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Uncertainty in Probabilistic Modelling
Kinds of Uncertainty
Uncertainty asures

Kinds of Uncertainty

e Aleatoric (Data) Uncertainty
o Inherent to the problem
o Caused by information loss when representing the real world
within a data sample
o lIrreducible
e Epistemic (Model) Uncertainty
e Uncertainty in the estimated model parameters
o Caused by lack of data, errors (noise) in training procedure,
insufficient model structure
o Reducible
e Total (Prediction) Uncertainty
e Combines epistemic and aleatoric uncertainty
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Uncertainty in Probabilistic Modelling
Kinds of Uncertainty
Uncertainty

Uncertainty - Regression
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Figure: Clements, William R., et al. " Estimating risk and uncertainty in
deep reinforcement learning.”
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Uncertainty in Probabilistic Modelling

Kinds of Uncertainty
Uncertainty

Uncertainty - Classification

@ Training data class 1
@ Training data class 2

High model
uncertainty

Low model
uncertainty

Figure: Gawlikowski, Jakob, et al. " A survey of uncertainty in deep neural
networks."
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Uncertainty in Probabilistic Modelling
Kinds of Uncertainty
Uncertainty asures

Uncertainty - use cases

@ Misclassification detection
e Uncertain predictions are less likely to be correct
@ Out of distribution detection

e Instances from a different distribution should have high
epistemic uncertainty

@ Adversarial input detection
e Should adversarial inputs have high uncertainty?
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Uncertainty in Probabilistic Modelling
Kinds of Uncertainty
Uncertainty Measures

Uncertainty Measures - Classification

Given a dataset D and a function f(x,6) we model the outcome

p(ylz,0) = Cat(y; f(z,0))

During inference we also obtain p(6|D). We estimate predictive
distribution

Total uncertainty can be expressed as the entropy of predictive
distribution H(y|x, D). Epistemic uncertainty is estimated as the
information gain:

I[yv 9|SU, D] = H[]Ep(@|D) (Y|$’ 0)] - IEp(c9|D) [H(Y|x7 9)]
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versarial Machine Learning Adversarial Attacks
Ad rial Learning

Adversarial Attack - Example
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Figure: Source: Open Al Research
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Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

Adversarial Attack - Examples MNIST

Source: own work

tukasz Grad Adversarial Uncertainty Learning in Deep Neural Networks



Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

How can we find adversarial instances?

Given a classifier f, an input instance x and a corresponding label
y we have:

2’ = argmax Lop(f, 2,y)
2ESe

where S¢ = {z : d(z,z) < €}. This is known as a white-box
attack since we have direct access to f.

Projected Gradient Descent (PGD) can be used to efficiently
solve the above

ziy1 = g (z; + oV, Lep(f, i, y))

where IIg_ denotes a projection onto the set Sc. For instance with
d(z,x) = ||z — z||cc We project by clipping z to [z — €,z + €.
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Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

Selective Gradient Descent

Assume we have a scoring function g that detects adversarial
examples when g(x) < 0. We want to generate an adversarial
input with additional constraint. We can use PGD with an
augmented loss

2’ = argmax Lop(f, 2,y) + Ag(2)
ZESe

but this can lead to perturbation waste. Selective attack is more
efficient

— ar;gerglax Lep(f,z,9)1(f(2) =y) + Ag(2)1(f(2) # v)
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Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

Adversarial Training - Problem Formulation

Given a dataset D and a parametric model f(0) we can formulate
standard training procedure

0 = arg;nin E(x,y)ND [Lce(8,x,y)]

In adversarial training, we formulate the following minimax
problem:

0" = argminE, ,).p |argmax Log(6, 2, y)
0 ' Zese,z

To solve the inner maximization problem we can again use PGD
(PGD-AT)

zip1 = g, (v + asign(Ve, Lee(f, v, y)))
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Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

Adversarial Training - Impact on Model

Figure: A conceptual illustration of standard vs. adversarial decision
boundaries. Source: Madry, Aleksander, et al. " Towards deep learning
models resistant to adversarial attacks.”
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Adversarial Machine Learning Adversarial Attacks
Adversarial Learning

Adversarial Uncertainty Training

@ Adversarial Training makes a model robust in changing its
decision

@ What if we want to have a model that estimates uncertainty
in a robust way?

@ Robust uncertainty - insensitive to non-semantic changes in
input

0 = argmmE(x y~D |argmax Leg(0, 2,y) + Ah(0, 2, 2,y)
ze Seac

where h regularizes the magnitude of change in probabilities

0, 2,2.y) = f(x,0)ly)(|1f(z,0) - f(2,0)|]%)
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Research Questions
Dataset and Models Used

Experimental Setup Decis ystem and Attacks

Research Questions

@ Can deep neural networks capable of uncertainty estimation
achieve adversarial robustness?

@ Does adversarial training hinder the performance of models
capable of uncertainty estimation?

@ How vulnerable to attacks are decision making systems based
on uncertainty estimation?

@ Does adversarial uncertainty training improve robustness of
decision making systems based on uncertainty estimation?
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Dataset - MNIST
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Figure: Sample digits from MNIST dataset
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Re: ch Questions
Dataset and Models Used

Experimental Set
Xperimen P Decision System and Attacks

Base Model - Lenet 5
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Figure: Tra, Viet, et al. " Bearing fault diagnosis under variable speed
using convolutional neural networks and the stochastic diagonal
levenberg-marquardt algorithm.”
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Research Questions
Experimental Setu Dataset and Models Used
P P Decision System and Attacks

Uncertainty Estimation Methods Used

@ Deterministic model trained with CE loss
e Epistemic uncertainty is 0
@ Bayesian Neural Network trained with Variational Inference
e We approximate the posterior distribution over model weights
with a parametric family p(0|D) = ¢, (6)
e Optimize w with SGD
@ Dirichlet Prior Network
o Parameterize a Dirichlet distribution - a conjugate prior to the
categorical distribution
o p(plz) = Dir(p;a) , o = f(x)
o p(yelr) = [ p(yelm)p(plz)dp = s
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Research Questions
Dataset and Models Used
Decision System and Attacks

Experimental Setup

Dirichlet Distribution and Uncertainty

(a) Confident Prediction (b) High data uncertainty  (c) Out-of-distribution

Figure: Source: Malinin, Andrey, and Mark Gales. " Predictive uncertainty
estimation via prior networks."”
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odels Used
Decision System and Attacks

Experimental Setup

Decision Making System

Probabilistic
Model

Uncertainty
Quantification

Class: 6

Certain
Prediction?

I don't know

Figure: Workflow of automated decision making system capable of
estimating uncertainty and abstaining from giving a decision.
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R ch Questions
D t and Models Used

Experimental Setup Decision System and Attacks

Possible Attacks

@ Attack on misclassification detection

Maximize uncertainty for correct predictions

Minimize uncertainty for incorrect predictions

Try not to change predicted class

o Implemented as a PGD Attack and Selective Attack

@ Attack on the decision making system

e Uncertainty Attack - maximize uncertainty regardless of the
prediction

e Misclassification Attack - minimize uncertainty while
maintaining an incorrect prediction

o Attack parameters: a = 0.01, k =40, d(z, 2) = ||z — 2||x
used in both training and attacking phase.

tukasz Grad Adversarial Uncertainty Learning in Deep Neural Networks



ial Robustness
fication Detection

stem Robustness
Results ’

Adversarial Robustness

Adversarial robustness against a PGD attack.

H Model Training Adversarial Accuracy H
Prior Lenet 5 Adversarial 0.8737
Prior Lenet 5 | Adv Uncertainty 0.9142
Lenet 5 Adversarial 0.9027
Lenet 5 Adv Uncertainty 0.9182
BNN Lenet 5 Adversarial 0.8534
BNN Lenet 5 | Adv Uncertainty 0.8863

tukasz Grad Adversarial Uncertainty Learning in Deep Neural Networks



Adversarial Robustness
Misclassification Detection

Decision System Robustness
Results ’

Misclassification Detection

@ We can pose misclassification detection as a binary
classification problem

@ Misclassified instances are of positive class
@ Use e.g. prediction uncertainty as the score

@ Performance can be measured using Area Under the Roc
Curve (AUC)
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Adversarial Robustness
Misclassification Detection

Decision System Robustness
Results ’

Misclassification Detection
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Density over prediction uncertainty for correct and misclassified
inputs. Left side: results on unperturbed inputs. Right side: results
using PGD Attack.
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Results

Misclassification Detection

PGD Attack Selective Attack
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Al Robustness
M tion Detection

Decisi R
Results ecision System Robustness

Decision System - Metrics

@ Coverage - percentage of instances for which the model
returned a prediction

@ Accuracy - classification accuracy on covered instances

@ How is the uncertainty decision threshold estimated?

o Select a threshold s.t. the misclassification detection false
positive rate is 5%
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Decision System Robustness

Results

tness - Accuracy

Decision System Robu
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| Robustness
Mi ion Detection

Decision System Robustness

Results

Thank you
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