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Calculus of variations

The main goal of calculus of variations is to find critical points of functions
defined over infinite-dimensional objects and study their properties.

In this lecture, we only consider minimisation problems, i.e., given a set X
and a function / : X - R U {400}, we look for solutions of

min {I(u) L u€ X}.

This type of problems appears frequently in relation to partial differential
equations, via a formalism called the Euler-Lagrange equations.
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Example: brachistochrone problem

Proposed by Johann Bernoulli in 1696, solved independently by himself
and Newton in 1697.

Brachistochrone problem

Find the curve along which a point

mass will move from point A to B A
in the shortest time.

What is the functional to minimise?

1
mgy = Emv2 = v =+/2gy
Figure: Shape of the path of quickest

Since dt = ds/v, descent (brachistochrone).
xs /1 2
T
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Euler-Lagrange equations

For an integral functional of the form
X2
= [ Lxy.y') o
X1

where L is called the Lagrangian, any function y(x) that minimises
or maximises /[y] satisfies the following differential equation:

oL d (oY g
dy dx \oy' )

For the brachistochrone problem, setting

N V1+()?

Ly, y') = —F="

N
<

one obtains the equation of (a part of) the (inverted) cycloid.
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Euler-Lagrange equations

This concept can be applied to more general functionals: for a function
u:Q C RN — R and the Lagrangian
L= L(x,u, Uy, ..., Uxy)

the Euler-Lagrange equation for | = fQ L becomes

oL Lo /oL
R C R

If the functional / is strictly convex, this becomes a 1-to-1 correspondence
between the minimiser and the solution of the Euler-Lagrange equation.

This now becomes a partial differential equation (PDE).
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Example: Laplace equation

Minimising the Dirichlet energy
N 2
1 1 Oou
/u:—/ Vu2dx:—/ <—> dx
=3 Jy Vel =3 (2 (5
corresponds to the Euler-Lagrange equation

N
&%u

2
X 4
i=1 0 J

=0

or equivalently
—Au = —div(Vu) =0,

called the Laplace equation. It is very common in physics, e.g. in
electromagnetism or heat transfer.
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Weak solutions: Laplace equation

Consider the Laplace equations with Dirichlet boundary conditions

—div(Vu) =0 inQ
u=~h onoQ

for sufficiently regular h. Solutions of the PDE are known to be smooth
inside £2; can we directly prove existence of smooth solutions?
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Weak solutions: Laplace equation

Consider the Laplace equations with Dirichlet boundary conditions

—div(Vu) =0 inQ
u=~h onoQ

for sufficiently regular h. Solutions of the PDE are known to be smooth
inside £2; can we directly prove existence of smooth solutions?

Using the Euler-Lagrange equation, we may equivalently find a solution
to the minimisation problem

min {/ IVul?dx : uloq = h}.
Q
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Direct method of calculus of variations

Let X be a complete metric space. Given a functional / : X — R U {400},
our goal is to find a solution of the minimisation problem

min{/(u) : v € X}.
Assuming that the following two assumptions hold:

(Coe) Coercivity: for all t € R, every sequence (up) C X with I(u,) <'t
has a convergent subsequence in X.

(Lsc) Lower semicontinuity: for every sequence (u,) C X with u, — u
in X, it holds that
I(u) < liminf I(up).
n—oo

there exists at least one solution to the minimisation problem.
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Weak solutions: Laplace equation

Applying the direct method of calculus of variations in C*°(Q) N C(9),
we do not obtain a minimiser:

Step 1. Find a minimising sequence u, € C*°(Q) N C(Q) with u=h
on 9Q, i.e., [o|Vul?dx — inf.

Step 2. Thus, the minimising sequence ux € C*®(Q) N C(Q) has
uniformly bounded energy, i.e., [, |Vul?dx < M.

Step 3 - failure. This is not enough to conclude that there exists a limit
function u € C>() N C(Q); even in 1D the limit may fail to be C*(Q).

To obtain existence of solutions, we need a larger function space.
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Failure of Step 3

Figure: Smooth approximations of the modulus.
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Weak solutions

We separately consider existence and regularity of solutions.

Step 1. Use the variational formulation to prove existence of a solution
in a large enough class;

Step 2. Use a different set of techniques to conclude that this solution
lies in a smaller class with better properties.
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Sobolev spaces
The correct choice is the Sobolev space WP(Q) with p =2, i.e.,
ue WHP(Q) < u e LP(Q) and its weak derivative Vu € LP(Q; RNY),

where Vu is the unique function defined via integration by parts, so that

/UVgOdX:—/(,OVUdX for all ¢ € C2°(Q).
Q Q

We set [[ullwip() = (lullp + [V ull5)!/.
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Sobolev spaces
The correct choice is the Sobolev space WP(Q) with p =2, i.e.,
ue WHP(Q) < u e LP(Q) and its weak derivative Vu € LP(Q; RNY),

where Vu is the unique function defined via integration by parts, so that

/ uVpdx = —/ eVudx forall p € C°(Q).
Q Q
We set [[ullwip() = (lullp + [V ull5)!/.

Crucially for this argument, Sobolev spaces have three key properties:
(a) The embedding id : W1P(Q) — LP(Q) is compact;
(b) For p € (1,00), the Sobolev spaces are reflexive;

(c) The trace (boundary values) of every Sobolev function is well-defined.
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Weak solutions: Laplace equation

We apply the direct method again.

Step 1. Find a minimising sequence ux € W12(Q) with u = h on 99,
e, [o|Vul?dx — inf.

Step 2. Thus, the minimising sequence ux € W12(Q) has uniformly
bounded energy, i.e., fQ |Vu|2 dx < M.

Step 3 - success! There exists a limit function u € W12(Q). Indeed,
by the Poincaré inequality estimating the norm ||ul|> by ||[Vu]|2, reflexivity
and the compact embedding, there exists u € W1?(Q) such that

up, — u in L2(Q) and Vu, = Vu in L2(Q;RV).

(We call this weak convergence in W12(Q).)
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Weak solutions: Laplace equation

Step 4. v is a minimiser: by the lower semicontinuity of the Dirichlet
energy with respect to weak convergence in W12(Q),

inf < / IVul? dx < Iiminf/ |Vun|? dx — inf.
Q n—o0 Q

Step 5. v satisfies the boundary condition; one can show that the
subspace

W,2(Q) = {U e WH(Q): ulon = h}

is weakly closed, so if u, € Whl’Q(Q), we also have u € W,}’z(Q). We thus
have a solution to the minimisation problem u € W12(Q).

One separately shows that it is smooth inside €2: one possible approach
is to prove that it lies in Cl(Q) use linearity of the equation, and notice
that every partial derivative 2 e Y also solves the Laplace equation.
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Nonlinear PDEs

A generalisation of the above is the p-Laplace equation

—div(|Vu[P2Vu) =0 inQ
u=h on 02

for p € (1,00). Using the Euler-Lagrange equation, we may equivalently
find a solution to the minimisation problem

min {/ |VulPdx: ulsgq = h}.
Q

A similar scheme produces solutions in W1P(Q) for any admissible h.
Solutions to this PDE are of class Clt’ca(Q), but in general not better;
since the equation is not linear, % does not satisfy the same equation.
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Linear growth functionals

In the formal limit p — 1, we get the 1-Laplace equation

—div<|§Z|) —0 inQ

u=~h on 9Q.

Formally, it is the Euler-Lagrange equation of the least gradient problem

min {/ |Vuldx: ue WH(Q), uloq = h}.
Q

Is this problem well-posed?
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Weak solutions: 1-Laplace equation

Let us once more try the direct method.

Step 1. Find a minimising sequence ux € W1(Q) with u = h on 09,
ie., [o|Vu|dx — inf.

Step 2. Thus, the minimising sequence ux € W11(Q) has uniformly
bounded energy, i.e., [o[Vuldx < M.

Step 3 - failure. There might be no limit function in W11(Q).
Since W11(Q) is not reflexive, the limiting sequence converges in L1(Q),

but the gradients do not necessarily converge weakly in L1(£; RV).

We again need a larger function space.

Wojciech Gérny (U. Warsaw) Linear-growth PDEs 04.12.2025 17 / 32



Failure of Step 3

J

Figure: Smooth approximations of a step function.
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BV spaces

The correct choice is the space of functions of bounded variation BV (),
i.e.,

ue BV(Q) < ue L1(Q) and its distributional derivative Du € M(Q;RN),
where Du is the unique measure defined via integration by parts, so that
/ uVpdx = —/ wdDu for all p € CZ°(Q).
Q Q

We set [|ullgv(a) = [lullx + [|Dula1-
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BV spaces

The correct choice is the space of functions of bounded variation BV (Q),
i.e.,

ue BV(Q) < ue L1(Q) and its distributional derivative Du € M(Q;RN),

where Du is the unique measure defined via integration by parts, so that

/ uVedx = —/ wdDu for all p € CZ°(Q).
Q Q
We set [[ullgy(e) = [|ull1 + || Dul|m-

Similarly to the Sobolev case, it holds that
(a) The embedding id : BV(Q2) — L}(R) is compact;

(b) The trace (boundary values) of every BV function is well-defined.
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Weak solutions: 1-Laplace equation

. and again the direct method.

Step 1. Find a minimising sequence ux € W1(Q) with u = h on 99,
ie., [o|Vu|dx — inf.

Step 2. Thus, the minimising sequence u, € W11(Q) has uniformly
bounded energy, i.e., [ [Vuldx < M.

Step 3 - success! There exists a limit function in BV(Q2). Indeed,
by the Poincaré inequality estimating the norm ||u,|/1 by ||V ual1, the
compact embedding and lower semicontinuity of the total variation,
there exists u € BV(Q) such that

u, — u in 11(Q) and Vu, — Du weakly* in M(Q;RN).
(We call this weak* convergence in BV(Q2).)
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Weak solutions: 1-Laplace equation

Step 4. v is a minimiser: by the lower semicontinuity of the total
variation with respect to convergence in [1(9),

inf S/ |Du| < Iiminf/ |Dup| — inf .
Q Q

n—oo

Step 5 - failure. u does not necessarily satisfy the boundary condition;
the subspace

BVh(Q) = {u S BV(Q) : U’(‘)Q = h}
is not weakly* closed, so if u, € BV},(2), we may have that u|pq # h.

It turns out that for linear-growth PDEs attainment of boundary values
depends on the geometry of the domain and the boundary data.
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Failure of Step 5

Figure: We take characteristing functions of an increasing family of intervals
X[-a,a](X) with a — 17. The boundary values of the limit function is not equal
to the limit of boundary values of the approximating sequence.
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The least gradient problem

Thus, the correct formulation of the least gradient problem is

min {/ |Dul:  ue BV(Q), ulgg= h}
Q

which can be equivalently described as the 1-Laplace equation

Du) i
—div =0 in
(ID |

u=~h on 0f.

Note that the object 2 |D | has to be carefully defined and proving this
equivalence is non-trivial.

[§ R.V. Kohn, G. Strang, Comm. Pure Appl. Math. 39 (1986).

[@ J.M. Mazén, J. Rossi, S. Segura de Leén, Indiana Univ. Math. J.
(2014).
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General linear growth functionals

More generally, consider minimisation of a linear growth integral functional

min{/ﬂg(x, Du): ueBV(Q), uls = h},

where
alé| —c < |g(x, &)| < as(1+ [€]).

Formally, the Euler-Lagrange equation for such a problem is

—div(Veg(x, Du)) = 0.

ﬁ F. Andreu, V. Caselles, J.M. Mazén, Birkhauser (2004).
[§ L. Beck, T. Schmidt, J. Funct. Anal. (2015).

8 W. Gérny, J.M. Mazén, J. Funct. Anal. (2022).

[@ W. Gérny, J.M. Mazén, Publ. Mat. (2025).
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Geometric viewpoint

Let us formally look at the equation
Du
—div| —/=— | =0.
'V<|Dur)

(a) If uis a solution, then X, is also a solution;

One can show that:

(b) For u = xg with OE smooth enough, the left-hand side is the (minus)
mean curvature of JE;

(c) Locally, after choosing the right coordinates the level sets even

minimise the area functional [ /14 |Du|? and thus the level sets
are quite regular.
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Geometric viewpoint
Setting u = xg and h = xF in

min {/ |Dul:  ue BV(Q), ulga= h}
Q

the least gradient problem has a simple geometric meaning.

F

F

Existence and properties of solutions depend on the shape of the domain!
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Classical results

Let N > 2. To tackle the question of boundary values of solutions to

min {/ |Dul:  ue BV(Q), ulgg= h}
Q

one directly estimates the values of u at the boundary using geometric
measure theory techniques.

If Q is strictly convex, then
h e C(022) = 3! a solution u € BV(Q)

and u € C(Q).

If Q is uniformly convex, then

he Co0Q) = u e CO/2(Q).

[@ P. Sternberg, G. Williams, W. Ziemer, J. Reine Angew. Math. (1992).
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Modern research directions

The anisotropic least gradient problem is

min {/Q¢(x, Du): wue€BV(Q), ulsq= h}

where ¢(x,+) is a uniformly bounded family of norms.
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Modern research directions

The anisotropic least gradient problem is

min {/Q¢(x, Du): wue€BV(Q), ulsq= h}

where ¢(x,+) is a uniformly bounded family of norms.

(a) Find the minimal assumptions on ¢, h, 2 for existence of solutions;
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Modern research directions

The anisotropic least gradient problem is

min {/Q¢(x, Du): wue€BV(Q), ulsq= h}

where ¢(x,+) is a uniformly bounded family of norms.
(a) Find the minimal assumptions on ¢, h, 2 for existence of solutions;

(a') For fixed ¢ and a strictly convex domain (w.r. to ¢), what are the
minimal assumptions on h for existence of solutions?
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where ¢(x,+) is a uniformly bounded family of norms.
(a) Find the minimal assumptions on ¢, h, 2 for existence of solutions;
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where ¢(x,+) is a uniformly bounded family of norms.
(a) Find the minimal assumptions on ¢, h, 2 for existence of solutions;

(a") For fixed ¢ and a strictly convex domain (w.r. to ¢), what are the
minimal assumptions on h for existence of solutions?
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Modern research directions

The anisotropic least gradient problem is

min {/Q¢(x, Du): wueBV(Q), ulpa= h}

where ¢(x,+) is a uniformly bounded family of norms.
(a) Find the minimal assumptions on ¢, h, Q for existence of solutions;

(a") For fixed ¢ and a strictly convex domain (w.r. to ¢), what are the
minimal assumptions on h for existence of solutions?

(b) Regularity (C%®, LP, WP) and structure results;
(c) Relaxing the geometric assumptions on Q for regular h;

(d) Generalisations to metric measure spaces.
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Modern research directions

The anisotropic least gradient problem is

min {/Q¢(x, Du): wue€BV(Q), ulsq= h}

where ¢(x,+) is a uniformly bounded family of norms.
(a) Find the minimal assumptions on ¢, h, 2 for existence of solutions;

(a') For fixed ¢ and a strictly convex domain (w.r. to ¢), what are the
minimal assumptions on h for existence of solutions?

(b) Regularity (C%%, LP, WP) and structure results;
(c) Relaxing the geometric assumptions on  for regular h;

(d) Generalisations to metric measure spaces.
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Existence of solutions: discontinuous boundary data

There are two competing effects.

(a) For regular enough h (e.g. continuous a.e. on 9R), there exist
solutions for every domain strictly convex w.r. to ¢;
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Existence of solutions: discontinuous boundary data

There are two competing effects.

(a) For regular enough h (e.g. continuous a.e. on 9R), there exist
solutions for every domain strictly convex w.r. to ¢;

(a') If Q is strictly convex and h is continuous a.e. on 0%, there exist
solutions for every norm ¢;
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Existence of solutions: discontinuous boundary data

There are two competing effects.

(a) For regular enough h (e.g. continuous a.e. on 9R), there exist
solutions for every domain strictly convex w.r. to ¢;

(a') If Q is strictly convex and h is continuous a.e. on 0%, there exist
solutions for every norm ¢;

(b) If we allow for less regular h, for every two different norms ¢1 and ¢»
there exists h which is admissible in the anisotropic least gradient
problem for only one of them.

[§ W. Gérny, Indiana Univ. Math. J. (2021).
[§ W. Gérny, Math. Ann. (2023).
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Existence of solutions: positive result
Theorem (WG, Indiana Univ. Math. J. (2021))

Let Q C RN be strictly convex and suppose that h € L*(9RQ) is continuous
HN=1.a.e. Then, there exists a solution u € BV(Q) to

min { /ngs(Du) cu€eBV(Q), ulpa = h}

for every norm ¢ and u(y) EAAN h(xo) at each continuity point xo of h.

v

Proof:

1. Show existence of a generalised solution u;

2. Approximate h by continuous functions h, which satisfy a series
of key inequalities around a given continuity point xp;

3. Modify each level set of u to construct a competitor for minimality
which locally around xp satisfies a similar series of inequalities;

4. Verify that this competitor has lower energy unless the boundary
datum is attained at xp.
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Existence of solutions: negative result

Theorem (WG, Math. Ann. (2023))

Let Q = B(0,1) C R?. Suppose that ¢1 and ¢ are two strictly convex
norms of class C2. Unless ¢1 = cpp for some ¢ > 0, there exists a
function h € L*°(0Q) \ BV(0R) such that there exists a solution to

min { /Q¢1(Du) cu€ BV(Q), ulpa = h}

but there is no solution to

min { /ngg(Du) c u€ BV(Q), ulog = h}.

v

Proof: explicit construction of a fat Cantor set C on 92 such that h = ¢
has the desired properties.
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Existence of solutions: negative result

Theorem (WG, Math. Ann. (2023))

Let Q = B(0,1) C R?. Suppose that ¢1 and ¢ are two strictly convex
norms of class C2. Unless ¢1 = cpp for some ¢ > 0, there exists a
function h € L*°(0Q) \ BV(0R) such that there exists a solution to

min { /Q¢1(Du) cu€ BV(Q), ulpa = h}

but there is no solution to

min { /ngg(Du) c u€ BV(Q), ulog = h}.

v

Proof: explicit construction of a fat Cantor set C on 92 such that h = ¢
has the desired properties.

Thank you for your attention!
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