Divide and...

Piotr Krzyżanowski
MIM Colloquium 2017/11/9
MIM UW, Institute of Applied Mathematics

System of linear equations

Problem

Given nonsingular $L \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^{N}$, find $x \in \mathbb{R}^{N}$ satisfying

$$
\left\{\begin{array}{cc}
L_{11} x_{1}+L_{12} x_{2}+\ldots L_{1 N} x_{N} & =b_{1} \\
L_{21} x_{1}+L_{22} x_{2}+\ldots L_{2 N x_{N}} & =b_{2} \\
\vdots & \\
L_{N 1} x_{1}+L_{N 2} x_{2}+\ldots L_{N N} x_{N} & =b_{N}
\end{array}\right.
$$

System of linear equations

Problem

Given nonsingular $L \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^{N}$, find $x \in \mathbb{R}^{N}$ satisfying

$$
\left\{\begin{array}{cc}
L_{11} x_{1}+L_{12} x_{2}+\ldots L_{1 N} x_{N} & =b_{1} \\
L_{21} x_{1}+L_{22} x_{2}+\ldots L_{2 N x_{N}} & =b_{2} \\
\vdots & \\
L_{N 1} x_{1}+L_{N 2} x_{2}+\ldots L_{N N} x_{N} & =b_{N}
\end{array}\right.
$$

Can anything be more boring?

A solved problem

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

- Gaussian elimination known for about 2000 years; costs $O\left(N^{3}\right)$

A solved problem

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

- Gaussian elimination known for about 2000 years; costs $O\left(N^{3}\right)$
- Cramer's rule (much) more costly: $O(N$!)

A solved problem

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

- Gaussian elimination known for about 2000 years; costs $O\left(N^{3}\right)$
- Cramer's rule (much) more costly: $O(N!)$
- Complexity: still an open question

A solved problem

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

- Gaussian elimination known for about 2000 years; costs $O\left(N^{3}\right)$
- Cramer's rule (much) more costly: $O(N!)$
- Complexity: still an open question
- We know $O\left(N^{\omega}\right)$ algorithms exist with $\omega<3$.

Strassen's matrix multiply

- Matrix-matrix multiplication $X=L \cdot B$ as complex as solving $L x=b$

Strassen's matrix multiply

- Matrix-matrix multiplication $X=L \cdot B$ as complex as solving $L x=b$
- Divide and...

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Strassen's matrix multiply

- Divide and...

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Naively,

$$
\begin{aligned}
& X_{11}=L_{11} B_{11}+L_{12} B_{21} \\
& X_{12}=L_{11} B_{12}+L_{12} B_{22} \\
& X_{21}=L_{21} B_{11}+L_{22} B_{21} \\
& X_{22}=L_{21} B_{12}+L_{22} B_{22} .
\end{aligned}
$$

gives a recursive "divide-and-conquer" algorithm.

- Complexity: still $O\left(N^{3}\right)$.

Strassen's matrix multiply

- Divide and... think again:

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Reduce number of matrix multiplications to seven!

$$
\begin{array}{lc}
X_{11}=P_{1}+P_{4}-P_{5}+P_{7} & P_{1}=\left(L_{11}+L_{22}\right)\left(B_{11}+B_{22}\right), \\
X_{12}=P_{3}+P_{5} & P_{2}=\left(L_{21}+L_{22}\right) B_{11} \\
X_{21}=P_{2}+P_{4} & \vdots \\
X_{22}=P_{1}+P_{3}-P_{2}+P_{6}, & P_{7}=\left(L_{12}-L_{22}\right)\left(B_{21}+B_{22}\right)
\end{array}
$$

Complexity: $O\left(N^{\log _{2} 7}\right) \approx O\left(N^{2.808 \ldots}\right)$

[^0]Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

If $N=10^{6}$, a PC would have

- computed the solution after 10^{9} seconds
if straightforward Gaussian elimination (e.g. LAPACK's DGESV) was used.

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

If $N=10^{6}$, a PC would have

- computed the solution after 10^{9} seconds i.e. ≈ 32 years
if straightforward Gaussian elimination (e.g. LAPACK's DGESV) was used.

Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

If $N=10^{6}$, a PC would have

- computed the solution after 10^{9} seconds i.e. ≈ 32 years
- needed 10^{13} bytes of memory
if straightforward Gaussian elimination (e.g. LAPACK's DGESV) was used.

Large systems are intractable for simple Gaussian elimination

Find $x \in \mathbb{R}^{N}$ such that

$$
L x=b
$$

If $N=10^{6}$, a PC would have

- computed the solution after 10^{9} seconds i.e. ≈ 32 years
- needed 10^{13} bytes of memory i.e. $\approx \mathbf{9 , 0 0 0} \mathbf{G B}$
if straightforward Gaussian elimination (e.g. LAPACK's DGESV) was used.

Outline

1. Large systems of linear equations: where do they come from?
2. Systems with (lots of) structure: finite elements for PDEs
3. Solving large sparse systems
4. A sidenote: another class of structured sparse matrices
5. Domain decomposition for PDEs
6. Splitting equations
7. Summing up

Large systems of linear equations: where do they come from?

The beauty of sparse matrices

Davis, Hu (2011) ACM Trans. Math. Softw.

Economic problem

$N=15,575$

Quantum chromodynamics

$N=3,072$

Macroeconomic problem

Wiliams@mac_econ_fwd500. 413000 nodes, 1273389 edges.

$$
N=206,500
$$

KKT system, nonconvex optimization

$N=16,554$

Financial portfolio optimization

$$
N=74,752
$$

Structural engineering, finite element

$N=15,449$

Structural engineering, finite element

$N=15,449$

Structural engineering, finite element

This is how a sparse matrix really looks like:

	63929		444		10024		53461		0	
rsa				875		75	1603	383		
(11I7)	(16I5)			(3E23.15)						
1	25	48	70	103	135	166	199	231	262	295
327	358	391	423	454	487	519	550	583	615	646
679	711	742	775	807	838	871	903	934	967	999
1030	1063	1095	1126	1147	1167	1186	1216	1245	1273	1315
1356	1396	1438	1479	1519	1561	1602	1642	1684	1725	1765
1807	1848	1888	1930	1971	2011	2053	2094	2134	2176	2217
2257	2299	2340	2380	2422	2463	2503	2545	2586	2626	2653
2679	2704	2734	2763	2791	2833	2874	2914	2956	2997	3037

$$
\begin{array}{llll}
0.409672687144694 \mathrm{E}-14 & -0.270324344694379 \mathrm{E}-11 & 0.462322806286147 \mathrm{E}-14 \\
-0.125103474334186 \mathrm{E}-15 & -0.157968969372661 \mathrm{E}-11 & 0.120545535566847 \mathrm{E}-14 \\
-0.415025707341799 \mathrm{E}-14 & -0.518149596242225 \mathrm{E}-12 & 0.850962616131678 \mathrm{E}-13 \\
-0.209551074847814 \mathrm{E}-12 & -0.107421047460559 \mathrm{E}-11 & 0.340867474174134 \mathrm{E}-12 \\
-0.371312672815900 \mathrm{E}-13 & -0.562016116896941 \mathrm{E}-12 & 0.811101830369373 \mathrm{E}-13 \\
0.198413464034039 \mathrm{E}-12 & -0.375360224439469 \mathrm{E}-12 & 0.141281556760829 \mathrm{E}-13 \\
-0.805393690795621 \mathrm{E}-12 & 0.267683729453480 \mathrm{E}-11 & 0.861749802483021 \mathrm{E}-16 \\
-0.113997243532461 \mathrm{E}-15 & -0.423020243608237 \mathrm{E}-12 & -0.143670337428612 \mathrm{E}-13 \\
0.830097314588988 \mathrm{E}-12 & -0.580299367504821 \mathrm{E}-12 & -0.811121342725180 \mathrm{E}-13 & \\
-0.198394255770204 \mathrm{E}-12 & -0.107673095703232 \mathrm{E}-11 & -0.340570288494983 \mathrm{E}-12 & 13 \\
0.124288644083145 \mathrm{E}-13 & -0.501209266056193 \mathrm{E}-12 & -0.852387929702163 \mathrm{E}-13 & 1 \\
0.209644642907451 \mathrm{E}-12 & 0.454179546572026 \mathrm{E}-10 & 0.256700564221894 \mathrm{E}-11 & \\
0.248365328762197 \mathrm{E}-16 & 0.885615735926505 \mathrm{E}-11 & 0.482064121963914 \mathrm{E}-13 & \\
0.109981819279385 \mathrm{E}-14 & -0.598541997591639 \mathrm{E}-11 & -0.124576307872633 \mathrm{E}-11 & \\
0.463130261987941 \mathrm{E}-14 & -0.198244879116781 \mathrm{E}-10 & -0.708476661679811 \mathrm{E}-12 &
\end{array}
$$

Parabolic diffusion-convection-reaction, finite element

Wissgott@parabolic_fem. 525825 nodes, 1574400 edges.

$N=525,825$

Fluid dynamics, finite element

$N=2,017,169$

Systems with (lots of) structure: finite elements for PDEs

A model PDE: diffusion equation

Find $u: \mathbb{R}^{d} \supset \Omega \rightarrow R$ satisfying

$$
\begin{aligned}
-\operatorname{div}(\rho(x) \nabla u(x)) & =f(x) \quad \forall x \in \Omega, \\
u(x) & =0 \quad \forall x \in \partial \Omega .
\end{aligned}
$$

For example: u - temperature, ρ - thermal conductivity, f - external heating

A model PDE: diffusion equation

Find $u: \mathbb{R}^{d} \supset \Omega \rightarrow R$ satisfying

$$
\begin{aligned}
-\operatorname{div}(\rho(x) \nabla u(x)) & =f(x) \quad \forall x \in \Omega \\
u(x) & =0 \quad \forall x \in \partial \Omega .
\end{aligned}
$$

For example: u - temperature, ρ - thermal conductivity, f - external heating

Assume $\rho(x)=1$.

A model PDE: diffusion equation

Find $u: \mathbb{R}^{d} \supset \Omega \rightarrow R$ satisfying

$$
\begin{aligned}
-\Delta u(x) & =f(x) \quad \forall x \in \Omega, \\
u(x) & =0 \quad \forall x \in \partial \Omega .
\end{aligned}
$$

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Finite element approximation

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Finite element approximation

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Problem (discrete)

Find $u_{h} \in V_{h} \subset H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{\Omega} f v_{h} d x \quad \forall v_{h} \in V_{h} .
$$

Here V_{h} is finite dimensional. How to choose it?

Finite element approximation

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Problem (discrete)

Find $u_{h} \in V_{h} \subset H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{\Omega} f v_{h} d x \quad \forall v_{h} \in v_{h} .
$$

Here V_{h} is finite dimensional. How to choose it?
Divide and... approximate wisely.

Finite elements

Divide Ω into smaller elements:

- Triangulation \mathcal{T}_{h} consisting of elements κ.

Finite elements

Divide Ω into smaller elements:

- Triangulation \mathcal{T}_{h} consisting of elements κ.

$$
V_{h}=\left\{v \in C(\Omega) \cap H_{0}^{1}(\Omega): v_{\left.\right|_{\kappa}} \in P_{1}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

Finite elements

- Triangulation \mathcal{T}_{h} consisting of elements κ.

$$
V_{h}=\left\{v \in C(\Omega) \cap H_{0}^{1}(\Omega): v_{\left.\right|_{\kappa}} \in P_{1}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

More generally,

$$
V_{h}^{p}=\left\{v \in C(\Omega) \cap H_{0}^{1}(\Omega): v_{l_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Experiment: h-approximation vs p-approximation

Consider true solution to $-\Delta u=f$:

Experiment: h-approximation vs p-approximation

Consider true solution to $-\Delta u=f$:

How well can it be approximated by the finite element method?

Finite element h-approximation vs p-approximation

fixed $p=1$
decrease h
fixed $h=1 / 2$
increase p

$$
\begin{gathered}
h=1 / 2 \\
\mathrm{~N}=9
\end{gathered}
$$

$$
p=1
$$

$$
\mathrm{N}=9
$$

h-approximation vs p-approximation

$$
\begin{gathered}
h=1 / 2 \\
\mathrm{~N}=9
\end{gathered}
$$

$$
p=1
$$

$$
N=9
$$

h-approximation vs p-approximation

$$
\text { fixed } p=1
$$

$$
\text { fixed } h=1 / 2
$$

$$
\begin{gathered}
h=1 / 2^{2} \\
\mathrm{~N}=25
\end{gathered}
$$

$$
p=2
$$

$$
N=25
$$

h-approximation vs p-approximation

$$
\text { fixed } p=1
$$

$$
\text { fixed } h=1 / 2
$$

$h=1 / 2^{3}$
$p=3$
$\mathrm{N}=81$
$\mathrm{N}=49$

h-approximation vs p-approximation

$$
\text { fixed } p=1
$$

$$
\text { fixed } h=1 / 2
$$

$$
\begin{gathered}
h=1 / 2^{4} \\
\mathrm{~N}=289
\end{gathered}
$$

$$
p=4
$$

$$
N=81
$$

h-approximation vs p-approximation

$$
\text { fixed } p=1
$$

$$
\text { fixed } h=1 / 2
$$

$\begin{array}{cr}h=1 / 2^{5} & p=5 \\ \mathrm{~N}=1089 & \mathrm{~N}=121\end{array}$

More finite elements...

Periodic Table of the Finite Elements

A.

...

Arnold, Logg (2014) SIAM News

What are discontinuous finite elements?

'Continuous' finite elements:

$$
V_{h}=\left\{v \in C(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

Discontinuous finite elements

'Discontinuous' finite elements:

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \nsubseteq H_{0}^{1}(\Omega)
$$

...allow for using discontinuous basis functions.

Discontinuous finite elements

'Discontinuous' finite elements:

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \nsubseteq H_{0}^{1}(\Omega)
$$

...allow for using discontinuous basis functions.
More degrees of freedom, but: easy h-refinement and p-refinement (nonconforming elements allowed by design)

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Problem (DGFEM approximation)

$$
\begin{gathered}
u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} \\
\sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x
\end{gathered}
$$

$$
=\left(f, v_{h}\right)_{\Omega}
$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Problem (DGFEM approximation)

$$
u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

$$
\sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x+\sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h}\left[u_{h}\right] \cdot\left[v_{h}\right] d \sigma
$$

$$
=\left(f, v_{h}\right)_{\Omega}
$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Problem (DGFEM approximation)

$$
u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

$$
\begin{aligned}
& \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x+\sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h}\left[u_{h}\right] \cdot\left[v_{h}\right] d \sigma \\
&-\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\nabla u_{h}\right\}_{\omega} \cdot\left[v_{h}\right] d \sigma \\
&=\left(f, v_{h}\right)_{\Omega}
\end{aligned}
$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Problem (DGFEM approximation)

$$
u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

$$
\begin{aligned}
\sum_{\kappa \in \mathcal{T}_{h}} & \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x+\sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h}\left[u_{h}\right] \cdot\left[v_{h}\right] d \sigma \\
& -\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\nabla u_{h}\right\}_{\omega} \cdot\left[v_{h}\right] d \sigma \\
& -\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\nabla v_{h}\right\}_{\omega} \cdot\left[u_{h}\right] d \sigma=\left(f, v_{h}\right)_{\Omega}
\end{aligned}
$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Problem (DGFEM approximation)

$$
\begin{aligned}
u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}}\right. & \left.\in P_{p}(\kappa) \forall \kappa \in \mathcal{T}_{h}\right\} \\
\mathcal{A}_{h}\left(u_{h}, v_{h}\right) \equiv \sum_{\kappa \in \mathcal{T}_{h}} & \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x+\sum_{e \in \mathcal{E}_{h}} \int_{e} \frac{\gamma p^{2}}{h}\left[u_{h}\right] \cdot\left[v_{h}\right] d \sigma \\
& -\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\nabla u_{h}\right\}_{\omega} \cdot\left[v_{h}\right] d \sigma \\
& -\sum_{e \in \mathcal{E}_{h}} \int_{e}\left\{\nabla v_{h}\right\}_{\omega} \cdot\left[u_{h}\right] d \sigma=\left(f, v_{h}\right)_{\Omega}
\end{aligned}
$$

Divide and... reconnect (weakly).

DGFEM approximation of the model problem

Problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Problem (DGFEM approximation)

$u_{h}, v_{h} \in V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}$

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u_{h} \cdot \nabla v_{h} d x+\ldots \text { iterface terms... }=\left(f, v_{h}\right)_{\Omega}
$$

Divide and... reconnect (weakly).

[^1]
FEM/DGFEM stiffness matrix

Find $u_{h} \in V_{h}^{p}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in V_{h}^{p}
$$

Let $V_{h}^{p}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ and expand $u_{h}=\sum_{i} u_{i} \phi_{i}$.

FEM/DGFEM stiffness matrix

Find $u_{h} \in V_{h}^{p}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in V_{h}^{p} .
$$

Let $V_{h}^{p}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ and expand $u_{h}=\sum_{i} u_{i} \phi_{i}$.
Then $u=\left[u_{1}, \ldots, u_{N}\right] \in \mathbb{R}^{N}$ satisfies

$$
L u=b
$$

where

$$
L_{i j}=\mathcal{A}_{h}\left(\phi_{i}, \phi_{j}\right), \quad i, j=1, \ldots, N .
$$

FEM/DGFEM stiffness matrix

Find $u_{h} \in V_{h}^{p}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in V_{h}^{p}
$$

Let $V_{h}^{p}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ and expand $u_{h}=\sum_{i} u_{i} \phi_{i}$.
Then $u=\left[u_{1}, \ldots, u_{N}\right] \in \mathbb{R}^{N}$ satisfies

$$
L u=b
$$

where

$$
L_{i j}=\mathcal{A}_{h}\left(\phi_{i}, \phi_{j}\right), \quad i, j=1, \ldots, N
$$

Properties of stiffness matrix L :

- symmetric and positive definite: $L=L^{T}>0$
- N can be as large as one can afford ($h \searrow 0, p \nearrow$ large)
- sparse: each row has only a few nonzero elements

Solving large sparse systems

No need for Gaussian elimination

Approximate solution to $L x=b$ is a reasonable choice.

No need for Gaussian elimination

Approximate solution to $L x=b$ is a reasonable choice.
Model iteration:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right) \quad \text { (damped Jacobi iteration) }
$$

$$
L=D-A, \quad(D \text { is the diagonal of } L)
$$

No need for Gaussian elimination

Approximate solution to $L x=b$ is a reasonable choice.
Model iteration:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right) \quad \text { (damped Jacobi iteration) }
$$

$$
L=D-A, \quad(D \text { is the diagonal of } L)
$$

Divide and... be patient: for $L=L^{T}>0$,

- with optimal damping τ, convergence driven by the condition number

$$
\kappa=\frac{\lambda_{\max }\left(D^{-1} L\right)}{\lambda_{\min }\left(D^{-1} L\right)}
$$

- error reduction:

$$
\left\|x_{n+1}-x\right\| \lesssim \underbrace{\frac{\kappa-1}{\kappa+1}}_{=\gamma}\left\|x_{n}-x\right\|
$$

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right)
$$

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right)
$$

- error reduction factor $\gamma=\frac{\kappa-1}{\kappa+1}$ depends on $\kappa=\frac{\lambda_{\max }\left(D^{-1} L\right)}{\lambda_{\min }\left(D^{-1} L\right)}$

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right)
$$

- error reduction factor $\gamma=\frac{\kappa-1}{\kappa+1}$ depends on $\kappa=\frac{\lambda_{\max }\left(D^{-1} L\right)}{\lambda_{\min }\left(D^{-1} L\right)}$

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right)
$$

- error reduction factor $\gamma=\frac{\kappa-1}{\kappa+1}$ depends on $\kappa=\frac{\lambda_{\max }\left(D^{-1} L\right)}{\lambda_{\min }\left(D^{-1} L\right)}$

Problem

If $D^{-1} L$ is ill-conditioned: $\kappa \gg 1 \quad \Longrightarrow \quad \gamma \approx 1$.

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau D^{-1}\left(b-L x_{n}\right)
$$

- error reduction factor $\gamma=\frac{\kappa-1}{\kappa+1}$ depends on $\kappa=\frac{\lambda_{\max }\left(D^{-1} L\right)}{\lambda_{\min }\left(D^{-1} L\right)}$

Problem

If $D^{-1} L$ is ill-conditioned: $\kappa \gg 1 \quad \Longrightarrow \quad \gamma \approx 1$.
Our L from finite element method is ill-conditioned: $p \nearrow \infty, h \searrow 0$ and

$$
\kappa(L)=O\left(p^{4} / h^{2}\right)
$$

$D^{-1} L$ is ill-conditioned, too.

Iterative solution of $L x=b$

- Model iterative method:

$$
x_{n+1}=x_{n}+\tau P^{-1}\left(b-L x_{n}\right)
$$

- error reduction factor $\gamma=\frac{\kappa-1}{\kappa+1}$ depends on $\kappa=\frac{\lambda_{\max }\left(P^{-1} L\right)}{\lambda_{\min }\left(P^{-1} L\right)}$

Problem

If $P^{-1} L$ is ill-conditioned: $\kappa \gg 1 \quad \Longrightarrow \quad \gamma \approx 1$.
Our L from finite element method is ill-conditioned: $p \nearrow \infty, h \searrow 0$ and

$$
\kappa(L)=O\left(p^{4} / h^{2}\right)
$$

$D^{-1} L$ is ill-conditioned, too.
Divide and... use a good preconditioner P.
If $P^{-1} L$ is well-conditioned: $\kappa \approx 1 \quad \Longrightarrow \quad \gamma \ll 1$.

What makes a good preconditioner?

Simple preconditioned iteration:

$$
x_{n+1}=x_{n}+P^{-1}\left(b-L x_{n}\right)
$$

Ideally, P should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa\left(P^{-1} L\right) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

What makes a good preconditioner?

Simple preconditioned iteration:

$$
x_{n+1}=x_{n}+P^{-1}\left(b-L x_{n}\right)
$$

Ideally, P should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa\left(P^{-1} L\right) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: $P=/$ does not satisfy all requirements.

What makes a good preconditioner?

Simple preconditioned iteration:

$$
x_{n+1}=x_{n}+P^{-1}\left(b-L x_{n}\right)
$$

Ideally, P should:

- be easy to construct,
- be easy to invert (i.e. solving a system with P is cheap),
- reduce the condition number: $\kappa\left(P^{-1} L\right) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Extreme case: $P=L$ does not satisfy all requirements as well.

Guidelines for choosing efficient P

$L=L^{T}>0$, so choose $P=P^{T}>0$.

- Impose spectral equivalence: if exist $C_{0}, C_{1}>0$ independent of h, p, \ldots, such that

$$
C_{0} x^{\top} P x \leq x^{\top} L x \leq C_{1} x^{\top} P x \quad \Longrightarrow \quad \kappa\left(P^{-1} L\right) \leq \frac{C_{1}}{C_{0}} .
$$

\rightarrow This makes the number of iterations independent of problem size.

- Think globally, act locally: embrace parallelism.
\rightarrow This makes each iteration fast.

A sidenote: another class of structured sparse matrices

Pretty drawing graphs

Spider's messy net: how to draw it nicely?

Graph Laplacians: pretty drawing graphs

- Assume edges are elastic threads, obeying (linear!) Hooke's law

Graph Laplacians: pretty drawing graphs

- Assume edges are elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes

Graph Laplacians: pretty drawing graphs

- Assume edges are identical elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes
- Solve for other positions:

Graph Laplacians: pretty drawing graphs

- Assume edges are identical elastic threads, obeying (linear!) Hooke's law
- Fix positions of some nodes
- Solve for other positions:

Graph Laplacian

Simple, unidirected, weighted graph (V, E)
(e.g. social network, transport network, electric circuit, ...)

- Vertices $V=\{1, \ldots, N\}$
- Edge between $i, j \in V$ denoted (i, j); the set of all edges: E;
- Degree of vertex i is

$$
D_{i i}=\sum_{j:(i, j) \in E} w_{i j}
$$

- Adjacency matrix: $A_{i j}=w_{i j}$ if $(i, j) \in E$; zero otherwise.
- Graph Laplacian: $L=D-A$; equivalently

$$
L=L^{T} \geq 0
$$

$$
x^{T} L x=\sum_{(i, j) \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration)

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

Graph Laplacian

Reasons to solve systems $L x=b$ with graph Laplacian:

- drawing pretty graphs (or improving quality of finite element meshes)
- finding voltages in a resistor network, with some input/output voltages fixed
- finding Fiedler vector of the graph (using inverse power iteration) (e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually every node is connected to only a few others: the graph is sparse:

$$
\forall i \quad L_{i j} \neq 0 \quad \text { only for several } \mathrm{j}
$$

We experienced this browsing through the Sparse Matrix Collection!

Domain decomposition for PDEs

What makes a good preconditioner?

We are solving

$$
L x=b
$$

with $L=L^{T}>0$.
Simple preconditioned iteration:

$$
x_{n+1}=x_{n}+P^{-1}\left(b-L x_{n}\right)
$$

P must:

- be easy to construct,
- be easy to invert (i.e. solve a system with P),
- reduce the condition number: $\kappa\left(P^{-1} L\right) \ll \kappa(L)$.

These rules apply when simple iteration is replaced with a better method (e.g. Conjugate Gradients).

Guidelines for choosing efficient P

$$
L=L^{T}>0, \text { choose } P=P^{T}>0 .
$$

- Impose spectral equivalence:

$$
C_{0} x^{\top} P x \leq x^{\top} L x \leq C_{1} x^{\top} P x \quad \Longrightarrow \quad \kappa\left(P^{-1} L\right) \leq \frac{C_{1}}{C_{0}} .
$$

- Use full processing power: embrace parallelism.

Domain decomposition

Source: MSC/PARASOL

Divide and... solve smaller problems in parallel.
Then ,,glue" them together.

Additive Schwarz method

Problem

Find $u_{h} \in V_{h}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

Additive Schwarz method

Problem

Find $u_{h} \in V_{h}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h} .
$$

Divide and... add:

- Space decomposition:

$$
V_{h}=V_{0}+V_{1}+\ldots+V_{N}
$$

Additive Schwarz method

Problem

Find $u_{h} \in V_{h}$ such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h} .
$$

Divide and... add, and solve in parallel.

- Space decomposition:

$$
V_{h}=V_{0}+V_{1}+\ldots+V_{N}
$$

- Local solution operators $T_{i}: V_{h} \rightarrow V_{i}$ such that

$$
A_{h}\left(T_{i} u_{i}, v_{i}\right)=\mathcal{A}_{h}\left(u_{i}, v_{i}\right) \quad \forall v_{i} \in V_{i}
$$

Additive Schwarz method

Theorem (Divide and... maintain stability)

Let $T=T_{0}+T_{1}+\ldots+T_{N}$. Suppose that the following hold:
Stable decomposition: $\exists C>0 \quad \exists u_{i} \in V_{i}, u=\sum_{i} u_{i}$

$$
\sum_{i} A_{h}\left(u_{i}, u_{i}\right) \leq C \mathcal{A}_{h}(u, u) \quad \forall u \in V_{h}
$$

Strengthened Cauchy-Schwarz ineq.: $\exists 0 \leq \mathcal{E}_{i j} \leq 1 \forall 1 \leq i, j \leq N$

$$
\mathcal{A}_{h}\left(u_{i}, u_{j}\right) \leq \mathcal{E}_{i j} \cdot \mathcal{A}_{h}\left(u_{i}, u_{i}\right)^{1 / 2} \cdot \mathcal{A}_{h}\left(u_{j}, u_{j}\right)^{1 / 2} \quad \forall u_{i} \in V_{i}, u_{j} \in V_{j},
$$

Local stability: $\exists \omega>0 \forall 0 \leq i \leq N$

$$
\mathcal{A}_{h}\left(u_{i}, u_{i}\right) \leq \omega A_{h}\left(u_{i}, u_{i}\right) \quad \forall u_{i} \in V_{i}
$$

Then

$$
\kappa(T) \leq C \omega(\rho(\mathcal{E})+1) .
$$

Dryja, Widlund (1990) "Towards a unified theory of domain decomposition algorithms for elliptic problems"

Additive/Multiplicative Schwarz method

30 years of successful applications:

- overlapping domain decomposition
- substructuring domain decomposition
- multigrid
- building block of PETSc parallel linear solvers library

[^2]
ACM Gordon Bell prize 2016

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores

ACM Gordon Bell prize 2016

> "Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with 770,000,000 unknowns

[^3]
ACM Gordon Bell prize 2016

"Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with $\mathbf{7 7 0 , 0 0 0 , 0 0 0}$ unknowns
- "In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency."

[^4]
ACM Gordon Bell prize 2016

> "Chinese Research Team that Employs High Performance Computing to Understand Weather Patterns Wins 2016 ACM Gordon Bell Prize"

- World's fastest supercomputer Sunway TaihuLight, 10M cores
- System of equations with $\mathbf{7 7 0 , 0 0 0 , 0 0 0}$ unknowns
- "In the solver, we propose a highly efficient domain-decomposed multigrid preconditioner that can greatly accelerate the convergence rate at the extreme scale. For solving the overlapped subdomain problems, a geometry-based pipelined incomplete LU factorization method is designed to further exploit the on-chip fine-grained concurrency."
- Additive Schwarz at the core of computation

[^5]
Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

Decomposition:

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Divide and... aggregate.

Is there no overlap between subdomains?

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

Decomposition:

Divide and... aggregate.

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Is there no overlap between subdomains? Not really:

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

Decomposition:

Divide and... aggregate.

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Is there no overlap between subdomains? Not really:

$$
\mathcal{A}_{h}(u, v) \equiv \sum_{\kappa \in \mathcal{T}_{h}} \int_{\kappa} \nabla u \cdot \nabla v d x+\int_{\Gamma} \frac{\gamma p^{2}}{h}[u][v] d \sigma+\ldots \text { etc. }
$$

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\mid \kappa} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Decomposition:

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Divide and... aggregate.

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\mid \kappa} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Decomposition:

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Divide and... aggregate.

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\mid \kappa} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Decomposition:

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Divide and... aggregate.

Non-overlapping domain decomposition for DGFEM

$$
V_{h}^{p}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{\kappa}} \in P_{p}(\kappa) \quad \forall \kappa \in \mathcal{T}_{h}\right\} .
$$

Decomposition:

$$
V_{h}^{p}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i}=\left\{v \in V_{h}^{p}: v=0 \text { on } \Omega_{j}, \quad j \neq i\right\}
$$

Coarse space:

$$
V_{0}=V_{\mathcal{H}}^{q}, \quad \text { where } \mathcal{H} \geq H, \quad q \leq p .
$$

Divide and... aggregate.

N subdomains, \mathcal{M} coarse space cells.

DGFEM additive Schwarz condition estimate

Theorem

Let $T=T_{0}+\sum_{i=1}^{N} T_{i}$ be the preconditioned operator. Then

$$
\kappa(T)=O\left(\frac{\mathcal{H}^{2}}{h H} \cdot \frac{p^{2}}{\max \{q, 1\}}\right)
$$

Bound independent of discontinuities in the coefficient, extended to nonconforming meshes and varying polynomial degree.

[^6]
DGFEM additive Schwarz condition estimate

Key condition for the coarse space V_{0} :
Divide and... maintain approximation:
$\forall u \in V_{h} \quad \exists u_{0} \in V_{0}:$

$$
\sum_{n=1}^{\mathcal{M}}\left(\frac{q_{n}^{2}}{\mathcal{H}_{n}^{2}}\left\|u-u_{0}\right\|_{0, D_{n}}^{2}+\left\|u-u_{0}\right\|_{D_{n}}^{2}\right) \leq \text { Const } \cdot \mathcal{A}_{h}(u, u) .
$$

K. (2016) Num. Meth. PDEs

Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

DGFEM additive Schwarz condition estimate

Key condition for the coarse space V_{0} :
Divide and... maintain approximation:
$\forall u \in V_{h} \quad \exists u_{0} \in V_{0}:$

$$
\sum_{n=1}^{\mathcal{M}}\left(\frac{q_{n}^{2}}{\mathcal{H}_{n}^{2}}\left\|u-u_{0}\right\|_{0, D_{n}}^{2}+\left\|u-u_{0}\right\|_{D_{n}}^{2}\right) \leq \text { Const } \cdot \mathcal{A}_{h}(u, u) .
$$

Open questions:

- Optimal balance between \mathcal{H} and H ? p and q ?
- How does it depend on the computer architecture?

[^7]
What kind of parallelism?

(24 cores, $2.6 \mathrm{GHz}, 128 \mathrm{~GB}$) $\times 1084$ nodes (Cray XC40, at ICM UW)
or...

What kind of parallelism?

(24 cores, $2.6 \mathrm{GHz}, 128 \mathrm{~GB}$) $\times 1084$ nodes (Cray XC40, at ICM UW)
or...

2560 cores, 1.6 GHz, 8 GB (NVIDIA GTX 1080, in your PC)

Extreme parallelism

Suppose subdomain $=$ single finite element.
Then \# parallel tasks $=\#$ subdomains $=\#$ finite elements $=N$.

Theorem

Let $T=T_{0}+\sum_{i=1}^{N} T_{i}$ be the preconditioned operator. Then

$$
\kappa(T) \lesssim \max _{n=1, \ldots, \mathcal{M}}\left\{\frac{\mathcal{H}_{n}^{2}}{\min _{\kappa \in \mathcal{T}_{h}\left(D_{n}\right)} h_{\kappa}^{2}}\right\}
$$

Bound independent of discontinuities in the coefficient (under certain assumptions).

[^8]
Extreme parallelism

Suppose subdomain $=$ single finite element.
Then \# parallel tasks $=\#$ subdomains $=\#$ finite elements $=N$.

Theorem

Let $T=T_{0}+\sum_{i=1}^{N} T_{i}$ be the preconditioned operator. Then

$$
\kappa(T) \lesssim \frac{\mathcal{H}^{2}}{h^{2}} .
$$

Bound independent of discontinuities in the coefficient (under certain assumptions).

Dryja, K. (2015) Num. Math.

Splitting equations

Block systems

System with nonsinglar, symmetric 2×2 block matrix:

$$
\mathcal{L}\left[\begin{array}{l}
u \\
p
\end{array}\right] \equiv\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right] .
$$

Block systems

System with nonsinglar, symmetric 2×2 block matrix:

$$
\mathcal{L}\left[\begin{array}{l}
u \\
p
\end{array}\right] \equiv\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right] .
$$

Examples of "natural" block decomposition:

- $A>0, C=0$
- Stokes equations,
- mixed methods for elliptic PDEs,
- $A>0, C<0$
- structured methods for elliptic PDEs:
- $A>0, C>0$
- linear elasticity mixed discretization
- stabilized mixed methods
- A indefinite, $C>0$
- time harmonic Maxwell equations

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$
\mathcal{P}^{-1}\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\mathcal{P}^{-1}\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs

Brown (2012) Intl. Symp. Para. Distr. Comp.

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$
\mathcal{P}^{-1}\left[\begin{array}{ll}
A & B^{\top} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\mathcal{P}^{-1}\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

Divide and... follow this decomposition!

$$
\mathcal{P}_{1}=\left[\begin{array}{cc}
I & \\
c B A_{0}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right]\left[\begin{array}{cc}
I & d A_{0}^{-1} B^{T} \\
& I
\end{array}\right]
$$

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs

Brown (2012) Intl. Symp. Para. Distr. Comp.

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$
\mathcal{P}^{-1}\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\mathcal{P}^{-1}\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

Divide and... follow this decomposition!

$$
\mathcal{P}_{1}=\left[\begin{array}{cc}
I & \\
c B A_{0}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right]\left[\begin{array}{cc}
I & d A_{0}^{-1} B^{T} \\
& I
\end{array}\right]
$$

or

$$
\mathcal{P}_{2}=\left[\begin{array}{cc}
I & d B^{T} S_{0}^{-1} \\
& I
\end{array}\right]\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right]\left[\begin{array}{cc}
I & \\
c S_{0}^{-1} B & I
\end{array}\right],
$$

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs

Brown (2012) Intl. Symp. Para. Distr. Comp.

A family of preconditioners

For ill-conditioned \mathcal{L}, use preconditioner \mathcal{P}, and solve iteratively

$$
\mathcal{P}^{-1}\left[\begin{array}{ll}
A & B^{\top} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\mathcal{P}^{-1}\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

Divide and... follow this decomposition!

$$
\mathcal{P}_{1}=\left[\begin{array}{cc}
I & \\
c B A_{0}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right]\left[\begin{array}{cc}
I & d A_{0}^{-1} B^{T} \\
& I
\end{array}\right]
$$

or

$$
\mathcal{P}_{2}=\left[\begin{array}{cc}
I & d B^{T} S_{0}^{-1} \\
& I
\end{array}\right]\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right]\left[\begin{array}{cc}
I & \\
c S_{0}^{-1} B & I
\end{array}\right],
$$

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs

Brown (2012) Intl. Symp. Para. Distr. Comp.

Choosing the ingredients: c,d parameters

Type	Form of \mathcal{P}	c	d
block-diagonal	$\left[\begin{array}{ll}A_{0} & \\ & S_{0}\end{array}\right]$	0	0
block-triangular	$\left[\begin{array}{ll}A_{0} & \\ B & -S_{0}\end{array}\right]$	1	0
block symmetric indefinite	$\left[\begin{array}{ccc}A_{0} & B^{T} \\ B & B A_{0}^{-1} B^{T} & -S_{0}\end{array}\right]$	1	1
primal-based penalty	$\left[\begin{array}{ccc}A_{0}-B^{T} S_{0}^{-1} B & B^{T} \\ B & -S_{0}\end{array}\right]$	1	1

Choosing the ingredients: A_{0}, S_{0} preconditioners

Let us define a block diagonal matrix and a norm

$$
\begin{aligned}
\mathcal{J}=\left[\begin{array}{ll}
A_{0} & \\
& S_{0}
\end{array}\right], \quad\left\|\left[\begin{array}{l}
u \\
p
\end{array}\right]\right\|_{\mathcal{J}}^{2} & =\|u\|_{A_{0}}^{2}+\|p\|_{S_{0}}^{2} \\
& =u^{T} A_{0} u+p^{T} S_{0} p
\end{aligned}
$$

Divide and... keep balance:
stability and continuity

$$
\exists_{m_{0}, m_{1}>0} \quad m_{0}\|x\|_{\mathcal{J}} \leq\|\mathcal{L} x\|_{\mathcal{J}^{-1}} \leq m_{1}\|x\|_{\mathcal{J}} \quad \forall x
$$

mixed continuity $\exists_{b_{0}>0} \quad\left|p^{\top} B u\right| \leq b_{0}\|u\|_{A_{0}}\|p\|_{s_{0}} \quad \forall u, \forall p$,
inner product definiteness $\mathcal{H}>0$
spectral equivalence $\exists_{h_{0}, h_{1}>0} \quad h_{0}\|x\|_{\mathcal{H}} \leq\|x\|_{\mathcal{J}} \leq h_{1}\|x\|_{\mathcal{H}}, \quad \forall x$.

Eigenvalue estimates and PCR convergence

It is known that the convergence speed of PCR iteration depends on

$$
\kappa=\frac{\max \left|\lambda\left(\mathcal{P}^{-1} \mathcal{L}\right)\right|}{\min \left|\lambda\left(\mathcal{P}^{-1} \mathcal{L}\right)\right|}
$$

Theorem

If λ is an eigenvalue of $\mathcal{P}^{-1} \mathcal{L}$, then

$$
\frac{1}{2 m_{0}\left(1+b_{0}^{2}\right)} \leq|\lambda| \leq 2 m_{1}\left(1+b_{0}^{2}\right) .
$$

This has direct implications to preconditioning Stokes equation or certain multiphysics systems of PDEs.

```
Klawonn (1998) SIAM J. Sci. Comput.
K. (2011) Numer. Linear Algebra Appl.
Notay (2014) SIAM J. Matrix Anal. & Appl.
Smears (2017) IMA Journal of Numerical Analysis
```


Summing up

- reconnect wisely
- reconnect wisely
- solve parts in parallel
- reconnect wisely
- solve parts in parallel
- keep balance
- reconnect wisely
- solve parts in parallel
- keep balance
- maintain stability or approximation

Selected active research areas

- preconditioners for nonstandard finite elements
- algorithms for new computer architectures
- communication avoiding parallel methods/preconditioners
- domain decomposition for nonlinear problems
- nonsymmetric/indefinite linear systems
- robust methods for graph Laplacians

[^0]: Strassen (1969) Numer. Math.

[^1]: Arnold (1982) SIAM J. Numer. Anal.
 Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

[^2]: Smith, Bjørstad, Gropp (1996) Domain decomposition
 Toselli, Widlund (2005) Domain decomposition methods-algorithms and theory Mathew (2008) Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

 Xu (1992) SIAM Rev.
 Balay (1995-) PETSc Users Manual

[^3]: http://awards.acm.org/bell

[^4]: http://awards.acm.org/bell

[^5]: http://awards.acm.org/bell

[^6]: Antonietti, Houston (2011) J. Sci. Comput.
 K. (2016) Num. Meth. PDEs

 Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

[^7]: K. (2016) Num. Meth. PDEs

 Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

[^8]: Dryja, K. (2015) Num. Math.

