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Simulation of a complex 
process

Input

Optimization based on 
metaheuristics

Input Output

Metamodel (surrogate 
model) based on ML Output



What will happen if we change something in the road network?
What will happen if we change traffic signal settings?

Step toward traffic optimization

Prediction “What-if”



➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In most of the optimization problems in transport, we have to use metaheuristics to 
find (heuristically) optimal solutions (these problems are often NP-hard). In such 
cases we have to run large number of such simulations, with different settings.

Prediction “What-if”

Nr of games: 10700 Nr of settings: > 120800

(and the problem is proved to be NP-hard!)

More than the number of atoms in the visible Universe!
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➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In most of the optimization problems in transport, we have to use metaheuristics to 
find (heuristically) optimal solutions (these problems are often NP-hard). In such 
cases we have to run large number of such simulations, with different settings.

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive 
and has limitations.

➔ In many cases we are not interested in the simulation process, but only in its 
outcomes. So, maybe we can somehow approximate the outcome based on partial 
output data?

Prediction “What-if”



Problem

Input OutputSimulation

F: X -> Y

Example: X – traffic signal setting, Y – total delay, total time of waiting etc (real number) 
(Y can be also a random variable in case of stochastic models)

Can we „compute” F faster / easier than by running traffic simulations? 
Can we find a „metamodel” (surrogate model) approximating outcomes of simulations?



Using Traffic Simulation Framework we generated set composed of 105336 
elements, divided it into training set (85336 elements) and test set (20000 elements). 
Each run simulated 10 minutes of traffic with 42 000 cars on a realistic map of 
Warsaw (OSM).

21 x  Time of waiting

{0,1,2,…,119}21

Solution



We focused on approximating the total waiting times on a red signal as a function of 
signal offset settings (signal offset setting = offsets of 21 traffic signal representatives 
on a Stara Ochota district in Warsaw). 

21 x

{0,1,2,…,119}21

Solution

 Time of waiting



➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations 
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed, 
outcomes of traffic simulation can be approximated using NN with a good 
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Solution



Distribution of error on a test set
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➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations 
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed, 
outcomes of traffic simulation can be approximated using NN with a good 
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a 
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15 
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a 
few hundred neurons are sufficient).

➔ We also achieved good results using LightGBM (best avg error: ~1.72%, max 
error: ~10.83%, inference: ~0.4 ms).

Solution



Settings used in experiments:

➔ Inputs to NN: 21-element vector of signal settings (offsets on 21 crossroads, each offset is 
from the set {0, 1, 2, …, 119})

➔ Outputs of NN: approximated total waiting time of all vehicles in a given area (Stara Ochota 
district)

➔ Each NN was a feed forward fully connected NN with ReLU activation function (tanh turned 
out to be better)

➔ Configurations of hidden layers in neural networks: [100, 100, 100], [100, 200, 100], [200, 
300, 200], [300, 400, 300], [100, 150, 200, 150, 100], [50, 100, 200, 300, 200, 100, 50]

➔ Values of a learning rate parameter: 0.1, 0.01, 0.001, 0.0001

➔ Dropout probability (randomly removing some units to prevent overfitting): 0.05, 
0.1, 0.15, 0.2

Solution



We used both models as surrogate models (metamodels) evaluating traffic signal 
settings in traffic optimization algorithms.

6 algorithms tested:
● Genetic algorithms
● Simulated annealing
● Particle swarm optimization
● Tabu search
● Bayesian optimization (without metamodels)
● Gradient optimization

Application

Comparison of best results found by optimization algorithms



Distribution of error close to local optima



Results of a metamodel vs results of simulation for best settings from 
genetic algorithms (last 20 points from each run are marked orange)



Architecture I:

1. Neurons in the even numbered layers, starting with input layer as layer 0, should 
be localized at graph vertices (in our case - crossroads).

2. Neurons in the odd numbered layers should be localized at the graph edges (in 
our case - roads).

3. An exception should be the final layer with just one neuron.

4. Connections from a vertex-localized layer to an edge-localized layer should only 
be present if a given vertex is an end of a given edge. There will be exactly two 
such connections for every edge neuron.

5. Connections from an edge-localized layer to a vertex-localized layer should only 
be present if the edge has the vertex as its end. The number of such 
connections will be equal to the number of particular vertex neighbors.

Graph neural networks



Architecture I:

Graph neural networks
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Architecture II:

1. Neurons in all layers, with the exception of the output layer, should be localized 
at graph vertices.

2. Connections from a neuron in one layer to a neuron in the next one should only 
be present if the corresponding vertices are neighbors in the graph. The number 
of connections for the vertex node will be equal to the number of the vertex 
neighbors.

Graph neural networks



Architecture II:

Graph neural networks
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Results (Architecture I):
➔ reduced avg error of approximation on a test set (before: 1.62%, now: 1.32%),
➔ reduced max error of approximation on a test set (before: 10-11%, now: 6.18%),
➔ similar minima attained in the simulation (before: 31735, now: 31827),
➔ lower approximation error near minima

Graph neural networks

Best 15 rows in terms of the minimum simulator output value obtained by gradient descent. Columns #Lyr, #Ch 
and Act mean the number of layers, number of channels and activation function, respectively. Column MinSim 
includes the minimum output value of the simulator. Columns ErrTest, ErrSim and ErrSim-ErrTest contains 
average errors obtained on a test set, on a gradient descent trajectory and a difference between those average 
errors, respectively. The next 6 columns contain average errors on subsets of the trajectories obtained by
thresholding on the simulator output values.



Problem:
It is not fully clear that including information about the topology of a road network 
brings any value. Perhaps, any similar graph, even not related to the problem at 
hand, could do equally well.

Sanity check:
We fixed the number of layers to 3 and the number of channels to 4 per layer (for 
architecture of type 1), and built our nets using random graphs with various degrees of 
similarity to the true problem graph (measure of similarity: symmetric difference 
between the sets of edges)

◆ Method 1: random edge insertions and deletions at the same time keeping 
the desired value of the symmetric difference.

◆ Method 2: random permutations of the vertex labels while keeping the 
connection graph structure exactly the same

Graph neural networks
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Recent update:
➔ we introduced trigonometric normalization to make our models “learn” that signal 

offsets are cyclical

For traffic signal offset x in {0,1,2,...,119}:
          

x -> (sin(2𝛑x/120), cos(2𝛑x/120))

Graph neural networks



Why does it work (better than fully connected neural networks)?

Hypothesis:
➔ fewer parameters -> easier to train
➔ we keep only the most important connections between neurons 

(similarly to L1 regularization) -> easier to generalize

 

Graph neural networks



Traffic signal setting optimization
So, we can replace simulations with (graph) neural networks and use them as 
metamodels / surrogate models for evaluating fitness functions:

Optimization algorithms which we are testing:
➔ Genetic algorithms

◆ Island models
◆ Proximity-based crossover and mutation

➔ Simulated annealing
➔ Particle swarm optimization
➔ Gradient descent
➔ CMA-ES (Covariant Matrix Adaptation Evolutionary Strategy)
➔ Memetic algorithms
➔ Combinations of GA, SA, PSO, CMA-ES with gradient descent (or hill climbing)
➔ Memetic algorithms, GA and CMA-ES have given the best results so far



Applying BERT
➔ BERT is a transformer neural network using attention mechanism which has 

been successful in natural language processing

➔ We used a standard BERT model from the Hugging Face library

➔ It has been pretrained on Wikipedia and BookCorpus and can be
used in number of downstream tasks like sentence and token classification, or 
question answering

➔ 2-step method:  
◆ classification on bucketized outputs
◆ regression using fully connected neural network with dropout

➔ 1-step method: BERT is built into fully connected neural network which in each 
step of training generates embedding and performs a backpropagation with 
updating of BERT weights
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➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln 

evaluated signal settings (split into a training set, validation set and a test set 
with a proportion 80/10/10)
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Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln 

evaluated signal settings (split into a training set, validation set and a test set 
with a proportion 80/10/10)

➔ Settings were evaluated using TSF to compute the total times of waiting on red 
signals on Stara Ochota district in Warsaw (21 intersections)

➔ Each signal setting consisted of 63 integer values, 3 values per intersection: 
durations of green signal phases in 2 directions (values from the set {20, 21, ... , 
80}) and an offset (values from the set {0, 1, 2, ... ,max})

➔ We trained and compared BERT, LightGBM, fully connected neural networks 
(FCNN), Graph Convolutional Networks (GCN) and Graph Neural Networks 
(GNN)

➔ The results of training were evaluated on a test set and compared using 3 
metrics: MAPE, MAXPE (maximum percentage error), MAXPE99 (maximum 
percentage error among best 99% results - 99-th percentile).



Applying BERT
Model MAPE MAXPE MAXPE99

LightGBM 0.034 0.271 0.117

FCNN (63, 256, 128, 64, 
48, 32, 16,  8, 1)

0.037 0.327 0.132

GCN (2 GCN layers + 
FCNN (21, 128, 48, 32))

0.078 0.442 0.251

GNN (1 GNN layer + FCNN 
(63, 128, 64, 32, 1))

0.069 0.416 0.229

 GNN (1 GNN layer + 
FCNN (63, 256, 128, 64, 

32, 8 , 1))

0.069 0.423 0.229

GNN (3 GNN layers + 
FCNN (63, 256, 128, 64, 

32, 8 , 1))

0.069 0.423 0.228

BERT (1 step) 0.019 0.178 0.066

BERT (2 step) 0.02 0.223 0.108



Applying BERT
The paper “Predicting times of waiting on red signals using BERT” which I 
prepared together with Witold Szejgis and Anna Warno has been accepted for 
the NeurIPS 2020 workshop "Machine Learning for Autonomous Driving": 
https://ml4ad.github.io.

Why pretrained BERT gives good results in this case?
● Random initialization? No.
● Order of crossroads in the input vector? No.
● ?

https://ml4ad.github.io/?fbclid=IwAR3XqA10nDPjNUobgqwhWjp-fJRbC__e5kvwXejasKZp5FsHsEErAdkPiZo
https://ml4ad.github.io
https://ml4ad.github.io/?fbclid=IwAR3XqA10nDPjNUobgqwhWjp-fJRbC__e5kvwXejasKZp5FsHsEErAdkPiZo


Traffic signal setting optimization
Summary:
➔ Done:

◆ Trained graph neural networks, LightGBM, feed forward NN, random 
forests, SVM for the task of approximating outcomes of traffic simulation

◆ Trained BERT (and graph neural networks, LightGBM, GCNN) for a 
dataset with varying durations of green signal phases

◆ Several metaheuristics tested with graph neural networks on the datasets 
for Ochota, Centrum, Mokotów
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Traffic signal setting optimization
Summary:
➔ Done:

◆ Trained graph neural networks, LightGBM, feed forward NN, random 
forests, SVM for the task of approximating outcomes of traffic simulation

◆ Trained BERT (and graph neural networks, LightGBM, GCNN) for a 
dataset with varying durations of green signal phases

◆ Several metaheuristics tested with graph neural networks on the datasets 
for Ochota, Centrum, Mokotów

➔ In progress:
◆ Several metaheuristics are tested with LightGBM on the datasets for 

Ochota, Centrum, Mokotów
◆ Writing thesis (should I include more experiments for BERT?)
◆ Writing chapter for the “AI in Intelligent Transportation Systems” book

➔ Future work: 
◆ Transfer learning (to other traffic conditions or to other road networks)
◆ Active learning (adding heuristically optimal points to the dataset)
◆ Clustering of traffic states
◆ Scaling the solution to larger areas (new datasets will be generated using a 

Sobol sequence)
◆ Testing ensembles



Applications

Real-world traffic data 
(travel times from FCD etc) Typical traffic profiles

We train neural networks and 
find optimal traffic signal 
settings (metaheuristics, GA)

Real-time traffic Typical traffic?

Clustering 
(e.g. Kohonen’s SOMs)

Traffic detection / prediction We use proper NN 
and settings

AI-based (and simulation-based) real-time traffic management

Yes

We calibrate and run simulations, 
retrain NN and find better settings

No



We can apply AI and traffic simulations to : 
• optimize locations and capacities of parkings (even ~25-30% of traffic in city 

centers is generated by drivers looking for parking place) 
• optimize locations of charging stations for electric vehicles
• optimize road network structure
• optimize algorithms for connected and autonomous vehicles
• optimize tolling strategies
• optimize variable speed limits (project “INZNAK”)
• … 

Those methods may be especially efficient in a large scale, in case of atypical traffic 
and in the era of connected and autonomous vehicles.

Applications



Reinforcement learning

Idea:
● Environment - traffic simulation.
● State - state of the traffic (e.g., vector with numbers of cars and average speeds 

for some road segments).
● Action - modification of traffic signal settings.
● Reward - quality of traffic in a given time period, e.g., the total time of waiting, the 

total travelled distance, the amount of consumed energy.



Idea:
● Environment - traffic simulation.
● State - state of the traffic (e.g., vector with numbers of cars and average speeds 

for some road segments).
● Action - modification of traffic signal settings.
● Reward - quality of traffic in a given time period, e.g., the total time of waiting, the 

total travelled distance, the amount of consumed energy.

Experiments:
● Environment - we implemented a simple traffic simulator based on Na-Sch 

(deterministic).
● State - vector of average speeds and number of cars (per road segment) for one 

cycle of traffic lights.
● Action - 4-element vector of offsets (offset indicates when the green light starts).
● Reward - the total distance covered by all cars in 1 step.
● Algorithm: DQN.

Reinforcement learning



Recent results

Reinforcement learning

X axis is a step
light green is RL approach
dark green is baseline (agent selects actions randomly)



Recent results

Reinforcement learning

➔ Integration with Flow https://flow-project.github.io
➔ Integration with OpenAI Gym
➔ Integration with libraries RLlib, stable-baselines
➔ Testing PPO, TRPO, ARS
➔ Integration with Neptune.ai

https://flow-project.github.io/


Recent results

Reinforcement learning

➔ Multiagent RL

➔ “CoLight: Learning Network-level Cooperation for Traffic Signal Control” (graph 
attention networks)



➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś 
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

Optimization of cancer treatment
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➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś 
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

➔ We can simulate cancer growth using cellular automata (stochastic model)
➔ We can apply different radiotherapy strategies (times and doses of 

radiotherapy) ...
➔ … and compute the number of tumor cells
➔ We can try to find good strategies using  genetic algorithms (or other 

metaheuristics)
➔ Accelerating computations:

◆ Initially (Matlab): ~100 minutes per simulation (of 10 days of treatment) 
◆ Our first try (C++): ~1 minute per simulation
◆ Second try (CUDA): a few second per simulation
◆ Neural networks / LightGBM:  < 0.1 ms (Temporal Fusion Transformer 

gives the best results)
➔ We can use reinforcement learning to adapt times and values of doses to the 

current state

Optimization of cancer treatment



Approximating outcomes of 
cellular automata evolution

Some CA are Turing-complete (Game of Life, Rule 110) 

Can we build a universal tool for finding approximate solutions of 
(some) computational problems (e.g., NP-hard problems)?



Approximating outcomes of 
cellular automata evolution

Some CA are Turing-complete (Game of Life, Rule 110) 

Can we build a universal tool for finding approximate solutions of 
(some) computational problems (e.g., NP-hard problems)?

"It's Hard for Neural Networks To Learn the Game of Life"
https://bdtechtalks.com/2020/09/16/deep-learning-game-of-life
https://arxiv.org/abs/2009.01398

https://bdtechtalks.com/2020/09/16/deep-learning-game-of-life
https://arxiv.org/abs/2009.01398


Thank you for your attention!

Questions?

E-mail: p.gora@mimuw.edu.pl     
             tensorcell.research@gmail.com 

www:   http://www.mimuw.edu.pl/~pawelg
             http://www.tensorcell.com   

“Logic can get you from A to B, imagination will take you everywhere” A. Einstein

“The sky is NOT the limit”

mailto:p.gora@mimuw.edu.pl
mailto:tensorcell.research@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.tensorcell.com


➔ New training sets: Centrum, Mokotów 

➔ Hierarchical approach

➔ Active learning

➔ Ensemble learning

➔ Transfer learning

➔ AutoML (finding optimal NN structures and hyperparameters using AI)

Future work
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Optimizing complex processes using AI

Complex process - (evolving in time) system composed of many 
interacting elements.

Examples: vehicular traffic, society, ant colony, organism (e.g., 
evolving cells), human brain, cellular automata, stock market, …



TensorCell
Typical properties of complex systems / processes:
● Emergent properties (traffic jam, war, financial bubble / crisis)
● Nonlinearity
● Sensitive dependence on initial conditions
● Openness (influence of the environment)
● Adaptability
● Hierarchy
● Computational irreducibility
● “Order in chaos” - between predictable and random 

behaviour

Fascinating universality and ubiquitousness!



Rest areas in Poland
Source: GDDKiA

Applications



TSF applied to find optimal locations of a bridge close to the Senegal - Guinea border

Applications


