ACN

1. $\delta(A) = \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}$
 asymptotic density

2. $\delta(A) = \limsup_{n \to \infty} \frac{\sum_{i \in A \cap \mathbb{N}} \frac{1}{i}}{\sum_{i \in \mathbb{N}} \frac{1}{i}}$
 logarithmic density

3. uniform density
 (Borel density)

$\omega(A) = \limsup_{n \to \infty} \left(\max_{k \in \mathbb{Z}} \frac{|A \cap [k+n, k+n]|}{n} \right)$
Def. Abstract upper density

\[\delta : P(\mathbb{N}) \rightarrow [0,1] \]

with

1. \(\delta(\emptyset) = 1 \)

2. \(F \) finite \(\Rightarrow \delta(F) = 0 \)

3. \(A \subseteq \mathbb{N} \Rightarrow \delta(A) \leq \delta(B) \)

4. \(\delta(A \cup B) \leq \delta(A) + \delta(B) \)
Demonstr

\[\mathbb{Z}_5 = \{ x : S(A) = 0 \} \]

it is an ideal

on \(\mathbb{Z}_5 \)

(1) \(\overline{0} \in \mathbb{Z}_5 \)

(2) \(\mathbb{N} \cap \mathbb{Z}_5 \)

(3) \(A, B \in \mathbb{Z}_5 \Rightarrow A \cup B \in \mathbb{Z}_5 \)

(4) \(A \subseteq B \in \mathbb{Z}_5 \Rightarrow A \in \mathbb{Z}_5 \).
\[\text{Eqn} \]

Ideally

on \(N \)

then

\[S = \frac{1}{\sqrt{P/\omega}} I \]

\[\uparrow \text{abstract upper density} \]

\[\mathcal{S} = I. \]
Question (2013)
(G. Grevos)
Is it true that for every ideal \(I \)
there is a "nice" density \(\sigma \) of \(\mathbb{Z} - I \)?

\[N_{f|e} = \text{translational invariant} \]
If I is translation invariant, the

\[\delta(\mathbf{a}) = \sum_{\mathbf{A} \in I} \delta(\mathbf{A}) \]

is translation invariant density s.t. \(\mathcal{L}_{\mathbf{I}} = I \).
Def. A is rich if
\[\forall r \in \mathbb{R}, \exists s \in S : s(A) = r \]

\[S = \text{rich} = \sigma \text{onto} \]

Thus (Di Nasso – Jin, 2012) (Acta Arith.)

If I is a summable ideal then there is a u.d. I which
Thus

If I has the Poiseuille property, then there is rich and if

\[\theta \geq I. \]

Proof of Princesso-Jin

- \(I = \mathbb{1} \)
- They show that there is an infinite
I - almost disjoint family in \mathbb{I}^+

- Using the function f and this family they construct a rich and
 $\exists \gamma = I$.

- Proof is 2 pages long.
Sketch of our proof

- I w/ B.P.

- There is I-almost disjoint family in \mathcal{F} of cardinality \mathfrak{c}.

- Using this I-AD family we construct a rich ω-and ω_1-$\mathcal{G}_0 = \mathcal{I}$.

- Proof is $\frac{1}{2}$ page long.
There is no one with ball 5.

\[25 = 5 \]
Exm 1

1. \(J - \max \text{ - ideal} \)

2. \(I = \phi^2 \otimes J \)

\[\omega x w \]

\[A \subset I \Rightarrow \forall A(n) \in J. \]

\[\delta(A) = \sum_{A(n) \in J} \frac{1}{2^n} \]

\[\text{ren}(S) = [0,1] \]
- J - a. n.d

- \(\overline{Z} = 1 \)

- There is no uncountable \(I - AD \) family in \(I^+ \)
B(0) \cap C(r) \neq \emptyset

B and C are not

I - \alpha \text{-d.}

Ex. 2

- J_{max} \text{ ideal}
- I = \text{Fin}(X) J

\(A \in \mathcal{C} \Rightarrow \forall \omega \in A(\omega) \in \mathcal{F} \)
There is I-AD

Take Fin-A-Ds family of coordinally I on W.
\[\phi \otimes \text{Max} \subseteq \text{Fin} \otimes \text{Max} \]

\[\text{non-mem} \downarrow \]

\[\text{not B. P.} \]
There is no wid e a.m. of \(\mathcal{J} \)
\[Z \mathcal{J} = I. \]
Exm 2

I - maximal

Let $\delta \neq I$. $8 \delta = I$

$A \in I \implies \delta(A) = 0$

$A \in I \iff \omega \setminus A \in I$

$1 - \delta(\omega) \leq \delta(A) + \delta(\omega \setminus A)$

$= \delta(A) + 0 = \delta(A) \leq 1$

$A \in I \implies \delta(A) = 1$

$\text{conc}(I) = \{0, 1\}$. not. rich.
Q: How about Lebesgue measureability?

Exam 3

1. $J -$ max. ideal

Def:

$S(A) = \lim_{n \to \infty} \frac{140n}{n}$

- δ - rich finitely additive measure
There is no uncountable
\(I \) - A \& family in \(I^+ \)
by \(S \) - is a finite
measurer so c.c. c.

Law of large

Numbers

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} 1_{A_k} = \frac{1}{2} \]

\(A \subseteq \mathbb{N} \)

of measure 1
Let \(A \subseteq \mathbb{N} \) be \(\lim_{n \to \infty} \frac{|A \cap \{1, \ldots, n\}|}{n} = \frac{1}{2} \).

Then

\[I = \sum_{\gamma \in \mathcal{P}(\omega)} L \]

\(I \) is of measure zero.
To A + Rich

[Di Nasso - Jin, 2018]

(Acta Arith.)

If I is a summable ideal then there is a and \(\delta \) which is rich and translation invariant.

Thus the same as above for translation invariant ideals by the Baire property.
Theorem

There is a translation of the plane that maps the triangle T to the triangle $A \to B, A \to C$ and $B \to C$.

Proof

To every triangle ABC, there is a translation that maps A to B and B to C.

Given a triangle ABC, we can find a translation T such that $T(A) = B$ and $T(B) = C$. Then, $T(C) = A$ because T is a translation.

Thus, T maps A to B, B to C, and C to A. This proves the theorem.
\[\text{WLOG} \]
\[\lim_{n \to \infty} (k_{n+1} - k_n) = \infty \]

\[k_1, k_2, k_3, \ldots \]

\[I_n = \sum (k_n, x_{n+1}) \]

- Take \(\text{Fin} = \text{AD} \)

- Family \(A \in \mathcal{AC}^w \)

- For \(A \in \mathcal{AC} \)

\[C_A = \bigcup_{n \in A} I_{2n} \]
\[
0 \leq A = (a_1, a_2, \ldots, a_n) \\
|E| = 2 \\
C = \{ C_A : A \in A \} \\
C_A \in I^T \quad (by \quad Togneyed) \\
C \in I_T^{A-D} (C_{Fin-T-A-D_0}) \\
A \neq B, A, B \in FA \\
k \in \mathbb{Z}, \quad \sqrt{CA \wedge (B+k)_{C_{Fin}}}
\]
Since $|I_n| \to \infty$

$\exists N \forall n \geq N \quad |I_n| > k$

Now

$\forall n \geq N \quad (I_{2n} + k \subset I_{2n-1} \cup I_{2n} \cup I_{2n+1})$

$\forall n \geq N \quad I_{2n} \cap (I_{2n} + k) = \emptyset$
\(C_\mathcal{A} \cap (C_\mathcal{B} + k) = \)

\[= \bigcup_{m \in \mathcal{A}} I_{2m} \cap \left(\bigcup_{n \in \mathcal{B}} I_{2n+k} \right) = \]

\[= \bigcup_{m \in \mathcal{A}} \bigcup_{n \in \mathcal{B}} \left(I_{2m} \cap (I_{2n+k}) \right) \]

\[\left. \right|_{m = n} \neq \phi \]

\[\leq \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathcal{A} \cap \mathcal{B}} \bigcup_{n \in \mathbb{N}} \left(I_{2m} \cap (I_{2n+k}) \right) \]

\[\text{Finite} \]

\[\text{Finite} \]

\[\text{Finite} \]
Let \(A = \{ A_\alpha : \alpha \in \Sigma \} \)

be \(I \to \mathcal{A} \cdot D \)

family.

Extend \(A \) to maximal \(I \to \mathcal{A} \cdot D \).

Define:

\[
\delta(A) = \sup \{ \sum_\alpha \alpha : \exists k \in \mathbb{Z} \}
\]

\[
CA \wedge (A + k) \in I^+
\]