Six dubious ways to estimate
the difficulty of a chess puzzle

Jan Zysko

Motivation: chess training process

1. Play a tournament

2. Find all the mistakes in the games

3. Prepare training materials and
exercises

4. Train on the materials and exercises

5. Repeat

How to perform point 3 without a coach?

Training materials - game diagnostics
2) Exercises: find puzzles with positions
similar to the one analyzed in
character and difficulty
‘\ Mark Dvoretsky, the most
famous chess coach in the

our task herel! world

—_—
o

Anatomy of a lichess puzzle

Exercise rating (based on how

. o e
many people previously solved (- . [o
it correctly) i . b
b LoE
0-0-0 &bd7
Player rating (based on | e i
. Two| ranhmg trenipgow:
her previous performance) - oy
- iz
De2 0-0
The better the player is g« wes
doing, the more difficult o
tasks they are assigned. o - ot
2 Wgs+ Vv ¢hs
| 3 [fxe6 v

o~

\/ Sukces 81
v

1
z > KONTYNUUJ TRENING
Z
h

] 1] M "

Lichess puzzle dataset

140000 -
120000 -
100000 -

80000 - -
Total: over 1.9 million puzzles
60000 A

40000 A

20000 A

o..

(500, 600] (1000, 1100] (1500, 1600] (2000, 2100] (2500, 2600]

Benchmarks

Median prediction

Results:
mean: 361
std: 256

Expert knowledge

Aimchess

Results:
mean: 278
std: 227

Method 1: Use activations from an existing model
(transfer learning)

Value head

Policy head

Resnet

s 20 layers

Resnet

Input
(present and
previous states)

The value head

tanh non-finearity

Fully connected layer

Rectifier non-linearity

Fuly connected layer

Rectifier non-linearity

Batch normdlisation

1 convolutiondl fiter
(Ix1)

game value for current player
-1.n

scalar

Hidden layen size 256

\n

The policy head

19 x19 +1 (for pass)
move logit probabilities

............................

Fully connected layer

’ il ©-m

Recfifier non-linearity /

HE N-En
Batch normalisation
‘[AEETE .

2 convolutional filters]
(IxD . L

T
T

Method 1: Use activations from an existing model

mean absolute
error

350 A

300 A

250 Best layer errors:
mean: 331
200 std: 243

150 A

100 H

50 A

0_

activation layer
number used for
prediction

Method 1: Use activations from an existing model

Predicted task difficulty per rating group using layer 20 model maia_19!

2250
8 _‘_ _._ ¢ ' Observations:
2000 4% _‘_ .‘. T —_ e Predicted ratings rise (on

average) as the

_ ? While predicted ratings rise, the
1500 T variance is big and the rise

NOOTII¥IIT?.:

¢
¢

D R N D D N D D D o N
S LLLLEEELSE LSS
S > S S S
o Q \?’ \f’ \i\ xo’ e ’f) DA %q

SE O8N Y A LS
N W \,O’Q %\’Q ﬂf’g ”f’Q "ﬂ\g
O O O 8 Y @

bin_ratings

Method 2: Use all the activations, averaged by
channel

8x8x112 ->

8x8x1 ‘\ concatenated

into 8x8x21

Results:
mean: 338
std: 246

8x8x112 ->
8x8x1

Method 3: Use policy layer

The policy head

19 x 19 +1 (for pass)
move logit probabilities

Fu“y connected Iayer —

‘ Nl T -Ne
Rectifier non-linearity _/,/
EE TNl
Batch normdlisation
X NERE-E.
2 convolutional filters - ‘

(1x1)

I \n
[nput |
N

Results:
mean: 350
std: 249

Method 4: Policy layer entropy

Probability Distribution vs Entropy

1.0 A
Results:
0.8 mean: 352
std: 251
2 0.6
4,
>
(o N
e
€ 0.4 1
& Pearson
correlation
0.2 1 -0.08
0.0 |

[0.0,1.0] [0.1,0.9] [0.2,0.8] [0.3,0.7] [0.4,0.6] [0.5,0.5]
Probability Distribution

Method 5: Relearning weights for the rating
prediction task

TRADITIONAL MACHINE LEARNING TRANSFER LEARNING
- DATASET 1 MACHINE LEARNING MODEL 1
Results:
mean: 527
DATASET 1 MACHINE LEARNING MODEL 1
std: 396

DATASET 2 MACHINE LEARNING MODEL 2

DATASET 2 MACHINE LEARNING MODEL 2

Method 6: Successful engine runs

Results:
mean: 275
std: 200

Accuracy

0.55

0.50

o
B
o

\
\

|
1
1
I
I
1
1
I
1
1

0.20
1000 1200 1400 1600 1800 2000 2200 2400
Rating

Maia
1100
1300
1500
1700
1900
Stockfish
Depth 1
Depth 5
Depth 9
Depth 11
Depth 15
Leela Ord.
1000
1600
2200
2700
3200

Method 6: Successful engine runs

% of
correct
solutions

0.8

0.6 A

0.4

0.2

(500, 600] (1000, 1100] (1500, 1600] (2000, 2100] (2500, 2600]
rating_intervals

Summary of the results

models

engine ensembling

transfer learning from activations
ensembling activations from different layers
relearning weights for prediction task
transfer learning from policy layer

policy entropy

benchmarks
median benchmark

aimchess

mean error

275
331
338
527
350
352

361
278

error std

200
243
246
396
249
251

256
227

train size

35000
60000
60000
75000
60000
90000

test size

5000
20000
20000

5000
20000
10000

100000
1000

model type

XGBoost
XGBoost
XGBoost
DNN
XGBoost

Linear Regression

mean

ensemble model

Future work

Using more data and bigger models
Ensembling more engines
Analyzing MCTS tree:

- evolution of the predicted best move
- distribution of Q in the tree

