
Six dubious ways to estimate 
the difficulty of a chess puzzle 

Jan Zyśko



1. Play a tournament
2. Find all the mistakes in the games
3. Prepare training materials and 

exercises
4. Train on the materials and exercises
5. Repeat

Motivation: chess training process 

Mark Dvoretsky, the most 
famous chess coach in the 
world

How to perform point 3 without a coach?

1) Training materials - game diagnostics
2) Exercises: find puzzles with positions 

similar to the one analyzed in 
character and difficulty

our task here!



Anatomy of a lichess puzzle

The better the player is 
doing, the more difficult 
tasks they are assigned.

Exercise rating (based on how 
many people previously solved 
it correctly)

Player rating (based on 
her previous performance)



Lichess puzzle dataset

Total: over 1.9 million puzzles



Benchmarks

Results:
mean: 361
std: 256

Results:
mean: 278
std: 227

Median prediction Expert knowledge



Method 1: Use activations from an existing model
(transfer learning) 

Resnet

Resnet

20 layers

Input
(present and 

previous states)

Value head Policy head



Method 1: Use activations from an existing model 

activation layer 
number used for 
prediction

mean absolute 
error

Best layer errors:
mean: 331
std: 243



Method 1: Use activations from an existing model 

Observations: 
● Predicted ratings rise (on 

average) as the 
While predicted ratings rise, the 
variance is big and the rise 



Method 2: Use all the activations, averaged by 
channel

8x8x112 -> 
8x8x1

8x8x112 -> 
8x8x1

Results:
mean: 338
std: 246

concatenated 
into 8x8x21



Method 3: Use policy layer

Results:
mean: 350
std: 249



Method 4: Policy layer entropy

Results:
mean: 352
std: 251

Pearson 
correlation 
-0.08



Method 5: Relearning weights for the rating 
prediction task

Results:
mean: 527
std: 396



Method 6: Successful engine runs 

Results:
mean: 275
std: 200



Method 6: Successful engine runs 
% of 
correct 
solutions



Summary of the results

mean error error std train size test size model type

models
engine ensembling 275 200 35000 5000 XGBoost
transfer learning from activations 331 243 60000 20000 XGBoost
ensembling activations from different layers 338 246 60000 20000 XGBoost
relearning weights for prediction task 527 396 75000 5000 DNN
transfer learning from policy layer 350 249 60000 20000 XGBoost
policy entropy 352 251 90000 10000 Linear Regression

benchmarks
median benchmark 361 256 0 100000 mean
aimchess 278 227 0 1000 ensemble model



Future work

● Using more data and bigger models
● Ensembling more engines
● Analyzing MCTS tree:
- evolution of the predicted best move
- distribution of Q in the tree




