
Divide and...

Piotr Krzyżanowski

MIM Colloquium 2017/11/9

MIM UW, Institute of Applied Mathematics

System of linear equations

Problem

Given nonsingular L ∈ RN×N and b ∈ RN , find x ∈ RN satisfying

L11x1 + L12x2 + . . . L1NxN = b1,

L21x1 + L22x2 + . . . L2NxN = b2,
...

LN1x1 + LN2x2 + . . . LNNxN = bN ,

Can anything be more boring?

1

System of linear equations

Problem

Given nonsingular L ∈ RN×N and b ∈ RN , find x ∈ RN satisfying

L11x1 + L12x2 + . . . L1NxN = b1,

L21x1 + L22x2 + . . . L2NxN = b2,
...

LN1x1 + LN2x2 + . . . LNNxN = bN ,

Can anything be more boring?

1

A solved problem

?

Find x ∈ RN such that

Lx = b

• Gaussian elimination known for about 2000 years; costs O(N3)

• Cramer’s rule (much) more costly: O(N!)

• Complexity: still an open question

• We know O(Nω) algorithms exist with ω < 3.

2

A solved problem

?

Find x ∈ RN such that

Lx = b

• Gaussian elimination known for about 2000 years; costs O(N3)

• Cramer’s rule (much) more costly: O(N!)

• Complexity: still an open question

• We know O(Nω) algorithms exist with ω < 3.

2

A solved problem?

Find x ∈ RN such that

Lx = b

• Gaussian elimination known for about 2000 years; costs O(N3)

• Cramer’s rule (much) more costly: O(N!)

• Complexity: still an open question

• We know O(Nω) algorithms exist with ω < 3.

2

A solved problem?

Find x ∈ RN such that

Lx = b

• Gaussian elimination known for about 2000 years; costs O(N3)

• Cramer’s rule (much) more costly: O(N!)

• Complexity: still an open question

• We know O(Nω) algorithms exist with ω < 3.

2

Strassen’s matrix multiply

• Matrix–matrix multiplication X = L ·B as complex as solving Lx = b

• Divide and...[
X11 X12

X21 X22

]
=

[
L11 L12

L21 L22

]
·

[
B11 B12

B21 B22

]

3

Strassen’s matrix multiply

• Matrix–matrix multiplication X = L ·B as complex as solving Lx = b

• Divide and...[
X11 X12

X21 X22

]
=

[
L11 L12

L21 L22

]
·

[
B11 B12

B21 B22

]

3

Strassen’s matrix multiply

• Matrix–matrix multiplication X = L ·B as complex as solving Lx = b

• Divide and...[
X11 X12

X21 X22

]
=

[
L11 L12

L21 L22

]
·

[
B11 B12

B21 B22

]

Naively,

X11 = L11B11 + L12B21

X12 = L11B12 + L12B22

X21 = L21B11 + L22B21

X22 = L21B12 + L22B22.

gives a recursive “divide-and-conquer” algorithm.

• Complexity: still O(N3).

3

Strassen’s matrix multiply

• Matrix–matrix multiplication X = L ·B as complex as solving Lx = b

• Divide and... think again:[
X11 X12

X21 X22

]
=

[
L11 L12

L21 L22

]
·

[
B11 B12

B21 B22

]

Reduce number of matrix multiplications to seven!

X11 = P1 + P4 − P5 + P7

X12 = P3 + P5

X21 = P2 + P4

X22 = P1 + P3 − P2 + P6,

P1 = (L11 + L22)(B11 + B22),

P2 = (L21 + L22)B11

...

P7 = (L12 − L22)(B21 + B22)

Complexity: O(N log2 7) ≈ O(N2.808...)

Strassen (1969) Numer. Math.

3

Large systems are intractable for simple Gaussian elimination

Find x ∈ RN such that

Lx = b.

If N = 106, a PC would have

• computed the solution after 109 seconds

i.e. ≈ 32 years

• needed 1013 bytes of memory

i.e. ≈ 9,000 GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.

4

Large systems are intractable for simple Gaussian elimination

Find x ∈ RN such that

Lx = b.

If N = 106, a PC would have

• computed the solution after 109 seconds

i.e. ≈ 32 years

• needed 1013 bytes of memory

i.e. ≈ 9,000 GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.

4

Large systems are intractable for simple Gaussian elimination

Find x ∈ RN such that

Lx = b.

If N = 106, a PC would have

• computed the solution after 109 seconds i.e. ≈ 32 years

• needed 1013 bytes of memory

i.e. ≈ 9,000 GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.

4

Large systems are intractable for simple Gaussian elimination

Find x ∈ RN such that

Lx = b.

If N = 106, a PC would have

• computed the solution after 109 seconds i.e. ≈ 32 years

• needed 1013 bytes of memory

i.e. ≈ 9,000 GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.

4

Large systems are intractable for simple Gaussian elimination

Find x ∈ RN such that

Lx = b.

If N = 106, a PC would have

• computed the solution after 109 seconds i.e. ≈ 32 years

• needed 1013 bytes of memory i.e. ≈ 9,000 GB

if straightforward Gaussian elimination (e.g. LAPACK’s DGESV) was used.

4

Outline

1. Large systems of linear equations: where do they come from?

2. Systems with (lots of) structure: finite elements for PDEs

3. Solving large sparse systems

4. A sidenote: another class of structured sparse matrices

5. Domain decomposition for PDEs

6. Splitting equations

7. Summing up

5

Large systems of linear

equations: where do they come

from?

The beauty of sparse matrices

Davis, Hu (2011) ACM Trans. Math. Softw.

6

Economic problem

N = 15, 575

7

Quantum chromodynamics

N = 3, 072

8

Macroeconomic problem

N = 206, 500

9

KKT system, nonconvex optimization

N = 16, 554

10

Financial portfolio optimization

N = 74, 752

11

Structural engineering, finite element

N = 15, 449

12

Structural engineering, finite element

N = 15, 449

12

Structural engineering, finite element

This is how a sparse matrix really looks like:

63929 444 10024 53461

rsa 4875 4875 160383 0

(11I7) (16I5) (3E23.15)

1 25 48 70 103 135 166 199 231 262 295

327 358 391 423 454 487 519 550 583 615 646

679 711 742 775 807 838 871 903 934 967 999

1030 1063 1095 1126 1147 1167 1186 1216 1245 1273 1315

1356 1396 1438 1479 1519 1561 1602 1642 1684 1725 1765

1807 1848 1888 1930 1971 2011 2053 2094 2134 2176 2217

2257 2299 2340 2380 2422 2463 2503 2545 2586 2626 2653

2679 2704 2734 2763 2791 2833 2874 2914 2956 2997 3037

0.409672687144694E-14 -0.270324344694379E-11 0.462322806286147E-14

-0.125103474334186E-15 -0.157968969372661E-11 0.120545535566847E-14

-0.415025707341799E-14 -0.518149596242225E-12 0.850962616131678E-13

-0.209551074847814E-12 -0.107421047460559E-11 0.340867474174134E-12

-0.371312672815900E-13 -0.562016116896941E-12 0.811101830369373E-13

0.198413464034039E-12 -0.375360224439469E-12 0.141281556760829E-13

-0.805393690795621E-12 0.267683729453480E-11 0.861749802483021E-16

-0.113997243532461E-15 -0.423020243608237E-12 -0.143670337428612E-13

0.830097314588988E-12 -0.580299367504821E-12 -0.811121342725180E-13

-0.198394255770204E-12 -0.107673095703232E-11 -0.340570288494983E-12

0.124288644083145E-13 -0.501209266056193E-12 -0.852387929702163E-13

0.209644642907451E-12 0.454179546572026E-10 0.256700564221894E-11

0.248365328762197E-16 0.885615735926505E-11 0.482064121963914E-13

0.109981819279385E-14 -0.598541997591639E-11 -0.124576307872633E-11

0.463130261987941E-14 -0.198244879116781E-10 -0.708476661679811E-12

0.117474520679652E-14 -0.514112848937088E-11 0.612612173861875E-12

0.852216570175823E-13 -0.136800949915698E-11 0.156578944215021E-12

0.340948859507558E-12 -0.507850384133519E-11 -0.160535121834849E-12

13

Parabolic diffusion-convection-reaction, finite element

N = 525, 825

14

Fluid dynamics, finite element

N = 2, 017, 169

15

Systems with (lots of) structure:

finite elements for PDEs

A model PDE: diffusion equation

Find u : Rd ⊃ Ω→ R satisfying

− div(ρ(x)∇u(x)) = f (x) ∀x ∈ Ω,

u(x) = 0 ∀x ∈ ∂Ω.

For example: u — temperature, ρ — thermal conductivity, f — external

heating

Assume ρ(x) = 1.

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

16

A model PDE: diffusion equation

Find u : Rd ⊃ Ω→ R satisfying

− div(ρ(x)∇u(x)) = f (x) ∀x ∈ Ω,

u(x) = 0 ∀x ∈ ∂Ω.

For example: u — temperature, ρ — thermal conductivity, f — external

heating

Assume ρ(x) = 1.

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

16

A model PDE: diffusion equation

Find u : Rd ⊃ Ω→ R satisfying

−∆u(x) = f (x) ∀x ∈ Ω,

u(x) = 0 ∀x ∈ ∂Ω.

For example: u — temperature, ρ — thermal conductivity, f — external

heating

Assume ρ(x) = 1.

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

16

Finite element approximation

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

Problem (discrete)

Find uh ∈ Vh ⊂ H1
0 (Ω) such that∫

Ω

∇uh · ∇vh dx =

∫
Ω

f vh dx ∀vh ∈ Vh.

Here Vh is finite dimensional. How to choose it?

Divide and... approximate wisely.

17

Finite element approximation

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

Problem (discrete)

Find uh ∈ Vh ⊂ H1
0 (Ω) such that∫

Ω

∇uh · ∇vh dx =

∫
Ω

f vh dx ∀vh ∈ Vh.

Here Vh is finite dimensional. How to choose it?

Divide and... approximate wisely.

17

Finite element approximation

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

Problem (discrete)

Find uh ∈ Vh ⊂ H1
0 (Ω) such that∫

Ω

∇uh · ∇vh dx =

∫
Ω

f vh dx ∀vh ∈ Vh.

Here Vh is finite dimensional. How to choose it?

Divide and... approximate wisely.

17

Finite elements

h

Ω

κ

Divide Ω into smaller elements:

• Triangulation Th consisting of elements κ.

Vh = {v ∈ C (Ω) ∩ H1
0 (Ω) : v|κ ∈ P1(κ) ∀κ ∈ Th} ⊂ H1

0 (Ω)

More generally,

V p
h = {v ∈ C (Ω) ∩ H1

0 (Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

18

Finite elements

h

Ω

κ

Divide Ω into smaller elements:

• Triangulation Th consisting of elements κ.

Vh = {v ∈ C (Ω) ∩ H1
0 (Ω) : v|κ ∈ P1(κ) ∀κ ∈ Th} ⊂ H1

0 (Ω)

More generally,

V p
h = {v ∈ C (Ω) ∩ H1

0 (Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

18

Finite elements

h

Ω

κ

• Triangulation Th consisting of elements κ.

Vh = {v ∈ C (Ω) ∩ H1
0 (Ω) : v|κ ∈ P1(κ) ∀κ ∈ Th} ⊂ H1

0 (Ω)

More generally,

V p
h = {v ∈ C (Ω) ∩ H1

0 (Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.
18

Experiment: h–approximation vs p–approximation

Consider true solution to −∆u = f :

How well can it be approximated by the finite element method?

19

Experiment: h–approximation vs p–approximation

Consider true solution to −∆u = f :

How well can it be approximated by the finite element method?

19

Finite element h–approximation vs p–approximation

fixed p = 1

decrease h

↓

h = 1/2

N=9

fixed h = 1/2

increase p

↓

p = 1

N=9
20

h–approximation vs p–approximation

fixed p = 1

h = 1/2

N=9

fixed h = 1/2

p = 1

N=9

21

h–approximation vs p–approximation

fixed p = 1

h = 1/22

N=25

fixed h = 1/2

p = 2

N=25

22

h–approximation vs p–approximation

fixed p = 1

h = 1/23

N=81

fixed h = 1/2

p = 3

N=49

23

h–approximation vs p–approximation

fixed p = 1

h = 1/24

N=289

fixed h = 1/2

p = 4

N=81

24

h–approximation vs p–approximation

fixed p = 1

h = 1/25

N=1089

fixed h = 1/2

p = 5

N=121

25

More finite elements...

Arnold, Logg (2014) SIAM News

26

What are discontinuous finite elements?

’Continuous’ finite elements:

n

i

j

h

ijx

Vh = {v ∈ C (Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th} ⊂ H1
0 (Ω)

27

Discontinuous finite elements

’Discontinuous’ finite elements:

n

i

j

h

ijx

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th} * H1

0 (Ω)

...allow for using discontinuous basis functions.

More degrees of freedom, but: easy h–refinement and p–refinement

(nonconforming elements allowed by design)

28

Discontinuous finite elements

’Discontinuous’ finite elements:

n

i

j

h

ijx

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th} * H1

0 (Ω)

...allow for using discontinuous basis functions.

More degrees of freedom, but: easy h–refinement and p–refinement

(nonconforming elements allowed by design)
28

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡

∑
κ∈Th

∫
κ
∇uh · ∇vh dx

+
∑
e∈Eh

∫
e

γp2

h
[uh] · [vh] dσ

−
∑
e∈Eh

∫
e
{∇uh}ω · [vh] dσ

−
∑
e∈Eh

∫
e
{∇vh}ω · [uh] dσ

= (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡

∑
κ∈Th

∫
κ
∇uh · ∇vh dx +

∑
e∈Eh

∫
e

γp2

h
[uh] · [vh] dσ

−
∑
e∈Eh

∫
e
{∇uh}ω · [vh] dσ

−
∑
e∈Eh

∫
e
{∇vh}ω · [uh] dσ

= (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡

∑
κ∈Th

∫
κ
∇uh · ∇vh dx +

∑
e∈Eh

∫
e

γp2

h
[uh] · [vh] dσ

−
∑
e∈Eh

∫
e
{∇uh}ω · [vh] dσ

−
∑
e∈Eh

∫
e
{∇vh}ω · [uh] dσ

= (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡

∑
κ∈Th

∫
κ
∇uh · ∇vh dx +

∑
e∈Eh

∫
e

γp2

h
[uh] · [vh] dσ

−
∑
e∈Eh

∫
e
{∇uh}ω · [vh] dσ

−
∑
e∈Eh

∫
e
{∇vh}ω · [uh] dσ = (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡
∑
κ∈Th

∫
κ
∇uh · ∇vh dx +

∑
e∈Eh

∫
e

γp2

h
[uh] · [vh] dσ

−
∑
e∈Eh

∫
e
{∇uh}ω · [vh] dσ

−
∑
e∈Eh

∫
e
{∇vh}ω · [uh] dσ = (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

DGFEM approximation of the model problem

Problem

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Problem (DGFEM approximation)

uh, vh ∈ V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}

Ah(uh, vh) ≡
∑
κ∈Th

∫
κ
∇uh · ∇vh dx + ...iterface terms... = (f , vh)Ω

Divide and... reconnect (weakly).

Arnold (1982) SIAM J. Numer. Anal.
Di Pietro, Ern (2012) Mathematical aspects of discontinuous Galerkin methods

29

FEM/DGFEM stiffness matrix

Find uh ∈ V p
h such that

Ah(uh, vh) = (f , vh)Ω ∀vh ∈ V p
h .

Let V p
h = span{φ1, . . . , φN} and expand uh =

∑
i uiφi .

Then u = [u1, . . . , uN] ∈ RN satisfies

Lu = b

where

Lij = Ah(φi , φj), i , j = 1, . . . ,N.

Properties of stiffness matrix L:

• symmetric and positive definite: L = LT > 0

• N can be as large as one can afford (h↘ 0, p ↗ large)

• sparse: each row has only a few nonzero elements

30

FEM/DGFEM stiffness matrix

Find uh ∈ V p
h such that

Ah(uh, vh) = (f , vh)Ω ∀vh ∈ V p
h .

Let V p
h = span{φ1, . . . , φN} and expand uh =

∑
i uiφi .

Then u = [u1, . . . , uN] ∈ RN satisfies

Lu = b

where

Lij = Ah(φi , φj), i , j = 1, . . . ,N.

Properties of stiffness matrix L:

• symmetric and positive definite: L = LT > 0

• N can be as large as one can afford (h↘ 0, p ↗ large)

• sparse: each row has only a few nonzero elements

30

FEM/DGFEM stiffness matrix

Find uh ∈ V p
h such that

Ah(uh, vh) = (f , vh)Ω ∀vh ∈ V p
h .

Let V p
h = span{φ1, . . . , φN} and expand uh =

∑
i uiφi .

Then u = [u1, . . . , uN] ∈ RN satisfies

Lu = b

where

Lij = Ah(φi , φj), i , j = 1, . . . ,N.

Properties of stiffness matrix L:

• symmetric and positive definite: L = LT > 0

• N can be as large as one can afford (h↘ 0, p ↗ large)

• sparse: each row has only a few nonzero elements

30

Solving large sparse systems

No need for Gaussian elimination

Approximate solution to Lx = b is a reasonable choice.

Model iteration:

xn+1 = xn + τD−1(b − Lxn) (damped Jacobi iteration)

L = D − A, (D is the diagonal of L)

Divide and... be patient: for L = LT > 0,

• with optimal damping τ , convergence driven by the condition

number

κ =
λmax(D−1L)

λmin(D−1L)

• error reduction:

‖xn+1 − x‖ . κ− 1

κ+ 1︸ ︷︷ ︸
=γ

‖xn − x‖

31

No need for Gaussian elimination

Approximate solution to Lx = b is a reasonable choice.

Model iteration:

xn+1 = xn + τD−1(b − Lxn) (damped Jacobi iteration)

L = D − A, (D is the diagonal of L)

Divide and... be patient: for L = LT > 0,

• with optimal damping τ , convergence driven by the condition

number

κ =
λmax(D−1L)

λmin(D−1L)

• error reduction:

‖xn+1 − x‖ . κ− 1

κ+ 1︸ ︷︷ ︸
=γ

‖xn − x‖

31

No need for Gaussian elimination

Approximate solution to Lx = b is a reasonable choice.

Model iteration:

xn+1 = xn + τD−1(b − Lxn) (damped Jacobi iteration)

L = D − A, (D is the diagonal of L)

Divide and... be patient: for L = LT > 0,

• with optimal damping τ , convergence driven by the condition

number

κ =
λmax(D−1L)

λmin(D−1L)

• error reduction:

‖xn+1 − x‖ . κ− 1

κ+ 1︸ ︷︷ ︸
=γ

‖xn − x‖

31

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τD−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(D−1L)

λmin(D−1L)

Problem

If D−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If D−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τD−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(D−1L)

λmin(D−1L)

Problem

If D−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If D−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τD−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(D−1L)

λmin(D−1L)

Problem

If D−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If D−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τD−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(D−1L)

λmin(D−1L)

Problem

If D−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If D−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τD−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(D−1L)

λmin(D−1L)

Problem

If D−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If D−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

Iterative solution of Lx = b

• Model iterative method:

xn+1 = xn + τP−1(b − Lxn)

• error reduction factor γ =
κ− 1

κ+ 1
depends on κ =

λmax(P−1L)

λmin(P−1L)

Problem

If P−1L is ill–conditioned: κ� 1 =⇒ γ ≈ 1.

Our L from finite element method is ill–conditioned: p ↗∞, h↘ 0 and

κ(L) = O(p4/h2)

D−1L is ill–conditioned, too.

Divide and... use a good preconditioner P.

If P−1L is well–conditioned: κ ≈ 1 =⇒ γ � 1.

32

What makes a good preconditioner?

Simple preconditioned iteration:

xn+1 = xn + P−1(b − Lxn)

Ideally, P should:

• be easy to construct,

• be easy to invert (i.e. solving a system with P is cheap),

• reduce the condition number: κ(P−1L)� κ(L).

These rules apply when simple iteration is replaced with a better method

(e.g. Conjugate Gradients).

Extreme case: P = I does not satisfy all requirements.

33

What makes a good preconditioner?

Simple preconditioned iteration:

xn+1 = xn + P−1(b − Lxn)

Ideally, P should:

• be easy to construct,

• be easy to invert (i.e. solving a system with P is cheap),

• reduce the condition number: κ(P−1L)� κ(L).

These rules apply when simple iteration is replaced with a better method

(e.g. Conjugate Gradients).

Extreme case: P = I does not satisfy all requirements.

33

What makes a good preconditioner?

Simple preconditioned iteration:

xn+1 = xn + P−1(b − Lxn)

Ideally, P should:

• be easy to construct,

• be easy to invert (i.e. solving a system with P is cheap),

• reduce the condition number: κ(P−1L)� κ(L).

These rules apply when simple iteration is replaced with a better method

(e.g. Conjugate Gradients).

Extreme case: P = L does not satisfy all requirements as well.

33

Guidelines for choosing efficient P

L = LT > 0, so choose P = PT > 0.

• Impose spectral equivalence: if exist C0, C1 > 0 independent of

h, p, . . . , such that

C0 x
TPx ≤ xTLx ≤ C1 x

TPx =⇒ κ(P−1L) ≤ C1

C0
.

→ This makes the number of iterations independent of problem size.

• Think globally, act locally: embrace parallelism.

→ This makes each iteration fast.

34

A sidenote: another class of

structured sparse matrices

Pretty drawing graphs

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Spider’s messy net: how to draw it nicely?

35

Graph Laplacians: pretty drawing graphs

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

• Assume edges are elastic threads, obeying (linear!) Hooke’s law

• Fix positions of some nodes

36

Graph Laplacians: pretty drawing graphs

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

• Assume edges are elastic threads, obeying (linear!) Hooke’s law

• Fix positions of some nodes

36

Graph Laplacians: pretty drawing graphs

• Assume edges are identical elastic threads, obeying (linear!) Hooke’s

law

• Fix positions of some nodes

• Solve for other positions:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

37

Graph Laplacians: pretty drawing graphs

• Assume edges are identical elastic threads, obeying (linear!) Hooke’s

law

• Fix positions of some nodes

• Solve for other positions:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

37

Graph Laplacian

Simple, unidirected, weighted graph (V ,E)

(e.g. social network, transport network, elec-

tric circuit, ...)

• Vertices V = {1, . . . ,N}

• Edge between i , j ∈ V denoted (i , j); the

set of all edges: E ;

• Degree of vertex i is

Dii =
∑

j :(i,j)∈E

wij .

• Adjacency matrix: Aij = wij if (i , j) ∈ E ;

zero otherwise.

• Graph Laplacian: L = D − A;

equivalently

xTLx =
∑

(i,j)∈E

wij(xi − xj)
2.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

L = LT ≥ 0

38

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs

(or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs (or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs (or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs (or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs (or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Graph Laplacian

Reasons to solve systems Lx = b with graph Laplacian:

• drawing pretty graphs (or improving quality of finite element meshes)

• finding voltages in a resistor network, with some input/output

voltages fixed

• finding Fiedler vector of the graph (using inverse power iteration)

(e.g. for mesh partitioning)

Some graphs have very large number of vertices N. But then usually

every node is connected to only a few others: the graph is sparse:

∀i Lij 6= 0 only for several j

We experienced this browsing through the Sparse Matrix Collection!

39

Domain decomposition for PDEs

What makes a good preconditioner? (replay)

We are solving

Lx = b.

with L = LT > 0.
Simple preconditioned iteration:

xn+1 = xn + P−1(b − Lxn)

P must:

• be easy to construct,

• be easy to invert (i.e. solve a system with P),

• reduce the condition number: κ(P−1L)� κ(L).

These rules apply when simple iteration is replaced with a better method

(e.g. Conjugate Gradients).

40

Guidelines for choosing efficient P (replay)

L = LT > 0, choose P = PT > 0.

• Impose spectral equivalence:

C0 x
TPx ≤ xTLx ≤ C1 x

TPx =⇒ κ(P−1L) ≤ C1

C0
.

• Use full processing power: embrace parallelism.

41

Domain decomposition

Source: MSC/PARASOL

Divide and... solve smaller problems in parallel.

Then ,,glue” them together.

42

Additive Schwarz method

Problem

Find uh ∈ Vh such that

Ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

Divide and... add:

• Space decomposition:

Vh = V0 + V1 + . . .+ VN .

• Local solution operators Ti : Vh → Vi such that

Ah(Tiui , vi) = Ah(ui , vi) ∀vi ∈ Vi .

43

Additive Schwarz method

Problem

Find uh ∈ Vh such that

Ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

Divide and... add:

• Space decomposition:

Vh = V0 + V1 + . . .+ VN .

• Local solution operators Ti : Vh → Vi such that

Ah(Tiui , vi) = Ah(ui , vi) ∀vi ∈ Vi .

43

Additive Schwarz method

Problem

Find uh ∈ Vh such that

Ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

Divide and... add, and solve in parallel.

• Space decomposition:

Vh = V0 + V1 + . . .+ VN .

• Local solution operators Ti : Vh → Vi such that

Ah(Tiui , vi) = Ah(ui , vi) ∀vi ∈ Vi .

43

Additive Schwarz method

Theorem (Divide and... maintain stability)

Let T = T0 + T1 + . . .+ TN . Suppose that the following hold:

Stable decomposition: ∃C > 0 ∃ ui ∈ Vi , u =
∑

i ui∑
i

Ah(ui , ui) ≤ C Ah(u, u) ∀ u ∈ Vh

Strengthened Cauchy–Schwarz ineq.: ∃ 0 ≤ Eij ≤ 1 ∀ 1 ≤ i , j ≤ N

Ah(ui , uj) ≤ Eij ·Ah(ui , ui)
1/2·Ah(uj , uj)

1/2 ∀ ui ∈ Vi , uj ∈ Vj ,

Local stability: ∃ω > 0 ∀ 0 ≤ i ≤ N

Ah(ui , ui) ≤ ω Ah(ui , ui) ∀ ui ∈ Vi

Then

κ(T) ≤ C ω (ρ(E) + 1).

Dryja, Widlund (1990) “Towards a unified theory of domain decomposition

algorithms for elliptic problems”
44

Additive/Multiplicative Schwarz method

30 years of successful applications:

• overlapping domain decomposition

• substructuring domain decomposition

• multigrid

• building block of PETSc parallel linear solvers library

Smith, Bjørstad, Gropp (1996) Domain decomposition
Toselli, Widlund (2005) Domain decomposition methods—algorithms and theory
Mathew (2008) Domain Decomposition Methods for the Numerical Solution of

Partial Differential Equations
Xu (1992) SIAM Rev.
Balay (1995–) PETSc Users Manual

45

ACM Gordon Bell prize 2016

“Chinese Research Team that Employs High Performance

Computing to Understand Weather Patterns Wins 2016 ACM

Gordon Bell Prize”

• World’s fastest supercomputer Sunway TaihuLight, 10M cores

• System of equations with 770,000,000 unknowns

• “In the solver, we propose a highly efficient domain-decomposed

multigrid preconditioner that can greatly accelerate the

convergence rate at the extreme scale. For solving the overlapped

subdomain problems, a geometry-based pipelined incomplete LU

factorization method is designed to further exploit the on-chip

fine-grained concurrency.”

• Additive Schwarz at the core of computation

http://awards.acm.org/bell

46

http://awards.acm.org/bell

ACM Gordon Bell prize 2016

“Chinese Research Team that Employs High Performance

Computing to Understand Weather Patterns Wins 2016 ACM

Gordon Bell Prize”

• World’s fastest supercomputer Sunway TaihuLight, 10M cores

• System of equations with 770,000,000 unknowns

• “In the solver, we propose a highly efficient domain-decomposed

multigrid preconditioner that can greatly accelerate the

convergence rate at the extreme scale. For solving the overlapped

subdomain problems, a geometry-based pipelined incomplete LU

factorization method is designed to further exploit the on-chip

fine-grained concurrency.”

• Additive Schwarz at the core of computation

http://awards.acm.org/bell

46

http://awards.acm.org/bell

ACM Gordon Bell prize 2016

“Chinese Research Team that Employs High Performance

Computing to Understand Weather Patterns Wins 2016 ACM

Gordon Bell Prize”

• World’s fastest supercomputer Sunway TaihuLight, 10M cores

• System of equations with 770,000,000 unknowns

• “In the solver, we propose a highly efficient domain-decomposed

multigrid preconditioner that can greatly accelerate the

convergence rate at the extreme scale. For solving the overlapped

subdomain problems, a geometry-based pipelined incomplete LU

factorization method is designed to further exploit the on-chip

fine-grained concurrency.”

• Additive Schwarz at the core of computation

http://awards.acm.org/bell

46

http://awards.acm.org/bell

ACM Gordon Bell prize 2016

“Chinese Research Team that Employs High Performance

Computing to Understand Weather Patterns Wins 2016 ACM

Gordon Bell Prize”

• World’s fastest supercomputer Sunway TaihuLight, 10M cores

• System of equations with 770,000,000 unknowns

• “In the solver, we propose a highly efficient domain-decomposed

multigrid preconditioner that can greatly accelerate the

convergence rate at the extreme scale. For solving the overlapped

subdomain problems, a geometry-based pipelined incomplete LU

factorization method is designed to further exploit the on-chip

fine-grained concurrency.”

• Additive Schwarz at the core of computation

http://awards.acm.org/bell

46

http://awards.acm.org/bell

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Divide and... aggregate.

Is there no overlap between subdomains? Not really:

Ah(u, v) ≡
∑
κ∈Th

∫
κ

∇u · ∇v dx +

∫
Γ

γp2

h
[u][v] dσ + . . . etc.

47

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Divide and... aggregate.

h

Is there no overlap between subdomains? Not really:

Ah(u, v) ≡
∑
κ∈Th

∫
κ

∇u · ∇v dx +

∫
Γ

γp2

h
[u][v] dσ + . . . etc.

47

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Divide and... aggregate.

Ω1 Ω2

Ω3 Ω4

H

Γ

h

Is there no overlap between subdomains?

Not really:

Ah(u, v) ≡
∑
κ∈Th

∫
κ

∇u · ∇v dx +

∫
Γ

γp2

h
[u][v] dσ + . . . etc.

47

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Divide and... aggregate.

Ω1 Ω2

Ω3 Ω4

H

Γ

h

Is there no overlap between subdomains? Not really:

Ah(u, v) ≡
∑
κ∈Th

∫
κ

∇u · ∇v dx +

∫
Γ

γp2

h
[u][v] dσ + . . . etc.

47

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Divide and... aggregate.

Ω1 Ω2

Ω3 Ω4

H

Γ

h

Is there no overlap between subdomains? Not really:

Ah(u, v) ≡
∑
κ∈Th

∫
κ

∇u · ∇v dx +

∫
Γ

γp2

h
[u][v] dσ + . . . etc.

47

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

48

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

h

48

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

Ω1 Ω2

Ω3 Ω4

H

Γ

h

48

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

K

48

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

Ω i

N subdomains

48

Non–overlapping domain decomposition for DGFEM

V p
h = {v ∈ L2(Ω) : v|κ ∈ Pp(κ) ∀κ ∈ Th}.

Decomposition:

V p
h =

N∑
i=1

Vi

where

Vi = {v ∈ V p
h : v = 0 on Ωj , j 6= i}

Coarse space:

V0 = V q
H, where H ≥ H, q ≤ p.

Divide and... aggregate.

Dn

N subdomains, M coarse

space cells.

48

DGFEM additive Schwarz condition estimate

Theorem

Let T = T0 +
∑N

i=1 Ti be the preconditioned operator. Then

κ(T) = O(
H2

hH
· p2

max{q, 1}
)

Bound independent of discontinuities in the coefficient, extended to

nonconforming meshes and varying polynomial degree.

Antonietti, Houston (2011) J. Sci. Comput.
K. (2016) Num. Meth. PDEs
Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

49

DGFEM additive Schwarz condition estimate

Key condition for the coarse space V0:

Divide and... maintain approximation:

∀u ∈ Vh ∃u0 ∈ V0:

M∑
n=1

(
q2
n

H2
n

‖u − u0‖2
0,Dn

+ ‖u − u0‖2
Dn

)
≤ Const ·Ah(u, u).

Open questions:

• Optimal balance between H and H? p and q?

• How does it depend on the computer architecture?

K. (2016) Num. Meth. PDEs
Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

50

DGFEM additive Schwarz condition estimate

Key condition for the coarse space V0:

Divide and... maintain approximation:

∀u ∈ Vh ∃u0 ∈ V0:

M∑
n=1

(
q2
n

H2
n

‖u − u0‖2
0,Dn

+ ‖u − u0‖2
Dn

)
≤ Const ·Ah(u, u).

Open questions:

• Optimal balance between H and H? p and q?

• How does it depend on the computer architecture?

K. (2016) Num. Meth. PDEs
Antonietti, Houston, Smears (2016) Int. J. Numer. Anal. Model.

50

What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) × 1084 nodes (Cray XC40, at ICM UW)

or...

2560 cores, 1.6 GHz, 8 GB (NVIDIA GTX 1080, in your PC)

51

What kind of parallelism?

(24 cores, 2.6 GHz, 128GB) × 1084 nodes (Cray XC40, at ICM UW)

or...

2560 cores, 1.6 GHz, 8 GB (NVIDIA GTX 1080, in your PC)
51

Extreme parallelism

Suppose subdomain = single finite element.

Then # parallel tasks = # subdomains = # finite elements = N.

Theorem

Let T = T0 +
∑N

i=1 Ti be the preconditioned operator. Then

κ(T) . max
n=1,...,M

{
H2

n

minκ∈Th(Dn) h2
κ

}
.

Bound independent of discontinuities in the coefficient (under certain

assumptions).

Dryja, K. (2015) Num. Math.

52

Extreme parallelism

Suppose subdomain = single finite element.

Then # parallel tasks = # subdomains = # finite elements = N.

Theorem

Let T = T0 +
∑N

i=1 Ti be the preconditioned operator. Then

κ(T) .
H2

h2
.

Bound independent of discontinuities in the coefficient (under certain

assumptions).

Dryja, K. (2015) Num. Math.

52

Splitting equations

Block systems

System with nonsinglar, symmetric 2× 2 block matrix:

L

[
u

p

]
≡

[
A BT

B −C

][
u

p

]
=

[
f

g

]
.

Examples of “natural” block decomposition:

• A > 0, C = 0

• Stokes equations,

• mixed methods for elliptic PDEs,

• A > 0, C < 0

• structured methods for elliptic PDEs:

• A > 0, C > 0

• linear elasticity mixed discretization

• stabilized mixed methods

• A indefinite, C > 0

• time harmonic Maxwell equations

53

Block systems

System with nonsinglar, symmetric 2× 2 block matrix:

L

[
u

p

]
≡

[
A BT

B −C

][
u

p

]
=

[
f

g

]
.

Examples of “natural” block decomposition:

• A > 0, C = 0

• Stokes equations,

• mixed methods for elliptic PDEs,

• A > 0, C < 0

• structured methods for elliptic PDEs:

• A > 0, C > 0

• linear elasticity mixed discretization

• stabilized mixed methods

• A indefinite, C > 0

• time harmonic Maxwell equations

53

A family of preconditioners

For ill-conditioned L, use preconditioner P, and solve iteratively

P−1

[
A BT

B −C

][
u

p

]
= P−1

[
F

G

]

Divide and... follow this decomposition!

P1 =

[
I

c B A−1
0 I

][
A0

S0

][
I d A−1

0 BT

I

]
or

P2 =

[
I d BT S−1

0

I

][
A0

S0

][
I

c S−1
0 B I

]
,

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs
Brown (2012) Intl. Symp. Para. Distr. Comp.

54

A family of preconditioners

For ill-conditioned L, use preconditioner P, and solve iteratively

P−1

[
A BT

B −C

][
u

p

]
= P−1

[
F

G

]

Divide and... follow this decomposition!

P1 =

[
I

c B A−1
0 I

][
A0

S0

][
I d A−1

0 BT

I

]

or

P2 =

[
I d BT S−1

0

I

][
A0

S0

][
I

c S−1
0 B I

]
,

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs
Brown (2012) Intl. Symp. Para. Distr. Comp.

54

A family of preconditioners

For ill-conditioned L, use preconditioner P, and solve iteratively

P−1

[
A BT

B −C

][
u

p

]
= P−1

[
F

G

]

Divide and... follow this decomposition!

P1 =

[
I

c B A−1
0 I

][
A0

S0

][
I d A−1

0 BT

I

]
or

P2 =

[
I d BT S−1

0

I

][
A0

S0

][
I

c S−1
0 B I

]
,

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs
Brown (2012) Intl. Symp. Para. Distr. Comp.

54

A family of preconditioners

For ill-conditioned L, use preconditioner P, and solve iteratively

P−1

[
A BT

B −C

][
u

p

]
= P−1

[
F

G

]

Divide and... follow this decomposition!

P1 =

[
I

c B A−1
0 I

][
A0

S0

][
I d A−1

0 BT

I

]
or

P2 =

[
I d BT S−1

0

I

][
A0

S0

][
I

c S−1
0 B I

]
,

Some implemented in PETSc as PCFIELDSPLIT type preconditioners.

Benzi, Golub, Liesen (2005) Acta Numer.
K. (2011) Efficient preconditioned [...] PDEs
Brown (2012) Intl. Symp. Para. Distr. Comp.

54

Choosing the ingredients: c , d parameters

Type Form of P c d

block-diagonal

[
A0

S0

]
0 0

block-triangular

[
A0

B −S0

]
1 0

block symmetric indefinite

[
A0 BT

B BA−1
0 BT − S0

]
1 1

primal-based penalty

[
A0 − BTS−1

0 B BT

B −S0

]
1 1

55

Choosing the ingredients: A0, S0 preconditioners

Let us define a block diagonal matrix and a norm

J =

[
A0

S0

]
, ‖

[
u

p

]
‖2
J = ‖u‖2

A0
+ ‖p‖2

S0

= uTA0u + pTS0p.

Divide and... keep balance:

stability and continuity

∃m0,m1>0 m0‖x‖J ≤ ‖Lx‖J−1 ≤ m1‖x‖J ∀x ,

mixed continuity ∃b0>0 |pTBu| ≤ b0‖u‖A0 ‖p‖S0 ∀u, ∀p,

inner product definiteness H > 0

spectral equivalence ∃h0,h1>0 h0‖x‖H ≤ ‖x‖J ≤ h1‖x‖H, ∀x .

56

Eigenvalue estimates and PCR convergence

It is known that the convergence speed of PCR iteration depends on

κ =
max |λ(P−1L)|
min |λ(P−1L)|

.

Theorem

If λ is an eigenvalue of P−1L, then

1

2m0(1 + b2
0)
≤ |λ| ≤ 2m1(1 + b2

0).

This has direct implications to preconditioning Stokes equation or certain

multiphysics systems of PDEs.

Klawonn (1998) SIAM J. Sci. Comput.
K. (2011) Numer. Linear Algebra Appl.
Notay (2014) SIAM J. Matrix Anal. & Appl.
Smears (2017) IMA Journal of Numerical Analysis

57

Summing up

Divide and... ?

58

Divide and...

• reconnect wisely

• solve parts in parallel

• keep balance

• maintain stability or approximation

59

Divide and...

• reconnect wisely

• solve parts in parallel

• keep balance

• maintain stability or approximation

59

Divide and...

• reconnect wisely

• solve parts in parallel

• keep balance

• maintain stability or approximation

59

Divide and...

• reconnect wisely

• solve parts in parallel

• keep balance

• maintain stability or approximation

59

Selected active research areas

• preconditioners for nonstandard finite elements

• algorithms for new computer architectures

• communication avoiding parallel methods/preconditioners

• domain decomposition for nonlinear problems

• nonsymmetric/indefinite linear systems

• robust methods for graph Laplacians

60

	Large systems of linear equations: where do they come from?
	Systems with (lots of) structure: finite elements for PDEs
	Solving large sparse systems
	A sidenote: another class of structured sparse matrices
	Domain decomposition for PDEs
	Splitting equations
	Summing up

