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P-MEASURES IN MODELS WITHOUT P-POINTS

PIOTR BORODULIN–NADZIEJA, JONATHAN CANCINO-MANRÍQUEZ,
AND ADAM MORAWSKI

Abstract. We answer in negative the problem if the existence of a P-
measure implies the existence of a P-point. Namely, we show that if we
add random reals to a certain ’unique P-point’ model, then in the resulting
model we will have a P-measure but not P-points. Also, we investigate the
question if there is a P-measure in the Silver model. We show that rapid
filters cannot be extended to a P-measure in the extension by ω product
of Silver forcings and that in the model obtained by the countable support
ω2-iteration of countable product of Silver forcings there are no P-measures
of countable Maharam type.

Introduction

We call an ultrafilter U on ω a P-point if every decreasing sequence of its
elements has a pseudointersection in U . Notice that non-principal ultrafilters
on ω cannot be closed under countable intersections. In a sense, a non-principal
P-point is an ultrafilter as close to being closed under countable intersections
as possible. There is a huge literature about P-points: they proved their im-
portance in infinitary combinatorics, topology, and forcing.

The existence of P-points is independent of the usual axioms of set theory.
They exist under the Continuum Hypothesis and many other axioms. However,
Shelah showed that consistently there are no P-points (his proof can be now
found in [Wim82]). Quite recently Chodounský and Guzmán [CG19] showed
that there are no P-points in the classical Silver model. It is still unknown if
P-points exist in the classical random model (see also remarks at the end of the
article).

In a similar fashion to P-points one can define P-measures (note that they
are usually called ’measures with additive property’ in the literature): say that
a (finitely additive) measure on ω is a P-measure if every decreasing sequence
of subsets of ω has a pseudointersection whose measure is equal to the limit of
measures of the elements of the sequence. If a measure on ω vanishes on points,
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then it cannot be σ-additive but P-measures are as close to being σ-additive as
possible.

If U is a P-point, then the measure δU , i.e. the 0-1 measure concentrated
at U , is a P-measure. It is also known that if there is a P-point, then there is
an atomless P-measure (see [BFPRN01]) but the following problem remained
open.

Problem 0.1. Does the existence of P-measures imply the existence of P-
points?

This problem was investigated e.g. in [Mek84], [BFPRN01], [Gre19]. In
[Mek84] Mekler showed that in Shelah’s model witnessing the lack of P-points,
there are no P-measures. In the light of Chodounský-Guzmán theorem, it is
natural to ask the following.

Problem 0.2. Is there a P-measure in the Silver model?

Problem 0.2 was the initial motivation for our article and we hoped that the
solution would either bring us the full answer to Problem 0.1 (in case of the
positive answer) or at least it would be a strong indication that Problem 0.1
has a negative solution. Ironically, we have not been able to solve Problem 0.2
but we have solved Problem 0.1.

In [BNS23] it is proved that every P-point can be extended to a P-measure in
the random extensions. The first author believed that this theorem can be used
to prove that there is a P-point in the classical random model, if one manages
to answer Problem 0.1 in positive. To his surprise, the second author used it
to answer Problem 0.1 in negative.

Theorem 0.3. It is consistent with ZFC that there is a P-measure but there is
no P-point.

The main idea behind the proof is the following. A well-known theorem of
Kunen says that no selective ultrafilter can be extended to a P-point in any
random extension. Shelah proved that there is a model where all P-points
are selective. The model witnessing the negative answer to Problem 0.1 is the
random extension of a model obtained similarly to Shelah’s model. There are
P-measures there because of the theorem mentioned in the previous paragraph.
The proof that there are no P-points required an upgrade of both Kunen’s
theorem and Shelah’s construction.

Theorem 0.3 made Problem 0.2 slightly less compelling. However, we think
that the question about the existence of P-measures in the Silver model is still
interesting (and it is still open). Moreover, considerations around Problem 0.2
led us to some interesting notions in the theory of measures on ω.

The natural approach toward a solution of Problem 0.2 is to analyze which
filters from the ground model can be extended to a P-measure in the Silver
extension, i.e. for which filters F there is a measure µ in the extension such
that µ(F ) = 1 for each F ∈ F . E.g. it is not hard to see that every such
filter would have to be a P-filter. In fact, for technical reasons, instead of
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extensions by a single Silver forcing, we will consider extensions by ω product
of Silver forcings (see also the comments at the end of the introduction). In
what follows, by Si we will denote the Silver forcing, and by Siω the ω product
of Silver forcings.

Our first achievement in this direction was the following.

Theorem 0.4. No rapid filter can be extended to a P-measure in the extension
by the ω product of Silver forcings.

One can also analyze which measures from the ground model can be extended
to a P-measure in the extension (again such measures would also have to be
P-measures). As we have already pointed out, the basic examples of measures
are those concentrated on an ultrafilter. Ultrafilters can be used to define also
non-atomic measures, so-called ultrafilter densities (see Section 2 for the precise
definitions). We prove that no such measure can be extended to a P-measure
in the model V Siω .

Theorem 0.5. If there is an ultrafilter U such that δU is Rudin-Blass below a
measure µ, then µ cannot be extended to a P-measure in the model obtained by
ω2 iterations of Siω. In particular, no ultrafilter and no ultrafilter density can
be extended to a P-measure in this model.

When we proved the above theorem, in fact, we did not know any example of a
P-measure (under CH) that does not satisfy its assumptions, so we did not have
any candidate for a which can be extended to a P-measure in the V Siω Then, we
managed to show that under CH there is a P-measure λ which is in a sense the
Lebesgue measure on 2ω in disguise. This measure is basically different from all
the examples of P-measures known before: it is non-atomic but its Maharam
type is countable. Recall that the Maharam type of a measure µ on ω is the
density of the pseudo-metric on P(ω) defined by dµ(A,B) = µ(A△B).

Additionally, we constructed λ in a way that it does not satisfy the assump-
tion of Theorem 0.5, so it looked like a promising candidate for a measure that
can be extended to a P-measure in the model V Siω . However, we managed to
upgrade the above theorem (to Theorem 4.3) so that as a corollary we get the
following.

Theorem 0.6. In the model obtained by the countable support ω2-iteration of
countable products of the Silver forcings there are no P-measures of countable
Maharam type.

Since P-points are in a sense measures of Maharam type 2, the above theorem
can be seen as a generalization of the Chodounský-Guzmán theorem. It also
says that λ, as a measure of countable Maharam type, cannot be extended to
a P-measure in the Silver extension.

Finally, we are again in a situation in which we do not know any example
of a measure that has a chance to be extended to a P-measure in the model
V Siω . It might mean that there are no P-measures in the model obtained by ω2

iteration of Siω. Or there are still some interesting P-measures to discover in
the models satisfying CH.
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We will comment on the model which appeared in Theorem 0.6. This is not
the classical Silver model (that is obtained by the countable support iteration
of ω2 Silver forcings). However, as can be seen e.g. in [CG19], the ω product of
Silver forcings is much easier to work with, in this context, than the single Silver
forcing. On the other hand, if we want to consider the uncountable product
of Silver forcings, then we will face problems trying to deal with the captured
names for objects from the final model at the intermediate steps. So, it seems
that the ’mixture’ of iteration and products is the most convenient working
environment here. We conjecture that those problems are purely technical and
that the assertion of Theorem 0.6 is true as well for the classical Silver model
and the model obtained by the side-by-side product of Silver models. There is a
general and somewhat vague question of how different are those three versions
of the Silver model and it seems that not much is known about the answer.
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1. P-points and P-measures

We start by recalling the basic definitions.
A filter over a set X is a family of subsets of X closed under intersections and

supersets. We will consider only proper filters, i.e. those which do not contain
∅. An ultrafilter is a ⊆-maximal proper filter or, equivalently, a filter such that
for every A ⊆ X either it contains A or it contains Ac. An ultrafilter is called
non-principal if it does not contain any singleton (and thus any finite set).

A finitely additive measure on X is a function µ : P(X) → R≥0 such that

(1) µ(∅) = 0,
(2) for A ∩ B = ∅ we have µ(A ∪B) = µ(A) + µ(B).

We say that a measure vanishes on points if no singleton has a positive measure
(and so all finite sets have measure 0). A probability measure is a measure with
µ(X) = 1.

A probability measure is said to be atomless if for any ε > 0 the set X can
be divided into finitely many sets of measure not bigger than ε.
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Further on, in this paper all ultrafilters will be non-principal ultrafilters on
ω and all measures will be vanishing on points, finitely additive probability
measures on ω.

We say that A is almost contained in B (denoted A ⊆∗ B) if A \ B is
finite. For a family F we say that Z is a pseudointersection of F if Z ⊆∗ F
for each F ∈ F . Notice that Z is a pseudointersection of a countable family
{Fn : n ∈ ω} ⊆ P(ω) if and only if there is a function f : ω → ω such that
Z \ f(n) ⊆ Fn for each n.

Finally, the following two notions are of main interest. An ultrafilter U is
called a P-point if for every decreasing sequence {Un : n ∈ ω} of elements of
U there is Z ∈ U which is a pseudointersection of {Un : n ∈ ω}. A measure
µ is called a P-measure if for every decreasing sequence {An : n ∈ ω} there is
Z, a pseudointersection of {An : n ∈ ω}, with µ(Z) = inf µ(An) (= limµ(An)).
Such measures are also known as measures with the additive property(*) or
AP-measures.

We will formulate now two simple facts concerning P-measures leaving the
proofs for the reader.

Proposition 1.1. The following are equivalent:

(1) µ is a P-measure,
(2) for every increasing sequence (Bn) there is a set Z with µ(Z) = supn(Bn)

and Z ⊇∗ Bn for each n,
(3) for every pairwise disjoint family (Cn) there is Z st. µ(Z) =

∑
n µ(Cn)

and Z ⊇∗ Cn for each n.

Proposition 1.2. A measure µ is a P-measure if and only if for any decreasing
sequence (An) there is an increasing function f : ω → ω such that

µ

(
⋃

n∈ω

(An ∩ [f(n), f(n+ 1)) )

)
= lim

n→∞
µ(An).

Proposition 1.1 (3) justifies the statement that P-measures are, in some sense,
as close to being σ-additive as a (vanishing on points) measure possibly can.
Proposition 1.2 carries a valuable intuition that, for P-points and P-measures,
any pseudointersection is tightly associated with a function.

2. Measures on ω

Note that every (finitely additive) measure µ on ω can be seen as a measure
on the clopen subsets of ω∗ (as, according to our promise from the previous
section, µ vanishes on points) and then extended uniquely to a Borel (countably
additive) measure on ω∗. So, measures on ω can be identified with countably
additive measures on ω∗.

We will give now some examples of measures on ω.

Example 2.1. Let U be an ultrafilter on ω. We may produce a measure by
assigning value 1 to all sets in U and value 0 to their complements. We will
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denote such measure by δU (and call it the Dirac delta at U). Clearly, every
Dirac delta is atomic.

There are many atomless measures on ω∗, as ω∗ is not scattered (see [Rud57]).
Here we present a quite general way to produce atomless measures extending
the asymptotic density.

Example 2.2. Let µ be a measure on ω. Let dA : ω → [0, 1] be defined by
dA(n) = |A ∩ n|/n. Let

ν(A) =

∫
dA dµ.

Formally, the above expression does not make much sense, so let us comment
on how to interpret it. First, lift µ to a Borel measure µ′ on ω∗. The function
dA is bounded so it induces a continuous function d′A : ω

∗ → [0, 1]. Let ν ′(A) =∫
d′A dµ′. This is a (countably additive) measure on ω∗ and so it generates a

measure ν on ω. Such a measure extends the asymptotic density.1

We will consider now measures like the above of quite a specific form.

Example 2.3. Suppose that µ is a Dirac delta concentrated at an ultrafilter
U . Let dA be defined as in Example 2.2. Then

ν(A) =

∫
dA dµ = lim

n→U
dA(n).

This is an atomless measure extending the asymptotic density. We will call such
measures ultrafilter densities. Note that if U is a P-point, then the resulting
measure is a P-measure (see e.g. [BFPRN01]).

Such measures were studied e.g. in [Mek84] or [BFPRN01]. Notice that two
different ultrafilters may induce (in the sense of Example 2.3) the same measure
(see [Gre19], [Kun22]).

It seems to be not easy to define a measure on ω ’directly’ (even using ultra-
filter as a parameter) in a basically different way than in the above examples.
In Section 6 we will present one more example, which is defined without any
(direct) use of ultrafilters.

Now we will investigate relations between measures on ω. Recall the defini-
tion of Rudin-Blass ordering of filters.

Definition 2.4. Suppose F , G are filters on ω. We say that G is Rudin-Keisler
reducible to F , G ≤RK F in short, if there is a function f : ω → ω such that
X ∈ G if and only if f−1[X ] ∈ F . We say that F is Rudin-Blass reducible to G
(≤RB) if there is such finite-to-one function.

We say that a filter F is nearly ultra if there is an ultrafilter U such that
U ≤RK F .

The definition of Rudin-Keisler ordering can be naturally re-used to introduce
an ordering on measures on ω.

1Note that it is also possible to define the Lebesgue integral directly for finitely additive
measures.
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Definition 2.5. Suppose µ, ν are measures on ω. We say that ν is Rudin-
Keisler reducible to µ if there is a function f : ω → ω such that for every
X ⊆ ω we have

ν(X) = µ(f−1[X ]).

We say that ν is Rudin-Blass reducible to µ if there is such a finite-to-one
function.

Similarly, we will say that a measure µ is nearly Dirac if there is an ultrafilter
U such that δU ≤RK µ. Notice that a measure is nearly Dirac if and only if its
filter of measure 1 sets is nearly ultra.

The following fact will allow us to use both Rudin-Keisler and Rudin-Blass
orderings interchangeably.

Fact 2.6. If G is a P-filter and F contains the Fréchet filter then

F ≤RK G ⇐⇒ F ≤RB G.

If µ is a P-measure and ν is vanishing on points then

ν ≤RK µ ⇐⇒ ν ≤RB µ.

Proof. Right-to-left direction is immediate. For the other side, we provide a
proof in the case of measures.

Take a P-measure µ and ν ≤RK µ. Let f ∈ ωω be a witnessing function. Since
ν vanishes on points we know that f is µ-null-to-one. Let An = f−1[ω\n]. Then
µ(An) = 1 and there is a set A, a pseudointersection of (An)n with µ(A) = 1.
But for any n ∈ ω we have A∩f−1[n] finite (as it is disjoint from An+1). Hence
f is finite-to-one on a set of full measure µ. It is now easy to alter f on ω \ A
to get a finite-to-one function witnessing ν ≤RB µ. �

Proposition 2.7. Every measure that is an ultrafilter density is nearly Dirac.

Proof. Let µ be an ultrafilter extension of density. Fix an ultrafilter U such
that µ(A) = limn→U |A ∩ n|/n.

Let g : ω → ω be an increasing function such that g(k+1)/g(k) → ∞. Define
Li =

⋃
k[g(2k+i), g(2k+i+1)) for i ∈ {0, 1} and notice that L0, L1 is a partition

of ω so exactly one of them has to be in U . Assume, for simplicity, that L1 ∈ U ;
the other case is analogous.

Let f : ω → ω be defined by f(n) = k if n ∈ [g(2k), g(2k + 2)). Define

V = {X ⊆ ω : f−1[X ] ∈ U}

and notice that V is an ultrafilter. We will show that f witnesses that δV ≤RB µ.
Let X ∈ V. Fix ε > 0. Denote

Aε = {n : |
|f−1[X ] ∩ n|

n
− 1| < ε}.

If n ∈ [g(2k + 1), g(2k + 2)), then

|f−1[X ] ∩ n| ≥ n− g(2k) ≥ g(2k + 1)− g(2k) > (1− ε)n

for k big enough (since n ≥ g(2k+1) and g(2k)/g(2k+1) < ε for k big enough).
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It follows that f−1[X ] ∩ L1 ⊆
∗ Aε. But f−1[X ] ∈ U (as X ∈ V) and L1 ∈ U .

Thus, Aε ∈ U and, since ε was arbitrary, µ(X) = 1.
Analogously, if X /∈ V, then Xc ∈ V, µ(f−1[X ]c) = 1 and so µ(f−1[X ]) = 0.

Hence, δV ≤RB µ. �

Proposition 2.8. Being a P-filter or a P-measure is hereditary with respect to
Rudin-Keisler’s ordering.

Proof. We only provide a short proof for the case of P-measures. Consider a
P-measure µ, a function g : ω → ω and an ⊆∗-decreasing sequence (An)n. By
2.6 it is enough to consider g finite-to-one. Let B be a pseudointersection of
the sequence (g−1[An])n suitable for the measure µ. Since µ(g−1[g[B]]) ≥ µ(B),
for all n ∈ ω, g−1[g[B]] ⊆∗ An, and we know that g[B] is a pseudointersection
of (An)n suitable for µg−1. �

Hence the ultrafilter V from the proof of Proposition 2.7 is a P-point whenever
µ is a P-measure (even if the ultrafilter used in the definition of µ is not a P-
point). So we have the following corollary (which was proved also by Grebik in
[Gre19]).

Corollary 2.9. If there is a P-measure, which is an ultrafilter density, then
there is a P-point.

Perhaps it is quite surprising that consistently all measures on ω (vanishing
on points) are nearly Dirac. Recall that the principle of filter dichotomy implies
that all filters that are not meager are nearly ultra. But the filters of measure
1 sets are always non-meager:

Proposition 2.10. If µ is a measure on ω, then the filter F = {F : µ(F ) = 1}
is non-meager.

Proof. Suppose that F is meager. Then, by Talagrand’s characterization of
meager filters (see e.g. [Bla10]), there is an interval partition (In) such that no
infinite union of In’s is in the dual ideal. Let (Aα)α<ω1

be an almost disjoint
family (of subsets of ω) and for α < ω1 let Nα =

⋃
n∈Aα

In. Then µ(Aα) > 0
for each α and µ(Aα ∩ Aβ) = 0 if α 6= β, a contradiction. �

Notice that if U ≤RK F for a filter of the form {F : µ(F ) = 1} for some
measure µ and an ultrafilter U , then δU ≤RK µ. So, we have the following.

Proposition 2.11. Under the principle of filter dichotomy, all measures on ω
are nearly Dirac.

However, it is not true that all measures on ω are nearly Dirac in ZFC. We
have the following example.

Proposition 2.12. In the random model there is a measure on ω which is not
nearly Dirac.

Proof. In [BNS23, Theorem 5.6] the authors showed that in the random model
there is a measure supported by a filter F which is generated by a family A of
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size ω1. Suppose that G is a filter such that G ≤RB F . Then G is generated by
at most ω1 sets (namely, {f [A] : A ∈ A}, where f is a witness for G ≤RB F).
But, in the random model the ultrafilter number u = ω2, so G cannot be an
ultrafilter. �

In Section 6 we will present another example of a measure that is not nearly
Dirac, this time under CH.

3. Silver forcing

By Si we will denote the set of partial functions from ω to {0, 1} with co-
infinite domains ordered by the reverse inclusion. Such partial order is called
the Silver forcing. We will use standard forcing notation. In particular, let V
be the ground model, let G be a Si-generic over V . We will use the following
abbreviations and provide the necessary context to conclude whether an object
is in V or V [G]:

• instead of ẋ[G], the evaluation of a name by a generic, we will simply
write x,

• instead of x̌, the standard name for x ∈ V , we will also write x.

3.1. ωω-bounding. We will need a few properties of the Silver forcing. The
following facts hold for Si.

Proposition 3.1 (ωω-bounding). If f ∈ V [G] is a function from ω to ω, then
there is a function g ∈ V with ∀n g(n) > f(n).

A proof of Proposition 3.1 can be found in [Hal17].
In what follows, instead of Si we will often consider the ω (side-by-side)

product of Si. We will denote it by Siω. Recall that the forcing Siω is ωω-
bounding, too.

We can extend our definition of the ωω-bounding property to the relation
between models. We say that W ⊇ V has the ωω-bounding property (over V )
if for any f : ω → ω form W there is g : ω → ω from V with f(n) 6 g(n).

Proposition 3.2. For W ⊇ V (models of ZFC) and W having the ωω-bounding
property over V , if µ ∈ V is a measure that can be extended to a P-measure in
W , then µ is a P-measure.

Proof. Take any decreasing sequence 〈An : n ∈ ω 〉 ∈ V . If µ′ is a P-measure
extending µ in V [G] then there is some function f ∈ V [G] such that, if

A =
⋃

n∈ω

(An ∩ [f(n), f(n+ 1)) ) ,

then µ′(A) = limn µ
′(An), by Proposition 1.2.

Now by ωω-bounding property we can take f̃ ∈ V with f̃(n) > f(n).
If we put

A′ =
⋃

n∈ω

(
Un ∩ [f̃(n), f̃(n+ 1))

)
,



P-MEASURES IN MODELS WITHOUT P-POINTS 10

then A′ ⊇ A and A′ is still a pseudointersection of {An : n ∈ ω } and

lim
n
µ′(An) ≥ µ′(A′) ≥ µ′(A) = lim

n
µ′(An) = lim

n
µ(An).

But now A′ ∈ V and so µ(A′) = µ′(A′) = limn µ(An). �

As we know that a P-point can be viewed as a P-measure we get the following
remark:

Remark 3.3. For W ⊇ V and W having the ωω-bounding property over V ,
if µ ∈ V is a measure that can be extended to a P-measure in W , then µ is a
P-measure.

The following proposition allows us to perform ’reflection’ arguments for mea-
sures.

Proposition 3.4. Let P = 〈Pα, Q̇α : α ∈ ω2〉 be a countable support iteration

of proper forcings such that for each α ∈ ω2, Pα  |Q̇| = ω1. Let µ̇ be a P-name
for a measure on ω. Then there is α < ω2 and a Pα-name µ̇α such that

Pα  µ̇α = µ̇ ∩ V [Gα]

Proof. Let M ≺ H(θ), where θ is sufficiently big. Assume that M is of car-
dinality ω1, closed under countable sequences (i.e. Mω ⊆ M) and such that
ω1, ω2,Pω2

, µ̇ ∈ M. Let
α = sup(ω2 ∩M).

Note that α ⊆ M. By [She17, Theorem 4.1 in Chapter III] for each β < ω2, the
poset Pβ contains a dense subset of cardinality ω1, so by elementarity, for each
β < α we can find Dβ ∈ M which is a dense subset of Pβ; since ω1 ∈ M and
M is closed under taking countable sequences, we also have Dβ ⊆ M. Thus,
for our purposes we may assume that Pβ ⊆ M for each β < α.

Actually, we may also assume that Pα ⊆ M, as
⋃

β<αDβ is a dense subset of

Pα of cardinality ω1 (since the cofinality of α is ω1 and each condition p ∈ Pα

has a countable support, for each p ∈ Pα there is β < α such that p ∈ Pβ, and
we can assume that p ∈ Dβ).

Claim. For every Pα-name ẋ for a subset of ω, and p ∈ Pα there are countable
Pα-names ẏ and ż in M and q ∈ Pα, q ≤ p such that

(1) q  ẋ = ẏ ∧ µ̇(ẋ) = ż.

Proof. (of the claim) First notice that for each Pα-name ẋ for a real, the set of
conditions p ∈ Pα ∩M for which there is a countable name ẏ in M such that
p  ẋ = ẏ is a dense subset of Pα. Indeed, let p ∈ Pα. That there is q ≤ p
and a countable name ẏ such that q  ẋ = ẏ follows from the properness of Pα.
Since ẏ is countable, it only uses countable many conditions from Pα ⊆ M, so
we have ẏ ∈ M.

Now, let ẋ be an arbitrary Pα-name for a subset of ω, and let ż0 be a Pω2
-name

for the value of µ̇(ẋ) (note that a priori, here ż0 is a Pω2
-name even though ẋ is a

Pα-name). Let p ∈ Pα, let ẏ ∈ M be a countable name such that there is q ≤ p
such that q  ẋ = ẏ. Since ẏ ∈ M, q  ẏ ⊆ ω, and µ̇ ∈ M, by elementarity,



P-MEASURES IN MODELS WITHOUT P-POINTS 11

there is a Pω2
-name ż1 ∈ M for ż0. Note that q  ż0 = ż1. We can think of ż1

as a name for a sequence of rationals converging to the actual value of µ̇(ẏ), so
we can find q′ ≤ q and a countable name ż for ż1, and by elementarity we can
find both q′ and ż in M. Now, M knows that ż is countable, so ż ⊆ M, which
implies that any condition appearing in ż should be an element from M, so ż
is actually a Pα-name. �

Now we define a Pα-name as follows:

i) For every Pα-name ẋ for a subset of ω and p ∈ Pα, let yẋ,p, zẋ,p and
qẋ,p ∈ Pα be as promised in the claim, i.e.
(a) yẋ,p, zẋ,p are countable Pα-names.
(b) qẋ,p ≤ p.
(c) qẋ,p  (ẋ = yẋ,p) ∧ (µ̇(ẋ) = zẋ,p)

ii) For ẋ let

H(ẋ) = {
〈
〈yẋ,p, zẋ,p〉, qẋ,p

〉
: p ∈ Pα}.

iii) Finally, let

µ̇α =
⋃

{H(ẋ) : ẋ is a nice Pα-name for a subset of ω}.

Here we may think of nice names in any reasonable sense, just to avoid
barging into a proper class.

We claim that µ̇α is the required name. Let ẋ be a Pα-name for a subset of
ω and p ∈ Pα. We may assume ẋ is a nice name. Then we have yẋ,p, zẋ,p, qẋ,p
well defined, which means that qẋ,p ≤ p and

(2) qẋ,p  〈yẋ,p, zẋ,p〉 ∈ µ̇α.

That is,

(3) qẋ,p  µ̇α(yẋ,p) = zẋ,p.

By i)(c) above we also have that

(4) qẋ,p  µ̇α(ẋ) = µ̇(ẋ).

�

3.2. Interval partitions. Forcing with Si adds a new real. Namely, if G is a
generic, then we can define ṡ =

⋃
{ p : p ∈ G } (in V [G]). We will call this a

Silver real, or a generic real. A name for such real can be easily procured:

ṡ = { 〈 ˆ〈n, i〉 , { 〈n, i〉 } 〉 : n ∈ ω, i ∈ 2 }

i.e. we use functions with singleton domains to set every element of s.
A standard way of creating a set from a real (a 0-1-sequence) is to treat the

real as a characteristic function. While considering ultrafilters this approach
applied to Silver reals yields poor results due to the following fact:

Proposition 3.5. If U is an ultrafilter in V and s is a Silver real understood
as above, then (in V [G]) for some U ∈ U either s−1[1] ⊆ U or s−1[1] ∩ U = ∅.
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Proof. Fix an ultrafilter U ∈ V . Let ṡ be a name for Silver real and take any p
with Dom p ∈ U . Notice that the set of possible p’s is dense in Si as any partial
function (of co-infinite domain) can be extended to have co-infinite domain that
is in U .

Now either p−1[1] ∈ U and for U = Cod p∪ p−1[1] we have p  ṡ−1[1] ⊆ U or
p−1[0] ∈ U and taking U = p−1[0] we have p  ṡ−1[1] ∩ U = ∅. �

In other words, if we want to construct an ultrafilter in V [G] extending U ,
we do not have many options for its behavior on s−1[1].

Therefore from this point on, following [CG19], we will rather turn reals into
interval partitions. Namely let pos(q, k) denote the index m for which q(m) = 1
for the k-th time (more precisely pos(q, k) = min{m : |q−1[1] ∩ [0, m]| = k })
and we set pos(q, 0) = 0. Then we define

Ik(r) = [pos(q, k), pos(q, k + 1))

and I(q) = {Ik(q) : k ∈ ω}. Notice that such definitions do not require q to be
a function with the full domain.

4. Measures which cannot be extended to P-measures

In this section, we prove the main result in the Silver-like model from Theo-
rem 0.6. We will need the following definition. The name “silver” comes from
the fact that, as we will see, this definition is closely related to the combinatorics
of I(q), for q ∈ Si.

Definition 4.1. Let µ be a measure on ω. We say that it is silver if for each
N ⊆ ω, r > 0 and each interval partition (In) there is ǫ ∈ {−1, 1}ω such that

µ
(⋃

n

N ǫ(n) ∩ In
)
< r

(Here we follow the convention that that N1 = N and N−1 = N c.)

If µ extends asymptotic density, then µ is not silver (which is witnessed e.g.
by N being the set of odd numbers, r = 1/2 and In = [2n, 2n+1) for each n).
Every Dirac delta is silver.

Lemma 4.2. Suppose that µ is a measure which is silver and that p ∈ Si. Then
for every i ∈ 2, r > 0 we may find q ≤ p such that µ(Di(q)) > 1− r.

Proof. Suppose that µ is silver and so for every interval partition (In), N ⊆ ω
and every r > 0 there is ǫ ∈ {−1, 1}ω such that

µ
(⋃

n

N ǫ(n) ∩ In
)
> 1− r.

Notice that we may additionally assume that and ǫ(n) · ǫ(n + 1) = −1 for
infinitely many n’s. It follows from the general fact that for every measure ν
on ω and for every interval partition (Jn) we may find an infinite set X ⊆ ω
such that ν(

⋃
n∈X Jn) = 0 (see also Proposition 2.10).
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Now, fix i ∈ 2, p ∈ Si and r > 0. Suppose (strengthening p if necessary)
that µ(Cod p) = 0, and let (an) be the increasing enumeration of Cod p. For
each n ∈ ω let In = [an, an+1). Applying the above remark for (In)

2, N =
Di(p) ∩ Dom p and r we may find ǫ ∈ {−1, 1}ω such that ǫ(n) · ǫ(n + 1) = −1
for infinitely many n’s and

µ
(⋃

n

N ǫ(n) ∩ In
)
> 1− r.

Let q ≤ p be such that

• q(a0) = 1 iff ǫ(0) = −1
• an+1 ∈ Dom q iff ǫ(n)ǫ(n + 1) = −1 and in this case let q(an+1) = 1.

Then q ∈ Si and µ(Di(q)) > 1− r. �

Theorem 4.3. Suppose µ is silver. Then µ cannot be extended to a P-measure
in V Siω .

Proof. Suppose µ is silver. Let p ∈ Siω.

Case 1. There is q ≤ p such that

q  ∀n ∀ε > 0 ∃m > n µ(
⋃

k∈[n,m)

Ḋ0(ṡk)) > 1− ε.

Let q be as above. Using the fact that Si is ωω-bounding (to get h′ and then

h(n) = h′(n)(0) = h′(h′(...(0)...)) ), we may assume (taking stronger condition
if necessary) that there is an increasing function h : ω → ω such that

q  ∀n µ(
⋃

k∈[h(n),h(n+1))

Ḋ(ṡk)) > 1− 2−(n+2).

Let

Ẇn =
⋃

k∈[h(n),h(n+1))

Ḋ(ṡk)

for each n and let Żn =
⋂

m≤n Ẇm. Notice that

q  Żn is ⊆ −decreasing and ∀n µ(Żn) ≥ 1/2.

Suppose that there is a pseudointersection Ż in V Siω of (Żn) such that µ(Ż) =
limn µ(Żn) ≥ 1/2. Again, assume that q forces it and that there is a function
f : ω → ω in V such that

q  Ż \ f(n) ⊆ Żn.

Now, since µ is silver, subsequently using Lemma 4.2, for each k we can find
q′k ≤ qk such that

µ
( ⋂

k<n

D1(q
′
k)
)
> 3/4

2(In) may not be a partition but as we deal with a measure vanishing on points, we can
forget some initial segment of ω



P-MEASURES IN MODELS WITHOUT P-POINTS 14

for every n ∈ ω. Define

An =
⋂

k<h(n+1)

D1(q
′
k).

Since µ is a P-measure, (An) is decreasing and µ(An) > 3/4 for each n we may
find a strictly increasing i ∈ ωω ∩ V such that

µ
(⋃

n

An ∩ [i(n), i(n + 1))
)
≥ 3/4.

By taking f and i bigger if necessary we may assume that for each n and for
every k ∈ [h(n), h(n+ 1)) we have stem(q′k) < f(n) < i(n).

For every n ∈ ω and k ∈ [h(n), h(n + 1)) extend q′k to rk in such a way that

Fn := An ∩ [i(n), i(n + 1)) ⊆ D1(rk) ∩ stem(rk).

It is possible as Fn ⊆ D1(q
′
k) and stem(q′k) < f(n) < i(n).

Let r = (r0, r1, . . . ). Then

r  ∀n Fn ⊆
⋂

k∈[h(n),h(n+1))

Ḋ1(ṡk)

and so
r  ∀n Fn ∩ Żn = ∅.

Since f(n) ≤ minFn for each n we have

r 
⋃

n

Fn ∩ Ż = ∅

But µ(
⋃

n Fn) ≥ 3/4, hence r  µ(Ż) ≤ 1/4, a contradiction.

Case 2. There is q ≤ p such that

q  ∃m ∃ε > 0 ∀n > m µ(
⋂

k∈[m,n)

Ḋ1(ṡk)) > ε.

Without loss of generality, we assume that m = 0. Let Żn =
⋂

k≤n Ḋ1(ṡk).
Notice that

q  Żn is ⊆ −decreasing and ∀k µ(Żn) ≥ ε.

Suppose that there is a pseudointersection Ż in V Siω of (Żn) such that µ(Ż) =
limn µ(Żn) ≥ ε. Assume that q forces it and that there is a function f : ω → ω
in V such that

q  Ż \ f(n) ⊆ Żn.

For every n ∈ ω, using Lemma 4.2 we can find q′n ≤ qn such that µ(D0(q
′
n)) >

1− ε/2n+2. Let

An =
⋂

m<n

D0(q
′
m).

The sequence (An) is ⊆-decreasing and µ(An) ≥ 1− ε/2 for each n. Since µ is
a P-measure, there is an increasing i ∈ ωω ∩ V such that

µ
(⋃

n

An ∩ [i(n), i(n+ 1))
)
≥ 1− ε/2.
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By taking f and i bigger if necessary we may assume that for each n we have
stem(q′n) < f(n) < i(n). For every n extend q′n to rn in such a way that

Fn := An ∩ [i(n), i(n + 1)) ⊆ D0(rn) ∩ stem(rn).

Let r = (r0, r1, . . . ). Then

r  ∀n Fn ⊆ D0(ṡn)

and so
r  ∀n Fn ∩ Żn = ∅.

Since f(n) ≤ minFn for each n we have

r 
⋃

n

Fn ∩ Ż = ∅

But µ(
⋃

n Fn) ≥ 1− ε/2, hence r  µ(Ż) < ε/2, a contradiction. �

We say that a measure µ is nearly silver if there is a (vanishing on points)
measure ν ≤RK µ such that ν is silver.

Corollary 4.4. If µ is nearly silver, then it cannot be extended to a P-measure
in V Siω .

Proof. First note that, in general, for a measure µ and f ∈ ωω we have µf−1

vanishing on points exactly when f is µ-null-to-one.
Assume µ can be extended to a P-measure µ′ in V Siω . Let g ∈ ωω ∩ V be

µ-null-to-one. Then by Proposition 2.8 we get that µ′g−1 is a P-measure. Since
µ′g−1 extends µg−1, from Theorem 4.3 we get that µg−1 cannot be silver.

�

Corollary 4.5. Suppose that µ is nearly Dirac. Then µ cannot be extended
to a P-measure in the ω2 iteration of Siω. In particular, no ultrafilter and no
ultrafilter extension of the asymptotic density can be extended to a P-measure
in this model.

Problem 4.6. Assume CH. Is there a measure that is not nearly silver?

If the answer is negative, then Theorem 4.4 and Proposition 3.4 imply that
there are no P-measures in the model obtained by ω2 iteration of Siω. Note
that the answer to the question: “Is there a measure which is not nearly Dirac
(under CH)?” is positive, see Section 6.

Recall that a measure µ carried by a Boolean algebra A induces a pseudo-
metric on A: dµ(A,B) = µ(A△B). The Maharam type of µ is the density of
the pseudo-metric space (A, dµ). In general, the Maharam type of a measure
µ on a space K is the density of Bor(K)/µ=0 endowed with the pseudometric
dµ. Notice that if there is c > 0 and a family (Bα)α<κ of Borel sets such that
µ(Bα△Bβ) > c for each α 6= β < κ, then µ has the Maharam type at least κ.

For a strictly increasing function g : ω → ω let ĝ : ω → ω be the finite-to-one
function defined by

ĝ(k) = n ⇐⇒ g(n) ≤ k < g(n+ 1).
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Theorem 4.7. Suppose that µ is a measure on ω which is not nearly silver.
Then µ has an uncountable Maharam type.

Proof. We will construct sequences (fα)α<ω1
and (gα)α<ω1

of strictly increasing
functions in ωω, a sequence (rα)α<ω1

of positive reals and a sequence (Nα)α<ω1

of subsets of ω. First, we will show how to obtain fα, Nα, rα having gα defined
and then how to obtain gα having defined fβ for all β < α.

Suppose that α < ω1 and that gα is defined. Then let rα, Nα, fα witness that
the measure µĝ−1

α is not silver, i.e that for every ǫ ∈ {−1, 1}ω

µ
(
ĝ−1
α

[⋃

n

[fα(n), fα(n+ 1)) ∩N ǫ(n)
α

])
> rα.

Let g0 be the identity function. For α < ω1 let gα+1 = gα ◦ fα. If ξ < ω1 is a
limit ordinal let gξ be the function such that the interval partition induced by
gξ dominates all the interval partitions induced by gα for α < ξ and gξ[ω] is a
pseudo-intersection of gα[ω] for α < ξ.

Passing to a subsequence, if needed, we may assume that there is r such that
r = rα for each α < ω1.

Now, for α < ω1 and ǫ ∈ {−1, 1}ω let

Aα
ǫ = ĝ−1

α

[⋃

n

[fα(n), fα(n+ 1)) ∩N ǫ(n)
α

]
.

Then

µ((Aα
ǫ )) > r

for each α < ω1 and ǫ ∈ {−1, 1}ω.
Notice that whenever α < β and ǫ, ǫ′ ∈ {−1, 1}ω there is ǫ′′ ∈ {−1, 1}ω such

that

Aα
ǫ △A

β
ǫ′ =

∗ Aα
ǫ′′ .

Denote Aα = Aα
ǫ if ǫ(n) = 1 for each n. Then for each α < β < ω1 we have

µ(Aα△Aβ) > r

and therefore the sequence (Aα) proves that µ has uncountable Maharam type.
�

Notice that P-points can be treated as P-measures of Maharam type 2 and
so Chodounský-Guzmán theorem can be stated as: there are no P-measures of
Maharam type 2 in the Silver model. Using the above theorem we may prove
the following:

Corollary 4.8. There are no P-measures of countable Maharam type in the
model obtained by ω2 iteration of Siω.

Proof. This is a consequence of Theorem 4.7, Theorem 4.3 and Proposition
3.4. �

In Section 6 we will show that there exist non-atomic P-measures of countable
Maharam type (under CH).
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5. Rapid Filters and P-measures

Let F be some filter containing all co-finite sets. We will say that F is rapid
if for any g ∈ ωω there is an increasing f ∈ ωω such that f > g and f [ω] ∈ F .

Theorem 5.1. If F is a rapid filter then Siω forces that there is no P-measure
extending F .

Proof. Suppose that µ is a measure extending F in V [G]. Let Di(s) be as
above.

There are two cases: either for every ε > 0 and every n there is m > n such
that µ

(⋂
n6k<mD0(sk)

)
< ε or there are ε > 0, n such that for any m > n we

have µ
(⋂

n6k<mD0(sk)
)
> ε.

Case 1. Using the ωω-bounding property we can choose an increasing
function h from V so that n ∈ ω

µ


 ⋂

k∈[h(n),h(n+1))

D0(sk)


 <

1

2n+2
.

We put

Mn =
⋂

k∈[h(n),h(n+1))

D0(sk).

Let p = 〈p0, p1, ...〉 be any condition forcing all the above and such that

p  ∀n Ż ∪ g(n) ⊇ Ṁn

for some Ż, g (again g ∈ V by ωω-bounding and perhaps extending p). We
want to show that µ(Z) = 1.

We can assume (by potentially increasing g) that for each n we have

∀k ∈ [h(n), h(n + 1)) g(n) > minCod(sk).

Now let f > g be an increasing function such that f [ω] ∈ F . We have p  Ż ⊇
Ṁn \ f(n).

Let q = 〈 q0, q1, ... 〉 6 p be a condition such that for any n

∀k ∈ [h(n), h(n + 1)) q  f(n) ∈ Ḋ0(ṡk).

This can be done because f(n) > minCod(pk).
Now q forces that f(n) ∈ Ṁn and so f(n) ∈ Ż. We can conclude that Ż ∈ F

and so

q  µ̇Ż = 1 ∧
∑

n

µ̇Ṁn <
1

2

where Ż was a name for an arbitrary pseudounion of Mn.
Case 2. Choose N and ε such that for every m > N we have

µ


 ⋂

k∈[N,m)

D0(sk)


 > ε.
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Take any p = 〈p0, p1, ...〉 forcing all the above and such that (for some Ż, g)

p  ∀k > N Ż \ g(k) ⊆ Ḋ0(ṡk).

Again assume that g(k) > minCod(pk) and let f > g such that f [ω \N ] ∈ F .
Now we can choose q 6 p such that for any k > N

q  f(k) 6∈ Ḋ0(ṡk).

Now we can see that q  µ̇(̇Z) = 0 ∧ limm µ̇
(⋃

k∈[N,m) Ḋ0(ṡk)
)
> ε. �

Finally, we can arrive at the following corollary.

Corollary 5.2. If F is a rapid filter in V , V [G] is a model obtained by forcing
with Siω and W ⊇ V [G] is a model with the ωω-bounding property over V [G]
then F cannot be extended to a P-measure in W .

6. More on P-measures under CH

In this section, we enclose several remarks on measures on ω.

Example 6.1. Let B be the measure algebra (i.e. B = Bor(2ω)/λ=0) and let
K be its Stone space. Then, by Sikorski extension theorem (see e.g. [Kun76,
Lemma 1.1]), K can be embedded homeomorphically into ω∗. Of course, K
supports the Lebesgue measure, and this measure induces naturally a measure
λ on ω.

What is interesting about the measure λ from Example 6.1 is that it is
combinatorially far from the density measures, in particular from the atomless
measures described in Section 2. The reason lies in the Maharam type of this
measure.

Namely, the measure from Example 6.1 has the same Maharam type as the
Lebesgue measure, i.e. countable, whereas density measures have uncountable
Maharam types. The latter fact follows from [FT79, 1J], but we will give a
more direct argument here, due to Grzegorz Plebanek.

Theorem 6.2. Every density measure µ has the Maharam type c.

Proof. Let λc be the standard Haar measure on 2c. By [Fre03, 491G] λc has a
uniformly distributed sequence (xn), which in particular means that the func-
tion ϕ : Clop(2c) → P(ω) defined by ϕ(C) = {n : xn ∈ C} is a Boolean homo-
morphism such that d(ϕ(A)) = λc(A) for each A ∈ Clop(2c). For α < c let
Cα = {x ∈ 2c : x(α) = 1} and let Aα = ϕ(Cα). Then (Aα) forms a family such
that d(Aα) = 1/2 and d(Aα△Aβ) = 1/4 for α, β < c, α 6= β. If µ extends
d, then µ(Aα△Aβ) > 1/4 for each α < c So, every measure extending the
asymptotic density has Maharam type c. �

The above theorem says, informally, that the asymptotic density has ’Ma-
haram type‘ c. It follows that the measure λ from Example 6.1 does not extend
the asymptotic density.

We will show that under CH we can construct measures as in Example 6.1
with some additional properties. We start with a theorem by Kunen.
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Theorem 6.3. ([Kun76, Theorem 1.2]). Assume CH. Then the space K =
St(B) can be embedded into ω∗ as a P-set. In other words, there is a surjective
Boolean homomorphism ϕ : P(ω)/fin→ B whose kernel is a P-ideal.

Now we will show that if B is embedded as above, then the induced measure
λ is a P-measure.

Proposition 6.4. Assume that B is a Boolean algebra supporting a σ-additive
measure ν. Suppose that ϕ : P(ω)/fin → B is a surjective Boolean homo-
morphism such that ker(ϕ) is a P-ideal. Let µ be a measure on ω defined by
µ(A) = ν(ϕ(A)). Then µ is a P-measure.

Proof. Let F = {N ⊆ ω : ϕ(N) = 1}. Notice that F is a P-filter and that
F = {N ⊆ ω : µ(N) = 1}. Let (An) be a decreasing sequence of subsets of
ω and let Bn = ϕ(An). Then (Bn) is a decreasing sequence of elements of B.
There is B ∈ B such that λ(B) = limn→∞ λ(Bn).

Let A ⊆ ω be such that ϕ(A) = B. Then µ(A \ An) = 0 and so

A′
n = (A ∩ An) ∪A

c ∈ F

for each n. As F is a P-filter, there is N ∈ F such that N ⊆∗ A′
n for every

n. Then N ∩ A ⊆∗ An for every n and µ(N ∩ A) = limn→∞ µ(An). As (An) is
arbitrary, µ is a P-measure. �

As a corollary of the above and of Theorem 6.3 we get the following.

Corollary 6.5. Under CH there is a P-measure of countable Maharam type.

We will show that we can strengthen Kunen’s construction to obtain a mea-
sure that is not nearly Dirac. To do it we have to take a closer look at the proof
of Theorem 6.3. Let A ⊆ P (ω) be a family closed under finite modifications.
For a homomorphism ψ : A → B define ψ∗ : P (ω) → B and ψ∗ : P (ω) → B by

ψ∗(X) =
∧

{ψ(A) : A ∈ A, X ⊆ A}

and
ψ∗(X) =

∨
{ψ(A) : A ∈ A, A ⊆ X}.

The main tool in the proof of Theorem 6.3 is the following ingredient of the proof
of Sikorski’s theorem. By A(X) we will denote the Boolean algebra generated
by A and X.

Lemma 6.6. Let A ⊆ P (ω) be a countable Boolean algebra (closed under finite
modifications) and let ψ : A → B be a homomorphism. If X ⊆ ω and B ∈ B
is such that ψ∗(X) ⊆ B ⊆ ψ∗(X), then ψ can be extended to a homomorphism
ψ′ : A(X) → B in such a way that ψ′(X) = B.

Theorem 6.3 can be proved by transfinite induction, by taking care of the
following conditions:

(1) for every B ∈ B there is X ⊆ ω such that ϕ(X) = B.
(2) for every countable A ⊆ P(ω), such that λ(ϕ(Aα)) = 1 for each α < β,

there is a pseudo-intersection X ⊆ ω of A such that λ(ϕ(X)) = 1.
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Proposition 6.7. Assume CH. There is a P-measure that is not nearly Dirac.

Proof. We proceed as explained above, adding one more condition on ϕ.

(3) for every finite-to-1 function f : ω → ω there is N ⊆ ω such that

λ(ϕ(f−1[N ])) =
1

2
.

It is immediate (with a little use of 2.6) that (3) implies that the measure µ
defined by µ(X) = λ(ϕ(X)) is not nearly Dirac.

To achieve (3) suppose that A is countable and a function f : ω → ω is
finite-to-1. By induction we may find N ⊆ ω such that

|A ∩ f−1[N ]| = |A \ f−1[N ]| = ω

for every infinite A ∈ A.
It means that ϕ∗(A ∩ f−1[N ]) = 0 and ϕ∗(A ∩ f−1[N ]) = 1 and we can use

Lemma 6.6. �

7. A model with P-measures and without P-points

In this section, we will prove the following theorem. Denote

Bκ = Bor(2κ)/λκ=0,

where λκ is the standard Haar measure on 2κ. Recall that Bκ is the complete
Boolean algebra adding κ random reals.

Theorem 7.1. It is relatively consistent with ZFC that there is a P-measure,
there is no P-point and 2ℵ0 is arbitrarily large.

The proof will rely on two results concerning the random forcing. The first
one is proved in [BNS23, Theorem 4.15].

Theorem 7.2 (Borodulin-Nadzieja, Sobota). If there is a P-point in the ground
model, then after forcing with Bκ, for any κ, there is a P-measure.

The following is the main ingredient of the proof that there are no selec-
tive ultrafilters in the random model, see [Kun76, Theorem 5.1] and [BNS23,
Corollary 5.7] for an alternative proof.

Theorem 7.3 (Kunen). No selective ultrafilter from the ground model can be
extended to a P-point after forcing with Bκ for κ ≥ ω.

Having these two theorems and Problem 0.1 in mind, our attention should
be attracted by the following theorem, see [She17, Theorem 5.13 from Chapter
VI, and Theorem 4.1 from Chapter XVIII].

Theorem 7.4 (Shelah). It is consistent that there is a P-point and all P-points
are selective.
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Let V be a model witnessing the situation as in the above theorem. If we
force over V with a random forcing, then by Theorem 7.3 no ultrafilter from
V can be extended to a P-point and, by Theorem 7.2 there is a P-measure in
the extension. It sounds like we are close to proving Theorem 7.1. However, a
priori it is possible that by forcing with B we add some new P-points (we will
come back to this issue in the remarks after Question 7.21). So, to obtain a
model in which there are P-measures but no P-points, we have to work a little
bit more.

First, we need a strengthening of Theorem 7.3. We will show that not only
selective ultrafilters cannot be extended to P-points (in the random extensions)
but in fact all ultrafilters that are nearly coherent with selective ultrafilters.

Definition 7.5 (A. Blass, see [Bla86a]). Let F0 and F1 be filters on ω. We say
that F0 and F1 are nearly coherent if there is a finite to one function f : ω → ω
such that f [F0] ∪ f [F1] generates a filter.

Note that if U is an ultrafilter, then F , U are nearly coherent if and only if
there is a finite to one function f : ω → ω such that f [F ] ⊆ f [U ].

For a Bκ-name for an ultrafilter V̇ and p ∈ Bκ we denote

V̇[p] = {A ⊆ ω : p  A ∈ V̇}.

Theorem 7.6. Let U be a selective ultrafilter and V̇ be a Bκ-name such that
Bκ  V̇ is a P-point. Then for all p ∈ Bκ, the filters U and V̇ [p] are not nearly
coherent.

Proof. First note that if F is a filter which is Rudin-Blass above U , which is
witnessed by f : ω → ω, then F can not be extended to a P-point after forcing
with Bκ. Indeed, suppose that Ġ is a P-point extending F . Then U ⊆ f [Ġ], in

other words U can be extended to f [Ġ] which is a P-point. This is impossible
by Theorem 7.3.

Assume now that there is p0 ∈ Bκ such that U and V̇[p0] are nearly coherent,
and that this is witnessed by h : ω → ω. It means that h[V̇[p0]] ⊆ h[U ]. By
the previous paragraph and the fact that h[U ] is also selective, we have that
h[U ] �RB V̇ [p] for every p ∈ Bκ. So, for every p ≤ p0, there is Ap ∈ h[U ] such

that h−1[Ap] /∈ V̇ [p], which implies that there is q ≤ p such that q  Ap /∈ V̇.
Therefore, the set

D = {p ≤ p0 : ∃A ∈ h[U ] p  h−1[A] /∈ V̇}

is dense below p0. Let A ⊆ D be a maximal antichain below p0. As Bκ is
ccc, A is necessarily countable, so there is X ∈ h[U ] such that X ⊆∗ Ap, for

all p ∈ A. It follows that p  h−1[X ] /∈ V̇ for all p ∈ A (otherwise, for some

p ∈ A, there exist q ≤ p such that q  h−1[Ap] ∈ V̇ , which is a contradiction).

Since A is a maximal antichain below p0, it follows that p0  h−1[X ] /∈ V̇,

which implies that p0  ω \ h−1[X ] ∈ V̇ . Therefore, ω \ X ∈ h[V̇[p0]]. Thus,
we have X ∈ h[U ] and ω \X ∈ h[V̇[p0]], which contradicts our assumption that

h[V̇ [p0]] ⊆ h[U ]. �
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Remark 7.7. Having Theorem 7.6 and Theorem 7.3, we may face the following
temptation. Recall that the principle of Near Coherence of Filters (NCF) says
that any two different filters are nearly coherent. It is consistent (e.g. it is
implied by u < g, see [Bla10]). So, if we have NCF with the existence of
selective ultrafilter, then by Theorem 7.6 no ultrafilter would be extendible to a
P-point in the random extensions (and by Theorem 7.2 there are P-measures in
the random extensions). So, by forcing with Bω2

over such a model, we would
obtain a model with P-measures but without P-points. Unfortunately, this
approach does not work: NCF implies that there are no selective ultrafilters.
Indeed, suppose that NCF holds and that U is a selective ultrafilter. NCF
implies that u < d (see [Bla86b]). So, there is an ultrafilter V generated by less
than d sets. By NCF we have h[V] ≤RB h[U ]. But h[U ] is selective, and so h[V]
is also selective which is impossible, see [Bla10, Remark 9.24].

Now, we will prove Theorem 7.4 in a slightly stronger form in a series of
lemmas. We will extensively use filter games, both the classical one introduced
by Laflamme in [Laf96] and its modification considered by Eisworth in [Eis01].

Definition 7.8 (P-filter game). Let F be a filter on ω. Consider the game
G(F) between Adam and Eve defined in the following way:

• At round n Adam plays a set An ∈ F and Eve responds with a finite
set Fn ⊆ An.

Eve wins if
⋃

n Fn ∈ F .

Using the above game gives us a handy characterization of the property of
being a P-filter in the realm of non-meager filters, see [Laf96, Theorem 2.15]

Theorem 7.9 (Laflamme). Suppose that F is non-meager. Then F is a P-filter
if and only if Adam does not have a winning strategy in G(F).

We will also need a game defined in the same spirit by Eisworth in [Eis01,
Definition 3.3].

Definition 7.10. Let F0,F1 be filters on ω. The game G(F0,F1) between
Adam and Eve is defined as follows: a complete stage of the game consists of
two rounds:

• At round 2n, Adam plays sets An ∈ F0, and Eve answers with an ∈ An.
• At round 2n + 1, Adam plays sets Bn ∈ F1, and Eve answers with a

non-empty Fn ∈ [Bn]
<ω.

Eve wins if {an : n ∈ ω} ∈ F0 and
⋃

n Fn ∈ F1.

For technical reasons, we will ask Eve to play different numbers an and pair-
wise disjoint sets Fn. Taking into account her aim in the game, she should not
complain about this additional rule.

Our first step is to prove that under suitable assumptions, Adam has no
winning strategy in the previous game. We need the following lemma. The
reader can find similar theorems in [Eis01, Corollary 2.3] and [Cho11].
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Lemma 7.11 (Eisworth). Let F0,F1 be filters which are not nearly coherent.
Let I = {In : n ∈ ω} be an interval partition of ω. Then there is an interval
partition J = {Jn : n ∈ ω} such that each Jn is a union of elements of I, and

⋃

k∈ω

J4k+1 ∈ F0 and
⋃

k∈ω

J4k+3 ∈ F1

The following lemma is essentially [Eis01, Theorem 1].

Lemma 7.12. Let U be a selective ultrafilter, let F be a P-filter, and suppose
that they are not nearly coherent. Then Adam has no winning strategy in the
game G(U ,F).

Proof. Let Σ be a strategy for Adam. We will produce a run of the game
in which he uses Σ but nevertheless, Eve wins the game. We think of Σ
in a natural way as a tree such that each σ ∈ Σ is a sequence of the form
(A0, a0, B0, F0, A1, . . . , An) or (A0, a0, B0, F0, A1, . . . , Bn), where Ai, ai, Bi, Fi

are as described in Definition 7.10.
Note that Σ is a countable tree, so there is Aω ∈ U which is a pseudointer-

section of all the elements of U appearing in Σ and, similarly, there is Bω ∈ F
which is a pseudointersection of all the elements of F which appeared in Σ. We
can assume that Aω ⊆ A0, the first move of Adam.

Fix n ∈ ω. Notice that there are finitely many σ ∈ Σ such that every Eve’s
move in σ is a subset of n; we say that such σ has rank ≤ n. Denote by Σn all
the elements of Σ having rank ≤ n. Furthermore, let En denote the collection
of sets A ∈ U such that there is a σ ∈ Σn in which the set A appears. Similarly,
denote by On the collection of sets B ∈ F such that there is σ ∈ Σn in which
the set B appears. Notice that both En and On are finite.

Now we define a sequence of natural numbers {kn : n ∈ ω} as follows:

(1) k0 = 0 and k1 is such that A0 ∩ k1 6= ∅.
(2) Assume ki has been defined. Then choose ki+1 such that Aω∩[ki, ki+1) 6=

∅, Bω ∩ [ki, ki+1) 6= ∅ and for all A ∈ Eki, Aω \ ki+1 ⊆ A, and for all
B ∈ Oki, Bω \ ki+1 ⊆ B.

Having defined the sequence, consider the interval partition given by In =
[kn, kn+1). Apply Lemma 7.11 to get a partition {Jn : n ∈ ω} such that each Jn
is union of finitely many consecutive intervals Ik, and such that

⋃

k∈ω

J4k+1 ∈ U and
⋃

k∈ω

J4k+3 ∈ F .

We may assume that k1 < min(J1), and so k2 ≤ min(J1) (the minimum
of each interval Jn is of the form kl). Since U is a selective ultrafilter, and
Aω ∩ In 6= ∅ for each n we can find A = {an : n ∈ ω} ∈ U , A ⊆ Aω such that
A∩ J4n+1 = {an} for all n ∈ ω. Let B = Bω ∩

⋃
n∈ω J4n+3. We claim that there

is a run of the game in which Adam follows Σ and Eve constructs the sets A
and B along. Clearly, this suffices to prove that Σ is not a winning strategy, as
A ∈ U and B ∈ F . Eve should play as follows:
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(1) After Adam has played A0, Eve plays a0. Notice that it is a legal move
(i.e. a0 ∈ A0) as a0 ∈ Aω and Aω ⊆ A0.

(2) Then Adam answers with B0. Note that σ = (A0, a0, B0) has rank
≤ max(J1) + 1 = min(J2), so B0 ∈ Omin(J2), which implies that Bω \
min(J3) ⊆ B0, so Bω∩J3 ⊆ B0. Then Eve can play F0 = Bω∩J3 = B∩J3
which is non-empty by the choice of the sequence (kn).

(3) Let A1 be the answer of Adam. The sequence (A0, a0, B0, F0, A1) has
rank ≤ min(J4), so A1 ∈ Emin(J4), which implies that Aω \min(J5) ⊆ A1,
and thus, a1 ∈ A1, which makes it a legal (and recommended) move for
Eve.

(4) Eve continues playing an and Fn = Bω ∩ J4n+3 accordingly.

Note that
⋃

n∈ω Fn = B, and clearly A = {an : n ∈ ω}. �

The following forcing notion was introduced by Shelah to prove Theorem 7.4.

Definition 7.13. For each natural number n, let Sn = Πk≤n2
n (note that

here by 2n we mean the set of sequences of bits having length n; to avoid
misunderstandings in what follows we will denote the elements of 2n by Roman
letters s, t, . . . and the elements of Sn by Greek letters σ, τ, ..), and S =

⋃
n∈ω Sn.

A tree T ⊆ S is a family closed under initial segments. For a tree T ⊆ S, τ ∈ T ,
and n ∈ ω, define

• T [n] = {σ ∈ T : |σ| = n},
• succT (σ) = {s ∈ 2|σ| : σ⌢s ∈ T},
• T ↾ τ = {σ ∈ T : τ ⊆ σ ∨ σ ⊆ τ}.

Let F be a filter. For a tree T ⊆ S and k ∈ ω, define

sptk(T ) = {n ∈ ω : ∀τ ∈ T [n] ∀s ∈ 2k ∃t ∈ succT (τ) s ⊆ t}.

The forcing SP ∗(F) is defined as the collection of all trees T ⊆ S such that
for all k ∈ ω, sptk(T ) ∈ F . The order is given by set inclusion.

Notice that if T ∈ SP ∗(F) and τ ∈ T , then T ↾ τ ∈ SP ∗(F).

Remark 7.14. The conditions of SP ∗(F) are slightly complicated so maybe
this is a good moment to see how the forcing actually ’works’. LetG be SP ∗(F)-
generic, and define g ∈ [S] to be such that

⋃⋂
G = {g}. We can see it as a

sequence of reals: for each natural number define ṙn : ω \ (n+ 1) → 2 as

ṙn(k) = 1 if and only if ġ(k)(n) = 1.

Actually, we will rather treat it as a sequence of subsets of ω:

Ṙn = {k ∈ ω : ṙn(k) = 1}.

A simple density argument shows that for all n ∈ ω we have Ṙn, ω \ Ṙn ∈ F+.

The family {Ṙn : n ∈ ω} will be used in a crucial step of the proof.

Proposition 7.15 (Shelah, see [She17]). If F is a non-meager P-filter, the
forcing SP ∗(F) is proper and ωω-bounding.
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Proof. We only prove that SP ∗(F) is ωω-bounding, the proof for properness
follows similar lines, just choosing an elementary submodel as usual and taking
care that each step of the construction lives inside the submodel. So let p ∈
SP ∗(F) be a condition and let ḟ be a name for a function from ω to ω. We
are going to find a sequence of finite sets {Wn : n ∈ ω} and q ≤ p such that

q  ḟ(n) ∈ Wn for each n ∈ ω. To do so, we give a strategy to Adam in the
P-filter game G(F).

• Adam starts by extending p to a condition p0 ≤ p which decides the
value of ḟ(0), and plays the set spt1(p0).

• Eve answers with a finite set F0 ⊆ spt1(p0). Then Adam chooses a
natural number n0 > max(F0). Define W0 = {l}, where l is such that

p0  ḟ(0) = l.
• At round k, suppose Eve has previously played a set Fk−1, Adam has

chosen nk−1 > max(Fk−1) and defined conditions {pi : i < k} and finite

set {Wi : i < k} such that pi  ḟ(i) ∈ Wi. Now, for each node σ ∈

p
[nk−1]
k−1 , let qs ≤ pk−1 ↾ σ be a condition which decides the value of ḟ(k),

and let Adam play the set
⋂
{sptk+1(qσ) : σ ∈ p

[nk−1]
k−1 }.

• Eve answers with a finite set Fk. Then Adam chooses a natural number

nk > max(Fk), defines pk =
⋃
{qσ : σ ∈ p

[nk−1]
k−1 }, and

Wk = {l ∈ ω : ∃σ ∈ p
[nk−1]
k−1 qσ  ḟ(k) = l}.

Notice that Fk ⊆ sptk(pk) and pk  ḟ(k) ∈ Wk.

This is not a winning strategy for Adam, because of Theorem 7.9. So, there
is a run of the game in which Eve wins. Let {pn : n ∈ ω} and {Wn : n ∈ ω}
be the sequences constructed along such a run. Define pω =

⋂
n∈ω pn. Notice

that p
[i]
ω = p

[i]
n for every i ≤ n. So, as nk > maxFk for each k, we have that⋃

l≥k Fl ⊆ sptk(pω) for each k. Hence, pω is a condition. Also, since pω ≤ pk for

each k, we have pω  ḟ(k) ∈ Wk and we are done.
�

The following is essentially a part of the proof of Shelah’s theorem on the
consistency of the existence of only one selective ultrafilter up to permutation,
we include the proof for completeness.

Lemma 7.16 (S. Shelah, see [She17]). Let U be a selective ultrafilter and F be

a non-meager P-filter such that U and F are not nearly coherent. Let Q̇ be a
SP ∗(F)-name for a proper ωω-bounding forcing. Then:

(1) SP ∗(F) preserves U as a selective ultrafilter.

(2) SP ∗(F) ∗ Q̇ forces that F can not be extended to a P-point.

Proof. We first prove (1). Let ẋ be a name for a subset of ω and let p ∈ SP ∗(F).
We are going to show that there is q ≤ p such that

(i) q  ẋ is disjoint with an element of U or
(ii) q  ẋ has a subset belonging to U .
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It will mean that U generates an ultrafilter in the forcing extension, and we will
be done.

For q ∈ SP ∗(F) define ẋ[q] = {n ∈ ω : ∃r ≤ q r  n ∈ ẋ}. If there is a
condition q ≤ p such that ẋ[q] /∈ U , then we are in the situation (i). So we may
assume that for all q ≤ p ẋ[q] ∈ U . We give a strategy for Adam in the game
G(U ,F). On the side, Adam will construct a decreasing sequence of conditions
{pn : n ∈ ω} and a sequence of natural numbers {an : n ∈ ω} = A ∈ U , and
after a run of the game in which Eve wins, there will be a lower bound pω of
{pn : n ∈ ω} and pω  A ⊆ ẋ.

We dictate to Adam the following strategy.

• Adam starts by playing ẋ[p]. Then Eve chooses a0 ∈ ẋ[p]. Now Adam
extends p to a condition p0  a0 ∈ ẋ, and plays the set spt1(p0). Then
Eve answers with a finite set F0 ⊆ spt1(p0) and Adam chooses a natural
number n0 > max(F0).

• At stage k, after Eve has played Fk−1, Adam has chosen nk−1 and has
defined pk−1, we proceed as follows. Adam plays the set

Ak =
⋂

{ẋ[pk−1 ↾ σ] : σ ∈ p
[nk−1]
k−1 }.

Then Eve answers with ak ∈ Ak. For each σ ∈ p
[nk−1]
k−1 , Adam extends

the condition pk−1 ↾ σ to a condition qσ which forces ak ∈ ẋ. Then he
plays the set

Bk =
⋂

{sptk+1(qσ) : σ ∈ p
[nk−1]
k−1 }

Then Eve answers with a finite set Fk ⊆ Bk, and Adam chooses nk >

max(Fk). Finally, he defines pk =
⋃
{qσ : σ ∈ p

[nk−1]
k−1 }. Note that pk 

ak ∈ ẋ.

By Theorem 7.9 the above strategy is not winning. Let A = {ak : k ∈ ω},
{Fk : k ∈ ω} and {pk : k ∈ ω} be the sequences constructed along a run of the
game in which Eve wins. Define pω =

⋂
k∈ω pn. Similarly as in the proof of

Proposition 7.15 we have that pω ∈ SP ∗(F). We also have that pω  A ⊆ ẋ,
and A ∈ U . So, we are in the situation (ii), for q = pω. This finishes the proof
of (1).

We now prove (2). We will use the terminology of Remark 7.14. Let V̇ be

a SP ∗(F) ∗ Q̇-name for an ultrafilter extending F , and define ḣ : ω → 2 as

ḣ(n) = 1 if and only if Ṙn ∈ V̇. So,

Ṙḣ(n)
n ∈ V̇

for every n.
Fix a condition (p, q̇) ∈ SP ∗(F)∗Q̇. We have two cases: (a) there is (p0, q̇0) ≤

(p0, q̇0) which forces ḣ to be eventually constant; (b) (p, q̇) forces that ḣ is not
eventually constant. We only prove (b) since the argument for (a) is similar
and slightly simpler.
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Since Q̇ is forced to be ωω-bounding, also SP ∗(F) ∗ Q̇ is ωω-bounding, and
so there is a condition (p0, ṙ0) ≤ (p, q̇) and a function f ∈ ωω such that for all
n ∈ ω, n + 1 < f(n) and

(p0, ṙ0)  ∃i, j ∈ [f(n), f(n+ 1)) ḣ(i) 6= ḣ(j).

For each n ∈ ω define

Ẇn =
⋂

j∈[f(n),f(n+1))

Ṙ
ḣ(j)
j .

Clearly, Ẇn is forced to be in V̇. We will show that {Ẇn : n ∈ ω} has no
pseudo-intersection in V̇. Indeed, let Ż be a name for a pseudointersection of
{Ẇn : n ∈ ω}. We may assume that there is g ∈ ωω in the ground model such

that (p0, ṙ0) forces Ż \ g(n) ⊆ Ẇn for each n (extending and renaming (p0, ṙ0)
if needed).

Again, we will play the P-filter game. We suggest the following strategy
to Adam. Let q0 = p0 and let k0 > g(0). At stage n, after defining qn and
kn > g(n), Adam plays the set An = sptf(n+1)(qn) \ kn. Eve responds with a
finite set Fn = {an0 < . . . < anmn

} ⊆ An. We construct a sequence of decreasing

conditions {pnj : j ≤ mn} as follows. For each σ ∈ q
[an0 ]
n and s ∈ 2n+1 using the

fact that an0 ∈ sptf(n+1)(qn) we can find rσs ∈ succqn(σ) such that

• s ⊆ rσs , and
• for all l ∈ [f(n), f(n+ 1)) we have rσs (l) = 0.

Define

pn0 =
⋃

{qn ↾ (σ⌢rσs ) : σ ∈ q[a
n
0 ]

n ∧ s ∈ 2n+1}.

Notice that for each j ∈ [f(n), f(n+ 1))

(pn0 , ṙ0)  an0 /∈ Ṙj

and since there is i ∈ [f(n), f(n+1)) such that (p0, ṙ0)  ḣ(i) = 0 we have also

(pn0 , ṙ0)  an0 /∈ Ẇn.

Now, having defined pnj , for each σ ∈ (pnj )
[anj+1

] and s ∈ 2n+1, let rσs ∈ succpnj (σ)
be such that

• s ⊆ rσs , and
• for all l ∈ [f(n), f(n+ 1)), rσs (l) = 0.

Define

pnj+1 =
⋃

{pnj ↾ (σ⌢rσs ) : σ ∈ (pnj )
[anj+1

] ∧ s ∈ 2n+1}.

Finally, let qn+1 = pnmn
, choose kn+1 > max{g(n+1),max(Fn)}, and notice that

(qn+1, ṙ0)  Fn ∩ Ẇn = ∅.

According to Theorem 7.9 there is a run of the game in which the above
strategy fails. Let {qn : n ∈ ω} and {Fn : n ∈ ω} be the sequences constructed
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along such a run. Then X =
⋃

n∈ω Fn ∈ F . Define qω =
⋂

n∈ω qn and notice
that, as in the proof of Theorem 7.15, qω is a condition. Then for each n

(qω, ṙ0)  Fn ∩ Ẇn = ∅.

But, as minFn > g(n) and (p0, ṙ0)  Ż \ g(n) ⊆ Ẇn it means that

(qω, ṙ0)  Fn ∩ Ż = ∅.

So, (qω, ṙ0) forces Ż to be outside V̇. �

Before the proof of the main theorem, we need one more fact: if we force
with a random forcing over a model V , then every Bκ-name for a non-principal
ultrafilter on ω contains a substantial portion of a ground model ultrafilter.

Proposition 7.17. Suppose that V̇ is a Bκ-name for an ultrafilter on ω. Let
p ∈ Bκ. Then, there is a measure µ on ω, vanishing on points, such that

{F ⊆ ω : µ(F ) = 1} ⊆ V̇[p] (= {A ⊆ ω : p  A ∈ V̇}).‘

Additionally, if p forces that V̇ is a P-point, then µ can be assumed to be a
P-measure.

Proof. Let V̇ be a name for an ultrafilter. Let µ be a measure on ω defined by

µ(A) = λ(JA ∈ V̇K ∩ p)/λ(p).

Clearly, if µ(A) = 1, then p  A ∈ V̇ and so A ∈ V̇[p].
Now, suppose that p  V̇ is a P-point. Let (An) be a decreasing sequence of

subsets of ω. Suppose, towards the contradiction, that limn→∞ µ(An) = a > 0
and there is no pseudointersection A of (An) such that µ(A) = a. In fact, we
may assume that there is no pseudointersection A of (An) such that µ(A) > 0

(see [BNS23, Lemma 3.3]). Let p =
∧

JAn ∈ U̇K. Then p 6= 0 and p  ∀n An ∈
V̇ . So, there is q ≤ p such that

q  ∃Ḃ ∈ U̇ ∀n Ḃ ⊆∗ An.

By the fact that Bκ is ωω-bounding, there is r ≤ q and A ∈ V , p  Ḃ ⊆ A such
that

r  ∀n A ⊆∗ An.

Then r ≤ JA ∈ U̇K and so µ(A) > 0, a contradiction. �

In the proof of the main theorem we will only need the first part of the
above proposition, the part about P-measure will be needed for other purposes.
Actually, we will use only the following corollary.

Corollary 7.18. Suppose that V̇ is a Bκ-name for an ultrafilter on ω. Then
V̇ [p] is non-meager for each p ∈ Bκ.

Proof. Suppose that F is a filter containing a family {A ⊆ ω : µ(A) = 1} for
some measure on ω. According to Proposition 2.10 the filter F is non-meager
and so, thanks to Proposition 7.17, we are done. �
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Remark 7.19. Recall that a filter F is called ccc if P(ω)/F∗ is ccc. In the
proof of Proposition 2.10 we actually show that every ccc filter is nonmeager.
It is not difficult to prove that if P is a ccc forcing notion, and U̇ is a P-name
for an ultrafilter on ω, then there is a ground model ccc filter F such that U̇
extends F (see e.g. [Wim82]). As Bκ is obviously ccc, we could use this fact to
prove Corollary 7.18 instead of Proposition 7.17.

Now we are ready to prove the main theorem of this section.

Proof. (of Theorem 7.1) Assume V is a model of ZFC+ CH+♦(S), where S ⊆
ω2 is stationary. Let (Aα : α ∈ S) be a ♦(S)-guessing sequence. Let κ ≥ ω2

be an uncountable regular cardinal. Let U be a selective ultrafilter and V a P-
point which is not Rudin-Blass above U . Define a countable support iteration
(Pα, Q̇α : α < ω2) as follows:

(1) P0 = SP ∗(U).
(2) If α /∈ S, define Q̇α to be the trivial forcing.

(3) If α ∈ S, and Aα codifies a Pα-name for a non-meager P-filter Ḟ which

is not nearly coherent with U , define Pα  Q̇α = SP ∗(Ḟ); otherwise, let

Q̇α be the trivial forcing.

Let Pω2
the resulting forcing, and let Ḃκ be a Pω2

-name for the forcing adding
κ random reals. Our working forcing is Pω2

∗ Ḃκ.
Let G ∗ H be a Pω2

∗ Ḃκ-generic filter, and for each α < ω2 let Gα be the
restriction of G to Pα. Since all steps of the iteration preserve U (by Lemma
7.16), we have that U continues to generate a selective ultrafilter in V [G]. So,
by Theorem 7.2, there is a P-measure in V [G ∗H ].

Now, suppose for the sake of contradiction, that there is a P-point F in
V [G ∗H ]. By Lemma 7.6 we have that in V [G] the P-filter Ḟ [1] is not nearly

coherent with U and by Corollary 7.18 it is non-meager. Let Ḣ be a Pω2
-name

for the filter Ḟ [1]. For each α ∈ ω2, define Ḣα = Ḣ ↾ Pα. Let

C0 = {α ∈ ω2 : Pα  Ḣα = Ḣ ∩ V [Gα]}

and let

C1 = {α ∈ ω2 : Pα  Ḣα ∈ V [Gα] is not nearly coherent with U}.

The set C0 ∩ C1 is a club set, so there is α ∈ S ∩ C0 ∩ C1 such that Aα

encodes a Pα-name for the filter Ḣα. Thus, we have Pα  Q̇α = SP ∗(Ḣα). By

Lemma 7.16 we have that Pα+1 forces that Ḣα cannot be extended to a P-point
in any further ωω-bounding extensions, so it cannot be extended to a P-point
in V [G ∗H ]. Since Ḣα ⊆ Ḟ [1] ⊆ F , we have that F is not a P-point, which is
a contradiction.

Since Bκ is ccc and adds κ new reals, all cardinal numbers are preserved and
the continuum is at least κ in V [G ∗H ].

�
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Corollary 7.20. It is relatively consistent with ZFC that there is a P-measure
but there is no P-point (and so, there is no ultrafilter density that is a P-
measure).

We will finish this section with some remarks on the random forcing.
As we have mentioned at the beginning of this section, the proof of Theorem

7.1 could be substantially shortened if we know that the random forcing cannot
add a ’new’ P-point (i.e. that every P-point in the random extension extends a
ground model P-point). However, we do not know that, nor do we know that
this is not true.

Problem 7.21. Is there a model V such that in the random extension V B there
is a P-point which does not extend any P-point from V ?

Recall that it is still an open problem if there is a P-point in the classical
random model. Kunen (see [Bre17]) proved that if we first add ω1 Cohen reals
to the ground model and then add random reals, then in the resulting model
there is a P-point. Dow (see [Dow20]) showed that this assertion holds also if
we assume �ω1

in the ground model. In both cases, the constructed P-point is
an extension of a P-point from the ground model.

The proof of Theorem 7.1 shows that consistently random forcings do not
add ’new’ P-points. Also, (the second part of) Proposition 7.17 says that if
we add random reals to a model without P-measures, then we cannot add any
P-point.

So, there is a chance that Problem 7.21 has a negative solution. On the other
hand, if the answer is positive, the proof could bring us closer to the solution
of the problem of the existence of P-point in the random model.

Finally, notice a peculiar symmetry of Theorem 7.2 and Proposition 7.17:
every P-point in the ground model induces naturally a P-measure in the random
extension, but also every P-point in the random extension induces in a natural
way a P-measure in the ground model.
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