An Arithmetic Inverse Result for Matrix Groups

Daniel Smertnig

(University of Ljubljana & IMFM)

based on joint work with Antoni Puch (U Warsaw)

arXiv:2410.03444

Warsaw Algebra Seminar, November 27, 2025

(Fake) Motivation

Burnside problem (1902)

Is every finitely generated torsion group finite?

No! (Golod-Shafarevitch 1964)

Let K be a field.

Theorem (Burnside-Schur)

Every finitely generated torsion subgroup $G \leq GL_d(K)$ is finite.

Also true for f.g. periodic subsemigroups of $K^{d\times d}$.

(Fake) Motivation

Theorem (Burnside–Schur)

Every finitely generated torsion subgroup $G \leq GL_d(K)$ is finite.

Let
$$K = \overline{K}$$
, e.g. $K = \mathbb{C}$ or $K = \overline{\mathbb{Q}}$.

Let the spectrum $\sigma(G)$ be the set of all eigenvalues of all matrices in G.

- ▶ G torsion implies that $\sigma(G)$ consists of roots of unity, so $|\sigma(G)| < \infty$ (using f.g.).
- ▶ Converse? Suppose G is irreducible (no proper G-invariant subspace of K^d). Then there exists a K-basis $A_1, \ldots, A_{d^2} \in G$ of $K^{d \times d}$, and

$$\varphi: K^{d \times d} \to K^{d^2}, \quad X \mapsto (\operatorname{Tr}(XA_1), \dots, \operatorname{Tr}(XA_{d^2}))$$

is a vector space isomorphism.

Since
$$\varphi(G) \subseteq (\underbrace{\sigma(G) + \dots + \sigma(G)}_{d \text{ times}})^{d^2}$$
, the group G is finite.

(Fake) Motivation

Proposition

Let $K = \overline{K}$ and $G \leq \operatorname{GL}_d(K)$ be finitely generated.

- 1. If G is irreducible, then $|\sigma(G)| < \infty \Leftrightarrow |G| < \infty$.
- 2. $|\sigma(G)| < \infty$ if and only if there exists $T \in \mathrm{GL}_d(K)$ such that there is a block-structure

$$TGT^{-1} = \begin{bmatrix} G_1 & * & \cdots & * \\ 0 & G_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & G_r \end{bmatrix}$$

with finite groups G_i . ("G is tame").

Weakening the restriction on $\sigma(G)$

Definition

Let $G \leq \operatorname{GL}_d(K)$. The spectrum $\sigma(G)$ is finitely generated (equivalently, satisfies the Pólya property) if there exists a finitely generated subgroup $\Gamma \leq \overline{K}^{\times}$ such that

$$\sigma(G) \subseteq \Gamma$$
.

Lemma

If K = K and G is irreducible with f.g. spectrum, then there exists $M \ge 0$, f.g. $\Gamma \le K^{\times}$ such that

$$G \subseteq (M \cdot \Gamma_0)^{d \times d} \qquad \text{with} \qquad \Gamma_0 \coloneqq \Gamma \cup \{0\}, \quad M \cdot \Gamma_0 = \underbrace{\Gamma_0 + \dots + \Gamma_0}_{M \text{ times}}.$$

If $G \subseteq (M \cdot \Gamma_0)^{d \times d}$ (for some Γ , M), then G has the Bézivin property.

Examples

Bézivin groups $(G \subseteq (M \cdot \Gamma_0)^{d \times d})$:

- ▶ Finite groups.
- Finitely generated groups of monomial matrices.
- ▶ The Bézivin property is closed under conjugation $(M, \Gamma \text{ may change})$.
- ▶ If G is Bézivin and $V \subseteq K^d$ is G-invariant, the induced $G|_V \le \operatorname{GL}(V)$ and $\overline{G} \le \operatorname{GL}(K^d/V)$ are Bézivin,

$$\begin{bmatrix} G_V & * \\ 0 & \overline{G} \end{bmatrix}.$$

▶ G is Bézivin if the representation $j: G \hookrightarrow \operatorname{GL}_d(K)$ is the epimorphic image of a monomial representation.

$$GL(V)$$

$$\varphi \qquad \qquad \downarrow_{\pi}$$

$$G \xrightarrow{j} GL_d(K)$$

$$(\pi: V \twoheadrightarrow K^d \text{ such that } \pi(Av) = A\pi(v) \text{ for } A \in G, v \in V)$$

Examples

Finitely generated spectrum:

- block-triangular groups with diagonal blocks from the previous list, e.g.,
- block-triangular groups with monomial diagonal blocks.
- closed under conjugation, epimorphic images.

Aside: Submultiplicative Spectrum

Definition

A semigroup $S \subseteq K^{d \times d}$ has submultiplicative spectrum if $\sigma(AB) \subseteq \sigma(A)\sigma(B)$ for A, $B \in S$ (Lambrou–Longstaff–Radjavi '92).

- lacktriangleright A finitely generated S with submultiplicative spectrum has finitely generated spectrum.
- ▶ Submultiplicative spectrum is much more restrictive.

Theorem (Radjabalipour–Radjavi '99, Radjavi '00)

If $S \subseteq \mathbb{C}^{d \times d}$ is irreducible and has submultiplicative spectrum, then there is a finite nilpotent group $G \leq \mathrm{GL}_d(\mathbb{C})$ such that, up to conjugation,

$$\mathbb{C}S = \mathbb{C}G.$$

Kramar '04, '05, '06; Grunenfelder-Košir-Omladič-Radjavi '12

The problem

Problem

- (I) Which matrix groups are Bézivin? $(G\subseteq (M\cdot \Gamma_0)^{d\times d} \text{ with } M\geq 0, \ \Gamma\leq K^\times \text{ finitely generated})$
- (II) Which matrix groups have finitely generated spectrum? $(\sigma(G) \subseteq \Gamma \text{ with } \Gamma \leq \overline{K}^{\times} \text{ finitely generated})$

Main Results

Reminder: G being Bézivin means $G \subseteq (M \cdot \Gamma_0^{d \times d})$.

Theorem (Puch-S. '24)

Let $K = \overline{K}$ and $G \leq GL_d(K)$ finitely generated. The following are equivalent.

- (a) G is Bézivin.
- (b) $G \hookrightarrow GL_d(K)$ is an epimorphic image of a monomial representation of G.
- (c) G is virtually simultaneously diagonalizable.

Similar result with $\operatorname{char} K = 0$ characterizing linear groups (of diagonalizable matrices) with bounded generation (BG) by Corvaja-Demeio-Rapinchuk-Ren-Zannier '23.

G has the BG property if and only if $G = \langle A_1 \rangle \cdots \langle A_n \rangle$.

Main Results

Theorem (Puch-S. '24)

Let $K = \overline{K}$ and $G \leq \operatorname{GL}_d(K)$ finitely generated. The following are equivalent.

- (a) $\sigma(G)$ is finitely generated (Pólya property).
- (b) $G \hookrightarrow \mathrm{GL}_d(K)$ is the epimorphic image of a block-triangular representation with monomial diagonal blocks.
- (c) G is virtually solvable.
 - ▶ For irreducible G: G Bézivin $\Leftrightarrow \sigma(G)$ finitely generated.
 - ▶ (a) \Leftrightarrow (c) was observed before by Bernik '05 in characteristic 0.
 - ▶ Tits' alternative: f.g. $G \le GL_d(K)$ is either virtually solvable or contains a non-cyclic free subgroup.

Main Results (More General)

Theorem (Puch-S. '24)

Let K be a field, and $S \subseteq GL_d(K)$ a semigroup that is finitely generated or char K = 0.

- (I) The following are equivalent.
 - (a) S is locally Bézivin and K is uniformly power-splitting for S.
 - (b) $S \to GL_d(K)$ is an epimorphic image of a monomial representation of S (over K).
 - (c) $\langle S \rangle$ is virtually simultaneously diagonalizable (over K).
- (II) The following are equivalent.
 - (a) S has locally finitely generated spectrum and K is uniformly power-splitting for S.
 - (b) $S \to GL_d(K)$ is the epimorphic image of a block-triangular representation with monomial diagonal blocks (over K).

K is uniformly power-splitting for S if there exists $N \ge 1$ such that for all eigenvalues $\lambda \in \overline{K}$ of all $A \in S$, we have $\lambda^N \in K$.

Key Tool: Unit Equations

Let char K = 0, and $\Gamma \leq K^{\times}$ finitely generated.

Solve

$$a_1 X_1 + \dots + a_n X_n = 0$$

in $\Gamma_0 = \Gamma \cup \{0\}$.

Theorem (Evertse '84, van der Poorten-Schlickewei '82, '91)

Unit equations have only finitely many non-degenerate solutions (as projective points).

- ▶ A solution $(x_1,...,x_n)$ is non-degenerate if $\sum_{i\in I} a_i x_i \neq 0$ for all $\emptyset \neq I \subsetneq \{1,...,n\}$.
- ▶ Each solution can be partitioned into non-degenerate solutions of subequations.
- ▶ Characteristic p > 0 is different: Derksen–Masser '12, Adamczewski–Bell '12.

A Special Case of Our Theorem

Proposition (Special Case)

Let $K = \overline{K}$, char K = 0, and $G \leq GL_d(K)$ Bézivin, say,

$$G \subseteq (M \cdot \Gamma_0)^{d \times d}$$
.

Assume there exists $A = \operatorname{diag}(\lambda_1, \dots, \lambda_d) \in G$ with $(\lambda_i/\lambda_j)^n \neq 1$ for all $i \neq j$, $n \neq 0$.

Then every $B = (b_{ij}) \in G$ is monomial.

$$(B^k)_{i_0 i_k} = \sum_{1 \le i_1, \dots, i_{k-1} \le d} \underbrace{b_{i_0 i_1} b_{i_1 i_2} \cdots b_{i_{k-1} i_k}}_{=: \beta(\mathbf{i}) \text{ with } \mathbf{i} = (i_0, i_1, \dots, i_k)} = \sum_{1 \le i_1, \dots, i_{k-1} \le d} \beta(\mathbf{i}).$$

Key Claim: For all $k \ge 0$: $|\{\mathbf{i} : \beta(\mathbf{i}) \ne 0\}| \le M$.

$$(BA^{n_1}BA^{n_2}\cdots BA^{n_{k-1}}B)_{i_0i_k} = \sum_{1 \le i_1, \dots, i_{k-1} \le d} \beta(\mathbf{i})\lambda_{i_1}^{n_1} \dots \lambda_{i_{k-1}}^{n_{k-1}} \qquad \text{where} \qquad n_i \in \mathbb{Z}.$$

By the Bézivin property,

$$(BA^{n_1}BA^{n_2}\cdots A^{n_{k-1}}B)_{i_0i_k} = \sum_{1\leq i_1,\dots,i_{k-1}\leq d}\beta(\mathbf{i})\lambda_{i_1}^{n_1}\cdots \lambda_{i_{k-1}}^{n_{k-1}} = \gamma_1(\mathbf{n}) + \dots + \gamma_M(\mathbf{n}).$$

with $\gamma_i(\mathbf{n}) \in \Gamma_0$. **Unit equation!** Consider partitions into subequations:

1) Bad partitions: two terms $\mathbf{i} \neq \mathbf{j}$ on LHS in same non-degenerate subequation. This is rare:

$$\varphi_{\mathbf{i},\mathbf{j}}: (\mathbb{Z}^{k-1},+) \mapsto (\Gamma,\cdot), \quad \mathbf{n} \mapsto \left(\frac{\lambda_{i_1}}{\lambda_{j_1}}\right)^{n_1} \cdots \left(\frac{\lambda_{i_{k-1}}}{\lambda_{j_{k-1}}}\right)^{n_{k-1}}$$

has rank im $\varphi_{i,j} \ge 1$, so rank $\ker(\varphi_{i,j}) \le k - 2$.

Only possible for n in finitely many cosets (by unit equations).

- 2) Look at one n with a good partition:
 - either **i** isolated (then $\beta(\mathbf{i}) = 0$), or
 - i uses up at least one $\gamma_i(\mathbf{n})$ from RHS, so at most M nonzero $\beta(\mathbf{i})$.

We proved the **Key Claim:** For all $k \ge 0$: $|\{\mathbf{i} : \beta(\mathbf{i}) \ne 0\}| \le M$.

(We have: $\beta(\mathbf{i}) = b_{i_0i_1}b_{i_1b_2}\cdots b_{i_{k-1}i_k}$ with $B = (b_{ij})$ invertible.)

Know the **Key Claim:** For all $k \ge 0$: $|\{\mathbf{i} : \beta(\mathbf{i}) \ne 0\}| \le M$.

Show: *B* is monomial.

Observe:

- 1. Each $\mathbf{i} = (i_0, \dots, i_k)$ with $\beta(\mathbf{i}) \neq 0$ extends to some $\mathbf{i}' = (i_0, \dots, i_k, i_{k+1})$ with $\beta(\mathbf{i}') \neq 0$. (Since row i_k of B is nonzero.)
- 2. For large enough k, these extension are unique. (By the claim!).
- 3. For each $1 \le j \le d$ and $k \ge 0$, there exist $\mathbf{i} = (i_0, \dots, i_k)$ with $\beta(\mathbf{i}) \ne 0$ and $i_k = j$. (Since column j of B^k is nonzero)

So: for each i there exists exactly one j with $b_{ij} \neq 0$, i.e., B is monomial!

Beyond the Special Case

If such a nice A (all eigenvalues essentially distinct) does not exist:

- ▶ Decompose K^d into eigenspaces of any A^n , n sufficiently large.
- For every B, there exists suitable m such that B^m leaves the eigenspaces of A invariant (using a block variant of the key claim).
- ▶ Taking $D = \langle A^{n(A)} : A \in G \rangle$, the quotient G/D is torsion and linear.
- G/D is finite by Burnside–Schur.
- ightharpoonup D is simultaneously diagonalizable by construction.

So G is virtually simultaneously diagonalizable.

More Generality

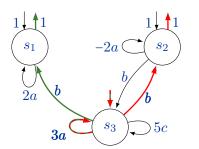
If K is not algebraically closed: descent from \overline{K} (using uniform power-splitting).

If $\operatorname{char} K = p > 0$: the key claim still holds! By Derksen-Masser '12 unit equations have few solutions. The bad points are in a sufficiently sparse set of cosets of smaller rank.

The Actual Motivation/Application: Weighted Automata

Weighted Finite Automata

Let X be an alphabet, K a field.



$$f(a^{2}b) = 3 \cdot 3 \cdot 1 + 3 \cdot 3 \cdot 1 = 18,$$

$$\sum_{w \in X^{*}} f(w)w = 2 + 2b + 8a^{2} + 6ab + 2b^{2} + \cdots$$

$$+ 10cb + 18a^{2}b + \cdots - 60b^{3}ababcb + \cdots$$

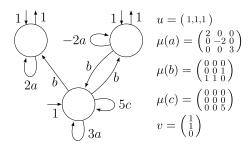
$$\in \mathbb{Q}(\langle a, b, c \rangle)$$

Computational model

WFA computes a rational $f: X^* \to K$:

- Given $w \in X^*$, find all successful runs for w.
- ▶ On each run, take the product of all the weights, then sum over all runs.

Weighted Finite Automata



Using matrices:

- two vectors $u \in K^{1 \times d}$, $v \in K^{d \times 1}$,
- for each letter x a transition matrix $\mu(x) \in K^{d \times d}$
- $f(x_{i_1}\cdots x_{i_l}) = u\mu(x_{i_1})\cdots\mu(x_{i_l})v.$

▶ |X| = 1 are precisely linear recurrence sequences (LRS) $(f(n) = uA^n v)$.

Ambiguity

WFA can be

```
\{deterministic\} \nsubseteq \{unambiguous\} \nsubseteq \{finitely ambiguous\} \nsubseteq \{polynomially ambiguous\} or exponentially ambiguous.
```

Problem

Given a WFA $\mathcal A$ recognizing f, is there WFA of certain lower ambiguity class recognizing the same f?

E.g. is A determinizable?

Reutenauer's Conjecture

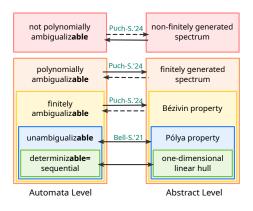
Reutenauer conjectured (1979): A unambigualizable $\Leftrightarrow f(X^*)$ is Pólya ($\subseteq \Gamma_0$).

- Reutenauer proved it for $f(X^*)$ finite.
- For |X| = 1, i.e., LRS, known by Pólya 1920, Benzaghou 1970, Bézivin 1986.

Theorem (Bell-S. '21)

A WFA over a field is unambigualizable if and only if it its output is Pólya.

Ambiguity Hierarchy of Weighted Automata



Theorem

For WFA over (computable) fields,

- 1. (Bell-S. '21, '23) Determinizability and unambigualizability are decidable.
- 2. (Puch-S. '24) If the transition matrices are invertible, the full ambiguity hierarchy is decidable.