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Rademacher random variables

Throughout the lecture, r1, r2, . . . denote independent symmetric

±1 real random variables. They are called Rademacher random

variables (or: symmetric Bernoulli random variables).

An easy and standard way to construct the sequence r1, r2, . . . , rn:
consider the discrete cube {−1, 1}n equipped with the normalized

counting (i.e. uniform probability) measure P = (1
2
δ−1 + 1

2
δ1)⊗n,

so that P(A) = card(A)/2n for every A ⊆ {−1, 1}n.

Then simply de�ne rk : {−1, 1}n → R by rk(x) = xk ,

for 1 ≤ k ≤ n and x = (x1, x2, . . . , xn).

Thus, one can think of them as coordinate functions on the discrete

cube. Less formally, but equivalently and more intuitively, one can

also treat them as outcomes of n symmetric coin-tossing

experiments (with heads ≡ −1 and tails ≡ 1).
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Rademacher sums

S = a1r1 + a2r2 + . . .+ anrn, for real coe�cients a1, a2, . . . , an,
is called a (weighted) Rademacher sum. More intuitively,

S = ±a1 ± a2 ± · · · ± an

with a random, independent and symmetric choice of signs.

For p > 0, we de�ne the p-th absolute moment of S by

E|S |p = 2−n ·
∑

x∈{−1,1}n

∣∣∣∣∣
n∑

k=1

akxk

∣∣∣∣∣
p

.

Often it is more convenient to consider the p-th norm of S ,

‖S‖p := (E|S |p)1/p .
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Vector-valued Rademacher sums

Given vectors v1, v2, . . . , vn of a normed linear space (V , ‖ · ‖),
one may de�ne a vector-valued Rademacher sum,

S = r1v1 + r2v2 + . . .+ rnvn = ±v1 ± v2 ± . . .± vn.

For such a V -valued sum, one studies its p-th absolute moment,

E‖S‖p, for p > 0:

E‖S‖p = 2−n ·
∑

x∈{−1,1}n

∥∥∥∥∥
n∑

k=1

xkvk

∥∥∥∥∥
p

,

with the p-th norm, ‖S‖p, de�ned as (E‖S‖p)1/p.

(V , ‖ · ‖) = (R, | · |) yields standard (real-valued) Rademacher sums.
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Khinchin inequality

Aleksandr Khin[±t]chin[±e], 1923

For any p, q > 0 there exists a positive constant Cp,q such that

every real-valued Rademacher sum S satis�es the inequality

‖S‖p ≤ Cp,q · ‖S‖q.

Given p and q, what is the optimal value of the constant Cp,q?

Easy case: C opt
p,q = 1 whenever p ≤ q.

From now on, we assume that p > q.

Important case: p = 2 or q = 2

(since ES2 =
∑

a2k is easy to control).

Easy: C opt

p,2 for p even (then E|S |p = ESp is a polynomial in ak 's).
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Optimal constants in the Khinchin inequality

C
opt

p,2 for p > 3 (Whittle 1960),

C
opt

2,1 =
√
2 (Littlewood's problem, Szarek 1976).

Haagerup 1982: C opt

p,2 = γp/γ2 for p > 2,

C
opt

2,q = max
(
2

1
q
− 1

2 , γ2/γq

)
for q ∈ (0, 2),

where γp := ‖G‖p with G ∼ N (0, 1),

i.e. γp = 21/2π
− 1

2p

(
Γ
(
p+1

2

))1/p
, in particular γ2 = 1.

C
opt
p,q = γp/γq if p > q are both even

(Nayar & O. 2012; partial case q|p solved by Czerwi«ski 2008).
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Khinchin-Kahane inequality

Kahane 1964: For any p, q > 0 there exists a positive constant

Kp,q such that for every vector-valued Rademacher sum S we have

‖S‖p ≤ Kp,q · ‖S‖q.

Given p and q, what is the optimal value of the constant Kp,q?

Obviously, K opt
p,q = 1 = C

opt
p,q whenever p ≤ q.

Kwapie«'s Conjecture: For every p > q > 0 there is K opt
p,q = C

opt
p,q .

Certainly, K opt
p,q ≥ C

opt
p,q .

Known: K opt

2,1 =
√
2 (Lataªa & O. 1994),

thus also K
opt
p,q = 2

1
q
− 1

p for q ∈ (0, 1] and p ∈ [q, 2];

K
opt

4,2 = 4
√
3 (Kwapie«, Lataªa & O. 1996).
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Probabilistic inequality as a goal,

harmonic analysis as a tool
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Probabilistic inequality as a goal: K opt

2,1 =
√
2

We will prove that, for any vector-valued Rademacher sum S ,

E‖S‖2 ≤ 2(E‖S‖)2,

i.e.

‖S‖2 ≤
√
2 · ‖S‖1.

Note: If (V , ‖ · ‖) = (R, | · |), n = 2, and v1 = v2 = 1, then

P(S = 0) = 1/2 = P(|S | = 2), so that ‖S‖2 =
√
2 and ‖S‖1 = 1.

Thus the constant
√
2 cannot be improved.

The proof that will be presented is an insightful reinterpretation of

Lataªa & O. 1994, due to Kwapie«.
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Harmonic analysis on the discrete cube as a tool

Combinatorial notation: [n] := {1, 2, . . . , n}

Walsh functions: For x ∈ {−1, 1}n and A ⊆ [n] let

wA(x) =
∏
k∈A

xk ,

w∅ ≡ 1.

Thus, rk = w{k} is just the k-th coordinate projection (k ∈ [n]).

Recall: r1, r2, . . . , rn is a Rademacher sequence

� independent symmetric ±1 Bernoulli random variables.

Note: wA : {−1, 1}n → R can be expressed as wA =
∏

k∈A rk .
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� independent symmetric ±1 Bernoulli random variables.

Note: wA : {−1, 1}n → R can be expressed as wA =
∏

k∈A rk .
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L2-structure

Scalar product: For f , g : {−1, 1}n −→ R, let

〈f , g〉 = E[f · g ] = 2−n ·
∑

x∈{−1,1}n
f (x)g(x).

Note that 〈f , f 〉 = Ef 2 = 2−n ·
∑

x∈{−1,1}n f (x)2.

L2-norm: ‖f ‖2 :=
√
〈f , f 〉 = (Ef 2)1/2.
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Orthonormality

E[wA] = 0 for A 6= ∅ and E[w∅] = 1.

Indeed, expectation of the product of independent random variables

is equal to the product of their expectations (and they are all zero).

Another explanation: Let k ∈ A. Then, �ipping the sign of the

k-th coordinate of x changes the sign of wA(x). Thus, values of wA

on {−1, 1}n can be grouped into pairs adding to zero.

Orthonormality: wA · wB = wA∆B , so that

〈wA,wB〉 = EwA∆B = δA,B ,

where ∆ denotes a symmetric set di�erence (XOR) while δA,B = 1

if A = B and δA,B = 0 if A 6= B (Kronecker's delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r
2

2
r3 = r1r3.

We have proved that the Walsh system (wA)A⊆[n] is orthonormal

(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of the space of all real

functions on {−1, 1}n, it spans the whole space.
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Sum over neighbours operator

Vertices x and y of {−1, 1}n are called neighbours (x ∼ y), if

card {k ∈ [n] : xk 6= yk} = 1.

We de�ne a linear operator K acting on the space of all real-valued

functions on the discrete cube. Namely, for f : {−1, 1}n → R,
let Kf : {−1, 1}n → R be de�ned by

Kf (x) :=
∑

y∈{−1,1}n: x∼y

f (y).
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Eigenstructure of the sum of over neighbours operator

Let A ⊆ [n], and let us denote by |A| the cardinality of A. Then

KwA = (n − 2|A|) · wA,

i.e. the Walsh function wA is an eigenfunction (eigenvector)

of the operator K , with eigenvalue n − 2|A|.

Indeed, for x ∈ {−1, 1}n, we have

(KwA)(x) =
∑

y∈{−1,1}n: x∼y

wA(y).

For x ∼ y , let k(x , y) be the only k ∈ [n] such that xk 6= yk .

If k(x , y) ∈ A, then wA(y) = −wA(x).
If k(x , y) /∈ A, then wA(y) = wA(x).
Thus,

(KwA)(x) = |A| · (−wA(x)) + (n − |A|) · wA(x) = (n − 2|A|)wA(x).
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Triangle inequality

Recall: (V , ‖ · ‖) is a normed linear space and v1, v2, . . . , vn ∈ V .

For g : {−1, 1}n → R de�ned by g(x) = ‖
∑n

k=1
xkvk‖, we have

Kg ≥ (n − 2) · g .

Indeed, by the triangle inequality,

(Kg)(x) =
∑

y∈{−1,1}n: x∼y

∥∥∥∥∥
n∑

k=1

ykvk

∥∥∥∥∥
≥

∥∥∥∥∥∥
n∑

k=1

 ∑
y∈{−1,1}n: x∼y

yk

 vk

∥∥∥∥∥∥
= |n − 2| ·

∥∥∥∥∥
n∑

k=1

xkvk

∥∥∥∥∥ = |n − 2|g(x),

since
∑

y∈{−1,1}n: x∼y yk = (n − 1) · xk + 1 · (−xk) = (n − 2)xk .
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Two ways to deal with 〈g ,Kg〉
We have proved the pointwise inequality Kg ≥ (n − 2)g .
Since g is nonnegative, we have also g · Kg ≥ (n − 2)g2, and thus

〈g ,Kg〉 = E[g · Kg ] ≥ (n − 2)Eg2.

On the other hand, g admits a unique Fourier-Walsh expansion

g =
∑

A⊆[n] aAwA, with some real coe�cients (aA)A⊆[n]. Since

Kg =
∑
A⊆[n]

aA · KwA =
∑
A⊆[n]

(n − 2|A|)aAwA,

we have

〈g ,Kg〉 =

〈∑
A⊆[n]

aAwA,
∑
B⊆[n]

(n − 2|B|)aBwB

〉

=
∑
A⊆[n]

∑
B⊆[n]

(n − 2|B|)aAaB〈wA,wB〉 =
∑
A⊆[n]

(n − 2|A|)a2A.
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Putting things together

Putting together the two approaches, we arrive at

(n − 2)Eg2 ≤ 〈g ,Kg〉 =
∑
A⊆[n]

(n − 2|A|)a2A

≤ na2∅ + (n − 2) ·
n∑

k=1

a2{k} + (n − 4) ·
∑

A⊆[n]: |A|≥2

a2A

= 4a2∅ + 2

n∑
k=1

a2{k} + (n − 4) ·
∑
A⊆[n]

a2A

= 4a2∅ + (n − 4) ·
∑
A⊆[n]

a2A,

because a{k} = 〈g ,w{k}〉 = 〈g , rk〉 = E[g · rk ] = 0, for k ∈ [n]
(indeed, g is an even function on the discrete cube, due to the

symmetry of the norm, and Rademacher functions rk are odd).
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The end of the proof

We have proved that (n − 2)Eg2 ≤ 4a2∅ + (n − 4) ·
∑

A⊆[n] a
2

A.

Now it su�ces to observe that

a∅ = 〈g ,w∅〉 = 〈g , 1〉 = E[g · 1] = Eg ,

while (the Plancherel theorem for the discrete cube setting)∑
A⊆[n]

a2A =
∑
A⊆[n]

∑
B⊆[n]

aAaB〈wA,wB〉

=

〈∑
A⊆[n]

aAwA,
∑
B⊆[n]

aBwB

〉
= 〈g , g〉 = E[g · g ] = Eg2.

Thus,

(n − 2)Eg2 ≤ 4(Eg)2 + (n − 4)Eg2,

i.e., after cancellations, E‖S‖2 = Eg2 ≤ 2(Eg)2 = 2(E‖S‖)2,
and the proof is �nished.
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i.e., after cancellations, E‖S‖2 = Eg2 ≤ 2(Eg)2 = 2(E‖S‖)2,
and the proof is �nished.
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Probabilistic inequality as a tool

for proving

a theorem in harmonic analysis
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FKN Theorem

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For f : {−1, 1}n → {−1, 1},

{−1, 1}-valued functions are called Boolean

A Boolean function on the discrete cube

models an n-bit-input → one-bit-output process

K.Oleszkiewicz Probabilistic inequalities



FKN Theorem

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For f : {−1, 1}n → {−1, 1},

{−1, 1}-valued functions are called Boolean

A Boolean function on the discrete cube

models an n-bit-input → one-bit-output process

K.Oleszkiewicz Probabilistic inequalities



FKN Theorem

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For f : {−1, 1}n → {−1, 1}, let f =

∑
A⊆[n] aAwA be its unique

Fourier-Walsh expansion, and let

ρ :=
∑

A⊆[n]: |A|≥2

a2A.

Recall: by the Plancherel theorem,
∑

A⊆[n] a
2

A = Ef 2 = E1 = 1.
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FKN Theorem

FKN Theorem (Friedgut, Kalai, Naor / Kindler, Safra 2002):
For f : {−1, 1}n → {−1, 1}, let f =

∑
A⊆[n] aAwA be its unique

Fourier-Walsh expansion, and let

ρ :=
∑

A⊆[n]: |A|≥2

a2A.

Then, among functions 1,−1, r1,−r1, r2,−r2, . . . , rn,−rn there is

a function g such that

P(f 6= g) ≤ C · ρ,

where C is a universal (numerical) constant.

Remark: For f as above and for any g ∈ {±1,±r1,±r2, . . . ,±rn},
by the Plancherel theorem applied to f − g ,

4 · P(f 6= g) = E(f − g)2 ≥
∑

A⊆[n]: |A|≥2

a2A = ρ.
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On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean

analysis and it has found applications in theoretical computer

science. In particular, it was used in the celebrated Irit Dinur's

proof of the PCP Theorem.

PCP stands for Probabilistically Checkable Proof.
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On the FKN Theorem

The FKN Theorem is one of the standard results of the Boolean

analysis. It is one of the tools used in the celebrated Irit Dinur's

proof of the PCP Theorem.

The FKN Theorem becomes an easy exercise if the universal

constant C is replaced by a dimension-dependent Cn. However,

until very recently, no elementary proof of the FKN Theorem was

known, and the value of C obtained from the existing proofs was

quite far from being optimal.

A new, simpler approach of Jendrej, O., and Wojtaszczyk 2015
yields C close to the best possible constant and leads to various

extensions of the FKN Theorem.

Here, Wojtaszczyk stands for Jakub Onufry Wojtaszczyk.
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Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to

split the Boolean function f into low and high frequencies:

f =
∑
A⊆[n]

aAwA =
∑

A⊆[n]: |A|<2

aAwA +
∑

A⊆[n]: |A|≥2

aAwA,
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Preliminary reduction

As in many previous proofs of the FKN Theorem, it is natural to

split the Boolean function f , expressing it as f = S + R , where

S = a∅ + a{1}r1 + a{2}r2 + . . .+ a{n}rn, R =
∑

A⊆[n]: |A|≥2

aAwA.

By the Plancherel theorem and assumptions of the FKN Theorem,

ER2 =
∑

A⊆[n]: |A|≥2

a2A = ρ,

so we can control the L2-norm of the remainder term, ‖R‖2 =
√
ρ.

Clearly, the leading term S is a shifted Rademacher sum.
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Upper bound on Var(|S |)

Since f = R + S and f is Boolean, we have 1 = |f | = |R + S |, and
thus, by the triangle inequality,

∣∣∣|S |− 1
∣∣∣ ≤ |R|, i.e. (|S |− 1)2 ≤ R2.

This allows us to bound from above the variance of |S |:

Var(|S |) = E|S |2−(E|S |)2 = E(|S | − 1)2−(E|S |−1)2 ≤ ER2 = ρ.

Actually, this will be the only information about S we will need in

our proof � that it is a shifted Rademacher sum with Var(|S |) ≤ ρ.
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Dominating coe�cient problem

Our task amounts to proving that one of the numbers |a∅|, |a{1}|,
|a{2}|, . . . , |a{n}| is close enough to 1. Indeed, by the Plancherel

theorem,

4 · P(f 6= rk) = E(f − rk)2 = (a{k} − 1)2 +
∑

A⊆[n]:A 6={k}

a2A =

1−2a{k}+a2{k}+
∑

A⊆[n]:A 6={k}

a2A = 1−2a{k}+
∑
A⊆[n]

a2A = 2(1−a{k}).

Recall that
∑

A⊆[n] a
2

A = Ef 2 = E1 = 1, since f is Boolean.
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Dominating coe�cient problem

Our task amounts to proving that one of the numbers |a∅|, |a{1}|,
|a{2}|, . . . , |a{n}| is close enough to 1. Indeed, by the Plancherel

theorem,

4 · P(f 6= rk) = E(f − rk)2 = (a{k} − 1)2 +
∑

A⊆[n]:A 6={k}

a2A =

1−2a{k}+a2{k}+
∑

A⊆[n]:A 6={k}

a2A = 1−2a{k}+
∑
A⊆[n]

a2A = 2(1−a{k}),

i.e. P(f 6= rk) = (1− a{k})/2.

Similarly, P(f 6= −rk) = (1 + a{k})/2, P(f 6= −1) = (1 + a∅)/2,
and P(f 6= 1) = (1− a∅)/2.

Thus, here, close enough means no further than 2Cρ apart.
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Key Lemma (probabilistic inequality)

Key Lemma: Let X and Y be independent square-integrable

random variables, at least one of them symmetric. Then

min (Var(X ),Var(Y )) ≤ M ·Var(|X + Y |),

where M is a universal (numerical) constant.

Remark: It can be proved with M = (7 +
√
17)/4 ' 2.78.

On the other hand, it is false for M < 16/7 ' 2.29.

We will apply the lemma to the case of

X = a∅r0 + a{1}r1 + . . .+ a{k−1}rk−1 and

Y = a{k}rk + . . .+ a{n}rn. Since |X + Y | has the same distribution

as |S |, Var(|X + Y |) = Var(|S |) ≤ ρ. So, for any choice of k ∈ [n],
we have

a2∅ + a2{1} + . . .+ a2{k−1} = Var(X ) ≤ Mρ

or

a2{k} + . . .+ a2{n} = Var(Y ) ≤ Mρ.
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as |S |, Var(|X + Y |) = Var(|S |) ≤ ρ. So, for any choice of k ∈ [n],
we have

a2∅ + a2{1} + . . .+ a2{k−1} = Var(X ) ≤ Mρ

or
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Final trick

Let us consider the largest k ∈ [n] such that

a2∅ + a2{1} + . . .+ a2{k−1} ≤ Mρ. Then, obviously,

a2∅ + a2{1} + . . .+ a2{k} > Mρ, so that, by Key Lemma,

a2{k+1} + . . .+ a2{n} ≤ Mρ.
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Final trick

Let us consider the largest k ∈ [n] such that

a2∅ + a2{1} + . . .+ a2{k−1} ≤ Mρ. Then, obviously,

a2∅ + a2{1} + . . .+ a2{k} > Mρ, so that, by Key Lemma,

a2{k+1} + . . .+ a2{n} ≤ Mρ.

But we have already proved that∑
A⊆[n]: |A|≥2

a2A = ER2 ≤ ρ.

Thus ∑
A⊆[n]: |A|6={k}

a2A ≤ Mρ+ Mρ+ ρ = (2M + 1)ρ.

Since
∑

A⊆[n]: |A| a
2

A = Ef 2 = 1, we arrive at a2{k} ≥ 1− (2M + 1)ρ,

so that 1− |a{k}| = O(ρ), and the proof is �nished.
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