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Variance reduced Monte Carlo

• When we price options, with a European payoff ϕ(S1, . . . ,Sn) with expiry T ,
where ϕ is some payoff function and S1, . . . ,Sn (n ≥ 1) are asset prices from
the time interval [0,T ], we end up with a problem of evaluating the expectation
in the pricing formula

Option Price = C ×E [ϕ (S1, . . . ,Sn)] (1)

for some constant C.

• Standard non-simulation numerical techniques to find E [ϕ (S1, . . . ,Sn)] are

a) numerical solution of PDE via finite difference scheme (Cranck-Nickolson,
ADI etc.),

b) numerical inversion of Fourier or Laplace transforms,
c) closed form analytical solution or their approximations,
d) other minor, including recent use of neural networks for decoding model

parameters from market data.

but those might fail for various reasons.

• Method of last resort, but often best → Monte Carlo simulation
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Variance reduced Monte Carlo

• Variance reduction techniques are often used techniques in financial applica-
tions of Monte Carlo methods.

• The goal is to maximize the variance ratio (VR), which is

VR =
Crude MC Sample Variance
Estimator’s Sample Variance

(2)

• In practice, a reduction of Monte Carlo error brings the opportunity to reduce
the actual number of simulations, and still preserve good simulation accuracy
in variance terms, so that we have a computational efficiency gain.

• Many variance reduction techniques are case specific, but some can be im-
plemented for a broad class of cases, including pricing derivatives with quite
general payoffs.

• The joint work (R. Muchorski, A. Daniluk and E. Lakshtanov) provides a new
type of variance reduced Monte Carlo estimator for option pricing, applicable
to any LSV modelling framework.
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Main idea and properties

• The estimator is easy to compute and allows to reduce the Monte Carlo error
even by an order of magnitude, which can be shown in several numerical
examples.

• It is applicable to a broad class of option payoffs with a European exercise
style (possibly multi-asset and path-dependent) and underlying processes (ar-
bitrary pure diffusion, in general).

• The general idea:
1) Given the dynamics of the underlying process, we introduce another, auxiliary

process with simplified dynamics (typically an arithmetic or geometric Brow-
nian motion), for which the payoff and simplified dynamics admit a fast and
easy calculation of the option price as a function of the underlying.

2) Then we consider the option pricing function as if the dynamics of the under-
lying followed this auxiliary process.

3) By setting the original underlying process as an argument to this pricing func-
tion, we construct a process whose terminal value is the option payoff. At the
same time, we explicitly decompose this process into two parts: a martingale
and an integral of a drift, which can be calculated explicitly.
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The pricing problem (a simple example for better intution)

• Let’s consider a simple case with an asset with price St at time t , that
is governed by the SDE

dSt = rSt +θtStdWt (3)

where, for simplicity, we assume some constant short rate, Brownian
motion Wt and some continuous stochastic process θt .

• Suppose we want to price some European payoff φ(ST ) with maturity
T and that the price of the payoff φ(ST ) is directly related to the quan-
tity Eφ(ST ) = EQφ(ST ), where Q is the pricing measure.

• Unfortunately, in our model the quantity Eφ(ST ) doesn’t have a closed
form, analytical expression, so we need to use some suitable numeri-
cal method to calculate an accurate approximation of it.
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Problem simplification (1/2)

• Now the new idea comes into play. Let’s consider a model with an
asset satisfying a simpler form of SDE (e.g. with Black-Scholes dyna-
mics), so that our postulated dynamics is

dSt = rSt +σStdWt (4)

with, this time, a constant volatility σ .

• By denoting Ft as the time t filtration of the probability space, let’s
assume that for the simpler type of dynamics the function π(·) such
that

π(t ,St) = E (φ(ST )|Ft) (5)

is a C2 function of (t ,s).

• Remark: We select the danamics of the simple model such that the
function π(t ,St) has a known closed form expression.
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Problem simplification (2/2)

• We notice that we can call function π(t ,s) as the ’pricing function’ for
the simpler model with the simplified dynamics, since at each time t
the value π(t ,s) is related to the time t price of the payoff in the simpler
model.

• We also assume that the set of values of the process with dynamics
in (3) is a subset of the values of the process with dynamics in (4),
where by ’set of values’ of a process X we understand

{(t ,x) : t ∈ [0,T ],x ∈ Xt(Ω)} (6)

This is needed since we further consider the process π(t ,St), but
where St has dynamics from (3), not (4).

• The idea is to insert the process with dynamics from the original model
to the ’pricing function’ form the simplified model. The process π(t ,St)
is a well defined stochastic process.

• We assume that this process is square integrable so that we don’t
have to consider local martingales any more.
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Dynamics of the pricing function

Next, we write down the Ito formula for process π(t ,St ) with the integration over the
interval [0,T ].

• For the process St with dynamics from (4)

dπ(t ,St ) =
∂π (t ,St )

∂ t
dt +

∂π (t ,St )

∂s
dSt +

1
2

∂ 2π (t ,St )

∂s2 d⟨S⟩t

=

(
∂π (t ,St )

∂ t
+ rSt

∂π (t ,St )

∂s
+

σ2S2
t

2
∂ 2π (t ,St )

∂s2

)
dt +

∂π (t ,St )

∂s
σSt dWt

(7)

• For the process St with dynamics from (3)

dπ(t ,St ) =
∂π (t ,St )

∂ t
dt +

∂π (t ,St )

∂s
dSt +

1
2

∂ 2π (t ,St )

∂s2 d⟨S⟩t

=

(
∂π (t ,St )

∂ t
+ rSt

∂π (t ,St )

∂s
+

θ 2
t S2

t

2
∂ 2π (t ,St )

∂s2

)
dt +

∂π (t ,St )

∂s
θt St dWt

(8)
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1st Observation

• By definition of function π (t ,s) from (5) (with St having the simple dynamics from (4)),
the process π (t ,St ) is a martingale and hence the SDE for this process, expressed in
(7), consist a zero drift, namely

∂π (t ,St )

∂ t
+ rSt

∂π (t ,St )

∂s
+

σ2S2
t

2
∂ 2π (t ,St )

∂s2 = 0 (9)

• Hence, the drift vanishes everywhere, and we also obtain a PDE in the time-state va-
riable space

∂π (t ,s)
∂ t

+ rs
∂π (t ,s)

∂s
+

σ2s2

2
∂ 2π (t ,s)

∂s2 = 0 (t ,s) : t ∈ [0,T ],s ∈ St (Ω) (10)

• Consequently, the function π (t ,s) satisfies such PDE and we use this fact by rewriting
(8) in a simpler form

dπ(t ,St ) =
1
2

∂ 2π (t ,St )

∂s2

(
θ

2
t −σ

2
)

S2
t dt +σSt

∂π(t ,St )

∂s
dWt (11)
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2nd Observation

• Even though we use the pricing function from the simpler model, with St ha-
ving dynamics from the original model from (3), it is true that

π(T ,ST ) = φ(ST ) (12)

• Consequenly, from (12) and (11), we conclude

φ (ST )= π (0,S0)+
1
2

∫ T

0

∂ 2π (t ,St )

∂s2

(
θ

2
t −σ

2
)

S2
t dt+

∫ T

0
σSt

∂π(t ,St )

∂s
dWt

(13)
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3rd Observation

Finally, we apply the expected value to both sides of (13), which leads to

Main Result

Eφ (ST ) = π (0,S0)+
1
2

E
(∫ T

0

∂ 2π (t ,St)

∂s2

(
θ

2
t −σ

2)S2
t dt

)
)

= π (0,S0)+
1
2

∫ T

0
E
(

∂ 2π (t ,St)

∂s2

(
θ

2
t −σ

2)S2
t

)
dt

(14)
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Conclusion: A new MC estimator with good properties

Based on the ’main result’, the proposed Monte Carlo, discrete sample estimator can be
described as

Input with discretely sampled diffusions

St1 (ωk ) ,St2 (ωk ) , . . . ,StM (ωk ) k = 1,2, . . . ,N

θt1 (ωk ) ,θt2 (ωk ) , . . . ,θtM (ωk ) k = 1,2, . . . ,N
(15)

where

• ∆ is the step size,

• tk =∆k (0 = t0,T = M∆) compose the discrete set of simualtion dates,

• ωk corresponds to the simulated path from the k-th simulation (N simulations in total).

Proposed MC estimator

MC Estimator(N,∆) = π(0,S0)+
∆

2N

N

∑
k=1

M−1

∑
l=0

∂π
(
tl ,Stl (ωk )

)
∂s2

(
θtl (ωk )

2 −σ
2
)

Stl (ωk )
2

(16)

Question to the audience: Where does most of the variance reduction come from?
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Extensions to the multidimension case

Following analogical reasoning, by assuming asset-specific SDEs

dSk ,t = rSk ,t dt +θk ,t Sk ,t dWk ,t 1 ≤ k ≤ n (17)

we obtain

E
(
φ
(
0,S1,T , . . . ,Sn,T

))
=φ

(
0,S1,0, . . . ,Sn,0

)
+

1
2

n

∑
i,j=1

∫ T

0
E
(

∂ 2π(t ,S1,t , . . . ,Sn,t )

∂si∂sj

(
θi,t θj,t −σiσj

)
Si,t Sj,t

)
dt

(18)

with the multidimensional analogue of our estimator

MC Estimator(N,∆) = φ
(
0,S1,0, . . . ,Sn,0

)
+

∆

2N

N

∑
k=1

n

∑
i,j=1

M−1

∑
l=0

∂ 2π
(
tl ,S1,tl (ωk ) , . . . ,Sn,tl (ωk )

)
∂si∂sj

(
θi,tl (ωk )θj,tl (ωk )−σiσj

)
Si,tl (ωk )Sj,tl (ωk )

(19)
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Reducing the number of simulation steps via stochastic quadratures

• For brevity, considering the single dimension case, in all practical modelling cases the function

f : (0,T)→ R : f(t) := E
(

∂ 2π (t ,St )

∂s2

(
θ

2
t −σ

2)S2
t

)
(20)

is a bounded C+∞(0,T) function.

• We can approximate the integral over that function with a Gauss-Legendre quadrature (including an
affine change of variables), including a change of variables

∫ T

0
f(t)dt ≈ T

2

L

∑
l=1

wl f(zl)dt (21)

with quadrature weights wl and rescaled nodes zl from [0,T ] (1 ≤ l ≤ L ).

• In terms of the Monte Carlo paths, this translates to a ’stochastic quadrature’ approximation, instead
of the original estimator

SQ MC Estimator(N,∆) =φ (0,S1,0, . . . ,Sn,0)

+
T

4N

N

∑
k=1

n

∑
i,j=1

L

∑
l=1

wl
∂ 2π(zl ,S1,zl (ωk ) , . . . ,Sn,zl (ωk ))

∂si∂sj
Γ(i, j,k , l)

(22)

Γ(i, j,k , l) =
(
θi,zl (ωk )θj,zl (ωk )−σiσj

)
Si,zl (ωk )Sj,zl (ωk ) (23)

which, as we observe in numerical tests, preserves advantageous variance reduction properties,
with only an acceptably small loss of accuracy.
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General Setup

• Let (Ω,F,P) be a filtered probability space with filtration F = (Ft )t∈[0,T ] ,T > 0 and let

W , W̃ be standard R-dimensional (R ≥ 1), F -adapted Wiener processes under P. For
a given random variable Z on Ω we denote Et Z B EP (Z |Ft ). Henceforth, we will also
assume that all expected values which appear in formulas exist.

• Consider a pair of continuous, square-integrable, d-dimensional (R ≤ n) diffusion pro-
cesses

X , X̃ : [0,T ]×Ω→ C ⊂ Rn (24)

where C= (B1,B1)×·· ·× (Bn,Bn) for some −∞ ⩽ Bk < Bk ⩽+∞,k = 1, . . . ,n.

• We assume that X̃ attains each its point of C , i.e. for any t ∈ [0,T ],x ∈ C the density of
X̃t at x is positive. Suppose that X , X̃ are solutions of the SDEs

dXt = µt dt +σt dWt (25)

dX̃t = µ̃
(
t , X̃t

)
dt + σ̃

(
t , X̃t

)
dW̃t (26)

where
σ : [0,T ]×Ω→M(n,R), σ̃ : [0,T ]×Cn →M(n,R) (27)

are respectively some stochastic volatility process and a local volatility function, where
M(n,R) is the space of n×R matrices. Similarly, µ and µ̃ are stochastic drift vectors.
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Extensions to the path-dependent case in the general setup (1/2)

• Consider a path-dependent payoff of the form π∗
(
(Xs)s∈[0,T ]

)
, which is determined

for any continuous path of observed values of process Xt . In practice however, as we
observe the values of the process at discrete dates 0 = T0 < T1 < .. . < Tn = T , we
instead further scrutinize the problem of pricing the discrete-payoff analogue

Z = π
(
XT0 , . . . ,XTn

)
(28)

• As in the European case, we introduce similar variables, however this time defined on
sub-intervals, namely

Z̃t ,k := πk

(
Ỹk ,

(
X̃s

)
s∈[t ,T ]

)
t ∈ [Tk−1,Tk ] (29)

where πk is the payoff observed at time t ∈ [Tk−1,Tk ] and Ỹk =
[
X̃Tj

]
1⩽j<k

is a vector

of discrete values of X̃t , observed until the time t .

Denoised Monte Carlo for option pricing



Extensions to the path-dependent case in the general setup (2/2)

• We notice that Z̃Tk ,k = Z̃Tk ,k+1, since at time Tk the payoffs πk and πk+1 are defined
on the same set of historical and future observations.

• Let’s consider the conditional expectation Et Z̃t ,k

Et Z̃t ,k = E
(
Z̃t ,k |X̃t , Ỹk

)
t ∈ [Tk−1,Tk ], 1 ≤ k ≤ n

• Following analogical reasoning as in the European payoff case, there exist functions

π1, . . . ,πn : R×Rn → R : Et Z̃t ,k = πk
(
t , X̃t ; Ỹk

)
t ∈ [Tk−1,Tk ] (30)

where Ỹk can be viewed as parameters on which the function πk depends on.

• We also make an important observation that

πk (Tk , ·; ỹk )≡ πk+1(Tk , ·; ỹk+1) ỹk = Ỹk (ω), ỹk+1 = Ỹk+1(ω), ω ∈Ω, 1≤ k ≤ n
(31)

which is implied by Z̃Tk ,k = Z̃Tk ,k+1.

• Next, we define for t ∈ [Tk−1,Tk ), k(t) = min(k : t ≤ Tk ) , 1 ≤ k ≤ n

VT = πn
(
T , X̃T

)
, Vt = πk(t)

(
t ,Xt ;Yk(t)

)
(32)

where, similarly, Yk =
[
XTj

]
1⩽j<k

is a vector of discrete values of Xt , observed until the

time t .
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Changing the bump coordinates for gamma sensitivity (1/3)

• Another optimization is possible for payoffs including multiple underlyings (n > 1) and
assuming a special form of the system of SDEs explaining the asset dynamics in (25)-
(26). Namely, if each asset is governed by its own SDE, with Wiener processes that are
correlated for a given constant correlation matrix ρ = [ρij ]i,j=1...d with rank R (1≤R ≤ n),
so that

d⟨W i ,W j⟩t = d⟨W̃ i ,W̃ j⟩t = ρijdt 1 ≤ i, j ≤ R (33)

• Then (25)-(26) can be expressed as

dXt = µt dt +diag(σt )CdWt (34)

dX̃t = µ̃
(
t , X̃t

)
dt +diag(σ̃

(
t , X̃t

)
)CdW̃t (35)

with:

• n×R matrix C = [cjk ]j=1...n,k=1...R , such that CCT = ρ , and
• diagonal matrices diag(σt ),diag(σ̃

(
t , X̃t

)
) with, respectively, volatilities σt , σ̃

(
t , X̃t

)
on the diagonal.
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Changing the bump coordinates for gamma sensitivity (2/3)

• With such simplified dynamics, we can further optimize the calculation of

∂ 2π
(
tl ,S1,tl (ωk ) , . . . ,Sn,tl (ωk )

)
∂si∂sj

(
θi,tl (ωk )θj,tl (ωk )−σiσj

)
Si,tl (ωk )Sj,tl (ωk ) (36)

• At the first glance it may seem that in both cases the associated computational cost is
O(n2), since the formulas involve n×n Hessian matrices. If each Hessian element was
to be calculated using a finite difference method, this would require n2 +n+1 calls of
the pricing function π .

• However, we don’t really need to calculate the whole Hessian, but only some related
quadratic forms, with their alternative expressions, namely

tr
(

σ
T
t γ(t ,x)σt

)
, tr

(
σ̃(t ,x)T

γ(t ,x)σ̃(t ,x)
)

(37)

in the European payoff case, where

γ(t ,x) :=
[

∂ 2π(t ,x)
∂xj∂xk

]
j,k=1,...,n

(38)

• This can be done in linear time O(n) !
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Changing the bump coordinates for gamma sensitivity (3/3)

Lemma

Let f be a real function that is twice differentiable in x ∈ Rn, and let A = diag(c̃)C,
where diag(c̃) is a diagonal matrix with vector c̃ = [c̃1, . . . , c̃n] on the diagonal,
with positive entries. We define the linear mapping

τ(u) : RR → Rn
τ(u) := AuT (39)

where uT is the column vector of the arguments u ∈ Rn of τ . Then for

u(x) = (u1(x), . . . ,uR(x)) : τ(u(x)) = x (40)

holds

∇
2(f ◦ τ)(u(x)) =

R

∑
i=1

∂ 2(f ◦ τ)

∂u2
i

(u(x)) = tr
(

AT
κ(x)A

)
(41)

where

κ(x) :=
[

∂ 2f(x)
∂xj∂xk

]
j,k=1,...,n

(42)
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Numerical Testing (1/3)

• We performed numerical tests to assess the accuracy of approximations, inc-
luding the variance reduction effect.

• We focus on only few examples, which concern pricing results only (e.g. wi-
thout sensitivities).

• For comparison we examined the following types of option payoffs

Description Payoff
Vanilla: European plain vanilla call Z =max(0,XT −K)
Barrier: Down-and-out barrier call (no rebate) Z =max(0,XT −K) ·1mT >H , mT =min0⩽t⩽T Xt

Asian: Asian call (with quarterly averaging) Z =max(0,Xavg −K), Xavg = 1
4T ∑

4T
k=1 Xk/4

Basket: Call on an basket (equally weighted) Z =max(0,Xavg −K), Xavg = 1
10 ∑

10
k=1 X (k)

T

Rainbow: Call on a maximum of 3 assets Z =max(0,Xmax −K), Xmax =maxk=1,2,3 X (k)
T

• For each option type, calculations were done for 2 maturities: T = 1 and T = 5
and for 2 strikes: at-the-money-forward (approximately) and out-of-the-money.
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Numerical Testing (2/3)

• For each options type calculations were performed assuming 2 different underlying dy-
namics, described by Heston and SABR models and parametrized as follows:

Name Dynamics Parameters

Heston
dXt = Xt (rdt +

√
vt dWt )

dvt = κ(θ −vt )dt + γ
√

vt dZt

X0 = 100, r = 0.05
θ = v0,κ = 5,γ = 0.3,ρ =−0.1

SABR dXt = vt X
β

t dWt
dvt = αvt dZ

α = 0.4,β = 0.5,ρ = 0

• In terms of initial values, in all cases we took X0 = 100. In respect of v0 we differen-
tiate between single-asset and multi-asset options. In case of Vanilla, Barrier and Asian
options we took v0 = 0.01 for Heston and σ0 = 2.5 for SABR, respectively. In case of
basket options, we assumed each asset to have a different v0 taking the values:
For Heston:

v0 = 0.0036,0.0049,0.0064,0.0081,0.01,0.0121,0.0144,0.0169,0.0196,0.0225
(43)

For SABR:
v0 = 1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6 (44)
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Numerical Testing (3/3)

• In case of rainbow options we only tested the SABR model, assuming step size ∆t =
0.0002, maturity T = 1 and 3 assets having different v0 values v0 = 2,2.5,3, with equal
correlation across all asset price pairs ρi,j ≡ 0.4 (i , j) and independent stochastic vo-
latility processes.

• As the simplified, tractable dynamics we used either Black-Scholes or Bachelier model,
which in our formalism correspond to σ̃t = σ̃XB

t , where B = 1 for Black-Scholes and
B = 0 for Bachelier. The values of σ̃ were chosen in accordance with the original dyna-
mics, so asset volatilities at the inception coincide σ̃0 = σ0, which is summarized in the
following table:

σ̃0 Black-Scholes Bachelier

Heston
√

v0 100 · √v0
SABR 0.1 ·v0 10 ·v0
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Monte Carlo prices (1/2)

Tabela: PV estimate for various option payoffs and simplified dynamics. Comparison of Crude MC
average over 1,000,000 simulations with our Riemann sum and Gauss-Legendre quadrature methods,
using 5,000 simulations.

Dynamics Payoff Simplified Maturity Strike Crude MC Riemann Legendre Z-score

Heston Vanilla Black-Scholes 1Y 105 4.1317 4.1555 4.1579 1.56
Heston Vanilla Bachelier 1Y 105 4.1293 4.1499 4.1522 1.36
Heston Vanilla Black-Scholes 1Y 112 1.6215 1.6323 1.6356 0.97
Heston Vanilla Bachelier 1Y 112 1.6225 1.6336 1.6327 0.68
Heston Vanilla Black-Scholes 5Y 128 11.5222 11.5450 11.5396 0.57
Heston Vanilla Bachelier 5Y 128 11.5223 11.5513 11.5663 1.43
Heston Vanilla Black-Scholes 5Y 149 4.5438 4.5421 4.5373 -0.25
Heston Vanilla Bachelier 5Y 149 4.5353 4.5607 4.5635 0.78
Heston Asian Bachelier 1Y 103 2.8355 2.8530 2.8523 1.47
Heston Asian Bachelier 1Y 106 1.5900 1.6049 1.6043 1.34
Heston Asian Bachelier 5Y 114 6.3486 6.3651 6.3683 1.06
Heston Asian Bachelier 5Y 129 1.7202 1.7308 1.7331 0.78
Heston Barrier Black-Scholes 1Y 105 3.6048 3.6213 3.6250 1.59
Heston Barrier Black-Scholes 1Y 112 1.4587 1.4709 1.4747 1.24
Heston Barrier Black-Scholes 5Y 128 8.0206 7.9970 7.9949 -1.04
Heston Barrier Black-Scholes 5Y 149 3.4004 3.3735 3.3650 -1.64
Heston Basket Bachelier 1Y 105 2.7273 2.7336 2.7336 1.15
Heston Basket Bachelier 1Y 112 0.5639 0.5678 0.5679 1.23
Heston Basket Bachelier 5Y 128 7.3833 7.3836 7.3849 0.11
Heston Basket Bachelier 5Y 149 1.4158 1.4050 1.4057 -1.03
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Monte Carlo prices (2/2)

Tabela: PV estimate for various option payoffs and simplified dynamics. Comparison of Crude MC
average over 1,000,000 simulations with our Riemann sum and Gauss-Legendre quadrature methods,
using 5,000 simulations.

Dynamics Payoff Simplified Maturity Strike Crude MC Riemann Legendre Z-score

SABR Vanilla Black-Scholes 1Y 100 10.0623 10.1307 10.1308 1.60
SABR Vanilla Bachelier 1Y 100 10.0524 10.1398 10.1419 2.08
SABR Vanilla Black-Scholes 1Y 118 3.9621 3.9872 3.9870 0.66
SABR Vanilla Bachelier 1Y 118 3.9673 3.9877 3.9883 0.55
SABR Vanilla Black-Scholes 5Y 100 22.9696 23.1963 23.1915 0.99
SABR Vanilla Bachelier 5Y 100 22.9937 23.2097 23.2169 0.99
SABR Vanilla Black-Scholes 5Y 146 9.9313 9.9381 9.9620 0.14
SABR Vanilla Bachelier 5Y 146 9.9614 9.9435 9.9269 -0.15
SABR Asian Bachelier 1Y 100 6.8722 6.9142 6.9141 1.88
SABR Asian Bachelier 1Y 108 3.7524 3.7936 3.7924 1.93
SABR Asian Bachelier 5Y 100 13.7470 13.7576 13.7672 0.23
SABR Asian Bachelier 5Y 135 2.8534 2.8121 2.8073 -0.56
SABR Barrier Black-Scholes 1Y 100 7.7704 7.8016 7.8016 1.23
SABR Barrier Black-Scholes 1Y 118 3.2642 3.2857 3.2857 0.72
SABR Barrier Black-Scholes 5Y 100 15.8369 15.8120 15.7985 -0.44
SABR Barrier Black-Scholes 5Y 146 6.5874 6.5224 6.5333 -0.41
SABR Basket Bachelier 1Y 100 7.3148 7.3398 7.3399 1.68
SABR Basket Bachelier 1Y 118 1.8283 1.8357 1.8358 0.71
SABR Basket Bachelier 5Y 100 16.1575 16.1202 16.1218 -0.61
SABR Basket Bachelier 5Y 146 4.2730 4.2318 4.2412 -0.51
SABR Rainbow Black-Scholes 1Y 100 20.3989 20.4451 20.4297 0.54
SABR Rainbow Black-Scholes 1Y 118 9.5983 9.6501 9.6216 0.43
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Monte Carlo errors (1/2)

Tabela: Standard error of PV estimate and variance reduction ratio. Comparison of Crude MC and our
Gauss-Legendre quadrature method for 5,000 simulations.

Dynamics Payoff Simplified Maturity Strike Crude MC Legendre Variance Ratio

Heston Vanilla Black-Scholes 1Y 105 0.0914 0.0154 35.1
Heston Vanilla Bachelier 1Y 105 0.0915 0.0155 34.7
Heston Vanilla Black-Scholes 1Y 112 0.0602 0.0139 18.6
Heston Vanilla Bachelier 1Y 112 0.0602 0.0143 17.7
Heston Vanilla Black-Scholes 5Y 128 0.2700 0.0240 126.4
Heston Vanilla Bachelier 5Y 128 0.2697 0.0240 126.1
Heston Vanilla Black-Scholes 5Y 149 0.1776 0.0229 60.2
Heston Vanilla Bachelier 5Y 149 0.1772 0.0337 27.6
Heston Asian Bachelier 1Y 103 0.0613 0.0105 33.8
Heston Asian Bachelier 1Y 106 0.0475 0.0101 22.0
Heston Asian Bachelier 5Y 114 0.1430 0.0155 84.6
Heston Asian Bachelier 5Y 129 0.0781 0.0156 25.0
Heston Barrier Black-Scholes 1Y 105 0.0890 0.0110 65.8
Heston Barrier Black-Scholes 1Y 112 0.0578 0.0123 22.1
Heston Barrier Black-Scholes 5Y 128 0.2482 0.0175 200.2
Heston Barrier Black-Scholes 5Y 149 0.1596 0.0184 74.9
Heston Basket Bachelier 1Y 105 0.0573 0.0036 249.9
Heston Basket Bachelier 1Y 112 0.0261 0.0026 97.2
Heston Basket Bachelier 5Y 128 0.1626 0.0068 579.7
Heston Basket Bachelier 5Y 149 0.0723 0.0084 74.4
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Monte Carlo errors (2/2)

Tabela: Standard error of PV estimate and variance reduction ratio. Comparison of Crude MC and our
Gauss-Legendre quadrature method for 5,000 simulations.

Dynamics Payoff Simplified Maturity Strike Crude MC Legendre Variance Ratio

SABR Vanilla Black-Scholes 1Y 100 0.2342 0.0395 35.2
SABR Vanilla Bachelier 1Y 100 0.2343 0.0398 34.6
SABR Vanilla Black-Scholes 1Y 118 0.1557 0.0358 18.9
SABR Vanilla Bachelier 1Y 118 0.1557 0.0366 18.1
SABR Vanilla Black-Scholes 5Y 100 0.7679 0.2172 12.5
SABR Vanilla Bachelier 5Y 100 0.7712 0.2197 12.3
SABR Vanilla Black-Scholes 5Y 146 0.6262 0.2129 8.7
SABR Vanilla Bachelier 5Y 146 0.6299 0.2316 7.4
SABR Asian Bachelier 1Y 100 0.1536 0.0194 62.5
SABR Asian Bachelier 1Y 108 0.1166 0.0191 37.4
SABR Asian Bachelier 5Y 100 0.3658 0.0832 19.3
SABR Asian Bachelier 5Y 135 0.2072 0.0817 6.4
SABR Barrier Black-Scholes 1Y 100 0.2212 0.0199 123.9
SABR Barrier Black-Scholes 1Y 118 0.1443 0.0282 26.2
SABR Barrier Black-Scholes 5Y 100 0.6022 0.0760 62.7
SABR Barrier Black-Scholes 5Y 146 0.4593 0.1278 12.9
SABR Basket Bachelier 1Y 100 0.1618 0.0096 285.1
SABR Basket Bachelier 1Y 118 0.0822 0.0089 84.5
SABR Basket Bachelier 5Y 100 0.4215 0.0498 71.5
SABR Basket Bachelier 5Y 146 0.2452 0.0602 16.6
SABR Rainbow Black-Scholes 1Y 100 0.3154 0.0546 33.4
SABR Rainbow Black-Scholes 1Y 118 0.2442 0.0515 22.5
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