Cotygodniowe seminarium badawcze (brak strony)
2023-06-01, godz. 12:15, Zoom
Dora Puljic (University of Edinburgh)
Pre-Lie rings and classification of braces
Braces are algebraic objects introduced by W. Rump in 2007 to help the study of non-degenerate, involutive, set theoretic solutions to the Yang-Baxter equation. Braces have been linked to many other objects of interest - Hopf-Galois extensions, braid groups, quantum groups, trusses, etc...
2023-05-25, godz. 12:15, 5450
Jan Okniński (Uniwersytet Warszawski)
Indecomposable solutions of the Yang-Baxter equation of square-free cardinality
2023-05-18, godz. 12:15, Zoom
Mark Lawson (Heriot-Watt University, Edinburgh)
Higher dimensional generalizations of the Thompson groups via higher rank graphs
We show how to construct a family of groups from a family of monoids that generalize free monoids. In the case of free monoids on two or more finite generators, we get back the familiar Thompson groups. The family of monoids that arise should be of independent interest. The motivation for de...
2023-05-11, godz. 12:15, Zoom
Tomasz Brzeziński (Swansea University)
2023-04-27, godz. 12:15, Zoom
Ryszard Mazurek (Politechnika Białostocka)
2023-04-20, godz. 12:15, 5450
Joachim Jelisiejew (Uniwersytet Warszawski)
Skończonej rangi algebry i moduły pochodzące od tensorów minimalnej rangi
2023-04-13, godz. 12:15, Zoom
Duarte Ribeiro (Universidade Nova de Lisboa)
Identities and bases in hypoplactic, sylvester, Baxter and stylic monoids
The ubiquitous plactic monoid, also known as the monoid of Young tableaux, has deep connections to several areas of mathematics, in particular, to the theory of symmetric functions. An actively-studied problem is the identities satisfied by the plactic monoids of finite rank, which are know...
2023-03-30, godz. 12:15, 5450
Agata Pilitowska (Politechnika Warszawska)
Nierozkładalne inwolutywne rozwiązania równania Yanga-Baxtera z cykliczną grupą permutacji
2023-03-23, godz. 12:15, 5450
Łukasz Kubat (Uniwersytet Warszawski)
2023-03-16, godz. 12:15, Zoom
Alan Cain (Universidade Nova de Lisboa)
Reconstruction problems ask whether a mathematical object is uniquely determined by a collection of pieces of partial information about the object. A classical example of such a problem is whether every finite simple graph with at least three vertices is uniquely determined by th...