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Goal today: overview and show these interactions
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What is large scale geometry?

Consider two discrete metric spaces:
@ Zasasubspaceof R,
@ 72 as a subspace of R?,

Both discrete —> 0-dimensional topologically

However: intuitively clear that they share some form of dimensionality
of the ambient Euclidean space:

7 is “1-dimensional” in comparison to Z2, which is “2-dimensional”

There are geometric phenomena that have similarly global nature - they
not depend on any local information (i.e. topology)

How to make this precise?
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The big picture - Gromov
Imagine looking at these spaces from an increasingly larger distance:

---------------------------------

The points look closer together because of perspective

Looking from co: Z ~ R and Z2 ~ R?

Large scale geometry: the geometry of spaces viewed from oo
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What does ~ mean in large scale geometry?
Two possibilities:
© study the actual geometry of the limit at oco:
Xoo =" 1lim" (X, end),  withe, — 0
Difficulty: defining X, is non-trivial and X is usually huge.

@ study X itself but adjust the definition of ~:
(X,dx) and (Y, dy) are quasi-isometric if

%dx(x,x’) —C < dy(f(x),f(x)) < Ldy(x,x') +C.

additive constant allows for discontinuities and gluing on scale C

Easier to work with, much more prevalent
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Groups as metric spaces

G - discrete group

S =51 c G- finite set generating G
Examples to have in mind:

© Gfinite, S=G

Q@ G=1725={(1,0),(0,1),(0,0)}

© G =TF,-freegrouponngenerators,S=aq,...,a,

Once Sis fixed we can view G as a metric space:

ds(g, h) = smallest number of elements of S to write g 1h
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Cayley graphs - another point of view

Define an infinite graph Cay(G, S), the Cayley graph of (G, S):
@ the set of vertices = G,
@ vertices g, h € G are connected by an edge iff g~ 1h € S.

Equip Cay(G, S) with the shortest path metric

The free group and the Baumslag-Solitar group (a, b|b* = aba—1)

with respect to standard presentations
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Examples of quasi-isometric spaces

@ any bounded/compact metric space ~ point
@ Z"~R"

@ F, ~4-regular tree = the universal cover of the figure 8 space

More generally

Theorem (Milnor-Svarc lemma)

M - compact Riemannian manifold, M universal cover then

7['1(M) ~ I\7’
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Index theory
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The Atiyah-Singer index theorem

D - differential operator of order m on a closed smooth manifold X
D: C>*(E) — C>(F)
where E, F - complex vector bundles on X. Locally,

D= > an(x)D°

laf<m

dq (x) : Ex — Fx linear transformation

Symbol of D: replace D' with variables & and drop lower order terms

U(ng) = Z aa(x)‘ga-

jo=m

Dis elliptic if the symbol o (x, ) is an invertible matrix for every x € X
and¢ = (&1,...,&n) € R
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The Atiyah-Singer index theorem

Example (On X = R3)
of of of

Gradient V : C*(1) — C>(TX), V = 8_x161 + 8_x262 + 6_)(363 —
(X, &) = [£1, &2, &3]" = not elliptic

2 2 2
Laplacian A = V2 : C(1) — C(1), A= 6_f + 8_f + o°f —

o axd o
o(x, &) = € 4+ €2 + €3 € R = elliptic

Ellipticity = D : C>°(E) — C°°(F) has finite dimensional kernel and
cokernel

(cokernel D = C°(F)/ im D)

index D = dim ker D — dim coker D
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Topological index

The topological index is a map in K-theory:

topological index

Ko(TX) Ko(pt) ~ Z

symbol

elliptic operators on X

Theorem (The Atiyah-Singer Index Theorem) J

topological index D = analytical index D
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The Baum-Connes conjecture

The Baum-Connes conjecture is a broad generalization of the A-S index
theorem.

For G-discrete group the Baum-Connes assembly map (i = 0, 1):

ni : KE(EG) — Ki(C;(G))

Analytic K-homology:

homotopy classes of _){ group C*-algebra -

abstract elliptic operators indices

K — theory of the reduced }
associated to G

The Baum-Connes Conjecture
i is an isomorphism for every finitely generated G. J

The conjecture is a bridge connecting topology and analysis
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Baum-Connes: applications

injectivity of u; = applications in topology

surjectivity of u; = applications in analysis
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Baum-Connes: applications

classicalD — K—homologyclass[D] +~—  p;([D]) #0

If u; injective after ®Q then the following conjectures are true:

Conjecture ( The Novikov conjecture)
The higher signatures

sign, (M, u) = (L(M) Uux, [M]) € Q

are homotopy invariants for all M with 74 (M) = G

Conjecture (Gromov's zero-in-the-spectrum conjecture)

0 always in the spectrum of the Laplace-Beltrami operator Ay, for somen,
acting on the L,-n-forms on the universal cover M of an aspherical
Riemannian manifold M

Conjecture (Gromov-Lawson conjecture)

M" closed spin manifold, n > 5 with 71(M") = G then M cannot carry a
metric with positive scalar curvature.
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Baum-Connes: applications

G- infinite group and g € G has finiteorder 3" = e
— there is a non-trivial idempotent in the group ring CG:

1n—1 o
N i ol
p_n;_org e CG

for r = n-th root of unity

Conjecture (Idempotent conjectures)
If G is torsion-free:

© Kaplansky: The complex group ring CG does not have any idempotents
except O and 1.

© Kadison-Kaplansky: The reduced group C*-algebra C;(G) = €6 does
not have any idempotents except O and 1.

v

If u; surjective then both are true.
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Proving the conjecture - “Dirac-dual Dirac”
Need to find a proper G-C*-algebra A and elements
o € KKC(A,C), B e KKE(C,A)

suchthaty = B ®, a = 1 € KK¢(C,C)

KS(EG) — 27 KKS(EG, A) —ZAY . KS(EG)
Hi | =~ Hi
K.(C x, G . Ki(A x,G) ——— K, (C %, G
(€ )®<cx,c-;lc(5) (A )®(C><rG]G(B) (€>rG)
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Proving the conjecture - “Dirac-dual Dirac”

All this boils down (modulo technical details) to the following question.

Consider two unitary representations of G:
@ thetrivial representation 7
@ the (left) regular representation A of G on /,(G):

Af(h) = f(g~h)
wheref: G — C,f € £3(G),8,h € G.

Question J

Is there a “path” of “nice” representations connecting — and \?

It is here where the geometric input from G becomes important:
often the geometry of G is what allows to deduce the existence of an
appropriate a path of representations
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Amenable groups
Gis amenable there is a sequence of finite sets F,, such that
#(Fn — gFn)

#Fn

Namely: G has large sets with small boundary

-0 for every generator g € S.

Amenability is a large-scale geometric property of G.

Examples:
° ﬁnlte groups are amenable F, = G
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Amenable groups

Theorem (Hulanicki)
G isamenable < Tt is weakly contained in A J

Weak containment means )\ and 7 cannot be separated by an open set in
the unitary dual of G with the Fell topology:

XFn

\/F_n

Unitary dual = equivalence class of irreducible unitary representations of G

V= is a sequence of almost invariant vectors for A

The Fell topology is not Hausdorff

Theorem (Higson-Kasparov 2002)
The Baum-Connes conjecture holds for amenable® groups.

aThe statement is actually more general
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Hyperbolic groups

Gis d-hyperbolic (0 < § < o0) if geodesic triangles in the Cayley graph
are ¢-thin:

one of the sides is always contained in the union of §-neighborhoods of
the other two sides

)<
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Hyperbolic groups
Examples:
o freegroupsF,
@ fundamental groups of hyperbolic manifolds

For hyperbolic groups there are ways to connect 7 and A through a path
of representations but in general not unitary ones:

V. Lafforgue gave a technical construction of non-unitary
representations induced by certain contraction-like maps on the Cayley
graph of a hyperbolic group

Theorem (V. Lafforgue, 2002 and 2012)
G hyperbolic —> the Baum-Connes conjecture holds for G. J

[A path of representations on a sufficiently convex Banach space can also be useful]
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How to find counterexamples?
For which groups = and A\ cannot be connected by a sufficiently good
path of representations?

Classical question:

what is the structure of the unitary dual G?

In particular, what are the isolated points? Already extremely hard.

Definition
G has Kazhdan'’s property (T) if the trivial representation is an isolated
point in G with the Fell topology.

(Surjectivity only - no strategies exist for injectivity counterexamples)
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Higher rank groups

A classical example of a group with property (T):

SLy(Z) for n > 3 (Kazhdan 1963)
The Baum-Connes conjecture for SL3(Z) is a major open problem.

In light of Lafforgue’s work we need versions of property (T) for much
more general classes of representations on Hilbert spaces and Banach
spaces with good convexity properties:

uniformly convex, non-trivial type, cotype etc.
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Spectral gaps

~ candidates for new counterexamples to a large scale version of the
Baum-Connes conjecture

G acts on (M, m) - probability space - ergodically m-preserving
Lo(M) = const &LI(M),
where LY(M) = {f € Ly(M) : [, f = O}.

Definition

G ~ M has a spectral gap if 3x > 0 such that V generators € S, f € Lg(M),
||If|| = 1 we have

If — msf|| > &

Here mof(x) = f(g~1x).

In Fell topology: 7 and the 7 are separated.
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Warped cones
(M, d, m) - compact metric probability space
G - acts on M by Lipschitz homeos, m-preserving

Examples to keep in mind:
@ SLy(Z) ~ R?/Z2,
@ I ~ G,where G - compact Lie group, I' - discrete subgroup

Cone(M) ~ M x (0, c0) is the Euclidean cone over M, where

dCone’Mx{t} =t-d

Definition
The warped metric dy is the largest metricon M x (0, o) satisfying:

d(’)(X7 y) < dCone(M)(X7 Y) and dO(ngX) < |g|
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metric
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dynamics of the action ~~ geometric properties of the warped cone
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Ghost projections
We have: L,[0, 00) C L(OrM)

Theorem (Cornelia Drutu-PN, 2015)
G ~ Mergodically with a spectral gap. Then the orthogonal projection

P Lz(OrM) = L2[0, OO)

is a non-compact ghost projection and a limit of finite propagation operators.

4

Proof via convergence of arandom walk on G

The properties of the operator are important from the index-theoretic
perspective - they are characteristic for the Roe C*-algebra, whose
K-theory is the target for the coarse index map

Being a ghost means the operator is “locally invisible at infitnity"
For matrix (kernel) operator this means matrix (kernel) is co.

[ghost projection] € K-theory cannot be an index
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Many classical result about spectral gaps for actions:
Margulis, Sullivan, Drinfeld - motivated by the Ruziewicz problem

Theorem (Bourgain-Gamburd 2008)

For many appropriately chosen free subgroups IF,, C SU(2) the action of F,
on SU(2) has a spectral gap.

Note that
SU(2) ~giffeo S°

Example
The warped cones
(*)] O]Fn SU(2)

o OSLZ(Z)TZ
have non-compact ghost projections
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Conjecture

The coarse Baum-Connes assembly map is not surjective for a warped cone
over an action with a spectral gap.

K-theory class
~ not in the image of
coarse index map

ghost
projection

Using the Bourgain-Gamburd theorem we would have such
counterexamples obtained from modifying the metric on the
4-dimensional Euclidean space:

O, SU(2) ~ (R*,dp)
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Thank you!
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