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Non-Malleable Codes

a tool for securing 
computer memory against 

physical tampering 
attacks

Introduced in [D., Pietrzak, Wichs, ICS 2010].
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Cryptography: art vs science

In the past:
the art of encrypting messages (mostly 
for the military applications).

design method: “trial and error’

Nowadays:
the science of securing digital 
communication and transactions 
(encryption, authentication, digital 
signatures, e-cash, auctions, etc..)

design method: “provable security”

proofs in a well-defined mathematical model



Standard model: black-box

5

crypto algorithm

attack algorithm
(“the adversary”)

key

modelled as a Turing Machine with 
bounded computing time



Example: smart cards
key

card inserted

even a malicious ATM should not be 
able to clone the card

Note: such cards are much more secure 
than cards with magnetic stripe.



“Black-Box Cryptography” – the 
situation

In general the problem of constructing basic 
cryptographic protocols secure in this model appears to 
be solved.

For example in symmetric encryption:
even the “ancient” cipher DES (from 1970s) is broken only 
because its key is too short.

(all other attacks are “theoretical”)

Can we relax?



Much more powerful than the traditional  “black-box” attacks!

Is the black-box model realistic?
No: Smart Cards can be broken by physical attacks.

The adversary obtains a temporary access to the device 
and can “play with it”.

In particular: he can exploit its physical properties 



Physical attacks on the implementation

1. Information
leakage

(side-channel attacks) 

2. Tampering attacks
(malicious 

modifications)

Example: power consumption 
measurements

Example: raising voltage or 
temperature, tampering with 
clock, focusing UV light on the  

device… today we focus on this



How can the adversary exploit 
the tampering attacks?
Example: related key attacks

tampers

interacts

interacts

key

𝐤𝐞𝐲′

𝐤𝐞𝐲′ is “related” to key
For example:

it’s equal to 𝐤𝐞𝐲, except that the first bit is negated.



This way the adversary obtains more 
power than in the black-box model!

crypto algorithm

key

𝐤𝐞𝐲′key

crypto algorithmcrypto algorithm

black-box model

related-key attack

Many successful attacks are based on this!



Countermeasures?

Lots of ad hoc practical solutions (a market worth 
billions of dollars) 

– usually based on a trial-and-error methodology…

A more formal approach?

cryptographic devices are everywhere: 
payment cards, tickets, SIM cards, pay TV 

cards, etc..



An idea: incorporate physical 
attacks to the formal model

(standard) black-box access

crypto algorithm

Hundreds of papers during the last decade!

additional access
to the internal data



Example: modelling leakage

“𝒕-probing memory attacks”

The adversary can read-off up to t wires from the memory .

𝒂𝟏 ⋯ 𝒂𝒏



The fundamental building block

encoding schemes secure against the 
physical attacks.

message: M
codeword

C = Enc(M)

Encoding scheme is a pair of algorithms 

(Enc: M→ C, Dec : C→M) 

such that:
– Enc can be randomized, 

– and ∀𝑀 Dec(Enc(M)) = M                                  

note: no secret 
key

Enc

Dec

M – set of 

messages

C – set of 

codewords



Example
A bit encoding scheme (𝐄𝐧𝐜: 𝒁𝟐 → 𝒁𝟐

𝒏, 𝐃𝐞𝐜: 𝒁𝟐
𝒏 → 𝒁𝟐) secure against 

(𝒏 − 𝟏)-probing memory attacks.

Let 𝒏 be some natural parameter. To encode a bit 𝑴 ∈ 𝒁𝟐 take 
𝒂𝟏, … , 𝒂𝒏 ∈ 𝒁𝟐 uniformly at random such that

𝑴 = 𝒂𝟏 +⋯+ 𝒂𝒏mod 2

and let 𝐄𝐧𝐜 𝑴 ≔ 𝒂𝟏, … , 𝒂𝒏 and 𝐃𝐞𝐜 𝒂𝟏, … , 𝒂𝒏 = 𝒂𝟏 +⋯+ 𝒂𝒏.

Now suppose that 𝑪 ≔ 𝐄𝐧𝐜(𝑴) is stored on the device.

Then 𝑴 remains secret even if the adversary learns up to 𝒏 − 𝟏 bits of 𝑪.

Example (𝒏 = 𝟓):

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 + 𝒂𝟒 + 𝒂𝟓 ?

?



How to use such encoding schemes?

Note:
the encoding schemes are just a building-block, since 
they only provide security of “memory”.

In practice we are usually interested in securing the 
computation. 

This can be done by exploiting some “homomorphic” 
properties of the encodings.

For example: the encoding from the previous slide is 
linear.



Leakage-resilient encodings

The “leakage model” on the previous slide is very 
simple (the adversary learns “up to 𝒏 − 𝟏 bits”).

This is not always realistic. In practice we need 
something stronger.

Tons of different models and constructions.

What about encoding secure against tampering?
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Tampering attacks

message: M

C = Enc(M)

Enc

Dec

C’ = h(C)message:
𝑴’ = 𝐃𝐞𝐜(𝑪’)

𝒉 chooses h ∈H



“Induced functions”

Consider the tampering experiment (for some fixed 𝑴):

DecEncM M’ = Dec(C’)C = Enc(M) C’ = h(C)

h’M M’ = Dec(C’)

We say that 𝒉:C→ C induces 𝒉′:M →M defined for 

every 𝑴 as:

𝒉′ 𝑴 = 𝐃𝐞𝐜(𝒉 𝐄𝐧𝐜 𝑴

𝒉

fix some h ∈H



What functions can the adversary induce?

Even for very restricted families H he can 

• make 𝒉′(𝑴) = 𝑴

or

• make 𝒉′(𝑴) = constant 𝑿 “independent from 𝑴”

by choosing 𝒉 𝑪 ≔ 𝑪

by choosing 𝒉 𝑪 ≔ 𝐄𝐧𝐜(𝑿)



Non-Malleable Codes (NMC)

Informally
(𝐄𝐧𝐜, 𝐃𝐞𝐜) is non-malleable with respect to family H if  h’
can be represented as a probabilistic combination of:

• the identity function

• and constant functions

(we formalize it a bit later) 

Main idea

The “identity” and the “constant” attacks should be the only 
thing that the adversary can do.

In other words: 𝑴 should be either
• equal to𝑴
• or unrelated to it.



Non-malleability in cryptography

Introduced in [Dolev, Dwork, and Naor, STOC’91]

Informally:

a cryptographic primitive 𝑿 (with a secret key 𝑺) is 
malleable if there exists an adversary who is able to 
produce output “related to” 𝑿 𝑺 , but not equal to it 
(even if he does not know 𝑺).

(it is non-malleable otherwise)



Can we have an NMC secure against 
the family of all functions?

no!

DecEncM M’C C’

Clearly: 𝑴′ is related to 𝑴
(but 𝑴′ ≠ 𝑴) 

Attack 
example:

𝒉 ∈ H

1. Decodes 𝑴 = 𝐃𝐞𝐜(𝑪)
2. Let 𝑴′ ≔ 𝑴with all bits negated
3. Let 𝑪’ ≔ 𝐄𝐧𝐜(𝑴’)



Moral

H has to be restricted in some way.

Popular variants:

• independent bit tampering – 𝑪 is a bit-string and 𝒉
tampers with each bit independently,

• split state model – 𝑪 is divided into 𝟐 (or more) 
independent parts, and the adversary can tamper with 
each part independently,

• low complexity tampering – 𝒉 has to be represented 
by a small circuit



How to formalize that h’ is a probabilistic 
combination of constant functions? 

𝐄𝐧𝐜:M → C, 𝐃𝐞𝐜: C →M is non-malleable w.r.t. H if 

∀
h ∈H

∃
D – random variable 

taking values from M

such that ∀
M ∈M

𝒉′(𝑴) ≡ D

Question: what with the “identity” function?

equality of 
distributions



Solution
D – random variable taking values fromM ∪ {same}

For M ∈M and 𝒅 ∈M ∪ {same} define:

if 𝒅 = same then output𝑴
otherwise output 𝒅

∀
h ∈H
∃
𝑫

such that ∀
M ∈M

𝒉′(𝑴) ≡ 𝐓𝐚𝐦𝐩𝐞𝐫𝑴(𝑫)

(𝐄𝐧𝐜, 𝐃𝐞𝐜) is non-malleable w.r.t. H if 

𝐓𝐚𝐦𝐩𝐞𝐫𝑴(𝒅) ∶=



In practice it’s useful to relax this 
definition a bit

∀
h ∈H
∃
D

such that∀
M ∈M

𝒉′ 𝑴 ≈𝝐 TamperM(𝑫)

(𝐄𝐧𝐜, 𝐃𝐞𝐜) is 𝜖-non-malleable w.r.t. H if 

𝝐-closeness of distributions
(we skip the formal definition)



One way to look at it

The adversary can either

• leave the device unchanged, 

or

• destroy it completely



How to use NMCs to protect against 
the related key attacks?

𝐄𝐧𝐜 𝐤𝐞𝐲′𝐄𝐧𝐜(𝐤𝐞𝐲)

crypto algorithmcrypto algorithm

𝑪 = 𝐄𝐧𝐜(𝐤𝐞𝐲) crypto algorithm𝐤𝐞𝐲 ≔ 𝐃𝐞𝐜(𝑪)𝑪

encode 
𝐤𝐞𝐲

device

store the 
encoding

decode 
before use

What can the adversary do?

(1) leave the key unchanged

or (2) get a device with un unrelated 𝐤𝐞𝐲′

This gives him no more power than in the black-box model!
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Independent Bit Tampering

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

4 types of functions acting on 
bits:

keep

flip

set to 0

set to 1

C

C

C

C

C

𝟏 + 𝑪𝐦𝐨𝐝 𝟐

0

1

k
e

e
p

flip

se
t to

 0

se
t to

 1

k
e

e
p

flip

flip

se
t to

 0

se
t to

 1

k
e

e
p

C1 0 1+C3 C4 0 1 1+C7 1 1+C9 C10

set of codewords: 𝒁𝟐
𝒏

(where 𝒏 is some parameter) 



How to design an NMC secure 
w.r.t. such tampering?
Simple ideas don’t work.

For example take the encoding that we constructed before:

To encode a bit 𝑴 ∈ 𝒁𝟐 take 𝒂𝟏, … , 𝒂𝒏 ∈ 𝒁𝟐 uniformly at 
random such that 𝑴 = 𝒂𝟏 +⋯+ 𝒂𝒏mod 2 and let 

𝐄𝐧𝐜 𝑴 ≔ (𝒂𝟏, … , 𝒂𝒏) and 𝐃𝐞𝐜 𝒂𝟏, … , 𝒂𝒏 = 𝒂𝟏 +⋯+ 𝒂𝒏.

This is clearly malleable w.r.t. independent bit tampering 
because negating one bit negates the message:

𝐃𝐞𝐜 𝟏 + 𝒂𝟏, … , 𝒂𝒏 = 𝟏 + 𝒂𝟏 +⋯+ 𝒂𝒏 = 𝟏 +𝑴.



Non-malleable code secure against 
independent bit tampering

[DPW10]:
A construction of an efficient non-malleable code secure 
against independent bit tampering.

It achieves the rate of ≈ 0.1887.

(later improved in some subsequent work)

Uses the algebraic manipulation detection codes 
[CDFPW08].
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The existential result

Consider codes with the set of codewords 𝒁𝟐
𝒏 (for some 

parameter 𝒏).

Theorem [DPW10]
Suppose H is a subset of tampering functions 𝒁𝟐

𝒏 → 𝒁𝟐
𝒏 such that 

𝐥𝐨𝐠𝟐(𝐥𝐨𝐠𝟐(|H|)) < 𝒏. 
Then there exists a code that is non-malleable with respect to H.

In particular: a random code is non-malleable with a very high 
probability.

Note:

The set of ALL functions 𝒉: 𝒁𝟐
𝒏 → 𝒁𝟐

𝒏 is such that
𝐥𝐨𝐠𝟐(𝐥𝐨𝐠𝟐(|ALL|)) = 𝒏 + 𝐥𝐨𝐠𝟐𝒏

𝟐𝒏⋅𝟐
𝒏
𝐥𝐨𝐠𝟐 𝐥𝐨𝐠𝟐 𝐥𝐨𝐠𝟐𝒏 + 𝒏Because:
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The “split-state model”

Suppose that

𝐄𝐧𝐜:M → L ×R
𝐃𝐞𝐜:L ×R →M

and 𝐄𝐧𝐜(𝑴) = (𝑳, 𝑹)

(𝒇, 𝒈) – arbitrary tampering functions.

𝒇 and 𝒈 are applied separately to 𝑳 and 𝑹:

L f 𝑳′

𝑹′
𝐃𝐞𝐜(𝑳′, 𝑹′) = 𝑴′Enc(M)

gR

Formally: H = 𝒇,𝒈 : 𝒇:L → L, 𝒈:R → R .



Split-state model – motivation

• easily implementable in practice

• well-studied model in the leakage-resilient crypto

• generalizes some other models (e.g. the 
independent bit tampering)

𝑳 𝑹



Consequence of the existential result

Observation

If L = R= 𝒁𝟐
𝒏/𝟐

then a random code is secure against the 
split-state encoding.

Proof.

The set of codewords is: L ×R= 𝒁𝟐𝒏 and hence the number 
of tampering functions is:

𝟐
𝒏
𝟐⋅𝟐
𝒏/𝟐 𝟐

= 𝟐𝒏⋅𝟐
𝒏/𝟐

𝐥𝐨𝐠𝟐 𝐥𝐨𝐠𝟐 𝐥𝐨𝐠𝟐𝒏 +
𝒏

𝟐
< 𝒏

Therefore a random code is non-malleable w.r.t. such functions.



An open problem from [DPW10]

Construct an explicit and efficient non-malleable 
code secure in  the split-state model. 

Closed in the recent (2012-2015) line of work.

We will now talk more about it.

In particular, we will describe NMCs in this model 
that works for one-bit messages.



Progress towards solving this problem

1. [DPW10]: existential result
2. [Liu and Lysyanskaya, Crypto 2012]: computational-

security, assuming common reference string

3. [D., Kazana, Obremski, Crypto 2013]: secure encoding 
for 1-bit messages

4. [Aggarwal, Dodis, and Lovett, STOC 2014]: first result 
for messages of arbitrary length.

5. [Chattopadhyay and Zuckerman, FOCS’14]:[Aggarval, 
Dodis, Kazana, Obremski, STOC 2015]: improving 
capacity..

we will show this now



NMCs for 1-bit messages?

Not directly useful.

But interesting as a building block.

Easier to analyze since in this case NMCs have a 
simpler (but equivalent) definition.



Fact
For any H any scheme 𝐄𝐧𝐜: 𝒁𝟐 → C, 𝐃𝐞𝐜: C → 𝒁𝟐 is
non-malleable w.r.t. a family H if:

𝑷(𝑴 ≠ 𝒉′(𝑴)) ≤
𝟏

𝟐

where𝑴 is uniformly distributed over {𝟎, 𝟏}.

Recall:
𝒉’(𝑴) = 𝐃𝐞𝐜(𝒉(𝐄𝐧𝐜(𝑴))

h ∈H
∀



hard to negate ⇒non-malleable

look at the 
distributions of:

𝒉′(𝟎): probability of 0 probability of 1

𝒉′(𝟏): probability of 0 probability of 1

𝑫: probability of 0 same probability of 1

𝑷 𝒉′ 𝟏 = 𝟎 + 𝑷 𝒉′ 𝟎 = 𝟏 ≤ 𝟏

𝟏

𝟐
⋅ 𝑷 𝒉’ 𝟏 = 𝟎 +

𝟏

𝟐
⋅ 𝑷 𝒉’ 𝟎 = 𝟏 ≤

𝟏

𝟐



non-malleable ⇒ hard to negate 

distributions of

𝒉′(𝟎):

probability of 0 probability of 1

𝒉′(𝟏): probability of 0 probability of 1

same𝑫:

probability of 0 probability of 1

𝑷(𝒉′(𝟏) = 𝟎)

𝑷(𝒉′(𝟎) = 𝟏)

Hence: 𝑷 𝒉′ 𝟏 = 𝟎 + 𝑷 𝒉′ 𝟎 = 𝟏 ≤ 𝟏



Look again at our problem:
𝑴– uniformly random over 𝒁𝟐

𝐄𝐧𝐜(𝑴)

L R

𝑳′ = 𝒇(𝑳) 𝑹′ = 𝒈(𝑹)
𝑴′ ≔ 𝐃𝐞𝐜(𝑳′, 𝑹′)

Goal:
construct encoding such that for every 𝒇, 𝒈we have:

𝑷(𝑴’ ≠ 𝑴) ≤
𝟏

𝟐



Our construction

Based on the “inner product function”:

𝐅 – finite field

(𝑳𝟏, … , 𝑳𝒌 , (𝑹𝟏, … , 𝑹𝒌)〉 = 

𝒊=𝟏

𝒌

𝑳𝒊 × 𝑹𝒊

where ∀𝑖 𝑳𝒊, 𝑹𝒊 ∈ 𝐅

𝑳 ∈ 𝐅𝒌 𝑹 ∈ 𝐅𝒌



How to base encoding on this?

Define the following encoding for messages 𝑴 ∈ 𝐅:

• 𝐄𝐧𝐜 𝑴 = 𝑳,𝑹

• where 𝑳, 𝑹 are random vectors from 𝐅𝒎 such that  〈𝑳, 𝑹〉 = 𝑴

and

• 𝐃𝐞𝐜 𝑳, 𝑹 = 〈𝑳, 𝑹〉



This encoding is very useful for 
protecting against physical attacks

Why?

Informally:

“incomplete information” about 𝑳 (and complete information 
about 𝑹) gives (almost) no information about 〈𝑳, 𝑹〉.

In particular if one applies a function 𝒇 to 𝑳 that “glues” many 
elements together then (𝒇 𝑳 , 𝑹) gives almost no information 
about 〈𝑳, 𝑹〉.

Of course: it’s symmetric for 𝑹.

For example: for every 𝑳 ∈ 𝐅𝒎

𝑳′: 𝒇 𝑳′ = 𝒇 𝑳 ≥ 𝟐𝝀 for some large 𝝀.



“Gluing 𝟐𝝀 elements together”

L

𝒇:L → L
L

𝟐𝝀

𝒇 𝒂𝟏, … , 𝒂𝒏 = (𝟎,… , 𝟎, 𝒂𝝀+𝟏, … . , 𝒂𝒏)

Example: a function that “forgets” first 𝝀 bits of input



Some intuition why this is true

Suppose 𝐅 = 𝒁𝟐. Then

𝑴 = (𝑳𝟏, … , 𝑳𝒌 , (𝑹𝟏, … , 𝑹𝒌)〉 =

parity of the set {𝒊: 𝑳𝒊 = 𝑹𝒊 = 𝟏}

Intuitively:

If one learns only partial information about (𝑳𝟏, … , 𝑳𝒌) then 𝑴
is hidden (the same for (𝑹𝟏, … , 𝑹𝒌)).

“incomplete information” about 𝑳 (and complete information 
about 𝑹) gives (almost) no information about 〈𝑳, 𝑹〉.



Why it looks useful?

If the adversary uses a function 𝒇 or 𝒈 that is 
“gluing” many inputs then for sure 
𝐃𝐞𝐜 𝒇 𝑳 , 𝒈 𝑹 is independent from 𝐃𝐞𝐜(𝑳, 𝑹). 

Moral: the adversary has to choose functions that 
do not glue too many inputs.

In other words: they have to be close to being 
bijections.

Hope: maybe this is easier to analyze?



Is this encoding non-malleable?

Problem: linearity of the inner product (let 𝒄 ∈ 𝐅)

𝒄 ⋅ 𝑳, 𝑹 = 𝒄 ⋅ 〈𝑳, 𝑹〉

So: if we choose 

𝒇 𝑳 = 𝒄 ⋅ 𝑳 and 𝒈 𝑹 = 𝑹

then 𝑴′ = 𝒄 ⋅ 𝑴

F – finite field

• 𝐄𝐧𝐜 𝑴 ≔ random (𝑳, 𝑹) such that 𝑳, 𝑹 = 𝑴
• 𝐃𝐞𝐜 𝑳, 𝑹 = 〈𝑳, 𝑹〉



Observation

If F= 𝒁𝟐 then then 𝒄 can only be 0 or 1

• if c = 0 then it is a “constant attack”:

𝑴′ = 𝟎 for every M

• if c = 1 then it is an “identity attack”

𝑴′ = 𝑴 for every M



Hope: maybe it works over Z2?

Unfortunately in this case another attack is possible: 

“the tampering functions set 𝑳𝟏 := 1 and 𝑹𝟏:= 1”

L1 L2 L3 L4 L5 L6 L7 L8 R1 R2 R3 R4 R5 R6 R7 R8

1 L2 L3 L4 L5 L6 L7 L8 1 R2 R3 R4 R5 R6 R7 R8

f g

Note: the inner product changes iff L1R1 = 0.
This happens with probability 3/4.



Observation

The attack from the previous slide does not work if 
|F| is exponential.

This is because 

𝑷 𝑳𝟏 ⋅ 𝑹𝟏 = 𝟎 ≈
𝟐

|𝑭|



So, this is the situation:

large F F =𝒁𝟐

the “linear attack” works doesn’t work

the
“𝑳𝟏 := 1 and 𝑹𝟏= 1”

attack

doesn’t 
work

works

Question: is it possible to combine these two 
solutions so that none of these attacks works?



Answer: yes! (for messages of length 1)

Let F be a field of exponential size. 

Define 
(𝐄𝐧𝐜: 𝒁𝟐 → 𝐅

𝒏 × 𝐅𝒏 , 𝐃𝐞𝐜: 𝐅𝒏 × 𝐅𝒏 → 𝒁𝟐)

as

𝐄𝐧𝐜(𝑴) ∶=
random (𝑳, 𝑹) such that 𝑳, 𝑹 = 𝟎 if M = 0

random (𝑳, 𝑹) such that 𝑳, 𝑹 ≠ 𝟎 if M = 1

𝐃𝐞𝐜(𝑳, 𝑹) just computes 〈𝑳, 𝑹〉 and checks if it is 0.

For security proof – see the paper.



Encoding for messages of arbitrary 
length [Aggarwal, Dodis, and Lovett, STOC 2014]

General outline of their method:

1. show that mauling the inner product encoding 
can induce only affine functions 𝒉′
(or their random combinations)

2. on top of it use encoding that is resilient to 
affine mauling.

A drawback of their construction: 

𝑪 = 𝑶( 𝑴 𝟕)



Why affine? Look at this:

Let 𝑴 = 𝑳,𝑹 , 𝑴′ = 𝒇 𝑳 , 𝒈 𝑹

How can 𝑴′ depend on 𝑴?

• if 𝒇 𝑳 = 𝒂 ⋅ 𝑳 (for 𝒃 ∈ F) then
𝑴′ = 𝒂 ⋅ 𝑴

• the adversary can also make 𝑴
equal to any constant 𝒃 chosen by 
him.

these are affine 
functions

𝒇 𝑴 = 𝒂 ⋅ 𝑴 + 𝒃



Main observation of [ADL14]

The affine functions are the only ones that the 
adversary can induce!

They show it using the techniques from additive 
combinatorics (Quasi-polynomial Freiman-Ruzsa
Theorem)



Plan

1. Short introduction to physical attacks

2. Non-malleable codes – the definition

3. Non-malleable codes – constructions 
secure w.r.t different function families:
1. bit-wise tampering

2. tempering functions from sets of bounded 
size

3. split-state model

4. Subsequent work



Non-Malleable Codes –
subsequent work

A very active area of research!

• constructions secure w.r.t. different 
function families,

• efficiency improvements

• extensions (continual tampering, 
updatable codes, local decodability…)

• new applications.



Conference papers from 2014–2016 with “non-
malleable codes” in the title

• A. Kiayias, F. L., Y. Tselekounis: Practical Non-Malleable Codes

from l-more Extractable Hash Functions. ACM CCS 2016

• M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin: Non-

malleable Codes for Bounded Depth, Bounded Fan-In 

Circuits. EUROCRYPT 2016

• N. Chandran, V. Goyal, P. Mukherjee, O. Pandey, J. Upadhyay:

Block-Wise Non-Malleable Codes. ICALP 2016

• D. Aggarwal, J. Briët: Revisiting the Sanders-Bogolyubov-

Ruzsa theorem in Fpn and its application to non-malleable

codes. ISIT 2016

• E. Chattopadhyay, V. Goyal, X. Li: Non-malleable extractors

and codes, with their many tampered extensions. STOC 

2016

• N. Chandran, B. Kanukurthi, S. Raghuraman: Information-

Theoretic Local Non-malleable Codes and Their

Applications. TCC 2016

• D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M.

Prabhakaran: Optimal Computational Split-state Non-

malleable Codes. TCC 2016

• E. Chattopadhyay, V. Goyal, X. Li: Non-malleable extractors 

and codes, with their many tampered extensions. STOC 

2016

• S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M. Prabhakaran:

Explicit Non-malleable Codes Against Bit-Wise Tampering

and Permutations. CRYPTO 2015

• S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M. Prabhakaran: A 

Rate-Optimizing Compiler for Non-malleable Codes Against

Bit-Wise Tampering and Permutations. TCC 2015

• D. Aggarwal, S. Dziembowski, T. Kazana, M. Obremski: Leakage-

Resilient Non-malleable Codes. TCC  2015

• D. Dachman-Soled, F. L., E. Shi, H.-S. Zhou: Locally Decodable

and Updatable Non-malleable Codes and Their Applications. 

TCC  2015

• Z. Jafargholi, D. Wichs: Tamper Detection and Continuous

Non-malleable Codes. TCC  2015

• S. Coretti, U. Maurer, B. Tackmann, D. Venturi: From Single-Bit 

to Multi-bit Public-Key Encryption via Non-malleable Codes. 

TCC  2015

• S. Faust, P. Mukherjee, D. Venturi, D. Wichs: Efficient Non-

malleable Codes and Key-Derivation for Poly-size

Tampering Circuits. EUROCRYPT 2014

• E. Chattopadhyay, D. Zuckerman: Non-malleable Codes against

Constant Split-State Tampering. FOCS 2014

• M. Cheraghchi, V. Guruswami: Non-malleable Coding against

Bit-Wise and Split-State Tampering. TCC 2014

• M. Cheraghchi, V. Guruswami: Capacity of non-malleable

codes. ITCS 2014

• D. Aggarwal, Y. Dodis, S. Lovett: Non-malleable codes from 

additive combinatorics. STOC 2014

• S. Faust, P. Mukherjee, J. Buus Nielsen, D. Venturi: Continuous

Non-malleable Codes. TCC 2014



Thank you!
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