Theory of Evidence in Active Learning

Daniel Kałuża

Active Learning

Goal: Obtain the best possible model with limited labelling capabilities, assuming possibility of experts-model interaction.

Active Learning cycle

Source: A. Janusz, Ł. Grad, M. Grzegorowski, "Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction"

Active Learning - approaches

Usually based on:

- Informativeness (E. g. Max Entropy, Prediction Margin)
- Representativeness (E. g. Clustering based, Distance based)
- Dissimilarity (E. g. Distance to the current batch)

Theory of Evidence - Basics

A different view on probability, distinguishing:

- subjective beliefs from
- objective chances

Focuses on sets of random events instead of single events.

Theory of Evidence - Rules

Let θ be a finite set of possible states. Then if function Bel: 2^{θ} -> [0, 1] satisfies conditions:

- 1. Bel(\emptyset) = 0
- 2. Bel(θ) = 1
- 3. For every positive n and every collection of subsets A_1, A_2, \dots, A_n of θ :

$$Bel(A_1 \cup A_2 \cup ... \cup A_n) >= \sum_{i=1}^n Bel(A_i) - \sum_{j=i+1}^n Bel(A_i \cap A_j) + ... + (-1)^{n+1} Bel(A_1 \cap A_2 \cap ... \cap A_n)$$

Then Bel is called a belief function over θ .

Theory of Evidence - Example

Let
$$\theta = \{\theta_1, \theta_2\}$$

 θ_1 - genuine

 θ_2 - counterfeit

 $Bel(\theta_1) = a$

 $Bel(\theta_2) = b$

 $Bel({}) = 0$

 $Bel(\theta) = 1$

By Mary and Jon Hirschfeld Workshop https://www.flickr.com/photos/2444979 9@N03/3316554665, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=55189743

Theory of Evidence - Uncertainty Intuition

Lets consider the following random events:

A - the dice number will be even

B - the dice number will be odd

C1 - the dice number will be 1

C3 - the dice number will be 3

C5 - the dice number will be 5

Bayesian uncertainty:

-
$$P(A) = \frac{1}{2}, P(B) = \frac{1}{2}$$

What about:

-
$$P(A) = \frac{1}{2}$$
, $P(C1) = \frac{1}{6}$, $P(C3) = \frac{1}{6}$, $P(C5) = \frac{1}{6}$

In Theory of Evidence we can say:

$$Bel({X}) = 0$$
, for X in {A, C1, C3, C5}

$$Bel({A, C1, C3, C5}) = 1$$

Example of application - Neural Networks

Regular neural network classifier:

- softmax as an output
- output interpreted as probability distribution
- uncertainty measured on output, e.g. entropy
- optimized with cross-entropy and gradient based methods

Softmax - inflating the probabilities

$$\sigma(x)_j = rac{\sum_k e^{x_k}}{\sum_k e^{x_k}}$$

Softmax - inflating the probabilities

Source: https://ogunlao.github.io/images/softmax.png

Cross-entropy loss ~ Maximum Likelihood Estimation

MLE as a frequentist method, therefore it isn't capable to describe the distribution variance!

MNIST example

Source: Sensoy et al. "Evidential Deep Learning to Quantify Classification Uncertainty"

Draft of idea - replace softmax with Dirichlet Distribution

Modeling DST with Subjective Logic & Dirichlet Distribution

$$u + \sum_{k=1}^{K} b_k = 1,$$
 $u = \frac{K}{S},$ $b_k = \frac{e_k}{S}$ $S = \sum_{i=1}^{K} (e_i + 1).$

 b_k - belief of mass corresponding to k-th singleton class

u - uncertainty

 $e_i\,$ - evidence for the i-th singleton class

K - number of classes

Dirichlet Distribution

$$D(\mathbf{p}|\boldsymbol{\alpha}) = \begin{cases} \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{K} p_i^{\alpha_i - 1} & \text{for } \mathbf{p} \in \mathcal{S}_K, \\ 0 & \text{otherwise,} \end{cases} \qquad \alpha_k = e_k + 1 \qquad b_k = \frac{e_k}{S}$$

- b_k belief of mass corresponding to k-th singleton class
- u uncertainty
- $e_i\,$ evidence for the i-th singleton class
- K number of classes
- α_k parameter of Dirichlet distribution corresponding to k-th class

Loss & Training

$$\mathcal{L}_{i}(\Theta) = \sum_{j=1}^{K} (y_{ij} - \mathbb{E}[p_{ij}])^{2} + \operatorname{Var}(p_{ij}) + \lambda_{t} \sum_{i=1}^{N} KL[D(\mathbf{p_{i}}|\tilde{\boldsymbol{\alpha}_{i}}) || D(\mathbf{p_{i}}|\langle 1, \dots, 1 \rangle)],$$

 $\lambda_t = \min(1.0, t/10) \in [0, 1]$ where t is an index of learning epoch

KL - Kullback-Leibler divergence

$$\tilde{\boldsymbol{\alpha}}_i = \mathbf{y}_i + (1 - \mathbf{y}_i) \odot \boldsymbol{\alpha}_i$$

K - number of classes

 $lpha_k$ - parameter of Dirichlet distribution corresponding to k-th class

Results

Figure 1: Classification of the rotated digit 1 (at bottom) at different angles between 0 and 180 degrees. **Left:** The classification probability is calculated using the *softmax* function. **Right:** The classification probability and uncertainty are calculated using the proposed method.

Results

Figure 5: Accuracy and entropy as a function of the adversarial perturbation ϵ on CIFAR5 dataset.

Results Active Learning CNN

Conclusions and thoughts

- interesting usage of Dirichlet distribution
- why authors are not using uncertainty for AL?
- can the same be done for other softmaxed methods? e.g. xgboost
- maybe there is a better way to incorporate DS theory to machine learning models?

Bibliography

- 1. Glenn Shafer, "A Mathematical Theory of Evidence", 1976
- Murat Sensoy, Lance Kaplan, and Melih Kandemir. 2018. Evidential deep learning to quantify classification uncertainty. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18)
- 3. P. Hemmer, N. Kühl and J. Schöffer, "DEAL: Deep Evidential Active Learning for Image Classification," 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)

Thank you for attention