Variational methods in PDEs

Bartosz Bieganowski

Institute of Applied Mathematics and Mechanics

09.05.2024
Unconstrained problems
Consider the following second order elliptic problem

\[-\Delta u + V(x)u = f(u), \quad u : \mathbb{R}^N \rightarrow \mathbb{R}, \ u(x) \rightarrow 0 \text{ as } |x| \rightarrow \infty.\]

We say that u is a weak solution, if

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + V(x)uv \, dx = \int_{\mathbb{R}^N} f(u)v \, dx$$

for all v.

All weak solutions are critical points of the energy (Euler-Lagrange) functional

$$\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 \, dx - \int_{\mathbb{R}^N} F(u) \, dx$$

with $F(u) := \int_0^u f(s) \, ds$.
Consider the following second order elliptic problem

\[-\Delta u + V(x)u = f(u), \quad u : \mathbb{R}^N \to \mathbb{R}, \quad u(x) \to 0 \text{ as } |x| \to \infty.\]

We say that \(u \) is a weak solution, if

\[\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + V(x)uv \, dx = \int_{\mathbb{R}^N} f(u)v \, dx\]

for all \(v \).

All weak solutions are critical points of the energy (Euler-Lagrange) functional

\[\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 \, dx - \int_{\mathbb{R}^N} F(u) \, dx\]

with \(F(u) := \int_0^u f(s) \, ds \).
Variational PDEs

Consider the following second order elliptic problem

$$-\Delta u + V(x)u = f(u), \quad u : \mathbb{R}^N \to \mathbb{R}, \quad u(x) \to 0 \text{ as } |x| \to \infty.$$

We say that u is a weak solution, if

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + V(x)uv \, dx = \int_{\mathbb{R}^N} f(u)v \, dx$$

for all v.

All weak solutions are critical points of the energy (Euler-Lagrange) functional

$$\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 \, dx - \int_{\mathbb{R}^N} F(u) \, dx$$

with $F(u) := \int_0^u f(s) \, ds$.
Variational functionals

Hence, we look for critical points of some nonlinear functional

$$\mathcal{J} : X \to \mathbb{R}$$

defined on some function space X (in applications: some Sobolev-type space).

First idea: look for minimizers of \mathcal{J}! Minimizers are critical points, so we will find solutions....

But, if e.g. $F(u) = \frac{1}{p} |u|^p$ with some $p > 2$, we have

$$\mathcal{J}(tu) = t^2 \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x) u^2 \, dx - t^p \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx \to -\infty$$
as $t \to \infty$. The functional is not bounded from below!
Variational functionals

Hence, we look for critical points of some nonlinear functional

$$\mathcal{J} : X \to \mathbb{R}$$

defined on some function space X (in applications: some Sobolev-type space).

First idea: look for minimizers of \mathcal{J}! Minimizers are critical points, so we will find solutions....

But, if e.g. $F(u) = \frac{1}{p} |u|^p$ with some $p > 2$, we have

$$\mathcal{J}(tu) = t^2 \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x) u^2 \, dx - t^p \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx \to -\infty$$

as $t \to \infty$. The functional is not bounded from below!
Hence, we look for critical points of some nonlinear functional

\[J : X \to \mathbb{R} \]

defined on some function space \(X \) (in applications: some Sobolev-type space).

First idea: **look for minimizers of \(J \)!** Minimizers are critical points, so we will find solutions....

But, if e.g. \(F(u) = \frac{1}{p} |u|^p \) with some \(p > 2 \), we have

\[
J(tu) = t^2 \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 \, dx - t^p \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx \to -\infty
\]

as \(t \to \infty \). The functional is not bounded from below!
Variational functionals

Hence, we look for critical points of some nonlinear functional

\[\mathcal{J} : X \to \mathbb{R} \]

defined on some function space \(X \) (in applications: some Sobolev-type space).
First idea: look for minimizers of \(\mathcal{J} \)! Minimizers are critical points, so we will find solutions....

But, if e.g. \(F(u) = \frac{1}{p} |u|^p \) with some \(p > 2 \), we have

\[\mathcal{J}(tu) = t^2 \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x) u^2 \, dx - t^p \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx \to -\infty \]

as \(t \to \infty \). The functional is not bounded from below!
Possible approaches

- Look for other type of solutions: Mountain Pass Theorem, Palais-Smale sequences, ...
- Constrained minimization: look for minimizers on appropriate subsets of X on which the functional is bounded from below. Are such minimizers critical points, and therefore - solutions?
Possible approaches

- Look for other type of solutions: Mountain Pass Theorem, Palais-Smale sequences, ...
- Constrained minimization: look for minimizers on appropriate subsets of X on which the functional is bounded from below. Are such minimizers critical points, and therefore - solutions?
Possible approaches

- Look for other type of solutions: Mountain Pass Theorem, Palais-Smale sequences, ...

- Constrained minimization: look for minimizers on appropriate subsets of X on which the functional is bounded from below. Are such minimizers critical points, and therefore - solutions?
One can check whether the functional has a *mountain pass geometry*. Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

\[\mathcal{J}(u_n) \to c, \quad \mathcal{J}'(u_n) \to 0, \]

where \(c > 0 \) is some number. Is such a sequence convergent...? Usually not.
One can check whether the functional has a *mountain pass geometry*.
Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

\[
\mathcal{J}(u_n) \to c, \quad \mathcal{J}'(u_n) \to 0,
\]

where \(c > 0 \) is some number. Is such a sequence convergent...? Usually not.
One can check whether the functional has a *mountain pass geometry*.

Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

$$ J(u_n) \to c, \quad J'(u_n) \to 0, $$

where $c > 0$ is some number. Is such a sequence convergent...? Usually not.
Mountain Pass Approach

One can check whether the functional has a *mountain pass geometry*.

Amprosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

\[J(u_n) \to c, \quad J'(u_n) \to 0, \]

where \(c > 0 \) is some number. Is such a sequence convergent...? Usually not.
We look for critical points on the following constraint

\[\mathcal{N} := \{ u \in X \setminus \{0\} : \mathcal{J}'(u)(u) = 0 \} . \]

Nehari, 1960

\(\mathcal{N} \) contains all nontrivial critical points of \(\mathcal{J} \).

Properties (under reasonable assumptions, if \(f \) is sufficiently regular):

- \(\mathcal{J} \) is bounded from below on \(\mathcal{N} \).
- \(\mathcal{N} \) is a \(C^{1,1} \) manifold.
- \(\mathcal{N} \) is a natural constraint to \(\mathcal{J} \). Namely - if \((\mathcal{J}|_{\mathcal{N}})'(u) = 0 \), then \(\mathcal{J}'(u) = 0 \).

Corollary: it is enough to look for minimizers of \(\mathcal{J} \) on \(\mathcal{N} \).
Nehari manifold approach

We look for critical points on the following constraint

\[N := \{ u \in X \setminus \{0\} : J'(u)(u) = 0 \}. \]

Nehari, 1960

\(N \) contains all nontrivial critical points of \(J \).

Properties (under reasonable assumptions, if \(f \) is sufficiently regular):

- \(J \) is bounded from below on \(N \).
- \(N \) is a \(C^{1,1} \) manifold.
- \(N \) is a natural constraint to \(J \). Namely - if \((J|_N)'(u) = 0 \), then \(J'(u) = 0 \).

Corollary: it is enough to look for minimizers of \(J \) on \(N \).
We look for critical points on the following constraint

\[\mathcal{N} := \{ u \in X \setminus \{0\} : \mathcal{J}'(u)(u) = 0 \}. \]

Nehari, 1960

\(\mathcal{N} \) contains all nontrivial critical points of \(\mathcal{J} \).

Properties (under reasonable assumptions, if \(f \) is sufficiently regular):

- \(\mathcal{J} \) is bounded from below on \(\mathcal{N} \).
- \(\mathcal{N} \) is a \(\mathcal{C}^{1,1} \) manifold.
- \(\mathcal{N} \) is a natural constraint to \(\mathcal{J} \). Namely - if \((\mathcal{J}|_{\mathcal{N}})'(u) = 0 \), then \(\mathcal{J}'(u) = 0 \).

Corollary: it is enough to look for minimizers of \(\mathcal{J} \) on \(\mathcal{N} \).
Nehari manifold approach

We look for critical points on the following constraint

\[\mathcal{N} := \{ u \in X \setminus \{0\} : \mathcal{J}'(u)(u) = 0 \} \]

Nehari, 1960

\(\mathcal{N} \) contains all nontrivial critical points of \(\mathcal{J} \).

Properties (under reasonable assumptions, if \(f \) is sufficiently regular):

- \(\mathcal{J} \) is bounded from below on \(\mathcal{N} \)!
- \(\mathcal{N} \) is a \(C^{1,1} \) manifold.
- \(\mathcal{N} \) is a natural constraint to \(\mathcal{J} \). Namely - if \((\mathcal{J}|_{\mathcal{N}})'(u) = 0 \), then \(\mathcal{J}'(u) = 0 \).

Corollary: it is enough to look for minimizers of \(\mathcal{J} \) on \(\mathcal{N} \).
We look for critical points on the following constraint

$$\mathcal{N} := \{ u \in X \setminus \{0\} : J'(u)(u) = 0 \}. $$

Nehari, 1960

\mathcal{N} contains all nontrivial critical points of J.

Properties (under reasonable assumptions, if f is sufficiently regular):

- J is bounded from below on \mathcal{N}!
- \mathcal{N} is a $C^{1,1}$ manifold.
- \mathcal{N} is a *natural* constraint to J. Namely - if $(J|_{\mathcal{N}})'(u) = 0$, then $J'(u) = 0$.

Corollary: it is enough to look for minimizers of J on \mathcal{N}.
Nehari manifold approach

We look for critical points on the following constraint

\[\mathcal{N} := \{ u \in X \setminus \{0\} : \mathcal{J}'(u)(u) = 0 \}. \]

Nehari, 1960

\(\mathcal{N} \) contains all nontrivial critical points of \(\mathcal{J} \).

Properties (under reasonable assumptions, if \(f \) is sufficiently regular):

- \(\mathcal{J} \) is bounded from below on \(\mathcal{N} \)!
- \(\mathcal{N} \) is a \(C^{1,1} \) manifold.
- \(\mathcal{N} \) is a natural constraint to \(\mathcal{J} \). Namely - if \((\mathcal{J}|_\mathcal{N})' (u) = 0 \), then \(\mathcal{J}'(u) = 0 \).

Corollary: it is enough to look for minimizers of \(\mathcal{J} \) on \(\mathcal{N} \).
Nehari manifold approach

Does it work when f is not "sufficiently" regular?

- \mathcal{N} may not be a differentiable manifold,
- it makes no sense to write $(\mathcal{I}|_{\mathcal{N}})'(u) = 0$.

Szulkin, Weth, 2009 There is a homeomorphism $m : S \rightarrow \mathcal{N}$, where S is the unit sphere in X.

- Although m is only continuous, it preserves the class of the functional: $\mathcal{J} \circ m$ is of C^1 class;
- S is a manifold of $C^{1,1}$ class;
- Minimize $\mathcal{J} \circ m : S \rightarrow \mathbb{R}$! One have the critical point of $\mathcal{J} \circ m$.
- Transform the minimizer (in fact, the minimizing sequence) back to \mathcal{N} through m.
- It appears that this function is a critical point of \mathcal{J} (and is a minimizer on \mathcal{N}).
Nehari manifold approach

Does it work when \(f \) is not "sufficiently" regular?

- \(N \) may not be a differentiable manifold,
- it makes no sense to write \((\mathcal{J}|_N)'(u) = 0 \).

Szulkin, Weth, 2009 There is a homeomorphism \(m : S \rightarrow N \), where \(S \) is the unit sphere in \(X \).

- Although \(m \) is only continuous, it preserves the class of the functional: \(\mathcal{J} \circ m \) is of \(C^1 \) class;
- \(S \) is a manifold of \(C^{1,1} \) class;
- Minimize \(\mathcal{J} \circ m : S \rightarrow \mathbb{R} \)! One have the critical point of \(\mathcal{J} \circ m \).
- Transform the minimizer (in fact, the minimizing sequence) back to \(N \) through \(m \).
- It appears that this function is a critical point of \(\mathcal{J} \) (and is a minimizer on \(N \)).
Nehari manifold approach

Does it work when \(f \) is not ”sufficiently” regular?

- \(\mathcal{N} \) may not be a differentiable manifold,
- it makes no sense to write \((\mathcal{J}|\mathcal{N})' (u) = 0. \)

Szulkin, Weth, 2009 There is a homeomorphism \(m: S \rightarrow \mathcal{N} \), where \(S \) is the unit sphere in \(X \).

- Although \(m \) is only continuous, it preserves the class of the functional: \(\mathcal{J} \circ m \) is of \(C^1 \) class;
- \(S \) is a manifold of \(C^{1,1} \) class;
- Minimize \(\mathcal{J} \circ m : S \rightarrow \mathbb{R} \). One have the critical point of \(\mathcal{J} \circ m \).
- Transform the minimizer (in fact, the minimizing sequence) back to \(\mathcal{N} \) through \(m \).
- It appears that this function is a critical point of \(\mathcal{J} \) (and is a minimizer on \(\mathcal{N} \)).
Nehari manifold approach

Does it work when \(f \) is not "sufficiently" regular?

- \(\mathcal{N} \) may not be a differentiable manifold,
- it makes no sense to write \((\mathcal{J}|_{\mathcal{N}})'(u) = 0 \).

Szulkin, Weth, 2009 There is a homeomorphism \(m : S \to \mathcal{N} \), where \(S \) is the unit sphere in \(X \).

- Although \(m \) is only continuous, it preserves the class of the functional: \(\mathcal{J} \circ m \) is of \(C^1 \) class;
- \(S \) is a manifold of \(C^{1,1} \) class;
- Minimize \(\mathcal{J} \circ m : S \to \mathbb{R} \), One have the critical point of \(\mathcal{J} \circ m \).
- Transform the minimizer (in fact, the minimizing sequence) back to \(\mathcal{N} \) through \(m \).
- It appears that this function is a critical point of \(\mathcal{J} \) (and is a minimizer on \(\mathcal{N} \)).
Nehari manifold approach

Does it work when f is not "sufficiently" regular?

- \mathcal{N} may not be a differentiable manifold,
- it makes no sense to write $(\mathcal{J}|_{\mathcal{N}})'(u) = 0$.

Szulkin, Weth, 2009 There is a homeomorphism $m : S \rightarrow \mathcal{N}$, where S is the unit sphere in X.

- Although m is only continuous, it preserves the class of the functional: $\mathcal{J} \circ m$ is of C^1 class;
- S is a manifold of $C^{1,1}$ class;
- Minimize $\mathcal{J} \circ m : S \rightarrow \mathbb{R}$! One have the critical point of $\mathcal{J} \circ m$.
- Transform the minimizer (in fact, the minimizing sequence) back to \mathcal{N} through m.
- It appears that this function is a critical point of \mathcal{J} (and is a minimizer on \mathcal{N}).
Nehari manifold approach

Does it work when f is not ”sufficiently” regular?

- \mathcal{N} may not be a differentiable manifold,
- it makes no sense to write $(J|_\mathcal{N})'(u) = 0$.

Szulkin, Weth, 2009 There is a homeomorphism $m : S \to \mathcal{N}$, where S is the unit sphere in X.

- Although m is only continuous, it preserves the class of the functional: $J \circ m$ is of C^1 class;
- S is a manifold of $C^{1,1}$ class;
- Minimize $J \circ m : S \to \mathbb{R}$! One have the critical point of $J \circ m$.
- Transform the minimizer (in fact, the minimizing sequence) back to \mathcal{N} through m.
- It appears that this function is a critical point of J (and is a minimizer on \mathcal{N}).
Does it work when \(f \) is not ”sufficiently” regular?

- \(\mathcal{N} \) may not be a differentiable manifold,
- it makes no sense to write \((\mathcal{I}|_{\mathcal{N}})'(u) = 0\).

Szulkin, Weth, 2009 There is a homeomorphism \(m : S \to \mathcal{N} \), where \(S \) is the unit sphere in \(X \).

- Although \(m \) is only continuous, it preserves the class of the functional: \(\mathcal{J} \circ m \) is of \(C^1 \) class;
- \(S \) is a manifold of \(C^{1,1} \) class;
- **Minimize** \(\mathcal{J} \circ m : S \to \mathbb{R} \)! One have the critical point of \(\mathcal{J} \circ m \).
- Transform the minimizer (in fact, the minimizing sequence) back to \(\mathcal{N} \) through \(m \).
- It appears that this function is a critical point of \(\mathcal{I} \) (and is a minimizer on \(\mathcal{N} \)).
Nehari manifold approach

Does it work when \(f \) is not "sufficiently" regular?

- \(\mathcal{N} \) may not be a differentiable manifold,
- it makes no sense to write \((\mathcal{J}|_{\mathcal{N}})'(u) = 0\).

Szulkin, Weth, 2009 There is a homeomorphism \(m : S \to \mathcal{N} \), where \(S \) is the unit sphere in \(X \).

- Although \(m \) is only continuous, it preserves the class of the functional: \(\mathcal{J} \circ m \) is of \(C^1 \) class;
- \(S \) is a manifold of \(C^{1,1} \) class;
- Minimize \(\mathcal{J} \circ m : S \to \mathbb{R} \)! One have the critical point of \(\mathcal{J} \circ m \).
- Transform the minimizer (in fact, the minimizing sequence) back to \(\mathcal{N} \) through \(m \).

It appears that this function is a critical point of \(\mathcal{J} \) (and is a minimizer on \(\mathcal{N} \)).
Nehari manifold approach

Does it work when f is not "sufficiently" regular?

- \mathcal{N} may not be a differentiable manifold,
- it makes no sense to write $(\mathcal{J}|_{\mathcal{N}})'(u) = 0$.

Szulkin, Weth, 2009 There is a homeomorphism $m : S \to \mathcal{N}$, where S is the unit sphere in X.

- Although m is only continuous, it preserves the class of the functional: $\mathcal{J} \circ m$ is of C^1 class;
- S is a manifold of $C^{1,1}$ class;
- Minimize $\mathcal{J} \circ m : S \to \mathbb{R}$! One have the critical point of $\mathcal{J} \circ m$.
- Transform the minimizer (in fact, the minimizing sequence) back to \mathcal{N} through m.
- It appears that this function is a critical point of \mathcal{J} (and is a minimizer on \mathcal{N}).
Nehari manifold approach

When we find a minimizer of \mathcal{J} on \mathcal{N}, we gain the additional information: the solution we find is the ground state solution (the least energy solution) – it minimizes \mathcal{J} among all critical points.
When we find a minimizer of \mathcal{J} on \mathcal{N}, we gain the additional information: the solution we find is the **ground state solution** (the least energy solution) – it minimizes \mathcal{J} among all critical points.
Strongly indefinite problems

For strongly indefinite problems the mentioned methods have their counterparts:

- Mountain Pass Theorem ↔ Linking Theorem (Kryszewski, Szulkin, 1998)
- Nehari manifold ↔ Nehari-Pankov manifold (Pankov, 2005)
For strongly indefinite problems the mentioned methods have their counterparts:

- Mountain Pass Theorem \leftrightarrow Linking Theorem (Kryszewski, Szulkin, 1998)
- Nehari manifold \leftrightarrow Nehari-Pankov manifold (Pankov, 2005)
Strongly indefinite problems

For strongly indefinite problems the mentioned methods have their counterparts:

- Mountain Pass Theorem \leftrightarrow Linking Theorem (Kryszewski, Szulkin, 1998)
- Nehari manifold \leftrightarrow Nehari-Pankov manifold (Pankov, 2005)
Constrained problems
We consider the following nonlinear Schrödinger wave equation

\[i \frac{\partial \Psi}{\partial t} = -\Delta_x \Psi - f(|\Psi|)\Psi, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N, \]

where \(\Psi = \Psi(t, x) \) is the state (wave) function. Looking for solutions of the form (so-called \textit{standing waves})

\[\Psi(t, x) = e^{-i\lambda t} u(x), \]

where the so-called \textit{soliton} \(u \) vanishes at infinity, leads to the equation

\[-\Delta u + \lambda u = g(u), \quad x \in \mathbb{R}^N. \]
We consider the following nonlinear Schrödinger wave equation

\[i \frac{\partial \Psi}{\partial t} = -\Delta_x \Psi - f(|\Psi|)\Psi, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N, \]

where \(\Psi = \Psi(t, x) \) is the state (wave) function. Looking for solutions of the form (so-called standing waves)

\[\Psi(t, x) = e^{-i\lambda t} u(x), \]

where the so-called soliton \(u \) vanishes at infinity, leads to the equation

\[-\Delta u + \lambda u = g(u), \quad x \in \mathbb{R}^N. \]
The normalized problem

We are looking for solutions to the following problem

\[\begin{cases} \ -\Delta u + \lambda u = g(u) \quad \text{in } \mathbb{R}^N, \ N \geq 3, \\
\int_{\mathbb{R}^N} |u|^2 \, dx = \rho > 0, \end{cases}\]

where \(\rho\) is prescribed and \((u, \lambda) \in H^1(\mathbb{R}^N) \times \mathbb{R}\) has to be determined.

In the time-dependent equation, the mass

\[\int_{\mathbb{R}^N} |\Psi(t, x)|^2 \, dx \quad \text{is independent of } t\]

thus it makes sense to prescribe \(\int_{\mathbb{R}^N} |u|^2 \, dx\) instead of \(\lambda\).
The normalized problem

We are looking for solutions to the following problem

\[
\begin{cases}
-\Delta u + \lambda u = g(u) & \text{in } \mathbb{R}^N, \ N \geq 3, \\
\int_{\mathbb{R}^N} |u|^2 \, dx = \rho > 0,
\end{cases}
\]

where ρ is prescribed and $(u, \lambda) \in H^1(\mathbb{R}^N) \times \mathbb{R}$ has to be determined. In the time-dependent equation, the mass

\[
\int_{\mathbb{R}^N} |\Psi(t, x)|^2 \, dx
\]

is independent of t thus

it makes sense to prescribe $\int_{\mathbb{R}^N} |u|^2 \, dx$ instead of λ.

The normalized problem

We are looking for solutions to the following problem

\[
\begin{cases}
-\Delta u + \lambda u = g(u) \quad \text{in } \mathbb{R}^N, \ N \geq 3, \\
\int_{\mathbb{R}^N} |u|^2 \, dx = \rho > 0,
\end{cases}
\]

where \(\rho \) is prescribed and \((u, \lambda) \in H^1(\mathbb{R}^N) \times \mathbb{R} \) has to be determined. In the time-dependent equation, the mass

\[
\int_{\mathbb{R}^N} |\Psi(t, x)|^2 \, dx
\]

is independent of \(t \)

thus

it makes sense to prescribe \(\int_{\mathbb{R}^N} |u|^2 \, dx \) instead of \(\lambda \).
The normalized problem

We are looking for solutions to the following problem

$$\begin{cases}
-\Delta u + \lambda u = g(u) & \text{in } \mathbb{R}^N, \ N \geq 3, \\
\int_{\mathbb{R}^N} |u|^2 \, dx = \rho > 0,
\end{cases}$$

where ρ is prescribed and $(u, \lambda) \in H^1(\mathbb{R}^N) \times \mathbb{R}$ has to be determined.

In the time-dependent equation, the mass

$$\int_{\mathbb{R}^N} |\Psi(t, x)|^2 \, dx$$

is independent of t

thus

it makes sense to prescribe $\int_{\mathbb{R}^N} |u|^2 \, dx$ instead of λ.
Variational methods

Let us denote

\[S = \left\{ u : \int_{\mathbb{R}^N} |u|^2 \, dx = \rho \right\}. \]

Under suitable assumptions, solutions are critical points of the energy functional

\[\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \int_{\mathbb{R}^N} G(u) \, dx, \]

where \(G(u) := \int_0^u g(s) \, ds \), on the constraint \(S \) with a Lagrange multiplier \(\lambda \in \mathbb{R} \).
Let us denote

\[S = \left\{ u : \int_{\mathbb{R}^N} |u|^2 \, dx = \rho \right\}. \]

Under suitable assumptions, solutions are critical points of the energy functional

\[\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \int_{\mathbb{R}^N} G(u) \, dx, \]

where \(G(u) := \int_0^u g(s) \, ds \), on the constraint \(S \) with a Lagrange multiplier \(\lambda \in \mathbb{R} \).
Variational methods

If \mathcal{J} is bounded from below on S, one can just minimize it there. What to do if \mathcal{J} is not bounded from below on S?

- Restrict the problem to look for radial solutions (Jeanjean, 1997; Bartsch, de Valeriola, 2013);
- Find another constraint like ”Nehari manifold”?
If J is bounded from below on S, one can just minimize it there. What to do if J is not bounded from below on S?

- Restrict the problem to look for radial solutions (Jeanjean, 1997; Bartsch, de Valeriola, 2013);
- Find another constraint like ”Nehari manifold”?
Variational methods

If J is bounded from below on S, one can just minimize it there. What to do if J is not bounded from below on S?

- Restrict the problem to look for radial solutions (Jeanjean, 1997; Bartsch, de Valeriola, 2013);
- Find another constraint like "Nehari manifold"?
$$-\Delta u + \lambda u = g(u)$$

Nehari manifold:

$$\mathcal{J}'(u)(u) = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \lambda \int_{\mathbb{R}^N} u^2 \, dx - \int_{\mathbb{R}^N} g(u)u \, dx = 0.$$

Pohožaev manifold (Pohožaev, 1965):

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, dx = \frac{2N}{N-2} \int_{\mathbb{R}^N} G(u) - \frac{\lambda}{2} u^2 \, dx.$$

Idea: take the linear combination of them to rule out \(\lambda! \)
\[-\Delta u + \lambda u = g(u)\]

Nehari manifold:

\[\mathcal{J}'(u)(u) = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \lambda \int_{\mathbb{R}^N} u^2 \, dx - \int_{\mathbb{R}^N} g(u)u \, dx = 0.\]

Pohožaev manifold (Pohožaev, 1965):

\[\int_{\mathbb{R}^N} |\nabla u|^2 \, dx = \frac{2N}{N-2} \int_{\mathbb{R}^N} G(u) - \frac{\lambda}{2} u^2 \, dx.\]

Idea: take the linear combination of them to rule out \(\lambda\)!
\[-\Delta u + \lambda u = g(u)\]

Nehari manifold:

\[\mathcal{J}'(u)(u) = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \lambda \int_{\mathbb{R}^N} u^2 \, dx - \int_{\mathbb{R}^N} g(u)u \, dx = 0.\]

Pohožaev manifold (Pohožaev, 1965):

\[\int_{\mathbb{R}^N} |\nabla u|^2 \, dx = \frac{2N}{N-2} \int_{\mathbb{R}^N} G(u) - \frac{\lambda}{2} u^2 \, dx.\]

Idea: take the linear combination of them to rule out \(\lambda!\)
Nehari-Pohožaev manifold

\[\mathcal{M} = \{ u \neq 0 : M(u) = 0 \}, \]

where

\[M(u) := \int_{\mathbb{R}^N} |\nabla u|^2 \, dx - \frac{N}{2} \int_{\mathbb{R}^N} H(u) \, dx = 0, \]

where \(H(u) := g(u)u - 2G(u) \).

Idea: look for solutions in \(\mathcal{M} \cap S \).
\(\mathcal{M} \) is a \(C^1 \)-manifold,

\(\mathcal{I} \) is bounded from below on \(\mathcal{M} \cap S \).

One can use variational techniques to find a kind of Palais-Smale sequence on \(\mathcal{M} \cap S \). Is such a sequence bounded? Convergent? Is the limit still in \(S \)? ...?

It can be done:

- a mini-max approach in \(\mathcal{M} \) based on the \(\sigma \)-homotopy stable family of compact subsets of \(\mathcal{M} \) and some minimax principles (Bartsch, Soave, 2018)

- mountain-pass-type approach connected with the analysis of the ground state energy map (Lu, Jeanjean, 2020)
\(\mathcal{M} \) is a \(C^1 \)-manifold,

\(\mathcal{I} \) is bounded from below on \(\mathcal{M} \cap \mathcal{S} \).

One can use variational techniques to find a kind of Palais-Smale sequence on \(\mathcal{M} \cap \mathcal{S} \). Is such a sequence bounded? Convergent? Is the limit still in \(\mathcal{S} \)? ...

It can be done:

- a mini-max approach in \(\mathcal{M} \) based on the \(\sigma \)-homotopy stable family of compact subsets of \(\mathcal{M} \) and some minimax principles (Bartsch, Soave, 2018)

- mountain-pass-type approach connected with the analysis of the ground state energy map (Lu, Jeanjean, 2020)
\(\mathcal{M} \) is a \(C^1 \)-manifold,

\(\mathcal{J} \) is bounded from below on \(\mathcal{M} \cap \mathcal{S} \).

One can use variational techniques to find a kind of Palais-Smale sequence on \(\mathcal{M} \cap \mathcal{S} \). Is such a sequence bounded? Convergent? Is the limit still in \(\mathcal{S} \)? ...?

It can be done:

- a mini-max approach in \(\mathcal{M} \) based on the \(\sigma \)-homotopy stable family of compact subsets of \(\mathcal{M} \) and some minimax principles (Bartsch, Soave, 2018)

- mountain-pass-type approach connected with the analysis of the ground state energy map (Lu, Jeanjean, 2020)
The new approach

Assumptions:

- don’t work with radial functions;
- don’t work with Palais-Smale sequences, and avoid the mini-max approach in \mathcal{M} involving strong topological arguments.

The new idea (B., Mederski, 2021):
work in $\mathcal{D} \cap \mathcal{M}$ instead of $\mathcal{S} \cap \mathcal{M}$, where

$$\mathcal{D} := \left\{ u : \int_{\mathbb{R}^N} |u|^2 \, dx \leq \rho \right\}.$$

Obviously $\mathcal{S} \cap \mathcal{M} \subset \mathcal{D} \cap \mathcal{M}$.
The new approach

Assumptions:

- don’t work with radial functions;
- don’t work with Palais-Smale sequences, and avoid the mini-max approach in \mathcal{M} involving strong topological arguments.

The new idea (B., Mederski, 2021):
work in $\mathcal{D} \cap \mathcal{M}$ instead of $\mathcal{S} \cap \mathcal{M}$, where

$$\mathcal{D} := \left\{ u : \int_{\mathbb{R}^N} |u|^2 \, dx \leq \rho \right\}.$$

Obviously $\mathcal{S} \cap \mathcal{M} \subseteq \mathcal{D} \cap \mathcal{M}$.
The new approach

Assumptions:

- don’t work with radial functions;
- don’t work with Palais-Smale sequences, and avoid the mini-max approach in \mathcal{M} involving strong topological arguments.

The new idea (B., Mederski, 2021):
work in $\mathcal{D} \cap \mathcal{M}$ instead of $\mathcal{S} \cap \mathcal{M}$, where

$$\mathcal{D} := \left\{ u : \int_{\mathbb{R}^N} |u|^2 \, dx \leq \rho \right\}.$$

Obviously $\mathcal{S} \cap \mathcal{M} \subset \mathcal{D} \cap \mathcal{M}$.
The new approach

- \(J \) is bounded from below on \(D \cap M \);

- minimizing sequences \(J(u_n) \to \inf_{D \cap M} J \) are bounded!

- one can pass to the weak limit and show that the limit is non-zero

- \(D \) is weakly closed! Hence the limit point still lies in \(D \) and is a minimizer of \(J \) on \(D \cap M \).

- one can show the crucial inequality \(\inf_{S \cap M} J < J(v) \) for \(v \in (D \setminus S) \cap M \) – the minimizer lies in \(S \)!

- it seems that \(M \) is a ”natural” constraint - the Lagrange multiplier for \(M \) equals to 0.
\mathcal{J} is bounded from below on $D \cap M$;

- minimizing sequences $\mathcal{J}(u_n) \to \inf_{D \cap M} \mathcal{J}$ are bounded!
 - one can pass to the weak limit and show that the limit is non-zero;
 - D is weakly closed! Hence the limit point still lies in D and is a minimizer of \mathcal{J} on $D \cap M$.

- one can show the crucial inequality $\inf_{S \cap M} \mathcal{J} < \mathcal{J}(v)$ for $v \in (D \setminus S) \cap M$ – the minimizer lies in S!

- it seems that M is a ”natural” constraint - the Lagrange multiplier for M equals to 0.
The new approach

- J is bounded from below on $D \cap M$;
- minimizing sequences $J(u_n) \to \inf_{D \cap M} J$ are bounded!
- one can pass to the weak limit and show that the limit is non-zero;
- D is weakly closed! Hence the limit point still lies in D and is a minimizer of J on $D \cap M$.
- one can show the crucial inequality $\inf_{S \cap M} J < J(v)$ for $v \in (D \setminus S) \cap M$ – the minimizer lies in S!
- it seems that M is a "natural" constraint - the Lagrange multiplier for M equals to 0.
The new approach

- \mathcal{J} is bounded from below on $\mathcal{D} \cap \mathcal{M}$;
- minimizing sequences $\mathcal{J}(u_n) \to \inf_{\mathcal{D} \cap \mathcal{M}} \mathcal{J}$ are bounded!
- one can pass to the weak limit and show that the limit is non-zero;
- \mathcal{D} is weakly closed! Hence the limit point still lies in \mathcal{D} and is a minimizer of \mathcal{J} on $\mathcal{D} \cap \mathcal{M}$.
- one can show the crucial inequality $\inf_{\mathcal{S} \cap \mathcal{M}} \mathcal{J} < \mathcal{J}(v)$ for $v \in (\mathcal{D} \setminus \mathcal{S}) \cap \mathcal{M}$ – the minimizer lies in \mathcal{S}!
- it seems that \mathcal{M} is a "natural" constraint - the Lagrange multiplier for \mathcal{M} equals to 0.
The new approach

- \mathcal{J} is bounded from below on $\mathcal{D} \cap \mathcal{M}$;
- minimizing sequences $\mathcal{J}(u_n) \to \inf_{\mathcal{D} \cap \mathcal{M}} \mathcal{J}$ are bounded!;
- one can pass to the weak limit and show that the limit is non-zero;
- \mathcal{D} is weakly closed! Hence the limit point still lies in \mathcal{D} and is a minimizer of \mathcal{J} on $\mathcal{D} \cap \mathcal{M}$.
- one can show the crucial inequality $\inf_{\mathcal{S} \cap \mathcal{M}} \mathcal{J} < \mathcal{J}(v)$ for $v \in (\mathcal{D} \setminus \mathcal{S}) \cap \mathcal{M}$ – the minimizer lies in \mathcal{S}!
- it seems that \mathcal{M} is a "natural" constraint - the Lagrange multiplier for \mathcal{M} equals to 0.
The new approach

- J is bounded from below on $D \cap M$;
- minimizing sequences $J(u_n) \to \inf_{D \cap M} J$ are bounded!;
- one can pass to the weak limit and show that the limit is non-zero;
- D is weakly closed! Hence the limit point still lies in D and is a minimizer of J on $D \cap M$.

- one can show the crucial inequality $\inf_{S \cap M} J < J(v)$ for $v \in (D \setminus S) \cap M$ – the minimizer lies in S!

- it seems that M is a "natural" constraint - the Lagrange multiplier for M equals to 0.
Thank you for your attention!