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Abstract
In this dissertation, we study possible generalizations of the Fraïssé theory, with
the use of the set-theoretic forcing. Mainly, we investigate structures added gener-
ically by partial orders of the form

Fn(S,K,λ) = {A ∈ K| F (A) ∈ [S]<λ},
where F (A) denotes the underlying set of a structure A, S is any uncountable set,
and λ is an infinite cardinal. Forcings

Fn(ω1,K,ω)

are of our special interest. If K above is the class of all linear orders, the corre-
sponding generic filters produce instances of so-called increasing sets. Introduced
by Avraham and Shelah in the 1980s, they were used for example to prove the fol-
lowing result:

Theorem (Avraham-Shelah, [6]). It is consistent with ZFC +MA+ ”2ω = ω2”
that there exists an uncountable set A ⊆ R with the property that each uncount-
able function f ⊆ A× A is non-decreasing on an uncountable set.

The main innovation we introduce, is an extension of the notion of increasing
set to structures different from linear orders. This results in what we call rectan-
gular models. They allow to prove other similar results, for instance

Theorem (Kostana). It is consistent with ZFC + MA + ”2ω = ω2” that there
exists an uncountable, separable rational metric space (X, d) such that each un-
countable 1-1 partial function f ⊆ X × X is an isometry on an uncountable
set.

It should be emphasized, that despite the obvious model-theoretic aspect, this
is a dissertation about the set theory. The apparatus of model theory is very basic.
We only assume, that the reader knows the definitions of objects like: a first order
theory, a model, a homomorphism, the automorphism group of a model etc. We
presuppose the knowledge of general topology at the level of the Baire Category
Theorem and the Stone duality. In a few places, mainly in Section 2.3, we refer to
elementary probability and measure theory. On the other hand, the set-theoretic
machinery is rather sophisticated, and this refers particularly to forcing-theoretic
arguments. Although almost all forcing notions appearing in the dissertation are
c.c.c. (and indeed most of them resemble the Cohen forcing) arguments some-
times get quite technical and involved.

Keywords: Fraïssé limit, homogeneous structure, generic structure, random
graph, saturated models, Baumgartner’s Theorem
MSC classification: 06A05 03C25 03C55 03E35
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Streszczenie
Przedmiotem pracy jest zbadanie możliwych uogólnień teorii Fraïsségo przy uży-
ciu metody forcingu. Głównym obiektem naszych zainteresowań są struktury do-
dawane przez filtry generyczne, dla forcingów postaci

Fn(S,K,λ) = {A ∈ K| F (A) ∈ [S]<λ},
gdzie F (A) oznacza uniwersum struktury A, S jest zbiorem nieprzeliczalnym, zaś
λ jest nieskończoną liczbą kardynalną. Szczególną uwagę poświęcamy forcingom

Fn(ω1,K,ω).

Jeśli K powyżej jest klasą porządków liniowych, to odpowiednie filtry generyczne
dają przykłady tzw. zbiorów rosnących (ang. increasing sets). Te zbiory, wprowad-
zone przez Avrahama i Shelaha w latach 80-tych, pozwalają udowodnić na przykład

Twierdzenie (Avraham-Shelah, [6]). Niesprzecznie z ZFC +MA + ”2ω = ω2”
istnieje nieprzeliczalny zbiór A ⊆ R o tej własności, że każda nieprzeliczalna
częściowa f ⊆ A× A jest niemalejąca na zbiorze nieprzeliczalnym.

Główną nowością w pracy jest rozszerzenie pojęcia zbioru rosnącego na struk-
tury inne niż porządki liniowe. Wprowadzamy tzw. modele prostokątne, które
pozwalają uzyskać podobne wyniki dla innych struktur, na przykład:

Twierdzenie (Kostana). Niesprzecznie z ZFC + MA + ”2ω = ω2” istnieje
nieprzeliczalna, ośrodkowa, wymierna przestrzeń metryczna (X, d) o tej włas-
ności, że każda nieprzeliczalna częściowa funkcja różnowartościowa f ⊆ X ×X
jest izometrią na pewnym zbiorze nieprzeliczalnym.

Należy wyraźnie zaznaczyć, że mimo oczywistych aspektów teoriomodelowych
jest to zdecydowanie praca o teorii mnogości. Aparat teoriomodelowy z którego
korzystamy jest bardzo podstawowy. Zakładamy znajomość jedynie takich pojęć
jak: teoria pierwszego rzędu, model, homomorfizm, czy grupa automorfizmów.
Zakładamy również znajomość topologii ogólnej na poziomie Twierdzenia Baire’a
czy też dualności Stone’a. W kilku miejscach, głównie w podrozdziale 2.3, po-
jawiaja się prosty rachunek prawdopodobieństwa i teoria miary. Z drugiej strony,
maszyneria teoriomnogościowa, a w szczególności forcingowa, jest dość zaawan-
sowana. Choć niemal wszystkie forcingi występujące w pracy są c.c.c. (a istotnie
większość z nich przypomina forcing Cohena) argumenty są czasem techniczne i
złożone.
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Chapter 1

Introduction

1.1 History

The story begins with the discovery by Georg Cantor, that the order of rational
numbers is the unique, up to isomorphism, countable, dense linear order without
endpoints [8]. It is hard to say, whether his proof, from the 1895 article Beiträge
zur Begründung der transfiniten Mengenlehre, can be called the back-and-forth
argument. What is important, is that this theorem is now a textbook example of
a situation, where one can show that two structures are isomorphic by means of
successively extending finite partial isomorphism between them. This idea, today
known as the back-and-forth method, has found numerous applications since then,
and – what is perhaps even more important – served as the starting ground for
many other mathematical theories.

Probably the most fruitful of them was formulated in 1954 by Roland Fraïssé
[15]. By this time, model theory has become a well-established branch of math-
ematical logic. The generality it offered, allowed Fraïssé to formulate conditions
for a class of finite models in a first order language that allow to prove a version of
Cantor’s Theorem for this class. Specifically, these conditions imply the existence
of a unique up to isomorphism countable model canonically ascribed to this class.
One of the features of the Fraïssé Theorem is that when we have this countable
model, say M , in hand, we can recover the original class of finite models – these
are just those, which can be isomorphically embedded in M . The model M is ho-
mogeneous, i.e. each finite partial automorphism extends to a full automorphism
of M . If the language does not contain function symbols, M is also ω-categorical,
which means that it is determined among all countable models by its first order
theory.

The notion of elementary equivalence is an important weakening of isomor-
phism. Roughly speaking, it says that two models are indistinguishable from the

1
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viewpoint of the first order logic, although they still may be very different (for
example have different cardinalities). A classical result from model theory says
that all dense linear orders without endpoints are elementary equivalent in the lan-
guage of linear orders. This is proved using the concept of the Ehrenfeucht-Fraïssé
game, which is another emanation of the "back-and-forth" method.

In 1963 Ivan Parovičenko introduced what is now known as the Parovičenko
space [40]. It is a compact, zero-dimensional topological space, satisfying some
further conditions which ensure its uniqueness if the Continuum Hypothesis holds.
In this case, it is homeomorphic to the Čech-Stone remainder of the countable
discrete space, namely βN \ N. By the Stone duality, describing the Parovičenko
space is equivalent to describing the Parovičenko Boolean algebra, and the proof
of uniqueness of this space is reduced to the proof of uniqueness of the Boolean
algebra. The only reason why Parovičenko’s reasoning doesn’t fit into the frame-
work developed by Fraïssé, is that we deal with countable models instead of finite,
and the resulting "big" model has size ω1. The principle is however the same, and
it is not surprising that a suitable generalization of Fraïssé theory was developed in
order to take uncountable models into account. This line of research was pursued,
among others, by Jónsson [25] and Morley & Vaught [36] in the 1960’s.

In the meantime, category theory was gaining more and more recognition as
a clear and expressive language for a significant part of mathematics. It could not
have been missed, that Fraïssé theory can be re-introduced in this language, with
the benefit of some more generality. The category-theoretic framework for Fraïssé
theory was introduced by Droste and Göbel in [13], [12], and was further general-
ized by Kubiś [32]. The theory originally developed in the language of models and
homomorphisms has declared independence from model theory, and was ready to
become an influential technology in general topology [24], topological dynamics
[26], theory of Polish groups [43], [27], or functional analysis [16], [4]. The ar-
ticle [35] is an excellent survey of what is known about homogeneous structures
and their automorphism groups, and [27] contains an extensive introduction to the
study of topological properties of these groups.

However, we do not present the theory in the most general possible setting. It
was already done by Kubiś in [32], together with a brief historical introduction
and numerous examples. Somewhat in the other direction, we would like to stay
in the realm of the model theory, and study connections of Fraïssé theory with set-
theoretic forcing. Specifically, building on the intuition that the Baire Category
Theorem is the heart of the theory, we investigate how models studied by Fraïssé
can be obtained as generic filters for partial orders, and what uncountable models
we can build in a similar way.
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1.2 Preliminaries
Chapters 2 and 3 are mainly of introductory nature, with a bit of a survey of more
recent results. We present in them the classical Fraïssé theory, and its uncount-
able variant – the Fraïssé-Jónsson theory – respectively. They rely only on basic
notions from model theory, with occasional exceptions (like the measure space
from 2.3). In Chapter 4 we introduce and study uncountable generic structures,
added by specific forcing notions, that resemble those arising from Fraïssé theory.
We show that they are almost always rigid, at least in the corresponding generic
extensions, which is a significant difference from the countable case. In Chapter
5 we study these structures under the assumption of Martin’s Axiom. In this case,
their automorphism groups are much richer, and in some cases we can provide
conditions characterizing these models uniquely. Exposition of of Chapters 4 and
5 follow our preprints [29] and [31]. All theorems appearing in these chapters
are author’s original, unless stated otherwise. Apart from them, author’s original
contribution are a few results at the end of subsection 3.2.4.

We use terms model and structure exchangeably. By embedding, we always
mean an isomorphism onto its image. A subset of a structure is a substructure, if
the identity inclusion is an embedding. This convention for example ensures that a
subgraph is always understood to be an induced subgraph. For any function f , we
denote by dom f and rg f its domain and image respectively. For a structure A, its
automorphism group is denoted by AutA. When considering functions between
linear orders, we use terminology increasing–strictly increasing, so a constant
function is increasing, but not strictly increasing (unless the domain has only one
element). Concerning forcing-theoretic terminology, we write p ≤ q when p is
stronger than q, and p⊥q if p and q are incomparable. We say that a language is
purely relational, if it doesn’t contain function or constant symbols. For a model
A we denote by F (A) the underlying set (universe) of A.

Usually, a mathematical structure X is homogeneous if for each pair of points
x, y ∈ X there exists an automorphism of X which maps one of these points to
the other. One can replace points with sets from a given class. We can therefore
speak about structures homogeneous with respect to finite/countable/compact etc.
sets. Our default convention is that

homogeneous = homogeneous with respect to finite substructures.

We will depart from this convention in Chapter 2.
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Chapter 2

Classical Fraïssé Theory

2.1 Fraïssé Classes

In this chapter we are looking at some classes K consisting of finite structures in
some countable first order language L. Let us make a standing convention that
whenever we say the class of structures, we strictly speaking mean the class of
isomorphism types. Unless it is specifically stated otherwise, we only care about
isomorphism types of models, not really specific sets of which they consist. We
will be looking also at embeddings between structures from K.

Definition 2.1.1. For a class K we will say that

• K has the Joint Embedding Property (JEP), if for each a, b ∈ K there exists
c ∈ K such that there exist embeddings a �→ c, and b �→ c.

a

c

b

• K has the Amalgamation Property (AP), if for each pair of embeddings
f : a �→ b, g : a �→ c, there exists d ∈ K, together with a pair of embed-
dings f � : b �→ d, g� : c �→ d, such that f � ◦ f = g� ◦ g.

5
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b

a d

c

f �f

g g�

• K is hereditary if for any b ∈ K and any embedding a �→ b, a ∈ K.

Notice, that if K has a weakly initial object, namely a structure which embeds
into any element of K, then the JEP follows from the AP. This assumption is
typically satisfied, however there are classes with the AP but not the JEP – for
instance the class of all finite fields.

Definition 2.1.2. A class K is a Fraïssé class if is satisfies all properties listed
above, and has at most countably many models, up to isomorphism.

For checking the Amalgamation Property, we can assume that both initial ar-
rows are identity inclusions. The latter ones however, not always are inclusions,
since structures may be "glued together". From time to time we are going to use
variants of the AP, which ensures that they aren’t.

Definition 2.1.3. A class K has the Strong Amalgamation Property (SAP) if for
any structures a, b, c ∈ K and embeddings f : a �→ b, g : a �→ c, there exists
d ∈ K, together with embeddings f � : b �→ d, g� : c �→ d, satisfying f �◦f = g�◦g,
and moreover rg f � ∩ rg g� = rg (f � ◦ f).

The Strong Amalgamation Property essentially means that given any structure
A ∈ K, and two extensions B0 ⊇ A, B1 ⊇ A, such that B0∩B1 = A, we can find
bigger C ∈ K, containing B0 ∪ B1 (often C = B0 ∪ B1). A close relative of the
SAP is the Splitting Property. The name was coined by Kubiś. Two embeddings
f : A �→ B and g : A �→ C are isomorphic, if there exists an isomorphism
h : B �→ C, such that h ◦ f = g. The SP is just the SAP for pairs of isomorphic
extensions.

Definition 2.1.4. A class K has the Splitting Property (SP) if for any structures
a, b, c ∈ K and isomorphic embeddings f : a �→ b, g : a �→ c, there exists d ∈ K,
together with embeddings f � : b �→ d, g� : c �→ d, satisfying f � ◦ f = g� ◦ g, and
moreover rg f � ∩ rg g� = rg (f � ◦ f).

The importance of the notion of Fraïssé class comes from the classical theorem
of Fraïssé, dating back to 1954 (see [15]). If it only didn’t sound somewhat posh,
we could easily call it the Fundamental Theorem of the Fraïssé Theory. For an
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infinite structure A, we denote by AgeA the class of finite substructures of A. We
will say that A is locally finite if each finite subset of A is contained in a finite
substructure. This will be the case for example when we are working with purely
relational language. But first, we need some more definitions.

Definition 2.1.5. A countable structure A is

• K-universal, if for every structure a ∈ K, there exists an embedding a �→ A.

• injective, if for any pair of embeddings f : a �→ A, g : a �→ b, where
a, b ∈ AgeA, there exists an embedding F : b �→ A, such that F ◦ g = f .

a A

b

f

g
F

• homogeneous, if any isomorphism between finite substructures of A extends
to an automorphism of A.

The celebrated theorem of Fraïssé is:

Theorem 2.1.6 (Fraïssé, [15]). If K is a Fraïssé class, then there exists a unique
up to isomorphism countable, homogeneous structure K with AgeK = K.

Before we proceed with the proof, let us remark, that although homogeneity
is stronger than injectivity, in case of locally finite structures these two properties
are equivalent.

Lemma 2.1.7. If two countable, locally finite structures have the same age and
are injective, then they are isomorphic. In fact, any isomorphism between finite
substructures a ⊆ A, b ⊆ B can be extended to an isomorphism between A and
B.

Proof. Fix two structures A and B as in the statement of the Lemma. We can
decompose them into increasing chains A =

�

n<ω

an, and B =
�

n<ω

bn of finite

substructures, where a0 = a and b0 = b. Let f0 : a0 �→ b0 be given. We
will inductively define a sequence of embeddings fn such that fn ⊆ fn+1, and
f =

�

n<ω

fn will be an isomorphism from A onto B.

• Suppose n is even and fn is defined. We find l > n such that dom fn ⊆ al.
Since B is injective, we will find fn+1 closing the diagram
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dom fn ⊆ al

rg fn ⊆ B

fn fn+1

• Suppose n is odd and fn is defined. We find l > n such that rg fn ⊆ bl.
Since A is injective, we will find fn+1 closing the diagram

dom fn ⊆ A

rg fn ⊆ bl

f−1
n

f−1
n+1

It is clear that f is the required isomorphism.

If we take A = B, we obtain:

Corollary 2.1.8. A countable, locally finite structure is homogeneous if and only
if it is injective.

A similar argument shows that injective models satisfy some stronger, "infini-
tary", universality.

Lemma 2.1.9. Let A and B be locally finite, countable structures. Assume more-
over, that AgeB ⊆ AgeA and A is injective. Then there exists an embedding
B �→ A.

Proof. Fix A and B as in the statement of the Lemma. We can decompose them
into increasing chains A =

�

n<ω

an, and B =
�

n<ω

bn of finite substructures. Let

f0 : b0 �→ a0 be given. We will inductively define a sequence of embeddings fn
such that fn ⊆ fn+1, and f =

�

n<ω

fn will be an embedding from B into A.

Suppose fn is defined. We find l > n such that dom fn ⊆ bl. Since A is
injective, we will find fn+1 closing the diagram

dom fn ⊆ bl

rg fn ⊆ A

fn fn+1

After ω many steps f =
�

n<ω

fn is the required embedding.
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We will present two proofs of the Fraïssé Theorem. It will be useful to identify
certain pairs of embeddings.

Definition 2.1.10. Two embeddings f : a0 �→ a1 and g : b0 �→ b1 are equivalent
if there exist isomorphisms j0 : a0 → b0 and j1 : a1 → b1 such that j1 ◦f = g ◦ j0.

a0 a1

b0 b1

j0 �

f

j1�
g

The first proof. Enumerate as {En| n < ω} all isomorphism types of structures
from K, and as {fn| n < ω} all embeddings between structures from K, up to
equivalence. We aim to inductively build an increasing sequence of structures
Fi ∈ K, and set K =

�

n<ω

Fn. For bookkeeping purposes we fix a partition of ω

into infinite sets {Φn| n < ω}, such that minΦn ≥ n, for n < ω.
Let F0 = E0, and enumerate as {gi| i ∈ Φ0} all (up to equivalence) embed-

dings g, with dom g ⊆ E0 and rg g ∈ K.
Assume now that the sets Fk are defined for all k ≤ n, and so is the set

{gi| i ∈ Φn}. In particular dom gn ⊆ Fn. Using the AP we can find F �
n+1,

together with embeddings closing the diagram

dom gn Fn

rg gn F �
n+1

gn

Using the JEP we can enlarge F �
n+1 to Fn+1, so that En embeds into Fn+1.

Finally, use the set Φn+1 to index all K-embeddings starting from substructures of
Fn+1.

Let K =
�

n<ω

Fn. The second step of the construction clearly ensures univer-

sality. Why is K injective? Let D ⊆ K be a finite substructure, and f : D �→ E.
D is also a substructure of some Fi, and there is j > i, such that gj is equivalent
to f . By the definition of Fj , there exists h : E �→ Fj ⊆ K closing the triangle

D ⊆ Fj+1 ⊆ K

E

gj
h

Uniqueness of K follows from Corollary 2.1.8.
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Second Proof. In this proof we will slightly depart from one of our conventions
made at the beginning of the chapter, since now not only isomorphism types of
models will be relevant, but also specific sets on which these models are defined.
To avoid confusion, we will denote by K∗ the class of all structures from K, that
are defined on subsets of ω. Let Kω

∗ denote the countable product of K∗ with
the product topology (we equip K∗ with the discrete topology). Therefore each
element x ∈ Kω

∗ is a sequence of finite models, and x(i) denotes the i-th model in
this sequence. We will be looking at the space

SeqK = {x ∈ Kω
∗ | ∀ i < ω x(i) ⊆ x(i+ 1) is a substructure}.

First, note that SeqK is a closed subspace of Kω
∗ , therefore a Polish space.

From the JEP for K, it easily follows that the following sets are open and dense in
the space SeqK:

ED = {x ∈ SeqK | ∃ n < ω ∃ g : D �→ x(n)},
for D ∈ K∗. Also, from the AP it follows that the following sets are open and
dense in SeqK:

ED,E
f,n = {x ∈ SeqK | D ⊆ x(n) is a substructure =⇒

∃ m > n ∃ g : E �→ x(m) g ◦ f = idD},
for D,E ∈ K∗, an embedding f : D �→ E, and n < ω.
Given that K has only countably many isomorphism types, K∗ is countable,

and so by the Baire Category Theorem, there is a sequence x ∈ SeqK, which
belongs to sets ED, ED,E

f,n , for all choices of D,E, f, n. It is standard to verify that�
x is a universal, homogeneous structure.

The first proof is an instance of the "back-and-forth" argument. The main
principles of this argument are independent of the class K, and even from model
theory in general. They can be phrased in a very abstract category-theoretic set-
ting, as done in [32].

The advantage of the second proof is that it shows more than merely existence
of the Fraïssé limit. It actually shows that, in a certain sense, the Fraïssé limit
is the most typical of all countable, locally finite structures with age included in
K. The phrase in a certain sense here adheres to the Baire category, as universal
homogeneous structures form a residual set in the space SeqK. When is it true
that the Fraïssé limit of K is also typical in the sense of measure, or probability,
theory? This would aim to show that in a certain measure space of all locally finite
structures with age contained in K, those structures which are isomorphic to K,
form a set of full measure. In the last section we are going to briefly discuss when
this is possible.



2.2. EXAMPLES 11

Theorem 2.1.11. If K is a countable, locally finite, homogeneous structure, then
AgeK is a Fraïssé class.

Proof. The only non-trivial thing to check is the AP. Fix a pair of embeddings

A B0

B1

Without loss of generality we may assume that A ⊆ B0 ⊆ K. By injectivity
there exists an embedding g : B1 �→ K, and by local finiteness B0 ∪ g[B1] is
contained in some finite substructure of K, witnessing the AP for AgeK.

A ⊆ B0 ⊆ K

B1

g

This shows the AP.

The Strong Amalgamation Property for a Fraïssé class K, with the Fraïssé
limit K, corresponds to a certain property of K.

Definition 2.1.12. The structure K has no algebraicity if for each finite substruc-
ture F ⊆ K, and for each f ∈ K \ F , f has infinite orbit under the action of the
pointwise stabilizer of F in AutK.

Theorem 2.1.13 (Thm. 7.1.8, [23]). Let K be a Fraïssé class with the Fraïssé
limit K. The following are equivalent.

1. K has the SAP.

2. K has no algebraicity.

2.2 Examples
We will see some examples illustrating the phenomenon described above. Typ-
ically the only non-trivial condition from the definition of a Fraïssé class is the
AP, so we will briefly describe why it holds for each of the subsequent classes.
Verification of other conditions is easy and can be left to the reader.
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2.2.1 Linear Orders
Probably the first example of a Fraïssé class was the class of all finite linear orders.

Proposition 2.2.1. The class of all finite linear orders has the AP.

Proof. Take a pair of finite linear orders (K0,≤0), (K1,≤1), such that ≤0 and ≤1

agree on L = K0 ∩ K1. We want to find an ordering ≤2 on K0 ∪ K1 extending
both ≤0 and ≤1. This requirement determines ≤2 on all pairs, except for ones of
the form {x0, x1}, where xi ∈ Ki \ L, for i = 0, 1. We put x1 <2 x0 if there is
y ∈ L, such that x1 <1 y <0 x0, and x0 <2 x1 otherwise. It is routine to check
that this defines a linear order on K0 ∪K1.

It is easy to see that the corresponding Fraïssé limit is a countable, dense
linear order without endpoints. These conditions are satisfied by the ordering of
the rationals (Q,≤), and since the Fraïssé limit is unique, it follows that it is
isomorphic to (Q,≤). We have proved the old theorem of Cantor:

Corollary 2.2.2 (Cantor, [8]). Any countable, dense linear order without end-
points is isomorphic to (Q,≤).

2.2.2 Graphs
In the case of (undirected) graphs, verification of the AP is straightforward: we
just take the set-theoretic union and add no edges. What is the Fraïssé limit?
Clearly, it is a countably infinite graph R, which satisfies the following axiom:

For each pair of disjoint, finite subsets A,B ⊆ R, there exists a point
x ∈ R \ (A ∪B), connected with every point in A, and with no point in B.

An easy argument by induction shows that this property implies injectivity,
so by Lemma 1 it determines R uniquely, up to isomorphism. This graph was
first studied by Ackermann [2] in 1937. The set of vertices was the set of all
hereditarily finite sets, two of them being connected precisely when one is an
element of the other. Erdös and Rényi ([14]) gave a probabilistic construction of
R – assume that for each pair of distinct integers we randomly decide whether
they are connected. We do it independently for all pairs of vertices, with a fixed
probability p ∈ (0, 1). It turns out, that with probability 1 the resulting graph will
be isomorphic to R. This explains why R is known as the random graph.

Let Kn, n ≥ 3, denote the complete graph on n vertices. We will say that
a graph is Kn-free, if it has no induced subgraph isomorphic to Kn. The class
of all Kn-free graphs is a Fraïssé class. Let Rn be the corresponding countable,
homogeneous graph. A deep result by Lachlan and Woodrow shows that they
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essentially exhaust examples of Fraïssé classes of finite graphs. For a graph G, we
denote by Gc its complement – the graph obtained by replacing every edge with
non-edge, and the other way around.

Theorem 2.2.3 (Lachlan-Woodrow, [34]). Let U be a countably infinite, homoge-
neous graph. Then one of the graphs U and U c is isomorphic to either R, Rn, for
n ≥ 3, or a disjoint union of complete graphs of the same size.

2.2.3 Boolean Algebras
The class of all finite Boolean algebras is a Fraïssé class. The AP follows from the
existence of free products with amalgamation in the category of Boolean algebras,
which is described in [28] Ch. 11. The corresponding homogeneous algebra is the
countable, atomless Boolean algebra.

2.2.4 Partial Orders
The class of all finite partial orders is a Fraïssé class with the resulting homoge-
neous structure known as the random partial order.

Proposition 2.2.4. The class of all partial orders has the AP.

Proof. Fix some partial order (P,≤) and consider two its extensions (P,≤) ⊆
(P0,≤0), (P1,≤1), with P = P0 ∩ P1. We define a relation ≤∗ on P0 ∪ P1 by the
conditions

x0 ≤∗ x1 ⇐⇒ ∃p ∈ P x0 ≤0 p ≤1 x1,

x1 ≤∗ x0 ⇐⇒ ∃p ∈ P x1 ≤1 p ≤0 x0.

Verification of transitivity is straightforward, and so is to check that

∀x, y (x ≤∗ y ∧ y ≤∗ x =⇒ x = y).

Therefore ≤∗ is a partial ordering of P0 ∪ P1.

2.2.5 Groups
Somewhat more involved Fraïssé class is the class of finite groups. The amalga-
mation can be proved using so-called permutation products [37]. Resulting group
is known as the Hall’s universal locally finite group, and was first described by
Philip Hall in 1959 [20].

Things are simpler in the case of abelian groups. In this case we can see the
AP via reduced products – for two finite abelian groups B0, B1 with B0∩B1 = A
let

E = B0 × B1/�(a,−a)| a ∈ A�
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If we identify B0 and B1 with their natural copies inside E, then E witnesses
the AP for inclusions A ⊆ B0 and A ⊆ B1.

Proposition 2.2.5. The group A =
�

i<ω

Q/Z is the Fraïssé limit of the class of all

finite abelian groups.

Proof. First, see that since each finite abelian group is a direct sum of finite cyclic
groups, it can be embedded into A. Moreover, each finitely generated subgroup of
A is finite. Why is that? The only way for a finitely generated abelian group to be
infinite, is to have an element of an infinite order, but A has no elements of infinite
order. This shows that AgeA is exactly the class of finite abelian groups. The
group A is divisible, so it is injective as a Z-module. It is tempting to conclude
that since Z-modules are just abelian groups, the proof is completed. However,
the standard definition of an injective module refers to all group homomorphisms,
while our definition of an injective structure takes into account only 1-1 homo-
morphisms.

Fix a group monomorphism f : A �→ A, and a finite group B ≥ A. We
want to extend f to f : B �→ A, keeping it 1-1. We can proceed by induction on
the number of generators of B, so we can assume that B is generated by the set
A ∪ {b}, for some b ∈ B. Let f be an extension of f obtained from the fact that
A is injective in the algebraic sense. If f is 1-1, we are done, so suppose that for
some expression a + b �= 0, f(a + b) = 0. By replacing b with a + b, we can
assume that f(b) = 0. Now notice, that groups �b� and A have trivial intersection
in B. Indeed, otherwise for some integer k, and a ∈ A, we would have k · b = a.
Now applying f both sides, we obtain f(a) = f(a) = 0, and so a = 0. We may
send b to some non-zero element of A, by a homomorphism g : B �→ A, which
is zero on A. From the remarks above it is clear that f + g : B �→ A is the
monomorphism we were looking for.

2.2.6 Metric Spaces
So far we have been looking only at structures in finite languages, but this is not
really important. We will call a metric space (X, d) rational, if all distances be-
tween the points of X are rational numbers. The class of all rational metric spaces
is a class of models of a first order theory, in the language consisting of count-
ably many binary relations dq, for all rationals q > 0, where relation dq(x, y)
is interpreted as distance between x and y is at least q. The resulting homoge-
neous space (U, d) is known as the rational Urysohn space, and its completion
U, as the Urysohn space. The space U is uniquely characterized by the following
conditions.
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• U contains an isometric copy of any finite metric space.

• Each isometry between between finite subspaces of U extends to a full isom-
etry of U into itself.

Proposition 2.2.6. The class of all finite, rational metric spaces has the AP.

Proof. Using induction, we can reduce our task to amalgamating two one-point
extensions. Fix a finite, rational metric space (X, d), and two extensions (X1, d1),
(X2, d2), where Xi = X ∪ {xi}, for i = 1, 2, and metrics d1, d2 agree with the
metric d on X . We want to set the rational distance q between x1 and x2, so that
the triangle inequality will hold. This reduces to ensuring that

∀ x ∈ X d1(x, x1) + d2(x, x2) ≥ q,

∀ x ∈ X d1(x, x1) + q ≥ d2(x, x2),

and
∀ x ∈ X d2(x, x2) + q ≥ d1(x, x1).

This in turn is just

dist(x1, X\{x1})+dist(x2, X\{x2}) ≥ q ≥ | dist(x1, X\{x1})−dist(x2, X\{x2})|.

Clearly we can find q > 0 with this property.

It makes sense to consider metric spaces with distances restricted to other
countable sets. Given any countable subset D ⊆ [0,∞), let MD be the class of
finite metric spaces with distances in D. Let us note, that we can code some other
classes of models as MD. For example if D = {0, 1, 2}, then MD is the class of
graphs, if we interpret points in distance 1 as connected, and in distance 2 as not
connected. It turns out that the AP for MD is equivalent to some rather technical
condition of D, which was identified by the authors of [9].

Definition 2.2.7. Let D ⊆ [0,∞) be any countable set. For points u1, u2, v1, v2 ∈
D, let φ(u1, u2, v1, v2) denote the closed interval

[max{|u1 − u2|, |v1 − v2|},min{u1 + u2, v1 + v2}].

and let ρD(u1, u2, v1, v2) be the assertion that

φ(u1, u2, v1, v2) ∩D �= ∅.

The set D satisfies the four values condition if

∀ u1, u2, v1, v2 ∈ D ρD(u1, u2, v1, v2) =⇒ ρD(u1, v1, u2, v2).
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Theorem 2.2.8 ([9]). Let D ⊆ [0,∞) be countable. The class MD is a Fraïssé
class if and only if D satisfies the four values condition.

Given that the four values condition is quite involved, it is typically easier to
check some stronger, but simpler conditions.

Proposition 2.2.9 ([9]). The four values condition for a countable set D ⊆ [0,∞)
is implied by any of the following:

• ∀ u1, u2, v1, v2 ∈ D u1 − v1 ≤ u2 + v2 =⇒
∃ w ∈ D u1 − v1 ≤ w ≤ u2 + v2,

• ∀ u, v ∈ D u+ v < supD =⇒ u+ v ∈ D.

Of course for any D like above, we obtain the corresponding Urysohn space
UD.

2.3 Invariant Measures on the Space of Models
The random graph can be generated by a simple probabilistic procedure, described
in 2.2.2. Which other models admit a similar description? Before asking this
question in a rigorous manner, we must define a suitable probabilistic space.

Following [1], we denote by StrL the space of structures in some countable
language L, with ω as their underlying set. We introduce the topology on the
space StrL by means of declaring the following sets open.

{M ∈ StrL | M |= RM(n1, . . . , nk)},
for a relational symbol R, and n1, . . . , nk ∈ ω,

{M ∈ StrL | M |= cM = n},
for a constant symbol c, and n ∈ ω,

{M ∈ StrL | M |= fM(n1, . . . , nk) = m},
for a function symbol f , and n1, . . . , nk,m ∈ ω.

We therefore have a σ-algebra of Borel sets, and can speak about Borel mea-
sures on the space StrL. We are interested in models only up to isomorphism,
rather than specific representations of these isomorphism types, so we would like
to look for measures which are invariant under re-enumerating the universe. More
precisely, the group of all permutations of ω, S∞, acts on the space StrL by the
logic action. This means that for a given M ∈ StrL, and g ∈ S∞, g · M is the
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structure obtained from M by permuting elements of the universe according to
g. A measure µ on StrL is invariant, if for all Borel subsets B ⊆ StrL, and all
permutations g ∈ S∞, we have

µ(B) = µ(g · B).

Question. For which models M ∈ StrL does there exist an invariant Borel prob-
ability measure on StrL, concentrated on the set of models isomorphic to M?

A number of necessary conditions can be seen by hand. If the language con-
tains a constant symbol c, then for each natural number n ∈ ω the measure of the
set

{M ∈ StrL | cM = n},
should be independent of n, because the measure is invariant. Therefore this set
would have measure zero, contradicting the fact that the constant c must be some-
how interpreted in M . For similar reasons, if f is a function symbol of arity k,
then with probability one

fM(n1 . . . , nk) ∈ {n1, . . . , nk}.

This essentially means that only purely relational languages are worth consider-
ing. One model for which the answer is clearly affirmative is the random graph.
This is also the case for countable homogeneous Kn-free graphs, defined in 2.2.2,
as proved by Petrov and Vershik [41]. Their method was extended by Ackerman,
Freer, and Patel ([1]) to give both necessary and sufficient conditions on the model
M .

Theorem 2.3.1 (Thm. 1.1, [1]). If M is a countable structure in a countable
language L, then the following conditions are equivalent:

• There exists an invariant Borel probability measure on StrL, concentrated
on the set of models isomorphic to M ,

• M has no algebraicity (see Definition 2.1.12).

By Theorem 2.1.13, if M is homogeneous, then conditions the Theorem 2.3.1
hold exactly when Age(M) has the SAP .
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Chapter 3

Fraïssé-Jónsson Theory

As the initial example, let us look at three well-known theorems, characterizing
certain uncountable linear orders, graphs, and Boolean algebras respectively.

• (Hausdorff, [22]) Assume CH . Then all countably saturated linear orders
(see Definition 3.2.1) of cardinality 2ω are isomorphic.

• Assume CH . There exists a unique up to isomorphism graph G of cardinal-
ity 2ω, with the property that for any countable, disjoint subsets A,B ⊆ G,
there exists a vertex in G\ (A∪B) connected to every vertex in A and none
of the vertices in B.

• (Parovičenko, [40]) Assume CH . Then all Boolean algebras of cardinality
2ω with the Strong Countable Separation Property (see Definition 3.2.5) are
isomorphic.

All of the above claims are proved using the "back-and-forth" argument, and
all of them fail without CH . The fact that Parovičenko Theorem is equivalent
to CH was proved by van Douwen and van Mill in [10]. For the other two,
this is much easier to see. These are examples of uncountable Fraïssé limits,
which general theory, so called Fraïssé-Jónsson theory, is the natural analog of
the classical Fraïssé theory for classes of infinite models.

3.1 Fraïssé-Jónsson Theory
Like before, let us consider a class of structures K in a countable language, and
this time the structures are perhaps infinite. Definitions of the AP, JEP, hereditary
class are just like in the finite case, and notions of universal and injective structures
admit straightforward analogs. We denote by AgeA the class of substructures of
A of size strictly less than |A|.

19
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Definition 3.1.1. A structure A of size κ is

• K-universal, if for every structure a ∈ K, there exists an embedding a �→ A,

• injective, if for any pair of embeddings f : a �→ A, g : a �→ b, where
a, b ∈ AgeA, there exists an embedding F : b �→ A, such that F ◦ g = f .

a A

b

f

g
F

• homogeneous, if any isomorphism between substructures of A of size < κ
extends to an automorphism of A.

In the previous chapter we were building increasing sequences of finite mod-
els. Now we would like to construct a transfinite sequence of the length κ con-
sisting of models of cardinality < κ. At limit stages we will be taking increasing
unions, so we need one additional property of the class K. On the other hand, we
don’t need any version of local finiteness – any infinite subset can be extended to
a substructure of the same size (we have assumed that the language is countable),
and so any structure of cardinality κ is automatically "locally < κ". Typically
we will be working with cardinals κ satisfying κ<κ = κ. Under GCH this is
satisfied for all regular cardinals, but it is consistent with ZFC that there is no
limit cardinal with this property. Some parts of the theory work under the weaker
assumption, that κ is regular.

Definition 3.1.2. Let κ be an uncountable cardinal. K is κ-closed if an increasing
union of < κ elements of K belongs to K.

Assume κ<κ = κ. We will say that K is an uncountable Fraïssé Class (of the
length κ), if it is a κ-closed, hereditary class of structures, satisfying the AP, JEP,
and having no more than κ many isomorphism types.

Lemma 3.1.3. Let κ be an uncountable regular cardinal. If two injective struc-
tures of size κ have the same Age, they are isomorphic. In fact, any isomorphism
between substructures of size < κ can be extended to an isomorphism between
them.

Proof. Fix two structures A and B as in the statement of the Lemma. We can de-
compose them into increasing chains A =

�

α<κ

aα, and B =
�

α<κ

bα of substructures

of size < κ. Let f0 : a0 �→ b0 be given. We will inductively define an increasing
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sequence of embeddings fα such that f =
�

α<κ

fα will be an isomorphism from A

onto B.

• Suppose α is an even successor ordinal and fα is defined. κ is regular, so
there exists β > α such that dom fα ⊆ aβ . Since B is injective, we will
find fα+1 closing the diagram

dom fα ⊆ aβ

rg fα ⊆ B

fα fα+1

• Suppose α is an odd successor ordinal and fα is defined. There exists β > α
such that rg fα ⊆ bβ . Since A is injective, we will find fα+1 closing the
diagram

dom fα ⊆ A

rg fα ⊆ bβ

f−1
α

f−1
α+1

• Suppose α is a limit ordinal. Let fα =
�

γ<α

fγ .

It is clear that f =
�

α<κ

fα is the required isomorphism.

If we take A = B in the Lemma 3.1.3, we obtain:

Corollary 3.1.4. Any structure of size κ is homogeneous if and only if it is injec-
tive.

Lemma 3.1.5. Let A and B be structures of size κ, where κ > ω is regular.
Assume moreover, that AgeB ⊆ AgeA and A is injective. Then there exists an
embedding B �→ A.
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Proof. Fix A and B as in the statement of the Lemma. We can decompose them
into increasing chains A =

�

α<κ

aα, and B =
�

α<κ

bα of substructures of size < κ.

Let f0 : b0 �→ a0 be given. We will inductively build an ⊆-increasing sequence of
embeddings fα, such that and f =

�

α<κ

fα will be an embedding from B into A.

Suppose fα is defined. Since κ is regular, we will find β > α such that
dom fα ⊆ bβ . Since A is injective, we will find fα+1 closing the diagram

dom fα ⊆ bβ

rg fα ⊆ A

fα fα+1

If α is a limit ordinal, we set fα =
�

β<α

fβ . After κ many steps f =
�

α<κ

fα is

the required embedding.

Theorem 3.1.6. Let κ be an uncountable cardinal such that κ<κ = κ. If K is a
Fraïssé class of the length κ, there exists a unique up to isomorphism model K,
satisfying the following three properties:

1. |K| = κ,

2. AgeK = K,

3. K is injective.

In this case K is also homogeneous.

Proof. Enumerate as {Eα| α < κ} all isomorphism types of structures from K.
We aim to inductively build an increasing sequence of structures Fα ∈ K, and set
K =

�

α<κ

Fα. For bookkeeping purposes, we fix a partition of κ, {Φγ| γ < κ}

consisting of sets of cardinality κ, such that minΦγ ≥ γ, for all γ < κ.
Let F0 = E0, and enumerate as {gγ| γ ∈ Φ0} all (up to equivalence) embed-

dings g, with dom g ⊆ F0 and rg g ∈ K. We don’t mind repetitions.

• Assume we are in a successor step, when Fα is defined, and so is the set
{gγ| γ ∈ Φα}. In particular, gα is defined, and dom gα ⊆ Fα. Using the AP
for the class K, we can find h, and F �

α+1 ∈ K, closing the diagram
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dom gα Fα

rg gα F �
α+1

gα

h

Using the JEP we can enlarge F �
α+1 to Fα+1, so that Fα+1 contains an iso-

morphic copy of Eα. Finally, we use the set Φα+1 to index all embeddings
starting from substructures of Fα+1.

• In the limit step, we just define Fα =
�

γ<α

Fγ , and use the set Φα to index all

embeddings starting from substructures of Fα.

Let K =
�

α<κ

Fα. The second step of construction clearly ensures universality.

Why is K injective? Fix D ∈ AgeK and f : D �→ E. D is also a substructure of
some Fγ , and there is δ > γ, such that gδ is equivalent to f . By the definition of
Fδ, there is h : E �→ Fδ+1 ⊆ K closing the triangle.

D ⊆ Fδ+1 ⊆ K

E

gδ
h

Uniqueness of K follows from Lemma 3.1.3, and homogeneity from Corollary
3.1.4.

All classes of models considered in Chapter 2 have uncountable universal ho-
mogeneous models in higher cardinalities (assuming suitable cardinal arithmetic).
However the SAP, or even the SP can fail, when passing to the uncountable set-
ting – the class of countable rational metric spaces does not enjoy the SP. This is
visible when one tries to amalgamate two copies of the set of rationals Q with the
euclidean metric over Q \ {0}.

3.2 Examples

3.2.1 Saturated Linear Orders

Definition 3.2.1. A linear order (L,≤) is λ-saturated if for all subsets A,B ⊆ L
of size < λ such that A < B, there exists a point in L strictly between A and B.
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In this case L must have cofinality and coinitiality at least λ, since one of the
sets A and B can be empty. It can be checked that this definition is equivalent
to the model theoretic definition of a λ-saturated linear order. If |L| = λ, L is
λ-saturated if and only if it is an injective structure. The next theorem was known
already to Hausdorff. For the proof and some related results we refer the reader to
[42] p. 163.

Theorem 3.2.2 ([22]). If λ = λ<λ then there exists a unique up to isomorphism
λ-saturated linear order of cardinality λ.

What does this order look like? In case λ = ω1, λ = λ<λ is exactly CH . One
of possible representations of this order is the following:

Lω1 = {x ∈ [−1, 1]ω1 | |{α < ω1 : x(α) �= 0}| ≤ ω},
with the lexicographic ordering – for x, y ∈ Lω1 , we set x < y if and only if
x(α) < y(α) for the first coordinate α on which x and y differ.

One may wonder, to what extent is CH relevant here? Lω1 is ω1-saturated
regardless of CH . If 2ω ≥ ω2, then both of the following linear orders are ω1-
saturated and have size 2ω:

{x ∈ [−1, 1]ω1 | |{α < ω1 : x(α) �= 0}| ≤ ω},

{x ∈ [−1, 1]ω2 | |{α < ω2 : x(α) �= 0}| ≤ ω}.
They are not isomorphic, since the latter one contains an isomorphic copy of

the ordinal ω2. This was noted already in [17]. We will see in 3.2.4 that some
additional condition determines the ordering Lω1 uniquely in ZFC.

3.2.2 Saturated Graphs
Injective graphs are exactly those that satisfy an axiom similar to the one defining
the random graph, which we described in 2.2.2.

Theorem 3.2.3. Let G = (G, E(G)) be a graph of cardinality κ. G is injective if
and only if it satisfies the following axiom

For each pair of disjoint subsets A,B ⊆ G, |A|, |B| < κ, there exists a point
x ∈ G \ (A ∪ B) connected with every point in A, and with no point in B.

Proof.

"⇒." Take sets A and B like above, and build a graph A ∪ B ∪ {x}, where x is
connected with each point in A, and with no point in B. By injectivity there
exists a diagonal h in the diagram
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A ∪ B G

A ∪ B ∪ {x}
h

Clearly h(x) is the point we were looking for.

"⇐." To prove injectivity look at the diagram

G G

H

f
h

where |H| < κ. We are looking for the diagonal h. Suppose that H \ f [G]
consists of just one point, say u. By the assumption there exists y ∈ G such
that

∀x ∈ G {x, y} ∈ E(G) ⇐⇒ {u, f(x)} ∈ E(H).

We define h by conditions

∀x ∈ G h(f(x)) = x,

h(u) = y.

The general case follows from easy transfinite induction.

Corollary 3.2.4. CH implies that there exists a unique up to isomorphism graph
G of cardinality 2ω with the following property:

For each pair of disjoint subsets A,B ⊆ G, |A|, |B| < 2ω, there exists a point
x ∈ G \ (A ∪ B) connected with every point in A, and with no point in B.

3.2.3 Boolean Algebras
Definition 3.2.5 (p. 81 in [28]). An infinite Boolean algebra A has the Strong
Countable Separation Property if the following assertion holds:

Suppose F,G ⊆ A are countable sets with the property that for all nonempty,
finite subsets f ⊆ F , g ⊆ G,

�
f <

�
g. Then there exist a ∈ A, such that for

all x ∈ F , and y ∈ G, x < a < y.
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This is exactly a characterization of countably saturated Boolean algebras.

Proposition 3.2.6 (5.29 in [28]). Assume that A has the Strong Countable Sepa-
ration Property, f : B → A is an embedding, and B ⊆ C are countable. Then f
extends to an embedding f̃ : C → A.

Corollary 3.2.7. If a Boolean algebra A of size ω1 has the Strong Countable
Separation Property , it is injective.

In the case of Boolean algebras, the structure from Theorem 3.1.6 has a very
canonical representation.

Theorem 3.2.8 (Parovičenko’s Theorem, 5.30 in [28]). If CH holds, P(ω)/Fin is
the unique Boolean algebra of cardinality 2ω with the Strong Countable Separa-
tion Property.

The conclusion of Parovičenko’s Theorem is equivalent to CH , as was proved
by van Douwen and van Mill [10].

3.2.4 Prime Countably Saturated Linear Orders
Definition 3.2.9. A linear order L is prime countably saturated if it is countably
saturated, and any countably saturated linear order contains an isomorphic copy
of L.

Lω1 , defined at the beginning of the section, is prime countably saturated.
More generally, if D is a compact linear order and d0 ∈ D is neither the least, nor
the greatest element of D, then we define

Lω1

(D,d0)
= {x ∈ Dω1 | |{α < ω1 : x(α) �= d0}| ≤ ω}.

The case D = {−1, 0, 1} and d0 = 0 is the classical construction by Haus-
dorff, and is described in [21]. Our Theorem 3.2.10 is therefore a slightly more
general version of Theorem 3.22 therein, and Theorem 3.2.11 – a version of The-
orem 3.13.

Theorem 3.2.10. Lω1 and Lω1

(D,d0)
are countably saturated.

Theorem 3.2.11. Lω1 is prime countably saturated. Likewise, if D is a separable
compact line and d0 ∈ D is neither the least, nor the greatest element, then Lω1

(D,d0)

is prime countably saturated.

These are however just different representations of the same ordering. This
was originally shown by Harzheim [21], and in [30] we gave a simplified proof
which uses the notion of I-dimension. This is a convenient tool, introduced by
Novák in [38].
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Definition 3.2.12 ([38]). The I-dimension of a linear order L is defined as

I-dimL = min{α < ω1| L embedds into Iα},

where I is a closed unit interval, and Iα stands for its lexicographic power.

Theorem 3.2.13 (Harzheim [21], Kostana [30]). Let (L,≤) be a countably satu-
rated linear order. The following are equivalent:

• L is prime countably saturated;

• L is an increasing sum
�

α<ω1

Lα, where Lα doesn’t contain a copy of ω1 or

ω∗
1 , for each α < ω1 (ω∗

1 is the reversed ordering of ω1);

• L is an increasing sum
�

α<ω1

Lα, where I-dimLα < ω1, for each α < ω1.

Unlike Theorem 3.2.2, the next result does not need any assumptions on the
cardinal arithmetic.

Theorem 3.2.14 (Harzheim, [21]). All prime countably saturated linear orders
are isomorphic.

The proof of uniqueness of the prime countably saturated linear order is Fraïssé-
theoretic in nature. One might guess, that we are just doing "back-and-forth" ar-
gument between the sets Lα from Theorem 3.2.13, and this is indeed the idea of
the proof. One additional property of Lω1 , which does not seem to be noticed by
Harzheim, is a strong version of homogeneity.

We can use I-dimension to characterize complete suborders of Lω1 . Recall that
a linear order is Dedekind complete if each subset has the greatest lower bound
and the least upper bound. Equivalently, it is compact in the order topology.

Theorem 3.2.15 (Kostana, Prop. 8, [30]). Any isomorphism between subsets of
Lω1 of countable I-dim extends to an automorphism of Lω1 . In particular, any
automorphism between countable suborders extends to an automorphism of Lω1 .

Corollary 3.2.16. Any isomorphism between Dedekind complete subsets of Lω1

extends to an automorphism of Lω1 .

This is an immediate consequence of the next lemma.

Lemma 3.2.17. Let D be a Dedekind complete linear order. There exists an
embedding i : D �→ Lω1 if and only if I-dimD < ω1.
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Proof. Assume that I-dimD < ω1. It is sufficient to show that D × Lω1 is iso-
morphic to Lω1 . By Theorem 5 from [30], D × Lω1 is countably saturated. By
Theorem 3.2.13

Lω1 =
�

α<ω1

Iα,

and so
D × Lω1 =

�

α<ω1

D × Iα.

By Theorems 3.2.13 and 3.2.14, D × Lω1 � Lω1 .
In the other direction, assume we have an embedding i : D �→ Lω1 . First,

note that Lω1 is isomorphic to its lexicographic square. Indeed, Lω1 × Lω1 can be
represented as an increasing union

�

α<ω1

Iα × Iα. This union is isomorphic to Lω1

by Theorems 3.2.13 and 3.2.14.
We therefore obtains a chain of mappings

D × Lω1 �→ Lω1 × Lω1 � Lω1 .

And since I-dim is monotone,

ω1 = I-dimLω1 ≥ I-dimD × Lω1 ≥ I-dimD × I > I-dimD.

The last inequality is strict by the virtue of Lemma 4 from [30].



Chapter 4

Generic Structures

As one looks at the classical construction of a Fraïssé limit, one might notice
that it is much in the spirit of the Baire Category Theorem. Recall that we have
proved (2.1) that universal homogeneous structures form a residual set in a certain
Polish space. Having that in mind, one might try to construct specific instances of
universal homogeneous structures, mimicking the definition of a Cohen real from
forcing theory. Roughly speaking, a real number is Cohen over some model if
it belongs to each residual set from that model. So it is very generic, in a sense
that for any typical property a real might have, a Cohen real has this property. Of
course the same can be said about random numbers, but with different notion of
typicality. This is the main idea of this chapter. On one hand, we want to look at
the model-theoretic notion of saturation as stemming from the forcing language.
On the other, we reach to model theory for tools to produce Cohen-like forcing
notions (which might often be just different incarnations of the Cohen forcing).
It should be mentioned that this topic used to be informally discussed from time
to time already, as a kind of folklore idea known to the community. However, up
to the author’s knowledge, no systematic study of this idea was ever carried out.
The closest to it was perhaps a note by Golshani [19], unfortunately not free of
significant mistakes.

4.1 Generalizing the Cohen Forcing
Consider the set

P = {(A,≤)|A ∈ [κ]<ω, (A,≤) is a linear order},
where κ is any cardinal, and the ordering is the reversed inclusion of suborders.
The following subsets are dense for α �= β ∈ κ.

• Dα = {(A,≤)|α ∈ A},

29
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• Dα,β = {(A,≤)| ∃n < ω n is between α and β},

Therefore for κ = ω the generic filter produces an isomorphic copy of the
rationals, and for any κ it gives some separable κ-dense order type. We say that
a linear order is κ-dense, if every open interval has cardinality κ. It is a general
phenomenon that for κ = ω this forcing gives the Fraïssé limit of a given class.
It is an interesting remark, originally made by Golshani in [19], that every infinite
subset of ω from the ground model is dense in the obtained order.

In this chapter K is a class of structures in some countable, purely relational
language. By Kκ we denote the class of structures from K of cardinality less than
κ. Recall that F (A) denotes the universe of a model A. We make the following
assumptions about K:

• K has the Joint Embedding Property (JEP),

• K has the Amalgamation Property (AP),

• K is hereditary (so if A ∈ K, and B ⊆ A, then B ∈ K),

• K has infinitely many isomorphism types,

• Kκ is closed under increasing unions of the length < κ.

All of these notions were introduced in Chapter 2. Note, that Kω is a Fraïssé
class, and if κ<κ = κ, for some uncountable cardinal κ, then Kκ is an uncountable
Fraïssé class of the length κ, in the sense of Chapter 3. In the subsequent part of
the chapter we are going to make more assumptions on K, like the SAP or the SP.

It will prove convenient to introduce a notation paraphrasing the one for the
Cohen forcing in [33].

Definition 4.1.1. Let λ be an infinite cardinal number, and S be any infinite set.
Denote by Fn(S,K,λ) the set

{A ∈ K| F (A) ∈ [S]<λ},

ordered by the reversed inclusion of substructures.

The following claims hold true, and the proofs are straightforward modifica-
tions of arguments for the Cohen forcing [33].

Proposition 4.1.2 (Kubiś). If K satisfies the SP, and Kω has at most countably
many isomorphism types, then Fn(S,K,ω) satisfies the c.c.c., and even the Knaster
condition, for any set S.
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The bound on the number of finite isomorphism types is automatically ensured
when the language is finite. When the language is countable, it may or may not
be true. Finite metric spaces can be viewed as structures in countable language,
and still there are continuum many pairwise non-isomorphic (non-isometric) 2-
element structures. If we restrict to finite metric spaces with rational distances,
there are clearly only countably many isomorphism types. The relevance of the
SP is visible in the example discovered by Kubiś. Let F be the class of all finite
linear graphs, i.e. connected, acyclic, and with degree of every vertex at most 2.
It can be easily checked that F has the AP, but not the SP. If S is any infinite set,
then Fn(S,F ,ω) forces that S is a linear graph, and each two points of S are in a
finite distance. Therefore it collapses |S| to ω.

Proposition 4.1.3. Let S be any set and assume that Kλ satisfies the SP. We as-
sume moreover, that for any δ < λ there are at most λ many structures from K with
the universe δ. Then Fn(S,K,λ) is λ-closed, and if λ<λ = λ, then Fn(S,K,λ) is
λ+-c.c.

It should be stressed that in this proposition we don’t count isomorphic types
of K-structures of cardinality less than λ. We take into account the number of
different, not only non-isomorphic, ways the ordinal δ can be endowed with a first
order structure, so that it becomes a member of K. In all but one relevant exam-
ples, a bound on this number will be guaranteed by finiteness of the language.

Corollary 4.1.4. If K is a class of structures in a finite language and CH holds,
then Fn(S,K,ω1) is ω2-c.c.

For a start, we describe models added by Fn(S,K,ω).

Proposition 4.1.5. Let P = Fn(ω,K,ω). Let G ⊆ P be a generic filter. Then
�
G

is a structure with the universe ω, isomorphic to the Fraïssé limit K of the class
Kω.

Proof. In order to ensure that
�

G is defined on all ω, we must verify density of
the sets

Dn = {A ∈ P| n ∈ F (A)},
for n < ω, which is straightforward. To see that we obtain the Fraïssé limit we
must check that each finite extension of a finite substructure is realized. For this
purpose, set

Ei,f
B ,= {A| i : B �→ A is an embedding =⇒

∃ g : B� �→ A g is an embedding and i = g ◦ f},
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where B,B� ∈ K, f : B �→ B� is an embedding, and i : B �→ ω is any 1− 1
function. We also make a technical assumption that both F (B) and F (B�) are
disjoint from ω. One could directly apply the AP to show that the sets Ei,f

B are
dense, however it may be easier to make use of a simple trick. This trick is due to
Kubiś.

Fix a structure A ∈ P, and assume that i, B, B�, f are as above. Since A ⊂ ω,
we may extend A to a structure Ω, isomorphic to K, with the universe ω (recall
that K is the Fraïssé limit of K). Then, since this structure is injective, there exists
g : B� → Ω, such that i = g ◦ f . Clearly if we define A� = A ∪ g[B�] ⊆ Ω, then
A� ∈ Ei,f

B . The proof that the generic structure is universal is left to the reader.

Note that we used only countably many dense subsets of P, so the Proposition
works under the Rasiowa-Sikorski Lemma, without requiring G being "generic"
in the sense of forcing theory.

4.2 Results About Rigidity
The generic structure added by Fn(ω,K,ω) is homogeneous, so it can be of some
surprise, that forcing on an uncountable set gives rise to a rigid structure, at least
in most of the cases. This is obviously not true for example if K is the class of
all finite sets, but it seems to be true in all sufficiently nontrivial cases. This is
proved in 4.2.1. Next, we study linear orders added by forcing with countable
support and show that they are not only rigid, but also remain so in any generic
extension via a c.c.c. forcing. Note that this is in contrast with the "finite-support-
generic" linear orders since, as proved by Baumgartner [7], under CH we can
add a nontrivial automorphism to any ω1-dense separable linear order, using a
c.c.c. partial order. Recall that a linear order is ω1-dense, if every nonempty open
interval has cardinality ω1, and is separable if it has a countable dense subset.

4.2.1 Fn(ω1,K,ω)

We prove that the uncountable partial order and the uncountable undirected graph
added by the forcing Fn(ω1,K,ω) are rigid. Proofs for linear orders, directed
graphs, tournaments or finite rational metric spaces are all easy modifications of
either of these.

Theorem 4.2.1. Let F be the class of all (undirected) graphs, and S be an un-
countable set. Then the generic graph added by Fn(S,F ,ω) is rigid.

Proof. Assume that

p � ”ḣ : (S, ˙E(S)) → (S, ˙E(S)) is a non-identity isomorphism”.
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It is easy to check that for every infinite set F ⊆ S from the ground model, and
every two different s, t ∈ S, there exists a vertex e ∈ F , with {s, e} ∈ E(S),
and {t, e} /∈ E(S). There are clearly uncountably many pairwise disjoint, infinite
subsets of S in the ground model, so h must be non-identity on each of them.
Therefore there exists an uncountable set {ps| s ∈ S � ⊆ S} of conditions stronger
than p, with

ps � ḣ(s) = s �= s.

Without loss of generality we can assume that {ps| s ∈ S �} form a Δ-system with
a root R, disjoint from S �, and the graph structures of all ps agree on the root.

Fix two different s, t ∈ S �. We can amalgamate ps, and pt over R in such a
way, that {s, t} ∈ E(S), and {s, t} /∈ E(S), obtaining some stronger condition
q ∈ Fn(S,F ,ω). But then q forces, that ḣ is not a graph homomorphism.

Theorem 4.2.2. Let F be the class of partial orders, and S be an uncountable
set. Then the generic partial order added by Fn(S,F ,ω) is rigid.

Proof. Assume that p � ”ḣ : (S, ≤̇) → (S, ≤̇) is a non-identity isomorphism”.
It is easy to check that for every infinite set E ⊆ S from the ground model,
Fn(S,F ,ω) � ”E is strongly dense”. By strongly dense we mean that for every
s < t ∈ S, there exists e ∈ E, such that s < e < t, and for every s, t ∈ S
incomparable, there exists ei ∈ E, i = 0, 1, 2, 3, 4, with e0 > s, incomparable
with t; e1 < s, t; e2 < s, incomparable with t; e3 > s, t, and e4 incomparable with
both s and t. Long story short, each type with parameters (not necessarily from
E) is realized in E. There are clearly uncountably many pairwise disjoint, infinite
subsets of S in the ground model, and h must be non-identity on each of them.
Therefore there exists an uncountable set {ps| s ∈ S � ⊆ S} of conditions stronger
than p, and

ps � ḣ(s) = s �= s.

Without loss of generality we can assume that {ps| s ∈ S �} form a Δ-system with
a root R, disjoint from S �, and the order structures of all ps agree on the root.
Suppose also, that for each s ∈ S �, s > s (the other cases are handled similarily).
Since S � is uncountable, we can further thin it out, so that all embeddings of the
form R ⊂ R ∪ {s} are pairwise isomorphic, and similarly for s. Recall that
two extensions of a given structure R are isomorphic if there is an isomorphism
between them, which is identity on R.

Fix two different s, t ∈ S �. There exists an extension R ⊂ R∪{s, t, s, t}, with
{s < t < t < s}. We can amalgamate

ps ∪ {t < t}
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and
pt ∪ {s < s}

over
R ∪ {s < t < t < s},

to obtain some condition q ∈ Fn(S,F ,ω). But then q � s < t, and q �
ḣ(s) > ḣ(t), exhibiting the contradiction.

It is worth to remark that the uncountable linear ordering added this way satis-
fies some strong variant of rigidity. Following [6] and [5], we say that an uncount-
able separable linear order (L,≤) is k-entangled, for some k ∈ N, if for every
tuple t ∈ {T, F}k, and any family {(aξ0, . . . , aξk−1)| ξ < ω1} of pairwise disjoint
k-tuples from L, one can find ξ �= η < ω1, such that for i = 0, . . . , k − 1 aξi ≤ aηi
if and only if t(i) = T . For k ≥ 2 this implies that no two uncountable, disjoint
subsets of L are isomorphic. Property of being k-entangled for all natural k is fea-
tured for example by an uncountable set of Cohen reals, added over some model.
Martin’s Axiom with negation of CH implies that no uncountable set of reals is
k-entangled for all k [6].

4.2.2 Fn(ω2,LO,ω1)

We will prove that under CH forcing with countable supports on the set of bigger
cardinality gives rise to a rigid linear order, for which we cannot add an automor-
phism using a c.c.c. forcing. This result holds under CH , however the c.c.c.-
absolute rigidity is clearly preserved by any c.c.c. forcing. In effect, existence
of a rigid ω2-dense linear order is consistent with any possible value of 2ω, and
for example MA + ”2ω = κ”, for any κ = κ<κ. Also we can’t replace ω2 with
ω1 in the results of this section. Under CH there exists a unique ω1-saturated
linear order of size ω1 and as such, it is surely not rigid (see Definition 3.2.1).
The partial order Fn(ω1,LO,ω1) forces that the generic order is ω1-saturated of
cardinality ω1, for the same reasons that Fn(ω,LO,ω) forces the generic order to
be ω-saturated (i.e. dense, without endpoints).

Theorem 4.2.3. Let P = Fn(ω2,LO,ω1), where LO denotes the class of all lin-
ear orders. Let (ω2,≤) be a generic order added by P over a countable, transitive
model V, satisfying CH . Denote by V[≤] the corresponding generic extension.
Let Q ∈ V[≤] be any forcing notion, such that V[≤] |= "Q is c.c.c." , and H be a
Q-generic filter in V[≤]. Then the linear order (ω2,≤) is rigid in V[≤][H].

We will use a simple lemma assuring that we can amalgamate linear orders in
a suitable, asymmetric way.
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Lemma 4.2.4. Let (L1,≤1), (L2,≤2) be any linear orders, R = L1 ∩ L2,
and (R,≤1) = (R,≤2). There exists a linear order ≤ on L1 ∪L2, extending both
≤1 and ≤2 and satisfying

∀l1 ∈ L1 \R ∀l2 ∈ L2 \R (l1 < l2 ⇐⇒ ∃r ∈ R l1 <1 r <2 l2).

Proof. We take the above formula as the definition.

Lemma 4.2.5. Let P = Fn(ω2,K,ω1), P � "Q̇ is a c.c.c. forcing notion", and
assume that

P ∗ Q̇ � h : ω2 → ω2 is a bijection.

Then for every p ∈ P exists pc ≤ p with the property that (pc, Q̇) � h[pc] = pc.

Proof. Let {Fn}n<ω be a partition of ω into infinite sets, such that ∀n < ω n ≤ minFn.
We define a sequence of conditions pn ∈ P by induction, starting with p0 = p.
Enumerate p0 = {rn| n ∈ F0}. Suppose we have defined pn. We may take a
sequence of P-names with the property

pn � " {q̇kn+1}k<ω is a maximal antichain deciding h(rn)".

Since P is σ-closed, we will find p�n ≤ pn deciding all the names q̇kn+1 for
k < ω. Therefore the set A = {β < ω2| ∃k < ω (p�n, q̇

k
n+1) � h(rn) = β} is

at most countable. Let pn+1 = p�n ∪ A (with relations defined arbitrarily), and
enumerate pn+1 = {rk| k ∈ Fn+1}. The inductive step is completed.

Take pc =
�

n<ω pn. We will show that for any q̇, with pc � q̇ ∈ Q̇, and
any α ∈ pc, (pc, q̇) � h(α) ∈ pc. Indeed, in this situation there is some n < ω
such that α ∈ pn. Therefore we will find k < ω with α = rk, k ∈ Fn. In
the k-th indutive step we ensure that (pk+1, q̇) � h(rk) ∈ pk+1. It follows that
(pc, q̇) � h(rk) ∈ pc.

Proof of Theorem 4.2.3. We work in V. Let ≤̇ be a P-name for ≤. Suppose that

P � "Q̇ is c.c.c." ,

and

P ∗ Q̇ � "h : (ω2, ≤̇) → (ω2, ≤̇) is a non-identity isomorphism".

Step 0 It can be easily verified, that if h was identity on a dense set, then it
would be identity everywhere. Therefore there exist P ∗ Q̇-names δ0, δ1, such that

P ∗ Q̇ � δ0<̇δ1, ∀x ∈ (δ0, δ1) h(x) �= x,



36 CHAPTER 4. GENERIC STRUCTURES

where (δ0, δ1) is the interval with respect to the ordering with the name ≤̇. Fix
(p, q̇) ∈ P ∗ Q̇ deciding δ0 and δ1, i.e. (p, q̇) � ∀i ∈ {0, 1} δi = δi, for some
δi ∈ ω2. Without loss of generality, we can assume that q̇ is the greatest element
of Q̇, so that

(p, Q̇) � δ0<̇δ1, ∀x ∈ (δ0, δ1) h(x) �= x.

Step 1 For α ∈ ω2 \ ({δ0, δ1} ∪ supp p) we fix a condition pα = (pα,≤α) ≤ p,
with

δ0 <α α <α δ1.

Take a sequence of names satisfying

pα � "{q̇nα}n<ω is a maximal antichain deciding h(α)".

Since P is σ-closed, we can assume that pα decides all the names q̇nα, so the set
F (α) = {β < ω2| ∃n < ω (pα, q̇

n
α) � h(α) = β} is countable (recall that

P � "Q̇ is c.c.c."). Note, that since pα ≤ p, α /∈ F (α). Finally, we can assume
that F (α) ⊆ pα, and, due to Lemma 4.2.5, that (pα, Q̇) � h[pα] = pα.

Step 2 Using Δ-Lemma for countable sets, we can find I ⊆ ω2 of cardinality
ω2, with the following conditions satisfied

• ∀α ∈ I ∀β ∈ I β �= α =⇒ pα ∩ pβ = R, for some fixed countable
R ⊆ ω2,

• ∀α ∈ I ∀β ∈ I ≤α� R×R =≤β� R×R,

• extensions R ⊂ R ∪ {α}, for α ∈ I , are pairwise isomorphic,

• ∀α ∈ I (pα, Q̇) � h[R] = R.

All these conditions, perhaps excluding the last one, are direct consequences of
CH . To justify the last claim, notice that P ∗ Q̇ is ω2-c.c. and so the set

A = {β < ω2| ∃(p, q̇) ∈ P ∗ Q̇ ∃r ∈ R (p, q̇) � h(r) = β}

has cardinality at most ω1. We choose to {pα| α ∈ I} only those conditions,
which satisfy (pα \R)∩A = ∅. Take r ∈ R. Then (pα, Q̇) � h(r) ∈ pα∩A ⊆ R.
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Step 3 Take α, β ∈ I , α �= β. Using the fact that the extensions R ⊆ R ∪ {α}
and R ⊆ R ∪ {β} are isomorphic, we can extend the ordering ≤α=≤β on R to

(R ∪ {α, β},≤α,β)

in such a way that there is no element from R between α and β. We can of course
decide that α <α,β β. We now apply Lemma 4.2.4 to the pair of isomorphic
extensions

pα ∪ {β}

R ∪ {α, β}

pβ ∪ {α}

where the vertical arrow maps β to α.

Extend ≤α,β to pα ∪ pβ , ensuring that

• ¬∃r ∈ R α <α,β r <α,β β;

• ∀γ ∈ pα \ (R ∪ {α}) ∀η ∈ pβ \ (R ∪ {β})
γ <α,β η ⇐⇒ ∃r ∈ R γ <α,β r <α,β η.

Take some condition r ≤ pα,β and q̇ deciding the values of h(α) and h(β).
Then (r, q̇) � h(α) = h(α), h(β) = h(β). Since there is no element from R
between α and β, and R is h invariant, there is also no element from R between
h(α) and h(β). But since h(α) ∈ pα \{α}, and h(β) ∈ pβ \{β}, h(β) <α,β h(α).
Therefore (r, q̇) � h(α) > h(β), giving rise to a contradiction. This finishes the
proof.

The following argument, suggested to us by Shelah, shows that it is possible
to have a separable rigid linear order, whose rigidity is c.c.c.-absolute. By Theo-
rem 24 from [6], MAω1 is consistent with the existence of a rigid set of reals of
cardinality ω1.

Theorem 4.2.6. Assume MAω1 , and let A ⊆ R be a rigid linear order of cardi-
nality ω1. Then A remains rigid in any generic extension by a c.c.c. forcing.

Proof. Without loss of generality we may assume that A = (ω1,≤). Let S be any
c.c.c. forcing, and suppose towards contradiction that

S � ”ḟ : (ω1,≤) �→ (ω1,≤) is a non-identity isomorphism."
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For all γ < ω1, let Aγ ⊆ S be some maximal antichain deciding ḟ(γ). By Martin’s
Axiom there is a filter H ⊆ S intersecting all of the sets Aγ . Therefore ḟ [H] is
well defined, and is a non-trivial automorphism of (ω1,≤), contrary to the fact
that A was rigid.

4.3 Linear Orders with Few Automorphisms
Ohkuma proved in [39] that there exist 22ω pairwise non-isomorphic subgroups
(G,+) ≤ (R,+), with the property that Aut (G,≤) � (G,+), meaning that
G has no order-automorphisms other than translations. These groups all have
cardinality 2ω, however the authors of [18] have shown that consistently there
are uncountable groups of cardinality less than 2ω with this property. These are
examples of separable, uncountable linear orders, with few, but more than one,
automorphisms. We are going to provide one more construction in this spirit.

Theorem 4.3.1. It is consistent with ZFC, that there exists an ω1-dense, separa-
ble linear order (A,≤), together with a non-identity automorphism φ, such that
Aut (A,≤) = {φk| k ∈ Z}. Moreover, φ satisfies φ(x) > x for all x ∈ A.

Let <ord denote the usual order on ω1. The required modification of Fn(ω1,LO,ω)
is the forcing P consisting of triples p = (p,≤p,φp) satisfying the conditions:

1. ≤p is a linear ordering of p ∈ [ω1]
<ω,

2. φp is an ≤p-increasing bijection between two subsets of p,

3. ∀x ∈ dom p (x <p φp(x)),

4. ∀x ∈ dom p (φp(x) <ord x + ω), with respect to the ordinal addition on
ω1,

5. ∀x ∈ rg p (φ−1
p (x) <ord x+ω), with respect to the ordinal addition on ω1.

We denote by (ω1,≤) the ordering added by P, and by φ the corresponding
automorphism. Before proceeding with the main proof, we will see that it is
possible to amalgamate finite linear orders together with partial automorphisms
in a suitable way. It will be convenient to denote by Part (L,≤) the set of finite,
partial automorphisms of a linear order (L,≤).

Lemma 4.3.2. Let (L1,≤1), (L2,≤2) and (R,≤R) = (L1,≤1)∩(L2,≤2) be finite
linear orders. Fix partial automorphisms φ1 ∈ Part (L1,≤2), φ2 ∈ Part (L2,≤2).
Assume that R is invariant for φ1 and φ2, and that (L1,φ1) and (L2,φ2) are ex-
tensions of R isomorphic via h : L1 → L2, in a sense that they make the diagram
below commutative.
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(L1,≤1) (L1,≤1)

(R,≤R)

(L2,≤2) (L2,≤2)

h

φ1

h

φ2

Take a, b ∈ L1 \ R lying in different orbits of φ1. There exists a linear order
≤c on L1 ∪L2 extending ≤1 and ≤2, and such that φ1 ∪φ2 ∈ Part (L1 ∪ L2,≤c),
and moreover a <c h(a), and h(b) <c b.

Proof. We can assume that R ⊆ L1 ⊆ Q, and the usual ordering of (Q,≤)
extends ≤1. We look for an increasing function f : (L2,≤2) → (Q,≤) such that
f � R = idR, f [L2 \R] ∩ (L1 \R) = ∅, and

f ◦ h(a) > a,

f ◦ h(b) < b.

Indeed, having f as above we will define

x <c y ⇐⇒ x < f(y),

for x ∈ L1 and y ∈ L2.
It can be seen that the only reason why we can’t take f = h−1 is the disjoint-

ness requirement. So we should expect that f will be just a slight distortion of
h−1. We must also ensure that φ1 ∪ φ2 will be order-preserving.

Let {x1, . . . , xn} be an ≤1-increasing enumeration of L1. For k = 1, . . . , n
choose an open interval Ik around xk in such a way that all intervals obtained
this way are pairwise disjoint, and for l �= k = 1, . . . , n if xl = φm

1 (xk), then
φ
m

1 [Il] = Ik, where φ1 : (Q,≤) → (Q,≤) is an extension of φ1.
For each k we choose f(h(xk)) ∈ Ik \ {xk}, so that φm

1 (f ◦ h(xk)) = f ◦ h ◦
φm
1 (xk), for m ∈ Z, whenever this expression makes sense. Since a and b are in

distinct orbits of ψ1, we can ensure inequalities f ◦ h(a) > a and f ◦ h(b) < b.
Why is it the case that φ1 ∪ φ2 ∈ Part (L1 ∪ L2,≤c)? Note, that for all pairs

of integers k, l = 1, . . . , n we have

xk <c xl ⇐⇒ xk < f ◦ h(xl)

by the choice of f , and so

xk <c h(xl) ⇐⇒ xk < f ◦ h(xl) ⇐⇒ xk < xl

⇐⇒ φ1(xk) < φ1(xl) = φ2 ◦ h(xl).
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Proposition 4.3.3. The forcing P satisfies the Knaster condition.

Proof. Let {pα = (pα,≤α,φα)| α < ω1} ⊆ P. We fix a Δ-system {pα| α ∈ S},
with some additional properties:

• ∀α ∈ S ∀β ∈ S α �= β =⇒ (pα,≤α) ∩ (pβ,≤β) = (R,≤R), for some
fixed ordering ≤R of R,

• ∀α ∈ S φα[R] ⊆ R,

• ∀α ∈ S φ−1
α [R] ⊆ R,

• φα � R is independent from the choice of α.

For ensuring the last three properties we use 4. and 5. from the definition
of P. Thanks to the Lemma 4.3.2, we obtained an uncountable set of pairwise
comparable conditions.

Lemma 4.3.4. For every α0 ∈ ω1, the orbit of α0 under φ is cofinal and coinitial
in (ω1,≤)

Proof. It is easy to see that the required family of dense sets is

Eβ = {p = (p,≤p,φp) ∈ P| {α0, β} ⊆ p, ∃k ≥ 0 β <p φ
k
p(α0), φ

−k
p (α0) <p β},

for β ∈ ω1.
In order to check, that Eβ is dense, fix some condition p = (p,≤p,φp) ∈ P

and β < ω1. We can assume that {α0, β} ⊆ p. In order to extend p so that it
belongs to Eβ , we embed (p,≤p) into the set of algebraic numbers A. Now we
can extend φp to an increasing function φ : A → A, such that for some rational
� > 0 ∀a ∈ A φ(a) > a+ �. It is clear that the orbit of α0 under φ is both cofinal
and coinitial in A. Finally we just cut out a suitable finite fragment of φ, and
extend p accordingly.

Lemma 4.3.5. For each isomorphism h : (ω1,≤) → (ω1,≤), and for every un-
countable set F ⊆ ω1, there exist α ∈ F and k ∈ Z, such that h(α) = φk(α).

Proof. Fix a sequence of names for elements of F , {ẋα| α < ω1}. Let

p � ḣ : (ω1, ≤̇) → (ω1, ≤̇) is an isomorphism.

For every α < ω1 we fix a condition pα = (pα,≤α,φα) ≤ p, so that pα � ẋα =
xα, ḣ(xα) = xα, for some ordinals xα, xα ∈ ω1. We can also assume that for
each α, xα �= xα, for otherwise we just take k = 0.

We choose an uncountable Δ-system {pα| α ∈ S}, and make it as uniform as
possible:
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• ∀α ∈ S ∀β ∈ S α �= β =⇒ (pα,≤α) ∩ (pβ,≤β) = (R,≤R), for some
fixed ordering ≤R of R,

• ∀α ∈ S φα[R] ⊆ R,

• ∀α ∈ S φ−1
α [R] ⊆ R,

• extensions (R,≤R) ⊆ (R ∪ {xα},≤α) are pairwise isomorphic,

• extensions (R,≤R) ⊆ (R ∪ {xα},≤α) are pairwise isomorphic,

• extensions (R,≤R) ⊆ (pα,≤α) are pairwise isomorphic,

• The way φα acts on pα is independent from the choice of α ∈ S. More
precisely, for all distinct α, β ∈ S the following diagram commutes

pα pα

pβ pβ

φα

h h
φβ

where h is the unique isomorphism between (pα,≤α) and (pβ. ≤β).

In particular, this unique isomorphism h maps xα to xβ , and xα to xβ . Fix α ∈ S.
We claim that xα and xα are in the same orbit of φα. Suppose otherwise. We fix
β ∈ S \ {α}, and apply Lemma 4.3.2 for a = xα and b = xα. This way we obtain
a condition

q = (pα ∪ pβ,≤q,φα ∪ φβ) ≤ pα, pβ,

satisfying xα <q xβ , and xβ <q xα. But then

q � ẋα<̇ẋβ, ḣ(ẋβ)<̇ḣ(ẋα),

contrary to the choice of p. It follows that xα and xα must be in the same orbit of
φ1, and so

∃k ∈ Z xα = φk
α(xα).

By the definition of xα, this shows that

pα � ḣ(ẋα) = φ̇α
k
(ẋα).

Given that p was arbitrary, and pα ≤ p, this finishes the proof.

Now we are in a position to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. Since (ω1,≤) is separable, we can replace it by an iso-
morphic copy A ⊆ R, A being ω1-dense, and dense in R. Then φ : A → A is an
increasing bijection, strictly above the diagonal. Let h : A → A be any increasing
bijection. Both h and φ extend uniquely to the whole real line, so we can assume
that φ, h : R → R are continuous, increasing bijections.

For k ∈ Z, let Fk = {x ∈ R| h(x) = φk(x)}. By continuity, the sets Fk are
closed, and by Lemma 4.3.5

�
i∈Z Fi is dense. Fix some k ∈ Z for which the set

Fk is nonempty. We aim to prove that Fk = R. If not, there exists x ∈ Fk, and
δ > 0 satisfying at least one of conditions

(x, x+ δ) ∩ Fk = ∅,

and
(x− δ, x) ∩ Fk = ∅.

Assume the first case, the other being similar. Since the union of the sets Fi is
dense, we can find a decreasing sequence {xn}n<ω, converging to x, and integers
kn, for which h(xn) = φkn(xn).

Suppose that for infinitely many n, the inequality kn > k holds. By replacing
{xn}n<ω with a subsequence, we may assume that this is the case for all n < ω.
Then

φkn(xn) ≥ φk+1(xn) −→
n→∞

φk+1(x) > φk(x) = h(x),

which contradicts lim
n→∞

φkn(xn) = h(x).
If for infinitely many n the inequality kn < k holds, we proceed in analogous

manner. The only way out is kn = k for all but finitely many n, but this in turn
contradicts (x, x+δ)∩Fk = ∅. Therefore Fk = R, and the theorem is proved.



Chapter 5

Generic Structures and Martin’s
Axiom

Models of size ω1 arising from the Fraïssé-Jónsson theory, relying on the Con-
tinuum Hypothesis, are homogeneous with respect to countable substructures, but
since we have plenty of countable submodels, they are highly "non-separable".
The question arises whether we can build uncountable models using finite sub-
models? One indication that such theory should be possible to formulate is the
famous theorem of Baumgartner, concerning separable ω1-dense linear orders.
Recall that a linear order is ω1-dense if each non-empty open interval has cardi-
nality ω1.

Theorem (Baumgartner, [7]). It is consistent with ZFC that there exists a unique
up to isomorphism separable ω1-dense linear order.

Once the conclusion of this theorem holds, we can take any subfield of the
reals of size ω1 as a model of this ordering. This shows that it is homogeneous
with respect to finite subsets (as is any subfield of reals). Ideas of Baumgartner
were extended by Avraham, Rubin, and Shelah in [6] and [5]. Among other things,
they show that Baumgartner’s Theorem does not follow from MA+¬CH , but the
latter axiom is a significant step in the direction of Baumgartner’s Theorem. They
introduce another axiom, known as OCAARS , and show that MAω1 + OCAARS

implies that either the conclusion of Baumgartner’s Theorem holds, or there are up
to isomorphism exactly three homogeneous separable ω1-dense linear orders ([5],
Sec. 6). This gives some insight that MAω1 might be used in place of induction,
in some uncountable variant of the Fraïssé theory.

We take ideas from papers [6] and [5], and apply them to other structures
beyond linear orders – mostly metric spaces and graphs. Specifically, we take
generic models described in Chapter 4, and show that, although initially rigid,
they become highly homogeneous in suitable forcing extensions satisfying MAω1 .

43
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Inductive arguments from the classical theory are replaced by Martin’s Axiom,
and in some cases it is enough to imply certain uniqueness.

5.1 Following Avraham, Rubin, and Shelah
We adapt the technology from [6] and [5], to prove that it is relatively consistent
with ZFC that there exists a separable rational metric space (X, d) of size ω1,
such that any uncountable 1-1 function from X to itself is an isometry on an
uncountable subset.

We first introduce a metric analog of a k-increasing linear order, introduced in
[6].

Definition 5.1.1. Let (X, d) be a metric space.

• We call a pair of tuples x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn alike if
they satisfy the following axioms:

A1 ∀ i, j = 1, . . . , n (d(xi, yi) = d(xj, yj))

A2 ∀ i, j = 1, . . . , n (d(xi, xj) = d(yi, yj))

A3 ∀ i, j = 1, . . . , n (xi �= xj =⇒ d(xi, xj) = d(xi, yj))

We then write x� y.

• We call (X, d) rectangular if it is uncountable, and for any sequence of
pairwise disjoint tuples {(xξ

1, . . . , x
ξ
n)|ξ < ω1} ⊆ Xn, there are ξ �= η < ω1,

such that (xξ
1, . . . , x

ξ
n)� (xη

1, . . . , x
η
n).

(by "disjoint tuples", we mean that

{xξ
1, . . . , x

ξ
n} ∩ {xη

1, . . . , x
η
n} = ∅

whenever ξ �= η.)

Denote by Metr the class of rational metric spaces. Keeping up with the
general notation, Fn(ω1,Metr,ω) is the partial order

{(Y, d)| Y ∈ [ω1]
<ω, and (Y, d) is a rational metric space},

with the ordering relation being the reversed inclusion preserving the metric.
We begin with a technical lemma to ensure that we can amalgamate metric

spaces in a specific way.
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Lemma 5.1.2. Let (R, dR), (X, dX), (Y, dY ) be finite metric spaces, such that
(X, dX) ∩ (Y, dY ) = (R, dR), and suppose h : (X, dX) → (Y, dY ) is an iso-
metric bijection, which is identity on R.

(X, dX)

(R, dR) (X ∪ Y, d∗)

(Y, dY )

h

Then there exists a metric d∗ on X ∪ Y extending both dX and dY , such
that if (x1, . . . , xn) is a bijective enumeration of X \ R, then (x1, . . . , xn) �
(h(x1), . . . , h(xn)).

Proof. Let s = min{dX(x, x�)| x �= x� ∈ X}. Given that d∗ must extend the
metrics of X and Y , we must set the distances between elements from X \ R
and Y \ R. Therefore we set d∗(x, h(x)) = s and d∗(x, h(x�)) = dX(x, x

�), for
all x �= x� ∈ X \ R. A standard computation shows that this definition gives a
well-defined metric structure on X ∪ Y , satisfying the required conditions.

In the light of Proposition 4.1.2, we have the c.c.c. property for Fn(ω1,Metr,ω).
Even more generally, for any countable set K ⊆ [0,∞) the proof of Lemma 5.1.2
shows that the class of finite metric spaces with distances in K has the SP.

Proposition 5.1.3. Fn(ω1,Metr,ω) � "(ω1, ḋ) is rectangular".

Proof. Let {(ẋξ
1, . . . , ẋ

ξ
n)| ξ < ω1} be a sequence of Fn(ω1,Metr,ω)-names

for pairwise disjoint n-tuples from (ω1, ḋ). Fix a condition p. For every ξ <
ω1, we find a condition pξ = (pξ, dξ) ≤ p, deciding the values of ẋξ

i and ḋ �
{xξ

1, . . . , x
ξ
n} × {xξ

1, . . . , x
ξ
n}. We choose an uncountable set S ⊆ ω1, satisfying

the following conditions:

• {pξ| ξ ∈ S} is a Δ-system with the root R = (R, dR),

• ∀ ξ, η ∈ S there exists an isometry h : pξ → pη, which is identity on R, and
h(xξ

i ) = xη
i , for i = 1, . . . , n, as shown in the diagram.
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(pξ, dξ)

(R, dR)

(pη, dη)

h

This can be easily done, since given any point α ∈ ω1 outside of R, there are
only countably many possible configurations of distances between this point and
R. Now we choose ξ �= η ∈ S, and apply Lemma 5.1.2 to obtain q ≤ pξ, pη,
which forces that (xξ

1, . . . , x
ξ
n)� (xη

1, . . . , x
η
n).

It is easy to verify that any infinite subset of ω1 from the ground model is
forced by Fn(ω1,Metr,ω) to be dense. It has even a much stronger property,
which we isolate, since it will be important later.

Definition 5.1.4. Let (E, dE) be a metric space with distances in some countable
set K ⊆ [0,∞). A subset D ⊆ E is a saturated subset of E if for any finite subset
E0 ⊆ E, for any single-point extension F = (E0 ∪ {f}, dF ), with distances in K,
there exists d ∈ D such that for all e ∈ E0, we have dE(e, d) = dF (e, f).

To put it shortly, every possible configuration of distances from a tuple of
points in E can be realized by a point in D. The rational Urysohn space is a
saturated subspace of itself, in the class of rational metric spaces.

Definition 5.1.5. Let (X, d) be any metric space, with distances in a given count-
able set.

1. (X, d) is separably saturated if it has a countable saturated subset.

2. (X, d) is hereditarily separably saturated (HSS) if for any countable subset
A ⊆ X , the space X \ A is separably saturated.

Proposition 5.1.6. Fn(ω1,Metr,ω) � "(ω1, ḋ) is HSS (with distances in Q)".

Proof. Each infinite subset of ω1 which belongs to the ground model is saturated.

Let (M, d) be the metric space we added to our model by Fn(ω1,Metr,ω).
Our next task is to force MAω1 , while preserving (M, d) being rectangular. Fol-
lowing the ideas from [6], we distinguish the special class of c.c.c. partial orders.
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Definition 5.1.7. A partial order P is appropriate if given any natural number
n > 0, for each family consisting of pairwise disjoint tuples

{(pξ, xξ
1, . . . , x

ξ
n)| ξ < ω1} ⊆ P× (M, d)n,

there exist ξ �= η < ω1, such that pξ and pη are comparable, and

(xξ
1, . . . , x

ξ
n)� (xη

1, . . . , x
η
n).

Proposition 5.1.8. If P is appropriate then P � "(M, d) is rectangular".

Proof. Fix a sequence of P-names {(ẋξ
1, . . . , ẋ

ξ
n)| ξ < ω1} ⊆ (M, d)n for pair-

wise disjoint n-tuples. For a given condition p ∈ P, and ξ < ω1, we fix a condi-
tion pξ ≤ p deciding (ẋξ

1, . . . , ẋ
ξ
n). Then we apply appropriateness for the family

{(pξ, xξ
1, . . . , x

ξ
n)| ξ < ω1}. This way we obtain ξ �= η < ω1, and q ≤ pξ, pη, such

that q � (ẋξ
1, . . . , ẋ

ξ
n)� (ẋη

1, . . . , ẋ
η
n).

The argument showing that appropriateness is preserved under iterations is
really not different from the one showing that the c.c.c. is preserved, applied for
example in [33]. We include it for completeness.

Proposition 5.1.9. Finite support iterations of appropriate posets are appropri-
ate.

Proof. Assume that P is appropriate, and P � "Q̇ is appropriate". Take a se-
quence

{(pξ, q̇ξ, xξ
1, . . . , x

ξ
n)| ξ < ω1},

and towards contradiction assume that it witnesses P ∗ Q̇ not being appropriate.
Let σ̇ be a P-name defined σ̇ = {(ξ, pξ)| ξ < ω1}. If G ⊆ P is an M -generic
filter, then

M [G] |= (ξ ∈ σ ⇐⇒ pξ ∈ G).

We claim that in M [G], for any two conditions η, ξ ∈ σ, if (xξ
1, . . . , x

ξ
n)�(xη

1, . . . , x
η
n),

then qξ and qη are inconsistent. For otherwise, there exist q ≤ qη, qξ, and p ∈ G,
which forces it. Since pξ and pη are in G, which is a filter, we may choose
p ≤ pξ, pη. Then (p, q̇) ≤ (pξ, q̇ξ), (pη, q̇η), and (xξ

1, . . . , x
ξ
n) � (xη

1, . . . , x
η
n) con-

trary to the choice of the sequence {(pξ, q̇ξ, xξ
1, . . . , x

ξ
n)| ξ < ω1}.

G was an arbitrary generic filter, and remember that P � "Q̇ is appropriate".
The conclusion of this is that P � |σ̇| < ω1. Then there exists a P-name for
a countable ordinal ȧ, for which P � σ̇ ⊆ ȧ. Since P is c.c.c. there are only
countably many possible values of ȧ, and by taking supremum of them, we can
replace ȧ by a canonical name a. But note that pa � a ∈ σ̇. This is a contradiction,
and it finishes the proof for P ∗ Q̇.
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Consider now a finite support iteration of an infinite length κ of appropriate
forcings P = {Pα ∗ Q̇α| α < κ}. We prove by induction on κ, that P is ap-
propriate. The successor step has just been taken care of, so suppose that the
conclusion holds for any ordinal less than κ, and κ is limit. Take any disjoint se-
quence {(pα, xα)| α < ω1} ⊆ P × (M, d)n. We can assume that the supports of
conditions pα form a Δ-system with the root R, and that for any α, supp pα \ R
is above R. Let δ = maxR. There exist two different α, β < ω1, for which the
relation xα � xβ holds and pα � δ is comparable with pβ � δ. From the general
theory of finite support iterations it follows that pα and pβ are comparable.

It may look suspicious that in the proof above we never actually used P being
appropriate, only c.c.c. However one can verify that if some c.c.c. forcing forces
a poset to be appropriate, then it must be appropriate itself. So equally good we
could have assumed that P is c.c.c. The immediate consequence of this proposition
is

Lemma 5.1.10. It is consistent with ZFC +MA(appropriate) + ”2ω = ω2” that
(M, d) is rectangular.

Conveniently, the full Martin’s Axiom will hold in such model. Recall that if
P is a forcing notion, a set D ⊆ P is predense if each element of P is comparable
with an element of D. A set D is predense below p if each element of P stronger
that p is comparable with an element of D.

Lemma 5.1.11. Let P be a c.c.c. forcing notion of size ω1. There exists p ∈ P and
a family of ω1 many subsets of P, predense below p, such that any filter G ⊆ P
containing p and intersecting all of them is uncountable.

Proof. Enumerate bijectively P as {pγ| γ < ω1}. Let Dα = {pγ| α < γ < ω1}.
We aim to find p ∈ P such that uncountably many of sets Dα are predense below
p – clearly this will finish the proof. If p with this property doesn’t exist, then the
following assertion holds:

∀γ < ω1 ∃γ� > γ "Dγ� is not predense below pγ",

and consequently

∀γ < ω1 ∃p�γ ≤ pγ ∃γ� > γ ∀η > γ� p�γ⊥pη.

Using this, we can easily define an uncountable antichain {pγ| γ ∈ E}, ensur-
ing at each step of induction that

∀γ ∈ E ∃γ� > γ ∀η > γ� pγ⊥pη.
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Lemma 5.1.12. MAω1(appropriate) implies that any family of pairwise disjoint
tuples {(xξ

1, . . . , x
ξ
n)| ξ < ω1} ⊆ (M, d)n contains an uncountable subfamily of

pairwise alike tuples.

Proof. Let P = {F ∈ [ω1]
<ω| ∀ξ �= η ∈ F xξ � xη}, where xξ = (xξ

1, . . . , x
ξ
n).

The ordering is given by the reversed inclusion. We claim that P is appropri-
ate. Fix an uncountable family {Fα| α < ω1} ⊆ P, and a family of tuples
{(vα1 , . . . , vαs )| α < ω1} ⊆ (M, d)s. Without loss of generality we may assume
that

Fα = {e1, . . . , ek, eαk+1, . . . , e
α
k+m},

where sets {eαk+1, . . . , e
α
k+m} are pairwise disjoint for different α. For each α, let

yα ∈ (M, d)n·m+s be a concatenation of all tuples xeαk+1
, . . . , xeαk+m

, and (vα1 , . . . , v
α
s ).

There exists α �= β < ω1, such that yα � yβ , and we claim that they witness the
fact that P is appropriate. Let us write:

yα = (x1
1, . . . , x

1
n, x

2
1, . . . , x

2
n, . . . , x

m
1 , . . . , x

m
n , v1, . . . , vs),

yβ = (y11, . . . , y
1
n, y

2
1, . . . , y

2
n, . . . , y

m
1 , . . . , y

m
n , u1, . . . , us).

What is clear, is that (v1, . . . , vs)�(u1, . . . , us), and for all k ≤ m, (xk
1, . . . , x

k
n)�

(yk1 , . . . , y
k
n). What is not clear, is that in this case the � relation is "shift-invariant",

i.e. for all 1 ≤ p �= r ≤ m we have (xp
1, . . . , x

p
n) � (yr1, . . . , y

r
n). We will check

that this is the case.

A1 For all 1 ≤ r �= p ≤ m, and 1 ≤ i, j ≤ n, we have

d(xp
i , y

r
i ) = d(xp

i , x
r
i ) by A3 for yα and yβ ,

d(xp
i , x

r
i ) = d(xp

j , x
r
j) by A1 for (xp

1, . . . , x
p
n) and (xr

1, . . . , x
r
n),

d(xp
j , x

r
j) = d(xp

j , y
r
j ) by A3 for yα and yβ.

A2 For all 1 ≤ r �= p ≤ m, and 1 ≤ i, j ≤ n, we have

d(xp
i , x

p
j) = d(xr

i , x
r
j) by A2 for (xp

1, . . . , x
p
n), (x

r
1, . . . , x

r
n),

d(xr
i , x

r
j) = d(yri , y

r
j ) by A2 for yα, yβ .

A3 If xr
i �= xr

j then

d(xr
i , x

r
j) = d(xr

i , x
p
j) by A3 for (xp

1, . . . , x
p
n), (x

r
1, . . . , x

r
n),

d(xr
i , x

p
j) = d(xr

i , y
p
j ) by A3 for yα, yβ .
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Therefore Fα ∪ Fβ ∈ P, and this concludes the proof that P is appropriate.
Notice that all singletons belong to P, so |P| = ω1. Applying Martin’s Axiom to
the family of predense sets given by the Lemma 5.1.11, we find an uncountable
filter G ⊆ P. The set {xα| α ∈ �

G} is an uncountable family of tuples, and each
two of them are alike.

Proposition 5.1.13. MAω1(appropriate) implies that any c.c.c. partial order of
size ω1 is appropriate.

Proof. Suppose that P is a c.c.c. partial order of cardinality ω1, and fix some
disjoint family {(pξ, xξ

1, . . . , x
ξ
n)| ξ < ω1} ⊆ P× (M, d)n. If MAω1(appropriate)

holds, we can assume that all tuples (pξ, x
ξ
1, . . . , x

ξ
n) are pairwise alike, and since

P is c.c.c. we will find two pξ and pη, which are comparable.

The immediate consequence is

Theorem 5.1.14. It is consistent with ZFC +MA + ”2ω = ω2” that (M, d) is
rectangular.

We stress that the notion of appropriate poset did rely on the specific model
(M, d). But since we now have access to full Martin’s Axiom, we don’t have to
think of (M, d) as any distinguished structure. It just witnesses the fact that Mar-
tin’s Axiom is consistent with the existence of a metric space, which is rectangular
and HSS. For this reason, further results apply to any space with these properties,
not necessarily (M, d).

Theorem 5.1.15. Let (X, d) be a rectangular rational metric space of size ω1.
MAω1 implies that any uncountable 1-1 function f ⊆ X × X is an isometry on
an uncountable set.

Proof. Let f ⊆ X×X be an uncountable 1-1 function. Consider the partial order

Pf = ({E ∈ [dom f ]<ω| f � E is an isometry},⊆).

We will check that Pf is c.c.c. Take a sequence {eξ| ξ < ω1} ⊆ Pf . Applying
Δ-system Lemma we may assume that

• ∀ ξ < ω1 |eξ| = m,

• ∀ ξ �= η < ω1 eξ ∩ eη = r,

• eξ = (eξ1, . . . , e
ξ
l , e

ξ
l+1, . . . , e

ξ
m), where {eξ1, . . . , eξl } = r.
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Look at the family of tuples

{(eξl+1, . . . , e
ξ
m, f(e

ξ
l+1), . . . , f(e

ξ
m))| ξ < ω1}.

Using for example Δ-system Lemma one can easily trim this sequence so that
all tuples are pairwise disjoint. Now, given that (X, d) is rectangular, we find
ξ �= η < ω1, such that

(eξl+1, . . . , e
ξ
m, f(e

ξ
l+1), . . . , f(e

ξ
m))� (eηl+1, . . . , e

η
m, f(e

η
l+1), . . . , f(e

η
m)).

We must check that eξ and eη are comparable, that is f � (eξ ∪ eη) is an
isometry. But notice that for i �= j = l + 1, . . . ,m,

d(eξi , e
η
j ) = d(eξi , e

ξ
j) = d(f(eξi ), f(e

ξ
j)) = d(f(eξi ), f(e

η
j )).

This proves that eξ ∪ eη ∈ Pf .
Notice that all singletons belong to Pf , so |P| = ω1. Applying Martin’s Axiom

to the family of predense sets given by the Lemma 5.1.11, we find an uncountable
filter G ⊆ Pf . The set

�{E| E ∈ G} is an uncountable set on which f is an
isometry.

Corollary 5.1.16. It is consistent with ZFC +MA+”2ω = ω2” that there exists
an uncountable, separable (even hereditarily separably saturated) rational metric
space (X, d) such that each uncountable function f ⊆ X ×X is an isometry on
an uncountable set.

5.2 Rectangular Models
The reader might have noticed that in the previous section the triangle inequality
for the space (M, d) was never applied. The crucial property we used was a vari-
ant of the SP, which ensures that "remainders" will be alike (see Lemma 5.1.2).
In this section we will define a version of the SP which allows to proceed with the
proof of Theorem 5.1.15 in case of other classes of structures. One assumption
which seems hard to be removed is that the language consists of binary relational
symbols only.

Each language consisting of finitely many binary relational symbols can be
identified with a finite coloring of ordered pairs – given a model A, we assign to
each element of A2 its isomorphism type. There are only finitely many symbols
in the language, so this coloring is indeed finite, and moreover, it determines the
model A completely. Also, any function is a homomorphism precisely when it
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preserves this coloring. This observation allows to generalize results from Sec-
tion 2 to other classes, besides metric spaces. In fact, the finiteness of language
is not relevant as long as there are only countably many isomorphism types of
2-element models. Let K be some class of structures in a countable language
{Ri}i<ω consisting of binary relational symbols. Assume also that K has only
countably many isomorphism types of finite models. Let c be the corresponding
coloring of pairs in models from K – by the remark above we may forget about
the relational symbols, and think of models from K as having only one "relation",
namely c. We introduce the � relation by axioms similar to the metric case, but
unlike metrics, the coloring c might not be symmetric. This is the only significant
difference.

Definition 5.2.1. Let X ∈ K, and (x1, . . . , xn), (y1, . . . , yn) ∈ Xn be disjoint. We
will say that they are alike, and write (x1, . . . , xn)� (y1, . . . , yn), if the following
axioms are satisfied

A1a ∀ i, j = 1, . . . , n c(xi, yi) = c(xj, yj)

A1b ∀ i, j = 1, . . . , n c(yi, xi) = c(yj, xj)

A2a ∀ i, j = 1, . . . , n c(xi, xj) = c(yi, yj)

A3a ∀ i, j = 1, . . . , n (xi �= xj =⇒ c(xi, xj) = c(xi, yj) = c(yi, xj))

If all relations Rk are anti-reflexive (∀x ¬Rk(x, x)), then we can omit the
clause (xi �= xj) =⇒ in A3a. It is standard to check that

(x1, . . . , xn)� (y1, . . . , yn) ⇐⇒ (y1, . . . , yn)� (x1, . . . , xn).

Definition 5.2.2. X ∈ K is rectangular if |X| > ω, and for any family of pairwise
disjoint tuples {(xξ

1, . . . , x
ξ
n)| ξ < ω1} ⊆ Xn, there exist ξ �= η < ω1, such that

(xξ
1, . . . , x

ξ
n)� (xη

1, . . . , x
η
n).

Definition 5.2.3. K has the Rectangular Splitting Property (RSP) if for all R,X, Y ∈ K,
for all pairs of isomorphic extensions R ⊆ X , R ⊆ Y , with the correspond-
ing isomorphism h : X → Y , there exists Z ∈ K, with the universe X ∪ Y ,
such that for any sequence (x1, . . . , xn) enumerating bijectively X \R, Z satisfies
(x1, . . . , xn)� (h(x1), . . . , h(xn)).

The RSP ensures the conclusion of Lemma 5.1.2. Moreover, since the defini-
tion of � relation is independent of the ordering of the tuples, if there exists an
enumeration (x1, . . . , xn) like above, it can be replaced by any other enumeration,
even not 1-1.
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Theorem 5.2.4. If K has the RSP then Fn(ω1,K,ω) forces the generic structure
to be rectangular.

Proof. Exactly like the proof of Proposition 5.1.3.

Let us fix a rectangular model (X , c). The appropriate forcings are defined in
the same way as in Definition 5.1.7:

Definition 5.2.5. A partial order P is appropriate if given any natural number
n > 0, for each family consisting of pairwise disjoint tuples

{(pξ, xξ
1, . . . , x

ξ
n)| ξ < ω1} ⊆ P× (X , c)n,

there exist ξ �= η < ω1, such that pξ and pη are comparable, and

(xξ
1, . . . , x

ξ
n)� (xη

1, . . . , x
η
n).

Proposition 5.2.6. If P is appropriate, then P � "(X , c) is rectangular".

Proof. Exactly like the proof of Proposition 5.1.8.

Proposition 5.2.7. MAω1(appropriate) implies that any family of pairwise dis-
joint tuples{(xξ

1, . . . , x
ξ
n)| ξ < ω1} ⊆ (X , c)n contains an uncountable subfamily

of pairwise alike tuples.

Proof. Same as Lemma 5.1.12.

What follows, is a generalization of Theorem 5.1.14.

Theorem 5.2.8. It is consistent with ZFC + MA + ”2ω = ω2” that (X , c) is
rectangular.

The proof that appropriateness is preserved under finite support iterations is
also the same. (X , c) was a specific model providing us with the notion of appro-
priate partial order, but once Theorem 5.2.8 is proved, we may really forget about
it. It just witnesses the fact, that some rectangular model can exist in the presence
of Martin’s Axiom.

Proposition 5.2.9. Let (X, c) ∈ K be rectangular. MAω1 implies that any un-
countable 1-1 function f ⊆ X ×X is a homomorphism on an uncountable set.

Proof. Almost exactly like the proof of Theorem 5.1.15 – the only difference is
that we write c instead of d, isomorphism instead of isometry, and in the end use
A1a and A1b instead of A1, since c might not be symmetric.



54 CHAPTER 5. GENERIC STRUCTURES AND MARTIN’S AXIOM

Proposition 5.2.10. The classes of graphs, directed graphs, tournaments, linear
orders, and partial orders have the RSP.

Proof. We will prove the RSP for linear and partial orders. Arguments for other
classes are easy and left to the reader. For each partial order ≤ there exists a
corresponding quasi-ordering relation <, which is anti-reflexive.

Suppose we have a diagram of linear quasi-orders R,X, Y , and h : X → Y ,
like in the definition of RSP. We define a quasi-ordering on Z = X∪Y , extending
both <X and <Y , by conditions:

• ∀i < ω (xi < h(xi)),

• ∀i �= j < ω (xi < h(xj) ⇐⇒ xi <X xj).

Clearly < is an anti-reflexive relation on Z. For checking transitivity we must go
through several (somewhat boring) cases.

1. xi < h(xj), h(xj) < xk. Either xi = xj or xi < xj . In the first case
h(xi) < xk, and so xi < xk. In the second, xi < xk, and xi < xk follows
from transitivity of < on X .

2. h(xi) < xj, xj < xk. In this case xi < xj , so xi < xk, and h(xi) < xk.

3. xi < xj, xj < h(xk). Either xj = xk or xj < xk. In both cases xi < xk, so
xi < h(xk).

4. h(xi) < h(xj), h(xj) < xk. In this case xi < xj , and xj < xk. By
transitivity xi < xk, and h(xi) < xk follows.

5. xi < h(xj), h(xj) < h(xk). If xi < xj , then we proceed like before. If
xi = xj , h(xi) < h(xk). It follows that xi < xk, and xi < h(xk).

6. h(xi) < xj, xj < h(xk). We see that xi < xj . If xj < xk, we use
transitivity of < on X . If xj = xk, then h(xi) < xk, and so xi < xk. It
follows that h(xi) < h(xk).

The proof for partial orders is strictly simpler – we define the quasi-ordering
by conditions:

• ∀i < ω xi is incomparable with h(xi),

• ∀i, j < ω xi < h(xj) ⇐⇒ xi < xj,

• ∀i, j < ω ¬h(xi) < xj.
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Verification of transitivity is a run through the same cases, except this time we
do not have to care if xi, xj, xk are distinct.

For each class K having the RSP, one can prove a variant of Corollary 5.1.16.
We could of course state a general theorem, after introducing a notion of "sepa-
rable model" for arbitrary binary relational class. We will refrain from doing so,
and provide just two such variants as an illustration. Interested reader will easily
formulate corresponding results for tournaments, directed graphs, etc.
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Theorem 5.2.11. Each of the following is consistent with ZFC +MA + ”2ω =
ω2”:

1. There exists a graph G of size ω1, with a countable subset D ⊆ G, satisfying
the following properties:

• For all pairs of disjoint finite subsets A,B ⊆ G, there exists a vertex
d ∈ D, connected with each point in A, and with no point in B.

• Each uncountable 1-1 function f ⊆ G×G is a graph homomorphism
on an uncountable set.

2. (Avraham-Shelah, [6]) There exists a separable, ω1-dense linear order
(L,≤), such that each uncountable 1-1 function f ⊆ L × L is order pre-
serving on an uncountable subset.

The first point of this theorem is also a consequence of Theorem 5.1.15 – we
can turn a metric space into a graph by connecting two vertices iff the distance
between them is ≥ 1.

5.3 Classification Results
If the uncountable models we are considering are to resemble Fraïssé limits, we
should be able to do some kind of "back-and-forth" arguments, like in the classical
theory. There is no way inductive arguments can work, but thanks to Theorem
5.2.8 we can rely on Martin’s Axiom instead of induction.

5.3.1 HSS Rectangular Metric Spaces
We will be looking at metric spaces with distances in a given countable set K ⊆
[0,∞).

Theorem 5.3.1. Assume MAω1 . Let (X, d) be any rectangular HSS metric space
of size ω1, with distances in K. Let Y ⊆ X be any HSS uncountable subspace.
Then X and Y are isometric.

Proof. Since X is hereditarily separably saturated, we can decompose it into a
disjoint union of countable saturated subsets {Xα}α<ω1 . Of course we can do
the same with Y , so let us write Y =

�

α<ω1

Yα. Let P consist of finite partial

isometries between X and Y , which map elements from Xα to Yα for all α < ω1.
It is standard to check that the following sets are dense for x ∈ X , y ∈ Y :

Dx = {p ∈ P| x ∈ dom p},



5.3. CLASSIFICATION RESULTS 57

Ey = {p ∈ P| y ∈ rg p}.
We are left with the task of verifying the c.c.c. property. Fix any uncountable

subset {pγ| γ < ω1} ⊆ P. Using Δ-system Lemma we can write

dom pγ = (x1, . . . , xk, x
γ
k+1, . . . , x

γ
m),

rg pγ = (y1, . . . , yk, y
γ
k+1, . . . , y

γ
m),

where tuples (xγ
k+1, . . . , x

γ
m) are pairwise disjoint, and moreover pγ(xi) = yi,

and pγ(x
γ
i ) = yγi for each γ < ω1. Recall that X is rectangular, so we can find

ξ �= η < ω1, such that

(xξ
k+1, . . . , x

ξ
m, y

ξ
k+1, . . . , y

ξ
m)� (xη

k+1, . . . , x
η
m, y

η
k+1, . . . , y

η
m).

If k < i �= j ≤ m, then

d(xη
i , x

ξ
j) =d(xη

i , x
η
j ) =

d(yηi , y
η
j ) =d(yηi , y

ξ
j )

Also for k < i ≤ m

d(xη
i , x

ξ
i ) =d(yηi , y

ξ
i )

Clearly pξ ∪ pη ∈ P.

Corollary 5.3.2. Assume MAω1 . Let (X, d) be any rectangular HSS metric space
of size ω1, with distances in K. X can be decomposed into a disjoint union of λ
many its isometric copies for any λ ∈ {2, . . . ,ω1}.

Proof. Let X =
�

α<ω1

Xα be a decomposition of X into countable saturated sub-

sets. Let ω1 =
�

α<λ

Aα be a decomposition of ω1 into pairwise disjoint uncountable

subsets. For any γ < λ the space

Xγ =
�

α∈Aγ

Xα

is isometric to (X, d).

After taking X = Y and obvious adjustments to the forcing used, we obtain
the classical homogeneity.

Corollary 5.3.3. Assume MAω1 . If (X, d) is any rectangular HSS metric space
of size ω1, with distances in K, then any finite partial isometry of (X, d) extends
to a full isometry.
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Still, this kind of homogeneity is not sufficient to prove uniqueness, like for
the rational Urysohn space. Recall, that by Proposition 5.1.6

Fn(ω1,Metr,ω) � "(ω1, ḋ) is HSS (with distances in Q)".

Theorem 5.3.4. Assume MAω1 . If there exists a rectangular HSS rational met-
ric space of size ω1, then there exist infinitely many pairwise non-isometric such
spaces.

Proof. If (X, d) is a rectangular, hereditarily separably saturated rational metric
space of size ω1, we introduce a family of metrics on X

dk(x, y) = k · d(x, y),

for positive integers k. If k < l are positive integers, the spaces (X, dk) and (X, dl)
are not isometric. Indeed, if f : X �→ X is a bijection, then by Theorem 5.1.15, f
is an isometry of the space (X, d) on some pair of distinct points x, y ∈ X . Then
dk(x, y) = k·d(x, y) = k·d(f(x), f(y)) < l·d(f(x), f(y)) = dl(f(x), f(y)).

5.3.2 HSS Rectangular Graphs
If we take K = {0, 1, 2}, metric spaces with distances in K are graphs – think
of two points in distance 1 as connected, and two points in distance 2 as not
connected. Notions of saturated set and separably saturated space translate to the
following.

Definition 5.3.5. Let G be a graph. A subset D ⊆ G is a saturated subset of G
if for any pair of disjoint finite subsets A,B ⊆ G, there exists d ∈ D \ (A ∪ B)
which is connected with each vertex in A and with no vertex in B.

Definition 5.3.6. If G is any graph, then

1. G is separably saturated if it has a countable saturated subset.

2. G is hereditarily separably saturated (HSS) if for any countable subset E ⊆
G, the graph G \ E is separably saturated.

Proposition 5.3.7. Fn(ω1, Graphs,ω) � "(ω1, Ė) is a rectangular HSS graph".

Proof. Each infinite subset of ω1, which belongs to the ground model, is saturated,
what is clearly sufficient for being hereditarily separably saturated. Rectangularity
is a consequence of Theorem 5.2.4.
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From Theorem 5.3.1, with K = {0, 1, 2}, it follows that HSS rectangular
graphs are in certain sense minimal.

Theorem 5.3.8. Assume MAω1 . If G is a HSS rectangular graph of size ω1, then
each uncountable HSS subgraph of G is isomorphic with G.

Theorem 5.3.9. Assume MAω1 . If G and H are two HSS rectangular graphs of
size ω1, then G � H if and only if G and Hc do not contain a common uncountable
subgraph (Hc denotes the complement of H).

Proof.

"⇒." We must show that G and Gc do not contain a common uncountable
subgraph. Fix arbitrary graph F of size ω1, and suppose towards contradiction
that there exists a pair of embeddings i : F �→ G, j : F �→ Gc. The partial
function given by i(α) �→ j(α) is a bijection between uncountable subsets of G.
By Proposition 5.2.9 it is a homomorphism on some pair of points α �= β. This
contradicts the choice of i and j.

"⇐." Assume that there is no uncountable graph which embeds both into G
and Hc. We proceed like in the proof of Theorem 5.3.1. G and H are HSS,
so we can decompose them into disjoint unions of countable saturated subsets
{Gα}α<ω1 , and {Hα}α<ω1 respectively. Let P consist of finite partial isomor-
phisms between G and H , which map elements from Gα to Hα for all α < ω1.
The following sets are dense for g ∈ G, h ∈ H:

Dg = {p ∈ P| g ∈ dom p},

Eh = {p ∈ P| h ∈ rg p}.
We verify the c.c.c. property. Fix any uncountable subset {pγ| γ < ω1} ⊆ P.

Using Δ-system Lemma we can write

dom pγ = (x1, . . . , xk, x
γ
k+1, . . . , x

γ
m),

rg pγ = (y1, . . . , yk, y
γ
k+1, . . . , y

γ
m),

where tuples (xγ
k+1, . . . , x

γ
m) are pairwise disjoint, and moreover pγ(xi) = yi,

and pγ(x
γ
i ) = yγi for each γ < ω1. By rectangularity and Proposition 5.2.7 we can

assume that tuples
{(xγ

k+1, . . . , x
γ
m)| γ < ω1},

as well as
{(yγk+1, . . . , y

γ
m)| γ < ω1}
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are pairwise alike.
For all k < i �= j ≤ m, and ξ �= η < ω1 we have

xη
i E xξ

j ⇐⇒ xη
i E xη

j ⇐⇒
yηi E yηj ⇐⇒ yηi E yξj

What remains is the case i = j. But look at the function given by xη
k+1 �→ yηk+1,

for η < ω1. This is a bijection between an uncountable subgraph of G and an
uncountable subgraph of H , or equivalently, Hc. By our assumption, it cannot be
a homomorphism into Hc. We conclude that there are η �= ξ < ω1 such that

xη
k+1 E xξ

k+1 ⇐⇒ yηk+1 E yξk+1,

and by rectangularity
xη
i E xξ

i ⇐⇒ yηi E yξi ,

for all i = k + 1, . . . ,m. Clearly pξ ∪ pη ∈ P.

Corollary 5.3.10. Assume MAω1 . If there exists a HSS rectangular graph of size
ω1 then it is unique up to taking the complement.

Proof. Fix two HSS rectangular graphs G and H , both of size ω1. It is sufficient
to prove that either no uncountable graph F can be embedded both into G and
H , or no uncountable graph F can be embedded both into G and Hc. Suppose
towards contradiction that F0, F1 ⊆ G are uncountable subgraphs, and there exist
embeddings i0 : F0 �→ H , i1 : F1 �→ Hc. The function given by i0(f) �→ i1(f)
is a bijection between uncountable subsets of H . By Proposition 5.2.9, on some
two points it must be a homomorphism. But this contradicts the choice of i0 and
i1.

Theorem 5.3.11. Assume MAω1 . If G is a rectangular graph of size ω1, then
either G contains an uncountable clique or an uncountable anticlique.

Proof. In the light of Proposition 5.2.9, G clearly can’t contain both. Assume that
G doesn’t contain an uncountable anticlique. We can represent G as (ω1, E), and
consider the partial order

P = {F ⊆ ω1| F is a finite clique in G},

ordered by reversed inclusion. If we can show that P is c.c.c, Lemma 5.1.11 will
provide us with an uncountable clique in G. Suppose that {Fξ| ξ < ω1} is an
uncountable subset of P. We can write

Fξ = (f1, . . . , fk, f
ξ
k+1, . . . , f

ξ
m),
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where tuples (f ξ
k+1, . . . , f

ξ
m) are pairwise disjoint. By the virtue of Martin’s Ax-

iom, and Proposition 5.2.7, we can also assume that they are pairwise alike.
By our assumption the set {f ξ

k+1| ξ < ω1} is not an anticlique, so we will
find ξ �= η < ω1, such that f η

k+1 E f ξ
k+1. It is now standard to check that

Fη ∪ Fξ ∈ P.

5.3.3 Separable ω1-dense Linear Orders
What do rectangular linear orders look like? After unwinding the axioms for the
� relation, we see that (x1, . . . , xn)�(y1, . . . , yn) translates to the following three
axioms:

A1c ∀ i, j = 1, . . . , n (xi < yi ⇐⇒ xj < yj)

A2c ∀ i, j = 1, . . . , n (xi < xj ⇐⇒ yi < yj)

A3c ∀ i, j = 1, . . . , n ((xi �= xj) =⇒ (xi < xj ⇐⇒ xi < yj ⇐⇒ yi < xj))

If we omitted A3c, we would obtain what the authors of [5] call an increasing
order (actually, one can show that in the class of separable, dense linear orders
these two notions coincide). An order added by Fn(ω1,LO,ω) is a rectangu-
lar, separable, ω1-dense linear order, which under MAω1 is also homogeneous.
MAω1 imposes a great deal of regularity on the class of separable, homogeneous
ω1-dense linear orders – for example two such orderings are isomorphic precisely
when they are bi-embeddable. Implications of MAω1 for this class, as well as
other axioms like OCAARS , have been extensively studied in [5]. Not surpris-
ingly, many properties of rectangular linear orders resemble those of graphs.

Theorem 5.3.12. Assume MAω1 , and suppose that L is a separable, ω1-dense,
rectangular linear order. If K is any other separable, ω1-dense, rectangular linear
order, then K � L if and only if K and L∗ do not contain a common uncountable
suborder (L∗ denotes L with the reversed ordering).

Proof.

"⇒." We must show that there is no uncountable strictly decreasing function
f ⊆ L× L. But this follows directly from Proposition 5.2.9.

"⇐." Assume that there is no uncountable linear order which embeds both
into L and L∗. We proceed like in the proofs of Theorems 5.3.1 and 5.3.9. We can
decompose L and K into disjoint unions of countable dense subsets {Lα}α<ω1 ,
and {Kα}α<ω1 respectively. Let P consist of finite partial isomorphisms between
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L and K which map elements from Kα to Lα, for all α < ω1. The following sets
are dense for l ∈ L, k ∈ K:

Dk = {p ∈ P| k ∈ dom p},
El = {p ∈ P| l ∈ rg p}.

We verify the c.c.c. property. Fix any uncountable subset {pγ| γ < ω1} ⊆ P.
Using Δ-system Lemma, we can write

dom pγ = (x1, . . . , xk, x
γ
k+1, . . . , x

γ
m),

rg pγ = (y1, . . . , yk, y
γ
k+1, . . . , y

γ
m),

where tuples (xγ
k+1, . . . , x

γ
m) are pairwise disjoint, and moreover pγ(xi) = yi, and

pγ(x
γ
i ) = yγi , for each γ < ω1. By rectangularity and Proposition 5.2.7 we can

assume, that tuples
{(xγ

k+1, . . . , x
γ
m)| γ < ω1},

as well as
{(yγk+1, . . . , y

γ
m)| γ < ω1},

are pairwise alike.
For all k < i �= j ≤ m, and ξ �= η < ω1 we have

xη
i < xξ

j ⇐⇒ xη
i < xη

j ⇐⇒
yηi < yηj ⇐⇒ yηi < yξj

What remains is the case i = j. Look at the function given by xη
k+1 �→ yηk+1, for

η < ω1. This is a bijection between an uncountable subset of L and an uncountable
subset of K. By our assumption it cannot be decreasing, so there are η �= ξ < ω1

such that
xη
k+1 < xξ

k+1 ⇐⇒ yηk+1 < yξk+1,

and by rectangularity
xη
i < xξ

i ⇐⇒ yηi < yξi ,

for all i = k + 1, . . . ,m. Clearly pξ ∪ pη ∈ P.

Just like in the case of graphs, one can easily prove

Corollary 5.3.13. Assume MAω1 . If there exists a rectangular, separable, ω1-
dense linear order then it is unique up to reversing the order.

These orders are also mimimal in the same sense as metric spaces from Theo-
rem 5.3.1. The reader will have no difficulty with adjusting its proof to obtain

Theorem 5.3.14. Assume MAω1 and let K, L be a pair of separable, ω1-dense
linear orders. If K embeds into L, and L is rectangular, then L and K are iso-
morphic.
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5.4 Concluding Remarks
Is the theory we develop entitled to be called "the uncountable Fraïssé theory with
finite supports"? We left it to the reader’s opinion. Obviously, similarity of forcing
notions

Fn (ω,K,ω)

and
Fn (ω1,K,ω)

shows that some "genericity" is common to Fraïssé limits and rectangular models.
On the other hand, properties of models added by the latter forcing seem heavily
dependent on the set-theoretic background, unlike those of countable homoge-
neous models. Moreover, it looks like Proposition 5.2.9 exhibits some strange
asymmetry of rectangular models in the presence of MAω1 , which distinguishes
them from their countable counterparts.

The most attractive direction of further research is perhaps to represent a sep-
arable, ω1-dense linear order as a Fraïssé-style structure, in case it is unique. By
Theorem 5.3.12, in such situation no increasing (rectangular) set of reals can exist.

It is not hard to see, that many of our results can be restated in much broader
generality. For instance:

• In all models of ZFC built in Chapter 5 one can have 2ω > ω2. This is be-
cause MAω1 ensures that each c.c.c. forcing satisfies the Knaster condition,
and so is appropriate.

• We introduced hereditarily separably saturated metric spaces, but one could
of course define hereditarily separably saturated models for arbitrary first
order theory, given it is phrased in a language consisting only of binary
relational symbols.

• There is really nothing particular about the class of linear orders in Theorem
4.2.3, and ω2 clearly can be replaced by any bigger cardinal.

However, our goal was to present some ideas and look for possible general-
izations of known theories, rather than providing an exhaustive exposition in the
most general manner. There are many natural questions about rectangular models,
which weren’t considered in the dissertation.

Question 5.4.1. Is there any reasonable analog of rectangularity for models added
by

Fn (ω2,K,ω1)?
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Question 5.4.2. Which small (for instance countable) groups can appear as the
automorphism groups of ω1-dense, separable linear orders?

In particular, is it consistent that

Aut (A,≤) � (Q,+)

for A ⊆ R?

Question 5.4.3. Are there any natural conditions for a class K, ensuring that

Fn (S,K,ω)

is always equivalent to an iteration of the Cohen forcings?

Question 5.4.4. Is there anything interesting to be said about forcings

Fn (κ,K,λ)

if κ and λ are very big rather than very small, say λ is weakly compact?

Question 5.4.5. What can be said about the automorphism groups of rectangular
models?

The last one seems quite ambitious.

Question 5.4.6. Can we have an analog of the Baumgartner’s Theorem, from the
beginning of Chapter 5, for any structures different from linear orders?
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