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Generalized decision function (1)

▪ Let 𝑈, 𝐴 ∪ 𝐷 be a data table with distinguished decision attribute(s) in 𝐷.

▪ For 𝐵 ⊆ 𝐴 we define function 𝜕𝐷/𝐵: 𝑈 → 2𝑉𝐷 such that

𝜕𝐷/𝐵 𝑢 = D 𝑢′ : 𝐵 𝑢′ = 𝐵 𝑢

whereby 𝑉𝐷 denotes the set of all (vectors of) values of 𝐷 which occur in 𝑈

and 𝐵 𝑢 denotes the vector of values, which 𝑢 ∈ 𝑈 takes on 𝐵.

▪ We say that 𝐵 ⊆ 𝐴 is a 𝜕-superreduct, if and only if

∀𝑢∈𝑈 𝜕𝐷/𝐴 𝑢 = 𝜕𝐷/𝐵 𝑢



Generalized decision function (2)

▪ We do not need to assume a fixed set of decisions 𝐷. For 𝑋, 𝑌 ⊆ 𝐴 we can

consider function 𝜕𝑋/𝑌: 𝑈 → 2𝑉𝑋 . For 𝑋, 𝑌, 𝑍 ⊆ 𝐴 we can consider condition

∀𝑢∈𝑈 𝜕𝑋/𝑌 𝑢 = 𝜕𝑋/𝑌∪𝑍 𝑢 (*)

▪ We can equivalently consider 𝜕𝑋/𝑌: 𝑉𝑌 → 2𝑉𝑋 such that

𝜕𝑋/𝑌 𝑦 = 𝑥 ∈ 𝑉𝑋: 𝑥 ∧ 𝑦

whereby 𝑥 ∧ 𝑦 means that 𝑥 and 𝑦 occur together in 𝑈

▪ We can then equivalently rewrite (*) as follows:

∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑦 ∧ 𝑧 ⇒ 𝜕𝑋/𝑌 𝑦 = 𝜕𝑋/𝑌∪𝑍 𝑦𝑧



Multivalued dependency (MVD)

▪ For 𝑈, 𝐴 ∪ 𝐷 and 𝐵 ⊆ 𝐴, the MVD 𝐵 ↠ 𝐷 holds, if and only if:

If two tuples of 𝑈,𝐴 ∪ 𝐷 agree on all attributes of 𝐵, then

their components in 𝐷 may be swapped, and the result will

be two tuples that are also in 𝑈, 𝐴 ∪ 𝐷 .

▪ Proposition 𝐵 ⊆ 𝐴 is a 𝜕-superreduct, if and only if 𝐵 ↠ 𝐷 holds.

▪ For 𝑈, 𝐴 and 𝑋, 𝑌, 𝑍 ⊆ 𝐴, 𝑋 ∪ 𝑌 ∪ 𝑍 ≠ 𝐴, we can have the embedded

multivalued dependency 𝑌 ↠𝑍 𝑋 which is equivalent to 𝜕𝑋/𝑌 = 𝜕𝑋/𝑌∪𝑍



Discernibility property of 𝜕

▪ Proposition 𝐵 ⊆ 𝐴 is a 𝜕-superreduct in 𝑈, 𝐴 ∪ 𝐷 , if and only if

∀𝑢,𝑢′∈𝑈 𝜕𝐷/𝐴 𝑢 ≠ 𝜕𝐷/𝐴 𝑢′ ⇒ 𝐵 𝑢 ≠ 𝐵 𝑢′

▪ In the nomenclature of relational databases this means that 𝐵 ↠ 𝐷, if

and only if 𝐵 → 𝜕𝐷/𝐴 whereby → denotes the functional dependency.

▪ Interestingly, I couldn’t find such a fact in the literature on databases.

▪ By the way, is the name „discernibility property” the best choice here?



Relational semi-graphoids

▪ Let us define conditional independence of 𝑋 from 𝑍 subject to 𝑌 as follows:

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑃 𝑥, 𝑦 > 0 ∧ 𝑃 𝑦, 𝑧 > 0 ⇒ 𝑃 𝑥, 𝑦, 𝑧 > 0

which means that

the range of values permitted for 𝑋 is not restricted by the choice of 𝑍,

once 𝑌 is fixed.

▪ Proposition The above statement holds, if and only if there is 𝜕𝑋/𝑌 = 𝜕𝑋/𝑌𝑍
Therefore, let’s denote it as 𝐼𝜕 𝑋|𝑌|𝑍 .

▪ By the way, if 𝑋 ∪ 𝑌 ∪ 𝑍 = 𝐴, then we talk about saturated independences.



Symmetry of generalized decisions

▪ Proposition The following statements are equivalent to each other:

∀𝑢∈𝑈 𝜕𝑋/𝑌 𝑢 = 𝜕𝑋/𝑌𝑍 𝑢 ∀𝑢∈𝑈 𝜕𝑍/𝑌 𝑢 = 𝜕𝑍/𝑋𝑌 𝑢

∀𝑢∈𝑈 𝜕𝑋𝑍/𝑌 𝑢 = 𝜕𝑋/𝑌 𝑢 × 𝜕𝑍/𝑌 𝑢

▪ The following forms are useful to think about the above statements:

∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑦 ∧ 𝑧 ⇒ 𝜕𝑋/𝑌 𝑦 = 𝜕𝑋/𝑌𝑍 𝑦, 𝑧

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑦 ∧ 𝑧 ⇒ 𝑥 ∧ 𝑦 ⇒ 𝑥 ∧ 𝑦 ∧ 𝑧

▪ Given the symmetry, one may write 𝐼𝜕 𝑋; 𝑍|𝑌 instead of 𝐼𝜕 𝑋|𝑌|𝑍 .



Generalized decision ensembles

▪ We want to use collections of the smallest subsets 𝐵1…𝐵𝑚 ⊆ 𝐴 such that

∀𝑢∈𝑈 𝜕𝐷/𝐴 𝑢 = 𝑖=1ځ
𝑚 𝜕𝐷/𝐵𝑖 𝑢

▪ Consider

𝐵1 = 𝑎1, 𝑎2, 𝑎3
𝐵2 = 𝑎3, 𝑎4, 𝑎5

𝑎1 = 𝑁𝑜 ∧ 𝑎2 = 𝑌𝑒𝑠 ∧ 𝑎3 = 𝑁𝑜 ⇒ 𝐷 = 𝑏𝑙𝑢𝑒 ∨ 𝐷 = 𝑟𝑒𝑑

𝑎3 = 𝑁𝑜 ∧ 𝑎4 = 𝑁𝑜 ∧ 𝑎5 = 𝑁𝑜 ⇒ 𝐷 = 𝑏𝑙𝑢𝑒 ∨ 𝐷 = 𝑔𝑟𝑒𝑒𝑛
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Generalized decision decomposition (1)

▪ Consider 𝐵, 𝐶 ⊆ 𝐴, 𝐵 ∪ 𝐶 = 𝐴, such that 𝜕𝐷/𝐴 = 𝜕𝐷/𝐵 ∩ 𝜕𝐷/𝐶
Could such condition have something in common with 𝐼𝜕 𝐵; 𝐶|𝐷 ? 

▪ Proposition If 𝐼𝜕 𝑋; 𝑌|𝑍 then ∀𝑢∈𝑈 𝜕𝑍/𝑋𝑌 𝑢 = 𝜕𝑍/𝑋 𝑢 ∩ 𝜕𝑍/𝑌 𝑢

But not conversely.

▪ Proof Recall that 𝐼𝜕 𝑋; 𝑌|𝑍 can be rewritten as

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑥 ∧ 𝑧 ∧ 𝑦 ∧ 𝑧 ⇒ 𝑥 ∧ 𝑦 ∧ 𝑧 (*)

On the other hand, our decomposition condition is equivalent to

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 𝑥 ∧ 𝑦 ∧ 𝑥 ∧ 𝑧 ∧ 𝑦 ∧ 𝑧 ⇒ 𝑥 ∧ 𝑦 ∧ 𝑧 (**)



Generalized decision decomposition (2)

▪ Proposition The following statements are equivalent to each other:

∀𝑢∈𝑈 𝜕𝑍/𝑋𝑌 𝑢 = 𝜕𝑍/𝑋 𝑢 ∩ 𝜕𝑍/𝑌 𝑢

∀𝑢∈𝑈 𝜕𝑌/𝑋𝑍 𝑢 = 𝜕𝑌/𝑋 𝑢 ∩ 𝜕𝑌/𝑍 𝑢

∀𝑢∈𝑈 𝜕𝑋/𝑌𝑍 𝑢 = 𝜕𝑋/𝑌 𝑢 ∩ 𝜕𝑋/𝑍 𝑢

Given this kind of „3-symmetry”, we denote the above as 𝐼𝜕 𝑋; 𝑌; 𝑍 .

▪ 𝐼𝜕 𝑋; 𝑌; 𝑍 ⇏ 𝐼𝜕 𝑋; 𝑌|𝑍

⇏ 𝐼𝜕 𝑋; 𝑍|𝑌

⇏ 𝐼𝜕 𝑌; 𝑍|𝑋
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Stronger decomposition/synthesis

▪ Consider the following constraint:

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌 ቐ
𝑥 ∧ 𝑦 ⇒ 𝜕𝑍/𝑋𝑌 𝑥𝑦 = 𝜕𝑍/𝑋 𝑥 ∩ 𝜕𝑍/𝑌 𝑦

¬ 𝑥 ∧ 𝑦 ⇒ 𝜕𝑍/𝑋 𝑥 ∩ 𝜕𝑍/𝑌 𝑦 = ∅

▪ Proposition The above is equivalent to 𝐼𝜕 𝑋; 𝑌|𝑍 .

▪ Proof Let us rewrite the second above component as

∀𝑥∈𝑉𝑋∀𝑦∈𝑉𝑌∀𝑧∈𝑉𝑍 ¬ 𝑥 ∧ 𝑦 ⇒ ¬ 𝑥 ∧ 𝑧 ∨ ¬ 𝑦 ∧ 𝑧

Together with (*), this becomes to be equivalent to (**).
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