

Using generalized decision ensembles to solve multi-class decision problems

Dominik Ślęzak January 2021

Generalized decision function (1)

- Let $(U, A \cup D)$ be a data table with distinguished decision attribute(s) in D.
- For $B \subseteq A$ we define function $\partial_{D/B}: U \to 2^{V_D}$ such that

$$\partial_{D/B}(u) = \left\{ \mathsf{D}(u') : B(u') = B(u) \right\}$$

whereby V_D denotes the set of all (vectors of) values of D which occur in Uand B(u) denotes the vector of values, which $u \in U$ takes on B.

• We say that $B \subseteq A$ is a ∂ -superreduct, if and only if

$$\forall_{u \in U} \left(\partial_{D/A}(u) = \partial_{D/B}(u) \right)$$

Generalized decision function (2)

• We do not need to assume a fixed set of decisions *D*. For $X, Y \subseteq A$ we can consider function $\partial_{X/Y}: U \to 2^{V_X}$. For $X, Y, Z \subseteq A$ we can consider condition

$$\forall_{u \in U} \left(\partial_{X/Y}(u) = \partial_{X/Y \cup Z}(u) \right)$$
(*)

• We can equivalently consider $\partial_{X/Y}: V_Y \to 2^{V_X}$ such that $\partial_{X/Y}(y) = \{x \in V_X: x \land y\}$

whereby $x \wedge y$ means that x and y occur together in U

• We can then equivalently rewrite (*) as follows:

$$\forall_{y \in V_Y} \forall_{z \in V_Z} \left(y \land z \Rightarrow \partial_{X/Y}(y) = \partial_{X/Y \cup Z}(yz) \right)$$

Multivalued dependency (MVD)

- For $(U, A \cup D)$ and $B \subseteq A$, the MVD $B \rightarrow D$ holds, if and only if: If two tuples of $(U, A \cup D)$ agree on all attributes of B, then their components in D may be swapped, and the result will be two tuples that are also in $(U, A \cup D)$.
- **Proposition** $B \subseteq A$ is a ∂ -superreduct, if and only if $B \twoheadrightarrow D$ holds.
- For (U, A) and $X, Y, Z \subseteq A, X \cup Y \cup Z \neq A$, we can have the embedded multivalued dependency $Y \twoheadrightarrow_Z X$ which is equivalent to $\partial_{X/Y} = \partial_{X/Y \cup Z}$

Discernibility property of ∂

• **Proposition** $B \subseteq A$ is a ∂ -superreduct in $(U, A \cup D)$, if and only if

$$\forall_{u,u'\in U} \left(\partial_{D/A}(u) \neq \partial_{D/A}(u') \Rightarrow B(u) \neq B(u') \right)$$

- In the nomenclature of relational databases this means that $B \twoheadrightarrow D$, if and only if $B \to \partial_{D/A}$ whereby \to denotes the functional dependency.
- Interestingly, I couldn't find such a fact in the literature on databases.
- By the way, is the name "discernibility property" the best choice here?

Relational semi-graphoids

• Let us define conditional independence of *X* from *Z* subject to *Y* as follows:

 $\forall_{x \in V_X} \forall_{y \in V_Y} \forall_{z \in V_Z} (P(x, y) > 0 \land P(y, z) > 0 \Rightarrow P(x, y, z) > 0)$

which means that

the range of values permitted for X is not restricted by the choice of Z, once Y is fixed.

- **Proposition** The above statement holds, if and only if there is $\partial_{X/Y} = \partial_{X/YZ}$ Therefore, let's denote it as $I_{\partial}(X|Y|Z)$.
- By the way, if $X \cup Y \cup Z = A$, then we talk about saturated independences.

Symmetry of generalized decisions

• **Proposition** The following statements are equivalent to each other:

$$\forall_{u \in U} \left(\partial_{X/Y}(u) = \partial_{X/YZ}(u) \right) \qquad \forall_{u \in U} \left(\partial_{Z/Y}(u) = \partial_{Z/XY}(u) \right)$$
$$\forall_{u \in U} \left(\partial_{XZ/Y}(u) = \partial_{X/Y}(u) \times \partial_{Z/Y}(u) \right)$$

- The following forms are useful to think about the above statements: $\forall_{y \in V_Y} \forall_{z \in V_Z} \left(y \land z \Rightarrow \partial_{X/Y}(y) = \partial_{X/YZ}(y, z) \right)$ $\forall_{x \in V_Y} \forall_{y \in V_Y} \forall_{z \in V_Z} \left(y \land z \Rightarrow (x \land y \Rightarrow x \land y \land z) \right)$
- Given the symmetry, one may write $I_{\partial}(X; Z|Y)$ instead of $I_{\partial}(X|Y|Z)$.

Generalized decision ensembles

• We want to use collections of the smallest subsets $B_1 \dots B_m \subseteq A$ such that $\forall_{u \in U} (\partial_{D/A}(u) = \bigcap_{i=1}^m \partial_{D/B_i}(u))$

	Consider	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅	D]
	$B_1 = \{a_1, a_2, a_3\}$	No	No	No	No	No	green	(
_	$B_2 = \{a_3, a_4, a_5\}$	No	No	Yes	No	Yes	green	
	$D_2 = \{u_3, u_4, u_5\}$	No	No	Yes	No	No	red	
	•	No	Yes	No	Yes	No	red	
	•	No	Yes	No	No	No	blue	(
		Yes	No	Yes	No	Yes	blue	

 $(a_1 = No \land a_2 = Yes \land a_3 = No) \Rightarrow (D = blue \lor D = red)$ $(a_3 = No \land a_4 = No \land a_5 = No) \Rightarrow (D = blue \lor D = green)$

Generalized decision decomposition (1)

- Consider $B, C \subseteq A, B \cup C = A$, such that $\partial_{D/A} = \partial_{D/B} \cap \partial_{D/C}$ Could such condition have something in common with $I_{\partial}(B; C|D)$?
- **Proposition** If $I_{\partial}(X; Y|Z)$ then $\forall_{u \in U} \left(\partial_{Z/XY}(u) = \partial_{Z/X}(u) \cap \partial_{Z/Y}(u) \right)$ But not conversely.
- **Proof** Recall that $I_{\partial}(X; Y|Z)$ can be rewritten as $\forall_{x \in V_X} \forall_{y \in V_Y} \forall_{z \in V_Z} ((x \land z) \land (y \land z) \Rightarrow (x \land y \land z))$ (*) On the other hand, our decomposition condition is equivalent to $\forall_{x \in V_X} \forall_{y \in V_Y} \forall_{z \in V_Z} ((x \land y) \land (x \land z) \land (y \land z) \Rightarrow (x \land y \land z))$ (**)

Generalized decision decomposition (2)

Proposition The following statements are equivalent to each other:

$$\begin{aligned} &\forall_{u \in U} \left(\partial_{Z/XY}(u) = \partial_{Z/X}(u) \cap \partial_{Z/Y}(u) \right) \\ &\forall_{u \in U} \left(\partial_{Y/XZ}(u) = \partial_{Y/X}(u) \cap \partial_{Y/Z}(u) \right) \\ &\forall_{u \in U} \left(\partial_{X/YZ}(u) = \partial_{X/Y}(u) \cap \partial_{X/Z}(u) \right) \end{aligned}$$

Given this kind of "3-symmetry", we denote the above as $I_{\partial}(X;Y;Z)$.

$I_{\partial}(X;Y;Z) \neq I_{\partial}(X;Y Z)$	X	Y	Z
$\Rightarrow I_{\partial}(X;Z Y)$	No	No	No
$\Rightarrow I_{\partial}(X; Z Y)$ $\Rightarrow I_{\partial}(Y; Z X)$	No	No	Yes
	No	Yes	No
	Yes	No	No

Stronger decomposition/synthesis

• Consider the following constraint:

$$\forall_{x \in V_X} \forall_{y \in V_Y} \begin{cases} (x \land y) \Rightarrow \left(\partial_{Z/XY}(xy) = \partial_{Z/X}(x) \cap \partial_{Z/Y}(y) \right) \\ \neg (x \land y) \Rightarrow \left(\partial_{Z/X}(x) \cap \partial_{Z/Y}(y) = \emptyset \right) \end{cases}$$

- **Proposition** The above is equivalent to $I_{\partial}(X; Y|Z)$.
- **Proof** Let us rewrite the second above component as

$$\forall_{x \in V_X} \forall_{y \in V_Y} \forall_{z \in V_Z} \left(\neg (x \land y) \Rightarrow \left(\neg (x \land z) \lor \neg (y \land z) \right) \right)$$

Together with (*), this becomes to be equivalent to (**).

Thank You!

Dominik Ślęzak January 2021