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Active Learning

Goal: Obtain the best possible model with limited labelling capabilities, assuming 
possibility of experts-model interaction.



Active Learning cycle

Source: A. Janusz, Ł. Grad,  M. Grzegorowski, “Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction”



Active Learning - approaches

Usually based on:

- Informativeness (E. g. Max Entropy, Prediction Margin)
- Representativeness (E. g. Clustering based, Distance based)
- Dissimilarity (E. g. Distance to the current batch)



Theory of Evidence - Basics

A different view on probability, distinguishing: 

- subjective beliefs
from

- objective chances

Focuses on sets of random events instead of single events. 



Theory of Evidence - Rules

Let θ be a finite set of possible states. Then if function Bel: 2θ -> [0, 1] satisfies 
conditions:

1. Bel(ø) = 0
2. Bel(θ) = 1
3. For every positive n and every collection of subsets A1, A2, ... , An of θ:

Then Bel is called a belief function over θ.



By Mary and Jon Hirschfeld Workshop 
https://www.flickr.com/photos/2444979
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Theory of Evidence - Example

Let θ = {θ1, θ2} 

θ1 - genuine

θ2 - counterfeit

Bel(θ1) = a

Bel(θ2) = b

Bel({}) = 0

Bel(θ) = 1



Theory of Evidence - Uncertainty Intuition

Lets consider the following random 
events:

A - the dice number will be even

B - the dice number will be odd

C1 - the dice number will be 1

C3 - the dice number will be 3

C5 - the dice number will be 5

Bayesian uncertainty:

- P(A) = ½, P(B) = ½ 

What about:

- P(A) = ½, P(C1) = ⅙, P(C3) = ⅙,
P(C5) = ⅙ 

In Theory of Evidence we can say:

Bel({X}) = 0, for X in {A, C1, C3, C5}

Bel({A, C1, C3, C5}) = 1



Example of application - Neural Networks

Regular neural network classifier:

- softmax as an output

- output interpreted as probability distribution

- uncertainty measured on output, e.g. entropy

- optimized with cross-entropy and gradient based methods



Softmax - inflating the probabilities



Softmax - inflating the probabilities

Source: https://ogunlao.github.io/images/softmax.png



Cross-entropy loss ~ Maximum Likelihood Estimation

MLE as a frequentist method, therefore it isn’t capable to 

describe the distribution variance!



Source: Sensoy et al. “Evidential Deep Learning to Quantify Classification Uncertainty”

MNIST example



Draft of idea - replace softmax with Dirichlet Distribution

Input

Forward 
propagation α1

α2
…
αK

Transformation to 
beliefs & uncertainty

b1
b2
…
bK
u



Modeling DST with Subjective Logic & Dirichlet Distribution

- belief of mass corresponding to k-th singleton class

- uncertainty

- evidence for the i-th singleton class

- number of classes



Dirichlet Distribution

- belief of mass corresponding to k-th singleton class

- uncertainty

- evidence for the i-th singleton class

- number of classes

- parameter of Dirichlet distribution corresponding to k-th class



Loss & Training

- number of classes

- parameter of Dirichlet distribution corresponding to k-th class

where t is an index of learning epoch

- Kullback-Leibler divergence



Results



Results



Results Active Learning CNN



Conclusions and thoughts

- interesting usage of Dirichlet distribution 

- why authors are not using uncertainty for AL?

- can the same be done for other softmaxed methods? e.g. xgboost

- maybe there is a better way to incorporate DS theory to machine learning 

models?
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Thank you for attention


