Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego
Publikacje
Czasopismo: Statistics & Probability Letters
Liczba publikacji: 33
2017
- Adam Osękowski, A Fefferman-Stein inequality for the martingale square and maximal functions, Statistics & Probability Letters 129 2017, s. 81–85.zobacz w PBN
- Mauro Bernardi, Fabrizio Durante i Piotr Jaworski, CoVaR of families of copulas, Statistics & Probability Letters 120 2017, s. 8–17.zobacz w PBN
- Piotr Jaworski i Marcin Pitera, A note on conditional covariance matrices for elliptical distributions, Statistics & Probability Letters 129 2017, s. 230–235..zobacz w PBN
- Adam Osękowski, Weighted inequalities for the martingale square and maximal functions, Statistics & Probability Letters 120 2017, s. 95–100.zobacz w PBN
- Michał Brzozowski, Adam Osękowski i Mateusz Rapicki, Sharp weighted weak-norm estimates for maximal functions, Statistics & Probability Letters 131 2017, s. 93–101.zobacz w PBN
2016
2015
2014
- Adam Osękowski, Inequalities for martingales taking values in 2-convex Banach spaces, Statistics & Probability Letters 84 (1) 2014, s. 102–107.zobacz w PBN
- Adam Osękowski, Sharp L2logL inequalities for the Haar system and martingale transforms, Statistics & Probability Letters 94 (Complete) 2014, s. 91–97.zobacz w PBN
- Adam Osękowski, A weak-type inequality for the martingale square function, Statistics & Probability Letters 95 (Complete) 2014, s. 139–143.zobacz w PBN
- Błażej Miasojedow, Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space, Statistics & Probability Letters 2014.zobacz w PBN
2013
- Adam Osękowski, A prophet inequality for L2-martingales, Statistics & Probability Letters 83 (10) 2013, s. 2319–2323.zobacz w PBN
- Adam Osękowski, On martingales whose exponential processes satisfy Muckenhoupt’s condition A1, Statistics & Probability Letters 83 (8) 2013, s. 1849–1853.zobacz w PBN
- Piotr Jaworski i Marcin Krzywda, Coupling of Wiener Processes by Copulas, Statistics & Probability Letters 83 2013, s. 2027–2033.zobacz w PBN
- Mao Mingzhi, Liu Ting i Urszula Foryś, The quenched law of the iterated logarithm for one-dimensional random walks in a random environment, Statistics & Probability Letters 83 2013, s. 52–60.zobacz w PBN
2012
2011
2010
2009
2008
2004
2001
1998
1997