Six dubious ways to estimate
the difficulty of a chess puzzle

Jan Zysko



Motivation: chess training process

1. Play a tournament

2. Find all the mistakes in the games

3. Prepare training materials and
exercises

4. Train on the materials and exercises

5. Repeat

How to perform point 3 without a coach?

Training materials - game diagnostics
2) Exercises: find puzzles with positions
similar to the one analyzed in
character and difficulty
‘\ Mark Dvoretsky, the most
famous chess coach in the

our task herel! world
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Anatomy of a lichess puzzle
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Lichess puzzle dataset

140000 -
120000 -
100000 -

80000 - -
Total: over 1.9 million puzzles
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Benchmarks

Median prediction

Results:
mean: 361
std: 256

Expert knowledge

Aimchess

Results:
mean: 278
std: 227



Method 1: Use activations from an existing model
(transfer learning)
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Method 1: Use activations from an existing model

mean absolute
error

350 A

300 A

250 Best layer errors:
mean: 331
200 std: 243
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activation layer
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Method 1: Use activations from an existing model

Predicted task difficulty per rating group using layer 20 model maia_19!
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Method 2: Use all the activations, averaged by
channel

8x8x112 ->

8x8x1 ‘\ concatenated

into 8x8x21

Results:
mean: 338
std: 246

8x8x112 ->
8x8x1




Method 3: Use policy layer

The policy head
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Results:
mean: 350
std: 249



Method 4: Policy layer entropy

Probability Distribution vs Entropy
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Method 5: Relearning weights for the rating
prediction task

TRADITIONAL MACHINE LEARNING TRANSFER LEARNING
- DATASET 1 MACHINE LEARNING MODEL 1
Results:
mean: 527
DATASET 1 MACHINE LEARNING MODEL 1
std: 396

DATASET 2 MACHINE LEARNING MODEL 2

DATASET 2 MACHINE LEARNING MODEL 2




Method 6: Successful engine runs

Results:
mean: 275
std: 200
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Method 6: Successful engine runs

% of
correct
solutions
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Summary of the results

models

engine ensembling

transfer learning from activations
ensembling activations from different layers
relearning weights for prediction task
transfer learning from policy layer

policy entropy

benchmarks
median benchmark

aimchess

mean error

275
331
338
527
350
352

361
278

error std

200
243
246
396
249
251

256
227

train size

35000
60000
60000
75000
60000
90000

test size

5000
20000
20000

5000
20000
10000

100000
1000

model type

XGBoost
XGBoost
XGBoost
DNN
XGBoost

Linear Regression

mean

ensemble model



Future work

Using more data and bigger models
Ensembling more engines
Analyzing MCTS tree:

- evolution of the predicted best move
- distribution of Q in the tree






