Six dubious ways to estimate the difficulty of a chess puzzle

Motivation: chess training process

- 1. Play a tournament
- 2. Find all the mistakes in the games
- Prepare training materials and exercises
- 4. Train on the materials and exercises
- 5. Repeat

How to perform point 3 without a coach?

- 1) Training materials game diagnostics
- Exercises: find puzzles with positions similar to the one analyzed in character and difficulty

Mark Dvoretsky, the most famous chess coach in the world

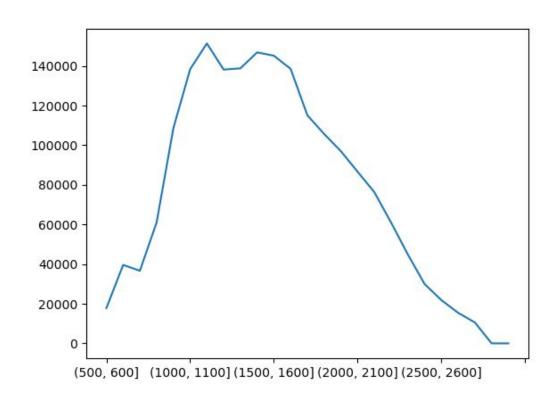
Anatomy of a lichess puzzle

Exercise rating (based on how many people previously solved it correctly)

<u>Player rating</u> (based on her previous performance)

The better the player is doing, the more difficult tasks they are assigned.

Lichess puzzle dataset



Total: over 1.9 million puzzles

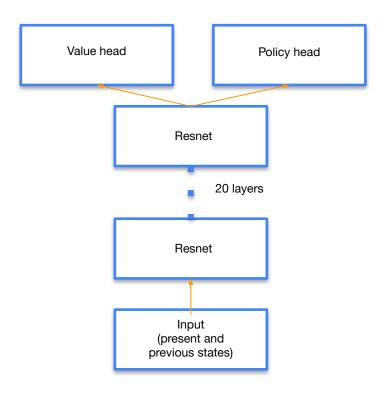
Benchmarks

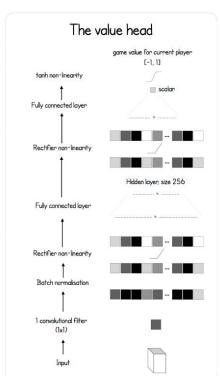
Median prediction

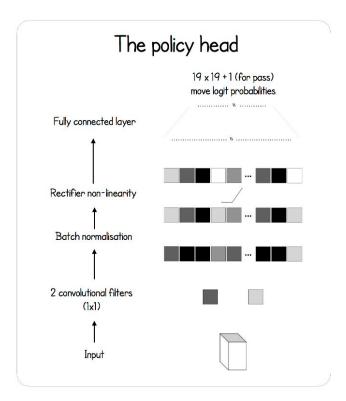
Expert knowledge

Results: mean: 361 std: 256 Results: mean: 278 std: 227

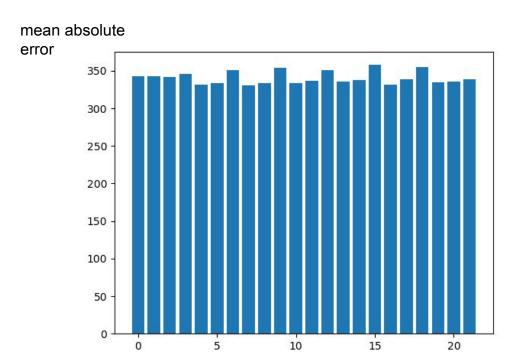
Method 1: Use activations from an existing model (transfer learning)







Method 1: Use activations from an existing model

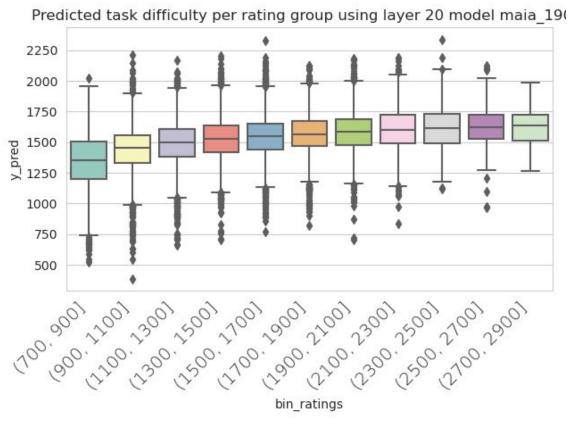


Best layer errors:

mean: 331 std: 243

activation layer number used for prediction

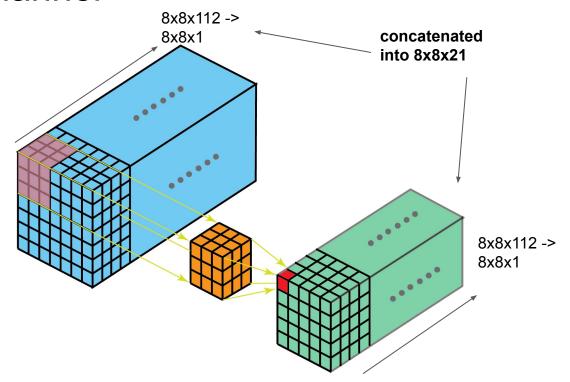
Method 1: Use activations from an existing model



Observations:

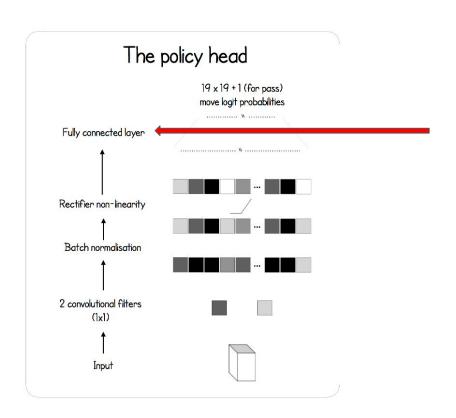
 Predicted ratings rise (on average) as the While predicted ratings rise, the variance is big and the rise

Method 2: Use all the activations, averaged by channel



Results: mean: 338 std: 246

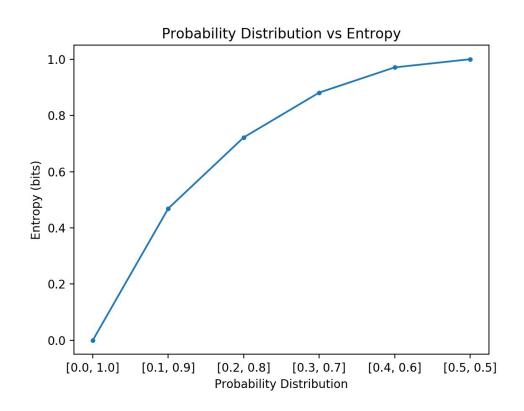
Method 3: Use policy layer



Results: mean: 350

std: 249

Method 4: Policy layer entropy

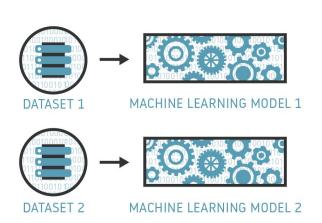


Results: mean: 352 std: 251

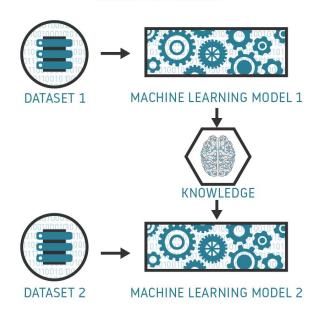
Pearson correlation -0.08

Method 5: Relearning weights for the rating prediction task

TRADITIONAL MACHINE LEARNING



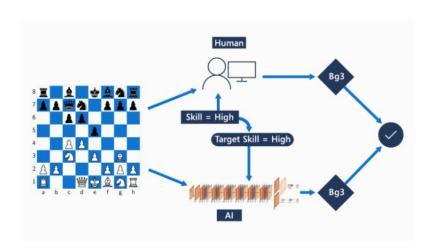
TRANSFER LEARNING



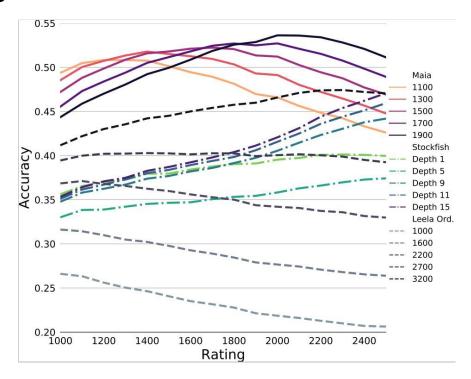
Results: mean: 527

std: 396

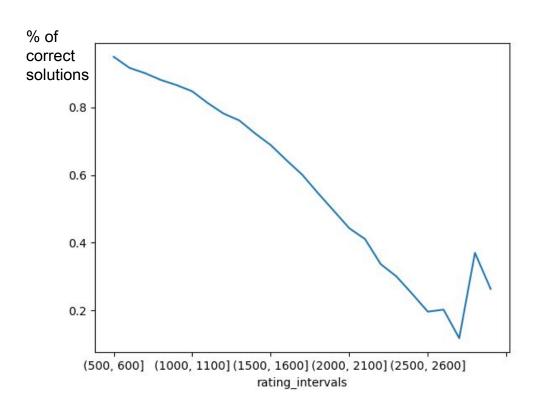
Method 6: Successful engine runs



Results: mean: 275 std: 200



Method 6: Successful engine runs



Summary of the results

	mean error	error std	train size	test size	model type
models					
engine ensembling	275	200	35000	5000	XGBoost
transfer learning from activations	331	243	60000	20000	XGBoost
ensembling activations from different layers	338	246	60000	20000	XGBoost
relearning weights for prediction task	527	396	75000	5000	DNN
transfer learning from policy layer	350	249	60000	20000	XGBoost
policy entropy	352	251	90000	10000	Linear Regression
<u>benchmarks</u>					
median benchmark	361	256	0	100000	mean
aimchess	278	227	0	1000	ensemble model

Future work

- Using more data and bigger models
- Ensembling more engines
- Analyzing MCTS tree:
- evolution of the predicted best move
- distribution of Q in the tree