

## (())D SECURITY

Using generalized decision ensembles to solve multi-class decision problems

Dominik Ślęzak

January 2021

## Generalized decision function (1)

- Let $(U, A \cup D)$ be a data table with distinguished decision attribute(s) in $D$.
- For $B \subseteq A$ we define function $\partial_{D / B}: U \rightarrow 2^{V_{D}}$ such that

$$
\partial_{D / B}(u)=\left\{\mathrm{D}\left(u^{\prime}\right): B\left(u^{\prime}\right)=B(u)\right\}
$$

whereby $V_{D}$ denotes the set of all (vectors of) values of $D$ which occur in $U$ and $B(u)$ denotes the vector of values, which $u \in U$ takes on $B$.

- We say that $B \subseteq A$ is a $\partial$-superreduct, if and only if

$$
\forall_{u \in U}\left(\partial_{D / A}(u)=\partial_{D / B}(u)\right)
$$

$\qquad$

## Generalized decision function (2)

- We do not need to assume a fixed set of decisions $D$. For $X, Y \subseteq A$ we can consider function $\partial_{X / Y}: U \rightarrow 2^{V_{X}}$. For $X, Y, Z \subseteq A$ we can consider condition

$$
\begin{equation*}
\forall_{u \in U}\left(\partial_{X / Y}(u)=\partial_{X / Y \cup Z}(u)\right) \tag{}
\end{equation*}
$$

- We can equivalently consider $\partial_{X / Y}: V_{Y} \rightarrow 2^{V_{X}}$ such that

$$
\partial_{X / Y}(y)=\left\{x \in V_{X}: x \wedge y\right\}
$$

whereby $x \wedge y$ means that $x$ and $y$ occur together in $U$

- We can then equivalently rewrite (*) as follows:

$$
\forall_{y \in V_{Y}} \forall_{z \in V_{Z}}\left(y \wedge z \Rightarrow \partial_{X / Y}(y)=\partial_{X / Y \cup Z}(y z)\right)
$$

$\qquad$

## Multivalued dependency (MVD)

- For $(U, A \cup D)$ and $B \subseteq A$, the MVD $B \rightarrow D$ holds, if and only if: If two tuples of $(U, A \cup D)$ agree on all attributes of $B$, then their components in D may be swapped, and the result will be two tuples that are also in $(U, A \cup D)$.
- Proposition $B \subseteq A$ is a $\partial$-superreduct, if and only if $B \rightarrow D$ holds.
- For $(U, A)$ and $X, Y, Z \subseteq A, X \cup Y \cup Z \neq A$, we can have the embedded multivalued dependency $Y \rightarrow{ }_{Z} X$ which is equivalent to $\partial_{X / Y}=\partial_{X / Y U Z}$
$\qquad$


## Discernibility property of $\partial$

- Proposition $B \subseteq A$ is a $\partial$-superreduct in $(U, A \cup D)$, if and only if

$$
\forall_{u, u^{\prime} \in U}\left(\partial_{D / A}(u) \neq \partial_{D / A}\left(u^{\prime}\right) \Rightarrow B(u) \neq B\left(u^{\prime}\right)\right)
$$

- In the nomenclature of relational databases this means that $B \rightarrow D$, if and only if $B \rightarrow \partial_{D / A}$ whereby $\rightarrow$ denotes the functional dependency.
- Interestingly, I couldn't find such a fact in the literature on databases.
" By the way, is the name „discernibility property" the best choice here?
$\qquad$


## Relational semi-graphoids

- Let us define conditional independence of $X$ from $Z$ subject to $Y$ as follows:

$$
\forall_{x \in V_{X}} \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}(P(x, y)>0 \wedge P(y, z)>0 \Rightarrow P(x, y, z)>0)
$$

which means that
the range of values permitted for $X$ is not restricted by the choice of $Z$, once $Y$ is fixed.

- Proposition The above statement holds, if and only if there is $\partial_{X / Y}=\partial_{X / Y Z}$ Therefore, let's denote it as $I_{\partial}(X|Y| Z)$.
" By the way, if $X \cup Y \cup Z=A$, then we talk about saturated independences.
$\qquad$


## Symmetry of generalized decisions

- Proposition The following statements are equivalent to each other:

$$
\begin{gathered}
\forall_{u \in U}\left(\partial_{X / Y}(u)=\partial_{X / Y Z}(u)\right) \quad \forall_{u \in U}\left(\partial_{Z / Y}(u)=\partial_{Z / X Y}(u)\right) \\
\forall_{u \in U}\left(\partial_{X Z / Y}(u)=\partial_{X / Y}(u) \times \partial_{Z / Y}(u)\right)
\end{gathered}
$$

- The following forms are useful to think about the above statements:

$$
\begin{aligned}
& \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}\left(y \wedge z \Rightarrow \partial_{X / Y}(y)=\partial_{X / Y Z}(y, z)\right) \\
& \forall_{x \in V_{X}} \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}(y \wedge z \Rightarrow(x \wedge y \Rightarrow x \wedge y \wedge z))
\end{aligned}
$$

- Given the symmetry, one may write $I_{\partial}(X ; Z \mid Y)$ instead of $I_{\partial}(X|Y| Z)$.


## Generalized decision ensembles

- We want to use collections of the smallest subsets $B_{1} \ldots B_{m} \subseteq A$ such that

$$
\forall_{u \in U}\left(\partial_{D / A}(u)=\bigcap_{i=1}^{m} \partial_{D / B_{i}}(u)\right)
$$

- Consider

$$
\begin{aligned}
& B_{1}=\left\{a_{1}, a_{2}, a_{3}\right\} \\
& B_{2}=\left\{a_{3}, a_{4}, a_{5}\right\}
\end{aligned}
$$

| $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No | No | No | No | No | green |
| No | No | Yes | No | Yes | green |
| No | No | Yes | No | No | red |
| No | Yes | No | Yes | No | red |
| No | Yes | No | No | No | blue |
| Yes | No | Yes | No | Yes | blue |

$$
\begin{aligned}
& \left(a_{1}=N o \wedge a_{2}=Y e s \wedge a_{3}=N o\right) \Rightarrow(D=\text { blue } \vee D=\text { red }) \\
& \left(a_{3}=N o \wedge a_{4}=N o \wedge a_{5}=N o\right) \Rightarrow(D=\text { blue } \vee D=\text { green })
\end{aligned}
$$

## Generalized decision decomposition (1)

- Consider $B, C \subseteq A, B \cup C=A$, such that $\partial_{D / A}=\partial_{D / B} \cap \partial_{D / C}$

Could such condition have something in common with $I_{\partial}(B ; C \mid D)$ ?

- Proposition If $I_{\partial}(X ; Y \mid Z)$ then $\forall_{u \in U}\left(\partial_{Z / X Y}(u)=\partial_{Z / X}(u) \cap \partial_{Z / Y}(u)\right)$ But not conversely.
- Proof Recall that $I_{\partial}(X ; Y \mid Z)$ can be rewritten as

$$
\begin{equation*}
\forall_{x \in V_{X}} \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}((x \wedge z) \wedge(y \wedge z) \Rightarrow(x \wedge y \wedge z)) \tag{*}
\end{equation*}
$$

On the other hand, our decomposition condition is equivalent to

$$
\begin{equation*}
\forall_{x \in V_{X}} \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}((x \wedge y) \wedge(x \wedge z) \wedge(y \wedge z) \Rightarrow(x \wedge y \wedge z)) \tag{**}
\end{equation*}
$$

## Generalized decision decomposition (2)

- Proposition The following statements are equivalent to each other:

$$
\begin{aligned}
& \forall_{u \in U}\left(\partial_{Z / X Y}(u)=\partial_{Z / X}(u) \cap \partial_{Z / Y}(u)\right) \\
& \forall_{u \in U}\left(\partial_{Y / X Z}(u)=\partial_{Y / X}(u) \cap \partial_{Y / Z}(u)\right) \\
& \forall_{u \in U}\left(\partial_{X / Y Z}(u)=\partial_{X / Y}(u) \cap \partial_{X / Z}(u)\right)
\end{aligned}
$$

Given this kind of "3-symmetry", we denote the above as $I_{\partial}(X ; Y ; Z)$.

- $I_{\partial}(X ; Y ; Z) \nRightarrow I_{\partial}(X ; Y \mid Z)$

$$
\begin{aligned}
& \nRightarrow I_{\partial}(X ; Z \mid Y) \\
& \nRightarrow I_{\partial}(Y ; Z \mid X)
\end{aligned}
$$

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{Z}$ |
| ---: | ---: | ---: |
| No | No | No |
| No | No | Yes |
| No | Yes | No |
| Yes | No | No |

D.

## Stronger decomposition/synthesis

- Consider the following constraint:

$$
\forall_{x \in V_{X}} \forall_{y \in V_{Y}}\left\{\begin{array}{c}
(x \wedge y) \Rightarrow\left(\partial_{Z / X Y}(x y)=\partial_{Z / X}(x) \cap \partial_{Z / Y}(y)\right) \\
\neg(x \wedge y) \Rightarrow\left(\partial_{Z / X}(x) \cap \partial_{Z / Y}(y)=\emptyset\right)
\end{array}\right.
$$

- Proposition The above is equivalent to $I_{\partial}(X ; Y \mid Z)$.
- Proof Let us rewrite the second above component as

$$
\forall_{x \in V_{X}} \forall_{y \in V_{Y}} \forall_{z \in V_{Z}}(\neg(x \wedge y) \Rightarrow(\neg(x \wedge z) \vee \neg(y \wedge z)))
$$

Together with $\left({ }^{*}\right)$, this becomes to be equivalent to $\left({ }^{* *}\right)$.
$\qquad$


## S(U)D SECURITY

Thank You!

Dominik Ślęzak<br>January 2021

