Probabilistic inequalities

Krzysztof Oleszkiewicz

Warsaw, November 17, 2016

Rademacher random variables

Throughout the lecture, r_{1}, r_{2}, \ldots denote independent symmetric ± 1 real random variables. They are called Rademacher random variables (or: symmetric Bernoulli random variables).

An easy and standard way to construct the sequence $r_{1}, r_{2}, \ldots, r_{n}$: consider the discrete cube $\{-1,1\}^{n}$ equipped with the normalized counting (i.e. uniform probability) measure $\mathbf{P}=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$, so that $\mathbf{P}(A)=\operatorname{card}(A) / 2^{n}$ for every $A \subseteq\{-1,1\}^{n}$

Then simply define $r_{k}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ by $r_{k}(x)=x_{k}$, for $1 \leq k \leq n$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Thus, one can think of them as coordinate functions on the discrete cube. Less formally, but equivalently and more intuitively, one can also treat them as outcomes of n symmetric coin-tossing experiments (with heads $\equiv-1$ and tails $\equiv 1$).

Rademacher random variables

Throughout the lecture, r_{1}, r_{2}, \ldots denote independent symmetric ± 1 real random variables. They are called Rademacher random variables (or: symmetric Bernoulli random variables).

An easy and standard way to construct the sequence $r_{1}, r_{2}, \ldots, r_{n}$: consider the discrete cube $\{-1,1\}^{n}$ equipped with the normalized counting (i.e. uniform probability) measure $\mathbf{P}=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$, so that $\mathbf{P}(A)=\operatorname{card}(A) / 2^{n}$ for every $A \subseteq\{-1,1\}^{n}$.
Then simply define $r_{k}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ by $r_{k}(x)=x_{k}$, for $1 \leq k \leq n$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Thus, one can think of them as coordinate functions on the discrete cube. Less formally, but equivalently and more intuitively, one can also treat them as outcomes of n symmetric coin-tossing experiments (with heads $\equiv-1$ and tails $\equiv 1$).

Throughout the lecture, r_{1}, r_{2}, \ldots denote independent symmetric ± 1 real random variables. They are called Rademacher random variables (or: symmetric Bernoulli random variables).

An easy and standard way to construct the sequence $r_{1}, r_{2}, \ldots, r_{n}$: consider the discrete cube $\{-1,1\}^{n}$ equipped with the normalized counting (i.e. uniform probability) measure $\mathbf{P}=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$, so that $\mathbf{P}(A)=\operatorname{card}(A) / 2^{n}$ for every $A \subseteq\{-1,1\}^{n}$.
Then simply define $r_{k}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ by $r_{k}(x)=x_{k}$, for $1 \leq k \leq n$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Thus, one can think of them as coordinate functions on the discrete cube. Less formally, but equivalently and more intuitively, one can also treat them as outcomes of n symmetric coin-tossing experiments (with heads $\equiv-1$ and tails $\equiv 1$).

Rademacher sums

$S=a_{1} r_{1}+a_{2} r_{2}+\ldots+a_{n} r_{n}$, for real coefficients $a_{1}, a_{2}, \ldots, a_{n}$, is called a (weighted) Rademacher sum. More intuitively,

$$
S= \pm a_{1} \pm a_{2} \pm \cdots \pm a_{n}
$$

with a random, independent and symmetric choice of signs.
For $p>0$, we define the p-th absolute moment of S by

Often it is more convenient to consider the p-th norm of S,

$$
\|S\|_{p}:=\left(E|S|^{p}\right)^{1 / p}
$$

Rademacher sums

$S=a_{1} r_{1}+a_{2} r_{2}+\ldots+a_{n} r_{n}$, for real coefficients $a_{1}, a_{2}, \ldots, a_{n}$, is called a (weighted) Rademacher sum. More intuitively,

$$
S= \pm a_{1} \pm a_{2} \pm \cdots \pm a_{n}
$$

with a random, independent and symmetric choice of signs.
For $p>0$, we define the p-th absolute moment of S by

$$
\mathbf{E}|S|^{p}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}}\left|\sum_{k=1}^{n} a_{k} x_{k}\right|^{p}
$$

Often it is more convenient to consider the p-th norm of S,

$$
\|S\|_{p}:=\left(\mathbf{E}|S|^{p}\right)^{1 / p}
$$

Rademacher sums

$S=a_{1} r_{1}+a_{2} r_{2}+\ldots+a_{n} r_{n}$, for real coefficients $a_{1}, a_{2}, \ldots, a_{n}$, is called a (weighted) Rademacher sum. More intuitively,

$$
S= \pm a_{1} \pm a_{2} \pm \cdots \pm a_{n}
$$

with a random, independent and symmetric choice of signs.
For $p>0$, we define the p-th absolute moment of S by

$$
\mathbf{E}|S|^{p}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}}\left|\sum_{k=1}^{n} a_{k} x_{k}\right|^{p}
$$

Often it is more convenient to consider the p-th norm of S,

$$
\|S\|_{p}:=\left(\mathbf{E}|S|^{p}\right)^{1 / p}
$$

Vector-valued Rademacher sums

Given vectors $v_{1}, v_{2}, \ldots, v_{n}$ of a normed linear space $(V,\|\cdot\|)$, one may define a vector-valued Rademacher sum, $S=r_{1} v_{1}+r_{2} v_{2}+\ldots+r_{n} v_{n}= \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n}$. For such a V-valued sum, one studies its p-th absolute moment, $\mathbf{E}\|S\|^{p}$, for $p>0$:

with the p-th norm, $\|S\|_{p}$, defined as $\left(\mathbf{E}\|S\|^{p}\right)^{1 / p}$. $(V,\|\cdot\|)=(\mathbf{R},|\cdot|)$ yields standard (real-valued) Rademacher sums.

Vector-valued Rademacher sums

Given vectors $v_{1}, v_{2}, \ldots, v_{n}$ of a normed linear space $(V,\|\cdot\|)$, one may define a vector-valued Rademacher sum,
$S=r_{1} v_{1}+r_{2} v_{2}+\ldots+r_{n} v_{n}= \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n}$.
For such a V-valued sum, one studies its p-th absolute moment, $\mathbf{E}\|S\|^{p}$, for $p>0$:

$$
\mathbf{E}\|S\|^{p}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}}\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|^{p}
$$

with the p-th norm, $\|S\|_{p}$, defined as $\left(\mathbf{E}\|S\|^{p}\right)^{1 / p}$.
$(V,\|\cdot\|)=(R,|\cdot|)$ yields standard (real-valued) Rademacher sums.

Vector-valued Rademacher sums

Given vectors $v_{1}, v_{2}, \ldots, v_{n}$ of a normed linear space $(V,\|\cdot\|)$, one may define a vector-valued Rademacher sum,
$S=r_{1} v_{1}+r_{2} v_{2}+\ldots+r_{n} v_{n}= \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n}$.
For such a V-valued sum, one studies its p-th absolute moment, $\mathbf{E}\|S\|^{p}$, for $p>0$:

$$
\mathbf{E}\|S\|^{p}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}}\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|^{p}
$$

with the p-th norm, $\|S\|_{p}$, defined as $\left(\mathbf{E}\|S\|^{p}\right)^{1 / p}$.
$(V,\|\cdot\|)=(\mathbf{R},|\cdot|)$ yields standard (real-valued) Rademacher sums.

Khinchin inequality

Aleksandr Khin $[\pm t]$ chin $[\pm \mathrm{e}], 1923$

For any $p, q>0$ there exists a positive constant $C_{p, q}$ such that every real-valued Rademacher sum S satisfies the inequality

$$
\|S\|_{p} \leq C_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $C_{p, q}$? Easy case: $C_{p, q}^{\text {opt }}=1$ whenever $p<q$. From now on, we assume that $p>q$.

Important case: $p=2$ or $q=2$ (since $\mathbf{E} S^{2}=\sum a_{k}^{2}$ is easy to control). Easy: $C_{p, 2}^{\text {opt }}$ for p even (then $\mathrm{E}|S|^{p}=\mathrm{E} S^{p}$ is a polynomial in a_{k} 's).

Khinchin inequality

Aleksandr Khin $[\pm t]$ chin $[\pm \mathrm{e}], 1923$

For any $p, q>0$ there exists a positive constant $C_{p, q}$ such that every real-valued Rademacher sum S satisfies the inequality

$$
\|S\|_{p} \leq C_{p, q} \cdot\|S\|_{q}
$$

Given p and q, what is the optimal value of the constant $C_{p, q}$?
Easy case: $C_{p, q}^{0 \text { ptt }}=1$ whenever $p \leq q$.
From now on, we assume that $p>q$.
Important case: $p=2$ or $q=2$
(since ES ${ }^{2}=\sum a_{k}^{2}$ is easy to control).
Easy: $C_{p, 2}^{\text {opt }}$ for p even (then $\mathbf{E}|S|^{p}=\mathbf{E} S^{p}$ is a polynomial in a_{k} 's)

Khinchin inequality

Aleksandr Khin $[\pm \mathbf{t}]$ chin $[\pm \mathrm{e}], 1923$

For any $p, q>0$ there exists a positive constant $C_{p, q}$ such that every real-valued Rademacher sum S satisfies the inequality

$$
\|S\|_{p} \leq C_{p, q} \cdot\|S\|_{q}
$$

Given p and q, what is the optimal value of the constant $C_{p, q}$?
Easy case: $C_{p, q}^{\mathrm{opt}}=1$ whenever $p \leq q$.
From now on, we assume that $p>q$.
Important case: $p=2$ or $q=2$ (since $\mathbf{E} S^{2}=\sum a_{k}^{2}$ is easy to control).

Fasy: $C_{p, 2}^{\text {opt }}$ for p even (then $\mathbf{E}|S|^{p}=\mathbf{F} S^{p}$ is a polynomial in a_{k} 's)

Khinchin inequality

Aleksandr Khin $[\pm t]$ chin $[\pm \mathrm{e}], 1923$

For any $p, q>0$ there exists a positive constant $C_{p, q}$ such that every real-valued Rademacher sum S satisfies the inequality

$$
\|S\|_{p} \leq C_{p, q} \cdot\|S\|_{q}
$$

Given p and q, what is the optimal value of the constant $C_{p, q}$?
Easy case: $C_{p, q}^{\mathrm{opt}}=1$ whenever $p \leq q$.
From now on, we assume that $p>q$.
Important case: $p=2$ or $q=2$
(since $\mathbf{E} S^{2}=\sum a_{k}^{2}$ is easy to control).
Easy: $C_{p, 2}^{\text {opt }}$ for p even (then $E|S|^{p}=\mathbf{E} S^{p}$ is a polynomial in a_{k} 's)

Khinchin inequality

Aleksandr Khin [$\pm \mathrm{t}]$ chin[$\pm \mathrm{e}$], 1923

For any $p, q>0$ there exists a positive constant $C_{p, q}$ such that every real-valued Rademacher sum S satisfies the inequality

$$
\|S\|_{p} \leq C_{p, q} \cdot\|S\|_{q}
$$

Given p and q, what is the optimal value of the constant $C_{p, q}$?
Easy case: $C_{p, q}^{\mathrm{opt}}=1$ whenever $p \leq q$.
From now on, we assume that $p>q$.
Important case: $p=2$ or $q=2$
(since $\mathbf{E} S^{2}=\sum a_{k}^{2}$ is easy to control).
Easy: $C_{p, 2}^{\text {opt }}$ for p even (then $\mathbf{E}|S|^{p}=\mathbf{E} S^{p}$ is a polynomial in a_{k} 's).

Optimal constants in the Khinchin inequality

$C_{p, 2}^{\text {opt }}$ for $p>3$ (Whittle 1960),
$C_{2,1}^{\text {opt }}=\sqrt{2}$ (Littlewood's problem, Szarek 1976).
Haagerup 1982: $C_{p, 2}^{\text {opt }}=\gamma_{p} / \gamma_{2}$ for $p>2$,
$C_{2 q}^{\text {opt }}=\max \left(2^{\frac{1}{q}-\frac{1}{2}}, \gamma_{2} / \gamma_{a}\right)$ for $q \in(0,2)$,
where $\gamma_{p}:=\|G\|_{p}$ with $G \sim \mathcal{N}(0,1)$,
i.e. $\gamma_{p}=2^{1 / 2} \pi^{-\frac{1}{2 p}}\left(\Gamma\left(\frac{p+1}{2}\right)\right)^{1 / p}$, in particular $\gamma_{2}=1$.
$C_{p, q}^{\text {opt }}=\gamma_{p} / \gamma_{q}$ if $p>q$ are both even
(Nayar \& O. 2012; partial case q|p solved by Czerwiński 2008).

Optimal constants in the Khinchin inequality

$C_{p, 2}^{\text {opt }}$ for $p>3$ (Whittle 1960),
$C_{2,1}^{\mathrm{opt}}=\sqrt{2}$ (Littlewood's problem, Szarek 1976).
Haagerup 1982: $C_{p, 2}^{\text {opt }}=\gamma_{p} / \gamma_{2}$ for $p>2$,

$C_{p, q}^{\text {opt }}=\gamma_{p} / \gamma_{q}$ if $p>q$ are both even
(Nayar \& O. 2012; partial case q|p solved by Czerwiński 2008)

Optimal constants in the Khinchin inequality

$C_{p, 2}^{\text {opt }}$ for $p>3$ (Whittle 1960),
$C_{2,1}^{\mathrm{opt}}=\sqrt{2}$ (Littlewood's problem, Szarek 1976).
Haagerup 1982: $C_{p, 2}^{\text {opt }}=\gamma_{p} / \gamma_{2}$ for $p>2$,
$C_{2, q}^{\text {opt }}=\max \left(2^{\frac{1}{q}-\frac{1}{2}}, \gamma_{2} / \gamma_{q}\right)$ for $q \in(0,2)$,
where $\gamma_{p}:=\|G\|_{p}$ with $G \sim \mathcal{N}(0,1)$,
i.e. $\gamma_{p}=2^{1 / 2} \pi^{-\frac{1}{2 p}}\left(\Gamma\left(\frac{p+1}{2}\right)\right)^{1 / p}$, in particular $\gamma_{2}=1$.
cm-
(Nayar \& O. 2012; partial case q|p solved by Czerwiński 2008)

Optimal constants in the Khinchin inequality

$C_{p, 2}^{\text {opt }}$ for $p>3$ (Whittle 1960),
$C_{2,1}^{\mathrm{opt}}=\sqrt{2}$ (Littlewood's problem, Szarek 1976).
Haagerup 1982: $C_{p, 2}^{\text {opt }}=\gamma_{p} / \gamma_{2}$ for $p>2$,
$C_{2, q}^{\text {opt }}=\max \left(2^{\frac{1}{q}-\frac{1}{2}}, \gamma_{2} / \gamma_{q}\right)$ for $q \in(0,2)$,
where $\gamma_{p}:=\|G\|_{p}$ with $G \sim \mathcal{N}(0,1)$,
i.e. $\gamma_{p}=2^{1 / 2} \pi^{-\frac{1}{2 p}}\left(\Gamma\left(\frac{p+1}{2}\right)\right)^{1 / p}$, in particular $\gamma_{2}=1$.
$C_{p, q}^{\text {opt }}=\gamma_{p} / \gamma_{q}$ if $p>q$ are both even
(Nayar \& O. 2012; partial case $q \mid p$ solved by Czerwiński 2008).

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$? Obviously, $K_{p, q}^{\text {opt }}=1=C_{p, q}^{\text {opt }}$ whenever $p<q$.

Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$ Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$
Known: $K_{2.1}^{\mathrm{opt}}=\sqrt{2}($ Latała \& O. 1994) ,
thus also $K_{p, q}^{\circ p t}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$;
$K_{4,2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwapień, Latała \& O. 1996).

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$?
Obviously, $K_{p, q}^{\text {opt }}=1=C_{p, q}^{\text {opt }}$ whenever $p \leq q$.
Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$ Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$

Known: $K_{2,1}^{\mathrm{opt}}=\sqrt{2}($ Latała \& O. 1994),
thus also $K_{p, q}^{\circ p t}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$;
$K_{4.2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwanień, Latała \& O. 1996).

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$? Obviously, $K_{p, q}^{\mathrm{opt}}=1=C_{p, q}^{\mathrm{opt}}$ whenever $p \leq q$.

Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$ Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$
Known: $K_{2,1}^{\text {opt }}=\sqrt{2}($ Latała \& O. 1994) ,
thus also $K_{p, q}^{\circ p t}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$; $K_{4,2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwapień, Latała \& O. 1996).

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$?
Obviously, $K_{p, q}^{\mathrm{opt}}=1=C_{p, q}^{\mathrm{opt}}$ whenever $p \leq q$.
Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$. Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$.

Known: $K_{2,1}^{\mathrm{opt}}=\sqrt{2}$ (Latała \& O. 1994),
thus also $K_{p, q}^{\text {opt }}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$;
$K_{4,2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwapień, Latała \& O. 1996)

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$?
Obviously, $K_{p, q}^{\mathrm{opt}}=1=C_{p, q}^{\mathrm{opt}}$ whenever $p \leq q$.
Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$. Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$.
Known: $K_{2,1}^{\text {opt }}=\sqrt{2}$ (Latała \& O. 1994),
thus also $K_{p, q}^{\text {opt }}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$;
$K_{4,2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwapień, Latała \& O. 1996).

Khinchin-Kahane inequality

Kahane 1964: For any $p, q>0$ there exists a positive constant $K_{p, q}$ such that for every vector-valued Rademacher sum S we have

$$
\|S\|_{p} \leq K_{p, q} \cdot\|S\|_{q} .
$$

Given p and q, what is the optimal value of the constant $K_{p, q}$?
Obviously, $K_{p, q}^{\mathrm{opt}}=1=C_{p, q}^{\mathrm{opt}}$ whenever $p \leq q$.
Kwapień's Conjecture: For every $p>q>0$ there is $K_{p, q}^{\mathrm{opt}}=C_{p, q}^{\mathrm{opt}}$. Certainly, $K_{p, q}^{\mathrm{opt}} \geq C_{p, q}^{\mathrm{opt}}$.
Known: $K_{2,1}^{\text {opt }}=\sqrt{2}$ (Latała \& O. 1994),
thus also $K_{p, q}^{\text {opt }}=2^{\frac{1}{q}-\frac{1}{p}}$ for $q \in(0,1]$ and $p \in[q, 2]$;
$K_{4,2}^{\mathrm{opt}}=\sqrt[4]{3}$ (Kwapień, Latała \& O. 1996).

Probabilistic inequality as a goal,

 harmonic analysis as a tool
Probabilistic inequality as a goal: $K_{2,1}^{\text {opt }}=\sqrt{2}$

We will prove that, for any vector-valued Rademacher sum S,

$$
\mathbf{E}\|S\|^{2} \leq 2(\mathbf{E}\|S\|)^{2}
$$

i.e.

$$
\|S\|_{2} \leq \sqrt{2} \cdot\|S\|_{1}
$$

Note: If $(V,\|\cdot\|)=(R,|\cdot|), n=2$, and $v_{1}=v_{2}=1$, then $\mathbf{P}(S=0)=1 / 2=\mathbf{P}(|S|=2)$, so that $\|S\|_{2}=\sqrt{2}$ and $\|S\|_{1}=1$. Thus the constant $\sqrt{2}$ cannot be improved.

The proof that will be presented is an insightful reinterpretation of Latała \& O. 1994, due to Kwapień.

Probabilistic inequality as a goal: $K_{2,1}^{\mathrm{opt}}=\sqrt{2}$

We will prove that, for any vector-valued Rademacher sum S,

$$
\mathbf{E}\|S\|^{2} \leq 2(\mathbf{E}\|S\|)^{2}
$$

i.e.

$$
\|S\|_{2} \leq \sqrt{2} \cdot\|S\|_{1}
$$

Note: If $(V,\|\cdot\|)=(\mathbf{R},|\cdot|), n=2$, and $v_{1}=v_{2}=1$, then $\mathbf{P}(S=0)=1 / 2=\mathbf{P}(|S|=2)$, so that $\|S\|_{2}=\sqrt{2}$ and $\|S\|_{1}=1$. Thus the constant $\sqrt{2}$ cannot be improved.

> The proof that will be presented is an insightful reinterpretation of Latała \& O. 1994, due to Kwapień.

We will prove that, for any vector-valued Rademacher sum S,

$$
\mathbf{E}\|S\|^{2} \leq 2(\mathbf{E}\|S\|)^{2}
$$

i.e.

$$
\|S\|_{2} \leq \sqrt{2} \cdot\|S\|_{1}
$$

Note: If $(V,\|\cdot\|)=(\mathbf{R},|\cdot|), n=2$, and $v_{1}=v_{2}=1$, then $\mathbf{P}(S=0)=1 / 2=\mathbf{P}(|S|=2)$, so that $\|S\|_{2}=\sqrt{2}$ and $\|S\|_{1}=1$. Thus the constant $\sqrt{2}$ cannot be improved.

The proof that will be presented is an insightful reinterpretation of Latała \& O. 1994, due to Kwapień.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
w_{\emptyset} \equiv 1 .
$$

Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence

- independent symmetric ± 1 Bernoulli random variables.

Note: $w_{A}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ can be expressed as $w_{A}=\prod_{k \in A} r_{k}$.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
w_{A}(x)=\prod_{k \in A} x_{k},
$$

$$
w_{\emptyset} \equiv 1
$$

> Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
> Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence
> - independent symmetric ± 1 Bernoulli random variables.

> Note: $w_{A}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ can be expressed as $w_{A}=\prod_{k \in A} r_{k}$.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
\begin{aligned}
w_{A}(x) & =\prod_{k \in A} x_{k} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence

- independent symmetric ± 1 Bernoulli random variables.

Note: $w_{A}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ can be expressed as $w_{A}=\prod_{k \in A} r_{k}$.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
\begin{aligned}
w_{A}(x) & =\prod_{k \in A} x_{k} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence

- independent symmetric ± 1 Bernoulli random variables.

Note: $W_{A}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ can be expressed as $W_{A}=\Pi_{k \in A^{\prime}} T_{k}$.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
\begin{aligned}
w_{A}(x) & =\prod_{k \in A} x_{k} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence

- independent symmetric ± 1 Bernoulli random variables.

Note: $w_{A}:\{-1,1\}^{n} \rightarrow R$ can be expressed as $w_{A}=\prod_{k \in A} r_{k}$.

Harmonic analysis on the discrete cube as a tool

Combinatorial notation: $[n]:=\{1,2, \ldots, n\}$
Walsh functions: For $x \in\{-1,1\}^{n}$ and $A \subseteq[n]$ let

$$
\begin{aligned}
w_{A}(x) & =\prod_{k \in A} x_{k} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

Thus, $r_{k}=w_{\{k\}}$ is just the k-th coordinate projection $(k \in[n])$.
Recall: $r_{1}, r_{2}, \ldots, r_{n}$ is a Rademacher sequence

- independent symmetric ± 1 Bernoulli random variables.

Note: $w_{A}:\{-1,1\}^{n} \rightarrow \mathbf{R}$ can be expressed as $w_{A}=\prod_{k \in A} r_{k}$.

Scalar product: For $f, g:\{-1,1\}^{n} \longrightarrow \mathbf{R}$, let

$$
\langle f, g\rangle=\mathbf{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x) g(x)
$$

Note that $\langle f, f\rangle=\mathbf{E} f^{2}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x)^{2}$.
L^{2}-norm: $\|f\|_{2}:=\sqrt{\langle f, f\rangle}=\left(E f^{2}\right)^{1 / 2}$.

Scalar product: For $f, g:\{-1,1\}^{n} \longrightarrow \mathbf{R}$, let

$$
\langle f, g\rangle=\mathbf{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x) g(x)
$$

Note that $\langle f, f\rangle=\mathbf{E} f^{2}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x)^{2}$.
L^{2}-norm: $\|f\|_{2}:=\sqrt{\langle f, f\rangle}=\left(E f^{2}\right)^{1 / 2}$.

Scalar product: For $f, g:\{-1,1\}^{n} \longrightarrow \mathbf{R}$, let

$$
\langle f, g\rangle=\mathbf{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x) g(x)
$$

Note that $\langle f, f\rangle=\mathbf{E} f^{2}=2^{-n} \cdot \sum_{x \in\{-1,1\}^{n}} f(x)^{2}$.
L^{2}-norm: $\|f\|_{2}:=\sqrt{\langle f, f\rangle}=\left(E f^{2}\right)^{1 / 2}$.

Orthonormality

$\mathbf{E}\left[w_{A}\right]=0$ for $A \neq \emptyset$ and $\mathbf{E}\left[w_{\emptyset}\right]=1$.
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all zero).
Another explanation: Let $k \in A$. Then, flipping the sign of the k-th coordinate of x changes the sign of $w_{A}(x)$. Thus, values of w_{A} on $\{-1,1\}^{n}$ can be grouped into pairs adding to zero.
Orthonormality: $w_{A} \cdot w_{B}=w_{A \triangle B}$, so that
$\left\langle w_{A}, w_{B}\right\rangle=E w_{A \Delta B}=\delta_{A, B}$,
where \triangle denotes a symmetric set difference (XOR) while $\delta_{A, B}=1$ if $A=B$ and $\delta_{A, B}=0$ if $A \neq B$ (Kronecker's delta), Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$
We have proved that the Walsh system $\left(w_{A}\right)_{\Delta \subset[n]}$ is orthonormal
(and therefore linearly independent). Since it is of cardinality 2^{n}, which is equal to the linear dimension of the space of all real functions on $\{-1,1\}^{n}$, it spans the whole space.

Orthonormality

$\mathbf{E}\left[w_{A}\right]=0$ for $A \neq \emptyset$ and $\mathbf{E}\left[w_{\emptyset}\right]=1$.
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all zero). Another explanation: Let $k \in A$. Then, flipping the sign of the k-th coordinate of x changes the sign of $w_{A}(x)$. Thus, values of w_{A} on $\{-1,1\}^{n}$ can be grouped into pairs adding to zero.

Orthonormality

$\mathbf{E}\left[w_{A}\right]=0$ for $A \neq \emptyset$ and $\mathbf{E}\left[w_{\emptyset}\right]=1$.
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all zero).
Another explanation: Let $k \in A$. Then, flipping the sign of the k-th coordinate of x changes the sign of $w_{A}(x)$. Thus, values of w_{A} on $\{-1,1\}^{n}$ can be grouped into pairs adding to zero.
Orthonormality: $w_{A} \cdot w_{B}=w_{A \Delta B}$, so that

$$
\left\langle w_{A}, w_{B}\right\rangle=\mathbf{E} w_{A \Delta B}=\delta_{A, B},
$$

where Δ denotes a symmetric set difference (XOR) while $\delta_{A, B}=1$ if $A=B$ and $\delta_{A, B}=0$ if $A \neq B$ (Kronecker's delta).

[^0]
Orthonormality

$\mathbf{E}\left[w_{A}\right]=0$ for $A \neq \emptyset$ and $\mathbf{E}\left[w_{\emptyset}\right]=1$.
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all zero).
Another explanation: Let $k \in A$. Then, flipping the sign of the k-th coordinate of x changes the sign of $w_{A}(x)$. Thus, values of w_{A} on $\{-1,1\}^{n}$ can be grouped into pairs adding to zero.
Orthonormality: $w_{A} \cdot w_{B}=w_{A \Delta B}$, so that

$$
\left\langle w_{A}, w_{B}\right\rangle=\mathbf{E} w_{A \Delta B}=\delta_{A, B},
$$

where Δ denotes a symmetric set difference (XOR) while $\delta_{A, B}=1$ if $A=B$ and $\delta_{A, B}=0$ if $A \neq B$ (Kronecker's delta).
Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$.
We have proved that the Walsh system $\left(W_{A}\right)_{A \subset[n]}$ is orthonormal
(and therefore linearly independent). Since it is of cardinality 2^{n},
which is equal to the linear dimension of the space of all real

Orthonormality

$\mathbf{E}\left[w_{A}\right]=0$ for $A \neq \emptyset$ and $\mathbf{E}\left[w_{\emptyset}\right]=1$.
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all zero).
Another explanation: Let $k \in A$. Then, flipping the sign of the k-th coordinate of x changes the sign of $w_{A}(x)$. Thus, values of w_{A} on $\{-1,1\}^{n}$ can be grouped into pairs adding to zero.
Orthonormality: $w_{A} \cdot w_{B}=w_{A \Delta B}$, so that

$$
\left\langle w_{A}, w_{B}\right\rangle=\mathbf{E} w_{A \Delta B}=\delta_{A, B},
$$

where Δ denotes a symmetric set difference (XOR) while $\delta_{A, B}=1$ if $A=B$ and $\delta_{A, B}=0$ if $A \neq B$ (Kronecker's delta).
Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$.
We have proved that the Walsh system $\left(w_{A}\right)_{A \subseteq[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality 2^{n}, which is equal to the linear dimension of the space of all real functions on $\{-1,1\}^{n}$, it spans the whole space.

Sum over neighbours operator

Vertices x and y of $\{-1,1\}^{n}$ are called neighbours $(x \sim y)$, if $\operatorname{card}\left\{k \in[n]: x_{k} \neq y_{k}\right\}=1$.

We define a linear operator K acting on the space of all real-valued functions on the discrete cube. Namely, for $f:\{-1,1\}^{n} \rightarrow \mathbf{R}$, let $K f:\{-1,1\}^{n} \rightarrow \mathbf{R}$ be defined by

Sum over neighbours operator

Vertices x and y of $\{-1,1\}^{n}$ are called neighbours $(x \sim y)$, if

$$
\operatorname{card}\left\{k \in[n]: x_{k} \neq y_{k}\right\}=1
$$

We define a linear operator K acting on the space of all real-valued functions on the discrete cube. Namely, for $f:\{-1,1\}^{n} \rightarrow \mathbf{R}$, let $K f:\{-1,1\}^{n} \rightarrow \mathbf{R}$ be defined by

$$
K f(x):=\sum_{y \in\{-11\} n \cdot x \sim y} f(y) .
$$

Let $A \subseteq[n]$, and let us denote by $|A|$ the cardinality of A. Then

$$
K w_{A}=(n-2|A|) \cdot w_{A},
$$

i.e. the Walsh function w_{A} is an eigenfunction (eigenvector) of the operator K, with eigenvalue $n-2|A|$.

Indeed, for $x \in\{-1,1\}^{n}$, we have

Let $A \subseteq[n]$, and let us denote by $|A|$ the cardinality of A. Then

$$
K w_{A}=(n-2|A|) \cdot w_{A},
$$

i.e. the Walsh function w_{A} is an eigenfunction (eigenvector) of the operator K, with eigenvalue $n-2|A|$.

Indeed, for $x \in\{-1,1\}^{n}$, we have

$$
\left(K w_{A}\right)(x)=\sum_{y \in\{-1,1\}^{n}: x \sim y} w_{A}(y) .
$$

For $x \sim y$, let $k(x, y)$ be the only $k \in[n]$ such that $x_{k} \neq y_{k}$. If $k(x, y) \in A$, then $w_{A}(y)=-w_{A}(x)$.
If $k(x, y) \notin A$, then $w_{A}(y)=w_{A}(x)$.

Let $A \subseteq[n]$, and let us denote by $|A|$ the cardinality of A. Then

$$
K w_{A}=(n-2|A|) \cdot w_{A},
$$

i.e. the Walsh function w_{A} is an eigenfunction (eigenvector) of the operator K, with eigenvalue $n-2|A|$.

Indeed, for $x \in\{-1,1\}^{n}$, we have

$$
\left(K w_{A}\right)(x)=\sum_{y \in\{-1,1\}^{n}: x \sim y} w_{A}(y) .
$$

For $x \sim y$, let $k(x, y)$ be the only $k \in[n]$ such that $x_{k} \neq y_{k}$.
If $k(x, y) \in A$, then $w_{A}(y)=-w_{A}(x)$.
If $k(x, y) \notin A$, then $w_{A}(y)=w_{A}(x)$.
Thus,
$\left(K w_{A}\right)(x)=|A| \cdot\left(-w_{A}(x)\right)+(n-|A|) \cdot w_{A}(x)=(n-2|A|) w_{A}(x)$.

Triangle inequality

Recall: $(V,\|\cdot\|)$ is a normed linear space and $v_{1}, v_{2}, \ldots, v_{n} \in V$.
For $g:\{-1,1\}^{n} \rightarrow \mathbf{R}$ defined by $g(x)=\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|$, we have

$$
K g \geq(n-2) \cdot g
$$

Indeed, by the triangle inequality,

Triangle inequality

Recall: $(V,\|\cdot\|)$ is a normed linear space and $v_{1}, v_{2}, \ldots, v_{n} \in V$.
For $g:\{-1,1\}^{n} \rightarrow \mathbf{R}$ defined by $g(x)=\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|$, we have

$$
K g \geq(n-2) \cdot g
$$

Indeed, by the triangle inequality,

$$
\begin{aligned}
& (K g)(x)=\sum_{y \in\{-1,1\}^{n}: x \sim y}\left\|\sum_{k=1}^{n} y_{k} v_{k}\right\| \\
& \geq\left\|\sum_{k=1}^{n}\left(\sum_{y \in\{-1,1\}^{n}: x \sim y} y_{k}\right) v_{k}\right\| \\
& =|n-2| \cdot\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|=|n-2| g(x),
\end{aligned}
$$

Triangle inequality

Recall: $(V,\|\cdot\|)$ is a normed linear space and $v_{1}, v_{2}, \ldots, v_{n} \in V$.
For $g:\{-1,1\}^{n} \rightarrow \mathbf{R}$ defined by $g(x)=\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|$, we have

$$
K g \geq(n-2) \cdot g
$$

Indeed, by the triangle inequality,

$$
\begin{aligned}
& (K g)(x)=\sum_{y \in\{-1,1\}^{n}: x \sim y}\left\|\sum_{k=1}^{n} y_{k} v_{k}\right\| \\
& \geq\left\|\sum_{k=1}^{n}\left(\sum_{y \in\{-1,1\}^{n}: x \sim y} y_{k}\right) v_{k}\right\| \\
& =|n-2| \cdot\left\|\sum_{k=1}^{n} x_{k} v_{k}\right\|=|n-2| g(x),
\end{aligned}
$$

since $\sum_{y \in\{-1,1\}^{n}: x \sim y} y_{k}=(n-1) \cdot x_{k}+1 \cdot\left(-x_{k}\right)=(n-2) x_{k}$.

Two ways to deal with $\langle g, \mathrm{Kg}\rangle$

We have proved the pointwise inequality $K g \geq(n-2) g$.
Since g is nonnegative, we have also $g \cdot K g \geq(n-2) g^{2}$, and thus

$$
\langle g, K g\rangle=\mathbf{E}[g \cdot K g] \geq(n-2) \mathbf{E} g^{2} .
$$

On the other hand, g admits a unique Fourier-Walsh expansion $g=\sum_{A \subseteq[n]} a_{A} w_{A}$, with some real coefficients $\left(a_{A}\right)_{A \subseteq[n]}$. Since

we have

Two ways to deal with $\langle g, \mathrm{Kg}\rangle$

We have proved the pointwise inequality $K g \geq(n-2) g$. Since g is nonnegative, we have also $g \cdot K g \geq(n-2) g^{2}$, and thus

$$
\langle g, K g\rangle=\mathbf{E}[g \cdot K g] \geq(n-2) \mathbf{E} g^{2} .
$$

On the other hand, g admits a unique Fourier-Walsh expansion $g=\sum_{A \subseteq[n]} a_{A} W_{A}$, with some real coefficients $\left(a_{A}\right)_{A \subseteq[n]}$. Since

$$
K g=\sum_{A \subseteq[n]} a_{A} \cdot K w_{A}=\sum_{A \subseteq[n]}(n-2|A|) a_{A} w_{A},
$$

we have

Two ways to deal with $\langle g, K g\rangle$

We have proved the pointwise inequality $K g \geq(n-2) g$. Since g is nonnegative, we have also $g \cdot K g \geq(n-2) g^{2}$, and thus

$$
\langle g, K g\rangle=\mathbf{E}[g \cdot K g] \geq(n-2) \mathbf{E} g^{2}
$$

On the other hand, g admits a unique Fourier-Walsh expansion $g=\sum_{A \subseteq[n]} a_{A} w_{A}$, with some real coefficients $\left(a_{A}\right)_{A \subseteq[n]}$. Since

$$
K g=\sum_{A \subseteq[n]} a_{A} \cdot K w_{A}=\sum_{A \subseteq[n]}(n-2|A|) a_{A} w_{A},
$$

we have

$$
\begin{gathered}
\langle g, K g\rangle=\left\langle\sum_{A \subseteq[n]} a_{A} w_{A}, \sum_{B \subseteq[n]}(n-2|B|) a_{B} w_{B}\right\rangle \\
=\sum_{A \subseteq[n]} \sum_{B \subseteq[n]}(n-2|B|) a_{A} a_{B}\left\langle w_{A}, w_{B}\right\rangle=\sum_{A \subseteq[n]}(n-2|A|) a_{A}^{2} .
\end{gathered}
$$

Putting things together

Putting together the two approaches, we arrive at

$$
(n-2) \mathbf{E} g^{2} \leq\langle g, K g\rangle=\sum_{A \subseteq[n]}(n-2|A|) a_{A}^{2}
$$

because $a_{\{k\}}=\left\langle g, w_{\{k\}}\right\rangle=\left\langle g, r_{k}\right\rangle=\mathbf{E}\left[g \cdot r_{k}\right]=0$, for $k \in[n]$ (indeed, g is an even function on the discrete cube, due to the symmetry of the norm, and Rademacher functions r_{k} are odd).

Putting things together

Putting together the two approaches, we arrive at

$$
\begin{gathered}
(n-2) \mathbf{E} g^{2} \leq\langle g, K g\rangle=\sum_{A \subseteq[n]}(n-2|A|) a_{A}^{2} \\
\leq n a_{\emptyset}^{2}+(n-2) \cdot \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} \\
=4 a_{\emptyset}^{2}+2 \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}
\end{gathered}
$$

because $a_{\{k\}}=\left\langle g, w_{\{k\}}\right\rangle=\left\langle g, r_{k}\right\rangle=\mathbf{E}\left[g \cdot r_{k}\right]=0$, for $k \in[n]$ (indeed, g is an even function on the discrete cube, due to the symmetry of the norm, and Rademacher functions r_{k} are odd).

Putting things together

Putting together the two approaches, we arrive at

$$
\begin{gathered}
(n-2) \mathbf{E} g^{2} \leq\langle g, K g\rangle=\sum_{A \subseteq[n]}(n-2|A|) a_{A}^{2} \\
\leq n a_{\emptyset}^{2}+(n-2) \cdot \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} \\
=4 a_{\emptyset}^{2}+2 \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2} \\
=4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2} .
\end{gathered}
$$

because $a_{\{k\}}=\left\langle g, w_{\{k\}}\right\rangle=\left\langle g, r_{k}\right\rangle=\mathbf{E}\left[g \cdot r_{k}\right]=0$, for $k \in[n]$
(indeed, g is an even function on the discrete cube, due to the symmetry of the norm, and Rademacher functions r_{k} are odd).

Putting things together

Putting together the two approaches, we arrive at

$$
\begin{gathered}
(n-2) \mathbf{E} g^{2} \leq\langle g, K g\rangle=\sum_{A \subseteq[n]}(n-2|A|) a_{A}^{2} \\
\leq n a_{\emptyset}^{2}+(n-2) \cdot \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} \\
=4 a_{\emptyset}^{2}+2 \sum_{k=1}^{n} a_{\{k\}}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2} \\
=4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2},
\end{gathered}
$$

because $a_{\{k\}}=\left\langle g, w_{\{k\}}\right\rangle=\left\langle g, r_{k}\right\rangle=\mathbf{E}\left[g \cdot r_{k}\right]=0$, for $k \in[n]$ (indeed, g is an even function on the discrete cube, due to the symmetry of the norm, and Rademacher functions r_{k} are odd).

The end of the proof

We have proved that $(n-2) E g^{2} \leq 4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}$.
Now it suffices to observe that

$$
a_{\emptyset}=\left\langle g, w_{\emptyset}\right\rangle=\langle g, 1\rangle=\mathbf{E}[g \cdot 1]=\mathbf{E} g,
$$

while (the Plancherel theorem for the discrete cube setting)

Thus,

$$
(n-2) E g^{2} \leq 4(E g)^{2}+(n-4) E g^{2},
$$

i.e., after cancellations, $\mathbf{E}\|S\|^{2}=\mathbf{E} g^{2} \leq 2(\mathbf{E g})^{2}=2(\mathbf{E}\|S\|)^{2}$, and the proof is finished.

The end of the proof

We have proved that $(n-2) E g^{2} \leq 4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}$.
Now it suffices to observe that

$$
a_{\emptyset}=\left\langle g, w_{\emptyset}\right\rangle=\langle g, 1\rangle=\mathbf{E}[g \cdot 1]=\mathbf{E} g,
$$

while (the Plancherel theorem for the discrete cube setting)

Thus,

$$
(n-2) \mathbf{E} g^{2} \leq 4(\mathbf{E} g)^{2}+(n-4) \mathbf{E} g^{2},
$$

i.e., after cancellations, $\mathbf{E}\|S\|^{2}=\mathbf{E} g^{2} \leq 2(\mathbf{E g})^{2}=2(\mathbf{E}\|S\|)^{2}$, and the proof is finished.

The end of the proof

We have proved that $(n-2) E g^{2} \leq 4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}$.
Now it suffices to observe that

$$
a_{\emptyset}=\left\langle g, w_{\emptyset}\right\rangle=\langle g, 1\rangle=\mathbf{E}[g \cdot 1]=\mathbf{E} g,
$$

while (the Plancherel theorem for the discrete cube setting)

$$
\begin{gathered}
\sum_{A \subseteq[n]} a_{A}^{2}=\sum_{A \subseteq[n]} \sum_{B \subseteq[n]} a_{A} a_{B}\left\langle w_{A}, w_{B}\right\rangle \\
=\left\langle\sum_{A \subseteq[n]} a_{A} w_{A}, \sum_{B \subseteq[n]} a_{B} w_{B}\right\rangle=\langle g, g\rangle=\mathbf{E}[g \cdot g]=\mathbf{E} g^{2} .
\end{gathered}
$$

Thus,

$$
(n-2) \mathbf{E} g^{2} \leq 4(\mathbf{E} g)^{2}+(n-4) \mathbf{E} g^{2},
$$

i.e., after cancellations, $\mathrm{E}\|S\|^{2}=\mathrm{Eg}^{2} \leq 2(\mathrm{Eg})^{2}=2(\mathrm{E}\|S\|)^{2}$, and the proof is finished.

The end of the proof

We have proved that $(n-2) E g^{2} \leq 4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}$.
Now it suffices to observe that

$$
a_{\emptyset}=\left\langle g, w_{\emptyset}\right\rangle=\langle g, 1\rangle=\mathbf{E}[g \cdot 1]=\mathbf{E} g,
$$

while (the Plancherel theorem for the discrete cube setting)

$$
\begin{gathered}
\sum_{A \subseteq[n]} a_{A}^{2}=\sum_{A \subseteq[n]} \sum_{B \subseteq[n]} a_{A} a_{B}\left\langle w_{A}, w_{B}\right\rangle \\
=\left\langle\sum_{A \subseteq[n]} a_{A} w_{A}, \sum_{B \subseteq[n]} a_{B} w_{B}\right\rangle=\langle g, g\rangle=\mathbf{E}[g \cdot g]=\mathbf{E} g^{2} .
\end{gathered}
$$

Thus,

$$
(n-2) \mathbf{E} g^{2} \leq 4(\mathbf{E} g)^{2}+(n-4) \mathbf{E} g^{2},
$$

i.e., after cancellations, $\mathrm{E}\|S\|^{2}=E g^{2} \leq 2(E g)^{2}=2(E\|S\|)^{2}$, and the proof is finished.

The end of the proof

We have proved that $(n-2) E g^{2} \leq 4 a_{\emptyset}^{2}+(n-4) \cdot \sum_{A \subseteq[n]} a_{A}^{2}$.
Now it suffices to observe that

$$
a_{\emptyset}=\left\langle g, w_{\emptyset}\right\rangle=\langle g, 1\rangle=\mathbf{E}[g \cdot 1]=\mathbf{E} g,
$$

while (the Plancherel theorem for the discrete cube setting)

$$
\begin{gathered}
\sum_{A \subseteq[n]} a_{A}^{2}=\sum_{A \subseteq[n]} \sum_{B \subseteq[n]} a_{A} a_{B}\left\langle w_{A}, w_{B}\right\rangle \\
=\left\langle\sum_{A \subseteq[n]} a_{A} w_{A}, \sum_{B \subseteq[n]} a_{B} w_{B}\right\rangle=\langle g, g\rangle=\mathbf{E}[g \cdot g]=\mathbf{E} g^{2} .
\end{gathered}
$$

Thus,

$$
(n-2) \mathbf{E} g^{2} \leq 4(\mathbf{E} g)^{2}+(n-4) E g^{2},
$$

i.e., after cancellations, $\mathbf{E}\|S\|^{2}=\mathbf{E} g^{2} \leq 2(\mathbf{E} g)^{2}=2(\mathbf{E}\|S\|)^{2}$, and the proof is finished.

Probabilistic inequality as a tool

 for provinga theorem in harmonic analysis

FKN Theorem

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002): For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$,

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002): For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$,
$\{-1,1\}$-valued functions are called Boolean
A Boolean function on the discrete cube models an n-bit-input \rightarrow one-bit-output process

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, let $f=\sum_{A \subseteq[n]} a_{A} w_{A}$ be its unique Fourier-Walsh expansion, and let

$$
\rho:=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} .
$$

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, let $f=\sum_{A \subseteq[n]} a_{A} w_{A}$ be its unique Fourier-Walsh expansion, and let

$$
\rho:=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} .
$$

Recall: by the Plancherel theorem, $\sum_{A \subseteq[n]} a_{A}^{2}=\mathbf{E} f^{2}=\mathbf{E} 1=1$.

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002): For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, let $f=\sum_{A \subseteq[n]} a_{A} w_{A}$ be its unique Fourier-Walsh expansion, and let

$$
\rho:=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} .
$$

Then, among functions $1,-1, r_{1},-r_{1}, r_{2},-r_{2}, \ldots, r_{n},-r_{n}$ there is a function g such that

$$
\mathbf{P}(f \neq g) \leq C \cdot \rho,
$$

where C is a universal (numerical) constant.
Remark: For f as above and for any $g \in\left\{ \pm 1, \pm r_{1}, \pm r_{2}\right.$, by the Plancherel theorem applied to $f-g$,

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002): For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, let $f=\sum_{A \subseteq[n]} a_{A} w_{A}$ be its unique Fourier-Walsh expansion, and let

$$
\rho:=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2} .
$$

Then, among functions $1,-1, r_{1},-r_{1}, r_{2},-r_{2}, \ldots, r_{n},-r_{n}$ there is a function g such that

$$
\mathbf{P}(f \neq g) \leq C \cdot \rho,
$$

where C is a universal (numerical) constant.
Remark: For f as above and for any $g \in\left\{ \pm 1, \pm r_{1}, \pm r_{2}, \ldots, \pm r_{n}\right\}$, by the Plancherel theorem applied to $f-g$,

$$
4 \cdot \mathbf{P}(f \neq g)=\mathbf{E}(f-g)^{2} \geq \sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2}=\rho
$$

On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean analysis and it has found applications in theoretical computer science. In particular, it was used in the celebrated Irit Dinur's proof of the PCP Theorem.

PCP stands for Probabilistically Checkable Proof.

On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean analysis. It is one of the tools used in the celebrated Irit Dinur's proof of the PCP Theorem.

The FKN Theorem becomes an easy exercise if the universal constant C is replaced by a dimension-dependent C_{n}. However, until very recently, no elementary proof of the FKN Theorem was known, and the value of C obtained from the existing proofs was quite far from being optimal.

A new, simpler approach of Jendrej, O., and Wojtaszczyk 2015 yields C close to the best possible constant and leads to various extensions of the FKN Theorem.

On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean analysis. It is one of the tools used in the celebrated Irit Dinur's proof of the PCP Theorem.

The FKN Theorem becomes an easy exercise if the universal constant C is replaced by a dimension-dependent C_{n}. However, until very recently, no elementary proof of the FKN Theorem was known, and the value of C obtained from the existing proofs was quite far from being optimal.

A new, simpler approach of Jendrej, O., and Wojtaszczyk 2015 yields C close to the best possible constant and leads to various extensions of the FKN Theorem.

On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean analysis. It is one of the tools used in the celebrated Irit Dinur's proof of the PCP Theorem.

The FKN Theorem becomes an easy exercise if the universal constant C is replaced by a dimension-dependent C_{n}. However, until very recently, no elementary proof of the FKN Theorem was known, and the value of C obtained from the existing proofs was quite far from being optimal.

A new, simpler approach of Jendrej, O., and Wojtaszczyk 2015 yields C close to the best possible constant and leads to various extensions of the FKN Theorem.

Here, Wojtaszczyk stands for Jakub Onufry Wojtaszczyk.

Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to split the Boolean function f into low and high frequencies:

$$
f=\sum_{A \subseteq[n]} a_{A} w_{A}=\sum_{A \subseteq[n]:|A|<2} a_{A} w_{A}+\sum_{A \subseteq[n]:|A| \geq 2} a_{A} w_{A},
$$

Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to split the Boolean function f, expressing it as $f=S+R$, where

$$
S=a_{\emptyset}+a_{\{1\}} r_{1}+a_{\{2\}} r_{2}+\ldots+a_{\{n\}} r_{n}, \quad R=\sum_{A \subseteq\{n]:|A| \geq 2} a_{A} w_{A} .
$$

By the Plancherel theorem and assumptions of the FKN Theorem,

so we can control the L^{2}-norm of the remainder term, $\|R\|_{2}=\sqrt{\rho}$. Clearly, the leading term S is a shifted Rademacher sum

Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to split the Boolean function f, expressing it as $f=S+R$, where

$$
S=a_{\emptyset}+a_{\{1\}} r_{1}+a_{\{2\}} r_{2}+\ldots+a_{\{n\}} r_{n}, \quad R=\sum_{A \subseteq\lceil n]:|A| \geq 2} a_{A} w_{A} .
$$

By the Plancherel theorem and assumptions of the FKN Theorem,

$$
\mathbf{E} R^{2}=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2}=\rho,
$$

so we can control the L^{2}-norm of the remainder term, $\|R\|_{2}=\sqrt{\rho}$.
Clearly, the leading term S is a shifted Rademacher sum.

Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to split the Boolean function f, expressing it as $f=S+R$, where

$$
S=a_{\emptyset}+a_{\{1\}} r_{1}+a_{\{2\}} r_{2}+\ldots+a_{\{n\}} r_{n}, \quad R=\sum_{A \subseteq[n]:|A| \geq 2} a_{A} w_{A} .
$$

By the Plancherel theorem and assumptions of the FKN Theorem,

$$
\mathbf{E} R^{2}=\sum_{A \subseteq[n]:|A| \geq 2} a_{A}^{2}=\rho,
$$

so we can control the L^{2}-norm of the remainder term, $\|R\|_{2}=\sqrt{\rho}$.
Clearly, the leading term S is a shifted Rademacher sum.

Upper bound on $\operatorname{Var}(|S|)$

Since $f=R+S$ and f is Boolean, we have $1=|f|=|R+S|$, and thus, by the triangle inequality, $||S|-1| \leq|R|$, i.e. $(|S|-1)^{2} \leq R^{2}$.

This allows us to bound from above the variance of $|S|$:
$\operatorname{Var}(|S|)=\mathbf{E}|S|^{2}-(\mathbf{E}|S|)^{2}=\mathbf{E}(|S|-1)^{2}-(\mathbf{E}|S|-1)^{2} \leq \mathbf{E} R^{2}=\rho$.

Actually, this will be the only information about S we will need in our proof - that it is a shifted Rademacher sum with $\operatorname{Var}(|S|) \leq \rho$.

Upper bound on $\operatorname{Var}(|S|)$

Since $f=R+S$ and f is Boolean, we have $1=|f|=|R+S|$, and thus, by the triangle inequality, $||S|-1| \leq|R|$, i.e. $(|S|-1)^{2} \leq R^{2}$.

This allows us to bound from above the variance of $|S|$:
$\operatorname{Var}(|S|)=\mathbf{E}|S|^{2}-(\mathbf{E}|S|)^{2}=\mathbf{E}(|S|-1)^{2}-(\mathbf{E}|S|-1)^{2} \leq \mathbf{E} R^{2}=\rho$.

Actually, this will be the only information about S we will need in our proof - that it is a shifted Rademacher sum with $\operatorname{Var}(|S|) \leq \rho$.

Upper bound on $\operatorname{Var}(|S|)$

Since $f=R+S$ and f is Boolean, we have $1=|f|=|R+S|$, and thus, by the triangle inequality, $||S|-1| \leq|R|$, i.e. $(|S|-1)^{2} \leq R^{2}$.

This allows us to bound from above the variance of $|S|$:
$\operatorname{Var}(|S|)=\mathbf{E}|S|^{2}-(\mathbf{E}|S|)^{2}=\mathbf{E}(|S|-1)^{2}-(\mathbf{E}|S|-1)^{2} \leq \mathbf{E} R^{2}=\rho$.

Actually, this will be the only information about S we will need in our proof - that it is a shifted Rademacher sum with $\operatorname{Var}(|S|) \leq \rho$.

Dominating coefficient problem

Our task amounts to proving that one of the numbers $\left|a_{\emptyset}\right|,\left|a_{\{1\}}\right|$, $\left|a_{\{2\}}\right|, \ldots,\left|a_{\{n\}}\right|$ is close enough to 1 . Indeed, by the Plancherel theorem,

$$
4 \cdot \mathbf{P}\left(f \neq r_{k}\right)=\mathbf{E}\left(f-r_{k}\right)^{2}=\left(a_{\{k\}}-1\right)^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}=
$$

Recall that $\sum_{A \subset[n]} a_{A}^{2}=\mathbf{E} f^{2}=\mathbf{E} 1=1$, since f is Boolean

Dominating coefficient problem

Our task amounts to proving that one of the numbers $\left|a_{\emptyset}\right|,\left|a_{\{1\}}\right|$, $\left|a_{\{2\}}\right|, \ldots,\left|a_{\{n\}}\right|$ is close enough to 1 . Indeed, by the Plancherel theorem,

$$
\begin{gathered}
4 \cdot \mathbf{P}\left(f \neq r_{k}\right)=\mathbf{E}\left(f-r_{k}\right)^{2}=\left(a_{\{k\}}-1\right)^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}= \\
1-2 a_{\{k\}}+a_{\{k\}}^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}=1-2 a_{\{k\}}+\sum_{A \subseteq[n]} a_{A}^{2}=2\left(1-a_{\{k\}}\right) .
\end{gathered}
$$

Recall that $\sum_{A \subseteq[n]} a_{A}^{2}=\mathbf{E} f^{2}=\mathbf{E} 1=1$, since f is Boolean.

Dominating coefficient problem

Our task amounts to proving that one of the numbers $\left|a_{\emptyset}\right|,\left|a_{\{1\}}\right|$, $\left|a_{\{2\}}\right|, \ldots,\left|a_{\{n\}}\right|$ is close enough to 1 . Indeed, by the Plancherel theorem,

$$
\begin{gathered}
4 \cdot \mathbf{P}\left(f \neq r_{k}\right)=\mathbf{E}\left(f-r_{k}\right)^{2}=\left(a_{\{k\}}-1\right)^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}= \\
1-2 a_{\{k\}}+a_{\{k\}}^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}=1-2 a_{\{k\}}+\sum_{A \subseteq[n]} a_{A}^{2}=2\left(1-a_{\{k\}}\right),
\end{gathered}
$$

i.e. $\mathbf{P}\left(f \neq r_{k}\right)=\left(1-a_{\{k\}}\right) / 2$.

Similarly, $\mathbf{P}\left(f \neq-r_{k}\right)=\left(1+a_{\{k\}}\right) / 2, \mathbf{P}(f \neq-1)=\left(1+a_{\varnothing}\right) / 2$,
and $\mathbf{P}(f \neq 1)=\left(1-a_{\emptyset}\right) / 2$.
Thus, here, close enough means no further than 2Cp apart.

Dominating coefficient problem

Our task amounts to proving that one of the numbers $\left|a_{\emptyset}\right|,\left|a_{\{1\}}\right|$, $\left|a_{\{2\}}\right|, \ldots,\left|a_{\{n\}}\right|$ is close enough to 1 . Indeed, by the Plancherel theorem,

$$
\begin{gathered}
4 \cdot \mathbf{P}\left(f \neq r_{k}\right)=\mathbf{E}\left(f-r_{k}\right)^{2}=\left(a_{\{k\}}-1\right)^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}= \\
1-2 a_{\{k\}}+a_{\{k\}}^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}=1-2 a_{\{k\}}+\sum_{A \subseteq[n]} a_{A}^{2}=2\left(1-a_{\{k\}}\right),
\end{gathered}
$$

i.e. $\mathbf{P}\left(f \neq r_{k}\right)=\left(1-a_{\{k\}}\right) / 2$.

Similarly, $\mathbf{P}\left(f \neq-r_{k}\right)=\left(1+a_{\{k\}}\right) / 2, \mathbf{P}(f \neq-1)=\left(1+a_{\emptyset}\right) / 2$, and $\mathbf{P}(f \neq 1)=\left(1-a_{\emptyset}\right) / 2$.
Thus, here, close enough means no further than 2C ρ apart.

Dominating coefficient problem

Our task amounts to proving that one of the numbers $\left|a_{\emptyset}\right|,\left|a_{\{1\}}\right|$, $\left|a_{\{2\}}\right|, \ldots,\left|a_{\{n\}}\right|$ is close enough to 1 . Indeed, by the Plancherel theorem,

$$
\begin{gathered}
4 \cdot \mathbf{P}\left(f \neq r_{k}\right)=\mathbf{E}\left(f-r_{k}\right)^{2}=\left(a_{\{k\}}-1\right)^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}= \\
1-2 a_{\{k\}}+a_{\{k\}}^{2}+\sum_{A \subseteq[n]: A \neq\{k\}} a_{A}^{2}=1-2 a_{\{k\}}+\sum_{A \subseteq[n]} a_{A}^{2}=2\left(1-a_{\{k\}}\right),
\end{gathered}
$$

i.e. $\mathbf{P}\left(f \neq r_{k}\right)=\left(1-a_{\{k\}}\right) / 2$.

Similarly, $\mathbf{P}\left(f \neq-r_{k}\right)=\left(1+a_{\{k\}}\right) / 2, \mathbf{P}(f \neq-1)=\left(1+a_{\emptyset}\right) / 2$, and $\mathbf{P}(f \neq 1)=\left(1-a_{\emptyset}\right) / 2$.

Thus, here, close enough means no further than 2C ρ apart.

Key Lemma (probabilistic inequality)

Key Lemma: Let X and Y be independent square-integrable random variables, at least one of them symmetric. Then

$$
\min (\operatorname{Var}(X), \operatorname{Var}(Y)) \leq M \cdot \operatorname{Var}(|X+Y|)
$$

where M is a universal (numerical) constant.
Remark: It can be proved with $M=(7+\sqrt{17}) / 4 \simeq 2.78$. On the other hand, it is false for $M<16 / 7 \simeq 2.29$.
We will apply the lemma to the case of
 as $|S|, \operatorname{Var}(|X+Y|)=\operatorname{Var}(|S|) \leq \rho$. So, for any choice of $k \in[n]$, we have

Key Lemma (probabilistic inequality)

Key Lemma: Let X and Y be independent square-integrable random variables, at least one of them symmetric. Then

$$
\min (\operatorname{Var}(X), \operatorname{Var}(Y)) \leq M \cdot \operatorname{Var}(|X+Y|)
$$

where M is a universal (numerical) constant.
Remark: It can be proved with $M=(7+\sqrt{17}) / 4 \simeq 2.78$.
On the other hand, it is false for $M<16 / 7 \simeq 2.29$.
We will apply the lemma to the case of
$X=a_{\emptyset} r_{0}+a_{\{1\}} r_{1}+\ldots+a_{\{k-1\}} r_{k-1}$ and
\square
we have

Key Lemma (probabilistic inequality)

Key Lemma: Let X and Y be independent square-integrable random variables, at least one of them symmetric. Then

$$
\min (\operatorname{Var}(X), \operatorname{Var}(Y)) \leq M \cdot \operatorname{Var}(|X+Y|)
$$

where M is a universal (numerical) constant.
Remark: It can be proved with $M=(7+\sqrt{17}) / 4 \simeq 2.78$.
On the other hand, it is false for $M<16 / 7 \simeq 2.29$.
We will apply the lemma to the case of
$X=a_{\emptyset} r_{0}+a_{\{1\}} r_{1}+\ldots+a_{\{k-1\}} r_{k-1}$ and
$Y=a_{\{k\}} r_{k}+\ldots+a_{\{n\}} r_{n}$. Since $|X+Y|$ has the same distribution as $|S|$, $\operatorname{Var}(|X+Y|)=\operatorname{Var}(|S|) \leq \rho$. So, for any choice of $k \in[n]$, we have

$$
a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2}=\operatorname{Var}(X) \leq M \rho
$$

or

$$
a_{\{k\}}^{2}+\ldots+a_{\{n\}}^{2}=\operatorname{Var}(Y) \leq M \rho .
$$

Final trick

Let us consider the largest $k \in[n]$ such that $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2} \leq M \rho$. Then, obviously,
$a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k\}}^{2}>M \rho$, so that, by Key Lemma,
$a_{\{k+1\}}^{2}+\ldots+a_{\{n\}}^{2} \leq M \rho$.

Final trick

Let us consider the largest $k \in[n]$ such that $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2} \leq M \rho$. Then, obviously,
$a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k\}}^{2}>M \rho$, so that, by Key Lemma,
$a_{\{k+1\}}^{2}+\ldots+a_{\{n\}}^{2} \leq M \rho$.

Let us consider the largest $k \in[n]$ such that $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2} \leq M \rho$. Then, obviously,
$a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k\}}^{2}>M \rho$, so that, by Key Lemma,
$a_{\{k+1\}}^{2}+\ldots+a_{\{n\}}^{2} \leq M \rho$.
But we have already proved that

$$
\sum_{\subset[n]:|A| \geq 2} a_{A}^{2}=\mathbf{E} R^{2} \leq \rho .
$$

Since $\sum_{A \subseteq[n]:|A|} a_{A}^{2}=\mathbf{E} f^{2}=1$, we arrive at $a_{\{k\}}^{2} \geq 1-(2 M+1) \rho$, so that $1-\left|a_{\{k\}}\right|=O(\rho)$, and the proof is finished.

Let us consider the largest $k \in[n]$ such that $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2} \leq M \rho$. Then, obviously, $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k\}}^{2}>M \rho$, so that, by Key Lemma, $a_{\{k+1\}}^{2}+\ldots+a_{\{n\}}^{2} \leq M \rho$.
But we have already proved that

$$
\sum_{\subseteq[n]:|A| \geq 2} a_{A}^{2}=\mathbf{E} R^{2} \leq \rho .
$$

Thus

$$
\sum_{A \subseteq[n]:|A| \neq\{k\}} a_{A}^{2} \leq M \rho+M \rho+\rho=(2 M+1) \rho .
$$

Since so that $1-\left|a_{\{k\}}\right|=O(\rho)$, and the proof is finished.

Let us consider the largest $k \in[n]$ such that $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k-1\}}^{2} \leq M \rho$. Then, obviously, $a_{\emptyset}^{2}+a_{\{1\}}^{2}+\ldots+a_{\{k\}}^{2}>M \rho$, so that, by Key Lemma, $a_{\{k+1\}}^{2}+\ldots+a_{\{n\}}^{2} \leq M \rho$.
But we have already proved that

$$
\sum_{\subset[n]:|A| \geq 2} a_{A}^{2}=\mathbf{E} R^{2} \leq \rho .
$$

Thus

$$
\sum_{[n]:|A| \neq\{k\}} a_{A}^{2} \leq M \rho+M \rho+\rho=(2 M+1) \rho .
$$

Since $\sum_{A \subseteq[n]:|A|} a_{A}^{2}=\mathbf{E} f^{2}=1$, we arrive at $a_{\{k\}}^{2} \geq 1-(2 M+1) \rho$, so that $1-\left|a_{\{k\}}\right|=O(\rho)$, and the proof is finished.

[^0]: Example: $w_{\{1,2\}}$
 We have proved that the Walsh system $\left(w_{A}\right)_{A \subset[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality 2^{n}, which is equal to the linear dimension of the space of all real

