A universal coregular countable second-countable space

Taras Banakh

Lviv & Kielce

Warszawa, 26 May 2021
For a topological vector space X over a field F and a natural number k let $Gr_k(X)$ be the space of k-dimensional linear subspaces of X.

The space $Gr_k(X)$ is called the k-th Grassmannian of X.

We shall be interested in the simplest case of 1-Grassmannians.

In this case $Gr_1(X)$ is the space of lines in X, or else the projective space of X.

It is well-known and well-studied space.

Indeed?
For a topological vector space X over a field F and a natural number k let $Gr_k(X)$ be the space of k-dimensional linear subspaces of X.

The space $Gr_k(X)$ is called the k-th Grassmannian of X.

We shall be interested in the simplest case of 1-Grassmannians.

In this case $Gr_1(X)$ is the space of lines in X, or else the projective space of X.

It is well-known and well-studied space.

Indeed?
For a topological vector space X over a field F and a natural number k let $Gr_k(X)$ be the space of k-dimensional linear subspaces of X.

The space $Gr_k(X)$ is called the k-th Grassmannian of X.

We shall be interested in the simplest case of 1-Grassmannians.

In this case $Gr_1(X)$ is the space of lines in X, or else the projective space of X.

It is well-known and well-studied space.

Indeed?
For a topological vector space X over a field F and a natural number k let $Gr_k(X)$ be the space of k-dimensional linear subspaces of X.

The space $Gr_k(X)$ is called the k-th Grassmannian of X.

We shall be interested in the simplest case of 1-Grassmannians.

In this case $Gr_1(X)$ is the space of lines in X, or else the projective space of X.

It is well-known and well-studied space.

Indeed?
Topologically, $\text{Gr}_1(X)$ is the quotient space X^*/F^* of the space $X \setminus \{0\}$ by the action of the multiplicative group $F^* = F \setminus \{0\}$.

So, $\text{Gr}_1(X)$ carries the quotient topology with respect to the orbit map $X^* \to \text{Gr}_1(X)$, which is open (but not necessarily closed).

General topologists know that quotient topologies are dangerous and can provide many surprises.

Let us consider the simplest surprising case.
Topologically, $Gr_1(X)$ is the quotient space X^*/F^* of the space $X \setminus \{0\}$ by the action of the multiplicative group $F^* = F \setminus \{0\}$.

So, $Gr_1(X)$ carries the quotient topology with respect to the orbit map $X^* \to Gr_1(X)$, which is open (but not necessarily closed).

General topologists know that quotient topologies are dangerous and can provide many surprises.

Let us consider the simplest surprising case.
Topologically, $Gr_1(X)$ is the quotient space X^*/F^* of the space $X \setminus \{0\}$ by the action of the multiplicative group $F^* = F \setminus \{0\}$.

So, $Gr_1(X)$ carries the quotient topology with respect to the orbit map $X^* \to Gr_1(X)$, which is open (but not necessarily closed).

General topologists know that quotient topologies are dangerous and can provide many surprises.

Let us consider the simplest surprising case.
In the countable power \mathbb{Q}^ω of the fields of rationals \mathbb{Q}, consider the countable linear subspace

$$\mathbb{Q}^{<\omega} = \{(x_i)_{i \in \omega} \in \mathbb{Q}^\omega : |\{i \in \omega : x_i \neq 0\}| < \omega\}$$

consisting of all eventually zero sequences of rational numbers.

The space $\mathbb{Q}^{<\omega}$ carries the Tychonoff product topology inherited from \mathbb{Q}^ω. This is the topology of simple convergence.

It is clear that $X = \mathbb{Q}^{<\omega}$ is a countable metrizable space without isolated points, so is homeomorphic to \mathbb{Q} according to the classical

Theorem (Sierpiński)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable metrizable and without isolated points.
In the countable power \(\mathbb{Q}^\omega \) of the fields of rationals \(\mathbb{Q} \), consider the countable linear subspace

\[
\mathbb{Q}^{<\omega} = \left\{ (x_i)_{i \in \omega} \in \mathbb{Q}^\omega : \left| \{ i \in \omega : x_i \neq 0 \} \right| < \omega \right\}
\]

consisting of all eventually zero sequences of rational numbers. The space \(\mathbb{Q}^{<\omega} \) carries the Tychonoff product topology inherited from \(\mathbb{Q}^\omega \). This is the topology of simple convergence.

It is clear that \(X = \mathbb{Q}^{<\omega} \) is a countable metrizable space without isolated points, so is homeomorphic to \(\mathbb{Q} \) according to the classical

Theorem (Sierpiński)

A topological space \(X \) is homeomorphic to \(\mathbb{Q} \) if and only if \(X \) is countable metrizable and without isolated points.
In the countable power \(\mathbb{Q}^\omega \) of the fields of rationals \(\mathbb{Q} \), consider the countable linear subspace

\[
\mathbb{Q}^{<\omega} = \{(x_i)_{i \in \omega} \in \mathbb{Q}^\omega : |\{i \in \omega : x_i \neq 0\}| < \omega\}
\]

consisting of all eventually zero sequences of rational numbers. The space \(\mathbb{Q}^{<\omega} \) carries the Tychonoff product topology inherited from \(\mathbb{Q}^\omega \). This is the topology of simple convergence.

It is clear that \(X = \mathbb{Q}^{<\omega} \) is a countable metrizable space without isolated points, so is homeomorphic to \(\mathbb{Q} \) according to the classical

Theorem (Sierpiński)

A topological space \(X \) is homeomorphic to \(\mathbb{Q} \) if and only if \(X \) is countable metrizable and without isolated points.
Theorem (Sierpiński)

A topological space \(X \) is homeomorphic to \(\mathbb{Q} \) if and only if \(X \) is countable metrizable and without isolated points.

The metrizability in this theorem can be weakened to the second countability (= existence of a countable base of the topology) according to another classical

Theorem (Urysohn)

A topological space \(X \) is metrizable and separable if and only if \(X \) is regular and second-countable.

Those two theorems imply

Corollary (Sierpiński–Urysohn)

A topological space \(X \) is homeomorphic to \(\mathbb{Q} \) if and only if \(X \) is countable, regular, second-countable and has no isolated points.
Theorem (Sierpiński)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, metrizable and without isolated points.

The metrizability in this theorem can be weakened to the second countability (= existence of a countable base of the topology) according to another classical theorem.

Theorem (Urysohn)

A topological space X is metrizable and separable if and only if X is regular and second-countable.

Those two theorems imply

Corollary (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.
Topological characterizations of \mathbb{Q}

Theorem (Sierpiński)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, metrizable and without isolated points.

The metrizability in this theorem can be weakened to the second countability (existence of a countable base of the topology) according to another classical theorem.

Theorem (Urysohn)

A topological space X is metrizable and separable if and only if X is regular and second-countable.

Those two theorems imply

Corollary (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.
Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us recall that a topological space X is regular if for any open set $U \subset X$ and point $x \in U$ there exists an open set V such that

$$x \in V \subseteq \overline{V} \subseteq U.$$
Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space $X = \mathbb{Q}^<\omega$ and its projective space

$$\mathbb{Q}P^\infty = X^*/\mathbb{Q}^*.$$

It is clear that the space $\mathbb{Q}P^\infty$ is countable, second-countable, and has no isolated points.

What about the regularity of $\mathbb{Q}P^\infty$?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space $\mathbb{Q}P^\infty$ is not regular.

Moreover, it is countable and connected!

How this is possible?
The projective space $\mathbb{Q}P^\infty$

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space $X = \mathbb{Q}^{<\omega}$ and its projective space

$$\mathbb{Q}P^\infty = X^*/\mathbb{Q}^*.$$

It is clear that the space $\mathbb{Q}P^\infty$ is countable, second-countable, and has no isolated points.

What about the regularity of $\mathbb{Q}P^\infty$?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space $\mathbb{Q}P^\infty$ is not regular.
Moreover, it is countable and connected!

How this is possible?
The projective space $\mathbb{Q}P^\infty$

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space $X = \mathbb{Q}^{<\omega}$ and its projective space

$$\mathbb{Q}P^\infty = X^*/\mathbb{Q}^*.$$

It is clear that the space $\mathbb{Q}P^\infty$ is countable, second-countable, and has no isolated points.

What about the regularity of $\mathbb{Q}P^\infty$?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space $\mathbb{Q}P^\infty$ is not regular.

Moreover, it is countable and connected!

How this is possible?
The projective space $\mathbb{Q}P^\infty$

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space $X = \mathbb{Q}^{<\omega}$ and its projective space

$$\mathbb{Q}P^\infty = X^*/\mathbb{Q}^*.$$

It is clear that the space $\mathbb{Q}P^\infty$ is countable, second-countable, and has no isolated points.

What about the regularity of $\mathbb{Q}P^\infty$?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space $\mathbb{Q}P^\infty$ is not regular.
Moreover, it is countable and connected!

How this is possible?
The projective space $\mathbb{Q}P^\infty$

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to \mathbb{Q} if and only if X is countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space $X = \mathbb{Q}^{<\omega}$ and its projective space

$$\mathbb{Q}P^\infty = X^* / \mathbb{Q}^*.$$

It is clear that the space $\mathbb{Q}P^\infty$ is countable, second-countable, and has no isolated points.

What about the regularity of $\mathbb{Q}P^\infty$?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space $\mathbb{Q}P^\infty$ is not regular.

Moreover, it is countable and connected!

How this is possible?
Take any non-empty open set $U \subseteq \mathbb{QP}^\infty$ and let $q^{-1}[U]$ be its preimage under the quotient map $q : \mathbb{Q}^{<\omega} \setminus \{0\} \to \mathbb{QP}^\infty$.

The set $q^{-1}[U]$ is open and \mathbb{Q}^*-conical, i.e., $\mathbb{Q}^* \cdot q^{-1}[U] = q^{-1}[U]$.

Since $q^{-1}[U]$ is open in the Tychonoff product topology, it contains an open set of form $V \times \mathbb{Q}^{\omega \setminus n}$ for some $n = \{0, \ldots, n-1\} \in \omega$ and some open set $V \subseteq \mathbb{Q}^n \setminus \{0\}$.

Being \mathbb{Q}^*-conical, the set $q^{-1}[U]$ contains the \mathbb{Q}^*-cone

$$\mathbb{Q}^* \cdot (V \times \mathbb{Q}^{\omega \setminus n}) = (\mathbb{Q}^* \cdot V) \times \mathbb{Q}^{\omega \setminus n}$$

and then its closure

$$\overline{q^{-1}[U]} \supset \overline{\mathbb{Q}^* \cdot V \times \mathbb{Q}^{\omega \setminus n}} = \{0\}^n \times \mathbb{Q}^{\omega \setminus n}$$

contains the linear subspace of finite codimension.

Since the quotientien map q is open, the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^{\omega \setminus n}]$ for some $n \in \omega$.
Take any non-empty open set $U \subseteq \mathbb{Q}P^\infty$ and let $q^{-1}[U]$ be its preimage under the quotient map $q : \mathbb{Q}^{<\omega} \setminus \{0\} \to \mathbb{Q}P^\infty$.

The set $q^{-1}[U]$ is open and \mathbb{Q}^*-conical, i.e., $\mathbb{Q}^* \cdot q^{-1}[U] = q^{-1}[U]$.

Since $q^{-1}[U]$ is open in the Tychonoff product topology, it contains an open set of form $V \times \mathbb{Q}^{\omega \setminus n}$ for some $n = \{0, \ldots, n-1\} \in \omega$ and some open set $V \subseteq \mathbb{Q}^n \setminus \{0\}$.

Being \mathbb{Q}^*-conical, the set $q^{-1}[U]$ contains the \mathbb{Q}^*-cone
\[\mathbb{Q}^* \cdot (V \times \mathbb{Q}^{\omega \setminus n}) = (\mathbb{Q}^* \cdot V) \times \mathbb{Q}^{\omega \setminus n} \]
and then its closure
\[\overline{q^{-1}[U]} \supset \overline{\mathbb{Q}^* \cdot V} \times \mathbb{Q}^{\omega \setminus n} = \{0\}^n \times \mathbb{Q}^{\omega \setminus n} \]
contains the linear subspace of finite codimension.

Since the quotientien map q is open, the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^{\omega \setminus n}]$ for some $n \in \omega$.

The connectedness of \mathbb{QP}^∞

Take any non-empty open set $U \subseteq \mathbb{QP}^\infty$ and let $q^{-1}[U]$ be its preimage under the quotient map $q : \mathbb{Q}^{<\omega} \setminus \{0\} \to \mathbb{QP}^\infty$.

The set $q^{-1}[U]$ is open and \mathbb{Q}^*-conical, i.e., $\mathbb{Q}^* \cdot q^{-1}[U] = q^{-1}[U]$.

Since $q^{-1}[U]$ is open in the Tychonoff product topology, it contains an open set of form $V \times \mathbb{Q}^{\omega \setminus n}$ for some $n = \{0, \ldots, n-1\} \in \omega$ and some open set $V \subseteq \mathbb{Q}^n \setminus \{0\}$.

Being \mathbb{Q}^*-conical, the set $q^{-1}[U]$ contains the \mathbb{Q}^*-cone

$$\mathbb{Q}^* \cdot (V \times \mathbb{Q}^{\omega \setminus n}) = (\mathbb{Q}^* \cdot V) \times \mathbb{Q}^{\omega \setminus n}$$

and then its closure

$$\overline{q^{-1}[U]} \supset \overline{\mathbb{Q}^* \cdot V} \times \mathbb{Q}^{\omega \setminus n} = \{0\}^n \times \mathbb{Q}^{\omega \setminus n}$$

contains the linear subspace of finite codimension.

Since the quotientien map q is open, the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^{\omega \setminus n}]$ for some $n \in \omega$.

T.Banakh
Rational projective space 8 / 34
The connectedness of $\mathbb{Q}P^\infty$

Take any non-empty open set $U \subseteq \mathbb{Q}P^\infty$ and let $q^{-1}[U]$ be its preimage under the quotient map $q : \mathbb{Q}^{<\omega} \setminus \{0\} \to \mathbb{Q}P^\infty$.

The set $q^{-1}[U]$ is open and \mathbb{Q}^*-conical, i.e., $\mathbb{Q}^* \cdot q^{-1}[U] = q^{-1}[U]$.

Since $q^{-1}[U]$ is open in the Tychonoff product topology, it contains an open set of form $V \times \mathbb{Q}^\omega \setminus n$ for some $n = \{0, \ldots, n - 1\} \in \omega$ and some open set $V \subseteq \mathbb{Q}^n \setminus \{0\}$.

Being \mathbb{Q}^*-conical, the set $q^{-1}[U]$ contains the \mathbb{Q}^*-cone

$$\mathbb{Q}^* \cdot (V \times \mathbb{Q}^\omega \setminus n) = (\mathbb{Q}^* \cdot V) \times \mathbb{Q}^\omega \setminus n$$

and then its closure

$$\overline{q^{-1}[U]} \supset \overline{\mathbb{Q}^* \cdot V} \times \overline{\mathbb{Q}^\omega \setminus n} = \{0\}^n \times \mathbb{Q}^\omega \setminus n$$

contains the linear subspace of finite codimension.

Since the quotientient map q is open, the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

T.Banakh
Rational projective space
Take any non-empty open set $U \subseteq \mathbb{QP}^\infty$ and let $q^{-1}[U]$ be its preimage under the quotient map $q : \mathbb{Q}^{<\omega} \setminus \{0\} \to \mathbb{QP}^\infty$.

The set $q^{-1}[U]$ is open and \mathbb{Q}^*-conical, i.e., $\mathbb{Q}^* \cdot q^{-1}[U] = q^{-1}[U]$. Since $q^{-1}[U]$ is open in the Tychonoff product topology, it contains an open set of form $V \times \mathbb{Q}^{\omega \setminus n}$ for some $n = \{0, \ldots, n-1\} \in \omega$ and some open set $V \subseteq \mathbb{Q}^n \setminus \{0\}$.

Being \mathbb{Q}^*-conical, the set $q^{-1}[U]$ contains the \mathbb{Q}^*-cone

$$\mathbb{Q}^* \cdot (V \times \mathbb{Q}^{\omega \setminus n}) = (\mathbb{Q}^* \cdot V) \times \mathbb{Q}^{\omega \setminus n}$$

and then its closure

$$\overline{q^{-1}[U]} \supset \overline{\mathbb{Q}^* \cdot V \times \mathbb{Q}^{\omega \setminus n}} = \{0\}^n \times \mathbb{Q}^{\omega \setminus n}$$

contains the linear subspace of finite codimension.

Since the quotient map q is open, the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^{\omega \setminus n}]$ for some $n \in \omega$.
The superconnectedness of $\mathbb{Q}P^\infty$

Therefore, for any nonempty open set $U \subseteq \mathbb{Q}P^\infty$ the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

Consequently, for any nonempty open sets $U_1, \cdots, U_k \subseteq \mathbb{Q}P^\infty$ there exists $n \in \omega$ such that

$$\overline{U}_1 \cap \cdots \cap \overline{U}_k \supset q[\{0\}^n \times \mathbb{Q}^\omega \setminus n] \neq \emptyset.$$

So, $\mathbb{Q}P^\infty$ is connected and moreover, $\mathbb{Q}P^\infty$ is superconnected!

Definition

A topological space X is called *superconnected* if for any nonempty open sets U_1, \ldots, U_k the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty.

Remark

Each superconnected space X is connected: assuming that X is disconnected, we could write X as the union $X = U_1 \cup U_2$ of two non-empty disjoint open sets and then $\overline{U}_1 \cap \overline{U}_2 = U_1 \cap U_2 = \emptyset$.

The superconnectedness of \mathbb{QP}^∞

Therefore, for any nonempty open set $U \subseteq \mathbb{QP}^\infty$ the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

Consequently, for any nonempty open sets $U_1, \cdots, U_k \subseteq \mathbb{QP}^\infty$ there exists $n \in \omega$ such that

$$\overline{U}_1 \cap \cdots \cap \overline{U}_k \supset q[\{0\}^n \times \mathbb{Q}^\omega \setminus n] \neq \emptyset.$$

So, \mathbb{QP}^∞ is connected and moreover, \mathbb{QP}^∞ is superconnected!

Definition

A topological space X is called superconnected if for any nonempty open sets U_1, \ldots, U_k the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty.

Remark

Each superconnected space X is connected: assuming that X is disconnected, we could write X as the union $X = U_1 \cup U_2$ of two non-empty disjoint open sets and then $\overline{U}_1 \cap \overline{U}_2 = U_1 \cap U_2 = \emptyset$.
The superconnectedness of $\mathbb{Q}P^\infty$

Therefore, for any nonempty open set $U \subseteq \mathbb{Q}P^\infty$ the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

Consequently, for any nonempty open sets $U_1, \cdots, U_k \subseteq \mathbb{Q}P^\infty$ there exists $n \in \omega$ such that

$$\overline{U}_1 \cap \cdots \cap \overline{U}_k \supset q[\{0\}^n \times \mathbb{Q}^\omega \setminus n] \neq \emptyset.$$

So, $\mathbb{Q}P^\infty$ is connected and moreover, $\mathbb{Q}P^\infty$ is superconnected!

Definition

A topological space X is called **superconnected** if for any nonempty open sets U_1, \ldots, U_k the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty.

Remark

Each superconnected space X is connected: assuming that X is disconnected, we could write X as the union $X = U_1 \cup U_2$ of two non-empty disjoint open sets and then $\overline{U}_1 \cap \overline{U}_2 = U_1 \cap U_2 = \emptyset$.
The superconnectedness of $\mathbb{Q}P^\infty$

Therefore, for any nonempty open set $U \subseteq \mathbb{Q}P^\infty$ the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

Consequently, for any nonempty open sets $U_1, \cdots, U_k \subseteq \mathbb{Q}P^\infty$ there exists $n \in \omega$ such that

$$\overline{U}_1 \cap \cdots \cap \overline{U}_k \supset q[\{0\}^n \times \mathbb{Q}^\omega \setminus n] \neq \emptyset.$$

So, $\mathbb{Q}P^\infty$ is connected and moreover, $\mathbb{Q}P^\infty$ is superconnected!

Definition

A topological space X is called **superconnected** if for any nonempty open sets U_1, \ldots, U_k the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty.

Remark

Each superconnected space X is connected: assuming that X is disconnected, we could write X as the union $X = U_1 \cup U_2$ of two non-empty disjoint open sets and then $\overline{U}_1 \cap \overline{U}_2 = U_1 \cap U_2 = \emptyset$.
The superconnectedness of $\mathbb{Q}P^\infty$

Therefore, for any nonempty open set $U \subseteq \mathbb{Q}P^\infty$ the closure \overline{U} contains the image $q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$ for some $n \in \omega$.

Consequently, for any nonempty open sets $U_1, \cdots, U_k \subseteq \mathbb{Q}P^\infty$ there exists $n \in \omega$ such that

$$\overline{U}_1 \cap \cdots \cap \overline{U}_k \supset q[\{0\}^n \times \mathbb{Q}^\omega \setminus n] \neq \emptyset.$$

So, $\mathbb{Q}P^\infty$ is connected and moreover, $\mathbb{Q}P^\infty$ is superconnected!

Definition

A topological space X is called **superconnected** if for any nonempty open sets U_1, \ldots, U_k the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty.

Remark

Each superconnected space X is connected: assuming that X is disconnected, we could write X as the union $X = U_1 \cup U_2$ of two non-empty disjoint open sets and then $\overline{U}_1 \cap \overline{U}_2 = U_1 \cap U_2 = \emptyset$.
Therefore the countable second-countable space $\mathbb{Q}P^\infty$ is superconnected and not regular (otherwise it would be metrizable and disconnected).

But it is not regular to a very small extent.

Observation

For any nonempty open sets $U_1, \ldots, U_k \subseteq \mathbb{Q}P^\infty$ the complement $\mathbb{Q}P^\infty \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k})$ is a regular space!

Because $\mathbb{Q}P^\infty \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k}) \supseteq q[(\mathbb{Q}^n \setminus \{0\}) \times \mathbb{Q}^\omega \setminus n]$.

Definition

A topological space X is coregular if X is Hausdorff and for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the complement $X \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k})$ is a regular space.
The coregularity of $\mathbb{Q}P^\infty$

Therefore the countable second-countable space $\mathbb{Q}P^\infty$ is superconnected and not regular (otherwise it would be metrizable and disconnected).
But it is not regular to a very small extent.

Observation
For any nonempty open sets $U_1, \ldots, U_k \subseteq \mathbb{Q}P^\infty$ the complement $\mathbb{Q}P^\infty \setminus (U_1 \cap \cdots \cap U_k)$ is a regular space!

Because $\mathbb{Q}P^\infty \setminus (U_1 \cap \cdots \cap U_k) \supseteq q[(\mathbb{Q}^n \setminus \{0\}) \times \mathbb{Q}^{\omega \setminus n}]$.

Definition
A topological space X is **coregular** if X is Hausdorff and for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the complement $X \setminus (U_1 \cap \cdots \cap U_k)$ is a regular space.
The coregularity of $\mathbb{Q}P^\infty$

Therefore the countable second-countable space $\mathbb{Q}P^\infty$ is superconnected and not regular (otherwise it would be metrizable and disconnected).
But it is not regular to a very small extent.

Observation

For any for any nonempty open sets $U_1, \ldots, U_k \subseteq \mathbb{Q}P^\infty$ the complement $\mathbb{Q}P^\infty \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_k)$ is a regular space!
Because $\mathbb{Q}P^\infty \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_k) \supseteq q[(\mathbb{Q}^n \setminus \{0\}) \times \mathbb{Q}^\omega \setminus n]$.

Definition

A topological space X is coregular if X is Hausdorff and for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the complement $X \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_k)$ is a regular space.
The coregularity of \mathbb{QP}^∞

Therefore the countable second-countable space \mathbb{QP}^∞ is superconnected and not regular (otherwise it would be metrizable and disconnected).
But it is not regular to a very small extent.

Observation

For any nonempty open sets $U_1, \ldots, U_k \subseteq \mathbb{QP}^\infty$ the complement $\mathbb{QP}^\infty \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k})$ is a regular space!

Because $\mathbb{QP}^\infty \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k}) \supseteq q[\left(\mathbb{Q}^n \setminus \{0\}\right) \times \mathbb{Q}^\omega \setminus n]$.

Definition

A topological space X is **coregular** if X is Hausdorff and for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the complement $X \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k})$ is a regular space.
Unified Definition

A Hausdorff topological space X is superconnected and coregular if for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the intersection $\overline{U_1} \cap \cdots \cap \overline{U_k}$ is not empty and its complement $X \setminus (\overline{U_1} \cap \cdots \cap \overline{U_k})$ is a regular space.

If $\{U_n\}_{n \in \omega}$ is a countable base of the topology in a superconnected coregular Hausdorff space, then for every $n \in \omega$ the set

$$X_n = \overline{U_1} \cap \cdots \cap \overline{U_n}$$

is non-empty and its complement $X \setminus X_n$ is a regular topological space. Moreover the sequence $(X_n)_{n \in \omega}$ is decreasing and has empty intersection $\bigcap_{n \in \omega} X_n = \emptyset$.
A Hausdorff topological space X is superconnected and coregular if for any nonempty open sets $U_1, \ldots, U_k \subseteq X$ the intersection $\overline{U}_1 \cap \cdots \cap \overline{U}_k$ is not empty and its complement $X \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_k)$ is a regular space.

If $\{U_n\}_{n \in \omega}$ is a countable base of the topology in a superconnected coregular Hausdorff space, then for every $n \in \omega$ the set

$$X_n = \overline{U}_1 \cap \cdots \cap \overline{U}_n$$

is non-empty and its complement $X \setminus X_n$ is a regular topological space. Moreover the sequence $(X_n)_{n \in \omega}$ is decreasing and has empty intersection $\bigcap_{n \in \omega} X_n = \emptyset$.
Is there any topological characterization of the space $\mathbb{Q}\mathbb{P}^\infty$, analogical to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}\mathbb{P}^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}\mathbb{P}^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}\mathbb{P}^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogous to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogical to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogical to the topological characterization of the space \mathbb{Q}? Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogous to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogical to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogous to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogical to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogous to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$?

No!

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Is there any topological characterization of the space $\mathbb{Q}P^\infty$, analogical to the topological characterization of the space \mathbb{Q}?

Well, let us list what we know about the space $\mathbb{Q}P^\infty$:

- countable,
- second-countable,
- Hausdorff;
- superconnected;
- coregular;
- locally metrizable.

Do these properties uniquely identify the topology of $\mathbb{Q}P^\infty$? **No!**

Nonetheless a topological characterization of $\mathbb{Q}P^\infty$ does exist!
Main Theorem

Theorem

A topological space X is homeomorphic to the space $\mathbb{Q}P^\infty$ if and only if X is countable, second-countable and possesses a decreasing sequence of non-empty closed sets $(X_n)_{n \in \omega}$ such that

- $X_0 = X$, $\bigcap_{n \in \omega} X_n = \emptyset$, and $X_{n+1} \subseteq X_n$ for all n;
- for every $n \in \omega$ the complement $X \setminus X_n$ is a regular topological space;
- for every $n \in \omega$ and a nonempty relatively open set $U \subseteq X_n$ the closure \overline{U} contains some X_m.

The sequence $(X_n)_{n \in \omega}$ with the above properties is called a superskeleton of X. If every set X_{n+1} is nowhere dense in X_n, then the superskeleton is called canonical.

A canonical superskeleton in $\mathbb{Q}P^\infty$ is the sequence $(X_n)_{n \in \omega}$ of closed subsets $X_n = q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$.

T. Banakh

Rational projective space
A topological space X is homeomorphic to the space \mathbb{QP}^{∞} if and only if X is countable, second-countable and possesses a decreasing sequence of non-empty closed sets $(X_n)_{n \in \omega}$ such that

- $X_0 = X$, $\bigcap_{n \in \omega} X_n = \emptyset$, and $X_{n+1} \subseteq X_n$ for all n;
- for every $n \in \omega$ the complement $X \setminus X_n$ is a regular topological space;
- for every $n \in \omega$ and a nonempty relatively open set $U \subseteq X_n$ the closure \overline{U} contains some X_m.

The sequence $(X_n)_{n \in \omega}$ with the above properties is called a superskeleton of X. If every set X_{n+1} is nowhere dense in X_n, then the superskeleton is called canonical.

A canonical superskeleton in \mathbb{QP}^{∞} is the sequence $(X_n)_{n \in \omega}$ of closed subsets $X_n = q[\{0\}^n \times \mathbb{Q}^{\omega \setminus n}]$.
A topological space X is homeomorphic to the space $\mathbb{Q}P^\infty$ if and only if X is countable, second-countable and possesses a decreasing sequence of non-empty closed sets $(X_n)_{n \in \omega}$ such that

- $X_0 = X$, $\bigcap_{n \in \omega} X_n = \emptyset$, and $X_{n+1} \subseteq X_n$ for all n;
- for every $n \in \omega$ the complement $X \setminus X_n$ is a regular topological space;
- for every $n \in \omega$ and a nonempty relatively open set $U \subseteq X_n$ the closure \overline{U} contains some X_m.

The sequence $(X_n)_{n \in \omega}$ with the above properties is called a superskeleton of X. If every set X_{n+1} is nowhere dense in X_n, then the superskeleton is called canonical.

A canonical superskeleton in $\mathbb{Q}P^\infty$ is the sequence $(X_n)_{n \in \omega}$ of closed subsets $X_n = q[\{0\}^n \times \mathbb{Q}^\omega \setminus n]$.
The proof is technically very difficult and exploits the classical back-and-forth method of Cantor.

Given a canonical supersekeleton \((X_n)_{n \in \omega}\) in a coregular superconnected space \(X\), we construct inductively two sequences \((x_i)_{i \in \omega}\) in \(X\) and \((y_i)_{i \in \omega}\) in \(\mathbb{Q}P^\infty\) so that the correspondence \(h : x_n \to y_n\) determines a homeomorphism between \(X\) and \(\mathbb{Q}P^\infty\) mapping the sets \(X_n\) of the supersekeleton in \(X\) to the corresponding sets in the canonical superskeleton in the space \(\mathbb{Q}P^\infty\).

The construction of the sequences \((x_i)_{i \in \omega}\) and \((y_i)_{i \in \omega}\) is inductive with many conditions. Besides the points \(x_i\) and \(y_i\) we also construct their basic neighborhoods \(U_{i,j}\) and \(V_{i,j}\) in order to guarantee that the bijection \(h : x_n \to y_n\) will be a homeomorphism. The induction is done over the set \(\Gamma = \omega \cup (\omega \times \omega)\), ordered by a suitable well-order.
Proof of the Main Theorem

The proof is technically very difficult and exploits the classical back-and-forth method of Cantor. Given a canonical supersekeleton \((X_n)_{n \in \omega}\) in a coregular superconnected space \(X\), we construct inductively two sequences \((x_i)_{i \in \omega}\) in \(X\) and \((y_i)_{i \in \omega}\) in \(\mathbb{Q}P^\infty\) so that the correspondence \(h : x_n \to y_n\) determines a homeomorphism between \(X\) and \(\mathbb{Q}P^\infty\) mapping the sets \(X_n\) of the supersekeleton in \(X\) to the corresponding sets in the canonical superskeleton in the space \(\mathbb{Q}P^\infty\).

The construction of the sequences \((x_i)_{i \in \omega}\) and \((y_i)_{i \in \omega}\) is inductive with many conditions. Besides the points \(x_i\) and \(y_i\) we also construct their basic neighborhoods \(U_{i,j}\) and \(V_{i,j}\) in order to guarantee that the bijection \(h : x_n \to y_n\) will be a homeomorphism. The induction is done over the set \(\Gamma = \omega \cup (\omega \times \omega)\), ordered by a suitable well-order.
The proof is technically very difficult and exploits the classical back-and-forth method of Cantor.

Given a canonical supersekeleton \((X_n)_{n \in \omega}\) in a coregular superconnected space \(X\), we construct inductively two sequences \((x_i)_{i \in \omega}\) in \(X\) and \((y_i)_{i \in \omega}\) in \(\mathbb{Q}P^\infty\) so that the correspondence \(h : x_n \rightarrow y_n\) determines a homeomorphism between \(X\) and \(\mathbb{Q}P^\infty\) mapping the sets \(X_n\) of the supersekeleton in \(X\) to the corresponding sets in the canonical superskeleton in the space \(\mathbb{Q}P^\infty\).

The construction of the sequences \((x_i)_{i \in \omega}\) and \((y_i)_{i \in \omega}\) is inductive with many conditions. Besides the points \(x_i\) and \(y_i\) we also construct their basic neighborhoods \(U_{i,j}\) and \(V_{i,j}\) in order to guarantee that the bijection \(h : x_n \rightarrow y_n\) will be a homeomorphism.

The induction is done over the set \(\Gamma = \omega \cup (\omega \times \omega)\), ordered by a suitable well-order.
The proof is technically very difficult and exploits the classical back-and-forth method of Cantor. Given a canonical supersekeleton \((X_n)_{n \in \omega}\) in a coregular superconnected space \(X\), we construct inductively two sequences \((x_i)_{i \in \omega}\) in \(X\) and \((y_i)_{i \in \omega}\) in \(\mathbb{Q}P^\infty\) so that the correspondence \(h : x_n \to y_n\) determines a homeomorphism between \(X\) and \(\mathbb{Q}P^\infty\) mapping the sets \(X_n\) of the supersekeleton in \(X\) to the corresponding sets in the canonical superskeleton in the space \(\mathbb{Q}P^\infty\).

The construction of the sequences \((x_i)_{i \in \omega}\) and \((y_i)_{i \in \omega}\) is inductive with many conditions. Besides the points \(x_i\) and \(y_i\) we also construct their basic neighborhoods \(U_{i,j}\) and \(V_{i,j}\) in order to guarantee that the bijection \(h : x_n \to y_n\) will be a homeomorphism. The induction is done over the set \(\Gamma = \omega \cup (\omega \times \omega)\), ordered by a suitable well-order.
Inductively we shall construct sequences of points \(\{x_n\}_{n \in \omega} \subseteq X \), \(\{y_n\}_{n \in \omega} \subseteq Y \), a double sequences of open sets \(\{U_{n,k}\}_{n,k \in \omega} \subseteq \tau_X \), \(\{V_{n,k}\}_{k,n \in \omega} \subseteq \tau_Y \), and a function \(\ell : \Gamma \to \omega \) such that for any \(\gamma \in \Gamma \) the following conditions are satisfied:

1. If \(\gamma = n \) for some number \(n \in \omega \), then
 1a. \(\ell(\gamma) = \ell_X(x_n) = \ell_Y(y_n) \);
 1b. \(x_n \notin \{x_k\}_{k \in \downarrow \gamma} \) and \(y_n \notin \{y_k\}_{k \in \downarrow \gamma} \);
 1c. \(\{(i,j) \in \downarrow \gamma : x_n \in U_{i,j}\} = \{(i,j) \in \downarrow \gamma : y_n \in V_{i,j}\} \);
 1d. \(\{(i,j) \in \downarrow \gamma : x_n \in \overline{U}_{i,j}\} = \{(i,j) \in \downarrow \gamma : y_n \in \overline{V}_{i,j}\} \);
 1e. If \(n \in \Omega \), then \(x_n = \xi(n) \) and \(y_n = f(x_n) \);
 1f. If \(n \notin \Omega \), then \(x_n = \min(X' \setminus \{x_k\}_{k \in \downarrow \gamma}) \) and \(y_n \notin \overline{B} \);
 1g. If \(n \notin \Omega \), then \(y_n = \min(Y' \setminus \{y_k\}_{k \in \downarrow \gamma}) \) and \(x_n \notin A \).

2. If \(\gamma = (n,k) \) for some \(n,k \in \omega \), then
 2a. \(\ell(\gamma) \geq 2 + \max\{\ell(\alpha) : \alpha \in \downarrow \gamma\} \);
 2b. for any \(m \in \omega \cap \downarrow \gamma \) with \(m \neq n \), we have \(x_m \notin U_{n,k} \) and \(y_m \notin V_{n,k} \);
 2c. \(x_n \in U_{n,k} \subseteq O_k^X(x_n) \subseteq X \setminus X_{1+\ell(n)} \) and \(y_n \in V_{n,k} \subseteq O_k^Y(x_n) \subseteq Y \setminus Y_{1+\ell(n)} \);
 2d. \(\{(i,j) \in \downarrow \gamma : U_{n,k} \subseteq U_{i,j}\} = \{(i,j) \in \downarrow \gamma : x_n \in U_{i,j}\} \) and
 \(\{(i,j) \in \downarrow \gamma : V_{n,k} \subseteq V_{i,j}\} = \{(i,j) \in \downarrow \gamma : y_n \in V_{i,j}\} \);
 2e. \(\{(i,j) \in \downarrow \gamma : U_{n,k} \cap \overline{U}_{i,j} = \emptyset\} = \{(i,j) \in \downarrow \gamma : x_n \notin \overline{U}_{i,j}\} \) and
 \(\{(i,j) \in \downarrow \gamma : V_{n,k} \cap \overline{V}_{i,j} = \emptyset\} = \{(i,j) \in \downarrow \gamma : y_n \notin \overline{V}_{i,j}\} \);
 2f. \(X_{\ell(\gamma)} = \partial U_{n,k} \) and \(Y_{\ell(\gamma)} = \partial V_{n,k} \subseteq V_{n,k} \cap Y_{\ell(n)} \);
 2g. if \(n \in \Omega \) then \(f(U_{n,k} \cap A) = V_{n,k} \cap \overline{B} \);
 2h. if \(n \notin \Omega \) then \(U_{n,k} \cap A = \emptyset = V_{n,k} \cap \overline{B} \);
 2i. If \(\Omega \neq \emptyset \), then \(X_{\ell(\gamma)} = \partial U_{n,k} \subseteq \overline{U}_{n,k} \cap X_{\ell(n)} \).
We recall that a topological space X is *coregular* if it is Hausdorff and for any nonempty open sets U_1, \ldots, U_n the complement $X \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is a regular topological space.

So, every regular topological space X is coregular.

The coregular space \mathbb{QP}^∞ has the following universal property.

Theorem

*Every countable second-countable coregular topological space is homeomorphic to a subspace of \mathbb{QP}^∞.***
We recall that a topological space X is \textit{coregular} if it is Hausdorff and for any nonempty open sets U_1, \ldots, U_n the complement $X \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is a regular topological space.

So, every regular topological space X is coregular.

The coregular space \mathbb{QP}^∞ has the following universal property.

\begin{quote}
\textbf{Theorem}
\end{quote}

\textit{Every countable second-countable coregular topological space is homeomorphic to a subspace of \mathbb{QP}^∞.}
We recall that a topological space X is \textit{coregular} if it is Hausdorff and for any nonempty open sets U_1, \ldots, U_n the complement $X \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_n)$ is a regular topological space.

So, every regular topological space X is coregular.

The coregular space $\mathbb{Q}P^\infty$ has the following universal property.

\textbf{Theorem}

\textit{Every countable second-countable coregular topological space is homeomorphic to a subspace of $\mathbb{Q}P^\infty$.}
A subset of a topological space is called *regular open* if it is equal to the interior of its closure.

A topological space is called *semiregular* if it has a base of the topology consisting of regular open sets.

Proposition

Every coregular space is semiregular.

In particular

Corollary

The superconnected countable space $\mathbb{Q}P^\infty$ is semiregular.
A subset of a topological space is called *regular open* if it is equal to the interior of its closure.

A topological space is called *semiregular* if it has a base of the topology consisting of regular open sets.

Proposition

> Every coregular space is semiregular.

Corollary

> The superconnected countable space $\mathbb{Q}P^\infty$ is semiregular.
A subset of a topological space is called *regular open* if it is equal to the interior of its closure.

A topological space is called *semiregular* if it has a base of the topology consisting of regular open sets.

Proposition

Every coregular space is semiregular.

In particular

Corollary

The superconnected countable space \mathbb{Q}^{∞} is semiregular.
Coregular spaces are semiregular

A subset of a topological space is called \emph{regular open} if it is equal to the interior of its closure.

A topological space is called \emph{semiregular} if it has a base of the topology consisting of regular open sets.

Proposition

\textit{Every coregular space is semiregular.}

In particular

Corollary

\textit{The superconnected countable space $\mathbb{Q} P^\infty$ is semiregular.}
It is easy to see that for any lines ℓ, ℓ' in the ltp $\mathbb{Q}^{<\omega}$ there exists a linear homeomorphism H of $\mathbb{Q}^{<\omega}$ such that $H(\ell) = \ell'$.

This implies that the projective space \mathbb{QP}^{∞} is topologically homogeneous: for any points $x, y \in \mathbb{QP}^{\infty}$ there exists a homeomorphism h of \mathbb{QP}^{∞} such that $h(x) = y$.

In fact, the space \mathbb{QP}^{∞} is homogeneous in a much stronger sense.
It is easy to see that for any lines ℓ, ℓ' in the ltp $\mathbb{Q}^<\omega$ there exists a linear homeomorphism H of $\mathbb{Q}^<\omega$ such that $H(\ell) = \ell'$.

This implies that the projective space $\mathbb{Q}P^\infty$ is topologically homogeneous: for any points $x, y \in \mathbb{Q}P^\infty$ there exists a homeomorphism h of $\mathbb{Q}P^\infty$ such that $h(x) = y$.

In fact, the space $\mathbb{Q}P^\infty$ is homogeneous in a much stronger sense.
It is easy to see that for any lines ℓ, ℓ' in the ltp $\mathbb{Q}^{<\omega}$ there exists a linear homeomorphism H of $\mathbb{Q}^{<\omega}$ such that $H(\ell) = \ell'$.

This implies that the projective space $\mathbb{Q}\mathbb{P}^\infty$ is topologically homogeneous: for any points $x, y \in \mathbb{Q}\mathbb{P}^\infty$ there exists a homeomorphism h of $\mathbb{Q}\mathbb{P}^\infty$ such that $h(x) = y$.

In fact, the space $\mathbb{Q}\mathbb{P}^\infty$ is homogeneous in a much stronger sense.
Deep and shallow subsets

A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (U_1 \cap \cdots \cap U_n)$ is finite.

- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (U_1 \cap \cdots \cap U_n) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dichotomous Homogeneity of \mathbb{QP}^∞)

Let A, B be two closed discrete subsets of \mathbb{QP}^∞. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of \mathbb{QP}^∞ such that $h(A) = B$.
A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is finite.

- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (\overline{U_1} \cap \cdots \cap \overline{U_n}) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of $\mathbb{Q}P^\infty$)

Let A, B be two closed discrete subsets of $\mathbb{Q}P^\infty$. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of $\mathbb{Q}P^\infty$ such that $h(A) = B$.
Deep and shallow subsets

A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is finite.

- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (\overline{U_1} \cap \cdots \cap \overline{U_n}) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dichotomic Homogeneity of \mathbb{QP}^∞)

Let A, B be two closed discrete subsets of \mathbb{QP}^∞. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of \mathbb{QP}^∞ such that $h(A) = B$.
Deep and shallow subsets

A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_n)$ is finite.

- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (\overline{U}_1 \cap \cdots \cap \overline{U}_n) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of \mathbb{QP}^∞)

Let A, B be two closed discrete subsets of \mathbb{QP}^∞. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of \mathbb{QP}^∞ such that $h(A) = B$.
A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is finite.

- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (\overline{U_1} \cap \cdots \cap \overline{U_n}) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dichotomic Homogeneity of \mathbb{QP}^∞)

Let A, B be two closed discrete subsets of \mathbb{QP}^∞. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of \mathbb{QP}^∞ such that $h(A) = B$.
A subset A of a topological space X is called

- **deep** if for any non-empty open sets $U_1, \ldots, U_n \subseteq X$ the set $A \setminus (\overline{U_1} \cap \cdots \cap \overline{U_n})$ is finite.
- **shallow** if there exist non-empty open sets $U_1, \ldots, U_n \subseteq X$ such that $A \cap (\overline{U_1} \cap \cdots \cap \overline{U_n}) = \emptyset$.

Fact 1: For any deep (shallow) set A in a topological space X and any homeomorphism $h : X \to X$ the set $h(A)$ is deep (shallow).

Fact 2: Any infinite set in a second-countable space contains an infinite subset which is either deep or shallow.

Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of \mathbb{QP}^∞)

Let A, B be two closed discrete subsets of \mathbb{QP}^∞. If the sets A, B are either both deep or both shallow, then any bijection $f : A \to B$ extends to a homeomorphism h of \mathbb{QP}^∞ such that $h(A) = B$.
Since finite subsets are shallow, we have

Corollary (Finite homogeneity of \mathbb{QP}^∞)

Any bijection $h : A \to B$ between finite subsets of \mathbb{QP}^∞ extends to a homeomorphism of \mathbb{QP}^∞.

Theorem (Discrete homogeneity of \mathbb{Q})

Any bijection $h : A \to B$ between closed discrete subspaces $A, B \subset \mathbb{Q}$ extends to a homeomorphism of \mathbb{Q}.

How about \mathbb{QP}^∞?

Example

\mathbb{QP}^∞ contains two closed discrete subsets A, B (one shallow and other deep) such that no homeomorphism of \mathbb{QP}^∞ sends A onto B.
Since finite subsets are shallow, we have

Corollary (Finite homogeneity of $\mathbb{Q}P^\infty$)

Any bijection $h : A \to B$ between finite subsets of $\mathbb{Q}P^\infty$ extends to a homeomorphism of $\mathbb{Q}P^\infty$.

Theorem (Discrete homogeneity of \mathbb{Q})

Any bijection $h : A \to B$ between closed discrete subspaces $A, B \subset \mathbb{Q}$ extends to a homeomorphism of \mathbb{Q}.

How about $\mathbb{Q}P^\infty$?

Example

$\mathbb{Q}P^\infty$ contains two closed discrete subsets A, B (one shallow and other deep) such that no homeomorphism of $\mathbb{Q}P^\infty$ sends A onto B.

T.Banakh
Rational projective space 20 / 34
Since finite subsets are shallow, we have

Corollary (Finite homogeneity of \mathbb{QP}^∞)

Any bijection $h : A \to B$ between finite subsets of \mathbb{QP}^∞ extends to a homeomorphism of \mathbb{QP}^∞.

Theorem (Discrete homogeneity of \mathbb{Q})

Any bijection $h : A \to B$ between closed discrete subspaces $A, B \subset \mathbb{Q}$ extends to a homeomorphism of \mathbb{Q}.

How about \mathbb{QP}^∞?

Example

\mathbb{QP}^∞ contains two closed discrete subsets A, B (one shallow and other deep) such that no homeomorphism of \mathbb{QP}^∞ sends A onto B.
Since finite subsets are shallow, we have

Corollary (Finite homogeneity of \(\mathbb{Q}P^\infty\))

Any bijection \(h : A \to B\) between finite subsets of \(\mathbb{Q}P^\infty\) extends to a homeomorphism of \(\mathbb{Q}P^\infty\).

Theorem (Discrete homogeneity of \(\mathbb{Q}\))

Any bijection \(h : A \to B\) between closed discrete subspaces \(A, B \subset \mathbb{Q}\) extends to a homeomorphism of \(\mathbb{Q}\).

How about \(\mathbb{Q}P^\infty\)?

Example

\(\mathbb{Q}P^\infty\) contains two closed discrete subsets \(A, B\) (one shallow and other deep) such that no homeomorphism of \(\mathbb{Q}P^\infty\) sends \(A\) onto \(B\).
The space $\mathbb{Q}P^{\infty}$ is an orbit space of the action of the multiplicative group \mathbb{Q}^* on $\mathbb{Q}^{<\omega} \setminus \{0\}$, so it is natural to look for topological copies of the space $\mathbb{Q}P^{\infty}$ among orbit spaces of group actions.

By a group act we understand a topological space X endowed with an action $\alpha : G \times X \to X$ a group G. The action α satisfies the following axioms:

- for every $g \in G$ the map $\alpha(g, \cdot) : X \to X$, $\alpha(g, \cdot) : x \mapsto gx := \alpha(g, x)$, is a homeomorphism of X;
- for the identity 1_G of the group G and every $x \in X$ we have $1_Gx = x$;
- $(gh)x = g(hx)$ for all $g, h \in G$ and $x \in X$.

In this case we also say that X is a G-space.
The space $\mathbb{Q}P^\infty$ is an orbit space of the action of the multiplicative group \mathbb{Q}^* on $\mathbb{Q}^{<\omega} \setminus \{0\}$, so it is natural to look for topological copies of the space $\mathbb{Q}P^\infty$ among orbit spaces of group actions.

By a group act we understand a topological space X endowed with an action $\alpha : G \times X \to X$ a group G. The action α satisfies the following axioms:

- for every $g \in G$ the map $\alpha(g, \cdot) : X \to X$, $\alpha(g, \cdot) : x \mapsto gx := \alpha(g, x)$, is a homeomorphism of X;
- for the identity 1_G of the group G and every $x \in X$ we have $1_Gx = x$;
- $(gh)x = g(hx)$ for all $g, h \in G$ and $x \in X$.

In this case we also say that X is a G-space.
We say that a G-space \(X \) has \textit{closed orbits} if for any point \(x \in X \) its \textit{orbit} \(Gx = \{gx : g \in G\} \) is a closed subset of \(X \).

A subset \(A \subseteq X \) is called \textit{G-invariant} if it coincides with its \(G \)-saturation \(GA = \bigcup_{x \in A} Gx \).

The action of \(G \) on \(X \) induces the equivalence relation

\[
E = \{(x, gx) : x \in X, \ g \in G\}.
\]

The quotient space \(X/E \) by this equivalence relation is called the \textit{orbit space} of the \(G \)-space and is denoted by \(X/G \).
We say that a G-space X has *closed orbits* if for any point $x \in X$ its *orbit* $Gx = \{gx : g \in G\}$ is a closed subset of X.

A subset $A \subseteq X$ is called *G-invariant* if it coincides with its G-saturation $GA = \bigcup_{x \in A} Gx$.

The action of G on X induces the equivalence relation

$$E = \{(x, gx) : x \in X, \ g \in G\}.$$

The quotient space X/E by this equivalence relation is called the *orbit space* of the G-space and is denoted by X/G.
Some properties of G-spaces

We say that a G-space X has \textit{closed orbits} if for any point $x \in X$ its \textit{orbit} $Gx = \{gx : g \in G\}$ is a closed subset of X.

A subset $A \subseteq X$ is called \textit{G-invariant} if it coincides with its G-saturation $GA = \bigcup_{x \in A} Gx$.

The action of G on X induces the equivalence relation

$$E = \{(x, gx) : x \in X, \ g \in G\}.$$

The quotient space X/E by this equivalence relation is called the \textit{orbit space} of the G-space and is denoted by X/G.

We say that a G-space X has \textit{closed orbits} if for any point $x \in X$ its \textit{orbit} $Gx = \{gx : g \in G\}$ is a closed subset of X.

A subset $A \subseteq X$ is called \textit{G-invariant} if it coincides with its G-saturation $GA = \bigcup_{x \in A} Gx$.

The action of G on X induces the equivalence relation

$$E = \{(x, gx) : x \in X, \ g \in G\}.$$

The quotient space X/E by this equivalence relation is called the \textit{orbit space} of the G-space and is denoted by X/G.
Let X be a G-space with closed G-orbits, possessing a vanishing sequence $(X_n)_{n \in \omega}$ of nonempty G-invariant closed subsets such that

1. for any $n \in \omega$ and nonempty open G-invariant set $U \subseteq X_n$, the closure \overline{U} contains some set X_m;

2. for any $n \in \omega$, point $x \in X \setminus X_n$, and open G-invariant neighborhood $U \subseteq X$ of $x \in U$, there exists an open G-invariant neighborhood $V \subseteq X$ of x such that $\overline{V} \subseteq U \cup X_n$.

Then the orbit space X/G has a superskeleton.

If X is first-countable and X/G is countable, then the space X/G is homeomorphic to $\mathbb{Q}P^\infty$.
A topological space \(X \) endowed with a continuous action \(\alpha : G \times X \to X \) of a Hausdorff topological group \(G \) is called **singular** if it has the following properties:

(i) the topological space \(X \) is regular and infinite;
(ii) the set \(\text{Fix}_G(X) = \{ x \in X : Gx = \{ x \} \} \) is a singleton;
(iii) for every \(x \in X \setminus \text{Fix}_G(X) \) the map \(\alpha_x : G \to X, \alpha_x : g \mapsto gx = \alpha(g, x) \), is injective and open;
(iv) the orbit \(Gx \) of every point \(x \in X \setminus \text{Fix}_G(X) \) contains the singleton \(\text{Fix}_G(X) \) in its closure \(\overline{Gx} \);
(v) for any points \(x \in X \setminus \text{Fix}_G(X) \) and \(y \in X \), there exists a neighborhood \(U \subseteq X \) of \(y \) such that for any neighborhood \(W \subseteq X \) of the singleton \(\text{Fix}_G(X) \), there exists a neighborhood \(V \subseteq X \) of \(\text{Fix}_G(X) \) such that \(\alpha_u(\alpha_x^{-1}(V)) \subseteq W \) for every \(u \in U \).
(v) for any points $x \in X \setminus \operatorname{Fix}_G(X)$ and $y \in X$, there exists a neighborhood $U \subseteq X$ of y such that for any neighborhood $W \subseteq X$ of the singleton $0 = \operatorname{Fix}_G(X)$, there exists a neighborhood $V \subseteq X$ of $\operatorname{Fix}_G(X)$ such that $\alpha_u(\alpha^{-1}_x(V)) \subseteq W$ for every $u \in U$.

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (3,3);
\draw (0,0) circle (0.5cm);
\draw (3,3) circle (0.5cm);
\draw (0,0) node {0};
\draw (3,3) node {$\operatorname{Fix}_G(X)$};
\draw (0,0) node {V};
\draw (3,3) node {U};
\draw (0,0) node {W};
\draw (0,0) node {x};
\draw (3,3) node {y};
\end{tikzpicture}
\end{center}
Examples of singular G-spaces:

1. The complex plane \mathbb{C} endowed with the action of the multiplicative group \mathbb{C}^* of non-zero complex numbers.
2. Any subfield $F \subseteq \mathbb{C}$ endowed with the action of the multiplicative group $F^* = F \setminus \{0\}$.
3. The real line \mathbb{R} endowed with the action of the multiplicative group \mathbb{R}_+ of positive real numbers.
4. The closed half-line $\overline{\mathbb{R}}_+ = [0, \infty)$ endowed with the action of the multiplicative group \mathbb{R}_+.
5. The space \mathbb{Q} of rationals, endowed with the action of the multiplicative group \mathbb{Q}_+ of positive rational numbers.
6. The one-point compactification $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{+\infty\}$ of the discrete space \mathbb{Z} endowed with the natural action of the additive group \mathbb{Z} of integer numbers.
7. The one-point compactification of any non-compact locally compact topological group G, endowed with the natural action of the topological group G.
Examples of singular G-spaces:

1. The complex plane \mathbb{C} endowed with the action of the multiplicative group \mathbb{C}^* of non-zero complex numbers.

2. Any subfield $F \subseteq \mathbb{C}$ endowed with the action of the multiplicative group $F^* = F \setminus \{0\}$.

3. The real line \mathbb{R} endowed with the action of the multiplicative group \mathbb{R}_+ of positive real numbers.

4. The closed half-line $\overline{\mathbb{R}}_+ = [0, \infty)$ endowed with the action of the multiplicative group \mathbb{R}_+.

5. The space \mathbb{Q} of rationals, endowed with the action of the multiplicative group \mathbb{Q}_+ of positive rational numbers.

6. The one-point compactification $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{+\infty\}$ of the discrete space \mathbb{Z} endowed with the natural action of the additive group \mathbb{Z} of integer numbers.

7. The one-point compactification of any non-compact locally compact topological group G, endowed with the natural action of the topological group G.

T.Banakh

Rational projective space
Examples of singular G-spaces:

1. The complex plane \mathbb{C} endowed with the action of the multiplicative group \mathbb{C}^* of non-zero complex numbers.
2. Any subfield $\mathbb{F} \subseteq \mathbb{C}$ endowed with the action of the multiplicative group $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$.
3. The real line \mathbb{R} endowed with the action of the multiplicative group \mathbb{R}_+ of positive real numbers.
4. The closed half-line $\overline{\mathbb{R}}_+ = [0, \infty)$ endowed with the action of the multiplicative group \mathbb{R}_+.
5. The space \mathbb{Q} of rationals, endowed with the action of the multiplicative group \mathbb{Q}_+ of positive rational numbers.
6. The one-point compactification $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{+\infty\}$ of the discrete space \mathbb{Z} endowed with the natural action of the additive group \mathbb{Z} of integer numbers.
7. The one-point compactification of any non-compact locally compact topological group G, endowed with the natural action of the topological group G.
Given a singular G-space X, consider the G-space X^ω endowed with the Tychonoff product topology and the coordinatewise action of the group G.

Let s be the unique point of the singleton $\text{Fix}(X; G)$.

Consider the subspaces of X^ω:

$X^{<\omega} := \{ x \in X^\omega : |\{ n \in \omega : x(n) \neq s \}| < \omega \}$ and $X^{<\omega}_0 := X^{<\omega}\backslash \{s\}^\omega$.

The orbit space $X^{<\omega}_0/G$ is called the \textit{infinite projective space} of the singular G-space X and is denoted by XP^∞.

If $X = \mathbb{F}$ is a non-discrete topological field endowed with the action of its multiplicative group \mathbb{F}^*, then $\mathbb{F}^{<\omega}$ is a topological vector space over the field \mathbb{F} and $\mathbb{F}P^\infty$ is the projective space of $\mathbb{F}^{<\omega}$ in the standard sense. In particular, $\mathbb{Q}P^\infty$ is the projective space of the tvp $\mathbb{Q}^{<\omega}$ over the topological field \mathbb{Q} of rational numbers.
Given a singular G-space X, consider the G-space X^ω endowed with the Tychonoff product topology and the coordinatewise action of the group G.

Let s be the unique point of the singleton $\text{Fix}(X; G)$.

Consider the subspaces of X^ω:

$X^{<\omega} := \{ x \in X^\omega : |\{ n \in \omega : x(n) \neq s \}| < \omega \}$ and $X^\omega_0 := X^{<\omega} \setminus \{ s \}^\omega$.

The orbit space X^ω_0/G is called the \textit{infinite projective space} of the singular G-space X and is denoted by XP^∞.

If $X = F$ is a non-discrete topological field endowed with the action of its multiplicative group F^*, then $F^{<\omega}$ is a topological vector space over the field F and FP^∞ is the projective space of $F^{<\omega}$ in the standard sense. In particular, QP^∞ is the projective space of the tvp $Q^{<\omega}$ over the topological field Q of rational numbers.
Theorem

The infinite projective space XP^∞ of any singular G-space X possesses a canonical superskeleton.

If the singular G space X is countable and metrizable, then its infinite projective space XP^∞ is homeomorphic to the space $\mathbb{Q}P^\infty$.
Let \mathbb{F} be a topological field. Three elements $\mathbb{F}^*x, \mathbb{F}^*y, \mathbb{F}^*z$ of the projective space $\mathbb{F}P^\infty$ are called *collinear* if the union $\mathbb{F}^*x \cup \mathbb{F}^*y \cup \mathbb{F}^*z$ is contained in some 2-dimensional vector subspace of $\mathbb{F}^{<\omega}$.

For two topological fields $\mathbb{F}_1, \mathbb{F}_2$ a map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called *affine* if for any collinear elements $\mathbb{F}_1^*x, \mathbb{F}_1^*y, \mathbb{F}_1^*z \in \mathbb{F}_1P^\infty$, the elements $f(\mathbb{F}_1^*x), f(\mathbb{F}_1^*y), f(\mathbb{F}_1^*z)$ are collinear in the projective space $\mathbb{F}_2^*P^\infty$.

A bijective map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called an *affine isomorphism* if both maps f and f^{-1} are affine.

If an affine isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is also a homeomorphism, then f is called an *affine topological isomorphism*.

The projective spaces $\mathbb{F}_1P^\infty, \mathbb{F}_2P^\infty$ are called *affinely isomorphic* (resp. *affinely homeomorphic*) if there exists an affine topological isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$.
Let F be a topological field. Three elements F^*x, F^*y, F^*z of the projective space FP^∞ are called *collinear* if the union $F^*x \cup F^*y \cup F^*z$ is contained in some 2-dimensional vector subspace of $F^{<\omega}$.

For two topological filed F_1, F_2 a map $f : F_1P^\infty \to F_2P^\infty$ is called *affine* if for any collinear elements $F_1^*x, F_1^*y, F_1^*z \in F_1P^\infty$, the elements $f(F_1^*x), f(F_1^*y), f(F_1^*z)$ are collinear in the projective space $F_2^*P^\infty$.

A bijective map $f : F_1P^\infty \to F_2P^\infty$ is called an *affine isomorphism* if both maps f and f^{-1} are affine.

If an affine isomorphism $f : F_1P^\infty \to F_2P^\infty$ is also a homeomorphism, then f is called an *affine topological isomorphism*.

The projective spaces F_1P^∞, F_2P^∞ are called *affinely isomorphic* (resp. *affinely homeomorphic*) if there exists an affine topological isomorphism $f : F_1P^\infty \to F_2P^\infty$.
Let F be a topological field. Three elements $F^* x, F^* y, F^* z$ of the projective space FP^∞ are called \textit{collinear} if the union $F^* x \cup F^* y \cup F^* z$ is contained in some 2-dimensional vector subspace of $F<\omega$.

For two topological fields F_1, F_2 a map $f : F_1 P^\infty \to F_2 P^\infty$ is called \textit{affine} if for any collinear elements $F^*_1 x, F^*_1 y, F^*_1 z \in F_1 P^\infty$, the elements $f(F^*_1 x), f(F^*_1 y), f(F^*_1 z)$ are collinear in the projective space $F^*_2 P^\infty$.

A bijective map $f : F_1 P^\infty \to F_2 P^\infty$ is called an \textit{affine isomorphism} if both maps f and f^{-1} are affine.

If an affine isomorphism $f : F_1 P^\infty \to F_2 P^\infty$ is also a homeomorphism, then f is called an \textit{affine topological isomorphism}.

The projective spaces $F_1 P^\infty, F_2 P^\infty$ are called \textit{affinely isomorphic} (resp. \textit{affinely homeomorphic}) if there exists an affine topological isomorphism $f : F_1 P^\infty \to F_2 P^\infty$.
Let \mathbb{F} be a topological field. Three elements $\mathbb{F}^*x, \mathbb{F}^*y, \mathbb{F}^*z$ of the projective space $\mathbb{F}P^\infty$ are called *collinear* if the union $\mathbb{F}^*x \cup \mathbb{F}^*y \cup \mathbb{F}^*z$ is contained in some 2-dimensional vector subspace of $\mathbb{F}^<\omega$.

For two topological fields $\mathbb{F}_1, \mathbb{F}_2$ a map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called *affine* if for any collinear elements $\mathbb{F}_1^*x, \mathbb{F}_1^*y, \mathbb{F}_1^*z \in \mathbb{F}_1P^\infty$, the elements $f(\mathbb{F}_1^*x), f(\mathbb{F}_1^*y), f(\mathbb{F}_1^*z)$ are collinear in the projective space $\mathbb{F}_2^*P^\infty$.

A bijective map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called an *affine isomorphism* if both maps f and f^{-1} are affine.

If an affine isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is also a homeomorphism, then f is called an *affine topological isomorphism*.

The projective spaces $\mathbb{F}_1P^\infty, \mathbb{F}_2P^\infty$ are called *affinely isomorphic* (resp. *affinely homeomorphic*) if there exists an affine topological isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$.
Let \mathbb{F} be a topological field. Three elements $\mathbb{F}^*x, \mathbb{F}^*y, \mathbb{F}^*z$ of the projective space $\mathbb{F}P^\infty$ are called \textit{collinear} if the union $\mathbb{F}^*x \cup \mathbb{F}^*y \cup \mathbb{F}^*z$ is contained in some 2-dimensional vector subspace of \mathbb{F}^ω.

For two topological field $\mathbb{F}_1, \mathbb{F}_2$ a map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called \textit{affine} if for any collinear elements $\mathbb{F}_1^*x, \mathbb{F}_1^*y, \mathbb{F}_1^*z \in \mathbb{F}_1P^\infty$, the elements $f(\mathbb{F}_1^*x), f(\mathbb{F}_1^*y), f(\mathbb{F}_1^*z)$ are collinear in the projective space \mathbb{F}_2P^∞.

A bijective map $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is called an \textit{affine isomorphism} if both maps f and f^{-1} are affine.

If an affine isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$ is also a homeomorphism, then f is called an \textit{affine topological isomorphism}.

The projective spaces $\mathbb{F}_1P^\infty, \mathbb{F}_2P^\infty$ are called \textit{affinely isomorphic} (resp. \textit{affinely homeomorphic}) if there exists an affine topological isomorphism $f : \mathbb{F}_1P^\infty \to \mathbb{F}_2P^\infty$.
In spite of the fact that for any countable subfields $\mathbb{F}_1, \mathbb{F}_2 \subseteq \mathbb{C}$, the infinite projective spaces $\mathbb{F}_1 \mathbb{P}^\infty$ and $\mathbb{F}_2 \mathbb{P}^\infty$ are homeomorphic (to $\mathbb{Q} \mathbb{P}^\infty$), we have the following rigidity result for affine isomorphisms between infinite projective spaces.

Theorem

Two (topological) fields $\mathbb{F}_1, \mathbb{F}_2$ are (topologically) isomorphic iff their infinite projective spaces $\mathbb{F}_1 \mathbb{P}^\infty$, $\mathbb{F}_2 \mathbb{P}^\infty$ are affinely isomorphic (affinely homeomorphic).
In spite of the fact that for any countable subfields $F_1, F_2 \subseteq \mathbb{C}$, the infinite projective spaces $F_1\mathbb{P}^\infty$ and $F_2\mathbb{P}^\infty$ are homeomorphic (to $\mathbb{Q}\mathbb{P}^\infty$), we have the following rigidity result for affine isomorphisms between infinite projective spaces.

Theorem

Two (topological) fields F_1, F_2 are (topologically) isomorphic iff their infinite projective spaces $F_1\mathbb{P}^\infty$, $F_2\mathbb{P}^\infty$ are affinely isomorphic (affinely homeomorphic).
The spaces \mathbb{C}, \mathbb{R}, \mathbb{R}_+ endowed with suitable group actions are singular G-spaces.

By a preceding theorem, the infinite projective spaces $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ possess (canonical) superskeleta.

Each of these spaces has a countable base of the topology consisting of sets, homeomorphic to the space $\mathbb{R}^{<\omega}$, so is a (non-metrizable) $\mathbb{R}^{<\omega}$-manifold.

It can be shown that the $\mathbb{R}^{<\omega}$-manifolds $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ are pairwise non-homeomorphic (because of different homotopical properties of complements $Y_0 \setminus Y_n$ of their canonical skeleta).

The distinguishing topological property of the space \mathbb{R}_+P^∞ is possessing a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.
The spaces \mathbb{C}, \mathbb{R}, \mathbb{R}_+ endowed with suitable group actions are singular G-spaces.

By a preceding theorem, the infinite projective spaces $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ possess (canonical) superskeleta.

Each of these spaces has a countable base of the topology consisting of sets, homeomorphic to the space $\mathbb{R}^{<\omega}$, so is a (non-metrizable) $\mathbb{R}^{<\omega}$-manifold.

It can be shown that the $\mathbb{R}^{<\omega}$-manifolds $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ are pairwise non-homeomorphic (because of different homotopical properties of complements $Y_0 \setminus Y_n$ of their canonical skeleta).

The distinguishing topological property of the space \mathbb{R}_+P^∞ is possessing a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.
The spaces \mathbb{C}, \mathbb{R}, \mathbb{R}_+ endowed with suitable group actions are singular G-spaces.

By a preceding theorem, the infinite projective spaces $\mathbb{C}\mathbb{P}^\infty$, $\mathbb{R}\mathbb{P}^\infty$, $\mathbb{R}_+\mathbb{P}^\infty$ possess (canonical) superskeleta.

Each of these spaces has a countable base of the topology consisting of sets, homeomorphic to the space $\mathbb{R}^{<\omega}$, so is a (non-metrizable) $\mathbb{R}^{<\omega}$-manifold.

It can be shown that the $\mathbb{R}^{<\omega}$-manifolds $\mathbb{C}\mathbb{P}^\infty$, $\mathbb{R}\mathbb{P}^\infty$, $\mathbb{R}_+\mathbb{P}^\infty$ are pairwise non-homeomorphic (because of different homotopical properties of complements $Y_0 \setminus Y_n$ of their canonical skeleta).

The distinguishing topological property of the space $\mathbb{R}_+\mathbb{P}^\infty$ is possessing a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.
The spaces \mathbb{C}, \mathbb{R}, \mathbb{R}_+ endowed with suitable group actions are singular G-spaces.

By a preceding theorem, the infinite projective spaces $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ possess (canonical) superskeleta.

Each of these spaces has a countable base of the topology consisting of sets, homeomorphic to the space $\mathbb{R}^{<\omega}$, so is a (non-metrizable) $\mathbb{R}^{<\omega}$-manifold.

It can be shown that the $\mathbb{R}^{<\omega}$-manifolds $\mathbb{C}P^\infty$, $\mathbb{R}P^\infty$, \mathbb{R}_+P^∞ are pairwise non-homeomorphic (because of different homotopical properties of complements $Y_0 \setminus Y_n$ of their canonical skeleta).

The distinguishing topological property of the space \mathbb{R}_+P^∞ is possessing a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.
Fact: The space $\mathbb{R}_+ P^\infty$ has a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.

This fact and the topological characterization of $\mathbb{Q}P^\infty$ suggests the following topological characterization of the space $\mathbb{R}_+ P^\infty$.

Conjecture

A Hausdorff topological space X is homeomorphic to $\mathbb{R}_+ P^\infty$ iff X has a superskeleton $(X_n)_{n \in \omega}$ such that for every n the set X_{n+1} is a Z-set in X_n and the space $X_n \setminus X_m$ is homeomorphic to $\mathbb{R}^{<\omega}$.

A closed subset A of a topological space X is called a Z-set in X if the set $C([0, 1]^\omega, X \setminus A)$ is dense in the function space $C([0, 1]^\omega, X)$, endowed with the compact-open topology.

Remark: It can be shown that the spaces $\mathbb{R}P^\infty$, $\mathbb{C}P^\infty$, $\mathbb{R}_+ P^\infty$ contain dense subspaces, homeomorphic to $\mathbb{Q}P^\infty$.
Fact: The space \mathbb{R}_+P^∞ has a superskeleton $(Y_n)_{n \in \omega}$ such that for every $n < m$ in ω the complement $Y_n \setminus Y_m$ is contractible.

This fact and the topological characterization of $\mathbb{Q}P^\infty$ suggests the following topological characterization of the space \mathbb{R}_+P^∞.

Conjecture

A Hausdorff topological space X is homeomorphic to \mathbb{R}_+P^∞ iff X has a superskeleton $(X_n)_{n \in \omega}$ such that for every n the set X_{n+1} is a Z-set in X_n and the space $X_n \setminus X_m$ is homeomorphic to $\mathbb{R}^{<\omega}$.

A closed subset A of a topological space X is called a Z-set in X if the set $C([0,1]^\omega, X \setminus A)$ is dense in the function space $C([0,1]^\omega, X)$, endowed with the compact-open topology.

Remark: It can be shown that the spaces $\mathbb{R}P^\infty$, $\mathbb{C}P^\infty$, \mathbb{R}_+P^∞ contain dense subspaces, homeomorphic to $\mathbb{Q}P^\infty$.
T. Banakh, Ya. Stelmakh,
A universal coregular countable second-countable space,
Thank you!