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Definicja
Para (X , r), gdzie X jest niepustym zbiorem, a r : X × X → X × X jest
teoriozbiorowym rozwiązaniem równania Yanga–Baxtera, gdy na X × X × X
spełniona jest równość

(r × id)(id ×r)(r × id) = (id ×r)(r × id)(id ×r). (YB)

Notacja: r(x , y) = (λx (y), ρy (x)), gdzie λx , ρx : X → X

Rozwiązanie jest
1) lewostronnie (prawostronnie) niezdegenerowane, gdy λx : X → X

(ρx : X → X) jest bijekcją dla dowolnego x ∈ X ,
2) niezdegenerowane, gdy jest prawostronnie oraz lewostronnie

niezdegenerowane,
2) bijektywne, gdy r jest bijekcją.

2



Przykłady

1) (X , idX×X ) jest bijektywnym rozwiązaniem równania (YB), które nie jest
lewostronnie ani prawostronnie niezdegenerowane.

2) Niech f , g : X → X będą bijekcjami na zbiorze X . Wtedy (X , r) zadane jako

r(x , y) = (f (y), g(x))

jest (niezdegenerowanym) rozwiązaniem wtedy i tylko wtedy, gdy fg = gf .
3) Gdy G jest grupą, (G , r) takie, że

r(x , y) = (y , y−1xy)

jest bijektywnym oraz niezdegenerowanym rozwiązaniem.
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Przykład - motywacja

Półgrupa S jest inwersyjna, gdy dla dowolnego s ∈ S istnieje dokładnie jeden
element, oznaczany przez s− taki, że s−ss− = s− oraz ss−s = s.

Definicja
Trójkę (S, +, ◦) nazywamy słabą klamerką, gdy S zbiorem z dwoma
działaniami takimi, że (S, +) oraz (S, ◦) są półgrupami inwersyjnymi takimi, że

x ◦ (y + z) = x ◦ y − x + x ◦ z,

x ◦ x− = −x + x

dla dowolnych x , y , z ∈ S, gdzie −x oraz x− to odwrotności x w (S, +) oraz
(S, ◦). Wtedy

λx (y) = −x + x ◦ y , ρy (x) = λx (y)− ◦ x ◦ y

jest rozwiązaniem równania Yanga–Baxtera.

słaba klamerka, w której jest dokładnie jeden idempotent ↭ skośna klamerka

4



Przykład

Gdy S jest półgrupą Clifforda, tzn. inwersyjną półgrupą, w której dla
dowolnego x ∈ S zachodzi xx− = x−x , to (S, +, ◦) takie, że

x + y = x ◦ y

dla dowolnych x , y ∈ S jest słabą klamerką.
Wówczas stowarzyszone z nią rozwiązanie jest postaci

r(x , y) = (x ◦ x− ◦ y , y− ◦ x ◦ y)

dla dowolnych x , y ∈ S.
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Przykład - własności rozwiązań

Twierdzenie (Catino, Mazzotta, Miccoli, Stefanelli)
Dla dowolnej słabej klamerki (S, +, ◦) półgrupa (S, +) jest półgrupą Clifforda.
Gdy dodatkowo także (S, ◦) jest półgrupą Clifforda, to słaba klamerka jest
nazywana dualną słabą klamerką.

Obserwacja
Dla dowolnego rozwiązania r pochodzącego od słabej klamerki (S, +, ◦)
zachodzi

rr opr = r , r oprr op = r op, rr op = r opr ,

gdzie r op to rozwiązanie pochodzące od (S, +op, ◦), gdzie dla dowolnych
a, b ∈ S mamy a +op b = b + a.
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Przykład - własności rozwiązań

Stwierdzenie
Dla dowolnej dualnej słabej klamerki (S, +, ◦) zbiory Λ(S) = {λx |x ∈ S} oraz
ρ(S) = {ρx |x ∈ S} są podpółgrupami Clifforda w monoidzie SS składającym
się ze wszystkich funkcji S → S.

Wniosek
Dla dowolnego rozwiązania r(x , y) = (λx (y), ρy (x)) pochodzącego od dualnej
słabej klamerki oraz dowolnego λx istnieje λ−

x takie, że

λ−
x λx λ−

x = λ−
x , λx λ−

x λx = λx , λ−
x λx = λx λ−

x .
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Rozwiązania quasi-bijektywne oraz quasi-niezdegenerowane

Definicja (Mazzotta, Stefanelli, W.)
Rozwiązanie (X , r), gdzie r(x , y) = (λy (x), ρx (y)) jest
1) quasi-bijektywne, gdy istnieje rozwiązanie

(
X , r−)

takie, że

rr−r = r , r−rr− = r− oraz r−r = rr−,

2) lewostronnie quasi-niezdegenerowane, gdy dla dowolnego x ∈ X istnieje
λ−

x : X → X takie, że dla dowolnych x , y ∈ X

λx λ−
x λx = λx , λ−

x λx λ−
x = λ−

x , λ0
x := λx λ−

x = λ−
x λx , λ0

x λy = λy λ0
x ,

3) quasi-niezdegenerowane, gdy jest lewostronnie oraz prawostronnie
quasi-niezdegenerowane.
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Obserwacja
Dla dowolnej półgrupy S oraz a ∈ S, jeśli istnieje x ∈ S takie, że axa = a,
xax = x oraz ax = xa, to x jest wyznaczone jednoznacznie.

Szkic dowodu
Warunki z obserwacji gwarantują, że a oraz x są we wspólnej H-klasie
zawierającej także idempotent ax . Z twierdzenia Greena wynika, że ta klasa
musi być podgrupą w S, a stąd teza.

Wniosek
1) Dla dowolnego rozwiązania quasi-bijektywnego (X , r), rozwiązanie r− jest

wyznaczone jednoznacznie.
2) Dla dowolnego rozwiązania lewostronnie quasi-niezdegenerowanego (X , r)

oraz x ∈ X funkcja λ−
x jest wyznaczona jednoznacznie.

9



Przykłady

1) Dowolne rozwiązanie (X , r) pochodzące od słabej klamerki jest
quasi-bijektywne, gdzie r− = r op. Gdy słaba klamerka jest dualna,
to rozwiązanie jest także quasi-niezdegenerowane.

2) Dowolne rozwiązanie spełniające warunek r 3 = r jest quasi-bijektywne.
4) Dla dowolnego zbioru X rozpatrzmy przemienne ze sobą funkcje

f , g : X → X . Wówczas

r(x , y) = (f (y), g(x))

jest rozwiązaniem quasi-niezdegenerowanym, gdy f oraz g mają
odwrotności f − oraz g− takie, że ff − = f −f oraz gg− = g−g .

5) Rozwiązanie r(x , y) = (x , y) jest quasi-bijektywne (r− = r), ale nie jest
lewostronnie ani prawostronnie quasi-niezdegenerowane dla |X | > 1,
ponieważ λ0

x λy ̸= λy λ0
x dla x ̸= y .
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Definicja
Para (X , ▷) jest shelfem, gdzie X jest zbiorem, a ▷ : X × X → X , gdy dla
dowolnych x , y , z ∈ X zachodzi

x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z). (SD)

Oznaczmy Lx = x ▷ − : X → X . Wówczas (SD) można przepisać jako

Lx Ly = LLx (y)Lx

Funkcja r(x , y) = (y , y ▷ x) jest rozwiązaniem (YB) ⇐⇒ (X , ▷) jest shelfem

Definicja (Mazzotta, Stefanelli, W.)
Shelf (X , ▷) jest quasi-rackiem, gdy lewostronne mnożenia Lx spełniają

Lx L−
x Lx = Lx , L−

x Lx L−
x = L−

x , L0
x := Lx L−

x = L−
x Lx , oraz L0

x Ly = Ly L0
x .

dla dowolnych x , y ∈ X .
Jeśli dodatkowo Lx (x) = x dla dowolnego x ∈ X , to (X , ▷) jest
quasi-quandlem.
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Przykłady

1) Niech X będzie dowolnym zbiorem oraz f : X → X idempotentem.
Wówczas

x ▷ y := f (y)

jest quasi-rackiem.
2) Załóżmy, że S jest półgrupą Clifforda oraz niech e ∈ S będzie

idempotentem. Wówczas
x ▷ y := x−yxe,

dla dowolnych x , y ∈ S zadaje strukturę quasi-racka na S, gdzie L−
x = Lx−

dla dowolnego x ∈ S.
3) Podobnie, gdy S jest półgrupą Clifforda, (S, ▷) takie, że

x ▷ y := xy−x

jest quasi-quandlem na S.
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Rozwiązania pochodzące od quasi-racków

Definicja
Załóżmy, że (X , ▷) jest quasi-rackiem. Wówczas przez r▷ będziemy oznaczać
następującą funkcję X × X → X × X

r▷(x , y) =
(
L0

x (y), Ly (x)
)

.

Przykłady
1) Niech (X , ▷) będzie quasi-rackiem takim, że x ▷ y = f (y) dla pewnego f

takiego, że f 2 = f . Wtedy

r▷(x , y) = (f (y), f (x))

jest rozwiązaniem równania (YB).
2) Gdy (S, ▷), gdzie S jest półgrupą Clifforda oraz x ▷ y = xy−x , otrzymujemy

rozwiązanie
r▷(x , y) =

(
x0y , yx−y

)
.
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Kiedy quasi-racki zadają rozwiązanie równania Yanga–Baxtera?

Twierdzenie (Mazzotta, Stefanelli, W.)
Niech (X , ▷) będzie quasi-rackiem takim, że zachodzi co najmniej jeden
z warunków

L0
Lx (y) = L0

x L0
y

lub

Ly (x) = LL0
x (y)(x)

dla dowolnych x , y ∈ X .
Wówczas

r▷(x , y) =
(
L0

x (y), Ly (x)
)

jest quasi-niezdegenerowanym rozwiązaniem (YB).
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Kiedy quasi-racki zadają rozwiązanie równania Yanga–Baxtera?

Wniosek
Niech (X , ▷) będzie quasi-rackiem takim, że dla dowolnych x ∈ X zachodzi

L0
x (x) = x .

Wówczas r▷ jest quasi-niezdegenerowanym rozwiązaniem.

Szkic dowodu
Załóżmy, że L0

x (x) = x . Korzystając z tego, że Lx Ly = LLx (y)Lx otrzymujemy

L0
x Ly = L−

x LLx (y)Lx = L−
x LLx (L0

x (y))Lx = L0
x LL0

x (y).

Dla dowolnych x , y ∈ X zachodzi

Ly (x) = Ly L0
x (x) = L0

x Ly (x) = L0
x LL0

x (y)(x) = LL0
x (y)(x),

a więc spełniony jest jeden z warunków z twierdzenia. Zatem r▷ jest
quasi-niezdegenerowanym rozwiązaniem.
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Kiedy quasi-racki zadają rozwiązanie równania Yanga–Baxtera?

Stwierdzenie
Niech (X , ▷) będzie quasi-rackiem takim, że dla dowolnych x ∈ X zachodzi

L0
x (x) = x .

Wówczas r▷ jest quasi-bijektywnym rozwiązaniem.
Można sprawdzić, że w tym przypadku

r−
▷ (x , y) = (L−

x (y), L0
y (x)).

W szczególności, gdy Lx (x) = x dla x ∈ X , rozwiązanie r▷ jest
quasi-niezdegenerowane i quasi-bijektywne.
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Przykłady

L0
Lx (y) =L0

x L0
y

Ly (x) =LL0
x (y)(x)

L0
x (x) =x

1) Dla dowolnej funkcji f : X → X takiej, że f 2 = f , quasi-rack taki, że
Lx (y) = f (y) spełnia oba warunki z twierdzenia.

2) Niech X będzie półgrupą Clifforda, e ∈ X idempotentem oraz
Lx (y) = x−yxe. Wtedy

LL0
x (y)(x) = Lx0ye(x) = x0y−xyx0e = Ly (x).

Z drugiej strony, L0
x (x) = xe ̸= x , więc trzeci nie musi zachodzić.

Rozwiązanie
r▷(x , y) =

(
x0ye, y−xye

)
jest quasi-niezdegenerowane oraz quasi-bijektywne.
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Przykłady c.d.

L0
Lx (y) =L0

x L0
y

Ly (x) =LL0
x (y)(x)

Niech X = {1, 2, 3, 4}. Wówczas L1 = L4 = (1111), L2 = idX oraz L3 = (1231)
zadaje na X strukturę quasi-racka. Wówczas

L0
L3(2) = L2 = idX ̸= L3 = L0

3L0
2,

oraz
L2(3) = 3 ̸= 2 = LL0

2(3)(2),

ale r▷(x , y) =
(
L0

x (y), Ly (x)
)

będące postaci

(x , y) 7→ (1, 1) dla (x , y) /∈ {(2, 3), (3, 1), (3, 2), (3, 3)},

(2, 3) 7→ (1, 2), (3, 2) 7→ (2, 1), (3, 3) 7→ (3, 3),

jest (quasi-niezdegenerowanym) rozwiązaniem równania (YB).
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n r(n) qr(n) ds(n) qr (∗)(n) qr (∗∗)(n) qr (∗∗∗)(n)
n = 2 2 5 4 4 4 3
n = 3 6 31 20 17 19 13
n = 4 19 325 169 90 151 91

r(n) - liczba racków na zbiorze n-elementowym
qr(n) - liczba quasi-racków na zbiorze rozmiaru n
ds(n) - liczba quasi-racków, dla których r▷ jest rozwiązaniem
qr (∗)(n) - liczba quasi-racków spełniających L0

Lx (y) = L0
x L0

y

qr (∗∗)(n) - liczba quasi-racków spełniających Ly (x) = LL0
x (y)(x)

qr (∗∗∗)(n) - liczba quasi-racków spełniających L0
x (x) = x
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Stwierdzenie
Dla rozwiązania niezdegenerowanego r(x , y) = (λx (y), ρy (x)) wiadomo,
że (X , ▷r ), gdzie

x ▷r y := λx ρ
λ−1

y (x)(y)

jest shelfem. Rozwiązanie jest bijektywne wtedy i tylko wtedy, gdy (X , ▷r ) jest
rackiem.

rack (X , ▷) ⇝ r(x , y) = (y , y ▷ x) ⇝ (X , ▷r ) = (X , ▷)

Obserwacja
Niech (X , ▷) będzie quasi-rackiem, a r(x , y) = (L0

x (y), Ly (x)) związanym z nim
rozwiązaniem (YB). Gdy spełniony jest warunek Ly (x) = LL0

x (y)(x), to

λx ρ
λ−

y (x)(y) = L0
x LL0

y (x)(y) = L0
x Lx (y) = x ▷ y ,

dla dowolnych x , y ∈ X . Podobnie, także quasi-racki spełniające pozostałe
warunki z twierdzenia mają tę własność.
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Twierdzenie (Mazzotta, Stefanelli, W.)
Niech (X , r) będzie lewostronnie quasi-niezdegenerowanym rozwiązaniem
takim, że

λ0
λx (y) = λ0

x λ0
y ,

ρy (x) = λ0
λx (y)ρλ0

x (y)(x),

λ0
x ρy = ρy λ0

x ,

dla x , y ∈ X . Wówczas (X , ▷r ) jest shelfem, gdzie

x ▷r y := λx ρ
λ−

y (x)(y)

dla dowolnych x , y ∈ X .
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Przykłady

1) Niech (S, rS) będzie rozwiązaniem pochodzącym od dualnej słabej klamerki
(S, +, ◦), tzn.

λx (y) = −x + x ◦ y , ρy (x) = λx (y)− ◦ x ◦ y .

Wtedy można sprawdzić, że warunki z twierdzenia są spełnione oraz

x ▷r y = −x + y + x .

Zatem (X , ▷r ) jest quasi-quandlem.
2) Niech r(x , y) = (f (y), g(x)), gdzie f = (122), g = (223). Wtedy jeden z

warunków z twierdzenia nie jest spełniony, fg = (222) oraz (X , ▷r ) zadane
jako x ▷r y = λx ρ

λ−
y (x)(y) = fg(y) jest quasi-rackiem.
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Przykłady

Wniosek
Jeśli (X , r) jest lewostronnie quasi-niezdegenerowanym rozwiązaniem postaci

r(x , y) = (λ(y), ρy (x))

oraz dla dowolnego x ∈ X spełnione są warunki

λ0ρx = ρx λ0 oraz ρx = λ0ρλ0(x),

to
s(x , y) = (λ0(y), λρλ−(y)(x))

jest quasi-niezdegenerowanym rozwiązaniem.
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Pytania otwarte

1) Czy dowolne quasi-niezdegenerowane rozwiązanie (X , r) jest
quasi-bijektywne?

2) Czy shelf (X , ▷r ) pochodzący od lewostronnie quasi-niezdegenerowanego
oraz quasi-bijektywnego rozwiązania spełniającego warunki z twierdzenia
jest quasi-rackiem?
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