Divide and...

Piotr Krzyżanowski MIM Colloquium 2017/11/9

MIM UW, Institute of Applied Mathematics

Given nonsingular $L \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^N$, find $x \in \mathbb{R}^N$ satisfying

$$\begin{cases} L_{11}x_1 + L_{12}x_2 + \dots + L_{1N}x_N &= b_1, \\ L_{21}x_1 + L_{22}x_2 + \dots + L_{2N}x_N &= b_2, \\ \vdots \\ L_{N1}x_1 + L_{N2}x_2 + \dots + L_{NN}x_N &= b_N, \end{cases}$$

Given nonsingular $L \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^N$, find $x \in \mathbb{R}^N$ satisfying

$$\begin{cases} L_{11}x_1 + L_{12}x_2 + \dots + L_{1N}x_N &= b_1, \\ L_{21}x_1 + L_{22}x_2 + \dots + L_{2N}x_N &= b_2, \\ \vdots \\ L_{N1}x_1 + L_{N2}x_2 + \dots + L_{NN}x_N &= b_N, \end{cases}$$

Can anything be more boring?

Lx = b

• Gaussian elimination known for about 2000 years; costs $O(N^3)$

Lx = b

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
- Cramer's rule (much) more costly: O(N!)

Lx = b

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
- Cramer's rule (much) more costly: O(N!)
- Complexity: still an open question

Lx = b

- Gaussian elimination known for about 2000 years; costs $O(N^3)$
- Cramer's rule (much) more costly: O(N!)
- Complexity: still an open question
 - We know $O(N^{\omega})$ algorithms exist with $\omega < 3$.

• Matrix-matrix multiplication $X = L \cdot B$ as complex as solving Lx = b

- Matrix-matrix multiplication $X = L \cdot B$ as complex as solving Lx = b
- Divide and...

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Strassen's matrix multiply

• Divide and...

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Naively,

 $X_{11} = L_{11}B_{11} + L_{12}B_{21}$ $X_{12} = L_{11}B_{12} + L_{12}B_{22}$ $X_{21} = L_{21}B_{11} + L_{22}B_{21}$ $X_{22} = L_{21}B_{12} + L_{22}B_{22}.$

gives a recursive "divide-and-conquer" algorithm.

• Complexity: still $O(N^3)$.

Strassen's matrix multiply

• Divide and... think again:

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Reduce number of matrix multiplications to seven!

$$\begin{aligned} X_{11} &= P_1 + P_4 - P_5 + P_7 & P_1 &= (L_{11} + L_{22})(B_{11} + B_{22}), \\ X_{12} &= P_3 + P_5 & P_2 &= (L_{21} + L_{22})B_{11} \\ X_{21} &= P_2 + P_4 & \vdots \\ X_{22} &= P_1 + P_3 - P_2 + P_6, & P_7 &= (L_{12} - L_{22})(B_{21} + B_{22}) \\ \text{Complexity: } O(N^{\log_2 7}) &\approx O(N^{2.808...}) \end{aligned}$$

Strassen (1969) Numer. Math.

Lx = b.

$$Lx = b.$$

If $N = 10^6$, a PC would have

• computed the solution after 10⁹ seconds

$$Lx = b.$$

If $N = 10^6$, a PC would have

• computed the solution after 10^9 seconds i.e. \approx **32 years**

$$Lx = b.$$

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds i.e. \approx **32 years**
- needed 10^{13} bytes of memory

Lx = b.

If $N = 10^6$, a PC would have

- computed the solution after 10^9 seconds i.e. \approx **32 years**
- needed 10^{13} bytes of memory i.e. \approx **9,000 GB**

Outline

- 1. Large systems of linear equations: where do they come from?
- 2. Systems with (lots of) structure: finite elements for PDEs
- 3. Solving large sparse systems
- 4. A sidenote: another class of structured sparse matrices
- 5. Domain decomposition for PDEs
- 6. Splitting equations
- 7. Summing up

Large systems of linear equations: where do they come from?

The beauty of sparse matrices

Davis, Hu (2011) ACM Trans. Math. Softw.

Economic problem

N = 15,575

Quantum chromodynamics

N = 3,072

Macroeconomic problem

N = 206,500

KKT system, nonconvex optimization

Financial portfolio optimization

N = 74,752

Structural engineering, finite element

N = 15,449

Structural engineering, finite element

Structural engineering, finite element

This is how a sparse matrix *really* looks like:

	63929		444		10024		53461			
rsa	rsa		4875		4875		160383		0	
(1117)		(16I5)		(3E23.15)						
1	25	48	70	103	135	166	199	231	262	295
327	358	391	423	454	487	519	550	583	615	646
679	711	742	775	807	838	871	903	934	967	999
1030	1063	1095	1126	1147	1167	1186	1216	1245	1273	1315
1356	1396	1438	1479	1519	1561	1602	1642	1684	1725	1765
1807	1848	1888	1930	1971	2011	2053	2094	2134	2176	2217
2257	2299	2340	2380	2422	2463	2503	2545	2586	2626	2653
2679	2704	2734	2763	2791	2833	2874	2914	2956	2997	3037
0.40	09672687	144694E	-14 -0).270324344694379E-11			0.462322806286147E-14			
-0.125103474334186E-15 -0.157968969372661E-11 0.120545535566847E-14									1	

-0.125103474334186E-15 -0.157968969372661E-11 0.120545535566847E-14 -0.415025707341799E-14 -0.51814959624222EE-12 0.850962616131678E-13 -0.209551074847814E-12 -0.107421047460559E-11 0.340867474174134E-12 -0.371312672815900E-13 -0.562016116896941E-12 0.811101830589378E-13 -0.805393690795621E-12 0.267683729453480E-11 0.861749802483021E-16 -0.113997243532461E-15 -0.4302024430469E-12 -0.1436770337428612E-13 0.83009731458988E-12 -0.580299367504821E-12 -0.1436770337428612E-13 0.19834255770204E-12 -0.107673095703232E-11 -0.34057028849483E-12 0.124288644083145E-13 -0.501209266056193E-12 -0.852387929702163E-13 0.209644642907451E-12 0.454179546572026E-10 0.256700564221894E-11 0.2493365328762197E-16 0.8861573592650E5-11 0.482064121963914E-13 0.109981819279385E-14 -0.598541997591639E-11 -0.124576307872633E-11 0.463130261987941E-14 -0.198244879116781E-10 -0.708476661679811E-12

Parabolic diffusion-convection-reaction, finite element

Fluid dynamics, finite element

N = 2,017,169

Systems with (lots of) structure: finite elements for PDEs

Find $u : \mathbb{R}^d \supset \Omega \rightarrow R$ satisfying

$$-\operatorname{div}(\rho(x)\nabla u(x)) = f(x) \quad \forall x \in \Omega,$$
$$u(x) = 0 \quad \forall x \in \partial\Omega.$$

For example: u — temperature, ρ — thermal conductivity, f — external heating

Find $u: \mathbb{R}^d \supset \Omega \rightarrow R$ satisfying

$$-\operatorname{div}(\rho(x)\nabla u(x)) = f(x) \quad \forall x \in \Omega,$$
$$u(x) = 0 \quad \forall x \in \partial\Omega.$$

For example: u — temperature, ρ — thermal conductivity, f — external heating

Assume $\rho(x) = 1$.

A model PDE: diffusion equation

Find $u: \mathbb{R}^d \supset \Omega \rightarrow R$ satisfying

$$\begin{aligned} -\Delta u(x) &= f(x) \quad \forall x \in \Omega, \\ u(x) &= 0 \quad \forall x \in \partial \Omega. \end{aligned}$$

Problem

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (discrete) Find $u_h \in V_h \subset H_0^1(\Omega)$ such that $\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f \, v_h \, dx \qquad \forall v_h \in V_h.$

Here V_h is finite dimensional. How to choose it?

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (discrete) Find $u_h \in V_h \subset H_0^1(\Omega)$ such that $\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f \, v_h \, dx \qquad \forall v_h \in V_h.$

Here V_h is finite dimensional. How to choose it?

Divide and... approximate wisely.
Finite elements

Divide Ω into smaller elements:

• Triangulation \mathcal{T}_h consisting of elements κ .

Finite elements

Divide Ω into smaller elements:

• Triangulation \mathcal{T}_h consisting of elements κ .

$$V_{h} = \{ v \in C(\Omega) \cap H_{0}^{1}(\Omega) : v_{|_{\kappa}} \in P_{1}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h} \} \subset H_{0}^{1}(\Omega)$$

Finite elements

• Triangulation \mathcal{T}_h consisting of elements κ .

$$V_h = \{ v \in C(\Omega) \cap H^1_0(\Omega) : v_{|_{\kappa}} \in P_1(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \subset H^1_0(\Omega)$$

More generally,

$$V_h^{\mathbf{p}} = \{ \mathbf{v} \in C(\Omega) \cap H_0^1(\Omega) : \mathbf{v}_{|_{\kappa}} \in P_{\mathbf{p}}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Experiment: *h*-approximation vs *p*-approximation

Consider true solution to $-\Delta u = f$:

Experiment: *h*-approximation vs *p*-approximation

Consider true solution to $-\Delta u = f$:

How well can it be approximated by the finite element method?

Finite element *h*-approximation vs *p*-approximation

n = 1/2	p = 1
N=9	N=9

$$h = 1/2^2$$

N=25

p = **2** N=25

More finite elements...

Periodic Table of the Finite Elements

	1+2	6+1	4+2	1+3	1.1	4+1	4.+2	4+2	8+0		6+1	1+1	1.+2	4=0	8+1	4+2	1+3
• 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{c} \mathcal{P}_{f}^{-}\mathcal{A}^{k} \\ \text{To transform the term } \\ \theta(x) \\ $	values for B_1, B_2 is $(-x)B_1, x^{(d)}C_1^{-1}$, $(-x)B_2, x^{(d)}C_2^{-1}$, $(-x)B_2, x^{(d)}B_2^{-1}$, $(-x)B_2^{-1}$,			$ \begin{array}{c} \mathcal{P}_{\mathcal{A}} \bigwedge^{k} \\ & \text{The submatrix} \\ & \text{the submatrix} \\ & \text{the submatrix} \\ & \text{the supervised for } \\ & the sup$	where the PDM methods of the structure of the PDM methods with the structure of the struct	4. 1910 4. 1910 4. 1910 1910 1910 1910 1910 1910 1910 191	51.610 52* 52:60 51:60 5		$\begin{array}{c} \displaystyle \bigcup_{k=1}^{n-1} \int_{0}^{k} \\ & The finite rest of and the set of a $	Similar lines the complex size distance using a size, the set of	AP	Comparison C	$\begin{array}{c} \mathcal{S}_{\mathcal{C}}\mathcal{A}^{k}\\ Transformed and the set of the set o$	and the GPU is given by $\label{eq:generalized} \begin{split} & \text{and the GPU is given by} \\ & (\mathcal{A}^{(1)}) \text{ and } \mathcal{A}_{\mathcal{A}}(\mathcal{A}) \\ & of a large general state of the general state $
a		a a a a a a a a a a a a a a	- A (1) - A (1		A AND	Early State	2 20 20 20 20 20 20 20 20 20 20 20 20 20		a. - 61	a uph i ur *		• • • • •		В ₁ дей 1 субрен 1 уля, цантана, к		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
						10 1000001 - 10000 - 2000-100000			a. ***			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Artistica e			
									a. 199	6.45 a 6.45 a 1.45 a 1.				an web		2017 1017 and marks 1	
***	2000 (0000) -2000 -2000			1 MAN - 1 MAN	A Mess	North Contraction		1/2 - 1/2 -	4. 4.		And	No. And				A CONTRACTOR	And
	1 1 1 1 1 1 1 1 1 1 1 1 1 1		A	A Robert Contract				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000			4 40 - 2 40 - 2 40 - 2 40	0.000 0.000 - 6.000 - 1.000 - 1.000				10 (1) (1) (1) (1) (1) (1) (1) (1)
			AND		Annual Materie Law - Law - Materie Law -		NZ PARA	30 () () () () () () () () () ()	1117 8		100 100 100 100 100 100 100 100		27 40, 0.1 0 10(1 - 1) 10(1 -			72 M 4790 1070 10801	30 6% x 6% * 6 <u>15</u> * * 797 x 666 x 1

Arnold, Logg (2014) SIAM News

What are discontinuous finite elements?

'Continuous' finite elements:

 $V_h = \{ v \in \boldsymbol{C}(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \subset H^1_0(\Omega)$

Discontinuous finite elements

'Discontinuous' finite elements:

 $V_h^{\rho} = \{ v \in \boldsymbol{L}^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \nsubseteq H_0^1(\Omega)$

...allow for using discontinuous basis functions.

Discontinuous finite elements

'Discontinuous' finite elements:

 $V_h^{p} = \{ v \in \boldsymbol{L}^{2}(\Omega) : v_{|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \} \nsubseteq H_0^{1}(\Omega)$

...allow for using discontinuous basis functions.

More degrees of freedom, but: easy h-refinement and p-refinement (nonconforming elements allowed by design)

Problem

Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}$

$$\sum_{\kappa\in\mathcal{T}_h}\int_{\kappa}\nabla u_h\cdot\nabla v_h\,dx$$

 $= (f, v_h)_{\Omega}$

Divide and... reconnect (weakly).

Problem

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}$

$$\sum_{\kappa\in\mathcal{T}_h}\int_{\kappa}\nabla u_h\cdot\nabla v_h\,dx+\sum_{e\in\mathcal{E}_h}\int_e\frac{\gamma p^2}{h}[u_h]\cdot[v_h]\,d\sigma$$

$$= (f, v_h)_{\Omega}$$

Divide and... reconnect (weakly).

Problem

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}$

$$\sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} \, dx + \sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h} [u_{h}] \cdot [v_{h}] \, d\sigma$$
$$- \sum_{e \in \mathcal{E}_{h}} \int_{e} \{\nabla u_{h}\}_{\omega} \cdot [v_{h}] \, d\sigma$$
$$= (f, v_{h})_{\Omega}$$

Divide and... reconnect (weakly).

Problem

Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \mid \forall \kappa \in \mathcal{T}_h \}$

$$\sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} \, dx + \sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h} [u_{h}] \cdot [v_{h}] \, d\sigma$$
$$- \sum_{e \in \mathcal{E}_{h}} \int_{e} \{\nabla u_{h}\}_{\omega} \cdot [v_{h}] \, d\sigma$$
$$- \sum_{e \in \mathcal{E}_{h}} \int_{e} \{\nabla v_{h}\}_{\omega} \cdot [u_{h}] \, d\sigma = (f, v_{h})_{\Omega}$$

Divide and... reconnect (weakly).

Problem

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \mid \forall \kappa \in \mathcal{T}_h \}$

$$\mathcal{A}_{h}(u_{h}, v_{h}) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} \, dx + \sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h} [u_{h}] \cdot [v_{h}] \, d\sigma$$
$$- \sum_{e \in \mathcal{E}_{h}} \int_{e} \{\nabla u_{h}\}_{\omega} \cdot [v_{h}] \, d\sigma$$
$$- \sum_{e \in \mathcal{E}_{h}} \int_{e} \{\nabla v_{h}\}_{\omega} \cdot [u_{h}] \, d\sigma = (f, v_{h})_{\Omega}$$

Divide and... reconnect (weakly).

Problem

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \qquad \forall v \in H^1_0(\Omega).$$

Problem (DGFEM approximation)

 $u_h, v_h \in V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \mid \forall \kappa \in \mathcal{T}_h \}$

$$\mathcal{A}_{h}(u_{h}, v_{h}) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} \, dx + \text{ ... iterface terms...} = (f, v_{h})_{\Omega}$$

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal. Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

FEM/DGFEM stiffness matrix

Find $u_h \in V_h^p$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h)_{\Omega} \quad \forall v_h \in V_h^p.$$

Let $V_h^p = \operatorname{span}\{\phi_1, \ldots, \phi_N\}$ and expand $u_h = \sum_i u_i \phi_i$.

FEM/DGFEM stiffness matrix

Find $u_h \in V_h^p$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h)_{\Omega} \qquad \forall v_h \in V_h^p.$$

Let $V_h^{\rho} = \operatorname{span}\{\phi_1, \dots, \phi_N\}$ and expand $u_h = \sum_i u_i \phi_i$. Then $u = [u_1, \dots, u_N] \in \mathbb{R}^N$ satisfies

Lu = b

where

$$L_{ij} = \mathcal{A}_h(\phi_i, \phi_j), \qquad i, j = 1, \dots, N.$$

FEM/DGFEM stiffness matrix

Find $u_h \in V_h^p$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h)_\Omega \qquad \forall v_h \in V_h^p.$$

Let $V_h^{\rho} = \operatorname{span}\{\phi_1, \dots, \phi_N\}$ and expand $u_h = \sum_i u_i \phi_i$. Then $u = [u_1, \dots, u_N] \in \mathbb{R}^N$ satisfies

Lu = b

where

$$L_{ij} = \mathcal{A}_h(\phi_i, \phi_j), \qquad i, j = 1, \dots, N.$$

Properties of stiffness matrix *L*:

- symmetric and positive definite: $L = L^T > 0$
- *N* can be as large as one can afford $(h \searrow 0, p \nearrow \text{ large})$
- sparse: each row has only a few nonzero elements

Solving large sparse systems

No need for Gaussian elimination

Approximate solution to Lx = b is a reasonable choice.

No need for Gaussian elimination

Approximate solution to Lx = b is a reasonable choice. Model iteration:

 $x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$ (damped Jacobi iteration)

L = D - A, (D is the diagonal of L)

Approximate solution to Lx = b is a reasonable choice. Model iteration:

 $x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$ (damped Jacobi iteration)

L = D - A, (D is the diagonal of L)

Divide and... be patient: for $L = L^T > 0$,

with optimal damping \(\tau\), convergence driven by the condition number

$$\kappa = \frac{\lambda_{\max}(D^{-1}L)}{\lambda_{\min}(D^{-1}L)}$$

• error reduction:

$$\|x_{n+1}-x\| \lesssim \underbrace{\frac{\kappa-1}{\kappa+1}}_{=\gamma} \|x_n-x\|$$

• Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

• Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

• error reduction factor
$$\gamma = \frac{\kappa - 1}{\kappa + 1}$$
 depends on $\kappa = \frac{\lambda_{\max}(D^{-1}L)}{\lambda_{\min}(D^{-1}L)}$

• Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

• error reduction factor
$$\gamma = \frac{\kappa - 1}{\kappa + 1}$$
 depends on $\kappa = \frac{\lambda_{\max}(D^{-1}L)}{\lambda_{\min}(D^{-1}L)}$

• Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

• error reduction factor
$$\gamma = \frac{\kappa - 1}{\kappa + 1}$$
 depends on $\kappa = \frac{\lambda_{\max}(D^{-1}L)}{\lambda_{\min}(D^{-1}L)}$

Problem

If $D^{-1}L$ is ill–conditioned: $\kappa \gg 1 \implies \gamma \approx 1$.

• Model iterative method:

$$x_{n+1} = x_n + \tau D^{-1}(b - Lx_n)$$

• error reduction factor
$$\gamma = rac{\kappa - 1}{\kappa + 1}$$
 depends on $\kappa = rac{\lambda_{\max}(D^{-1}L)}{\lambda_{\min}(D^{-1}L)}$

Problem

If $D^{-1}L$ is ill-conditioned: $\kappa \gg 1 \implies \gamma \approx 1$. Our L from finite element method is ill-conditioned: $p \nearrow \infty$, $h \searrow 0$ and

$$\kappa(L) = O(p^4/h^2)$$

 $D^{-1}L$ is ill–conditioned, too.

• Model iterative method:

$$x_{n+1} = x_n + \tau \mathbf{P}^{-1}(b - Lx_n)$$

• error reduction factor
$$\gamma = \frac{\kappa - 1}{\kappa + 1}$$
 depends on $\kappa = \frac{\lambda_{\max}(P^{-1}L)}{\lambda_{\min}(P^{-1}L)}$

Problem

If $P^{-1}L$ is ill-conditioned: $\kappa \gg 1 \implies \gamma \approx 1$. Our L from finite element method is ill-conditioned: $p \nearrow \infty$, $h \searrow 0$ and

$$\kappa(L) = O(p^4/h^2)$$

 $D^{-1}L$ is ill–conditioned, too.

Divide and... use a good preconditioner *P*. If $P^{-1}L$ is well–conditioned: $\kappa \approx 1 \implies \gamma \ll 1$. Simple preconditioned iteration:

$$x_{n+1} = x_n + P^{-1}(b - Lx_n)$$

Ideally, *P* should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa(P^{-1}L) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Simple preconditioned iteration:

$$x_{n+1} = x_n + P^{-1}(b - Lx_n)$$

Ideally, *P* should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa(P^{-1}L) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: P = I does not satisfy *all* requirements.
Simple preconditioned iteration:

$$x_{n+1} = x_n + P^{-1}(b - Lx_n)$$

Ideally, *P* should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa(P^{-1}L) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: P = L does not satisfy *all* requirements as well.

- $L = L^T > 0$, so choose $P = P^T > 0$.
 - Impose *spectral equivalence*: if exist C_0 , $C_1 > 0$ *independent* of h, p, \ldots , such that

$$C_0 x^T P x \le x^T L x \le C_1 x^T P x \implies \kappa(P^{-1}L) \le \frac{C_1}{C_0}.$$

 \rightarrow This makes the number of iterations independent of problem size.

Think globally, act locally: embrace parallelism.
 → This makes each iteration fast.

A sidenote: another class of structured sparse matrices

Pretty drawing graphs

Spider's messy net: how to draw it nicely?

• Assume edges are elastic threads, obeying (linear!) Hooke's law

- Assume edges are elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes

- Assume edges are identical elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes
- Solve for other positions:

- Assume edges are identical elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes
- Solve for other positions:

Graph Laplacian

Simple, unidirected, weighted graph (V, E) (e.g. social network, transport network, electric circuit, ...)

- Vertices $V = \{1, \ldots, N\}$
- Edge between i, j ∈ V denoted (i, j); the set of all edges: E;
- Degree of vertex i is

$$D_{ii} = \sum_{j:(i,j)\in E} w_{ij}.$$

- Adjacency matrix: A_{ij} = w_{ij} if (i, j) ∈ E; zero otherwise.
- **Graph Laplacian:** L = D A; equivalently

$$L = L^T \ge 0$$

$$x^{T}Lx = \sum_{(i,j)\in E} w_{ij}(x_i - x_j)^2.$$

• drawing pretty graphs

• drawing pretty graphs (or improving quality of finite element meshes)

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration)

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

Some graphs have **very large** number of vertices *N*. But then usually every node is connected to only a few others: the graph is **sparse**:

 $\forall i \qquad L_{ii} \neq 0 \quad \text{only for several j}$

We experienced this browsing through the Sparse Matrix Collection!

Domain decomposition for PDEs

(replay)

We are solving

$$Lx = b$$
.

with $L = L^T > 0$. Simple **preconditioned** iteration:

$$x_{n+1} = x_n + P^{-1}(b - Lx_n)$$

P must:

- be easy to construct,
- be easy to invert (i.e. solve a system with P),
- reduce the condition number: $\kappa(P^{-1}L) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

- $L = L^T > 0$, choose $P = P^T > 0$.
 - Impose spectral equivalence:

$$C_0 x^T P x \le x^T L x \le C_1 x^T P x \implies \kappa(P^{-1}L) \le \frac{C_1}{C_0}.$$

• Use full processing power: embrace parallelism.

Domain decomposition

Source: MSC/PARASOL

Divide and... solve smaller problems in parallel. Then ,,glue" them together.

Problem

Find $u_h \in V_h$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h.$$

Problem

Find $u_h \in V_h$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h.$$

Divide and... add:

• Space decomposition:

$$V_h = V_0 + V_1 + \ldots + V_N.$$

Problem

Find $u_h \in V_h$ such that

$$\mathcal{A}_h(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h.$$

Divide and... add, and solve in parallel.

• Space decomposition:

$$V_h = V_0 + V_1 + \ldots + V_N.$$

• Local solution operators $T_i: V_h \rightarrow V_i$ such that

$$A_h(T_iu_i, v_i) = \mathcal{A}_h(u_i, v_i) \quad \forall v_i \in V_i.$$

Additive Schwarz method

Theorem (Divide and... maintain stability) Let $T = T_0 + T_1 + ... + T_N$. Suppose that the following hold:

Stable decomposition: $\exists C > 0 \quad \exists u_i \in V_i, u = \sum_i u_i$

$$\sum_i A_h(u_i, u_i) \leq C \mathcal{A}_h(u, u) \quad \forall u \in V_h$$

Strengthened Cauchy–Schwarz ineq.: $\exists 0 \leq \mathcal{E}_{ij} \leq 1 \ \forall 1 \leq i, j \leq N$

$$\mathcal{A}_h(u_i, u_j) \leq \mathcal{E}_{ij} \cdot \mathcal{A}_h(u_i, u_i)^{1/2} \cdot \mathcal{A}_h(u_j, u_j)^{1/2} \quad \forall u_i \in V_i, u_j \in V_j,$$

Local stability: $\exists \omega > 0 \ \forall \ 0 \le i \le N$

$$\mathcal{A}_h(u_i, u_i) \leq \omega \mathcal{A}_h(u_i, u_i) \quad \forall u_i \in V_i$$

Then

$$\kappa(T) \leq C \omega (\rho(\mathcal{E}) + 1).$$

Dryja, Widlund (1990) "Towards a unified theory of domain decomposition algorithms for elliptic problems"

30 years of successful applications:

- overlapping domain decomposition
- substructuring domain decomposition
- multigrid
- building block of PETSc parallel linear solvers library

Smith, Bjørstad, Gropp (1996) Domain decomposition
Toselli, Widlund (2005) Domain decomposition methods—algorithms and theory
Mathew (2008) Domain Decomposition Methods for the Numerical Solution of
Partial Differential Equations
Xu (1992) SIAM Rev.
Balay (1995–) PETSc Users Manual

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

• World's fastest supercomputer Sunway TaihuLight, 10M cores

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns
- "In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency."

http://awards.acm.org/bell

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns
- "In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency."
- Additive Schwarz at the core of computation

http://awards.acm.org/bell

Non-overlapping domain decomposition for DGFEM

$$V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Non-overlapping domain decomposition for DGFEM

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Is there no overlap between subdomains?

Divide and... aggregate.

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Is there no overlap between subdomains? Not really:

Divide and... aggregate.

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Divide and... aggregate.

Is there no overlap between subdomains? Not really:

$$\mathcal{A}_h(u, v) \equiv \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} \frac{\gamma p^2}{h} [u][v] \, d\sigma + \dots \text{ etc.}$$

Non-overlapping domain decomposition for DGFEM

$$V_h^{p} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Non-overlapping domain decomposition for DGFEM

$$V_h^{p} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Divide and... aggregate.

Non-overlapping domain decomposition for DGFEM

$$V_h^p = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_p(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Decomposition:

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Divide and... aggregate.

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Decomposition:

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Divide and... aggregate.

$$V_h^{\rho} = \{ v \in L^2(\Omega) : v_{|_{\kappa}} \in P_{\rho}(\kappa) \quad \forall \kappa \in \mathcal{T}_h \}.$$

Decomposition:

$$V_h^p = \sum_{i=1}^N V_i$$

where

$$V_i = \{ v \in V_h^p : v = 0 \text{ on } \Omega_j, \quad j \neq i \}$$

Coarse space:

$$V_0 = V_{\mathcal{H}}^q$$
, where $\mathcal{H} \ge H$, $q \le p$.

Divide and... aggregate.

N subdomains, \mathcal{M} coarse space cells.

Theorem

Let $T = T_0 + \sum_{i=1}^{N} T_i$ be the preconditioned operator. Then

$$\kappa(T) = O(\frac{\mathcal{H}^2}{hH} \cdot \frac{p^2}{\max\{q,1\}})$$

Bound independent of discontinuities in the coefficient, extended to nonconforming meshes and varying polynomial degree.

Antonietti, Houston (2011) J. Sci. Comput. K. (2016) Num. Meth. PDEs Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model. Key condition for the coarse space V_0 : **Divide and... maintain approximation**:

 $\begin{aligned} \forall u \in V_h \quad \exists u_0 \in V_0: \\ \sum_{n=1}^{\mathcal{M}} \left(\frac{q_n^2}{\mathcal{H}_n^2} \|u - u_0\|_{0,D_n}^2 + \|u - u_0\|_{D_n}^2 \right) &\leq \operatorname{Const} \cdot \mathcal{A}_h(u, u). \end{aligned}$

K. (2016) Num. Meth. PDEs Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model. Key condition for the coarse space V_0 : **Divide and... maintain approximation**:

$$\begin{aligned} \forall u \in V_h \quad \exists u_0 \in V_0: \\ \sum_{n=1}^{\mathcal{M}} \left(\frac{q_n^2}{\mathcal{H}_n^2} \|u - u_0\|_{0,D_n}^2 + \|u - u_0\|_{D_n}^2 \right) &\leq \operatorname{Const} \cdot \mathcal{A}_h(u, u). \end{aligned}$$

Open questions:

- Optimal balance between \mathcal{H} and H? p and q?
- How does it depend on the computer architecture?

K. (2016) Num. Meth. PDEs Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) \times 1084 nodes (Cray XC40, at ICM UW)

or...

What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) \times 1084 nodes (Cray XC40, at ICM UW)

or...

2560 cores, 1.6 GHz, 8 GB (NVIDIA GTX 1080, in your PC)

Suppose subdomain = single finite element.

Then # parallel tasks = # subdomains = # finite elements = N.

Theorem

Let $T = T_0 + \sum_{i=1}^{N} T_i$ be the preconditioned operator. Then

$$\kappa(T) \lesssim \max_{n=1,\dots,\mathcal{M}} \left\{ \frac{\mathcal{H}_n^2}{\min_{\kappa \in \mathcal{T}_h(D_n)} h_\kappa^2} \right\}$$

Bound independent of discontinuities in the coefficient (under certain assumptions).

Dryja, K. (2015) Num. Math.

Suppose subdomain = single finite element.

Then # parallel tasks = # subdomains = # finite elements = N.

Theorem

Let $T = T_0 + \sum_{i=1}^N T_i$ be the preconditioned operator. Then $\kappa(T) \lesssim \frac{\mathcal{H}^2}{h^2}.$

Bound independent of discontinuities in the coefficient (under certain assumptions).

Dryja, K. (2015) Num. Math.

Splitting equations

Block systems

System with nonsinglar, symmetric 2 \times 2 block matrix:

$$\mathcal{L}\begin{bmatrix} u\\ p\end{bmatrix} \equiv \begin{bmatrix} A & B^T\\ B & -C \end{bmatrix} \begin{bmatrix} u\\ p\end{bmatrix} = \begin{bmatrix} f\\ g\end{bmatrix}.$$

Block systems

System with nonsinglar, symmetric 2×2 block matrix:

$$\mathcal{L}\begin{bmatrix} u\\ p\end{bmatrix} \equiv \begin{bmatrix} A & B^T\\ B & -C \end{bmatrix} \begin{bmatrix} u\\ p\end{bmatrix} = \begin{bmatrix} f\\ g\end{bmatrix}.$$

Examples of "natural" block decomposition:

- A > 0, C = 0
 - Stokes equations,
 - mixed methods for elliptic PDEs,
- A > 0, C < 0
 - structured methods for elliptic PDEs:
- A > 0, C > 0
 - linear elasticity mixed discretization
 - stabilized mixed methods
- A indefinite, C > 0
 - time harmonic Maxwell equations

For ill-conditioned \mathcal{L} , use preconditioner \mathcal{P} , and solve iteratively

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^{\mathsf{T}} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1} \begin{bmatrix} F \\ G \end{bmatrix}$$

Benzi, Golub, Liesen (2005) Acta Numer.K. (2011) Efficient preconditioned [...] PDEsBrown (2012) Intl. Symp. Para. Distr. Comp.

For ill-conditioned \mathcal{L} , use preconditioner \mathcal{P} , and solve iteratively

$$\mathcal{P}^{-1}\begin{bmatrix} A & B^{\mathsf{T}} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1}\begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_{1} = \begin{bmatrix} I \\ c B A_{0}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{0} \\ S_{0} \end{bmatrix} \begin{bmatrix} I & d A_{0}^{-1} B^{T} \\ I \end{bmatrix}$$

Benzi, Golub, Liesen (2005) Acta Numer.K. (2011) Efficient preconditioned [...] PDEsBrown (2012) Intl. Symp. Para. Distr. Comp.

For ill-conditioned \mathcal{L} , use preconditioner \mathcal{P} , and solve iteratively

$$\mathcal{P}^{-1}\begin{bmatrix} A & B^{\mathsf{T}} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1}\begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_{1} = \begin{bmatrix} I \\ c B A_{0}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{0} \\ S_{0} \end{bmatrix} \begin{bmatrix} I & d A_{0}^{-1} B^{T} \\ I \end{bmatrix}$$
$$\mathcal{P}_{2} = \begin{bmatrix} I & d B^{T} S_{0}^{-1} \\ I \end{bmatrix} \begin{bmatrix} A_{0} \\ S_{0} \end{bmatrix} \begin{bmatrix} I \\ c S_{0}^{-1} B & I \end{bmatrix},$$

or

Benzi, Golub, Liesen (2005) Acta Numer.K. (2011) Efficient preconditioned [...] PDEsBrown (2012) Intl. Symp. Para. Distr. Comp.

For ill-conditioned \mathcal{L} , use preconditioner \mathcal{P} , and solve iteratively

$$\mathcal{P}^{-1}\begin{bmatrix} A & B^{\mathsf{T}} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \mathcal{P}^{-1}\begin{bmatrix} F \\ G \end{bmatrix}$$

Divide and... follow this decomposition!

$$\mathcal{P}_{1} = \begin{bmatrix} I \\ c B A_{0}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{0} \\ S_{0} \end{bmatrix} \begin{bmatrix} I & d A_{0}^{-1} B^{T} \\ I \end{bmatrix}$$
$$\mathcal{P}_{2} = \begin{bmatrix} I & d B^{T} S_{0}^{-1} \\ I \end{bmatrix} \begin{bmatrix} A_{0} \\ S_{0} \end{bmatrix} \begin{bmatrix} I \\ c S_{0}^{-1} B & I \end{bmatrix},$$

or

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.K. (2011) Efficient preconditioned [...] PDEsBrown (2012) Intl. Symp. Para. Distr. Comp.

Туре	Form of ${\cal P}$	с	d
block-diagonal	$\begin{bmatrix} A_0 \\ & S_0 \end{bmatrix}$	0	0
block-triangular	$\begin{bmatrix} A_0 \\ B & -S_0 \end{bmatrix}$	1	0
block symmetric indefinite	$\begin{bmatrix} A_0 & B^T \\ B & BA_0^{-1}B^T - S_0 \end{bmatrix}$	1	1
primal-based penalty	$\begin{bmatrix} A_0 - B^T S_0^{-1} B & B^T \\ B & -S_0 \end{bmatrix}$	1	1

Let us define a block diagonal matrix and a norm

$$\mathcal{J} = \begin{bmatrix} A_0 \\ S_0 \end{bmatrix}, \qquad \| \begin{bmatrix} u \\ p \end{bmatrix} \|_{\mathcal{J}}^2 = \| u \|_{A_0}^2 + \| p \|_{S_0}^2$$
$$= u^T A_0 u + p^T S_0 p$$

Divide and... keep balance:

stability and continuity

$$\begin{split} \exists_{m_0,m_1>0} \quad m_0 \|x\|_{\mathcal{J}} \leq \|\mathcal{L}x\|_{\mathcal{J}^{-1}} \leq m_1 \|x\|_{\mathcal{J}} \quad \forall x,\\ \text{mixed continuity } \exists_{b_0>0} \quad |p^T B u| \leq b_0 \|u\|_{A_0} \|p\|_{S_0} \quad \forall u, \ \forall p,\\ \text{inner product definiteness } \mathcal{H} > 0\\ \text{spectral equivalence } \exists_{h_0,h_1>0} \quad h_0 \|x\|_{\mathcal{H}} \leq \|x\|_{\mathcal{J}} \leq h_1 \|x\|_{\mathcal{H}}, \quad \forall x. \end{split}$$

Eigenvalue estimates and PCR convergence

It is known that the convergence speed of PCR iteration depends on

$$\kappa = rac{\max |\lambda(\mathcal{P}^{-1}\mathcal{L})|}{\min |\lambda(\mathcal{P}^{-1}\mathcal{L})|}.$$

Theorem

If λ is an eigenvalue of $\mathcal{P}^{-1}\mathcal{L}$, then

$$rac{1}{2m_0(1+b_0^2)} \leq |\lambda| \leq 2m_1(1+b_0^2).$$

This has direct implications to preconditioning Stokes equation or certain multiphysics systems of PDEs.

Klawonn (1998) SIAM J. Sci. Comput. K. (2011) Numer. Linear Algebra Appl. Notay (2014) SIAM J. Matrix Anal. & Appl. Smears (2017) IMA Journal of Numerical Analysis

Summing up

• reconnect wisely

- reconnect wisely
- solve parts in parallel

- reconnect wisely
- solve parts in parallel
- keep balance

- reconnect wisely
- solve parts in parallel
- keep balance
- maintain stability or approximation

- preconditioners for nonstandard finite elements
- algorithms for new computer architectures
- communication avoiding parallel methods/preconditioners
- domain decomposition for nonlinear problems
- nonsymmetric/indefinite linear systems
- robust methods for graph Laplacians