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Warm-up

Warm-up (introduction to local search):
1 Maximum matching - toy example.
2 Local search for maximum matching.
3 Analysis.
4 Terminology.
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Maximum Matching

Maximum Matching

Input: an undirected graph G = (V ,E ).
Goal: find a maximum size vertex disjoint subset M ⊆ E .
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Maximum Matching

Maximum matching can be found in polynomial time.

As a toy example, consider the following routine.

Initialize M = ∅.
As long as possible improve M by applying one of the rules:

Rule 1: M = M ∪ {e1}
Rule 2: M = (M \ {e1}) ∪ {e2, e3}
Rule 3: M = (M \ {e1, e2}) ∪ {e3, e4, e5}
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Simulation

Rule 1: M = M ∪ {e1}
Rule 2: M = (M \ {e1}) ∪ {e2, e3}
Rule 3: M = (M \ {e1, e2}) ∪ {e3, e4, e5}
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Analysis

Union of ALG( ) and OPT( ) is a set of paths and even cycles

good

good
good

excluded by R1
excluded by R2

excluded by R3
ratio 4/3

R1: M = M ∪ {e1}
R2: M = (M \ {e1}) ∪ {e2, e3}
R3: M = (M\{e1, e2})∪{e3, e4, e5}
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Union of ALG( ) and OPT( ) is a set of paths and even cycles

good

good
good

excluded by R1
excluded by R2

excluded by R3
ratio 4/3

R1: M = M ∪ {e1}
R2: M = (M \ {e1}) ∪ {e2, e3}
R3: M = (M\{e1, e2})∪{e3, e4, e5}

{R1} gives 2-apx

{R1,R2} gives 3/2-apx

{R1,R2,R3} gives 4/3-apx
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Terminology

Local search: small changes in each step.

Hill climbing: local search with improving moves only.

Observation
For hill climbing: the larger the neighbourhood, the better local
optima, but the longer it takes to explore possible moves.
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Local search in approximation

Local search (hill climbing) has been used to derive approximation
algorithms for a few problems, such as:

k-Median,

k-Means,

Capacitated Facility Location,

k-Set Packing.
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Outline

1 k-Set Packing
2 p-Local search
3 Local optima analysis
4 Making local search faster
5 (Strenghtened) LP
6 Weighted k-Set Packing
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k-Set Packing

k-Set Packing (k-SP)

Input: a family F ⊆ 2U of sets of size at most k .
Goal: find a maximum size subfamily of F of pairwise disjoint sets.

By n we denote the number of elements of U .
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Hardness

k-Set Packing is NP-hard (among 21 problems of Karp).

3-SP is 98/97− ε hard to approximate
[Berman and Karpinski 2003].

For k-SP there is no O(k/ log k)-approximation
[Hazan et al. 2003].

α-approximation, α  1

α-approximation algorithm finds A ⊆ F of size at least |OPT |/α.
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Local search for k-SP

p-local search for k-Set Packing

Set A = ∅.
While there exists X ⊆ F \ A such that:

|X | ¬ p,

sets in X are disjoint,

|X | > |Y |, where Y = {S ∈ A : S ∩ (
⋃

X ) 6= ∅}.
do A := (A \ Y ) ∪ X .

We call such X an improving set.
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Local search for k-SP

1-local search:
A := A ∪ {S}
2-local search:
A := A ∪ {S}
A := (A \ {S1}) ∪ {S2, S3}
3-local search:
A := A ∪ {S}
A := (A \ {S1}) ∪ {S2, S3}
A := (A \ {S1, S2}) ∪ {S3, S4, S5}
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History of p-local search analysis

Upper bounds for approximation ratio of p-local search for k-SP

author p apx ratio
folklore 1 k
folklore 2 (k + 1)/2
Hurkens and Schrijver’89 O(1) (k + ε)/2
Halldórsson’95 O(log n) (k + 2)/3
C., Grandoni, Mastrolili’13 O(log n) (k + 1 + ε)/3

Consequences

(k + ε)/2-apx in poly time, (k + 1 + ε)/3-apx in quasipoly time.
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History of p-local search analysis

Upper bounds for approximation ratio of p-local search for k-SP

author p apx ratio
folklore 1 k
folklore 2 (k + 1)/2
Hurkens and Schrijver’89 O(1) (k + ε)/2
Halldórsson’95 O(log n) (k + 2)/3
C., Grandoni, Mastrolili’13 O(log n) (k + 1 + ε)/3

Lower bounds:

Sviridenko and Ward’13 Ω(n) k/3
Fürer and Yu’14 Ω(n1/5) (k + 1)/3
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Local optima analysis
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Conflict graph

Recall that A ⊆ F is the current solution.
We define a bipartite graph called a conflict graph.

X

N(X )

F \ A

A

We want X ⊆ F \ A such sets in X are disjoint and |N(X )| < |X |.
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2-Opt Analysis

author p apx ratio
folklore 1 k
folklore 2 (k + 1)/2
Hurkens and Schrijver’89 O(1) (k + ε)/2
Halldórsson’95 O(log n) (k + 2)/3
C., Grandoni, Mastrolili’13 O(log n) (k + 1 + ε)/3

A := A ∪ {S}
A := (A \ {S1}) ∪ {S2, S3}
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2-Opt Analysis

Let A be a 2-local search maximum.
W.l.o.g. assume that OPT ∩ A = ∅.
Partition OPT = O1 ] O2+ w.r.t. degrees in the subgraph of the
conflict graph induced by A ∪ OPT .

O1 O2+
OPT

A

|O1|+ 2|O2+| ¬ |E | ¬ k |A|
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2-Opt Analysis

Observation
Two vertices of O1 cannot be adjacent to the same vertex of A, as
they would form an improving set, hence |O1| ¬ |A|.

∈ O1 ∈ O1

A
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2-Opt Analysis

Summing

|O1|+ 2|O2+| ¬ k |A|
|O1| ¬ |A|

we get
2|OPT | = 2|O1|+ 2|O2+| ¬ (k + 1)|A|

and consequently 2-opt is a (k + 1)/2-approximation.
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Analysis of Halldórsson

author p apx ratio
folklore 1 k
folklore 2 (k + 1)/2
Hurkens and Schrijver’89 O(1) (k + ε)/2
Halldórsson’95 O(log n) (k + 2)/3
C., Grandoni, Mastrolili’13 O(log n) (k + 1 + ε)/3
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Analysis of Halldórsson

Define OPT = O1 ] O2 ] O3+ w.r.t. degrees in the subgraph of
the conflict graph induced by A ∪ OPT .

O1 O2 O3+
OPT

A
|O1|+ 2|O2|+ 3|O3+| ¬ |E | ¬ k |A|
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Analysis of Halldórsson

Halldórsson’95
If |O1|+ |O2| > (1 + ε)|A|, there is an improving set of size c log n.

Proof idea:

O1 ∪ O2

A A

Lemma
In a graph with |E |/|V |  1 + ε there is a cycle of length ¬ cε log |V |.
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Summing inequalities

Count the number of edges of the conflict graph from both sides.

|O1|+ 2|O2|+ 3|O3+| ¬ |E | ¬ k |A|

Summing up with
|O1|+ |O2| ¬ (1 + ε)|A|

|O1|+ |O2| ¬ (1 + ε)|A|

gives

OPT ¬ (k + 2 + ε)|A|
3
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Making local search faster
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First try

It was known that in quasipolynomial time one can get better
approximation ratios.

Can we run O(log n)-local search in poly time?

It would be ideal to have an algorithm finding an improving set
of size p in cppoly(n) (if it exists).

C.’13
Finding an improving set of size at most p is W [1]-hard, i.e. no
f (p)poly(n) time algorithm.
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Second try

As it is impossible to look for all possible improving sets of size
O(log n) in poly time, perhaps we can use a different strategy:

Strategy
1 Inspect what kind of improving sets are sufficient for an

approximation algorithm.
2 Show that we can find those efficiently.
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What is the structure of the used improving sets?

Halldórsson’95
If |O1|+ |O2| > (1 + ε)|A|, then there exists an improving set
X ⊆ F \ A of O(log n) size such that G [N[X ]] is a subdivision of
one of the following graphs.

Sviridenko, Ward’13
Polynomial time (k + 2)/3-approximation for k-Set Packing.

C.’13
Polynomial time (k + 1 + ε)/3-approximation for k-Set Packing.
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(Strenghtened)
Linear Programming
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LP

maximize:
∑
S∈F

xS

subject to:
∑
S3u

xS ¬ 1 ∀u∈U

xS  0 ∀S∈F

u

¬ 1
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LP

Füredi 81
Integrality gap of the LP is k − 1 + 1/k .

Chan and Lau’10

1. Sherali-Adams level n/k3 has gap  k − 2.
2. LP + clique constraints has gap ¬ (k + 1)/2.

Consequently Lasserre level 1 has gap ¬ (k + 1)/2.
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LP

Integrality gap example for k = 3 (Fano plane).

∀S xS = 1/3∑
S xS = 7/3

OPT=1

gap=7/3=k-1+1/k
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Strenghtened LP

maximize:
∑
S∈F

xS

subject to:
∑
S3u

xS ¬ 1 ∀u∈U∑
S∈C

xS ¬ 1 ∀clique C

xS  0 ∀S∈F

Three different ways of dealing with clique constraints:
compact representation, Lovász θ-function, Lasserre level 1.
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Strenghtened LP

F1 F2+

F

2-OPT

x(F1) ¬ |OPT |

x(F1) + x(F2) ¬ k |OPT | ⇒ ∑
S xS ¬ (k+1)|OPT |

2
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Strenghtened LP

∑
S xS ¬ (k+1)|OPT |

2

2-OPT OPT Clique-LPLassere(1)

¬ (k + 1)/2
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Strenghtened LP

Open problem

Is there a rounding algorithm for gap (k + 1)/2?

Open problem

Is there strenghtened LP with integrality gap at most (k + c)/3?
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Weighted k-Set Packing
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Weighted Set Packing

Weighted k-Set Packing

Input: family F ⊆ 2U of sets of size at most k ,
weight function ω : F → R+.

Goal: find a maximum weight subfamily of F of pairwise disjoint sets.

Berman’00

(k + 1 + ε)/2-approximation, nO(k) time.

Interesting aspect of Berman’s algorithm, optimize
∑
S w 2(S).

Prusak’16: improved running time to 2O(k
2)nO(1).

Open problem: is there (k + c)/3-apx?
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Motivation

Why is understanding local search algorithms important?

Comparing (even experimentally) local search heuristics is non-trivial.

Parameter tuning.

Method variants.

Tailor made data structures.

Without proper understanding the problem solving
process becomes merely an intuition guided random walk.
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Questions

Thank you for your attention!
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