ f \circ \alpha = g' \circ g \circ \alpha.$$
Example (Pouzet)

Let \mathcal{F} be the class of all finite linearly ordered sets, where the linear ordering $<$ is replaced by the following ternary relation:

$$R(x, y, z) \iff x < y \& x < z \& y \neq z.$$
Weak Fraïssé category:
- directed
- with the WAP
- countably dominated
Weak Fraïssé sequences

Definition

A normalized weak Fraïssé sequence in \mathcal{G} is a sequence $\tilde{u}: \omega \rightarrow \mathcal{G}$ satisfying the following condition.

(W) For every $n \in \omega$, for every \mathcal{G}-arrow $f: u_{n+1} \rightarrow y$ there exist $m > n$ and an \mathcal{G}-arrow $g: y \rightarrow u_m$ such that

$$g \circ f \circ u_{n+1} = u_m.$$
The framework

We assume $U = \lim \bar{u}$, where $\bar{u} : \omega \to S$ is a normalized weak Fraïssé sequence.

Furthermore:

(F) For every $a \in \text{Obj}(S)$, for every $f : a \to \lim \bar{u}$ there are $n \in \omega$ and $f' : a \to u_n$ such that $f = u_n \circ f'$.
The topology on $G := \text{Aut}(U)$

Definition

A basic neighborhood of $\text{id}_U \in G$ is defined to be any set of the form

$$V_m = \{g \in G : g \circ u_m^\infty = u_m^\infty\},$$

where $m \in \omega$.

\[\begin{array}{c}
\text{\underline{a}_0 \xrightarrow{\text{\underline{u}_0}} \text{\underline{a}_1} \xrightarrow{\text{\underline{u}_1}} \ldots \xrightarrow{\text{\underline{u}_m}} \text{\underline{u}_m}} \\
\text{\underline{u}_0 \xrightarrow{\text{id}_{\underline{u}_m}} \text{\underline{a}_0}} \\
\end{array} \]
The topology on $G := \text{Aut}(U)$

Definition

A basic neighborhood of $\text{id}_U \in G$ is defined to be any set of the form

$$V_m = \{ g \in G : g \circ u_m^\infty = u_m^\infty \},$$

where $m \in \omega$.

Claim

$\text{Aut}(U)$ is a completely metrizable non-archimedean group.

Each V_m is an open subgroup.
The weak big Ramsey property

Theorem

Assume \(G = \text{Aut}(U) \) is extremely amenable. Then for every \(a \in \text{Obj}(\mathcal{G}) \) there exists an \(\mathcal{G} \)-arrow \(\alpha : a \to a' \) satisfying:

\[(wB) \quad \text{For every } k \in \omega, \text{ for every finite } F \subseteq \mathcal{L}(a', U), \text{ for every } \varphi : \mathcal{L}(a', U) \circ \alpha \to k \text{ there is } g \in G \text{ such that } \varphi \text{ is constant on } g \circ F \circ \alpha.\]

\[a \xrightarrow{\alpha} a' \]

\[G \not\supset \mathcal{L}(a', U) \circ \alpha \text{ transitively} \]

\[G \not\supset k \mathcal{L}(a', U) \circ \alpha \]

\[G \supset \text{compact} \]

\[U \]

\[\sim \]

\[g \]

\[U \]

W. Kubiš (http://www.math.cas.cz/kubis/)

The Weak Ramsey Property
If \(a \xrightarrow{\mathcal{L}} a' \) is amalgamable then

\[
h \circ f_1 \circ \alpha = f_2 \circ \alpha
\]
The weak Ramsey property

Definition

We say \mathcal{G} has the **weak Ramsey property** if for every $a \in \text{Obj}(\mathcal{G})$ there is an \mathcal{G}-arrow $\alpha : a \rightarrow a'$ satisfying

$$(wR) \quad \text{For every } b \in \text{Obj}(\mathcal{G}), \text{ for every } k \in \omega, \text{ for every finite } F \subseteq \mathcal{G}(a', b) \text{ there is } v \in \text{Obj}(\mathcal{G}) \text{ such that for every } \varphi : \mathcal{G}(a', v) \circ \alpha \rightarrow k \text{ there exists } e : b \rightarrow v \text{ such that } \varphi \upharpoonright e \circ F \circ \alpha \text{ is constant.}$$
Proposition

The weak Ramsey property implies WAP.
Proof.

Fix $a \in \text{Obj}(\mathcal{G})$, let $k = 2$, and let $\alpha: a \to a'$ be as in (wR). Fix $f_0, f_1 \in \mathcal{G}$ with $\text{dom}(f_0) = a' = \text{dom}(f_1)$. Using directedness, choose $b \in \text{Obj}(\mathcal{G})$ and $g_0, g_1 \in \mathcal{G}$ such that $g_i \circ f_i \in \mathcal{G}(a', b)$ for $i = 0, 1$. Let $F = \{g_0 \circ f_0, g_1 \circ f_1\}$.

Find $v \in \text{Obj}(\mathcal{G})$ from the weak Ramsey property applied to F. Define $\varphi: \mathcal{G}(a', v) \circ \alpha \to 2$ by setting $\varphi(g) = 1$ if and only if $g = g' \circ f_1 \circ \alpha$ for some $g' \in \mathcal{G}$. The weak Ramsey property says there exists $e: b \to v$ such that φ is constant on $e \circ F \circ \alpha$. Note that $\varphi(e \circ (g_1 \circ f_1) \circ \alpha) = 1$, for obvious reasons. Thus also $\varphi(e \circ (g_0 \circ f_0) \circ \alpha) = 1$, which means that there exists h such that

$$e \circ g_0 \circ f_0 \circ \alpha = h \circ f_1 \circ \alpha.$$

We are done, because $e \circ g_0$ and h witness the weak amalgamation.
Theorem

Assume $G = \text{Aut}(U)$ is extremely amenable. Then G has the weak Ramsey property.
Theorem

Assume \mathcal{G} has the weak Ramsey property and U is as above. Then $\text{Aut}(U)$ is extremely amenable.
References

Go back to Pouset example...

\[\text{Ant}(U) = \text{Ant}(Q, \prec) \uparrow \text{extremely amenable} \]
k-AP \iff WAP

4-AP

\textit{xournalpp}