Approximation Algorithms for the k-Set Packing Problem

Marek Cygan

Institute of Informatics University of Warsaw

20th October 2016, Warszawa

Warm-up (introduction to local search):

- Maximum matching toy example.
- 2 Local search for maximum matching.
- Analysis.
- Terminology.

Maximum Matching

Maximum Matching

Input: an undirected graph G = (V, E). **Goal**: find a maximum size vertex disjoint subset $M \subseteq E$.

- Maximum matching can be found in polynomial time.
- As a toy example, consider the following routine.
- Initialize $M = \emptyset$.
- As long as possible improve *M* by applying one of the rules:

Rule 1: $M = M \cup \{e_1\}$ Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$ Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Rule 1:
$$M = M \cup \{e_1\}$$

Rule 2: $M = (M \setminus \{e_1\}) \cup \{e_2, e_3\}$
Rule 3: $M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$

Analysis

$$R_1: M = M \cup \{e_1\} \\ R_2: M = (M \setminus \{e_1\}) \cup \{e_2, e_3\} \\ R_3: M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\}$$

Marek Cygan

Approximation Algorithms for the k-Set Packing Problem

Analysis

$$\begin{array}{l} R_1: \ M = M \cup \{e_1\} \\ R_2: \ M = (M \setminus \{e_1\}) \cup \{e_2, e_3\} \\ R_3: \ M = (M \setminus \{e_1, e_2\}) \cup \{e_3, e_4, e_5\} \end{array} \begin{array}{l} \bullet \ \{R_1\} \ \text{gives } 2\text{-apx} \\ \bullet \ \{R_1, R_2\} \ \text{gives } 3/2\text{-apx} \\ \bullet \ \{R_1, R_2, R_3\} \ \text{gives } 4/3\text{-apx} \end{array}$$

Marek Cygan

Approximation Algorithms for the k-Set Packing Problem

- Local search: small changes in each step.
- Hill climbing: local search with improving moves only.

Observation

For hill climbing: the larger the neighbourhood, the better local optima, but the longer it takes to explore possible moves.

Local search (hill climbing) has been used to derive approximation algorithms for a few problems, such as:

- k-Median,
- k-Means,
- Capacitated Facility Location,
- k-Set Packing.

Outline

- k-Set Packing
- P-Local search
- Iccal optima analysis
- Making local search faster
- Strenghtened) LP
- Weighted k-Set Packing

k-Set Packing

k-Set Packing (k-SP)

Input: a family $\mathcal{F} \subseteq 2^U$ of sets of size at most k. **Goal**: find a maximum size subfamily of \mathcal{F} of pairwise disjoint sets.

By n we denote the number of elements of U.

- *k*-SET PACKING is NP-hard (among 21 problems of Karp).
- 3-SP is $98/97 \epsilon$ hard to approximate [Berman and Karpinski 2003].
- For k-SP there is no O(k/log k)-approximation [Hazan et al. 2003].

α -approximation, $\alpha \ge 1$

 α -approximation algorithm finds $\mathcal{A} \subseteq \mathcal{F}$ of size at least $|OPT|/\alpha$.

Local search for k-SP

p-local search for k-SET PACKING

Set $\mathcal{A} = \emptyset$.

While there exists $X \subseteq \mathcal{F} \setminus \mathcal{A}$ such that:

•
$$|X| \leq p$$
,

• sets in X are disjoint,

•
$$|X| > |Y|$$
, where $Y = \{S \in \mathcal{A} : S \cap (\bigcup X) \neq \emptyset\}$.

do $\mathcal{A} := (\mathcal{A} \setminus Y) \cup X$.

We call such X an *improving set*.

Local search for k-SP

- 1-local search: $\mathcal{A} := \mathcal{A} \cup \{S\}$
- 2-local search: $\mathcal{A} := \mathcal{A} \cup \{S\}$ $\mathcal{A} := (\mathcal{A} \setminus \{S_1\}) \cup \{S_2, S_3\}$
- 3-local search:

$$\begin{split} \mathcal{A} &:= \mathcal{A} \cup \{S\} \\ \mathcal{A} &:= (\mathcal{A} \setminus \{S_1\}) \cup \{S_2, S_3\} \\ \mathcal{A} &:= (\mathcal{A} \setminus \{S_1, S_2\}) \cup \{S_3, S_4, S_5\} \end{split}$$

History of *p*-local search analysis

Upper bounds for approximation ratio of p-local search for k-SP

author	р	apx ratio
folklore	1	k
folklore	2	(k+1)/2
Hurkens and Schrijver'89	$\mathcal{O}(1)$	$(k+\epsilon)/2$
Halldórsson'95	$\mathcal{O}(\log n)$	(k+2)/3
C., Grandoni, Mastrolili'13	$\mathcal{O}(\log n)$	$(k+1+\epsilon)/3$

Consequences

 $(k+\epsilon)/2$ -apx in poly time, $(k+1+\epsilon)/3$ -apx in quasipoly time.

History of *p*-local search analysis

Upper bounds for approximation ratio of p-local search for k-SP

author	р	apx ratio
folklore	1	k
folklore	2	(k+1)/2
Hurkens and Schrijver'89	$\mathcal{O}(1)$	$(k+\epsilon)/2$
Halldórsson'95	$\mathcal{O}(\log n)$	(k+2)/3
C., Grandoni, Mastrolili'13	$\mathcal{O}(\log n)$	$(k+1+\epsilon)/3$

Lower bounds:

Sviridenko and Ward'13	$\Omega(n)$	k/3
Fürer and Yu'14	$\Omega(n^{1/5})$	(k+1)/3

Local optima analysis

Conflict graph

Recall that $\mathcal{A} \subseteq \mathcal{F}$ is the current solution. We define a bipartite graph called a *conflict graph*.

We want $X \subseteq \mathcal{F} \setminus \mathcal{A}$ such sets in X are disjoint and |N(X)| < |X|.

author	р	apx ratio
folklore	1	k
folklore	2	(k+1)/2
Hurkens and Schrijver'89	$\mathcal{O}(1)$	$(k+\epsilon)/2$
Halldórsson'95	$\mathcal{O}(\log n)$	(k+2)/3
C., Grandoni, Mastrolili'13	$\mathcal{O}(\log n)$	$(k+1+\epsilon)/3$

$$egin{aligned} \mathcal{A} &:= \mathcal{A} \cup \{\mathcal{S}\} \ \mathcal{A} &:= ig(\mathcal{A} \setminus \{\mathcal{S}_1\}ig) \cup \{\mathcal{S}_2, \mathcal{S}_3\} \end{aligned}$$

- Let \mathcal{A} be a 2-local search maximum.
- W.I.o.g. assume that $OPT \cap \mathcal{A} = \emptyset$.
- Partition OPT = O₁ ⊎ O₂₊ w.r.t. degrees in the subgraph of the conflict graph induced by A ∪ OPT.

Observation

Two vertices of O_1 cannot be adjacent to the same vertex of A, as they would form an improving set, hence $|O_1| \leq |A|$.

Summing

$$\begin{aligned} |O_1| + 2|O_{2+}| &\leq k|A| \\ |O_1| &\leq |A| \end{aligned}$$

we get

$$2|OPT| = 2|O_1| + 2|O_{2+}| \leq (k+1)|A|$$

and consequently 2-opt is a (k + 1)/2-approximation.

Analysis of Halldórsson

author	р	apx ratio
folklore	1	k
folklore	2	(k+1)/2
Hurkens and Schrijver'89	$\mathcal{O}(1)$	$(k+\epsilon)/2$
Halldórsson'95	$\mathcal{O}(\log n)$	(k+2)/3
C., Grandoni, Mastrolili'13	$\mathcal{O}(\log n)$	$(k+1+\epsilon)/3$

Analysis of Halldórsson

 Define OPT = O₁ ⊎ O₂ ⊎ O₃₊ w.r.t. degrees in the subgraph of the conflict graph induced by A ∪ OPT.

Analysis of Halldórsson

Halldórsson'95

If $|O_1| + |O_2| > (1 + \epsilon)|A|$, there is an improving set of size $c \log n$.

Proof idea:

Lemma

In a graph with $|E|/|V| \ge 1 + \epsilon$ there is a cycle of length $\le c_{\epsilon} \log |V|$.

Count the number of edges of the conflict graph from both sides.

$$|O_1| + 2|O_2| + 3|O_{3+}| \le |E| \le k|A|$$

Summing up with

$$\begin{aligned} |O_1| + |O_2| \leqslant (1+\epsilon)|A| \\ |O_1| + |O_2| \leqslant (1+\epsilon)|A| \end{aligned}$$

gives

$$OPT \leqslant rac{(k+2+\epsilon)|A|}{3}$$

Making local search faster

Marek Cygan Approximation Algorithms for the k-Set Packing Problem

- It was known that in quasipolynomial time one can get better approximation ratios.
- Can we run $\mathcal{O}(\log n)$ -local search in poly time?
- It would be ideal to have an algorithm finding an improving set of size p in c^ppoly(n) (if it exists).

C.'13

Finding an improving set of size at most p is W[1]-hard, i.e. no f(p)poly(n) time algorithm.

As it is impossible to look for **all** possible improving sets of size $O(\log n)$ in poly time, perhaps we can use a different strategy:

Strategy

- Inspect what kind of improving sets are sufficient for an approximation algorithm.
- Show that we can find those efficiently.

What is the structure of the used improving sets?

Halldórsson'95

If $|O_1| + |O_2| > (1 + \epsilon)|A|$, then there exists an improving set $X \subseteq \mathcal{F} \setminus \mathcal{A}$ of $\mathcal{O}(\log n)$ size such that G[N[X]] is a subdivision of one of the following graphs.

Sviridenko, Ward'13

Polynomial time (k + 2)/3-approximation for k-Set Packing.

C.'13

Polynomial time $(k + 1 + \epsilon)/3$ -approximation for k-Set Packing.

(Strenghtened) Linear Programming

Füredi 81

Integrality gap of the LP is k - 1 + 1/k.

Chan and Lau'10

- 1. Sherali-Adams level n/k^3 has gap $\ge k 2$.
- 2. LP + clique constraints has gap $\leq (k+1)/2$.

Consequently Lasserre level 1 has gap $\leq (k+1)/2$.

Integrality gap example for k = 3 (Fano plane).

$$\forall_{s} x_{s} = 1/3$$

 $\sum_{s} x_{s} = 7/3$
OPT=1
gap=7/3=k-1+1/k

Three different ways of dealing with clique constraints: compact representation, Lovász θ -function, Lasserre level 1.

$$\begin{aligned} x(\mathcal{F}_1) &\leq |OPT| \\ x(\mathcal{F}_1) + x(\mathcal{F}_2) &\leq k|OPT| \qquad \Rightarrow \quad \sum_S x_S &\leq \frac{(k+1)|OPT|}{2} \end{aligned}$$

$$\sum_{S} x_{S} \leq \frac{(k+1)|OPT|}{2}$$

Open problem

Is there a rounding algorithm for gap (k+1)/2?

Open problem

Is there strenghtened LP with integrality gap at most (k + c)/3?

Weighted k-Set Packing

Weighted Set Packing

Weighted *k*-SET PACKING

Input: family $\mathcal{F} \subseteq 2^U$ of sets of size at most k, weight function $\omega : \mathcal{F} \to \mathbb{R}_+$. **Goal**: find a maximum weight subfamily of \mathcal{F} of pairwise disjoint sets.

Berman'00

 $(k+1+\epsilon)/2$ -approximation, $n^{\mathcal{O}(k)}$ time.

- Interesting aspect of Berman's algorithm, optimize $\sum_{S} w^2(S)$.
- Prusak'16: improved running time to $2^{\mathcal{O}(k^2)}n^{\mathcal{O}(1)}$.
- Open problem: is there (k + c)/3-apx?

Why is understanding local search algorithms important?

Comparing (even experimentally) local search heuristics is non-trivial.

- Parameter tuning.
- Method variants.
- Tailor made data structures.

Without proper understanding the problem solving process becomes merely an intuition guided random walk.

Thank you for your attention!