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Goal today: overview and show these interactions
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What is large scale geometry?
Consider two discretemetric spaces:
1 Z as a subspace ofR,
2 Z2 as a subspace ofR2,

Both discrete=⇒ 0-dimensional topologically
However: intuitively clear that they share some form of dimensionality
of the ambient Euclidean space:
Z is “1-dimensional” in comparison toZ2, which is “2-dimensional”

There are geometric phenomena that have similarly global nature - they
not depend on any local information (i.e. topology)
How tomake this precise?
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The big picture - Gromov
Imagine looking at these spaces from an increasingly larger distance:

The points look closer together because of perspective
Looking from∞: Z ' R andZ2 ' R2

Large scale geometry: the geometry of spaces viewed from∞
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What does ' mean in large scale geometry?
Two possibilities:
1 study the actual geometry of the limit at∞:

X∞ = ” lim ”(X, εnd), with εn → 0
Difficulty: defining X∞ is non-trivial and X∞ is usually huge.

2 study X itself but adjust the definition of':
(X, dX) and (Y, dY) are quasi-isometric if

1
L dX(x, x′)− C ≤ dY(f(x), f(x′)) ≤ LdX(x, x′) + C.

additive constant allows for discontinuities and gluing on scale C
Easier to work with, muchmore prevalent
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Groups asmetric spaces
G - discrete group
S = S−1 ⊂ G - finite set generatingG
Examples to have inmind:
1 G finite, S = G
2 G = Z2, S = {(1,0), (0,1), (0,0)}
3 G = Fn - free group on n generators, S = a1, . . . , an

Once S is fixedwe can viewG as ametric space:
dS(g, h) = smallest number of elements of S to write g−1h
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Cayley graphs - another point of view
Define an infinite graph Cay(G, S), the Cayley graph of (G, S):

the set of vertices =G,
vertices g, h ∈ G are connected by an edge iff g−1h ∈ S.

Equip Cay(G, S)with the shortest pathmetric

The free group and the Baumslag-Solitar group 〈a, b|b4 = aba−1〉
with respect to standard presentations
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Examples of quasi-isometric spaces

any bounded/compact metric space' point
Zn ' Rn
F2 ' 4-regular tree = the universal cover of the figure 8 space

More generally

Theorem (Milnor-Svarc lemma)
M - compact Riemannian manifold, M̃ universal cover then

π1(M) ' M̃.
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Index theory
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The Atiyah-Singer index theorem
D - differential operator of orderm on a closed smoothmanifold X

D : C∞(E)→ C∞(F)

where E, F - complex vector bundles on X. Locally,
D =

∑
|α|≤m

aα(x)Dα

aα(x) : Ex → Fx linear transformation

Symbol ofD: replaceDi with variables ξi and drop lower order terms
σ(x, ξ) =

∑
|α|=m

aα(x)ξα.

D is elliptic if the symbol σ(x, ξ) is an invertible matrix for every x ∈ X
and ξ = (ξ1, . . . , ξn) ∈ Rn.
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The Atiyah-Singer index theorem
Example (On X = R3)
Gradient∇ : C∞(1)→ C∞(TX), ∇ =

∂f
∂x1 e1 +

∂f
∂x2 e2 +

∂f
∂x3 e3 =⇒

σ(x, ξ) = [ξ1, ξ2, ξ3]T =⇒ not elliptic
Laplacian∆ = ∇2 : C(1)→ C(1), ∆ =

∂2f
∂x21 +

∂2f
∂x22 +

∂2f
∂x23 =⇒

σ(x, ξ) = ξ21 + ξ22 + ξ23 ∈ R =⇒ elliptic

Ellipticity =⇒ D : C∞(E)→ C∞(F) has finite dimensional kernel and
cokernel
(cokernel D = C∞(F)

/ im D)

indexD = dimkerD− dim cokerD
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Topological index
The topological index is a map in K-theory:

K0(TX)
topological index

- K0(pt) ' Z

elliptic operators on X

symbol
6

analytica
l index

-

Theorem (The Atiyah-Singer Index Theorem)
topological index D = analytical index D
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The Baum-Connes conjecture
The Baum-Connes conjecture is a broad generalization of the A-S index
theorem.
ForG-discrete group the Baum-Connes assemblymap (i = 0,1):

µi : KGi (EG)→ Ki(C∗r (G))


Analytic K-homology:
homotopy classes of
abstract elliptic operators
associated toG

 −→
 K − theory of the reduced
group C∗-algebra :
indices


The Baum-Connes Conjecture
µi is an isomorphism for every finitely generated G.

The conjecture is a bridge connecting topology and analysis
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Baum-Connes: applications

injectivity of µi =⇒ applications in topology

surjectivity of µi =⇒ applications in analysis
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Baum-Connes: applications
classicalD 7→ K − homology class [D] 7→ µi([D]) 6= 0

If µi injective after⊗Q then the following conjectures are true:
Conjecture ( The Novikov conjecture)
The higher signatures

signx(M, u) = 〈L(M) ∪ u∗x, [M]〉 ∈ Q

are homotopy invariants for all M with π1(M) = G

Conjecture (Gromov’s zero-in-the-spectrum conjecture)
0 always in the spectrum of the Laplace-Beltrami operator∆n for some n,acting on the L2-n-forms on the universal cover M̃ of an asphericalRiemannian manifold M

Conjecture (Gromov-Lawson conjecture)
Mn closed spin manifold, n ≥ 5with π1(Mn) = G thenM cannot carry a
metric with positive scalar curvature.
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Baum-Connes: applications
G - infinite group and g ∈ G has finite order gn = e
=⇒ there is a non-trivial idempotent in the group ringCG:

p =
1
n
n−1∑
i=0
rigi ∈ CG

for r = n-th root of unity
Conjecture (Idempotent conjectures)
If G is torsion-free:
1 Kaplansky: The complex group ringCG does not have any idempotents
except 0 and 1.

2 Kadison-Kaplansky: The reduced group C∗-algebra C∗r (G) = CG‖·‖r does
not have any idempotents except 0 and 1.

If µi surjective then both are true.
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Proving the conjecture - “Dirac-dual Dirac”
Need to find a properG-C∗-algebra A and elements

α ∈ KKG(A,C), β ∈ KKG(C,A)

such that γ = β ⊗A α = 1 ∈ KKG(C,C)

KG∗ (EG)
⊗Cβ - KKG∗ (EG,A)

⊗Aα - KG∗ (EG)

K∗(Cor G)

µi
?

⊗CorGjG(β)
- K∗(Aor G)

µAi '
?

⊗CorGjG(β)
- K∗(Cor G)

µi
?
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Proving the conjecture - “Dirac-dual Dirac”
All this boils down (modulo technical details) to the following question.
Consider two unitary representations ofG:

the trivial representation τ
the (left) regular representation λ ofG on `2(G):

λgf(h) = f(g−1h)

where f : G→ C, f ∈ `2(G), g, h ∈ G.
Question
Is there a “path” of “nice” representations connecting τ and λ?

It is here where the geometric input fromG becomes important:
often the geometry ofG is what allows to deduce the existence of an
appropriate a path of representations
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Amenable groups
G is amenable there is a sequence of finite sets Fn such that

#(Fn −̇ gFn)
#Fn → 0 for every generator g ∈ S.

Namely: G has large sets with small boundary

Amenability is a large-scale geometric property ofG.
Examples:

finite groups are amenable Fn = G
Z is amenable: Fn = [−n, n]
all groups constructed out of finite and abelian using extensions,
quotients, taking subgroups and direct limits

However, the free group Fk on k ≥ 2 generators is not amenable:G non-amenable iff it admits a paradoxical decomposition
Banach-Tarski paradox is a consequence of non-amenability of F2 ⊆ SO3
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Amenable groups
Theorem (Hulanicki)
G is amenable ⇐⇒ τ is weakly contained in λ

Weak containmentmeans λ and τ cannot be separated by an open set in
the unitary dual ofGwith the Fell topology:
v =

χFn√Fn is a sequence of almost invariant vectors for λ
Unitary dual = equivalence class of irreducible unitary representations ofG
The Fell topology is not Hausdorff

Theorem (Higson-Kasparov 2002)
The Baum-Connes conjecture holds for amenablea groups.

aThe statement is actually more general
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Hyperbolic groups
G is δ-hyperbolic (0 ≤ δ <∞) if geodesic triangles in the Cayley graph
are δ-thin:
one of the sides is always contained in the union of δ-neighborhoods of
the other two sides
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Hyperbolic groups
Examples:

free groups Fn
fundamental groups of hyperbolic manifolds

For hyperbolic groups there are ways to connect τ and λ through a path
of representations but in general not unitary ones:
V. Lafforgue gave a technical construction of non-unitary
representations induced by certain contraction-likemaps on the Cayley
graph of a hyperbolic group

Theorem (V. Lafforgue, 2002 and 2012)
G hyperbolic=⇒ the Baum-Connes conjecture holds for G.
[A path of representations on a sufficiently convex Banach space can also be useful]
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How to find counterexamples?
For which groups τ and λ cannot be connected by a sufficiently good
path of representations?
Classical question:

what is the structure of the unitary dual Ĝ?

In particular, what are the isolated points? Already extremely hard.

Definition
G has Kazhdan’s property (T) if the trivial representation is an isolated
point in Ĝwith the Fell topology.

(Surjectivity only - no strategies exist for injectivity counterexamples)
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Higher rank groups

A classical example of a groupwith property (T):
SLn(Z) for n ≥ 3 (Kazhdan 1963)

The Baum-Connes conjecture for SL3(Z) is a major open problem.

In light of Lafforgue’s work we need versions of property (T) for much
more general classes of representations onHilbert spaces and Banach
spaces with good convexity properties:
uniformly convex, non-trivial type, cotype etc.
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Spectral gaps
 candidates for new counterexamples to a large scale version of the
Baum-Connes conjecture
G acts on (M,m) - probability space - ergodicallym-preserving

L2(M) = const⊕L02(M),

where L02(M) = {f ∈ L2(M) :
∫
X f = 0}.

Definition
Gy Mhas a spectral gap if ∃κ > 0 such that ∀ generator s ∈ S, f ∈ L02(M),
‖f‖ = 1we have

‖f − πsf‖ ≥ κ
Here πgf(x) = f(g−1x).
In Fell topology: π and the τ are separated.
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Warped cones
(M, d,m) - compact metric probability space
G - acts onM by Lipschitz homeos,m-preserving
Examples to keep inmind:

SL2(Z) y R2/Z2,
Γ y G, whereG - compact Lie group, Γ - discrete subgroup

Cone(M) ' M× (0,∞) is the Euclidean cone overM, where
dCone|M×{t} = t · d

Definition
Thewarpedmetric dO is the largest metric onM× (0,∞) satisfying:

dO(x, y) ≤ dCone(M)(x, y) and dO(x, gx) ≤ |g|.
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[0,∞)

metric

x gx

x gx

x gx

equip with product measure
(M,m)

[0,∞)
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g2x2

x0 x1

g1
g1x1

x2
g2

g2x2

dynamics of the action  geometric properties of the warped cone
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Ghost projections
Wehave: L2[0,∞) ⊆ L2(OΓM)

Theorem (Cornelia Druţu-PN, 2015)
Gy Mergodically with a spectral gap. Then the orthogonal projection

P : L2(OΓM)→ L2[0,∞)

is a non-compact ghost projection and a limit of finite propagation operators.
Proof via convergence of a randomwalk onG
The properties of the operator are important from the index-theoretic
perspective - they are characteristic for the Roe C∗-algebra, whose
K-theory is the target for the coarse indexmap
Being a ghost means the operator is “locally invisible at infitnity"
For matrix (kernel) operator this meansmatrix (kernel) is c0.
[ghost projection]∈ K-theory cannot be an index
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Many classical result about spectral gaps for actions:
Margulis, Sullivan, Drinfeld - motivated by the Ruziewicz problem

Theorem (Bourgain-Gamburd 2008)
For many appropriately chosen free subgroups Fn ⊆ SU(2) the action of Fnon SU(2) has a spectral gap.

Note that
SU(2) 'diffeo S3

Example
Thewarped cones
OFn SU(2)

OSL2(Z)T2
have non-compact ghost projections
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Conjecture
The coarse Baum-Connes assembly map is not surjective for a warped cone
over an action with a spectral gap.

ghost
projection  

K-theory class
not in the image of
coarse indexmap

Using the Bourgain-Gamburd theoremwewould have such
counterexamples obtained frommodifying themetric on the
4-dimensional Euclidean space:

OFn SU(2) ' (R4, dO)
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Thank you!
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