
www.en.uw.edu.pl

 Metaheuristics in optimization of complex processes

Paweł Gora
Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

Group of Logic Research Seminar

27.11.2020

The general schema

Input OutputSimulation of a complex
process

Optimization based on
metaheuristics

The general schema

Simulation of a complex
process

Input

Optimization based on
metaheuristics

Input Output

Metamodel (surrogate
model) based on ML Output

What will happen if we change something in the road network?
What will happen if we change traffic signal settings?

Step toward traffic optimization

Prediction “What-if”

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In most of the optimization problems in transport, we have to use metaheuristics to
find (heuristically) optimal solutions (these problems are often NP-hard). In such
cases we have to run large number of such simulations, with different settings.

Prediction “What-if”

Nr of games: 10700 Nr of settings: > 120800

(and the problem is proved to be NP-hard!)

More than the number of atoms in the visible Universe!

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In most of the optimization problems in transport, we have to use metaheuristics to
find (heuristically) optimal solutions (these problems are often NP-hard). In such
cases we have to run large number of such simulations, with different settings.

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

Prediction “What-if”

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In most of the optimization problems in transport, we have to use metaheuristics to
find (heuristically) optimal solutions (these problems are often NP-hard). In such
cases we have to run large number of such simulations, with different settings.

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

➔ In many cases we are not interested in the simulation process, but only in its
outcomes. So, maybe we can somehow approximate the outcome based on partial
output data?

Prediction “What-if”

Problem

Input OutputSimulation

F: X -> Y

Example: X – traffic signal setting, Y – total delay, total time of waiting etc (real number)
(Y can be also a random variable in case of stochastic models)

Can we „compute” F faster / easier than by running traffic simulations?
Can we find a „metamodel” (surrogate model) approximating outcomes of simulations?

Using Traffic Simulation Framework we generated set composed of 105336
elements, divided it into training set (85336 elements) and test set (20000 elements).
Each run simulated 10 minutes of traffic with 42 000 cars on a realistic map of
Warsaw (OSM).

21 x Time of waiting

{0,1,2,…,119}21

Solution

We focused on approximating the total waiting times on a red signal as a function of
signal offset settings (signal offset setting = offsets of 21 traffic signal representatives
on a Stara Ochota district in Warsaw).

21 x

{0,1,2,…,119}21

Solution

 Time of waiting

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Solution

Distribution of error on a test set

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

Solution

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

➔ We also achieved good results using LightGBM (best avg error: ~1.72%, max
error: ~10.83%, inference: ~0.4 ms).

Solution

Settings used in experiments:

➔ Inputs to NN: 21-element vector of signal settings (offsets on 21 crossroads, each offset is
from the set {0, 1, 2, …, 119})

➔ Outputs of NN: approximated total waiting time of all vehicles in a given area (Stara Ochota
district)

➔ Each NN was a feed forward fully connected NN with ReLU activation function (tanh turned
out to be better)

➔ Configurations of hidden layers in neural networks: [100, 100, 100], [100, 200, 100], [200,
300, 200], [300, 400, 300], [100, 150, 200, 150, 100], [50, 100, 200, 300, 200, 100, 50]

➔ Values of a learning rate parameter: 0.1, 0.01, 0.001, 0.0001

➔ Dropout probability (randomly removing some units to prevent overfitting): 0.05,
0.1, 0.15, 0.2

Solution

We used both models as surrogate models (metamodels) evaluating traffic signal
settings in traffic optimization algorithms.

6 algorithms tested:
● Genetic algorithms
● Simulated annealing
● Particle swarm optimization
● Tabu search
● Bayesian optimization (without metamodels)
● Gradient optimization

Application

Comparison of best results found by optimization algorithms

Distribution of error close to local optima

Results of a metamodel vs results of simulation for best settings from
genetic algorithms (last 20 points from each run are marked orange)

Architecture I:

1. Neurons in the even numbered layers, starting with input layer as layer 0, should
be localized at graph vertices (in our case - crossroads).

2. Neurons in the odd numbered layers should be localized at the graph edges (in
our case - roads).

3. An exception should be the final layer with just one neuron.

4. Connections from a vertex-localized layer to an edge-localized layer should only
be present if a given vertex is an end of a given edge. There will be exactly two
such connections for every edge neuron.

5. Connections from an edge-localized layer to a vertex-localized layer should only
be present if the edge has the vertex as its end. The number of such
connections will be equal to the number of particular vertex neighbors.

Graph neural networks

Architecture I:

Graph neural networks

5

1

2

34

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Architecture II:

1. Neurons in all layers, with the exception of the output layer, should be localized
at graph vertices.

2. Connections from a neuron in one layer to a neuron in the next one should only
be present if the corresponding vertices are neighbors in the graph. The number
of connections for the vertex node will be equal to the number of the vertex
neighbors.

Graph neural networks

Architecture II:

Graph neural networks

5

1

2

34

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Results (Architecture I):
➔ reduced avg error of approximation on a test set (before: 1.62%, now: 1.32%),
➔ reduced max error of approximation on a test set (before: 10-11%, now: 6.18%),
➔ similar minima attained in the simulation (before: 31735, now: 31827),
➔ lower approximation error near minima

Graph neural networks

Best 15 rows in terms of the minimum simulator output value obtained by gradient descent. Columns #Lyr, #Ch
and Act mean the number of layers, number of channels and activation function, respectively. Column MinSim
includes the minimum output value of the simulator. Columns ErrTest, ErrSim and ErrSim-ErrTest contains
average errors obtained on a test set, on a gradient descent trajectory and a difference between those average
errors, respectively. The next 6 columns contain average errors on subsets of the trajectories obtained by
thresholding on the simulator output values.

Problem:
It is not fully clear that including information about the topology of a road network
brings any value. Perhaps, any similar graph, even not related to the problem at
hand, could do equally well.

Sanity check:
We fixed the number of layers to 3 and the number of channels to 4 per layer (for
architecture of type 1), and built our nets using random graphs with various degrees of
similarity to the true problem graph (measure of similarity: symmetric difference
between the sets of edges)

◆ Method 1: random edge insertions and deletions at the same time keeping
the desired value of the symmetric difference.

◆ Method 2: random permutations of the vertex labels while keeping the
connection graph structure exactly the same

Graph neural networks

Problem:
It is not fully clear that including information about the topology of a road network
brings any value. Perhaps, any similar graph, even not related to the problem at
hand, could do equally well.

Graph neural networks

Recent update:
➔ we introduced trigonometric normalization to make our models “learn” that signal

offsets are cyclical

For traffic signal offset x in {0,1,2,...,119}:

x -> (sin(2𝛑x/120), cos(2𝛑x/120))

Graph neural networks

Why does it work (better than fully connected neural networks)?

Hypothesis:
➔ fewer parameters -> easier to train
➔ we keep only the most important connections between neurons

(similarly to L1 regularization) -> easier to generalize

Graph neural networks

Traffic signal setting optimization
So, we can replace simulations with (graph) neural networks and use them as
metamodels / surrogate models for evaluating fitness functions:

Optimization algorithms which we are testing:
➔ Genetic algorithms

◆ Island models
◆ Proximity-based crossover and mutation

➔ Simulated annealing
➔ Particle swarm optimization
➔ Gradient descent
➔ CMA-ES (Covariant Matrix Adaptation Evolutionary Strategy)
➔ Memetic algorithms
➔ Combinations of GA, SA, PSO, CMA-ES with gradient descent (or hill climbing)
➔ Memetic algorithms, GA and CMA-ES have given the best results so far

Applying BERT
➔ BERT is a transformer neural network using attention mechanism which has

been successful in natural language processing

➔ We used a standard BERT model from the Hugging Face library

➔ It has been pretrained on Wikipedia and BookCorpus and can be
used in number of downstream tasks like sentence and token classification, or
question answering

➔ 2-step method:
◆ classification on bucketized outputs
◆ regression using fully connected neural network with dropout

➔ 1-step method: BERT is built into fully connected neural network which in each
step of training generates embedding and performs a backpropagation with
updating of BERT weights

Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln

evaluated signal settings (split into a training set, validation set and a test set
with a proportion 80/10/10)

Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln

evaluated signal settings (split into a training set, validation set and a test set
with a proportion 80/10/10)

➔ Settings were evaluated using TSF to compute the total times of waiting on red
signals on Stara Ochota district in Warsaw (21 intersections)

Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln

evaluated signal settings (split into a training set, validation set and a test set
with a proportion 80/10/10)

➔ Settings were evaluated using TSF to compute the total times of waiting on red
signals on Stara Ochota district in Warsaw (21 intersections)

➔ Each signal setting consisted of 63 integer values, 3 values per intersection:
durations of green signal phases in 2 directions (values from the set {20, 21, ... ,
80}) and an offset (values from the set {0, 1, 2, ... ,max})

Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln

evaluated signal settings (split into a training set, validation set and a test set
with a proportion 80/10/10)

➔ Settings were evaluated using TSF to compute the total times of waiting on red
signals on Stara Ochota district in Warsaw (21 intersections)

➔ Each signal setting consisted of 63 integer values, 3 values per intersection:
durations of green signal phases in 2 directions (values from the set {20, 21, ... ,
80}) and an offset (values from the set {0, 1, 2, ... ,max})

➔ We trained and compared BERT, LightGBM, fully connected neural networks
(FCNN), Graph Convolutional Networks (GCN) and Graph Neural Networks
(GNN)

Applying BERT
➔ We used Traffic Simulation Framework to generate a dataset set with 1.5mln

evaluated signal settings (split into a training set, validation set and a test set
with a proportion 80/10/10)

➔ Settings were evaluated using TSF to compute the total times of waiting on red
signals on Stara Ochota district in Warsaw (21 intersections)

➔ Each signal setting consisted of 63 integer values, 3 values per intersection:
durations of green signal phases in 2 directions (values from the set {20, 21, ... ,
80}) and an offset (values from the set {0, 1, 2, ... ,max})

➔ We trained and compared BERT, LightGBM, fully connected neural networks
(FCNN), Graph Convolutional Networks (GCN) and Graph Neural Networks
(GNN)

➔ The results of training were evaluated on a test set and compared using 3
metrics: MAPE, MAXPE (maximum percentage error), MAXPE99 (maximum
percentage error among best 99% results - 99-th percentile).

Applying BERT
Model MAPE MAXPE MAXPE99

LightGBM 0.034 0.271 0.117

FCNN (63, 256, 128, 64,
48, 32, 16, 8, 1)

0.037 0.327 0.132

GCN (2 GCN layers +
FCNN (21, 128, 48, 32))

0.078 0.442 0.251

GNN (1 GNN layer + FCNN
(63, 128, 64, 32, 1))

0.069 0.416 0.229

 GNN (1 GNN layer +
FCNN (63, 256, 128, 64,

32, 8 , 1))

0.069 0.423 0.229

GNN (3 GNN layers +
FCNN (63, 256, 128, 64,

32, 8 , 1))

0.069 0.423 0.228

BERT (1 step) 0.019 0.178 0.066

BERT (2 step) 0.02 0.223 0.108

Applying BERT
The paper “Predicting times of waiting on red signals using BERT” which I
prepared together with Witold Szejgis and Anna Warno has been accepted for
the NeurIPS 2020 workshop "Machine Learning for Autonomous Driving":
https://ml4ad.github.io.

Why pretrained BERT gives good results in this case?
● Random initialization? No.
● Order of crossroads in the input vector? No.
● ?

https://ml4ad.github.io/?fbclid=IwAR3XqA10nDPjNUobgqwhWjp-fJRbC__e5kvwXejasKZp5FsHsEErAdkPiZo
https://ml4ad.github.io
https://ml4ad.github.io/?fbclid=IwAR3XqA10nDPjNUobgqwhWjp-fJRbC__e5kvwXejasKZp5FsHsEErAdkPiZo

Traffic signal setting optimization
Summary:
➔ Done:

◆ Trained graph neural networks, LightGBM, feed forward NN, random
forests, SVM for the task of approximating outcomes of traffic simulation

◆ Trained BERT (and graph neural networks, LightGBM, GCNN) for a
dataset with varying durations of green signal phases

◆ Several metaheuristics tested with graph neural networks on the datasets
for Ochota, Centrum, Mokotów

Traffic signal setting optimization
Summary:
➔ Done:

◆ Trained graph neural networks, LightGBM, feed forward NN, random
forests, SVM for the task of approximating outcomes of traffic simulation

◆ Trained BERT (and graph neural networks, LightGBM, GCNN) for a
dataset with varying durations of green signal phases

◆ Several metaheuristics tested with graph neural networks on the datasets
for Ochota, Centrum, Mokotów

➔ In progress:
◆ Several metaheuristics are tested with LightGBM on the datasets for

Ochota, Centrum, Mokotów
◆ Writing thesis (should I include more experiments for BERT?)
◆ Writing chapter for the “AI in Intelligent Transportation Systems” book

Traffic signal setting optimization
Summary:
➔ Done:

◆ Trained graph neural networks, LightGBM, feed forward NN, random
forests, SVM for the task of approximating outcomes of traffic simulation

◆ Trained BERT (and graph neural networks, LightGBM, GCNN) for a
dataset with varying durations of green signal phases

◆ Several metaheuristics tested with graph neural networks on the datasets
for Ochota, Centrum, Mokotów

➔ In progress:
◆ Several metaheuristics are tested with LightGBM on the datasets for

Ochota, Centrum, Mokotów
◆ Writing thesis (should I include more experiments for BERT?)
◆ Writing chapter for the “AI in Intelligent Transportation Systems” book

➔ Future work:
◆ Transfer learning (to other traffic conditions or to other road networks)
◆ Active learning (adding heuristically optimal points to the dataset)
◆ Clustering of traffic states
◆ Scaling the solution to larger areas (new datasets will be generated using a

Sobol sequence)
◆ Testing ensembles

Applications

Real-world traffic data
(travel times from FCD etc) Typical traffic profiles

We train neural networks and
find optimal traffic signal
settings (metaheuristics, GA)

Real-time traffic Typical traffic?

Clustering
(e.g. Kohonen’s SOMs)

Traffic detection / prediction We use proper NN
and settings

AI-based (and simulation-based) real-time traffic management

Yes

We calibrate and run simulations,
retrain NN and find better settings

No

We can apply AI and traffic simulations to :
• optimize locations and capacities of parkings (even ~25-30% of traffic in city

centers is generated by drivers looking for parking place)
• optimize locations of charging stations for electric vehicles
• optimize road network structure
• optimize algorithms for connected and autonomous vehicles
• optimize tolling strategies
• optimize variable speed limits (project “INZNAK”)
• …

Those methods may be especially efficient in a large scale, in case of atypical traffic
and in the era of connected and autonomous vehicles.

Applications

Reinforcement learning

Idea:
● Environment - traffic simulation.
● State - state of the traffic (e.g., vector with numbers of cars and average speeds

for some road segments).
● Action - modification of traffic signal settings.
● Reward - quality of traffic in a given time period, e.g., the total time of waiting, the

total travelled distance, the amount of consumed energy.

Idea:
● Environment - traffic simulation.
● State - state of the traffic (e.g., vector with numbers of cars and average speeds

for some road segments).
● Action - modification of traffic signal settings.
● Reward - quality of traffic in a given time period, e.g., the total time of waiting, the

total travelled distance, the amount of consumed energy.

Experiments:
● Environment - we implemented a simple traffic simulator based on Na-Sch

(deterministic).
● State - vector of average speeds and number of cars (per road segment) for one

cycle of traffic lights.
● Action - 4-element vector of offsets (offset indicates when the green light starts).
● Reward - the total distance covered by all cars in 1 step.
● Algorithm: DQN.

Reinforcement learning

Recent results

Reinforcement learning

X axis is a step
light green is RL approach
dark green is baseline (agent selects actions randomly)

Recent results

Reinforcement learning

➔ Integration with Flow https://flow-project.github.io
➔ Integration with OpenAI Gym
➔ Integration with libraries RLlib, stable-baselines
➔ Testing PPO, TRPO, ARS
➔ Integration with Neptune.ai

https://flow-project.github.io/

Recent results

Reinforcement learning

➔ Multiagent RL

➔ “CoLight: Learning Network-level Cooperation for Traffic Signal Control” (graph
attention networks)

➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

Optimization of cancer treatment

➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

➔ We can simulate cancer growth using cellular automata (stochastic model)
➔ We can apply different radiotherapy strategies (times and doses of

radiotherapy) ...
➔ … and compute the number of tumor cells
➔ We can try to find good strategies using genetic algorithms (or other

metaheuristics)

Optimization of cancer treatment

➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

➔ We can simulate cancer growth using cellular automata (stochastic model)
➔ We can apply different radiotherapy strategies (times and doses of

radiotherapy) ...
➔ … and compute the number of tumor cells
➔ We can try to find good strategies using genetic algorithms (or other

metaheuristics)
➔ Accelerating computations:

◆ Initially (Matlab): ~100 minutes per simulation (of 10 days of treatment)
◆ Our first try (C++): ~1 minute per simulation
◆ Second try (CUDA): a few second per simulation
◆ Neural networks / LightGBM: < 0.1 ms (Temporal Fusion Transformer

gives the best results)

Optimization of cancer treatment

➔ Cooperation with dr hab. Monika Piotrowska (MIMUW), Rafał Banaś
(MIMUW), Wojciech Ozimek (UJ/Ardigen), Simon Angus (Monash University)

➔ We can simulate cancer growth using cellular automata (stochastic model)
➔ We can apply different radiotherapy strategies (times and doses of

radiotherapy) ...
➔ … and compute the number of tumor cells
➔ We can try to find good strategies using genetic algorithms (or other

metaheuristics)
➔ Accelerating computations:

◆ Initially (Matlab): ~100 minutes per simulation (of 10 days of treatment)
◆ Our first try (C++): ~1 minute per simulation
◆ Second try (CUDA): a few second per simulation
◆ Neural networks / LightGBM: < 0.1 ms (Temporal Fusion Transformer

gives the best results)
➔ We can use reinforcement learning to adapt times and values of doses to the

current state

Optimization of cancer treatment

Approximating outcomes of
cellular automata evolution

Some CA are Turing-complete (Game of Life, Rule 110)

Can we build a universal tool for finding approximate solutions of
(some) computational problems (e.g., NP-hard problems)?

Approximating outcomes of
cellular automata evolution

Some CA are Turing-complete (Game of Life, Rule 110)

Can we build a universal tool for finding approximate solutions of
(some) computational problems (e.g., NP-hard problems)?

"It's Hard for Neural Networks To Learn the Game of Life"
https://bdtechtalks.com/2020/09/16/deep-learning-game-of-life
https://arxiv.org/abs/2009.01398

https://bdtechtalks.com/2020/09/16/deep-learning-game-of-life
https://arxiv.org/abs/2009.01398

Thank you for your attention!

Questions?

E-mail: p.gora@mimuw.edu.pl
 tensorcell.research@gmail.com

www: http://www.mimuw.edu.pl/~pawelg
 http://www.tensorcell.com

“Logic can get you from A to B, imagination will take you everywhere” A. Einstein

“The sky is NOT the limit”

mailto:p.gora@mimuw.edu.pl
mailto:tensorcell.research@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.tensorcell.com

➔ New training sets: Centrum, Mokotów

➔ Hierarchical approach

➔ Active learning

➔ Ensemble learning

➔ Transfer learning

➔ AutoML (finding optimal NN structures and hyperparameters using AI)

Future work

TensorCell (current or past) members / contributors:
➔ Łukasz Skowronek
➔ Marcin Możejko
➔ Arkadiusz Klemenko
➔ Maciej Brzeski
➔ Kamil Kaczmarek
➔ Anna Kosiorek
➔ Dawid Kopczyk
➔ Katarzyna Karnas
➔ Łukasz Mądry
➔ Karol Kurach
➔ Marek Bardoński
➔ Mateusz Susik
➔ Magdalena Kukawska
➔ Maciej Zwoliński
➔ Mariusz Patyk
➔ Hubert Dryja
➔ Przemysław Przybyszewski
➔ Adrian Kochański
➔ Piotr Golach
➔ ...

Acknowledgement

➔ An independent research group founded in 2016

➔ We work on optimizing complex processes using AI

➔ 100% remote work

➔ > 20 researchers (mostly from Warsaw, 6 from Kraków, 1 from
Poznań)

➔ Cooperation with researchers from Google, Delft University (in
the past also: Skolkovo Institute of Science and Technology,
Technical University of Madrid, Edinburgh Napier University)

➔ Azure resources from Microsoft (“AI for Earth” grant)

➔ Papers published on NeurIPS workshops, MT-ITS, TFML etc

TensorCell

www.en.uw.edu.pl

Optimizing complex processes using AI

Complex process - (evolving in time) system composed of many
interacting elements.

Examples: vehicular traffic, society, ant colony, organism (e.g.,
evolving cells), human brain, cellular automata, stock market, …

TensorCell
Typical properties of complex systems / processes:
● Emergent properties (traffic jam, war, financial bubble / crisis)
● Nonlinearity
● Sensitive dependence on initial conditions
● Openness (influence of the environment)
● Adaptability
● Hierarchy
● Computational irreducibility
● “Order in chaos” - between predictable and random

behaviour

Fascinating universality and ubiquitousness!

Rest areas in Poland
Source: GDDKiA

Applications

TSF applied to find optimal locations of a bridge close to the Senegal - Guinea border

Applications

