Nie jesteś zalogowany | zaloguj się

Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego

  • Skala szarości
  • Wysoki kontrast
  • Negatyw
  • Podkreślenie linków
  • Reset

Seminarium Zakładu Równań Fizyki Matematycznej

Cotygodniowe seminarium badawcze


Prowadzący

Sala

5070

Lista referatów

  • 2019-05-30, godz. 12:30, 5070

    Kamila Łyczek (doktorantka MIM)

    Differentiability of measure solutions to the nonlinear transport equation

    We consider the nonlinear transport equation in the space of bounded Radon measures. Previous results concerning this type of equation include well-posedness and Lipschitz dependence of the solution (on the initial condition and model ingredients). However, these results do not allow to analyze the ...

  • 2019-05-23, godz. 12:30, 5070

    prof. Jacek Szumbarski ( Wydział Mechanicznego Energetyki i Lotnictwa Politechniki Warszawskiej)

    Problem warunków brzegowych w modelowaniu przepływów wewnętrznych cieczy newtonowskiej

    Tematem referatu jest modelowanie matematyczne i komputerowe niestacjonarnych przepływów cieczy newtonowskiej w układach rozgałęzionych przewodów. Zagadnienia tego typu pojawiają się m.in. w kontekście modelowania układów krwionośnego i oddechowego. Istotnym pro...

  • 2019-05-09, godz. 12:30, 5070

    Panayotis Smyrnelis (IMPAN)

    Phase transition and Ginzburg-Landau models occurring in the Physics of liquid crystals.

    We study global minimizers of an energy functional arising as a thin sample limit in the theory of light-matter interaction in nematic liquid crystals. We show that depending on the parameters various defects are predicted by the model. In particular we show existence of a new type of topological...

  • 2019-04-25, godz. 12:30, 5070

    José Carlos Bellido Guerrero (Universidad de Castilla - La Mancha)

    A fractional model of hyperelasticity.

    Elastic materials are those that deform under the action of an applied force and recover their original configuration when the load stops acting. When the elastic potential energy can be modeled as a variational principle we call then hyperplastic materials, and it is the nat...

  • 2019-04-24, godz. 14:15, 4050

    Adam Prosiński (Oxford University)

    Calculus of variations in the anisotropic setting.

    In this talk, we will review some recent results concerning existence and regularity of minimizers of anisotropic variational problems. The anisotropy that we have in mind concerns different orders of derivation in different directions, thus we work with differential operators that need not be ho...

  • 2019-04-11, godz. 12:30, 5070

    Michał Łasica (MIM)

    Total variation flow of curves in Riemannian manifolds

    Let N be a complete Riemannian manifold. We consider the functional of total variation defined on maps from an interval I into N. This is a relaxation with respect to L2 topology on I of the length functional defined on parametrized curves. We investigate well-posedness of the steepest descent fl...

  • 2019-03-28, godz. 12:30, 5070

    Hiroshi Wakui (Tohoku University/ Uniwersytet Wrocławski)

    Unboundedness for solutions to a degenerate drift-diffusion equation under non-weight condition

    In this talk, we consider unboundedness and concentration phenomenon of solutions to a degenerate drift-diffusion equation. We proved that solutions do not remain bounded in time when the initial data has negative free energy under a non-weight condition with the mass critical case. Moreover, we sho...

  • 2019-03-21, godz. 12:30, 5070

    Wojciech Górny (doktorant MIM)

    Least gradient problem on unbounded domains

    We discuss the least gradient problem, which in dimension two is linked to the optimal transport problem, in two settings. The first   one concerns the existence of minimisers for discontinuous boundary data,   while the second one concerns new phenomena arising in the case...

  • 2019-03-07, godz. 12:30, 5070

    Michał Miśkiewicz (doktorant MIM)

    Stability of singularities of minimizing harmonic maps

    Minimizing harmonic maps - i.e., maps into a fixed manifold that minimize the Dirichlet energy - are known to be smooth outside a singular set of codimension 3. Here, we consider maps into the standard sphere S2 and investigate how the singular set is affected by small perturbations of the pres...

  • 2019-02-28, godz. 14:15, 5070

    Piotr Szymczak ( IFT UW)

    Evolving shapes of dissolving objects in potential flow

    If we put a dissolving object in a flow, its shape will continuously change. Tracking of the evolving shape requires the solution of coupled flow  and transport equation, in an evolving geometry around the shrinking object. Two problems of this kind will be discussed. First, we will ass...

Strony