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Abstract

The thesis is focused on various stochastic volatility (SV) models in �nance.
Such models were introduced in order to overcome some of the drawbacks of
the classical Black-Scholes model of the �nancial market. In the SV models we
drop the assumption of constant volatility of the asset price, allowing it to be
a stochastic process.

The �rst part of the thesis is devoted to the Stein and Stein model, i.e. the model
where the volatility is an Ornstein-Uhlenbeck process. It was �rst introduced
in 1991, however the original results were derived under the assumption of
uncorrelated noises driving the asset price and its volatility. In the thesis we
relax this assumption. We establish closed-form formulas for the moments and
the Mellin transform of the asset price. These quantities are then applied to
numerical option pricing.

In the second part we study inhomogeneous time change equations (TCEs) in-
duced by Markov chains and their applications to stochastic volatility models,
namely to regime-switching di�usions. We show the existence and uniqueness
of solutions of the TCE and then we investigate the in�uence of the TCE on
the Markov consistency property and Markov structures of processes. First we
focus on the time-changed Markov chains, and then we apply the change of
time to a di�usion process, obtaining a regime-switching process. We conclude
this part by showing the application of the time change to Monte Carlo option
pricing.

Keywords: stochastic volatility, Stein and Stein model, change of time,
Markov consistency, regime-switching di�usion, option pricing

AMS Subject Classi�cation: 60J27, 60J60, 91G20, 91G30, 91G60, 60H30
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Streszczenie

Niniejsza praca dotyczy modeli rynków �nansowych ze stochastyczą zmien-
nością (stochastic volatility models), czyli modeli, w których zmienność ceny
akcji opisywana jest przez pewien proces stochastyczny. Powstały one jako
odpowiedź na pewne sprzeczności modelu Blacka-Scholsa wynikające z założe-
nia o stałej zmienności (jak np. obserwowany na rynku uśmiech zmienności).

Pierwsza część pracy poświęcona jest modelowi Steina i Steina, w którym zmien-
ność ceny akcji jest opisywana procesem Ornsteina-Uhlenbecka. Został on
wprowadzony w 1991 roku, jednak wyniki Steina i Steina uzyskane zostały
przy założeniu o nieskorelowaniu szumów rządzących ceną akcji i jej zmien-
nością. W pracy wyprowadzamy wzory na momenty oraz transformatę Mellina
ceny akcji bez założenia o nieskorelowaniu szumów. Wzory te są następnie za-
stosowane do numerycznej wyceny różnych typów opcji.

W drugiej części pracy rozważane są niejednorodne równania zmiany czasu dla
łańcuchów Markowa, oraz ich zastosowanie w modelach zmienności stochasty-
cznej, a ściślej mówiąc – w modelach przełącznikowych (regime-switching dif-
fusions). Pokazujemy istnienie i jednoznaczność rozwiązania równania zmiany
czasu oraz badamy wpływ zmian czasu na markowską zgodność i struktury
markowskie procesów. Najpierw opisujemy ów wpływ dla samych łańcuchów
Markowa, a następnie badamy proces dyfuzji Itô ze zmienionym czasem (taki
proces okazuje się być procesem przełącznikowym) i jego struktury markowskie.
Rozdział ten jest zakończony prezentacją zastosowań zmiany czasu do wyceny
opcji metodą Monte Carlo.
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Chapter 1

Introduction

1.1 Volatility in �nancial markets

The main object of study in this dissertation are models of �nancial markets
with stochastic volatility, that is models, where the volatility of an asset price
is itself a stochastic process. Before introducing particular models, let us start
with a more general question – why should we assume that the volatility is not
deterministic?

In 1973 Black and Scholes derived their famous formula for option pricing. The
model (based on the hypotheses formulated by Samuelson in 1965 [55]) assumes
that the stock price follows a geometric Brownian motion. Let us start with
introducing some basic assumptions of the model.

Let (Ω,F ,F,P) be a �ltered probability space. Throughout this chapter we
will assume that P is a risk-neutral (or a martingale) measure, i.e. a probability
measure equivalent to the real (observed) probability, such that the discounted
prices of assets are martingales. Such a measure, when exists, is used for pricing
�nancial instruments in a way that does not lead to arbitrage. In the Black-
Scholes model we assume that the market consists of two assets: a risk-free
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asset with priceB – bank account with constant interest rate r ≥ 0, and a risky
asset with price S following a geometric Brownian motion. More precisely, the
dynamics of B are described by

B0 = 1, dBt = rBtdt, (1.1.1)

whereas the dynamics of S are

dSt = rStdt+ σStdWt, (1.1.2)

where W is a standard Brownian Motion and σ > 0 is constant. The solutions
of (1.1.1) and (1.1.2) take the form

Bt = exp(rt), St = S0 exp
(
(r − 1

2σ
2)t+ σWt

)
.

The term σ re�ects how much the log returns of the price (i.e. log (St/S0)) vary
from their mean, and thus is called the volatility of the asset price.

Thanks to the fact that in the Black-Scholes model the price of an asset has
a log-normal distribution, one can easily derive closed-form formulas for the
price of a European call option, that is an option with payo� (ST − K)+ at
maturity time T .

The paper of Black and Scholes was a breakthrough in �nancial mathematics
and since then the model has been widely used by practitioners. Among its
main advantages we must point out its simplicity and tractability – thanks to
this, many �nancial derivatives can be priced either analytically or numerically.
However, the model has certain drawbacks that push people to come up with
more sophisticated ideas.

The problem appears when we try to calibrate the model to the real data. One of
the most popular methods of estimating the parameter σ is to take the volatility
implied by the market, i.e. to choose its value in such a way that the observed
prices of European call options coincide with those from the theoretical model.
It follows from the pricing formula that there exists exactly one such positive
value of σ for each option in the market. Since in the model the volatility is
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a parameter describing the behaviour of a particular asset, it should not depend
on the characteristics of an option itself (strike price or time to maturity).

And here the main shortcoming of the model comes to light – it appears that
the implied volatility σimp(K, τ) varies for options with di�erent values of strike
price K and time to maturity τ = T − t. This phenomenon, due to the shape
of curves σimp(K) and σimp(τ) is called the "volatility smile".

σimp

K

Throughout the years people have been trying to overcome this drawback by
introducing more complex models. One of the branches developed over years
is a wide class of stochastic volatility models, i.e. models where volatility itself
is a stochastic process. In greatest generality, the models studied in the disser-
tation assume the following dynamics of the asset price

dSt = rtf1(St)dt+ σtf2(St)dWt,

where f1, f2 are appropriate deterministic functions, σ is a stochastic process
(possibly correlated with the asset price) and r is either a stochastic process or
a constant.

There are more stochastic volatility models than one could hope to discuss in
a short introduction. In the rest of the section, we will only introduce a few of
them, based on their historical importance and later use in the dissertation.
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Hull and White model (1987)

One of the �rst analytically tractable models was proposed by Hull and White
[36] in 1987. The variance vt := σ2t of the asset price is modelled by a geometric
Brownian motion. In other words, the pair (S, v) satis�es

dSt = rStdt+
√
vtStdW

1
t ,

dvt = µvtdt+ κvtdW
2
t ,

where µ ∈ R, κ > 0 are constants and W 1, W 2 are Brownian motions. Under
the assumption that W 1 and W 2 are independent, Hull and White determined
the price of a European call option in a form of a series. For correlated Brownian
motions, i.e., if d〈W 1,W 2〉t = ρdt, for ρ ∈ [−1, 1], they produced numerical
solutions for option prices.

Stein and Stein model (1991)

In [62] Stein and Stein introduced a model where the volatility follows the
Ornstein-Uhlenbeck process, i.e. (S, σ) satis�es

dSt = rStdt+ σtStdW
1
t ,

dσt = λ(θ − σt)dt+ κdW 2
t ,

where λ, θ, κ are �xed positive constants. The authors assume that the Brow-
nian motions W 1, W 2 are independent, however, as it is shown in Chapter 3,
this restrictive assumption may be relaxed.

In this model σt, for each t, has a normal distribution with mean

Eσt = σ0e
−λt + θ(1− e−λt)

and variance
Var(σt) =

κ2

2λ

(
1− e−2λt

)
.
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This property of the model might seem controversial, since it allows for neg-
ative values of σ. However, with properly chosen parameters the probability
that σ < 0 is very low. For a more detailed discussion of the properties of the
model, see Chapter 3.

Heston model (1993)

In [35] Heston proposed to model the variance v = σ2 as a CIR (Cox-Ingersoll-
Ross) process, that is

dSt = rStdt+
√
vtStdW

1
t ,

dvt = κ(θ − vt)dt+ ξ
√
vtdW

2
t ,

where W 1, W 2 are (possibly correlated) Brownian motions, and κ, θ and ξ are
constants that satisfy

θ >
ξ2

2κ
,

so that the process v is positive with probability 1.

The models introduced by Heston [35] and Stein-Stein [62] are amongst the
most popular stochastic volatility models. Both are still in use, and both have
become the basis of further models, such as models using fractional Brownian
motions or Lévy processes instead of the Brownian motion in the dynamics of
the volatility (see, e.g, Barndor�-Nielsen and Shephard [6] for stochastic volatil-
ity modelled by a Lévy-driven Ornstein-Uhlenbeck process, or [26] and [25] for
models with fractional Brownian motion).

Regime-switching models

A slightly di�erent approach to stochastic volatility is demonstrated in regime-
switching models. Here, instead of considering σ as a process driven by another
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Brownian motion, we assume that it is driven by an independent Markov chain,
representing current state of economy, so that

dSt = µ(αt)Stdt+ σ(αt)StdWt,

where α is a continuous-time Markov chain on a �nite state space E, indepen-
dent of the Brownian motionW . The spaceE may be seen as the set of possible
states of economy (for example bull market vs. bear market), with which the
level of volatility in the market is associated. The function µ : E → R re�ects
the sensitivity of an interest rate to the changes of α. Note that, unless the
function µ is constant, the model admits a stochastic interest rate. Such models
were studied in many monographs and papers, for example [47, 66, 45]. For
more details about the model, see Chapter 4.

1.2 Change of time

There are many approaches to tackle the problem of modelling stochastic volatil-
ity. One of them is based on the technique of random change of time. The idea
is to start with a simpler model where the volatility is deterministic and then
use a change of time to introduce randomness to the volatility. By a change of
time we mean an increasing, right-continuous family of [0,∞]-valued random
variables (τt)t≥0, such that for all t ≥ 0, τt is a stopping time with respect to
a given �ltration F = (Ft)t≥0.

Change of time is a useful tool both from the point of view of the theory of
stochastic processes, and from the point of view of applications. It is well known
that some processes with complicated structures can be represented as time-
changed "simpler" processes (e.g. the famous Dambis-Dubins-Schwarz theorem
states that every continuous local martingale M with M0 = 0, 〈M〉∞ = ∞ is
a time changed Brownian motion) – the same philosophy stands behind ap-
plying change of time to �nancial models. Let us �rst consider the following
example.
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Example 1.2.1. Let S be a geometric Brownian motion

dSt = rStdt+ σStdWt,

where W is an F - Brownian motion. Consider a change of time τ given by

τt =

∫ t

0

vsds,

where the process v is positive, right-continuous and independent ofW . De�ne
the process Bt =

∫ t
0

1√
vs

dW (τs). Then B is an (F(τt))t≥0 – Brownian motion
independent of τ , and the process Ŝ = S ◦ τ satis�es

dŜt = rvtŜtdt+ σ
√
vtŜtdBt.

Thus the term σ
√
vt is a stochastic volatility, and rvt is a stochastic interest rate.

Moreover, if we assume that r = 0 and v is a CIR process, then (Ŝ, v) follows
the Heston model. In order to justify the facts that B is a Brownian motion and
that Ŝ indeed satis�es the equation above, one needs more than these formal
calculations. In fact, it requires a deeper theory which is not suitable for an
introduction – however, a similar idea is used in the proof of Theorem 4.4.4,
and a detailed discussion can be found there.

As shown in the example above, it is possible to obtain a (particular) stochastic
volatility model by applying a proper change of time to the geometric Brownian
motion. In [18] Carr and Wu generalise this idea – they model the asset price
by time-changed exponential Lévy processes. More precisely, in their approach

St = S0e
rt exp(Xτ(t)),

where X is a Lévy process and τ is a subordinator (i.e. a nondecreasing Lévy
process). Their model was further developed by Linetsky and Mendoza-Arriaga
in [48], who assume thatX is a d-dimensional process and apply a d-dimensional
subordinator τ to X . In this case the change of time is di�erent for each coor-
dinate of the process X . The latter is a particularly interesting technique, since
– apart from introducing stochastic volatility to the model – such a change of
time may in�uence the dependence structure of the process X . We will discuss
the issues with modelling dependence of multivariate processes in Section 1.3.
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The idea of introducing stochastic volatility via change of time may seem un-
natural, but it has certain advantages that allow us to calculate (at least nu-
merically) the prices of �nancial derivatives. The key to obtaining it is the cal-
culation of the characteristic function of a log-price, which may be simpli�ed
by introducing change of time. To give the reader a �avour of this idea, let us
consider the continuation of Example 1.2.1.

Example 1.2.2. Let S and τ be as in Example 1.2.1. Then the process Ŝt may
be written as Ŝt = S0 exp(X̂t), where

Xt =

(
r − 1

2
σ2
)
t+ σWt and X̂ = X ◦ τ.

Then, since τ is independent of W , the characteristic function of X̂ can be
written as

E exp (iuX̂t) = E (E exp (iuXτt)|τt) = Eeτtψ(u), (1.2.1)
where ψ denotes the characteristic exponent of X . More precisely, the charac-
teristic function of X̂ takes the form

E exp (iuX̂t) = E exp

(
τt ·
(

(r − 1
2σ

2)u− σ2

2
u2
))

.

Thus, in order to calculate it one only needs to know the Laplace transform
of τ . Note that the equality (1.2.1) holds for any time change τ independent of
X . The use of characteristic functions in pricing �nancial derivatives will be
presented in Chapter 2.

1.3 Markov consistency and dependence between stochas-
tic processes

When modelling various phenomena in �nance or physics it is convenient (and
usually reasonable) to assume that the stochastic processes driving them have
the Markov property. A Markov process is a process whose future evolution
depends only on its current state, not on the path it followed before. In fact,
most of the processes mentioned in Section 1.1 are Markov.
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In most examples in Section 1.1 we were modelling one-dimensional price pro-
cesses. Usually it is not di�cult to generalize it to the multidimensional case.
However, in general it is not always clear how to model the dependence struc-
ture of multivariate processes.

When X = (X1, . . . , Xd) is a random vector in Rd, the problem of studying
dependence between its components reduces to �nding an appropriate func-
tion, called a copula function. More precisely, the Sklar theorem [61] states
that there exists such a function C that the cumulative distribution function of
the vector X = (X1, . . . , Xd) is equal to C(F1(·), ..., Fd(·)), where F1, . . . , Fd
are the cumulative distribution functions of the coordinates. For example, if
X1, . . . , Xd are independent, then the resulting C is a product copula, meaning
that C(u1, . . . , ud) = u1 · . . . ·ud. On the other hand, having d one-dimensional
random variables Y1, . . . , Yd, by applying appropriate copula functions C we
can construct all d-dimensional vectorsX whose componentsXi have the same
law as Yi.

Using this method we can separate the dependence structure of the vector from
its marginal distributions. One may ask whether we can use the same reason-
ing when instead of a random vector, we consider a d-dimensional stochastic
process. It appears that in this case we cannot describe dependence structure
through a function of marginal distributions – see discussions in Scarsini [56]
or in Bielecki et al. [15]. In order to describe the dependence structure of a mul-
tivariate process we need to �nd some relations between the characteristics of
its components. The problem of describing structured dependence of stochastic
processes was studied in the monograph [14].

If Z is a d-dimensional Markov process, an interesting question is whether its
components are Markov themselves. Obviously it is true when the coordinates
are independent; however, it may not hold in general.

A Markov process whose components also have Markov property is calledMarkov
consistent. More precisely, for a Markov process Z = (Z1, . . . , Zd) on the state
spaceE1×· · ·×Ed, whereE1, . . . , Ed are Polish spaces, we have the following
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de�nitions (see [13]).

De�nition 1.3.1. We say thatZ satis�es theweak Markovian consistency prop-
erty with respect to the i-th coordinate if Z i is a Markov process with respect
to its own �ltration, i.e. if for any Borel set B ∈ B(Ei) and all t, s > 0

P(Z i
t+s ∈ B|FZi

t ) = P(Z i
t+s ∈ B|Z i

t),

where FZi is the �ltration generated by Z i.

De�nition 1.3.2. We say that Z satis�es the strong Markovian consistency
property with respect to the i-th coordinate if Z i is a Markov process with
respect to the �ltration of the process Z , i.e. if for any Borel set B ∈ B(Ei) and
all t, s > 0

P(Z i
t+s ∈ B|FZ

t ) = P(Z i
t+s ∈ B|Z i

t),

where FZ is the �ltration generated by the whole process Z .

We say that Z satis�es the weak (strong) Markovian consistency property if it
satis�es the weak (strong) Markovian consistency property with respect to all
its coordinates.

It is clear that the strong Markovian consistency implies weak Markovian con-
sistency. However, the converse is not always true. One may �nd examples of
weak-only Markov consistent processes in Bielecki et al. [13, Example 3.2].

Consider now d univariate Markov processes Y 1, . . . , Y d. We would like to
construct all d-dimensional Markov processes Z satisfying (weak or strong)
Markov consistency property, whose componentsZ i have the same �nite-dimen-
sional distributions as Y i. Every such construction will be called aMarkov struc-
ture.

The main advantage of Markov consistency property is that it allows modelling
the dependence between Markov processes using rich analytical machinery.
The construction of a Markov structure reduces to constructing an in�nitesimal
generator (or another characteristics of a process) satisfying certain conditions.
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Markov structures and Markov consistency �nd many applications in �nan-
cial mathematics, whenever we deal with multidimensional Markov processes.
For example, in [8] Bielecki, Cousin et al. use it in pricing and hedging Credit
Default Swaps (CDS). In [9] Bielecki, A. Vidozzi and L. Vidozzi employ this con-
cept to valuate ratings-triggered corporate bonds, whose cash �ows depend on
ratings assigned to the issuer by at least two rating agencies. Another appli-
cations may be found in Bielecki, Crépey, Jeanblanc [10] or Crépey, Jeanblanc,
Zargari [21].

In the world of stochastic volatility models, one may consider a multivariate
price process S and a multivariate volatility process σ, and ask whether (Si, σi)
is a Markov process itself. Such problems will be considered in Chapter 4.

1.4 Implied volatility and stochastic volatility – practition-
ers’ point of view

"Implied volatility is the wrong number to put in the wrong formula to get the
right price." – Riccardo Rebonato [52]

In the real �nancial markets, the Black Scholes model is often used as a bench-
mark for pricing �nancial instruments – the pricing formula is still applied,
however, instead of using constant volatility for the whole model, di�erent lev-
els of volatility are plugged in for options with di�erent strikes. Those levels –
at least for some of the derivatives – are implied by daily price quotes of speci�c
contracts. However, in order to be able to price various types of derivatives, we
would need to construct a volatility model consistent with the market.

Let us take a closer look into how the contracts are priced. Recall that in the
Black Scholes model described in 1.1 with constant volatility, the price of a call
option ω(ST ) = (ST −K)+ at time t is given as
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C(K,St, r, σ, T − t) = StN (d1)−Ke−r(T−t)N (d2),

whereN denotes the cumulative distribution function for the normal distribu-
tion and

d1 =
ln
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 =
ln
(
St
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

In practice, implied volatility is usually calculated not as a function ofK , but as
a function of delta ∆. Recall that the delta of an option – which is the sensitivity
of an option price with respect to the change of the underlying price – in the
B-S model is equal to

∆(K,St, T − t, σ) :=
∂C

∂St
= N (d1).

When traders communicate with brokers, instead of quoting the price of an
option in cash, they use the level of its implied volatility, which is then plugged
into the Black-Scholes formula. In order to do so, they construct a matrix, which
may be seen as a discrete version of an implied volatility surface, i.e. the surface
σ(T − t,∆). The columns of the matrix represent the ∆ of an option, and the
rows – time to maturity T − t.

For some deltas (usually ∆ ∈ {0.25, 0.5, 0.75}) the prices of options are quoted
daily – this is strictly connected to the positions mostly used for hedging, like
At The Money, Butter�y and Risk Reversal (see, e.g. Wystup [65] for options in
FX markets). This allows us to �ll some of the entries of the volatility matrix.
The problem arises when there is a need of pricing an unusual contract, for
which we can only extrapolate from the data in the matrix. The problem of such
extrapolation was studied in many papers (e.g. [19]). However, note that the
delta itself is dependent on σ. Hence, in fact, the problem of modelling implied
volatility matrix does not reduce to the good choice of interpolation method – it
requires a consistent model which does not allow for arbitrage opportunities. In
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particular, one needs to be careful about the dependence structure of (S, σ) (see
Section 1.3). Stochastic volatility models can be a way to address this problem.

1.5 Discussion of the main results

Before we discuss the main results, let us brie�y describe the structure of the
thesis.

Chapters 1 and 2 have an introductory character. Chapter 3 is based on a joint
work with Jacek Jakubowski and Maciej Wiśniewolski in [37] but it includes ad-
ditional numerical examples illustrating the techniques developed in the paper.
Chapter 4 consists of the author’s results from [49] extended by applications of
the results to numerical pricing of derivatives.

Let us now discuss the contents of the dissertation in detail.

In Chapter 2 we introduce some numerical techniques of derivative pricing in
stochastic volatility models. Those methods are then used further in the disser-
tation. The need for developing sophisticated numerical methods for pricing
is motivated by the fact that for most of stochastic volatility models there are
no closed-form formulas neither for the asset price distribution nor for the op-
tion price. Section 2.1 is devoted to pricing via Fast Fourier Transform. One
of the �rst papers on applying FFT to pricing options was written by Carr and
Madan, see [17]. Their results were then extended by Raible in his PhD disserta-
tion [51]. The main idea, presented in Theorem 2.1.3, is to represent the price of
the derivative as a convolution of the so called modi�ed payo� function and the
density of the logarithmic asset price. Then, knowing the Laplace transforms of
the logarithmic price and the modi�ed payo� function, we can easily calculate
the Laplace transform of the option price. As a last step, we invert the trans-
form and compute it using the FFT algorithm, which was proposed by Cooley
and Tukey in [20] and is one of the most computationally e�cient algorithms
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to obtain the discrete Fourier transform. Section 2.2 is devoted to numerical
option pricing based on calculating a �nite sequence of moments of the asset
price and then estimating the density given the obtained moments. Knowing
the density, we can price any European-style option. This section is based on
the results from [22] and [44].

Chapter 3 is devoted to the Stein and Stein model (see Section 1.1) and its main
part is based on the joint work with Jacek Jakubowski and Maciej Wiśniewolski
[37]. The main results of this part are formulas for moments and the Mellin
transform of the asset price; they are then applied in numerical option pricing.
Recall that in their original paper [62] Stein and Stein assume that the noises
driving the asset’s price and its volatility are uncorrelated – in our work we
relax this restrictive assumption.

In the �rst part of the chapter we present three results giving closed formulas of
moments of order α of the asset price, under di�erent assumptions on α and on
the parameters of the model. These results require di�erent techniques of proof.
In Theorem 3.2.1 we consider the process S in the neighbourhood of zero and
we �nd a probability measure under which σ is a Brownian Motion. This allows
us to calculate the moments using known formulas for the Laplace transform of
some Brownian functionals (see e.g. [46]). The next two results (Theorem 3.2.3
and 3.2.6) are based on the fact that the square of the volatility is a squared radial
Ornstein-Uhlenbeck process. The di�erence between those results comes from
di�erent assumptions on the parameters of the model. Hence, di�erent proof
strategies are needed for each case. In the �rst one we can simply apply the
results from [39] on the Laplace transform of some functionals of a squared
radial Ornstein-Uhlenbeck process. In the second one we cannot directly apply
those results, but we use a similar methodology of calculating the moments.

In Theorem 3.2.8 we derive a formula for the Mellin transform of the asset price,
which is a generalisation of the result in [59, Appendix A]. Recall that for a pos-
itive random variable ξ we de�ne the Mellin transform of ξ as

f(z) = Eξz, z ∈ D,
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where D is a vertical strip in C such that ξz is integrable for z ∈ D. In fact,
the Mellin transform of an asset price is equal to the Laplace transform of its
logarithmic price, which is an important quantity, very fruitful in numerical
option pricing (see Chapter 2.1).

The rest of the chapter is devoted to the application of the obtained results to op-
tion pricing. Apart from applying the numerical methods discussed in Chapter
2, in Proposition 3.3.1 we introduce a method based on the Gil-Pelaez inversion
formula [31], which is valid for asymmetric power options (i.e. options with
a payo� ω(St) = (SαT − K)+). This is yet another application of the Mellin
transform in derivatives pricing. In Section 3.3 we compare prices of various
European-type options computed using the methods discussed in the chapter.
This last part contains examples which were not included in the paper [37].

Another speci�c example of a stochastic volatility model, namely regime-swi-
tching di�usion, is discussed in Chapter 4. The main results come from the au-
thor’s work [49], however the chapter contains also parts that were not included
in the paper. The regime-switching di�usions that appear in the chapter are ob-
tained by applying a change of time to di�usion processes. In fact, the study of
such models leads to interesting questions about the time changes themselves,
hence the chapter focuses on time changes and some of the more fundamental
problems that are not directly related to the regime-switching model.

Throughout the chapter we consider a particular type of change of time, namely
a solution of an inhomogeneous time change equation induced by a Markov
chain. Such a change of time is de�ned as a family of random variables satisfy-
ing the equation

τt =

∫ t

0

g(s,Xτs)ds, (1.5.1)

for a Borel measurable function g : [0,∞)×E → [0,∞) and a �nite, continuous-
time Markov chain X . The inhomogeneity refers to the fact that the integrated
function g depends on time, which makes the time-changed process (Xτt)t≥0
time inhomogeneous.
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In the �rst part of the chapter (Theorem 4.2.3) we prove the existence and
uniqueness of solutions of equation (1.5.1) under some mild and very natural
assumptions on g. Moreover, we give an explicit construction for the solution,
which allows us to simulate the paths of τ . In Theorem 4.2.6 we prove that the
time-changed Markov chain (Xτt)t≥0 is a (time-inhomogeneous) Markov chain.

The next part of the chapter is devoted to Markov consistency of the time-
changed process (see De�nition 1.3.2). Consider a two-dimensional Markov
chain X = (X1, X2) and the change of time induced by it (together with g). In
Theorem 4.3.1 and Corollary 4.3.4 we give the conditions that should be satis�ed
by the function g so that the change of time preserved the Markov consistency
property. Moreover, we study whether it is possible to impose Markov consis-
tency by an appropriate change of time. These considerations lead us to de-
�ne a new class of Markov processes (see De�nition 4.3.6), which we call quasi
Markov consistent. A process X is called quasi Markov consistent if there ex-
ists a non-zero change of time τ such that Xτ is (strongly) Markov consistent.
Naturally, such a class contains the class of Markov consistent processes (we
can always take the identical change of time), however, in Example 4.3.10 we
show that there exists a quasi consistent Markov chain which is not Markov
consistent.

In the next part of the chapter we apply the change of time induced by a Markov
chain to an n-dimensional di�usion process, which leads to a regime-switching
model (see Theorem 4.4.4). In this part we also attempt to answer a reverse
question: given an n-dimensional regime-switching di�usion S, when is it pos-
sible to represent its coordinates by time-changed di�usions? Such a represen-
tation is desirable in many �nancial applications – not only does it allow us to
describe a complicated process as a composition of two simpler processes, but
also to consider the coordinates of S without any reference to the dependence
structure of the whole process.

The last part of the chapter presents certain examples of applications of the
time change to Monte Carlo option pricing. We consider the asset whose price
is modelled by the time-changed geometric Brownian Motion. Thanks to the
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explicit solution of 1.5.1, we can easily simulate the paths of the time change,
and we can use it to Monte Carlo simulations of the asset price process. We
analyse time changes for various functions g and then we compare the Monte
Carlo prices for those time changes and for several types of options. The Monte
Carlo results are new and were not included in the paper [49].
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Chapter 2

Option pricing in stochastic volatility
models

Unlike in the Black-Scholes model, in most of the stochastic volatility models
there are no closed-form formulas for option pricing. Therefore some numer-
ical methods must be applied. In this chapter we give a brief overview of the
most popular methods of numerical option pricing, with a special attention to
those used in the dissertation. They are all based on computing either the char-
acteristic function of the log price or on the moments of the asset price. The
results presented in this chapter are mainly based on the works by Raible [51]
(for Section 2.1) and Lin [44] (in Section 2.2).

Let (Ω,F ,F,P) be a probability space endowed with a �ltration satisfying usual
conditions. Assume that P is a martingale measure. Consider a market with a
constant interest rate r ≥ 0 and a risky asset with price (St)t≥0. Throughout
this chapter we will assume that S satis�es

dSt = rStdt+ σtStdWt,

where W is an F - Brownian motion and σ is a stochastic volatility. We denote
by X the log-price of the asset, that is

Xt = log

(
St
S0

)
.
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Recall that by a European (or European-style) option we mean any payo�ω(ST )
depending only on the value of S at the maturity time T .

2.1 Pricing options with Fast Fourier Transform

The �rst pricing method that we would like to describe relies on calculating
the characteristic function of the logarithmic price of an asset. The price of an
option itself is then computed numerically using the Fast Fourier Transform
algorithm. We shall start with recalling the de�nition of the bilateral Laplace
transform.

De�nition 2.1.1. Let f : R→ R be a Borel measurable function. The bilateral
Laplace transform of f is given by the formula

B
{
f
}

(z) =

∫ ∞
−∞

e−ztf(t)dt, z ∈ D,

whereD is a vertical strip inC such that the above integral converges for z ∈ D,
i.e. D =

{
z ∈ C :

∫∞
−∞ |e

−<(zt)f(t)|dt <∞
}

.

Note that if f : R → R+ is a probability density function, then its bilateral
Laplace transform is connected with its (generalized) characteristic function
(denoted by φf ) by the formula

B
{
f
}

(z) = φf(iz).

The method relies on the following theorem on inverting the Laplace transform.
The proof may be found in the book of Widder [64].

Theorem 2.1.2 ([64, Theorem VI.5b]). Let f : R → R be a locally integrable
function. Assume there exists R ∈ R such that∫ ∞

−∞
|e−Rtf(t)|dt <∞.
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Assume additionally that f is of bounded variation in the neighbourhood of t0 ∈
R. Then

1

2

(
lim
t→t+0

f(t) + lim
t→t−0

f(t)

)
=

1

2πi
lim
T→∞

∫ T

−T
B {f} (R + yi)e(R+yi)t0dy.

Consider a European option with payo� ω(ST ) at �xed time T and let v(x) :=
ω(e−x) be the modi�ed payo� function. Let ζ = − ln(S0). The following theo-
rem obtained by Raible gives a formula for the price of the option as a function
of ζ .
Theorem 2.1.3 ([51, Theorem 3.2]). Assume that a mapping x 7→ e−Rx|v(x)| is
bounded and integrable for some R ∈ R, and R is such that Ee−RXT <∞. Then
the price of the option ω at time 0, that is Πω(ζ), is equal to

Πω(ζ) =
eζR−rT

2π
lim
s→∞

∫ s

−s
eiuζB

{
v
}

(R + ui)φXT
(−u+Ri)du, (2.1.1)

where φXT
(z) := EeizXT , z ∈ C.

Proof. We will present the sketch of proof for the conveniece of the reader. In
[51] the theorem was proved for exponential Lévy models, that is models where
(Xt)t≥0 is a Lévy process. However, this property is not necessary for the proof.
Let us denote by fXT

the density function of the log-price XT . Then the price
of the option ω at time 0 as a function of ζ can be formulated as the convolution
of fXT

and v. Indeed

erTΠω(ζ) = Eω(ST ) = Eω(S0e
XT ) = Ev(ζ −XT ) =

∫
R
v(ζ − x)fXT

(x)dx

= v ∗ fXT
(ζ).

By the assumptions there exist the bilateral Laplace transforms of v and fXT
at

points R + yi, y ∈ R, and since the function x 7→ e−Rx|v(x)| is bounded, the
Laplace transform of Πω is equal to

B {Πω} (R + yi) = e−rTB {v} (R + yi)B {fXT
} (R + yi)

= e−rTB {v} (R + yi)φXT
(−y +Ri)

The assertion follows from theorem 2.1.2.
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Using this approach one can price any European option as long as it is possi-
ble to derive a closed formula for the Laplace transform of its modi�ed payo�
function. In Table 2.1 we present the examples of European-style call options
together with the Laplace transforms of their modi�ed payo� functions. By
Πω(ζ;K) we denote the price of an option with strikeK . In the last column we
present the relation between the price for general K and the price for K = 1.
The derivation of the formulas for standard European, symmetric power and
self-quanto options can be found in [51, Section 3.4]. The Laplace transform for
the asymmetric power options may be obtained following the same method.

Table 2.1: Laplace transforms of the modi�ed payo� functions for European options.

Option Payo�
ω(ST ;K)

Laplace transform
B
{
v(x)

}
,K = 1

Price Πω(ζ;K)
for generalK

Standard
European

(ST −K)+ 1
z(1+z)

, <(z) < −1 KΠω(ζ+lnK; 1)

Symmetric
power

(
(ST −K)+

)α Γ(−z−α)Γ(α+1)
Γ(−z+1)

, <(z) < −α KαΠω(ζ +
lnK; 1)

Asymmetric
power

(SαT −K)+ 1
z(1+z/α)

, <(z) < −α KΠω(ζ + lnK
α

; 1)

Self-quanto ST (ST −K)+ 1
(z+1)(z+2)

, <(z) < −2 K2Πω(ζ +
lnK; 1)

The inverse Laplace transform in the formula (2.1.1) may be approximated by a
sum and then calculated using the Fast Fourier Transform algorithm. Given a
vector (gn)n=0,...,N−1 of complex numbers, the FFT computes the vector
(Gk)k=0,...,N−1, where

Gk :=
N−1∑
n=0

e2πi
nk
N gn, (2.1.2)

where typically, for the purpose of e�ciency, N is an integer power of 2. The
algorithm reduces the number of multiplications in the requiredN summations
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from an order ofN 2 to that ofN log2N and was �rst introduced by Cooley and
Turkey in [20].

In order to apply this method we need to approximate the integral in (2.1.1) by
a sum. The integral is of the form∫ ∞

−∞
eiutg(t)dt,

where
g(t) = B

{
v(x)

}
(R + ti)φXT

(−t+Ri).

Note that g is a hermitian function in the sense that g(−t) = g(t). We approxi-
mate the integral using Simpson quadrature. First, we truncate it at points −A
andA, whereA ∈ R, and divide the interval [−A,A] into 2N small intervals of
length h = A

N each. Using Simpson quadrature and the property g(−t) = g(t)
we obtain∫ ∞

−∞
eiuxg(t)dt ≈ 2h

3
<
[N−1∑
n=0

eiunhg(nh)(3 + (−1)n+1 − δn)
]
,

where

δn =

{
1, n = 0,

0 otherwise.

Now taking uk = 2πk
A we see that the sum is of the form (2.1.2). By (2.1.1) and

Table 2.1 each uk corresponds to the strike priceKk = exp
(
α(2πkA − ζ)

)
in case

of asymmetric power options and to Kk = exp(2πkA − ζ) in other cases (see the
last column in Table 2.1). Thus one computation of FFT returns option prices for
the whole sequence of strike prices. Note that k ≥ 0 implies that in this case we
only price out-of-the-money options. However, one can as well compute vector
(Gk) for k = −N

2 , . . . ,
N
2 − 1, which allows to price also in-the-money options.

In fact, the most interesting for the investors are at-the-money options, which
correspond to k close to zero. For more details about the application of FFT
methods to option pricing see [17] and [51].
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2.2 Pricing options based on moments

The pricing method described in the previous section is valid only for the op-
tions for which we can derive analytically the Laplace transforms of the modi-
�ed payo� function. In this section we will present the method which relies on
computing moments of the asset price and then estimating the density of the
asset price based on the moments. Given the density, we can price numerically
any derivative whose payo� is ω(ST ).

The problem of recovering the unknown density from the sequence of moments
was discussed for example in D’Amico et. al [22] and Lin [44]. In particular, Lin
proved the following theorem.

Theorem 2.2.1 ([44, Theorem 1]). LetX be a positive random variable such that
EXs <∞ for some s > 0. Let (αj)j=0,1,2,... be a sequence of positive and distinct
numbers converging to α ∈ (0, s). Then the sequence of moments (EXαj)j=0,1,2,...

characterizes uniquely the distribution of X .

In practice we usually deal with �nite sequence of moments, and we need to
choose a good approximation of the true density. We will use the Maximum
Entropy density as the estimator.

Suppose we are given �rst M elements α1, . . . , αM of the in�nite sequence
(αj)j=1,2,... satisfying the conditions from Theorem 2.2.1. Let α0 = 0 and µj :=
EXαj for j = 0, . . . ,M. Then we de�ne fMX as the solution to the problem of
maximization of the entropy

H(f) = −
∫ ∞
0

f(x) log f(x)dx (2.2.1)

under the constraints ∫ ∞
0

xαjfMX (x)dx = µj. (2.2.2)
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In fact (see [22]), the ME density is of the form

fMX (x) := exp
(
−

M∑
j=0

λjx
αj
)
, x ∈ (0,∞), α0 = 0, (2.2.3)

where the coe�cients λ1, . . . , λM are derived by maximizing 2.2.1 under con-
straints 2.2.2. For further information on Maximum Entropy density see [22].
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Chapter 3

Moments and Mellin Transform in the
Stein and Stein model

3.1 Introduction

In this chapter we derive closed-form formulas for the moments and the Mellin
transform of the asset price in the Stein and Stein stochastic volatility model. We
then apply the results to price power and self-quanto options using numerical
methods.

The Stein and Stein model is an example of stochastic volatility model, where
the volatility of a �nancial asset’s price is another stochastic process, possibly
correlated with the asset price. The subject of stochastic volatility models, very
important for �nancial markets, has been studied in many articles and mono-
graphes (see for instance [36, 32, 40, 53]). For most of the stochastic volatility
models the closed formulas describing their distribution are not known. There-
fore, some numerical techniques have to be applied to obtain derivatives prices,
moments and other quantities of the distribution of the asset price (see [60] and
[33]). Under some constraints, we deliver closed formulas for moments and the
Mellin transform in the Stein and Stein model, one of the important models
for applications (see [62] or [29]). In the original paper of Stein and Stein [62],
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the closed formulas for asset price distribution were obtained assuming that the
noises driving the asset’s price and its volatility are uncorrelated. In this chapter
we omit this restrictive assumption. The formula for the price of the European
call option in the case of correlated noises was obtained by Schöbel and Zhu in
[59]. However, our result is more general and may be used for pricing a wide
class of �nancial derivatives.

The motivation for our work comes from the variety of applications of both
Mellin transform and moments of the asset price. There are many valuation
and calibration methods for stochastic volatility models based on computation
of moments, for example the generalized method of moments (see [34, 4]), ef-
�cient method of moments (see [3, 30]) or pricing methods of �nancial deriva-
tives (see [50, 43, 22]). The application described in [22] is also discussed in
Chapter 2.2. On the other hand, Mellin transform, which is a Laplace transform
of the logarithm of the asset price, �nds many applications in option pricing,
see Chapter 2.1 for some of them and [17, 51, 28, 57] for many more. Other
applications of moments in �nancial models can be found in [2] or [38]. In this
chapter we illustrate how the formulas for moments and Mellin transform can
be used in derivatives pricing. Some of the numerical methods employed here
were already described in Chapter 2.

The chapter is organized as follows. In Section 2 we derive the formulas for
moments and Mellin transform of the asset price. In Section 3 we illustrate
our results with some numerical examples of pricing �nancial derivatives. We
present di�erent approaches based on computing either Mellin transform or
moments of the underlying’s price. The �rst is a generalization of the result
obtained by Schöbel and Zhu to the case of asymmetric power options. The
second method consists of computing Laplace transform of the modi�ed payo�
function and the Mellin transform of the asset price. The pricing formula de-
mands inverting Fourier transform, which can be done using the Fast Fourier
Transform algorithm. This technique is widely used for exponential Lévy mod-
els (see [17, 51]), and allows to valuate a wide class of European options. In
the third approach we use a �nite sequence of fractional moments to �nd the
approximate density of the asset price. Given a density we are able to price nu-
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merically any derivative whose payo� depends only on the asset price at time
T . We end this section with a comparison between the described methods.

3.2 Moments andMellin transformof the asset price in the
Stein and Stein model

We consider a market de�ned on a complete probability space (Ω,F ,P) with
�ltration F = (Ft)t∈[0,T ], T < ∞, satisfying the usual conditions and with
F = FT . Without loss of generality we assume that r = 0, so the savings
account B is constant and equal to one. Moreover, we assume that the price St
of the underlying asset at time t has a stochastic volatility σt being an Ornstein-
Uhlenbeck process, so the dynamics of the proces S is given by

dSt = σtStdWt, S0 = 1 (3.2.1)

and the vector (S, σ) is given by system of SDE consisting with (3.2.1) and

dσt = −λσtdt+ dZt, σ0 = 1, (3.2.2)

where λ > 0 is a �xed parameter. The processes W,Z are correlated Brownian
motions, d〈W,Z〉t = ρdt with ρ ∈ (−1, 1). Observe that the process S has the
form

St = e
∫ t
0
σudWu− 1

2

∫ t
0
σ2
udu, (3.2.3)

and this is the unique strong solution of SDE (3.2.1) on [0, T ]. The existence
and uniqueness follow directly from the assumptions on σ and the well known
properties of stochastic exponent (see, e.g., Revuz and Yor [54]). There is no
arbitrage on the market so de�ned, since the process S is a local martingale.
For further information on the Stein and Stein model see Chapter 1.1 and [62].

Notice that we can represent W as

Wt = ρZt +
√

1− ρ2Vt, (3.2.4)
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where (V, Z) is a standard two-dimensional Wiener process. Using (3.2.3) and
(3.2.4) we can express the moment of order α of S as

ESαt = E exp

(
αρ

∫ t

0

σudZu + α
√

1− ρ2
∫ t

0

σudVu −
α

2

∫ t

0

σ2udu

)
= E exp

(
αρ

∫ t

0

σudZu +
α2(1− ρ2)− α

2

∫ t

0

σ2udu

)
.

(3.2.5)

3.2.1 Moments of the asset price

In this subsection we present three results giving closed formulas of moments
of order α of the asset price, under di�erent assumptions on α and on the pa-
rameters of the model. These results require di�erent techniques of proof. In
the �rst one (Theorem 3.2.1) we consider process S in the neighbourhood of
zero and we �nd a probability measure under which σ is a Brownian Motion.
This allows us to apply the known formula for the Laplace transform of a vec-
tor (σ2t ,

∫ t
0 σ

2
sds). The next two results are based on the fact that R = σ2 is

a squared radial Ornstein-Uhlenbeck process and are valid for all t ∈ [0, T ].
Theorem 3.2.3 covers the case when αρ ≤ 0, where we can directly apply the
formula for the Laplace transform of some functionals of R, which were calcu-
lated in [39]. In Theorem 3.2.6 we consider the case when αρ ≤ 0, where we
use solve a Cauchy problem in order to obtain Ee−γ1Rt−γ2

∫ t
0
Rudu.

The �rst method relies on a direct calculation of Brownian functionals which
appear in (3.2.5). For t in a neighborhood of zero we �nd an exact value of ESαt
for some α.
Theorem 3.2.1. Let, for �xed ρ ∈ (−1, 1), λ > 0,

a1 =
1− 2ρλ−

√
1 + 4λ(λ− ρ)

2(1− ρ2)
, a2 =

1− 2ρλ+
√

1 + 4λ(λ− ρ)

2(1− ρ2)
and b be the unique positive solution of equation x(1− e−2x) = 2. If

i) ρ = 0, α ∈ (a1, a2)
or
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ii) ρ 6= 0, α ∈ (a1,min(a2, λ/ρ)),

then for t ∈ [0, b/λ),

ESαt =
(

cosh(γt) +
λ− ρα
γ

sinh(γt)
)− 1

2

exp
((1 + t)(λ− ρα)

2

)
× exp

(γ2 + (λ− αρ)γ coth(γt)

2γ coth(γt) + 2(λ− αρ)

)
,

where

γ :=
(λ2

2
− αρλ+

α

2
− (1− ρ2)α

2

2

)1/2
. (3.2.6)

Proof. De�ne the measure Q by

dQ
dP

∣∣∣
Ft

= eλ
∫ t
0
σudZu−λ

2

2

∫ t
0
σ2
udu.

Clearly, for each t, σt is a Gaussian random variable with mean Eσt = e−λt and
variance

Var(σt) =
1

2λ
(1− e−2λt).

By assumption on t we have λt
2 (1 − e−2λt) < 1, so using the Jensen inequality

and the exact value of Ee tλ
2

2 σ2
u for u < t we obtain

Ee
λ2

2

∫ t
0
σ2
udu ≤ E

(
1

t

∫ t

0

e
tλ2

2 σ2
udu

)
=

1

t

∫ t

0

Ee
tλ2

2 σ2
udu

=
1

t

∫ t

0

1√
1− tλ

2 (1− e−2λu)
exp

(
tλ2e−2λu

2− tλ(1− e−2λu)

)
du

<
1

t

∫ t

0

etλ
2/2√

1− tλ
2 (1− e−2λu)

du <∞.

Thus, by the Novikov criterion, Q is a probability measure. Observe, by the
Girsanov theorem, that the process σ, under Q, is a Brownian motion starting
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from 1. Formula (3.2.2) implies∫ t

0

σudZu =
1

2

(
σ2t − (t+ 1)

)
+ λ

∫ t

0

σ2udu, (3.2.7)

so, from (3.2.5), we obtain

ESαt = e−(t+1)αρ−λ2 EQe
αρ−λ

2 σ2
t+

2λαρ−λ2+α2(1−ρ2)−α
2

∫ t
0
σ2
udu.

The assumption on α implies that −2λαρ−λ2+α2(1−ρ2)−α
2 ≥ 0 and β := 1

2(λ −
ρα) ≥ 0, so γ given by (3.2.6) is well de�ned and

ESαt = e(1+t)βEe−βB2
t−

γ2

2

∫ t
0
B2
udu,

Since γ ≥ 0 and β ≥ 0, we can use the form of the Laplace transform of
(B2

t ,
∫ t
0 B

2
udu), whereB is a Brownian motion starting from 1 (see Mansuy and

Yor [46] p.18). In result we obtain

ESαt = e(1+t)β
(

cosh(γt) +
2β

γ
sinh(γt)

)− 1
2

exp
(γ2 + 2βγ coth(γt)

2γ coth(γt) + 4β

)
,

which �nishes the proof.

Remark 3.2.2. The condition α2 > 0 is satis�ed provided that
i) ρ ∈ (−1, 0) and −ρ ≤ λ(1 + ρ)

or
ii) ρ ∈ [0, 1).

The second method of computing moments of S relies on the closed form of
the Laplace transform of vector (Rt,

∫ t
0 Rudu), where R is a squared radial

Ornstein-Uhlenbeck process. This Laplace transform was computed in Propo-
sition 3.17 in [39].

Recall that a radial Ornstein-Uhlenbeck process with parameters δ/2−1, δ ∈ R
and κ > 0 is given by

ζt = x+ 2

∫ t

0

√
ζsdZs +

∫ t

0

(δ − 2κζs)ds.
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Then by Proposition 3.17 in [39] we have

Ee−ηζt−γ
∫ t
0
ζudu = e−xφ(t,η)−ψ(t,η)

for η ≥ 0, γ > 0, where

φ(t, η) = a+
(η − a)(2a+ κ)

e2t(κ+2a)(a+ κ+ η) + a− η
, a =

√
κ2 + 2γ − κ

2
,

ψ(t, η) = δat− δ

2
ln
∣∣∣1 +

(η − a)(1− e2t(κ+2a))

e2t(κ+2a)(a+ η + κ) + a− η

∣∣∣.
Observe that if σ satis�es (3.2.2), then R = σ2 satis�es SDE

dRt = 2
√
RtdZt + (1− 2λRt)dt, R0 = 1, t ≥ 0, (3.2.8)

which is squared radial Ornstein-Uhlenbeck process with parameters−1
2 and λ

(see [16] p.141). Since σ given by (3.2.2) satis�es (3.2.7), equality (3.2.5) can be
expressed in terms of R as follows

ESαt = e−
αρ
2 (1+t)Ee−γ1Rt−γ2

∫ t
0
Rudu, (3.2.9)

where

γ1 = −αρ
2
, γ2 = −αρλ+

α

2
− (1− ρ2)α

2

2
. (3.2.10)

In the following theorem we use the formula from [39], hence in the assump-
tions we have to guarantee that γ1 ≥ 0 and γ2 > 0. In particular, the theorem
covers only the case when αρ ≤ 0.

Theorem 3.2.3. Let, for �xed ρ ∈ (−1, 1), λ > 0,

a1 =
ρλ

1− ρ2
, a2 =

1− 3ρλ

1− ρ2
, b1 = min(a1, a2), b2 = max(a1, a2),

and γ1 = −αρ
2 . Assume that α ∈ (b1, b2) and αρ ≤ 0. Then, for any t ≥ 0,

ESαt = e−
αρ
2 (1+t)−φ(t,γ1)−ψ(t,γ1),
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where

φ(t, z) = a+
(z − a)(2a+ λ)

e2t(λ+2a)(a+ λ+ z) + a− z
,

ψ(t, z) = at− 1

2
ln
∣∣∣1 +

(z − a)(1− e2t(λ+2a))

e2t(λ+2a)(a+ z + λ) + a− z

∣∣∣,
a =

√
λ2 + 2γ2 − λ

2
.

Proof. We use formula (3.2.9). First, by assumptions on α, we conclude that γ1
and γ2 given by (3.2.10) satisfy γ1 ≥ 0 and γ2 ≥ 0. Therefore, we can use the
closed form of Laplace transform of vector (Rt,

∫ t
0 Rudu) given in Proposition

3.17 in [39]. The result follows.

The last case we consider is αρ ≥ 0. We cannot use directly Proposition 3.17
in [39], but we can follow the methodology of obtaining it. We start from the
lemma giving uniqueness of solution of some Cauchy problem.

Lemma 3.2.4. Fix ρ, λ, and γ ≥ −λ2

2 . Let A ≤
λ+
√
λ2+2γ

2 and C =
−λ+
√
λ2+2γ

2 .
There exists at most one solution on [0,∞)× [−A,C] of the following problem

∂p(t, z)

∂t
=
(
γ − 2λz − 2z2

)∂p(t, z)
∂z

− zp(t, z), p(0, z) = e−z.

Proof. We follow the idea from Lemma 2.6 in [39]. Assume that p, q are solutions
of (3.2.4) and de�ne g = (p − q)2. We have g(0, z) = 0 for every z ∈ [−A,C],
and

∂g(t, z)

∂t
=
(
γ − 2λz − 2z2

)∂g(t, z)

∂z
− 2zg(t, z).

Let u(t, z) =
∫ C
z g(t, v)dv. Observe that for f(z) = γ − 2λz − 2z2 we have

f(C) = 0 and f(z) ≥ 0 for z ∈ [−A,C]. In result, integrating by parts yields
∂u(t, z)

∂t
= f(z)g(t, z)

∣∣∣C
z

+ 2

∫ C

z

(λ+ v)g(t, v)dv ≤ 2(λ+ C)u(t, z)

for z ∈ [−A,C], and the assertion follows from Gronwall’s lemma.
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Given the lemma, we can compute the moments of St in the case when αρ ≥
0, by solving a Cauchy problem connected to the functionals of the squared
Ornstein-Uhlenbeck process. We will �rst formulate the technical assumptions
of the theorem.

Let, for �xed ρ ∈ (−1, 1), λ > 0,

a1 =
1− 2ρλ−

√
1 + 4λ(λ− ρ)

2(1− ρ2)
, a2 =

1− 2ρλ+
√

1 + 4λ(λ− ρ)

2(1− ρ2)
.

(3.2.11)

Assumption 3.2.5. Let γ1 and γ2 be given by (3.2.10) and let a1, a2 be given by
(3.2.11). Denote by b the unique positive solution of the equation x(1− e−x) = 1.
Assume that

i) ρ ∈ [0, 1
2λ), α ∈

[
0, 1−2λρ1−ρ2

)
and α, t are such that

αρ < min

(
λ

1− e−2λt
, λ+

√
λ2 + 2γ2

)
or

ii) α ∈ (a1, a2), t ∈
(
0, b

2λ

)
and

0 ≤ αρ < min

(
λ

2 (1− e−2λt)
, λ+

√
λ2 + 2γ2

)
.

Theorem 3.2.6. Fix ρ ∈ (−1, 1), λ > 0. Let γ1 and γ2 be given by (3.2.10) and
assume that the Assumpion 3.2.5 is satis�ed. Then

ESαt = e−
αρ
2 (1+t)−x0(t,γ1)−at

√
1 +

(γ1 − a)(1− e2t(2a+λ))
e2t(2a+λ)(λ+ a+ γ1)− (γ1 − a)

,

where

a =

√
λ2 + 2γ2 − λ

2
,

x0(t, γ1) = a+
(γ1 − a)

√
λ2 + 2γ2

e2t
√
λ2+2γ2(1 +

√
λ2 + 2γ2)− (γ1 − a)

.
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Proof. Recall from (3.2.9) that

ESαt = e−
αρ
2 (1+t)Ee−γ1Rt−γ2

∫ t
0
Rudu,

where R is a radial squared Ornstein-Uhlenbeck process and γ1 and γ2 are de-
�ned by (3.2.10). Note that the assumptions on α, ρ and t imply that

E
∫ t

0

Rse
−2zRs−2γ2

∫ s
0
Rududs <∞ (3.2.12)

for all z ∈ [γ1, C], where C =
−λ+
√
λ2+2γ2
2 . De�ne the function

p(s, z) = Ee−zRs−γ2
∫ s
0
Rudu, z ∈ [γ1, C], s ∈ [0, t].

Using (3.2.8), Ito’s lemma for e−zRs−γ2
∫ s
0
Rudu and (3.2.12), we easily conclude

that p satis�es the Cauchy problem
∂p

∂s
=
(
γ2 − 2λz − 2z2

)∂p
∂z
− zp, p(0, z) = e−z, (3.2.13)

for z ∈ [γ1, C] and s ∈ [0, t]. Lemma 3.2.4 implies that this Cauchy problem has
at most one solution on [γ1, C] since we have

−2γ1 = αρ ≤ λ+
√
λ2 + 2γ2 and γ2 ≥ −

λ2

2
.

We �nd the unique solution of (3.2.12) using the characteristic method. We start
in the �rst step with the special Riccati equation

y′ = 2y2 + 2λy − γ2, y(0) = x0.

The solution has the form

y(s, x0) = a+
e2s
√
λ2+2γ2(x0 − a)

√
λ2 + 2γ2√

λ2 + 2γ2 + (x0 − a)(1− e2s
√
λ2+2γ2)

, (3.2.14)

where a =

√
λ2+2γ2−λ

2 (see Eqworld [1, Section 1 point 8] - the special Riccati
equation Case 2). It follows from the last equality that x0 expressed in terms of
y is equal to

x0(s, y) = a+
e−2s
√
λ2+2γ2(y − a)

√
λ2 + 2γ2√

λ2 + 2γ2 + (y − a)(1− e−2s
√
λ2+2γ2)

.
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Let v(s, x0) = p(s, y(t, x0)). Using (3.2.13), we obtain for �xed x0

v′(s, x0) =
∂

∂s
p
(
s, y(s, x0)

)
+

∂

∂z
p
(
s, y(s, x0)

)
y′(s, x0)

= y(s, x0)p
(
s, y(s, x0)

)
= y(s, x0)v(s, x0),

which has the solution

v(s, x0) = v(0, x0)e
−
∫ s
0
y(u,x0)du = e−x0−

∫ s
0
y(u,x0)du.

It is not di�cult to observe that∫ s

0

y(u, x0)du = as− 1

2
ln
(√λ2 + 2γ2 + (x0 − a)(1− e2s

√
λ2+2γ2√

λ2 + 2γ2

)
.

The �nal step of characteristic method yields that

p(s, z) = v(s, x0(s, z))

= e−x0(s,z)−as

√√√√√λ2 + 2γ2 + (x0(s, z)− a)(1− e2s
√
λ2+2γ2)√

λ2 + 2γ2

= e−x0(s,z)−as

√
1 +

(z − a)(1− e2s(2a+λ))
e2s(2a+λ)(λ+ a+ z)− (z − a)

.

The assertion follows after inserting p(t, γ1) in the formula (3.2.9).

3.2.2 Mellin transform

In this subsection we obtain the Mellin transform of the asset price under more
restrictive assumptions. We start with recalling the de�nition.

De�nition 3.2.7. For a positive random variable ξ we de�ne the Mellin trans-
form of ξ as

f(z) = Eξz, z ∈ D,
where D is a vertical strip in C such that ξz is integrable for z ∈ D.
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For �xed λ, ρ we put
α∗ =

1− 2λρ

1− ρ2
(3.2.15)

and A = {z ∈ C : <z ∈ [0 ∧ α∗, 0 ∨ α∗]}. Next, for z ∈ C we de�ne

s1 = s1(z) =
ρ

2
z, s2 = s2(z) = −z

2

(
z(1− ρ2) + 2λρ− 1

)
. (3.2.16)

DenoteXt = lnSt. The next theorem generalizes the result obtained by Schöbel
and Zhu in [59, Appendix A].

Theorem 3.2.8. Fix λ > 0. Assume ρ ∈ (−1, 0] ∪ [ 1
2λ , 1). Fix z ∈ A and

t ∈ [0, T ]. Let

β1 =
√
λ2 + 2s2, β2 =

λ− 2s1
β1

.

Then
E(ezXT |Ft) = ezXt− 1

2zρ(σ
2
t+(T−t))+ 1

2G(T−t)σ
2
t+H(T−t), (3.2.17)

where

G(t) = λ− β1
sinh(β1t) + β2 cosh(β1t)

cosh(β1t) + β2 sinh(β1t)
, (3.2.18)

H(t) =
1

2

(
λt− `

(
cosh(β1t) + β2 sinh(β1t)

))
, (3.2.19)

and ` denotes the branch of a complex logarithm of the function cosh(β1t) +
β2 sinh(β1t).

Proof. The idea of the proof is similar to the one in [59], where the formula was
derived for z = 1 + φi and z = φi. Here we give a proof for the whole strip A,
taking special care of the assumptions on z and ρ, which are chosen in such a
way that the assumptions of the Feynman-Kac theorem are satis�ed.

First, note that the assumptions on z and ρ imply<s1 ≤ 0 and<s2 ≥ 0. Indeed,
denoting z = x+ yi we get <(s1) = xρ

2 ≤ 0 and

<s2 = −1

2
x2(1− ρ2) +

1

2
x(1− 2λρ) +

1

2
y2(1− ρ2)

≥ −1

2
x
(
(1− ρ2)x− (1− 2λρ)

)
≥ 0.
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Hence
E|es1σ2

T−s2
∫ T
0
σ2
t dt| ≤ 1.

From (3.2.1), (3.2.2) and (3.2.4) we obtain

E
(
ezXT

∣∣Ft) = ezXtE
[

exp
(
z

∫ T

t

σsdWs −
1

2
z

∫ T

t

σ2sds
)∣∣∣Ft] = ezXt− 1

2zρ(σt+(T−t))

× E
[

exp
(1

2
ρzσ2T + z

(
(λρ− 1

2
)

∫ T

0

σ2t dt+
√

1− ρ2
∫ T

0

σtdVt
))∣∣∣Ft]

= ezXt− 1
2zρ(σ

2
t+(T−t))E

(
es1σ

2
T−s2

∫ T
0
σ2
t dt
∣∣∣Ft).

Consider a function p : R× [0, T ]→ C satisfying the following PDE

1

2

∂2p

∂y2
− λy∂p

∂y
+
∂p

∂t
− s2y2p = 0, y ∈ R, t ∈ [0, T )

p(y, T ) = es1y
2

.

(3.2.20)

We will seek the solution of the form

p(y, t) = exp
(1

2
A(t)y2 +B(t)

)
.

By (3.2.20), A and B must satisfy system of equations

A′ = −A2 + 2λA+ 2s2, A(T ) = 2s1
B′ = −1

2A, B(T ) = 0.

The solution to the �rst equation is of the form

A(t) = λ− β1
(β2 + 1)eβ1(T−t) + (β2 − 1)e−β1(T−t)

(β2 + 1)eβ1(T−t) − (β2 − 1)e−β1(T−t)

(see Eqworld [1, Section 1 point 8] – the special Riccati equation Case 2). Next,
integrating the above function we derive the formula for B. Denoting

γ1(u) =
β2 + 1

β2 − 1
− e−2β1(T−t)

γ2(u) = −β2 − 1

β2 + 1
− e2β1(T−t), t ∈ [0, T ]
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we get

B(t) =
1

2
λ(T − t)− 1

4

[∫
γ1

1

u
du+

∫
γ2

1

u
du

]
=

1

2
λ(T − t)− 1

2
`
(

cosh(β1(T − t)) + β2 sinh(β1(T − t))
)
.

Note that from the assumptions on z we have <A(t) ≤ 0, so for all y ∈ R and
all t ∈ [0, T ]

|p(y, t)| = |e
1
2A(t)y

2+B(t)| ≤ e<B(t).

Hence by the Feynman-Kac formula (see [41, Theorem 5.7.6]) p admits a stochas-
tic representation

p(y, t) = E
(
es1σ

2
T−s2

∫ T
t
σ2
sds
∣∣σt = y

)
, y > 0, t ∈ [0, T ].

Thus, since
E
(
ezXT

∣∣Ft) = ezXt− 1
2zρ(σ

2
t+(T−t))p(σt, t),

we obtain (3.2.17), where G(t) = A(T − t), H(t) = B(T − t).

Remark 3.2.9. From Theorem 3.2.8, taking t = 0 and z = α, we obtain the
formula for ESαT . Moreover, if ρ is as in Theorem 3.2.8 and α ∈ [0∧α∗, 0∨α∗],
α∗ = 1−2λρ

1−ρ2 , then it is easy to check that the assumptions of Theorem 3.2.3 are
satis�ed and we obtain the formula for ESαT which coincides with the result of
Theorem 3.2.8.

Remark 3.2.10. To obtain a continuous branch of the complex logarithms de-
�ned in the above theorem it is enough to determine the branches of arguments
of the integration paths γ1 and γ2 which appeared in the proof. Towards this end
one has to calculate how many times the paths circuit 0. Note that this depends
on the values of β1 and β2, so while integrating the Mellin transform ESzT with
respect to =z (which will be of our interest for the purpose of pricing �nancial
derivatives) one has to estimate this number on each step of integration.
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3.3 Option pricing

In this section we present the applications of moments and the Mellin transform
computed before in pricing options in Stein and Stein model. We consider the
market de�ned in the previous section, but we allow S0 to be any number c > 0.
Note that in this case the process S̃t := St

c satis�es the equation

dS̃t = σS̃tdWt, S̃0 = 1.

Hence we can apply the theorems from Section 2 to S̃. In particular,

St = ceXt,

where Xt = ln(S̃t). Before we present the numerical results (Section 3.3.2), let
us discuss the methods used.

3.3.1 Methods of pricing

In the section we compare three di�erent methods of pricing European options,
in which use either moments or the Mellin transform of the asset price.

We will start with presenting the application of Mellin transform in pricing
power options via Gil-Pelaez inversion formula. The following proposition gen-
eralizes the result obtained in [59] (for α = 1) to the case of asymmetric power
options, that is options with payo� (SαT −K)+. Such generalization is possible
due to the Mellin transform derived for the whole strip A in C.

Proposition 3.3.1. Fix λ > 0. Let ρ be as in Theorem 3.2.8, i.e. ρ ∈ (−1, 0] ∪
[ 1
2λ , 1). Let α∗ be given by (3.2.15) and let α ∈ [0 ∧ α∗, 0 ∨ α∗]. Then the price of
the asymmetric power option in Stein and Stein model is given by

E(SαT −K)+ = F1

(1

c
K

1
α

)
ESαT − cαKF2

(1

c
K

1
α

)
, (3.3.1)
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where

Fk(a) =
1

2
+

1

π

∫ ∞
0

Re
(
fk(u)

exp(−iu ln a)

iu

)
du, k = 1, 2,

and
f1(u) =

f(α + iu)

f(α)
, f2(u) = f(iu),

for f(z) = EezXT .

Proof. We introduce an equivalent change of measure. Let P̃ be given by

dP̃
dP

=
S̃αT
ES̃αT

.

For a > 0 denote

F1(a) = P̃(XT > ln a), F2(a) = P(XT > ln a).

Then

E(SαT −K)+ = ESαT P̃
(
XT >

lnK

α
− ln c

)
− cαKP

(
XT >

lnK

α
− ln c

)
= ESαTF1(K

1
α )− cαKF2(K

1
α ).

Let f1 and f2 be the characteristic functions of xT respectively in measures P̃
and P. Then

f1(u) = EP̃e
iuXT =

1

ES̃αT
ES̃αTeiuXT =

f(α + iu)

f(α)
.

The assertion follows from the Gil-Pelaez inversion formula [31].

Note that numerical computation of the integrals appearing in the proposition is
not trivial due to the oscillatory behaviour of the integrand and even for simple
quadratures computing one integral is time-consuming. If we are interested
in pricing options for a whole sequence of strike prices Kn, this method may
appear to be too slow. In the following section we will compare it with two
other methods.
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The second method relies also on calculating the Mellin transform of the asset
price and is a direct application of the Theorem 2.1.3. Recall that for an option
with payo� ω(ST ) we de�ne its modi�ed payo� function as v(x) = ω(e−x).
Then – under some technical assumptions (see Chapter 2.1) – the price of an
option, as a function of ζ := − ln(S0), can be calculated as

Πω(ζ) =
eζR

2π
lim
s→∞

∫ s

−s
eiuζB

{
v(x)

}
(R + ui)φXt

(−u+Ri)du

=
eζR

2π
lim
s→∞

∫ s

−s
eiuζB

{
v(x)

}
(R + ui)f(−R− ui)du,

(3.3.2)

where f(z) = EezXt = ES̃zT . The result does not depend on R as long as it lies
in the right interval (see Theorem 2.1.3).

In order to compute the inverse Laplace transform from 3.3.2 we will use the
Fast Fourier Transform algorithm described in Section 2.1. Note that this allows
us to compute option’s prices for various strikes at once.

The third method is based on computing a �nite sequence moments of the asset
price (ESαiT )i=1,...,N = (µi)i=1,...,N and then estimating the density of ST as the
Maximum Entropy density fME subject to the constraints

∫∞
0 xαjfME(x) = µj

for j = 1, . . . , N . Given the density, we can calculate numerically any deriva-
tive whose payo� depends only on the price ST at time T . For more details
about the method see Section 2.2 and the references therein.

3.3.2 Numerical examples

In this section we compare prices of various European options computed us-
ing methods presented above. The results obtained by all the 3 methods are
very close and con�rm the accuracy of implementation (see also the discussion
below).

We �rst consider an asymmetric power option in Stein and Stein model with
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parameters S0 = 100, ρ = −0.5, λ = 1, where the powers are α = 1 (standard
European call option), α = 1

2 and α = 1
3 . We price the options following Max-

imum Entropy method (ME), Fast Fourier Transform (FFT) and the Gil-Pelaez
inversion formula from Proposition 3.3.1 (GP). The results for di�erent values
of α are displayed on Figure 3.1.

The prices are computed for a sequence of strike prices (Kk)k=−50,−49,...,50, where
Kk = exp

(
α(2πkhN − ζ)

)
for ζ = log(S0), N = 213 and the discretization step

h = 0.05.
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Figure 3.1: Prices of standard European options (left) and asymmetric power options for α = 1
3

(right) for varying values of strike price K .

All three methods give similar results, however there are some di�erences,
mostly for at-the-money options. For small values of the strike price K the ME
method and FFT method prove to be consistent, while the price in GP method
increases faster as the strike price tends to zero. In case of the options with high
strike prices all three methods give the same results.

In the next example we price self-quanto options for S0 = 50, ρ = −0.5 and
λ = 1. Recall that a self-quanto option is an option with payo� ω(ST ) =
ST (ST −K)+ (see also Table 2.1). The results are shown in Figure 3.3. In this
case the the FFT and ME methods give similar results for K in the neighbor-
hood of 70, however when K decreases, the ME price increases faster than the
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Figure 3.2: Prices of asymmetric power options for α = 1
2

and varying values of strike price K .

FFT price. Detailed results are presented in Table 3.1, where we separate the
cases where the prices are the most consistent.

Note that for large number M of strike prices the FFT method seems to be
the fastest, since it returns all the prices in one computation. The ME method
appears to be of similar complexity as FFT, as the time used by the process was
(in average) only 30−50% longer than in case of FFT. However, the most time-
consuming in this approach is computing the density, which can be done once
for a given set of parameters. As it was noted before, the GP approach requires
calculating M integrals of high computational complexity, making it the most
time-consuming among the three methods. In fact, computation via GP formula
performed to be in average �ve times slower than FFT for all types of options.
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Figure 3.3: Prices of self-quanto options, S0 = 50, ρ = −0.5, λ = 1.
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Figure 3.4: Prices of self-quanto options, S0 = 50, ρ = −0.2, λ = 2.5
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Table 3.1: Prices of self-quanto options for selected strike prices K and various model parame-
ters

ρ = −0.5, λ = 1 ρ = −0.2, λ = 2.5
Strike K FFT ME FFT ME

50 1765.96 1786.21 1046.70 1079.50
60.10 1443.03 1459.08 767.25 784.84
68.99 1204.09 1211.39 575.94 580.10
71.14 1152.52 1156.97 536.44 537.74
72.24 1127.02 1129.92 517.15 517.07
73.35 1101.74 1102.98 498.17 496.76
74.49 1076.67 1076.18 479.51 476.82
80.42 955.15 944.62 391.16 383.04
85.51 863.13 843.03 326.59 315.71
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Chapter 4

Time change equations for Markov
chains – Markov consistency and
regime-switching di�usions

4.1 Introduction

In this chapter we consider inhomogeneous time change equation induced by
Markov chains, that is a family of random variables satisfying the equation

τt =

∫ t

0

g(s,Xτs)ds,

for a Borel measurable function g : [0,∞) × E → [0,∞) and a �nite Markov
chain X . The inhomogeneity refers to the fact that the integrated function g
depends on time, which makes the time-changed process (Xτt)t≥0 time inho-
mogeneous. In the �rst part of the paper we prove existence and uniqueness of
solution of the equation under mild assumptions on g.

The time change equations in the homogeneous case, i.e. when g(s, x) ≡ g(x),
were studied for general Markov processes in the book of Ethier and Kurz [27,
Chapter 6], and more recently by Krühner and Schnurr in [42]. For the inhomo-
geneous case, there is a recent paper of Döring et al. [23], who prove the exis-
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tence and uniqueness of solution for general Markov processes. However, their
assumptions on g are rather strict and technical, whereas for Markov chains the
assumptions on g are quite natural and one can give an explicit construction of
solution. Such a construction is very useful for applications, since it allows to
simulate the paths of τ , and hence also the paths of (Xτt)t≥0 (see Section 4.5).

Change of time is a useful tool both from the point of view of the theory of
stochastic processes, and from the point of view of applications. It is well known
that some processes with complicated structures can be represented as time-
changed "simpler" processes (e.g. the famous Dambis, Dubins, Schwarz theo-
rem states that every continuous local martingaleM withM0 = 0, 〈M〉∞ =∞
is a time changed Brownian motion). The inhomogeneous time change equa-
tions were recently applied to solve the general Skorohod embedding problem
in the paper of Döring et al. [24]. Some of the other techniques in stochastic
analysis that are based on change of time may be found in the book of Barndor�-
Nielsen and Shiryaev [7]. On the other hand, there are various applications of
the change of time in mathematical �nance – for example to introduce stochas-
tic volatility to the model (see e.g. Carr, Wu [18] in the context of Lévy processes
or Mendoza-Arriaga, Linetsky [48] for multivariate subordination). In particu-
lar, representing asset price process with stochastic volatility as time-changed
exponential Lévy process (as in [18]) simpli�es the calculation of characteristic
function of the log-price, which may be used for numerical pricing of �nancial
derivatives. Other applications in mathematical �nance are summarized in the
article by Swischchuk [63].

In Section 4.2 we prove existence and uniqueness of solution of equation (4.2.1)
and study some properties of the time-changed Markov chain. Section 4.3 is
devoted to the in�uence of the change of time on a Markov consistency property
of X . This part of our study is a continuation of works by Bielecki et al. in
e.g. [11, 12, 13, 15]. Recall that a d-dimensional Markov process Z is Markov
consistent if all of its components have Markov property. More precisely, for
i ∈ {1, . . . , d} we have the following de�nition (see [13]).

De�nition 4.1.1. We say that Markov process Z = (Z1, . . . , Zd) on the state
spaceE1×· · ·×Ed satis�es strong Markovian consistency property with respect
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to the i-th coordinate if Z i is a Markov process with respect to the �ltration of
the process Z , i.e. if for any B ∈ B(Ei) and all t, s > 0

P(Z i
t+s ∈ B|FZ

t ) = P(Z i
t+s ∈ B|Z i

t),

where FZ is the �ltration generated by the whole process Z . We say that Z
satis�es the strong Markovian consistency property if it satis�es the strong
Markovian consistency property with respect to the i-th coordinate for all i ∈
{1, . . . , d}.

Since in the paper we focus mainly on the strong Markov consistency property,
we will refer to it as a Markov consistency property.

In this part we formulate the conditions on g for a change of time to preserve
Markov consistency property. Moreover, we study whether it is possible to
impose Markov consistency property via an appropriate change of time. These
considerations lead us to de�ne a new class of Markov processes, which we
call quasi Markov consistent. The class consists of Markov processes for which
there exists a nontrivial change of time, such that the time-changed process
satis�es strong Markov consistency property. Such a class is a generalisation
of Markov consistent processes. We formulate su�cient condition for X to be
quasi Markov consistent and provide an example of a quasi consistent process
which is not Markov consistent.

In Section 4.4 we give a �nancial application to the studied change of time. We
apply the change of time to an n-dimensional di�usion process S, represent-
ing the prices of n assets. In this approach τt may be regarded as "business
time" at calendar time t. The random activity of business day comes from ran-
domness of economy states and causes the prices to have a stochastic volatility.
More precisely, the time-changed asset price process is a regime-switching dif-
fusion, where the regimes represent the states of economy. In the second part
of this section we consider a reverse problem – given an n-dimensional regime-
switching di�usion, we want to represent its coordinates by time-changed dif-
fusions. More precisely, we consider a two-dimensional regime-switching di�u-
sion S = (S1, S2) and answer a question whether there exist one-dimensional
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di�usions R1 and R2 and changes of time τ 1 and τ 2 such that the law of Si
is equal to the law of R(τ i) for i = 1, 2. Such a representation is desirable in
many �nancial applications – not only does it allow to describe a complicated
process as a composition of two simpler processes, but also to consider both
coordinates S1 and S2 without any reference to the dependence structure of S.

In Section 4.5 the reader will �nd certain examples of applications of the time
change to Monte Carlo option pricing. We consider the asset whose price is
modelled by the time-changed geometric Brownian Motion. Thanks to the ex-
plicit construction of the time change obtained in Section 4.2, we can easily
simulate its paths. The paths then can be used in Monte Carlo simulation of the
asset price. The states of the Markov chain that induces the time change can be
seen as a re�ection of the economic conditions, where some states correspond
to higher business activity, and some –lower business activity. The function g
in the de�nition of the TCE is responsible for the sensitivity of the time change
to the changes in the market. Therefore we analyse the time changes and the
asset price processes for various functions g. We also compare Monte Carlo
prices depending on a change of time, for several option types.

4.2 Time change equation and its properties

Let (Ω,F ,F,P) be a �ltered probability space. Throughout this paper we will
assume that F satis�es usual conditions. Let X be a càdlàg F-Markov chain
with values in a �nite state space E. Therefore it admits an intensity matrix (a
generator) being a Q-matrix, which we denote by Λ = [λxy ]x,y∈E .

Recall that by a Q-matrix we mean a measurable functionQ : E×E×R+ → R
satisfying conditions:

(i) qij(t) ≥ 0 for i 6= j, i, j ∈ E for all t > 0,
(ii)
∑

j∈E qij = 0 for all i ∈ E and t > 0,
(iii) for all i, j ∈ E function t 7→ qij(t) is locally integrable.

49



Let (τt)t≥0 be a family of random variables satisfying the equation

τt =

∫ t

0

g(s,Xτs)ds P− a.s., (4.2.1)

where g : [0,∞)×E → [0,∞) is a Borel measurable function such that for all
x ∈ E functions s 7→ g(s, x) are right-continuous and locally integrable. It is
clear that the family (τt)τ≥0 satisfying (4.2.1) is nondecreasing and continuous
in t with values in [0,∞).

We shall start with recalling the de�nition of a change of time.
De�nition 4.2.1. A family of random variables (θt)t≥0 is said to be a random
change of time if

(i) it is a nondecreasing, right-continuous family of [0,∞]-valued random
variables

(ii) θt is an F-stopping time for all t ≥ 0.

Remark 4.2.2. If F satis�es usual conditions and θ is a change of time, then the
time-changed �ltration (Fθt)t≥0 also satis�es usual conditions. Indeed, the right
continuity is a consequence of right-continuity of F and the right-continuity
and monotonicity of θ. The fact that F0 contains all the P-null sets implies that
Fθ0 ⊃ F0 contains them as well.

In this section we will show that equation (4.2.1) admits a unique solution which
satis�es the de�nition of a random change of time.
Theorem 4.2.3. Let X be as above. Suppose g : [0,∞) × E → [0,∞) is such
that the function s 7→ g(s, x) is right-continuous and locally integrable for all
x ∈ E. Then equation (4.2.1) admits a unique solution.

Proof. We shall start with proving uniqueness of solution. Suppose that τ is a
solution to (4.2.1). Let T0 = 0 and T1, T2, . . . be the moments of jumps of X ,
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i. e. Tn = inf{t > Tn−1 : Xt 6= XTn−1
} for n ≥ 1. Let us de�ne

ρ0 = 0, ρn = inf {t > 0 : τt ≥ Tn} , n = 1, 2, . . .

σ0 = 0, σn = inf

{
t > 0 :

∫ t

σn−1

g(s,XTn−1
)ds ≥ Tn − Tn−1

}
, n = 1, 2, . . .

We will show that any solution of (4.2.1) is of the form

τt =
∞∑
n=1

∫ σn∧t

σn−1∧t
g(s,XTn−1

)ds. (4.2.2)

Note that from the de�nition of ρn, Tn ≤ τs < Tn+1 for s ∈ [ρn, ρn+1), so
Xτs = XTn . It su�ces to show that ρn = σn a.s. for all n ∈ N, which we will
prove by induction. For n = 0 it is satis�ed trivially.

Suppose now that ρn = σn for some n ∈ N. If ρn = σn = ∞, then ρn+1 =
σn+1 =∞. Assume that ρn = σn <∞. Then for any s ∈ [ρn, ρn+1)∫ s

σn

g(u,XTn)du =

∫ s

ρn

g(u,Xτu)du = τs − Tn < Tn+1 − Tn,

so by the de�nition of σn+1 we have s < σn+1. Hence ρn+1 ≤ σn+1.
We will prove now the converse inequality. Assume �rst that σn+1 <∞. Then
by the previous inequality ρn+1 <∞, so∫ ρn+1

σn

g(u,XTn)du =

∫ ρn+1

ρn

g(u,Xτu)du = Tn+1 − Tn,

hence ρn+1 ≥ σn+t.
Consider the case when σn+1 =∞ and suppose ρn+1 <∞. Then

Tn+1 − Tn >
∫ ρn+1

σn

g(u,XTn)du =

∫ ρn+1

ρn

g(u,Xτu)du = Tn+1 − Tn,

which is a contradiction. Hence in both cases ρn+1 = σn+1. By induction we
conclude that ρn = σn a.s. for all n ∈ N. It then follows that the solution of
(4.2.1) is of the form (4.2.2).
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To prove the existence we need to show that

τ̃t :=
∞∑
n=1

∫ σn∧t

σn−1∧t
g(s,XTn−1

)ds

satis�es (4.2.1). Towards this end it su�ces to show that for s ∈ [σn, σn+1),
X(τ̃s) = X(Tn). It is easy to see that for all n ∈ N on {σn < ∞} we have
τ̃(σn) = Tn. Hence for s ∈ [σn, σn+1) we have

Tn ≤ τ̃s = Tn +

∫ s

σn

g(u,XTn)du < Tn + (Tn+1 − Tn) = Tn+1

and therefore X(τ̃s) = X(Tn).

Theorem 4.2.4. For all t ≥ 0, τt given by (4.2.2), being a unique solution of
(4.2.1), is an F - stopping time.

Proof. Take any t ≥ 0 and u ≥ 0. We will show that {τt ≤ u} ∈ Fu. Note that

{τt ≤ u} =
∞⋃
n=1

{Tn−1 ≤ u < Tn, τt ≤ u}

=
∞⋃
n=1

n−1⋃
k=1

{Tn−1 ≤ u < Tn, Tk−1 ≤ τt < Tk}

∪
∞⋃
n=1

{Tn−1 ≤ u < Tn, Tn−1 ≤ τt ≤ u} .

Therefore it su�ces to investigate sets of the form

{Tn−1 ≤ u < Tn, Tk−1 ≤ τt < Tk} for k ≤ n− 1

and
{Tn−1 ≤ u < Tn, Tk−1 ≤ τt ≤ u}.

It is easy to observe that for any k ∈ N a random time σk is FTk - measurable,
so

{Tk−1 ≤ τt < Tk} =

{
Tk−1 ≤ Tk−1 +

∫ t

σk−1

g(s,XTk−1
)ds < Tk

}
∈ FTk ⊂ FTn−1

.
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Hence {Tn−1 ≤ u < Tn, Tk−1 ≤ τt < Tk} ∈ Fu. Similarly we show that
{Tn−1 ≤ u < Tn, Tn−1 ≤ τt ≤ u} ∈ Fu. Since t and u were arbitrarily chosen
it follows that τt is a stopping time for all t ≥ 0.

Having proved the above theorem and bearing in mind that the family (τt)t≥0
is a.s. nondecreasing and continuous in t, we can conclude with the following
corollary.
Corollary 4.2.5. The family (τt)t≥0 satisfying (4.2.1) is a random change of time.

Thanks to the explicit form of solution given in (4.2.2), one can easily simulate
τ . Application to simulating time-changed asset price models will be presented
in Section 4.5.

Notation. By X̂ = (Xτt)t≥0 we denote a time-changed process and by G =
(Fτt)t≥0 – the time-changed �ltration.
Theorem 4.2.6. The process X̂ is a time inhomogeneous G-Markov chain with
the state space E and intensity matrix Λ̂(t) = [g(t, x)λxy ]x,y∈E .

Proof. We will use martingale characterization of �nite Markov chains. Obvi-
ously X̂ is right-continuous and G-adapted. Hence it su�ces to show that for
all y ∈ E the process

M̄ y
t := δy(X̂t)−

∫ t

0

g(u, X̂u)λ
X̂u
y du

is a G-martingale, where

δy(x) =

{
1 if x = y,

0 otherwise.

Fix y ∈ E. Note that by assumptions on g and the fact that E is �nite, τt is
integrable for each t. Indeed,

Eτt = E
∫ t

0

g(s, X̂s)ds ≤ sup
x∈E

∫ t

0

g(s, x)ds <∞. (4.2.3)
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Thus
E|M̄ y

t | ≤ 1 + sup
x∈E
|λxy |Eτt <∞, (4.2.4)

so M̄ y is integrable. It su�ces then to show that E
(
M̄ y

t |Gs
)

= M̄ y
s for any

s < t. Note that by the continuity and monotonicity of τ , for each locally
bounded Borel function F we have (see e.g. Appendix 4 in [58])∫ τt

0

F (s)ds =

∫ t

0

F (τu)dτu =

∫ t

0

F (τu)g(u,Xτu)du. (4.2.5)

In particular ∫ t

0

g(u, X̂u)λ
X̂u
y du =

∫ τt

0

λXs
y ds,

which implies M̄ y
t = M y

τt
for all t ≥ 0, where M y

t := δy(Xt) −
∫ t
0 g(u,Xu)du.

By Doob’s optional sampling theorem we have

E
(
M y

τt∧n|Fτs∧n
)

= M y
τs∧n →n→∞ M y

τs
a.s.

Thus to �nish the proof it su�ces to show that E
(
M y

τt∧n|Fτs∧n
)
→ E

(
M y

τt
|Fτs

)
as n → ∞. Note that ∣∣M y

τt∧n −M
y
τt

∣∣ ≤ 2 + τt sup
x∈E
|λxy |,

so by (4.2.3) and the Lebesgue theorem

lim
n→∞

E
∣∣M y

τt∧n −M
y
τt

∣∣ = 0. (4.2.6)

Hence∣∣E (M y
τt∧n|Fτs∧n

)
− E

(
M y

τt
|Fτs

)∣∣
≤ E

(∣∣M y
τt∧n −M

y
τt

∣∣ |Fτs∧n)+
∣∣E (M y

τt
|Fτs∧n

)
− E

(
M y

τt
|Fτs

)∣∣ −→n→∞ 0

in probability, where the �rst component tends to 0 in L1 by (4.2.6) and the
second tends to 0 a.s and inL1 since the process (Yn)n∈N :=

(
E
(
M y

τt
|Fτs∧n

))
n∈N

is a right-closable martingale. By the uniqueness of the limit in probability we
obtain the thesis.
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Example 4.2.7. Let X be a Markov chain with a generator Λ and a state space
E = {0, 1, . . . , N}. Consider a function g : [0,∞)× E → [0,∞).

g(s, x) = sx.

Since the function g is obviously nonnegative and continuous in s for each
x ∈ E, we can de�ne a change of time τt as a solution to the TCE

τt =

∫ t

0

g(s,Xτs)ds. (4.2.7)

Consider the time-changed Markov chain X̂ . Then, by Theorem 4.2.6 the gen-
erator matrix of X̂ is given as

Λ̂(t) =
[
xtλxy

]
x,y∈E .

Moreover, the jump times of X̂ , i.e. σ0, σ1, . . . de�ned in the proof of Theorem
4.2.2 are of the form:

σk = inf

{
t ≥ 0:

∫ t

σk−1

sXTk−1
ds ≥ Tk − Tk−1

}
=

√
2(Tk − Tk−1)

XTk−1

+ σ2k−1 · 1{XTk
6=0} +∞ · 1{XTk

=0}, k = 1, 2, . . .

By induction we can show that

σk =

√√√√k−1∑
i=0

2(Ti+1 − Ti)
XTi

· 1Ak +∞ · 1Ack,

where Ak =
⋂k−1
i=0 {XTi 6= 0}. The solution of 4.2.7 is given by

τt =
∞∑
n=1

1

2
XTn−1

(
(σn ∧ t)2 − (σn−1 ∧ t)2

)
.

Note that 0 is an absorbing state for X̂ , which can be seen both from the formula
for Λ̂(t) and from the jump times σk.
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4.3 Markov consistency of a time-changed Markov chain

Throughout this section X = (X1, X2) will be a two-dimensional Markov
chain on a �nite state space E = E1 × E2. Let m = |E1|, n = |E2|. The
�rst theorem addresses the question of the conditions which should be satis-
�ed by g associated to the change of time τ so that the time change preserves
Markov consistency property with respect to the �rst coordinate.

Theorem 4.3.1. Assume thatX1 is an F-Markov chain. Then the following con-
ditions are equivalent:

(i) X̂1 is a G-Markov chain,

(ii) there exists a function g1 : [0,∞) × E1 → [0,∞) such that for all non-
absorbing states x1 ∈ E1

1{X̂1
t=x

1}g(t, x1, X̂2
t ) = 1{X̂1

t=x
1}g1(t, x

1) P⊗ dt- a.e.

Moreover, if (ii) is satis�ed, the intensity matrix of X̂1 is of the form

Λ̂(1)(t) = [g1(t, x
1)λ

(1)
x1y1]x1,y1∈E1,

where [λ
(1)
x1y1]x1,y1∈E1 is an intensity matrix of X1.

Before we proceed to the proof of the theorem, we need to brie�y recall a few
notions. Recall that for a càdlàg process V taking values in a �nite space V we
can de�ne a counting measure

NV
vw((0, t]) :=

∑
0<s≤t

1{V s−=v,Vs=w}, v, w ∈ V , v 6= w.

By νVvw(dt) we will denote the compensator of the counting measure NV
vw(dt)

associated with a process V . In Bielecki et al. [13], the authors use compen-
sators of counting measures NV

vw in order to give the necessary and su�cient
condition for a process V to be a Markov chain. For the convenience of the
reader we cite their proposition below.
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Proposition 4.3.2 ([13], Proposition 1.3). An H-adapted, càdlàg process V on a
�nite state space V is a Markov chain with respect toH with in�nitesimal genera-
torQ(t) = [qkl(t)]k,l∈V if and only if theH-compensators of the countingmeasures
NV
kl , k, l ∈ V , are of the form

νVkl((0, t]) =

∫ t

0

1{Vs=k}qkl(s)ds.

In order to use the above result we need to calculate the compensators of the
counting measures for the time-changed process. Let νXxy be an F-compensator
of NX

xy for x, y ∈ E, x 6= y. Then the following lemma holds.

Lemma 4.3.3. Let x, y ∈ E, x 6= y. TheG-compensator of the counting measure
N X̂
xy is of the form

νX̂xy((0, t]) =

∫
(0,τt]

νXxy(ds), t > 0.

Proof. Since X̂ is a G-Markov chain, by Proposition 4.3.2 the G-compensator
of N X̂

xy is of the form νX̂xy(dt) = 1{X̂t=x}λ̂
x
y(t)dt. Hence, using (4.2.5), we obtain

νX̂xy((0, t]) =

∫ t

0

1{X(τs)=x}g(s,Xτs)λ
x
yds =

∫ τt

0

1{Xs=x}λ
x
yds =

∫ τt

0

νXxy(ds).

Now we can proceed to the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. We will denote x = (x1, x2), y = (y1, y2) for any x, y ∈
E. By Lemma 4.3.3

νX̂
1

x1y1((0, t]) =
∑

x2,y2∈E2

νX̂xy((0, t]) =
∑

x2,y2∈E2

∫ τt

0

νXxy(ds) =

∫ τt

0

νX
1

x1y1(ds)

=

∫ τt

0

1{X1
s=x

1}λ
(1)
x1y1ds =

∫ t

0

1{X̂1
s=x

1}λ
(1)
x1y1g(s, X̂s)ds.

57



On the other hand, by Proposition 4.3.2, X̂1 is a G-Markov chain if and only if
for all x1 6= y1 there exists a locally integrable function λ̂(1)x1y1 : [0,∞)→ [0,∞)

such that νX̂1

x1y1(dt) = 1{X̂1
t=x

1}λ̂
(1)
x1y1(t)dt. Hence X̂1 is a G-Markov chain if and

only if

∀x1 6=y1 ∃λ̂(1)
x1y1

such that 1{X̂1
t=x

1}λ
(1)
x1y1g(t, X̂t) = 1{X̂1

t=x
1}λ̂

(1)
x1y1(t) P⊗ dt- a.e.

(4.3.1)
We will show that (4.3.1) is equivalent to the condition (ii) from the statement
of Theorem 4.3.1.

Assuming (ii), we get (4.3.1) by taking λ̂(1)x1y1(t) = g1(t, x
1)λ

(1)
x1y1 . Indeed, for an

absorbing state x1 this means λ̂(1)x1y1(t) = 0, so the equality is satis�ed trivially,
whereas for a non-absorbing state it follows directly from (ii).

Conversely, assume (4.3.1) and take a non-absorbing state x1. Then there ex-
ists ỹ1 ∈ E1, ỹ1 6= x1 such that λ(1)x1ỹ1 > 0. By (4.3.1) there exists a function
λ̂
(1)
x1ỹ1 : [0,∞)→ [0,∞) such that

1{X̂1
t=x

1}λ
(1)
x1ỹ1g(t, X̂t) = 1{X̂1

t=x
1}λ̂

(1)
x1ỹ1(t).

Dividing both sides by λ(1)x1ỹ1 we obtain

1{X̂1
t=x

1}g(t, X̂t) = 1{X̂1
t=x

1}
λ̂
(1)
x1ỹ1(t)

λ
(1)
x1ỹ1

.

Since the LHS of the above equality does not depend on ỹ, neither does the ratio
λ̂
(1)
x1ỹ1(t)/λ

(1)
x1ỹ1 , hence we may take

g1(t, x
1) =


λ̂
(1)

x1ỹ1
(t)

λ
(1)

x1ỹ1

if x1 is non-absorbing,

0 otherwise.

58



Naturally we can formulate the analogue of Theorem 4.3.1 for the second coor-
dinate.

Corollary 4.3.4. Assume that X2 is an F-Markov chain. Then the following
conditions are equivalent:

(i) X̂2 is a G-Markov chain,

(ii) there exists a function g2 : [0,∞) × E2 → [0,∞) such that for all non-
absorbing states x2 ∈ E2

1{X̂2
t=x

2}g(t, X̂1
t , x

2) = 1{X̂2
t=x

2}g2(t, x
2) P⊗ dt- a.e.

Moreover, if (ii) is satis�ed, the intensity matrix of X̂2 is of the form

Λ̂(2)(t) = [g2(t, x
2)λ

(2)
x2y2]x2,y2∈E2,

where [λ
(2)
x2y2]x2,y2∈E2 is an intensity matrix of X2.

Corollary 4.3.5. Assume that X is Markov consistent. Then the process X̂ is
Markov consistent if and only if condition (ii) from Theorem 4.3.1 and condition
(ii) from Corollary 4.3.4 are satis�ed for g.

Our next problem is whether we can impose Markov consistency property by
introducing an appropriate change of time. Obviously taking g ≡ 0 induces the
trivial change of time τ ≡ 0, so the time-changed process X̂ ≡ X0 is constant,
and thus Markov consistent, regardless of the properties of the original Markov
chain X . Henceforth we are interested in changes of time which are not iden-
tically zero (or, in general – for other types of changes of time – not constant).
We introduce the following class of Markov chains.

De�nition 4.3.6. A Markov chain X is called quasi Markov consistent if there
exists a change of time τ 6≡ const such that Xτ(·) is Markov consistent.

We will study examples of quasi Markov consistent processes in the framework
of inhomogeneous time change equations.
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Towards this end we will use condition (M) from Bielecki et al. [15], which
is a su�cient (but not necessary) condition for a Markov chain to be strongly
Markov consistent. We recall the condition for the convenience of the reader.
Theorem 4.3.7 ([15], Proposition 5.1). Let Z = (Z1, Z2) be a Markov chain on
E1 × E2 with intensity matrix Q(t) = [qx

1x2
y1y2

(t)]. If for all t ≥ 0

∀x1 6=y1∀x2,x̃2∈E2

∑
y2∈E2

qx
1x2

y1y2 (t) =
∑
y2∈E2

qx
1x̃2

y1y2 (t),

∀x2 6=y2∀x1,x̃1∈E1

∑
y1∈E1

qx
1x2

y1y2 (t) =
∑
y1∈E1

qx̃
1x2

y1y2 (t),
(M)

then Z is strongly Markov consistent.

Recall that the intensity matrix of the process X̂ is of the form

Λ̂(t) =
[
g(t, x1, x2)λx

1x2

y1y2

]
(x1,x2),(y1,y2)∈E

,

so condition (M) for the process X̂ reads

∀t>0 ∀x1 6=y1 ∀x2,x̃2∈E2 g(t, x1, x2)
∑
y2∈E2

λx
1x2

y1y2 − g(t, x1, x̃2)
∑
y2∈E2

λx
1x̃2

y1y2 = 0,

∀t>0 ∀x2 6=y2 ∀x1,x̃1∈E1 g(t, x1, x2)
∑
y1∈E1

λx
1x2

y1y2 − g(t, x̃1, x2)
∑
y1∈E1

λx̃
1x2

y1y2 = 0.
(M̂)

In order to verify whether X is quasi consistent we need to solve the above
system of linear equations with respect to g. Note that the system consists of
(m + n)(m − 1)(n − 1) equations and only mn unknowns. Let A denote the
matrix of the system (M̂) (note that A does not depend on t). Then we have the
following easy observation.
Proposition 4.3.8. If rank(A) < mn, then the Markov chainX is quasi consis-
tent and any nontrivial solution g∗ of system (M̂) gives a desired change of time.

Remark 4.3.9. Since condition (M) is not necessary for Markov consistency,
the condition rank(A) < mn is not necessary for X to be quasi Markov con-
sistent, even if we reduce ourselves to the class of time change equations of the
form (4.2.1). However, this condition is easily veri�able by simple computation.
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The example below is a version of Proposition 4.3.8 for two-element state spaces
E1 and E2.
Example 4.3.10. Let E1 = E2 = {0, 1} and denote gkl(t) := g(t, k, l) for
k, l ∈ {0, 1}. Then the number of equations and unknowns of (M̂) is equal and
the system takes the form

g00(t)
(
λ0010 + λ0011

)
− g01(t)

(
λ0110 + λ0111

)
= 0

g10(t)
(
λ1001 + λ1000

)
− g11(t)

(
λ1101 + λ1100

)
= 0

g00(t)
(
λ0001 + λ0011

)
− g10(t)

(
λ1001 + λ1011

)
= 0

g01(t)
(
λ0110 + λ0100

)
− g11(t)

(
λ1110 + λ1100

)
= 0

Then rank(A) < 4 if and only if(
λ0010 + λ0011

) (
λ1101 + λ1100

) (
λ1001 + λ1011

) (
λ0110 + λ0100

)
=(

λ0110 + λ0111
) (
λ1001 + λ1000

) (
λ0001 + λ0011

) (
λ1110 + λ1100

)
.

(4.3.2)

Using the result above we can provide an example of a Markov chain which is
quasi Markov consistent, but not Markov consistent.
Example 4.3.11. Let X be a Markov chain on {0, 1}2 with intensity matrix

Λ =

(0, 0) (0, 1) (1, 0) (1, 1)


(0, 0) · β + c1 β + c1 α

(0, 1) α + c2 · β α + c2
(1, 0) 0 γ −γ 0
(1, 1) δ 0 0 −δ

,

where α, β, γ, δ > 0, c1 > −β, c2 > −α, c1 6= c2 and · means the negative of
the sum of other entries in the row. Then the intensity of transition of X1 from
0 to 1 depends on the state of X2, namely

λ0010 + λ0011 = α + β + c1 6= β + α + c2 = λ0110 + λ0111.

Moreover, note that for t > 0 we haveP (Xt = (0, 0)) > 0 andP (Xt = (0, 1)) >
0 regardless of the initial distribution of X . Hence for all t > 0

1{Xt=((0,0)}
(
λ0010 + λ0011

)
6= 1{Xt=((0,1)}

(
λ0110 + λ0111

)
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with positive probability. Thus by Theorem 1.8 from [13] we conclude that X
is not strongly Markov consistent with respect to X1. By similar argument X
is not consistent w.r.t X2 either. On the other hand, it is easy to see that the
condition (4.3.2) is satis�ed for X , so X is quasi Markov consistent. We will
�nd such a change of time that X̂ is consistent. The solution of (M̂) is of the
form

g00(t) =
δ

β + α + c1
f(t)

g01(t) =
δ

β + α + c2
f(t)

g10(t) =
δ

γ
f(t)

g11(t) = f(t)

for all t > 0, where f is any locally integrable, càdlàg nonnegative function.
The intensity matrix of X̂ takes the form

Λ(t) = f(t)


· δ(β+c1)

β+α+c1

δ(β+c1)
β+α+c1

δα
β+α+c1

δ(α+c2)
β+α+c2

· δβ
β+α+c2

δ(α+c2)
β+α+c2

0 δ −δ 0
δ 0 0 −δ

 .

One can easily verify that X̂ indeed satis�es condition (M) and hence is strongly
Markov consistent.

4.4 Change of time in asset pricemodel – regime switching
di�usion

In this section we study the time-changed asset price models, where the change
of time is a solution of a time change equation (4.2.1) induced by an independent
Markov chain. In the �rst part we will show that changing time in the di�usion
process leads to a regime-switching di�usion process.
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Consider an n-dimensional asset price process S = (S1, . . . , Sn) given as a
strong solution of an SDE

dSt = m(St)dt+ Σ(St)dWt, (4.4.1)

wherem : Rn → Rn, Σ: Rn → Rn×d andW is a d-dimensional standard Brow-
nian motion. Suppose X is a Markov chain on a �nite state space E, indepen-
dent of W , representing states of economy. Let τ be a change of time given by
(4.2.1) for an appropriate function g. By Ŝ we denote the time-changed process
of the asset price.

Let us �x our attention for a moment on the �nancial interpretation of a time
change in asset price models. We may see τt as business time (or business clock)
at calendar time t, which depends on the order �ow up to time t. The process
g(t, X̂t) is then interpreted as an instantaneous business activity rate. It may be
observed that business activity is in�uenced by the states of economy at time t
(represented by the Markov chain X), but it may also vary in time due to some
non-random e�ects. The fact that g depends on X and is time-inhomogeneous
captures both of these phenomena. Intuitively, and what may be seen in the
result of Theorem 4.4.4, the more active the business day is, the higher is the
volatility of the asset price (see Carr et al. [18] for more detailed interpretation
of a general change of time in asset price models).

The next theorem shows that the process (Ŝ, X̂) forms a particular stochastic
volatility model, namely a regime-switching di�usion process. Let us start with
recalling the de�nition of such processes (see e.g. [66], Section 2.2).

De�nition 4.4.1. Let (αt)t≥0 be a continuous-time Markov chain on a �nite
state spaceE with intensity matrixQ and let (Wt)t≥0 be a d-dimensional Brow-
nian motion independent of α. Suppose a : [0,+∞) × E × Rr → Rr and
b : [0,+∞) × E × Rr → Rr×d. Then a two-component process (ξ, α) satis-
fying

dξt = a(t, αt, ξt)dt+ b(t, αt, ξt)dWt, t ∈ (0, T ], (4.4.2)
is called a regime-switching di�usion.
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Remark 4.4.2. Regime-switching di�usions may also be de�ned in a more gen-
eral way, where (αt)t≥0 is a right-continuous process on a �nite state space E
with an x-dependent generator Q(x) (which allows the intensity of jumps of α
to depend on ξ). However, for our purposes we will only need the particular
case when α is a Markov chain.

In order to ensure the existence and uniqueness of solution of (4.4.2), we will
often refer to the assumption on the coe�cient functions (weaker than linear
growth condition) which we present below. This assuption together with local
Lipschitz condition are su�cient to guarantee the existence of a unique solution
of (4.4.2) (see Theorem 3.17 in [47]).

Assumption 4.4.3. There exists a constant K > 0 such that for all (t, k, x) ∈
[0, T ]× E × Rr

x · a(t, k, x) +
1

2
|b(t, k, x)|2 ≤ K(1 + |x|2). (4.4.3)

Theorem 4.4.4. Let S be an asset price process given by (4.4.1), where functions
m : Rn → Rn and Σ: Rn → Rn×d are locally Lipschitz and satisfy for all x ∈ Rn

x ·m(x) +
1

2
|Σ(x)|2 ≤ κ(1 + |x|2) (4.4.4)

for some constant κ > 0. Fix a �nite time horizon T <∞. Then the time-changed
asset price process Ŝ is a unique strong solution of

dŜt = m(Ŝt)g(t, X̂t)dt+ Σ(Ŝt)

√
g(t, X̂t)dBt, t ∈ [0, T ], (4.4.5)

where B is a d-dimensional G-standard Brownian motion independent of X .

Proof. Let Z be a d-dimensional standard Brownian motion with respect to the
�ltration G, independent of W and of X . De�ne process B as

Bi
t :=

∫ t

0

1√
g(u, X̂u)

1{g(u,X̂u)>0}dW
i(τu)+

∫ t

0

1{g(u,X̂u)=0}dZ
i
u, i = 1, . . . , d.
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Then B is a standard G - Brownian motion. Indeed, (Wτt) is a continuous G -
local martingale. Moreover, since τ is continuous in t, 〈W i

τ·
〉t = 〈W i〉τt = τt for

i = 1, . . . , d and for i 6= j we have 〈W i
τ·
,W j

τ·
〉t = 〈W i,W j〉τt = 0. Hence

〈Bi〉t =

∫ t

0

1

g(u, X̂u)
1{g(u,X̂u)>0}dτu +

∫ t

0

1{g(u,X̂u)=0}du =

=

∫ t

0

1{g(u,X̂u)>0}du+

∫ t

0

1{g(u,X̂u)=0}du = t

and for i 6= j

〈Bi, Bj〉t = 0

for all t ≥ 0. So B is a continuous G - local martingale and it then follows
from Lévy theorem that B is a standard G - Brownian motion. To see that B is
independent of X we need to consider the conditional law of B given X .

First, note that for a nondecreasing, measurable function h : R+ → R+ and a
function f ∈ L2([0, T ], dh), for any t ∈ [0, T ] we have∫ t

0

f(s)dWh(s) ∼ N
(

0,

∫ t

0

f 2(s)dh(s)

)
.

The proof of it is essentially the same as the proof of the analogous property
for Paley-Wiener integral.

Fix l ∈ {1, . . . d}. For m ∈ N and 0 < t1 < · · · < tm ≤ T consider a ran-
dom vector (Bl

t1
, . . . , Bl

tm
). Since X is independent of W and of Z , and since τ

depends only on X , by the remark above for u = (u1, . . . , um) ∈ Rm we have

E
(
eiu(B

l
t1
,...,Bltm)

∣∣FX
∞

)
= exp

(
−1

2
uTD(X)u

)
,

where for any j, k = 1, . . . ,m

Djk(X) =

∫ tj∧tk

0

1

g(u, X̂u)
1{g(u,X̂u)>0}dτu +

∫ tj∧tk

0

1{g(u,X̂u)=0}du = tj ∧ tk.
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Thus for all l ∈ {1, . . . , d} vector (Bl
t1
, . . . , Bl

tm
) is independent of FX

T , and
sincem ∈ N and the sequence (t1, . . . , tm) were arbitrary, the whole processB
is independent of X .

To �nish the proof we need to show that Ŝ is a unique strong solution of (4.4.5)
with B de�ned as above. Indeed, by (4.2.5) and Proposition V.1.5 in [54] we
have

Ŝt =S0 +

∫ τt

0

m(Su)du+

∫ τt

0

Σ(Su)dWu

=Ŝ0 +

∫ t

0

m(Ŝu)g(u, X̂u)du+

∫ t

0

Σ(Ŝu)dWτu

=Ŝ0 +

∫ t

0

m(Ŝu)g(u, X̂u)du+

∫ t

0

Σ(Ŝu)

√
g(u, X̂u)dBu.

Note that (4.4.5) admits a unique solution on a time interval [0, T ]. Indeed,
since m and Σ are locally Lipschitz, the coe�cients a(t, k, x) := m(x)g(t, k)
and b(t, k, x) := Σ(x)

√
g(t, k) are locally Lipschitz with respect to x uniformly

in k ∈ E and t ∈ [0, T ]. Moreover, by (4.4.4) functions a, b satisfy Assumption
4.4.3 with a constant

K = sup
(t,k)∈[0,T ]×X

g(t, k)κ.

The uniqueness of solution follows then from Theorem 3.17 in [47].

Remark 4.4.5. One of the motivations for representing stochastic volatility
models as time-changed processes is its possible application for calculating
characteristic function of the log-price of an asset. This quantity is useful for
numerical pricing of �nancial derivatives (see e.g. Carr, Madan [17]). Consider
process (St)t≥0 and (any) change of time (θt)t≥0 independent of S. Assume that
the process x de�ned as xt := log

(
St
S0

)
is a Lévy process (which – in the di�u-

sion case – is satis�ed when S is a Geometric Brownian Motion with drift) and
denote by ψ its characteristic exponent. Let the asset price process be modelled
by (Ŝt)t≥0 = (Sθt)t≥0. We would like to calculate the characteristic function of
the log-price x̂t := log

(
Ŝt
Ŝ0

)
= xθt . Note that

E exp (iux̂t) = E (E exp (iuxθt)|θt) = Eeθtψ(u). (4.4.6)

66



Thus, in order to calculate the characteristic function of x̂ one only needs to
know the characteristic function of x and Laplace transform of θ. For more on
time-changed exponential Lévy models see Carr, Wu [18].

In the second part of this section we will consider a reverse problem – given an
n-dimensional regime-switching di�usion, can we represent its coordinates by
time-changed di�usions? For simplicity of notation, without loss of generality
take n = 2. Consider a regime-switching di�usion (S, Y ), where S = (S1, S2)
and Y = (Y 1, Y 2) is a two-dimensional Markov chain. More precisely, in
Theorem 4.4.7 we will answer the following question. Do there exist one-
dimensional di�usions R1 and R2, i.e. processes satisfying

dRi
t = µi(R

i
t)dt+ σi(R

i
t)dB

i
t, i = 1, 2

and changes of time τ 1 and τ 2 (induced by one-dimensional Markov chainsX1,
X2), such that for i = 1, 2 the law of Si is equal to the law of Ri(τ i)?

Such a representation is useful for many reasons. First, note that processes
Ri are one-dimensional di�usions independent of the time changes τ i. Hence
instead of considering (S1, S2), we may consider separately processes R̂1 and
R̂2 without any reference to the dependence structure of the whole process.
This phenomenon is fundamental for models based on Markov copulae (Markov
structures), which �nd many applications in �nancial mathematics – for exam-
ple in credit risk analysis. The examples of Markov copula models in �nance
may be found e.g. in the papers by Bielecki, Cousin et al. [8] or by Bielecki,
Crépey et al. [10]. Secondly, if processRi is a Geometric Brownian Motion with
drift, then by (4.4.6) one can calculate the characteristic function of the log-price
log (Sit/S

i
0) using the characteristic exponent ofRi and Laplace transform of τ i

(see Remark 4.4.5). Moreover, the time changes τ 1 and τ 2 depend only on one
dimensional Markov chains, not on the whole chain Y , which simpli�es com-
putations by decreasing e�ectively the number of regimes to consider. The idea
of changing time di�erently forR1 andR2 corresponds to the fact that the busi-
ness time for various assets may di�er, also by depending on di�erent factors.
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Let Y = (Y 1, Y 2) be a weakly consistent Markov chain (i.e. such that each
coordinate of Y is a Markov chain with respect to its own �ltration) on a state
space E = E1 × E2, such that the intensities of Y i are of the form

λ
(i)
kl (t) = gi(t, k)q

(i)
kl , k, l ∈ Ei, t ∈ R, i = 1, 2,

where gi : R+ × Ei → [0,∞) are Borel measurable functions such that for
all x ∈ Ei functions s 7→ gi(s, x) are right-continuous and locally integrable.
Assume also that [q

(i)
kl ]k,l∈Ei is a Q-matrix for i = 1, 2.

Consider a two-dimensional regime-switching di�usion process (St, Yt)t∈[0,T ],
T <∞, of the form

dSt = m(t, Yt, St)dt+ Σ(t, Yt, St)dWt, (4.4.7)

where m : R+ × E × R2 → R2 and Σ: R+ × E × R2 →M2×2(R) satisfy

mi(t, k, x) = gi(t, ki)µi(xi), i = 1, 2 (4.4.8)

and
σ2i1(t, k, x) + σ2i2(t, k, x) = gi(t, ki)σ

2
i (xi), i = 1, 2. (4.4.9)

where we denote k = (k1, k2) ∈ E. Suppose additionally that σ : R → R2,
µ : R → R2 are locally Lipschitz and that σi, µi satisfy (4.4.4) for i = 1, 2.
Note that this implies that m, Σ are locally Lipschitz in x and satisfy Assump-
tion 4.4.3, which in turn implies the existence and uniqueness of solution of (4.4.7).

First, we will prove that the components of Y are equal in law to the time-
changed Markov chains.

Lemma 4.4.6. Under the above assumptions there exist Markov chains X1, X2,
respectively on E1 and E2, such that L

(
Y i
)

= L
(
X i
τ i

)
for i = 1, 2 and τ i, for

i = 1, 2, is the solution of the time change equation

τ it =

∫ t

0

gi
(
s,X i(τ is)

)
ds. (4.4.10)
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Proof. We will prove the lemma for i = 1. Since Q(1) := [q
(1)
kl ]k,l∈E1 is a Q-

matrix, there exists a Markov chain X1 on the state space E1 with intensity
matrix Q(1) such that L(X1

0) = L(Y 1
0 ). Let τ 1 be the solution of (4.4.10). From

Theorem 4.2.6 we know that the process X̂1 := X1(τ 1) is a Markov chain
with intensity matrix Λ(1)(t), where λ(1)kl (t) = g1(t, k)q

(1)
kl . Hence L

(
Y 1
)

=
L
(
X1
τ1

)
.

It appears that the above conditions are enough to guarantee that the compo-
nents of S are equal in law to the time-changed di�usion processes.

Theorem 4.4.7. Let S be a two-dimensional regime-switching di�usion process
satisfying (4.4.7), wherem and Σ satisfy the assumptions (4.4.8) and (4.4.9). Then

L
(
Si
)

= L
(
Ri
τ i

)
,

where τ i is as in Lemma 4.4.6 and Ri is a unique strong solution of the SDE

dRi
t = µi(R

i
t)dt+ σi(R

i
t)dB

i
t, (4.4.11)

where B = (B1, B2) is a standard two-dimensional Brownian motion.

Proof. We will prove the theorem for i = 1. By Lemma 4.4.6 there exists a
Markov chain X1 and a change of time τ 1 such that L

(
Y 1
)

= L
(
X1
τ1

)
and τ 1

is the solution of the time change equation

τ 1t =

∫ t

0

g1
(
s,X1(τ 1s )

)
ds.

Note that since σ1, µ1 are locally Lipschitz and satisfy (4.4.4), the equation (4.4.11)
admits a unique solution. Let B1 be a standard Brownian motion independent
of X1 and let R1 be the unique solution of (4.4.11). Denote R̂1 =

(
R1(τ 1t )

)
t≥0

and X̂1 =
(
X1(τ 1t )

)
t≥0. Then by Theorem 4.4.4 (R̂1, X̂1) is a regime-switching

di�usion given by the SDE

dR̂1
t = µ1(R̂

1
t )g1(t, X̂

1
t )dt+ σ1(R̂

1
t )

√
g1(t, X̂1

t )dB̃1
t ,
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with B̃1 independent of X̂1. On the other hand, by (4.4.7) and assumption
(4.4.8), S1 is a strong solution to

dS1
t = µ1(S

1
t )g1(t, Y

1
t )dt+ σ11(t, Yt, St)dW

1
t + σ12(t, Yt, St)dW

2
t .

Let Z be a one-dimensional standard Brownian motion independent of W and
of Y . De�ne

W̃ 1
t =

∫ t

0

1{σ1(S1
u)g1(u,Y

1
u )6=0}

(
σ11(u, Yu, Su)

σ1(S1
u)
√
g1(u, Y 1

u )
dW 1

u +
σ12(u, Yu, Su)

σ1(S1
u)
√
g1(u, Y 1

u )
dW 2

u

)

+

∫ t

0

1{σ1(S1
u)g1(u,Y

1
u )=0}dZu.

Then the process W̃ 1 is a continuous local martingale. Moreover, by assumption
(4.4.9) we see that 〈

W̃ 1
〉
t

= t,

so W̃ 1 is a standard Brownian motion. Note that, since Y is independent of
(W 1,W 2, Z), the latter is a Wiener process with respect to the �ltration

H =
(
F (W 1,W 2,Z)
t ∨ FY

∞

)
t≥0

.

Thus W̃ 1 is an H - standard Brownian motion. In particular, W̃ 1 is independent
ofH0 = FY

∞. Thus the processes W̃ 1 and Y are independent. Moreover

dS1
t = µ1(S

1
t )g1(t, Y

1
t )dt+ σ1(S

1
t )
√
g1(t, Y 1

t )dW̃ 1
t .

Thus, since L
(
Y 1
)

= L
(
X̂1
)
, we see that L

(
S1
)

= L
(
R̂1
)
.

4.5 Monte Carlo simulations of the time-changed process

In this section we will present the application of change of time to Monte Carlo
pricing of European options. Let S be a geometric Brownian motion

dSt = rStdt+ σStdWt, (4.5.1)
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and let τ be a change of time given as a solution to the TCE (4.4.10) for an
appropriate function g and a Markov chainX . Then by Theorem 4.4.4 the time-
changed asset price process Ŝ is a regime-switching di�usion

dŜt = rg(t, X̂t)Ŝtdt+ σ

√
g(t, X̂t)ŜtdBt.

The quantity rg(t, X̂t) plays a role of a stochastic interest rate, whileσ
√
g(t, X̂t)

– a stochastic volatility.

Consider a European-style option ω(ŜT ) with maturity T . Then its price at time
0 is calculated as

Πω = Ee−
∫ T
0
rg(t,X̂t)dtω(ŜT ) = Ee−rτTω(SτT ).

Hence, to be able to price it using Monte Carlo simulations, instead of simulat-
ing regime-switching di�usion and the stochastic interest rate, we only need to
simulate geometric Brownian motion S and the change of time τ . In order to
simulate the time change τ , we �rst draw simulation of X according to its gen-
erator matrix Λ, and then use the explicit solution of the TCE given in (4.2.2).
The Markov chain X and the GBM S are simulated using standard techniques,
see e.g. [5]. Note that this procedure, i.e. simulating GBM and change of time,
would be very useful also for pricing Asian or American options, whose prices
depend on the whole path of Ŝ.

We will start with presenting some results of simulations of time-changed Markov
chains and time-changed geometric Brownian motions for particular changes
of time. We consider Markov chain X on a state space E = {1, 2, 3}, starting
from 1 and following the intensity matrix

Λ =

−3 2 1
4 −6 2

0.5 1.5 −2

 .

In addition, we consider changes of time τ1, . . . , τ4 given by equations

τi(t) =

∫ t

0

gi
(
s,Xτi(s)

)
ds, i = 1, . . . , 4
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Figure 4.1: Sample paths of changes of time τ1, . . . , τ4.

for functions g1, . . . , g4, which are presented in Table 4.1. Note that only the �rst
function g1 is time-independent, which makes τ1 time-homogeneous, whereas
τ2, τ3 and τ4 are inhomogeneous changes of time.

Table 4.1: Functions corresponding to changes of time τ1, . . . , τ4.

k = 1 k = 2 k = 3

g1(t, k) 1 1
2

2

g2(t, k) 1 1
2
t−1/2 2t

g3(t, k) 1 1
t+1

et

g4(t, k) 1 2t 3t2

Let S be given by 4.5.1, with S0 = 100, r = 0.01 and σ = 0.1. The process S will
be time-changed according to τ1, . . . , τ4. We draw simulations of X and S and
then we simulate τi, i = 1, . . . , 4 using (4.2.2). The graphs of these changes of
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Figure 4.2: Sample paths of Markov chain (Xt)t≥0 and time-changed Markov chains Xτ1(t),
Xτ2(t) and Xτ4(t).

time and sample paths of time-changed Markov chains are presented in Figures
4.1 and 4.2 respectively. The graphs of sample paths of asset price processes
Sτi(·) are depicted in Figure 4.3.

Let us denote by T1, T2, . . . the jump times of X and by ρi1, ρi2, . . . – the jump
times of Xτi(·) for i = 1, . . . , 4. Note that in state k = 1 the clock "runs nor-
mally", i.e. if XTj = 1 for some j ∈ N, then

Tj+1 − Tj = ρij+1 − ρij a.s. for all i = 1, . . . , 4.

From the formula for g4 we see that the time change τ4 speeds up in both states
k = 2 and k = 3, however the acceleration is smaller in k = 2. For the other
time changes state k = 2 is decelerating and k = 3 – accelerating. Naturally,
time-changed Markov chains tend to stay longer in the decelerating states and
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jump out quickly of accelerating states (which is also noticeable in Figure 4.2),
which results in τ2 and τ3 being on average much slower.

This categorization of states may re�ect possible economic condition, where
k = 1 represents a "neutral state", k = 2 – lower business activity and k = 3 –
higher business activity. Functions g1, . . . , g4 are responsible for the sensitivity
of the transaction �ow to the changes of the market.
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Figure 4.3: Sample paths of asset price process S (top left) and of time-changed asset prices
Sτ1(t) (top right), Sτ3(t) (bottom left) and Sτ4(t) (bottom right).

Similarly to Chapter 3.3, we price three kinds of options:

• Standard European call option, ω(ST ) = (ST −K)+

• Power options ω(ST ) = (SαT −K)+ for α = 1.3

• Self-quanto options ω(ST ) = ST (ST −K)+.

For each kind we set the maturity T = 3 years.
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We run N = 50000 simulations and then price the options for various strike
pricesK , for each time change τ1, . . . , τ4 separately. In order to compare the re-
sults with the classical Black-Scholes model, we also introduce the time change
τ0(t) = t. The prices of options for those time changes are presented in Figures
4.4, 4.5 and 4.6. One can also �nd the exact prices for selected strikes in Table
4.2.

Table 4.2: Option prices for various changes of time.

Option European call Self-quanto Power, α = 1.3

Strike K 100 100 400

S (Black-Scholes) 8.380 1064.047 44.367
S(τ1) 7.485 930.552 38.857
S(τ2) 7.171 874.893 37.581
S(τ3) 7.193 881.072 37.549
S(τ4) 11.730 1652.923 62.718

For all kinds of options, the prices for change of time τ4 are dominating other
prices. This result is intuitive, since this is the only accelerating change of time,
which makes the volatility of the time-changed process on average the highest.
For τ1, τ2 and τ3, the prices are lower than in the Black-Scholes model, which is
consistent with the fact that those changes of time are decelerating. Note also
that the di�erence between the prices for τ2 and τ3 is negligible for most cases.
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Figure 4.4: Prices of standard European call options on Ŝ for various time changes τ0, . . . , τ4.
τ0 (red line) corresponds to the Black-Scholes model.
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Figure 4.5: Prices of self-quanto options on Ŝ for various time changes τ0, . . . , τ4. τ0 (red line)
corresponds to the Black-Scholes model.
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Figure 4.6: Prices of asymmetric power options on Ŝ, for α = 1.3 for various time changes
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