# Geometry of groups and index theory 

Piotr Nowak

Institute of Mathematics of the Polish Academy of Sciences and
University of Warsaw


## Goal today: overview and show these interactions

## What is large scale geometry?

Consider two discrete metric spaces:
(1) $\mathbb{Z}$ as a subspace of $\mathbb{R}$,
(2) $\mathbb{Z}^{2}$ as a subspace of $\mathbb{R}^{2}$,

Both discrete $\Longrightarrow$ 0-dimensional topologically
However: intuitively clear that they share some form of dimensionality of the ambient Euclidean space:
$\mathbb{Z}$ is "1-dimensional" in comparison to $\mathbb{Z}^{2}$, which is "2-dimensional"

There are geometric phenomena that have similarly global nature - they not depend on any local information (i.e. topology)

How to make this precise?

## The big picture - Gromov

Imagine looking at these spaces from an increasingly larger distance:


## What does $\simeq$ mean in large scale geometry?

Two possibilities:
(1) study the actual geometry of the limit at $\infty$ :

$$
X_{\infty}=" \lim "\left(X, \epsilon_{n} d\right), \quad \text { with } \epsilon_{n} \rightarrow 0
$$

Difficulty: defining $X_{\infty}$ is non-trivial and $X_{\infty}$ is usually huge.
(2) study $X$ itself but adjust the definition of $\simeq$ :
$\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are quasi-isometric if

$$
\frac{1}{L} d_{X}\left(x, x^{\prime}\right)-C \leq d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq L d_{X}\left(x, x^{\prime}\right)+C
$$

additive constant allows for discontinuities and gluing on scale $C$
Easier to work with, much more prevalent

## Groups as metric spaces

G - discrete group
$S=S^{-1} \subset G$ - finite set generating $G$
Examples to have in mind:
(1) G finite, $S=G$
(2) $G=\mathbb{Z}^{2}, S=\{(1,0),(0,1),(0,0)\}$
(3) $G=\mathbb{F}_{n}$ - free group on $n$ generators, $S=a_{1}, \ldots, a_{n}$

Once $S$ is fixed we can view $G$ as a metric space:

$$
d_{s}(g, h)=\text { smallest number of elements of } S \text { to write } g^{-1} h
$$

## Cayley graphs - another point of view

Define an infinite graph $\operatorname{Cay}(G, S)$, the Cayley graph of $(G, S)$ :

- the set of vertices $=G$,
- vertices $g, h \in G$ are connected by an edge iff $g^{-1} h \in S$.

Equip $\operatorname{Cay}(G, S)$ with the shortest path metric


The free group and the Baumslag-Solitar group $\left\langle a, b \mid b^{4}=a b a^{-1}\right\rangle$ with respect to standard presentations

## Examples of quasi-isometric spaces

- any bounded/compact metric space $\simeq$ point
- $\mathbb{Z}^{n} \simeq \mathbb{R}^{n}$
- $\mathbb{F}_{2} \simeq 4$-regular tree $=$ the universal cover of the figure 8 space

More generally

Theorem (Milnor-Svarc lemma)
$M$ - compact Riemannian manifold, $\widetilde{M}$ universal cover then

$$
\pi_{1}(M) \simeq \widetilde{M}
$$

# Index theory 

## The Atiyah-Singer index theorem

$D$ - differential operator of order $m$ on a closed smooth manifold $X$

$$
D: C^{\infty}(E) \rightarrow C^{\infty}(F)
$$

where $E, F$ - complex vector bundles on $X$. Locally,

$$
D=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}
$$

$a_{\alpha}(x): E_{X} \rightarrow F_{x}$ linear transformation
Symbol of $D$ : replace $D^{i}$ with variables $\xi_{i}$ and drop lower order terms

$$
\sigma(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi_{\alpha}
$$

$D$ is elliptic if the symbol $\sigma(x, \xi)$ is an invertible matrix for every $x \in X$ and $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$.

## The Atiyah-Singer index theorem

## Example $\left(\mathrm{On} X=\mathbb{R}^{3}\right)$

Gradient $\nabla: C^{\infty}(1) \rightarrow C^{\infty}(T X), \quad \nabla=\frac{\partial f}{\partial x_{1}} e_{1}+\frac{\partial f}{\partial x_{2}} e_{2}+\frac{\partial f}{\partial x_{3}} e_{3} \Longrightarrow$ $\sigma(x, \xi)=\left[\xi_{1}, \xi_{2}, \xi_{3}\right]^{\top} \Longrightarrow$ not elliptic
Laplacian $\Delta=\nabla^{2}: C(1) \rightarrow C(1), \quad \Delta=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\frac{\partial^{2} f}{\partial x_{3}^{2}} \Longrightarrow$ $\sigma(x, \xi)=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2} \in \mathbb{R} \Longrightarrow$ elliptic

Ellipticity $\Longrightarrow D: C^{\infty}(E) \rightarrow C^{\infty}(F)$ has finite dimensional kernel and cokernel
(cokernel $D=C^{\infty}(F) /$ im $\left.D\right)$

$$
\text { index } D=\operatorname{dim} \operatorname{ker} D-\operatorname{dim} \text { coker } D
$$

## Topological index

The topological index is a map in K-theory:


Theorem (The Atiyah-Singer Index Theorem) topological index $D=$ analytical index $D$

## The Baum-Connes conjecture

The Baum-Connes conjecture is a broad generalization of the A-S index theorem.

For G-discrete group the Baum-Connes assembly map $(i=0,1)$ :

$$
\mu_{i}: K_{i}^{G}(\underline{E G}) \rightarrow K_{i}\left(C_{r}^{*}(G)\right)
$$

$\left\{\begin{array}{l}\text { Analytic K-homology: } \\ \text { homotopy classes of } \\ \text { abstract elliptic operators } \\ \text { associated to G }\end{array}\right\} \longrightarrow\left\{\begin{array}{l}K-\text { theory of the reduced } \\ \text { group } C^{*} \text {-algebra : } \\ \text { indices }\end{array}\right\}$

## The Baum-Connes Conjecture $\mu_{i}$ is an isomorphism for every finitely generated $G$.

The conjecture is a bridge connecting topology and analysis

## Baum-Connes: applications

injectivity of $\mu_{i} \Longrightarrow$ applications in topology
surjectivity of $\mu_{i} \Longrightarrow$ applications in analysis

## Baum-Connes: applications

$$
\text { classical } D \quad \mapsto \quad K-\text { homology class }[D] \quad \mapsto \quad \mu_{i}([D]) \neq 0
$$

If $\mu_{i}$ injective after $\otimes \mathbb{Q}$ then the following conjectures are true:

## Conjecture ( The Novikov conjecture)

The higher signatures

$$
\operatorname{sign}_{x}(M, u)=\left\langle\mathcal{L}(M) \cup u^{*} x,[M]\right\rangle \in \mathbb{Q}
$$

are homotopy invariants for all $M$ with $\pi_{1}(M)=G$

## Conjecture (Gromov's zero-in-the-spectrum conjecture)

$O$ always in the spectrum of the Laplace-Beltrami operator $\Delta_{n}$ for some $n$, acting on the $L_{2}$-n-forms on the universal cover $M$ of an aspherical Riemannian manifold $M$

## Conjecture (Gromov-Lawson conjecture)

$M^{n}$ closed spin manifold, $n \geq 5$ with $\pi_{1}\left(M^{n}\right)=G$ then $M$ cannot carry a metric with positive scalar curvature.

## Baum-Connes: applications

$G$ - infinite group and $g \in G$ has finite order $g^{n}=e$
$\Longrightarrow$ there is a non-trivial idempotent in the group ring $\mathbb{C G}$ :

$$
p=\frac{1}{n} \sum_{i=0}^{n-1} r^{i} g^{i} \in \mathbb{C} G
$$

for $r=n$-th root of unity

## Conjecture (Idempotent conjectures)

If $G$ is torsion-free:
(1) Kaplansky: The complex group ring $\mathbb{C} G$ does not have any idempotents except 0 and 1.
(2) Kadison-Kaplansky: The reduced group $C^{*}$-algebra $C_{r}^{*}(G)=\overline{\mathbb{C}}^{\|\cdot\|_{r}}$ does not have any idempotents except 0 and 1.

If $\mu_{i}$ surjective then both are true.

## Proving the conjecture - "Dirac-dual Dirac"

Need to find a proper G-C*-algebra $A$ and elements

$$
\alpha \in K K^{G}(A, \mathbb{C}), \quad \beta \in K K^{G}(\mathbb{C}, A)
$$

such that $\gamma=\beta \otimes_{\mathbf{A}} \alpha=1 \in K K^{G}(\mathbb{C}, \mathbb{C})$


## Proving the conjecture - "Dirac-dual Dirac"

All this boils down (modulo technical details) to the following question.
Consider two unitary representations of $G$ :

- the trivial representation $\tau$
- the (left) regular representation $\lambda$ of $G$ on $\ell_{2}(G)$ :

$$
\lambda_{g} f(h)=f\left(g^{-1} h\right)
$$

where $f: G \rightarrow \mathbb{C}, f \in \ell_{2}(G), g, h \in G$.

## Question

Is there a "path" of "nice" representations connecting $\tau$ and $\lambda$ ?

It is here where the geometric input from $G$ becomes important: often the geometry of $G$ is what allows to deduce the existence of an appropriate a path of representations

## Amenable groups

$G$ is amenable there is a sequence of finite sets $F_{n}$ such that

$$
\frac{\#\left(F_{n} \dot{-} g F_{n}\right)}{\# F_{n}} \rightarrow 0 \quad \text { for every generator } g \in S .
$$

Namely: G has large sets with small boundary


Amenability is a large-scale geometric property of $G$.

## Examples:

- finite groups are amenable $F_{n}=G$

Tic ammnablo. -

## Amenable groups

## Theorem (Hulanicki)

G is amenable $\Longleftrightarrow \tau$ is weakly contained in $\lambda$

Weak containment means $\lambda$ and $\tau$ cannot be separated by an open set in the unitary dual of $G$ with the Fell topology:
$v=\frac{\chi F_{n}}{\sqrt{F_{n}}}$ is a sequence of almost invariant vectors for $\lambda$
Unitary dual = equivalence class of irreducible unitary representations of $G$
The Fell topology is not Hausdorff

Theorem (Higson-Kasparov 2002)
The Baum-Connes conjecture holds for amenable ${ }^{a}$ groups.

[^0]
## Hyperbolic groups

G is $\delta$-hyperbolic $(0 \leq \delta<\infty)$ if geodesic triangles in the Cayley graph are $\delta$-thin:
one of the sides is always contained in the union of $\delta$-neighborhoods of the other two sides


## Hyperbolic groups

## Examples:

- free groups $\mathbb{F}_{n}$
- fundamental groups of hyperbolic manifolds

For hyperbolic groups there are ways to connect $\tau$ and $\lambda$ through a path of representations but in general not unitary ones:
V. Lafforgue gave a technical construction of non-unitary representations induced by certain contraction-like maps on the Cayley graph of a hyperbolic group

## Theorem (V. Lafforgue, 2002 and 2012)

G hyperbolic $\Longrightarrow$ the Baum-Connes conjecture holds for $G$.
[A path of representations on a sufficiently convex Banach space can also be useful]

## How to find counterexamples?

For which groups $\tau$ and $\lambda$ cannot be connected by a sufficiently good path of representations?

Classical question:
what is the structure of the unitary dual $\widehat{G}$ ?

In particular, what are the isolated points? Already extremely hard.

## Definition <br> G has Kazhdan's property ( $T$ ) if the trivial representation is an isolated point in $\widehat{G}$ with the Fell topology.

(Surjectivity only - no strategies exist for injectivity counterexamples)

## Higher rank groups

A classical example of a group with property $(T)$ :
$S L_{n}(\mathbb{Z})$ for $n \geq 3$ (Kazhdan 1963)

The Baum-Connes conjecture for $\mathrm{SL}_{3}(\mathbb{Z})$ is a major open problem.

In light of Lafforgue's work we need versions of property $(T)$ for much more general classes of representations on Hilbert spaces and Banach spaces with good convexity properties:
uniformly convex, non-trivial type, cotype etc.

## Spectral gaps

$\rightsquigarrow$ candidates for new counterexamples to a large scale version of the Baum-Connes conjecture
$G$ acts on (M, $m$ ) - probability space - ergodically m-preserving

$$
L_{2}(M)=\text { const } \oplus L_{2}^{0}(M)
$$

where $L_{2}^{0}(M)=\left\{f \in L_{2}(M): \int_{X} f=0\right\}$.

## Definition

$G \curvearrowright M$ has a spectral gap if $\exists \kappa>0$ such that $\forall$ generator $s \in S, f \in L_{2}^{0}(M)$, $\|f\|=1$ we have

$$
\left\|f-\pi_{s} f\right\| \geq \kappa
$$

Here $\pi_{g} f(x)=f\left(g^{-1} x\right)$.
In Fell topology: $\pi$ and the $\tau$ are separated.

## Warped cones

(M, d,m) - compact metric probability space
$G$ - acts on $M$ by Lipschitz homeos, $m$-preserving
Examples to keep in mind:

- $\mathrm{SL}_{2}(\mathbb{Z}) \curvearrowright \mathbb{R}^{2} / \mathbb{Z}^{2}$,
- 「 $\curvearrowright$ G, where G - compact Lie group, $\Gamma$ - discrete subgroup

Cone $(M) \simeq M \times(0, \infty)$ is the Euclidean cone over $M$, where

$$
\left.d_{\text {Cone }}\right|_{M \times\{t\}}=t \cdot d
$$

## Definition

The warped metric $d_{\mathcal{O}}$ is the largest metric on $M \times(0, \infty)$ satisfying:

$$
d_{\mathcal{O}}(x, y) \leq d_{\text {Cone(M) }}(x, y) \quad \text { and } \quad d_{\mathcal{O}}(x, g x) \leq|g|
$$

metric
equip with product measure
( $M, m$ )


dynamics of the action
$\rightsquigarrow \quad$ geometric properties of the warped cone

## Ghost projections

 We have: $L_{2}[0, \infty) \subseteq L_{2}\left(\mathcal{O}_{\Gamma} M\right)$
## Theorem (Cornelia Druțu-PN, 2015)

$G \curvearrowright$ M ergodically with a spectral gap. Then the orthogonal projection

$$
P: L_{2}\left(\mathcal{O}_{\Gamma} M\right) \rightarrow L_{2}[0, \infty)
$$

is a non-compact ghost projection and a limit of finite propagation operators.
Proof via convergence of a random walk on $G$
The properties of the operator are important from the index-theoretic perspective - they are characteristic for the $\operatorname{Roe} C^{*}$-algebra, whose $K$-theory is the target for the coarse index map

Being a ghost means the operator is "locally invisible at infitnity" For matrix (kernel) operator this means matrix (kernel) is $c_{0}$.
[ghost projection] $\in K$-theory cannot be an index

Many classical result about spectral gaps for actions:
Margulis, Sullivan, Drinfeld - motivated by the Ruziewicz problem

## Theorem (Bourgain-Gamburd 2008)

For many appropriately chosen free subgroups $\mathbb{F}_{n} \subseteq S U(2)$ the action of $\mathbb{F}_{n}$ on $\mathrm{SU}(2)$ has a spectral gap.

Note that

$$
S U(2) \simeq_{\text {diffeo }} S^{3}
$$

## Example

The warped cones

- $\mathcal{O}_{\mathbb{F}_{n}} \operatorname{SU}(2)$
- $\mathcal{O}_{\mathrm{SL}_{2}(\mathbb{Z})} \mathbb{T}^{2}$
have non-compact ghost projections


## Conjecture

The coarse Baum-Connes assembly map is not surjective for a warped cone over an action with a spectral gap.

$$
\begin{array}{ll}
\text { ghost } & \text { K-theory class } \\
\text { projection }
\end{array} \rightsquigarrow \begin{aligned}
& \text { not in the image of } \\
& \text { coarse index map }
\end{aligned}
$$

Using the Bourgain-Gamburd theorem we would have such counterexamples obtained from modifying the metric on the 4-dimensional Euclidean space:

$$
\mathcal{O}_{\mathbb{F}_{n}} \mathrm{SU}(2) \simeq\left(\mathbb{R}^{4}, d_{\mathcal{O}}\right)
$$

## Thank you!


[^0]:    ${ }^{a}$ The statement is actually more general

