
PhD dissertation

University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Graph Width Parameters. Dependencies,
Algorithms and Decompositions.

Author:
Wojciech Nadara

Supervisor:
Dr hab. Marcin Pilipczuk

February 13, 2023





Author’s declaration:
I hereby declare that this dissertation is my own work.

February 13, 2023
Date Wojciech Nadara

Supervisor’s declaration:
This dissertation is ready to be reviewed.

February 13, 2023
Date dr hab. Marcin Pilipczuk

2





Abstract

This dissertation will be based on results from structural graph theory, mainly revolving around graph
width parameters, dependencies between them, their usages and finding certifying decompositions. Specific
parameters that will be of most relevance to this dissertation are treedepth, treewidth, pathwidth and mad
(short for maximum average degree).

In Chapter 3, based on the article “Improved bounds for the excluded-minor approximation of treedepth”
[26], we show that there exists a constant C such that for every positive integers a, b and a graph G, if
the treedepth of G is at least Cab, then the treewidth of G is at least a or G contains a subcubic (i.e., of
maximum degree at most 3) tree of treedepth at least b as a subgraph. As a direct corollary, we obtain
that every graph of treedepth Ω(k3) is either of treewidth at least k, contains a subdivision of full binary
tree of depth k, or contains a path of length 2k. This improves the bound of Ω(k5 log2 k) of Kawarabayashi
and Rossman [SODA 2018]. We also show an application of our techniques for approximation algorithms of
treedepth: given a graph G of treedepth k and treewidth t, one can in polynomial time compute a treedepth
decomposition of G of width O(kt log3/2 t). This improves upon a bound of O(kt2 log t) stemming from a
tradeoff between known results. The main technical ingredient in our result is a proof that every tree of
treedepth d contains a subcubic subtree of treedepth at least d · log3((1 +

√
5)/2).

In Chapter 4, based on article “Efficient fully dynamic elimination forests with applications to detecting
long paths and cycles” [18, 19], we show that every minimal graph of treedepth d has at most dO(d) vertices,
improving upon work of Dvorak et al. [31].

In Chapter 5, based on the article “Computing treedepth in polynomial space and linear fpt time” [62, 61],
we propose an algorithm that given a graph G and an integer d, either finds a treedepth decompositon of
G of depth at most d or concludes that no such decomposition exists; thus the algorithm decides whether
the treedepth of G is at most d. The running time is 2O(d2) · nO(1) and the space usage is polynomial in
n. Further, by allowing randomization, the time and space complexities can be improved to 2O(d2) · n and
dO(1) · n, respectively. This improves upon the algorithm of Reidl et al. [ICALP 2014], which also has time
complexity 2O(d2) · n, but uses space exponential in d.

In Chapter 6, based on the article “Approximating Pathwidth for Graphs of Small Treewidth” [41], we
prove that every graph with large pathwidth has large treewidth or contains a subdivision of a large complete
binary tree. Specifically, we show that every graph with pathwidth at least th + 2 has treewidth at least t
or contains a subdivision of a complete binary tree of height h+ 1. The bound th+ 2 is best possible up to
a multiplicative constant. This result was motivated by, and implies (with c = 2), the following conjecture
of Kawarabayashi and Rossman (SODA’18): there exists a universal constant c such that every graph with
pathwidth Ω(kc) has treewidth at least k or contains a subdivision of a complete binary tree of height k.
These structural insights allowed us to design a polynomial-time algorithm which, given a graph G with
treewidth t, approximates the pathwidth of G to within a ratio of O(t

√
log t), which is described in [41], but

not in this thesis. This is the first algorithm to achieve an f(t)-approximation for some function f .

The maximum average degree mad(G) of a graph G is the maximum over all subgraphs of G, of the
average degree of the subgraph. In Chapter 7, based on the article “Decreasing the maximum average degree
by deleting an independent set or a d-degenerate subgraph” [63], we prove that for every G and positive
integer k such that mad(G) ≥ k there exists S ⊆ V (G) such that mad(G − S) ≤ mad(G) − k and G[S] is
(k − 1)-degenerate. Moreover, such S can be computed in polynomial time. In particular, if G contains at
least one edge then there exists an independent set I in G such that mad(G − I) ≤ mad(G) − 1 and if G
contains a cycle then there exists an induced forest F such that mad(G−F ) ≤ mad(G)−2. As a side result,
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we also obtain a subexponential bound on the diameter of reconfiguration graphs of generalized colourings
of graphs with bounded value of their mad.

2012 ACM Computing Classification System: Theory of computation → Design and analysis of
algorithms → Graph algorithms analysis

Keywords: graph algorithms, graph width parameters, treedepth, treewidth, pathwidth, mad, maximum
average degree, graph decompositions, approximation algorithms, parameterized algorithms
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Streszczenie

Ta rozprawa jest bazowana na wynikach ze strukturalnej teorii grafów, dotyczących głównie parametrów sze-
rokości grafów, zależności pomiędzy nimi, ich zastosowań oraz wyznaczania odpowiadających dekompozycji.
Konkretne parametry najbardziej związane z tą pracą to treedepth (głębokość drzewiasta), treewidth (sze-
rokość drzewiasta), pathwidth (szerokość ścieżkowa) i mad (skrót od maximum average degree (największy
średni stopień)).

W rozdziale 3 bazowanym na pracy “Improved bounds for the excluded-minor approximation of treedepth”
[26] dowodzimy istnienie stałej C takiej że dla każdych dodatnich liczb całkowitych a, b i grafu G, jeżeli
treedepth grafu jest co najmniej Cab, wtedy albo treewidth grafu G jest co najmniej a lub G zawiera
subkubiczne (tzn. o stopniach co najwyżej 3) drzewo o treedepthie co najmniej b jako podgraf. Jako
bezpośredni wniosek, uzyskujemy że każdy graf o treedepthie Ω(k3) albo ma treewidth co najmniej k, albo
zawiera subdywizję pełnego drzewa binarnego wysokości k albo zawiera ścieżkę długości 2k. To poprawia
ograniczenie Ω(k5 log2 k) udowodnione przez Kawarabayashi i Rossmana [SODA 2018]. Pokazujemy także
zastosowanie naszych technik dla problemu aproksymacji treedepthu: dla danego grafu G o treedepthie k i
treewidthie t, jesteśmy w stanie obliczyć w wielomianowym czasie dekompozycję treedepthową G o głębokości
O(kt log3/2 t). To polepsza najlepsze znane do tej pory ograniczenie O(kt2 log t) wynikające z kompromisu
pomiędzy znanymi wynikami. Głównym technicznym składnikiem naszego wyniku jest dowód faktu, że każde
drzewo o treedepthie d zawiera subkubiczne poddrzewo o treedepthie co najmniej d · log3((1 +

√
5)/2).

W rozdziale 4 bazowanym na artykule “Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles” [18, 19] pokazujemy, że każdy minimalny graf o treedepthie d ma co najwyżej
dO(d) wierzchołków, polepszając wynik z pracy Dvorak et al. [31].

W rozdziale 5 bazowanym na artykule “Computing treedepth in polynomial space and linear fpt time”
[62, 61] proponujemy algorytm, który dla danego grafu G i liczby całkowitej d albo znajduje dekompozycję
treedepthową G o szerokości co najwyżej d albo stwierdza, że taka dekompozycja nie istnieje; zatem taki
algorytm w szczególności stwierdza, czy treedepth G wynosi co najwyżej d. Czas działania tego algorytmu
wynosi 2O(d2)·nO(1), a używana pamięć jest wielomianowa względem n. Co więcej, dzięki użyciu randomizacji,
złożoności czasowe i pamięciowe mogą być polepszone do odpowiednio 2O(d2) · n i dO(1) · n. To polepsza
algorytm Reidl et al. [ICALP 2014], którego złożoność również wynosi 2O(d2) · n, ale używa on pamięci
wykładnicznej względem d.

W rozdziale 6 bazowanym na artykule “Approximating Pathwidth for Graphs of Small Treewidth” [41]
dowodzimy, że każdy graf o dużym pathwidthie posiada duży treewidth albo subdywizję dużego kompletnego
drzewa binarnego. Konkretniej, pokazujemy, że każdy graf o pathwidthie co najmniej th + 2 ma treewidth
co najmniej t albo zawiera subdywizję kompletnego drzewa binarnego wysokości h+ 1. Ograniczenie th+ 2
jest najlepsze możliwe z dokładnością do multiplikatywnej stałej. Ten wynik był motywowany i implikuje
(z c = 2) następującą hipotezę postawioną przez Kawarabayashi i Rossmana (SODA’18): istnieje uniwer-
salna stała c taka że każdy graf o pathwidthie Ω(kc) ma treewidth co najmniej k albo zawiera subdywizję
kompletnego drzewa binarnego o wysokości k. Wspomniane strukturalne spostrzeżenia pozwoliły nam zapro-
jektować algorytm działający w wielomianowym czasie, który dla grafu G o treewidthie t, aproksymuje jego
pathwidth w stosunku O(t

√
log t), który jest opisany w [41], ale nie w tej rozprawie. To pierwszy algorytm

w wielomianowym czasie osiągający f(t) aproksymację pathwidthu dla pewnej funkcji f .

Największy średni stopień mad(G) grafu G to największa wartość średniego stopnia po wszystkich pod-
grafach grafu G. W rozdziale 7 bazowanym na artykule “Decreasing the maximum average degree by deleting
an independent set or a d-degenerate subgraph” [63] dowodzimy, że dla każdego grafu G i dodatniej liczby
całkowitej k, istnieje zbiór S ⊆ V (G) taki że mad(G−S) ≤ mad(G)−k i G[S] jest (k−1)-zdegenerowany. Co
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więcej, taki S może być wyznaczony w wielomianowym czasie. W szczególności, jeżeli G zawiera co najmniej
jedną krawędź, to istnieje taki zbiór niezależny I w G że mad(G − I) ≤ mad(G) − 1 oraz jeżeli G zawiera
jakiś cykl, to wtedy istnieje indukowany las F taki że mad(G − F ) ≤ mad(G) − 2. Jako poboczny rezultat
otrzymujemy także podwykładnicze ograniczenie na średnicę grafów rekonfiguracji uogólnionych kolorowań
grafów o ograniczonych wartościach mad.

Tytuł pracy w języku polskim: Parametry szerokości grafów. Zależności, algorytmy i dekompozycje.

Słowa kluczowe: algorytmy grafowe, parametry szerokości grafu, głębokość drzewiasta, szerokość
drzewiasta, szerokość ścieżkowa, mad, największy średni stopień, dekompozycje grafowe, algorytmy aproksy-
macyjne, algorytmy parametryzowane
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Chapter 1

Introduction

Graphs are fundamental and important objects in computer science. They allow us to model variety of
networks, for example, road networks, social networks, eletrical networks or brain connections. Given such
a general type of objects, one may pose a large number of problems regarding graphs. Many of these have
real life applications, for example, navigation systems need to answer queries of how to get from point A to
point B in the fastest possible way, which can be formulated as variants of classical shortest path problem.
Other examples include problems like maximum flow, where we ask what is the biggest amount of water we
can send through a pipes network or traveling salesman problem, which can be described as asking about
the shortest route courier needs to have to deliver all packages.

Some of graph problems are solvable in polynomial time (for example, the shortest path problem or the
maximum flow problem), while some of them are not (under standard complexity theory assumptions) and
cannot be solved fast enough on large general graphs (for example, the traveling salesman problem). In order
to broaden the horizon of feasibility one may ask whether some of these problems are solvable on graphs
that are large, but simple in some sense. Hence, the structural graph theory has risen — an area which
distinguishes a number of properties that graphs could have, that allows us to understand the structure of
various classes of graphs, which further on could be utilized in a design of efficient algorithms.

One of the most famous notions in structural graph theory is the notion of treewidth. Intuitively speaking,
it measures how much a graph is similar to a tree (the lower treewidth, the more similar the graph is to a
tree). It is both very useful in a design of efficient algorithms, as well as plays a key role in the celebrated
graph structure theorem by Robertson and Seymour [78]. The power of treewidth notion is also shown by the
famous Courcelle’s Theorem [23] stating that every graph property definable in the monadic second-order
logic of graphs can be decided in linear time on graphs of bounded treewidth.

Treewidth notion is just an example of a graph width parameter and has a lot of siblings. Other known
graph width parameters include notions like pathwidth, treedepth, rankwidth, branchwidth, cliquewidth,
twinwidth, mimwidth. Knowing that a graph has small width of a certain type often turns out to be highly
useful in designing efficient algorithm for various problems that are not efficiently solvable otherwise. Bound-
edness of width often enables designing a problem-specific dynamic programming algorithm or applying some
meta-theorem to solve a certain problem. In majority of cases, the resulting algorithm has time complexity
of type f(w) · nO(1), where w is the width of a graph and n is its number of vertices. Such algorithms are
called FPT (fixed parameter tractable) algorithms, parameterized by the width.

In this thesis we will be the most interested in treewidth, treedepth and pathwidth parameters.

1.1 Treedepth results

For an undirected graph G, the treedepth of G is the minimum height of a rooted forest whose ancestor-
descendant closure contains G as a subgraph. Together with more widely known related width notions, it
plays a major role in structural graph theory, in particular in the study of general sparse graph classes [66,
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68, 65]. Compared to treewidth, treedepth measures the depth of a tree-like decomposition of a graph, instead
of width. The two parameters are related: if by td(G) and tw(G) we denote the treedepth and the treewidth
of an n-vertex graph G, then it always holds that tw(G) ≤ td(G) ≤ tw(G) · log2 n. However, the two notions
are qualitatively different: for instance, a path on t vertices has treewidth 1 and treedepth Θ(log t).

Treedepth appears prominently in structural graph theory, especially in the theory of sparse graphs of
Nešetřil and Ossona de Mendez. There, it serves as a basic building block for fundamental decompositions
of sparse graphs — low treedepth colorings — which can be used for multiple algorithmic purposes, including
designing algorithms for Subgraph Isomorphism and model-checking First-Order logic. See [68, Chapters 6
and 7] for an introduction and [39, 42, 67, 66, 69, 70, 72, 71] for examples of applications.

An important property of treedepth is that it admits a number of equivalent definitions. Following the
definition of treedepth above, a treedepth decomposition of a graph G consists of a rooted forest F and
an injective mapping f : V (G) → V (F ) such that for every uv ∈ E(G) the vertices f(u) and f(v) are in
ancestor-descendant relation in F . The width (or the depth) of a treedepth decomposition (F, f) is the height
of F (the number of vertices on the longest leaf-to-root path in F ) and the treedepth of G is the minimum
possible height of a treedepth decomposition of G. A centered coloring of a graph G is an assignment
α : V (G) → Z such that for every connected subgraph H of G, α has a center in H: a vertex v ∈ V (H) of
unique color, i.e., α(v) 6= α(w) for every w ∈ V (H) \ {v}. A vertex ranking of a graph G is an assignment
α : V (G) → Z such that in every connected subgraph H of G there is a unique vertex of maximum rank
(value α(v)). Clearly, each vertex ranking is a centered coloring. It turns out that the minimum number of
colors (minimum size of the image of α) needed for a centered coloring and for a vertex ranking are equal
and equal to the treedepth of a graph [65].

In this thesis, among other topics, we are interested in using treedepth as a parameter for the design
of fixed-parameter (FPT) algorithms. Clearly, every dynamic programming algorithm working on a tree
decomposition of a graph can be adjusted to work also on an elimination forest, just because an elimination
forest of depth d can be easily transformed into a tree decomposition of width d− 1. However, it has been
observed in [38, 73, 47, 64, 71] that for multiple basic problems, one can design FPT algorithms working on
elimination forests of bounded depth that have polynomial space complexity without sacrificing on the time
complexity. These include the following: (In all results below, n is the vertex count and d is the depth of
the given elimination forest.)
• A 3d · nO(1)-time O(d+ log n)-space algorithm for 3-Coloring [73].
• A 2d · nO(1)-time nO(1)-space algorithm for counting perfect matchings [38].
• A 3d · nO(1)-time nO(1)-space algorithm for Dominating Set [38, 73].
• A d|V (H)| · nO(1)-time nO(1)-space algorithm for Subgraph Isomorphism [71].

(Here, H is the sought pattern graph.)
• A 3d · nO(1)-time nO(1)-space algorithm for Connected Vertex Cover [47].
• A 5d · nO(1)-time nO(1)-space algorithm for Hamiltonian Cycle [64].

We note that the approach used in [47, 64] to obtain the last two results applies also to several other problems
with connectivity constraints. However, as these algorithms are based on the Cut&Count technique [25],
they are randomized and no derandomization preserving the polynomial space complexity is known. An in-
depth complexity-theoretical analysis of the time-space tradeoffs for algorithms working on different graph
decompositions can be found in [73].

In the algorithms mentioned above one assumes that the input graph is supplied with an elimination
depth of depth at most d. Therefore, it is imperative to design algorithms that given the graph alone,
computes, possibly approximately, such an elimination forest. Compared to the setting of treewidth and
tree decompositions, where multiple approaches have been proposed over the years (see e.g. [7, 55] for an
overview), so far there was only a handful of algorithms to compute the treedepth exactly or approximately.
• It is well-known (see e.g. [68, Section 6.2]) that just running depth-first search and outputing the

forest of recursive calls gives an elimination forest of depth at most 2td(G). So this gives a very simple
linear-time approximation algorithm, but with the approximation factor exponential in the optimum.

• Reidl et al. [76] gave an exact FPT algorithm that in time 2O(d·tw(G)) ·n either constructs an elimination
forest of depth at most d, or concludes that the treedepth is larger than d. Recall here that tw(G) ≤
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td(G).
• Through a tradeoff trick, which we will describe below, one can get a polynomial time approximation

algorithm computing a treedepth decomposition of G of width O(td(G) · tw(G)2 log tw(G)).
In particular, obtaining a constant-factor approximation for treedepth running in time 2O(td(G)) · nO(1) is
a well-known open problem, see e.g. [26]. We note that implementation of practical FPT algorithms for
computing treedepth was the topic of the 2020 Parameterized Algorithms and Computational Experiments
(PACE) Challenge [56].

For approximation algorithms, the following folklore lemma (presented with full proof in [50]) is very
useful.

Lemma 1.1.1. Given a graph G and a tree decomposition (T, β) of G of maximum bag size w, one can in
polynomial time compute a treedepth decomposition of G of width at most w · td(T ).

Using Lemma 1.1.1, one can obtain an approximation algorithm for treedepth with a cheap tradeoff
trick.1

Lemma 1.1.2. Given a graph G, one can in polynomial time compute a treedepth decomposition of G of
width O(td(G) · tw(G)2 log tw(G)).

Proof. Let n = |V (G)|. Using the polynomial-time approximation algorithm for treewidth [36], compute
a tree decomposition (T, β) of G of width t = O(tw(G)

√
log tw(G)) and O(n) bags. For every integer

1 ≤ k ≤ (log n)/t, use the algorithm of [76] to check in polynomial time if the treedepth of G is at most k.
Note that if this is the case, the algorithm finds an optimal treedepth decomposition and we can conclude.
Otherwise, we have log n ≤ td(G) · t and we can apply Lemma 1.1.1 to G and (T, β), obtaining a treedepth
decomposition of G whose width based on folklore inequality td(T ) ≤ 1 + log2 |V (T )|, which is proven in
Lemma 3.3.3, can be estimated as

O(t · td(T )) ≤ O(t log n) ≤ O(td(G) · t2) ≤ O(td(G) · tw(G)2 log tw(G)).

Lemma 1.1.2 is the only polynomial approximation algorithm for treedepth running in polynomial time
we were aware of. In this thesis we improve state of the art algorithms in both polynomial time category
(Theorem 1.1.7 in Chapter 3 based on [26]) as well as in the exact computation category (Theorem 1.1.10
in Chapter 5 based on [61]).

A related topic to exact and approximation algorithms computing minimum-width treedepth decompo-
sition is the study of obstructions to small treedepth. For any integer d, the class of graphs with treedepth
at most d is clearly minor-closed. As such, based on famous Robertson-Seymour theorem [78], it can be
characterized by forbidding a finite set of minors. However, this general theorem does not provide useful
insight on how these forbidden minors look like. Studying obstructions for small treedepth is important from
a viewpoint of getting a fundamental understanding of what makes treedepth high and can possibly be used
in algorithm design. Dvořák, Giannopoulou, and Thilikos [31] proved that every minimal graph of treedepth
d has the number of vertices at most double-exponential in d and gave a construction of an obstruction with
2d vertices. They also hypothesized that in fact, every minimal obstruction for treedepth d has at most 2d

vertices. In Chapter 4 based on [18, 19], we get closer to this conjecture by showing an improved upper
bound of dO(d) in Theorem 1.1.9.

As the set of minors that are obstructions for having treedepth at most d is not yet well understood,
one may ask what happens if we forbid some simpler set of minors. Having a big treedepth is functionally
equivalent to having a long path, or in other words, graphs with big treedepth have long paths and graphs
with long paths have big treedepth. That is formalized within the following fact:

Fact 1. Let p(G) be the length of the longest path in G (counting vertices). Then 2td(G)−1 ≤ p(G) ≤ td(G).
1This trick has been observed and communicated to us by Michał Pilipczuk. We thank Michał for allowing us to include it

here.
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This fact was actually the basis for the first approximation algorithm for treedepth that we have men-
tioned. However, the exponential gap in this statement is unavoidable, as evidenced by examples of paths
(first inequality) and complete graphs (second inequality). That motivates the question whether we can get
a polynomial gap by forbidding a richer set of minors.

Recently, Kawarabayashi and Rossman showed such polynomial excluded-minor theorem for treedepth.

Theorem 1.1.3 ([50]). There exists a universal constant C such that for every integer k every graph of
treedepth at least Ck5 log2 k is either of treewidth at least k, contains a subdivision of a full binary tree of
depth k as a subgraph, or contains a path of length 2k.

Note that each of these three outcomes alone implies that the treedepth is at least k.
In Chapter 3, which is based on [26], in Theorem 1.1.4 we are able to improve the bound of Ω(k5 log2 k)

to Ω(k3).
The results of [31, 18, 19, 50] and [26] are tightly linked with each other and we expect that a finer

understanding of treedepth obstructions is necessary to provide more efficient algorithms computing or
approximating the treedepth of a graph. In particular, the improved upper bound on the size of minimal
obstructions plays a key role in the improved exact algorithm for treedepth that we present in Theorem
1.1.10.

Detailed Chapter 3 results — improved polynomial excluded-minor treedepth theorem and
approximation algorithm. To recall, Chapter 3 is based on [26]. Our main graph-theoretical result is
the following statement, improving upon the work of Kawarabayashi and Rossman [50].

Theorem 1.1.4. Let G be a graph of treewidth tw(G) and treedepth td(G). Then there exists a subcubic
tree H that is a subgraph of G and is of treedepth at least

td(G)

tw(G) + 1
· log((1 +

√
5)/2)

log(3)
.

In other words, Theorem 1.1.4 states that there exists a constant C = log(3)

log((1+
√

5)/2)
such that for every

graph G and positive integers a, b, if the treedepth of G is at least Cab, then the treewidth of G is at least a
or G contains a subcubic tree of treedepth b. Since every tree of treedepth d contains either a simple path
of length 2Ω(

√
d) or a subdivision of a full binary tree of depth Ω(

√
d) [50], we have the following corollary.

Corollary 1.1.5. Let G be a graph of treewidth tw(G) and treedepth td(G). Then for some

h = Ω
(√

td(G)/(tw(G) + 1)
)

G contains either a simple path of length 2h or a subdivision of a full binary tree of depth h.
Consequently, there exists an absolute constant C such that for every integer k ≥ 1 and a graph G of

treedepth at least Ck3, either

• G has treewidth at least k,

• G contains a subdivision of a full binary tree of depth k as a subgraph, or

• G contains a path of length 2k.

If treedepth of a graph G is at least Ck3 and its treewidth is less than k, then
(√

td(G)/(tw(G) + 1)
)
≥

√
Ck and that is why second part of that Corollary follows from the first part. In other words, Corollary 1.1.5

improves the bound k5 log2 k of Kawarabayashi and Rossman [50] to k3. We remark here that there are
subcubic trees of treedepth Ω(h2) that contain neither a path of length 2h nor a subdivision of a full binary
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tree of depth h,2 and thus the quadratic loss between the statements of Theorem 1.1.4 and Corollary 1.1.5
is necessary.

Inside the proof of Theorem 1.1.4 we make use of the following lemma that may be of independent
interest. This lemma is the main technical improvement upon the work of Kawarabayashi and Rossman [50].

Lemma 1.1.6. Every tree of treedepth d contains a subcubic subtree of treedepth at least log((1+
√

5)/2)
log(3) d.

Furthermore, such a subtree can be found in polynomial time.

Lemma 1.1.6, developed to prove Theorem 1.1.4, have some implications on the approximability of
treedepth. We combine it with the machinery of Kawarabayashi and Rossman [50] to improve upon
Lemma 1.1.2 as follows.

Theorem 1.1.7. Given a graph G, one can in polynomial time compute a treedepth decomposition of G of
width O(td(G) · tw(G) log3/2 tw(G)).

The result of Kawarabayashi and Rossman [50] has been also an important ingredient in the study of
linear colorings [57]. A coloring α : V (G)→ Z of a graph G is a linear coloring if for every (not necessarily
induced) path P in G there exists a vertex v ∈ V (P ) of unique color α(v) on P . Clearly, each centered
coloring is a linear coloring, but the minimum number of colors needed for a linear coloring can be much
smaller than the treedepth of a graph. Kun et al. [57] provided a polynomial relation between the treedepth
and the minimum number of colors in a linear coloring; by replacing their usage of [50] by our result (and
using an improved bound for the excluded grid theorem [21]) we obtain an improved bound.

Theorem 1.1.8. There exists a polynomial p such that for every integer k and graph G, if the treedepth of
G is at least k19p(log k), then every linear coloring of G requires at least k colors.

The previous bound of [57] is k190p(log k).

Detailed Chapter 4 results — obstructions for small treedepth. Chapter 4 is based on [18, 19].
The main result of it is the following theorem.

Theorem 1.1.9. If G is a minimal obstruction for treedepth d, then the vertex count of G is at most

(d+ 1) ·
(
(d+ 1)((d+ 1)2 + 1)

)d+1 − 1

(d+ 1)((d+ 1)2 + 1)− 1
∈ dO(d).

It improves upon the work of Dvorak et al. [31], where doubly exponential bound was proven. Let us
point out that this improvement will turn out to be crucial in designing the algorithm from Chapter 5.

Detailed Chapter 5 results — exact decomposition in polynomial space. Chapter 5 is based on
[61]. Coming back to the exact computation of treedepth, the exact algorithm of Reidl et al. [76] uses not
only exponential time (in the treedepth), but also exponential space. This would make it a space bottleneck
when applied in combination with any of the polynomial-space algorithms developed in [38, 73, 47, 64, 71].
One can make a tradeoff between this algorithm and the trivial O(ntd(G)) algorithm computing treedepth
directly from the definition to get polynomial space. Precisely, if td(G) ≤

√
log(n) the first algorithm uses

polynomial space and if td(G) ≥
√

log(n) the second runs in 2O(td(G)3) time. This tradeoff leads to significant
deterioration of the running time. In this thesis we bridge those issues by proving the following result.

Theorem 1.1.10. There is an algorithm that given an n-vertex graph G and an integer d, either constructs
an elimination forest of G of depth at most d, or concludes that the treedepth of G is larger than d. The
algorithm runs in 2O(d2) · nO(1) time and uses nO(1) space.

The space and time complexities can be improved to dO(1) · n and expected 2O(d2) · n, respectively, at the
cost of allowing randomization: the algorithm may return a false negative with probability at most 1

c·nc , where
c is any constant fixed a priori; there are no false positives.

2It is straightforward to deduce such an example from the proof of [50]. We provide such an example in Section 3.5.
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Thus, the randomized variant of the algorithm of Theorem 1.1.10 has the same time complexity as the
algorithm of Reidl et al. [76], but uses polynomial space. However, the algorithm of Reidl et al. [76] is
deterministic, contrary to ours. Note that apart from possible false negatives, the bound on the running
time is only in expectation and not worst-case (in other words, our algorithm is both Monte Carlo and Las
Vegas). However, one can turn this into a worst-case bound at the cost of increasing the probability of false
negatives to 1/2 by forcefully terminating the execution if the algorithm runs for twice as long as expected.

Simultaneously achieving time complexity linear in n and polynomial space complexity is a property that
is desired from an algorithm for computing the treedepth of a graph. While many of the polynomial-space
FPT algorithms working on elimination forests do not have time complexity linear in n due to the usage of
various algebraic techniques, the simplest ones that exploit only recursion — like the ones for 3-Coloring
or Independent Set considered in [73] — can be easily implemented to run in time 2O(d) · n and space
dO(1) · n. Thus, the randomized variant of the algorithm of Theorem 1.1.10 would neither be a bottleneck
from the point of view of space complexity nor from the point of view of the dependency of the running time
on n. Admittedly, the parametric factor in the runtime of our algorithm is 2O(d2), as compared to 2O(d) in
most of the aforementioned polynomial-space FPT algorithms working on elimination forests; this brings us
back to the open problem about constant-factor approximation for treedepth running in time 2O(td(G)) ·nO(1)

raised in [26].
Let us briefly discuss the techniques behind the proof of Theorem 1.1.10. The algorithm of Reidl et al. [76]

starts by approximating the treewidth of the graph (which is upper bounded by the treedepth) and tries
to construct an elimination forest of depth at most d by bottom-up dynamic programming on the obtained
tree decomposition. By applying the iterative compression technique, we may instead assume that we are
supplied with an elimination forest of depth at most d+ 1, and the task is to construct one of depth at most
d.

Applying now the approach of Reidl et al. [76] directly (that is, after a suitable adjustment from the setting
of tree decompositions to the setting of elimination forests) would not give an algorithm with polynomial
space complexity. The reason is that their dynamic programming procedure is quite involved and in particular
keeps track of certain disjointness conditions; this is a feature that is notoriously difficult to achieve using
only polynomial space. Therefore, we resort to the technique of inclusion-exclusion branching, used in
previous polynomial-space algorithms working on elimination forests; see [38, 73] for basic applications of
this approach. In a nutshell, the idea is to count more general objects where the disjointness contraints
are relaxed, and to use inclusion-exclusion at each step of the computation to make sure that objects not
satisfying the constraints eventually cancel out. We note that while the application of inclusion-exclusion
branching was rather simple in [38, 73], in our case it poses a considerable technical challenge. In particular,
along the way we do not count single values, but rather polynomials with one formal variable that keeps track
of how much the disjointness constraints are violated. In the exposition layer, our application of inclusion-
exclusion branching mostly follows the algorithm for Dominating Set of Pilipczuk and Wrochna [73].

In this way, we can count the number of elimination forests3 of depth at most d in time 2O(d2) · nO(1)

and using polynomial space. So in particular, we can decide whether there exists at least one such elim-
ination forest. Such a decision algorithm can be quite easily turned into a construction algorithm using
self-reducibility of the problem. This establishes the first part of Theorem 1.1.10.

As for the second part — the randomized linear-time FPT algorithm using polynomial space — there
are several obstacles that need to be overcome. First, there is a multiplicative factor n in the running time
coming from the iterative compression scheme. We mitigate this issue by replacing iterative compression
with the recursive contraction scheme used by Bodlaender in his linear-time FPT algorithm to compute the
treewidth of a graph [6]. Second, when using self-reducibility, we may apply the decision procedure n times,
each taking at least linear time. This is replaced by an approach based on color coding, whose correctness
relies on the fact that in a connected graph of treedepth at most d there are at most dO(d) different feasible
candidates for the root of an optimum-depth elimination tree [18, 19]. Finally, in the counting procedure we
may operate on numbers of bitsize as large as polynomial in n. This is resolved by hashing them modulo a
random prime of magnitude Θ(log n), so that we may assume that arithmetic operations take unit time.

3Formally, we count only elimination forests satisfying some basic connectivity property, which we call sensibility.
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We remark that it is relatively rare that a polynomial-space algorithm based on algebraic techniques can
be also implemented so that it runs in time linear in the input size. Therefore, we find it interesting and
somewhat surprising that this can be achieved for the problem of computing the treedepth of a graph, which
combinatorially is rather involved.

1.2 Pathwidth results
In their already mentioned paper [50], Kawarabayashi and Rossman, apart from asking whether their bound
of k5 log2 k can be improved, also asked whether analogous result can be proven for pathwidth. More
specifically, they stated the following conjecture:

Conjecture 1.2.1. There is an absolute constant c such that every graph with pathwidth Ω(kc) has treewidth
at least k, or contains a subdivision of a complete binary tree of height k.

We prove that conjecture for the best possible value of c, which equals 2, by proving the following theorem.

Theorem 1.2.2. Every graph with treewidth t − 1 has pathwidth at most th + 1 or contains a subdivision
of a complete binary tree of height h+ 1.

The bound th+ 1 is best possible up to a multiplicative constant (see Section 6.3).
We remark that Wood [83] also conjectured a statement of this type, with a bound of the form f(t) ·h on

the pathwidth for some function f (see also [59, Lemma 6] and [48, Conjecture 6.4.1]). Both Theorem 1.2.2
and the treedepth results [51, 26] are a continuation of a line of research on excluded minor characterizations
of graphs with small values of their corresponding width parameters (treewidth/pathwidth/treedepth), which
was started by the seminal Grid Minor Theorem [77] and its improved polynomial versions [17, 22].

Since the complete binary tree of height h has pathwidth dh/2e [81], any subdivision of it (as a subgraph)
can be used to certify that the pathwidth of a given graph is large. The following key concept provides
a stronger certificate of large pathwidth, more suitable for our purposes. Let (Th)∞h=0 be a sequence of
classes of graphs defined inductively as follows: T0 is the class of all connected graphs, and Th+1 is the
class of connected graphs G that contain three pairwise disjoint sets of vertices V1, V2, and V3 such that
G[V1], G[V2], G[V3] ∈ Th and any two of V1, V2, and V3 can be connected in G by a path avoiding the third
one. Every graph in Th has the following properties:

• it has pathwidth at least h (see Lemma 6.1.1), and

• it contains a subdivision of a complete binary tree of height h (see Lemma 6.1.2).

Theorem 1.2.2 has a short and simple proof (see Section 6.2). It proceeds by showing that every connected
graph with treewidth t− 1 has pathwidth at most th+ 1 or belongs to Th+1. The stronger assertion allows
us to apply induction on h. Unfortunately, this proof is not algorithmic.

However, Theorem 1.2.2 provides a key insight for the algorithm that approximates pathwidth in graphs
of small treewidth in polynomial time.

Theorem 1.2.3. For every connected graph G with treewidth at most t− 1, there is an integer h ≥ 0 such
that G ∈ Th and G has pathwidth at most th+1. Moreover, there is a polynomial-time algorithm to compute
such an integer h, a path decomposition of G of width at most th+1, and a subdivision of a complete binary
tree of height h in G given a tree decomposition of G of width at most t− 1.

Since every graph in Th has pathwidth at least h, combining Theorem 1.2.3 (applied to every connected
component of the input graph) with the aforementioned approximation algorithm for treewidth of Feige et
al. [36], one can obtain the following approximation algorithm for pathwidth.

Corollary 1.2.4. There is a polynomial-time algorithm which, given a graph G of treewidth t and pathwidth
p, computes a path decomposition of G of width O(t

√
log t · p). Moreover, if a tree decomposition of G of

width t′ is also given in the input, the resulting path decomposition has width at most (t′ + 1)p+ 1.

However, Theorem 1.2.3 is significantly more complicated and was omitted from this dissertation.
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1.3 Maximum average degree results

The maximum average degree (abbreviated as mad) of a graph is a heavily studied notion. It has to be
admitted that it is less of a “width notion” as opposed to treedepth, treewidth and pathwidth that were
discussed earlier and does not provide decompositions that could be used in FPT algorithms, yet it is still
an interesting graph parameter to research that leads to variety of structural results about partitioning the
vertex set of a graph into subsets fulfilling some specific conditions. Multiple results show that a lower or
upper bound on mad implies the existence of such partitions, e.g., [10, 20, 24, 29, 54]. Another class of
results considers edge partitions, including [3, 12, 33, 44, 46, 53]. In these directions, particular attention
has been paid to planar graphs, where, due to the inequality (mad(G)− 2)(g(G)− 2) < 4, an upper bound
on mad can be inferred from a lower bound on the girth.

A graph parameter f(G) is called partitionable [8, 58, 82] if for every undirected simple graph G and
positive real numbers a and b such that f(G) < a+ b, the vertex set V (G) can be partitioned into A and B
so that f(G[A]) < a and f(G[B]) < b. It is quite simple to prove that degeneracy [60], maximum degree [58]
and treewidth [28] are all partitionable parameters. Hendrey, Norin and Wood asked whether mad is also
partitionable as part of the open problems for Barbados workshop [1, Problem #12]. Such a result would
agree exactly with or even improve many existing results, for example, the ones mentioned in [29, 54]. We
answer this question positively for cases a = 1 and a = 2. It is a consequence of a following theorem which
is the main result of this paper.

Theorem 1.3.1. For every undirected simple graph G and a positive integer k such that mad(G) ≥ k there
exists S ⊆ V (G) such that G[S] is (k− 1)-degenerate and mad(G− S) ≤ mad(G)− k. Moreover such S can
be computed in polynomial time.

Up to our knowledge this is the first theorem of a kind where we are given a graph with bounded value
of its mad where we partition its vertex set into some parts so that their values of mad are smaller, however
they need not be bounded by absolute constant. This is opposed to all results where every resulting part
induces a forest or is an independent set or has maximum degree 1, etc.

Our results can be applied as a tool for directly deriving many results for some specific sparse graph
classes, for example planar graphs with constraints on girth. It seems that our results do not show as
much expressive power as it is possible to get on such restrictive graph classes (where arguments specifically
adjusted to the researched restricted graph classes can be used), which is a price for deriving them from
a more general theorem. However, our results can be seen as a nice way of unifying these results and there
are cases where using our results improves the state of the art.

Our results imply a positive answer for the open problem presented in [32] (Problem 2 from the final
remarks), which implies a subexponential bound on the diameter of reconfiguration graphs of (k + 2)-
colourings for graphs G with maximum average degree strictly less than k + 1. However, this bound has
already been improved in [34] to a polynomial bound depending on the value of mad(G) in a slightly less
general setting. Nevertheless, we are able to get a novel analogous result for reconfiguration graphs of H-
colourings, in particular for circular colourings. This line of research is motivated by Cereceda’s conjecture
[15] that states that reconfiguration graphs of (k + 2)-colourings for k-degenerate graphs have a quadratic
diameter. Its polynomial version was proved in [13].

1.4 Covered papers and organization of the Thesis

Results included in this dissertation come from the following papers:

• Improved Bounds for the Excluded-Minor Approximation of Treedepth [26], a joint work with Woj-
ciech Czerwiński and Marcin Pilipczuk, published in SIAM Journal on Discrete Mathematics, Volume
35. This paper covers excluded minor theorem for and polynomial time approximation algorithm for
treedepth, which are presented in Chapter 3.
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• Efficient fully dynamic elimination forests with applications to detecting long paths and cycles. [18, 19],
a joint work with Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny
Hermelin, Michał Pilipczuk, Marcin Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski and Anna Zych-
Pawlewicz, presented at Symposium on Discrete Algorithms 2021. The result that is included in this
dissertation from this paper is the improved bound on sizes of minimal obstructions for small treedepth.
It is presented in Chapter 4.

• Computing Treedepth in Polynomial Space and Linear FPT Time [62, 61], a joint work with Michał
Pilipczuk and Marcin Smulewicz, presented on European Symposia on Algorithms 2022. This papers
shows the polynomial space exact algorithm for computing treedepth, which is presented in Chapter
5.

• Approximating Pathwidth for Graphs of Small Treewidth [41], a joint work with Carla Groenland,
Gwenaël Joret and Bartosz Walczak, published in ACM Transactions on Algorithms. This paper
proves the excluded minor theorem for pathwidth, which is presented in Chapter 6. It also shows the
polynomial time approximation algorithm for pathwidth, which is not present in this dissertation.

• Decreasing the Maximum Average Degree by Deleting an Independent Set or a d-Degenerate Subgraph
[63], a joint work with Marcin Smulewicz, published in The Electronic Journal of Combinatorics Volume
29, Issue 1 (2022). This paper covers all mentioned results related to maximum average degree, which
are presented in Chapter 7.
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Chapter 2

Preliminaries

2.1 Graph notions

All graphs in this paper are finite and simple (i.e. with no loops on vertices or multiple edges with the same
endpoints). All proven theorems are about undirected graphs, however some directed graphs may show up
in their proofs.

An undirected edge between vertices u and v will be denoted as uv. A directed edge from u to v will be
denoted as −→uv.

If G is a graph and A is a subset of its vertices, then by G[A] we denote the subgraph of G induced
on vertices of A. The length of the shortest cycle in a graph G is called girth and will be denoted as
g(G). If G is a forest we set that g(G) = ∞. The maximum degree of a vertex in a graph is denoted
∆(G). The set of neighbours of a vertex v is denoted by NG(v) (or N(v) if clear from the context) and the
closed neighbourhood of v, that is NG(v) ∪ {v} is denoted by NG[v]. For Y ⊆ V (G) we additionally denote
NG[Y ] :=

⋃
v∈Y NG[v]. By G we denote the complement of G, that is the graph on the same set of vertices,

where for u, v ∈ V (G), such that u 6= v, we have uv ∈ E(G)⇔ uv 6∈ E(G).
We need a few basic notions concerning tree decompositions and treewidth. Recall that a tree decompo-

sition of a graph G is a pair (T, β) where T is a rooted tree and β : V (T ) → 2V (G) is such that for every
v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} induces a connected nonempty subtree of T and for every uv ∈ E(G)
there exists t ∈ V (T ) with u, v ∈ β(t). The width of a tree decomposition (T, β) is maxt∈V (T ) |β(t)| − 1 and
the treewidth of a graph is the minimum possible width of its tree decomposition.

A bramble in a graph G is a family B of connected subgraphs of G such that for every B1, B2 ∈ B, either
B1 and B2 share a vertex or there is an edge of G with one endpoint in B1 and one endpoint in B2. Standard
arguments (see e.g. [27]) show the following:

Lemma 2.1.1. Let G be a graph, (T, β) be a tree decomposition of G, and let B be a bramble in G. Then
there exists t ∈ V (T ) such that for every B ∈ B it holds that β(t) ∩ V (B) 6= ∅.

Consider a rooted forest F . By AncF we denote the ancestor/descendant relation in F : for u, v ∈ V (F ),
AncF (u, v) holds if and only if u is an ancestor of v or v is an ancestor of u in F . We assume that a vertex
is an ancestor of itself, so in particular AncF (u, u) is always true. We also use the following notation. For
u ∈ V (F ), by tailF [u] we denote the set of all ancestors of u (including u) and by treeF [u] we denote the
set of all descendants of u, including u. Further, let tailF (u) = tailF [u] \ {u}, treeF (u) = treeF [u] \ {u}, and
compF [u] = tailF [u]∪treeF [u]. Note that v ∈ compF [u] if and only if AncF (u, v) holds. By chldF (u) we denote
the set of children of u in F , and by depthF (u) we denote the depth of u in F , that is, depthF (u) = |tailF [u]|
(in particular, roots have depth one). The depth (or a height) of a rooted forest F is the maximum depthF
among its vertices. For a set of vertices A ⊆ V (F ), by clF (A) =

⋃
u∈A tailF [u] we denote the ancestor closure

of A. A prefix of a rooted forest F is a rooted forest induced by some ancestor-closed set A ⊆ V (F ); that is,
it is the forest on A with the parent-child relation inherited from F .
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Definition 2.1.2. An elimination forest of a graph G is a rooted forest F on the same set of vertices as G
such that for every edge uv ∈ E(G), we have that AncF (u, v) holds. The treedepth of a graph G is the least
possible depth of an elimination forest of G.

Note that an elimination forest of a connected graph must be connected as well, so in this case we
may speak about an elimination tree. Sometimes, instead of identifying V (G) and V (F ), we treat them as
disjoint sets and additionally provide a bijective mapping φ : V (G) → V (F ) such that uv ∈ E(G) entails
AncF (φ(u), φ(v)). In such case we consider the pair (F, φ) to be an elimination forest of G. This will be
always clear from the context. More generally, for B ⊆ V (G) and a rooted forest F , we shall say that a
mapping φ : B → V (F ) respects edges if uv ∈ E(G) entails AncF (u, v) for all u, v ∈ B. In this notation,
(F, φ) is an elimination forest of G if and only if φ is a bijection from V (G) to V (F ) that respects edges on
V (G).

Moreover, we mention a few basic properties of treedepth that we are going to use:

1. If H is a subgraph of G then td(H) ≤ td(G)

2. td(Pk) = dlog2(k + 1)e, where Pk is a path on k vertices

3. td(Bk) = k, where Bk is a complete binary tree where every path from root to leaf has k vertices

4. td(G) =


0, if |V (G)| = 0

minv∈V (G) 1 + td(G \ v)), if G is connected
maxC∈cc(G) td(G) otherwise (cc(G) is a set of connected components of G)

5. If H1 and H2 are two subgraphs of G such that td(H1) = td(H2), V (H1) ∩ V (H2) = ∅ and both of
them are contained in one connected component of G, then td(G) > td(H1). That follows from the
recursive definition of a treedepth from previous property and the fact that for any v ∈ V (G) either
H1 or H2 is fully contained within some connected component of G \ v.

A complete binary tree of height h is a rooted tree in which every non-leaf node has two children and
every path from the root to a leaf has h edges. Such a tree has 2h+1 − 1 nodes. A complete ternary tree
of height h is defined analogously but with the requirement that every non-leaf node has three children. A
subdivision of a tree T is a tree obtained from T by replacing each edge uv with some path connecting u and
v whose internal nodes are new nodes private to that path.

The maximum average degree of a given graph G is defined as follows:

mad(G) := max
H⊆G,H 6=∅

2|E(H)|
|V (H)|

,

where E(H) and V (H) are respectively the set of edges in H and the set of vertices of H. We assume that
mad of a graph with an empty vertex set is −∞.

We say that undirected graph G is k-degenerate if each of its subgraphs contains a vertex of degree at
most k. Degeneracy of a graph is the smallest value of k such that this graph is k-degenerate.

Let us note that class of 0-degenerate graphs is exactly the same class of graphs as graphs with mad(G) < 1,
because both are just edgeless graphs. Moreover class of 1-degenerate graphs is exactly the same class of
graphs as graphs with mad(G) < 2, because both are just forests.

2.2 Other notation
The symbol logp stands for base-p logarithm and log stands for log2. We denote ϕ = 1+

√
5

2 ; note that ϕ is
chosen in a way so that ϕ2 = ϕ+ 1 and ϕ > 1.

For a function f : A→ B and a subset of the domain X ⊆ A, by f(X) we denote the image of f on X.
The image of f is denoted im(f) = f(A). For an element e outside of the domain and a value α, by f [e→ α]
we denote the extension of f obtained by additionally mapping e to α.

We denote the set {1, 2, . . . , k} as [k]. We assume the standard word RAM model of computation with
words of length log n, where n is the vertex count of the input graph.
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Chapter 3

Improved bounds for the excluded-minor
approximation of treedepth

In this Chapter we are going to prove a variety of results. The main one will be Theorem 1.1.4.

Theorem 1.1.4. Let G be a graph of treewidth tw(G) and treedepth td(G). Then there exists a subcubic
tree H that is a subgraph of G and is of treedepth at least

td(G)

tw(G) + 1
· log((1 +

√
5)/2)

log(3)
.

As a consequence, we will get the Corollary 1.1.5 that improves upon the result of Kawarabayashi and
Rossman [50].

Corollary 1.1.5. Let G be a graph of treewidth tw(G) and treedepth td(G). Then for some

h = Ω
(√

td(G)/(tw(G) + 1)
)

G contains either a simple path of length 2h or a subdivision of a full binary tree of depth h.
Consequently, there exists an absolute constant C such that for every integer k ≥ 1 and a graph G of

treedepth at least Ck3, either

• G has treewidth at least k,

• G contains a subdivision of a full binary tree of depth k as a subgraph, or

• G contains a path of length 2k.

The insight behind these theorems will let us to improve the best known approximation ratio for treedepth
achievable in polynomial time, what is precisely stated within Theorem 1.1.7.

Theorem 1.1.7. Given a graph G, one can in polynomial time compute a treedepth decomposition of G of
width O(td(G) · tw(G) log3/2 tw(G)).

Along the way, we are also going to prove a lemma about treedepth of trees that could be of independent
interest, namely Lemma 1.1.6.

Lemma 1.1.6. Every tree of treedepth d contains a subcubic subtree of treedepth at least log((1+
√

5)/2)
log(3) d.

Furthermore, such a subtree can be found in polynomial time.
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We are also going to show a theorem relating treedepth to linear colorings, improving upon the best
previous bound of k190p(log k) [57].

Theorem 1.1.8. There exists a polynomial p such that for every integer k and graph G, if the treedepth of
G is at least k19p(log k), then every linear coloring of G requires at least k colors.

3.1 Subcubic subtrees of trees of large treedepth
This section focuses on proving Lemma 1.1.6.

Let us recall that vertex ranking is any function α : V (G) → Z such that in every connected subgraph
of G there is a unique vertex of maximum rank (value α(v)).

Proposition 3.1.1. Function α : V (G)→ Z is a valid vertex ranking if and only if there are no two distinct
vertices u and v such that α(u) = α(v) and for all internal vertices w of a path between u and v we have
α(w) < α(u).

Proof. For “⇒” direction, such path would be a connected subgraph violating condition for vertex ranking.
For “⇐” direction, if we have a connected subgraph H of G with more than one occurrence of maximum value
of a rank, then we can take path between closest pair of them to get path with mentioned properties.

Schäffer [80] proved that there is a linear time algorithm for finding a vertex ranking with minimum
number of colors of a tree T . We follow [57] for a good description of its properties.

In original Schäffer’s algorithm ranks are starting from 1, however for the ease of exposition let us assume
that ranks are starting from 0. That is, the algorithm constructs a vertex ranking α : V (T ) → {0, 1, 2, . . .}
trying to minimize the maximum value attained by α. Assume that T is rooted in an arbitrary vertex and
for every v ∈ V (T ) let Tv be the subtree rooted at v.

Of central importance to Schäffer’s algorithm are what we will refer to as rank lists. For a rooted tree T ,
the rank list L(T ) for vertex ranking α consists of these ranks i for which there exists a path P starting from
the root and ending in a vertex v with α(v) = i such that for every u ∈ V (P ) \ {v} we have α(u) < α(v),
that is, v is the unique vertex of maximum rank on P . We will call such vertices visible from v, where
this name stems from logic that vertices with bigger ranks overshadow vertices with smaller ranks that are
behind them. More formally:

Definition 3.1.2. For a vertex ranking α of tree T , the rank list of T , denoted L(T ), can be defined
recursively as L(T ) = L(T \ Tv) ∪ {α(v)} where v is the vertex of maximum rank in T .

Schäffer’s algorithm arbitrarily roots T and builds the ranking from the leaves to the root of T , computing
the rank of each vertex from the rank lists of each of its children. For brevity, we denote L(v) = L(Tv) for
every v in T .

Proposition 3.1.3 ([80], notation follows [57]). Let α be a vertex ranking of T produced by Schäffer’s
algorithm and let v ∈ T be a vertex with children u1, . . . , ul. If x is the largest integer appearing on rank
lists of at least two children of v (or −1 if all such rank lists are pairwise disjoint) then α(v) is the smallest
integer satisfying α(v) > x and α(v) 6∈

⋃l
i=1 L(ui).

This proposition constitutes a core part of Schäffer’s algorithm which decides values α(v) greedily in
bottom-up fashion. Condition that α(v) /∈

⋃l
i=1 L(ui) must hold, because otherwise we would have a

path from v to some vertex visible from v with the same rank, violating condition from Proposition 3.1.1.
Condition that α(v) > x must hold, because otherwise we would have path between two vertices visible from
v which have the same rank, violating condition from Proposition 3.1.1, and v is the only internal vertex of
that path left that could prevent this. Such conditions must be fulfilled for any vertex ranking and Schäffer
proves in [80] that if we always greedily assign to the current vertex the minimum value of rank fulfilling
these conditions, we will get optimal vertex ranking. From now on, we regard to α as specific vertex ranking
which is produced by Schäffer’s algorithm.
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For a node v ∈ V (T ), and vertex ranking α, the following potential is pivotal to the analysis of Schäffer’s
algorithm. Let l0 > l1 > . . . > l|L(v)|−1 be the elements of L(v) sorted in decreasing order.

ζ(v) =
∑

r∈L(v)

3r =

|L(v)|−1∑
i=0

3li .

When we write ζ(T ) for some tree T we refer to ζ(s) where s is a root of T . For our purposes, we will also
use a skewed version of potential function with a different base

σ(v) =

|L(v)|−1∑
i=0

ϕli−i,

where again l0 > l1 > . . . > l|L(v)|−1 are elements of L(v) sorted in decreasing order. Throughout this
section, when focusing on one node v ∈ V (T ), we use notation that li is i−th element of set L(v) when
sorted in decreasing order and when 0−based indexed.

Let us start with proving following two bounds that estimate td(T ) in terms of ζ(T ) and σ(T ).

Claim 3.1.4. logϕ(σ(T )) ≥ td(T )− 1.

Proof. We know that L(T ) is nonempty and its biggest element is equal to td(T ) − 1 (we need to subtract
one because we use nonnegative numbers as ranks, not positive). Therefore we have

σ(T ) =

|L(T )|−1∑
i=0

ϕli−i ≥ ϕl0 = ϕtd(T )−1.

Hence, logϕ(σ(T )) ≥ td(T )− 1, as desired. y

Claim 3.1.5. log3(ζ(T )) + log3(2) < td(T ).

Proof. We have that

ζ(T ) =
∑

r∈L(v)

3r ≤
td(T )−1∑
r=0

3r =
3td(T ) − 1

2
,

2ζ(T ) ≤ 3td(T ) − 1 < 3td(T )

log3(2) + log3(ζ(T )) < td(T ).

y

We are ready to prove Lemma 1.1.6. Given tree T we want to produce a subcubic (i.e., maximum degree
at most 3) tree S which is a subtree of T and that fulfills td(S) > td(T ) log3(ϕ).

Let us start our algorithm by arbitrary rooting T and computing rank lists using Schäffer’s algorithm.
Then for every vertex v ∈ T we define C(v) as a set of two children of v that have the biggest value of ζ
in case v has at least two children, or all children otherwise. Let us now define forest F whose vertex set is
the same as vertex set of T where for every v we put edges between v and all elements of C(v). Clearly this
is a forest consisting of subcubic trees which are subtrees of T (where subtree is understood as subgraph,
not necessarily as some vertex t along with all its descendants in a rooted tree). Let S be a tree of this
forest containing root of T . We claim that S is that subcubic subtree of T we are looking for. Note that
computing F and thus S can be trivially done in polynomial time. Hence, we are left with proving that
td(S) > td(T ) log3(ϕ).

Let us root every tree of F in a vertex that was closest to root of T in T . Then compute rank lists for
these trees using Schäffer’s algorithm. So now, for every vertex we have two rank lists, one for T and one
for F . Let us now denote these second ranklists as L̃(v) for v ∈ V (T ) and let us define function ζ̃ which will
be similar potential function as ζ, but operating on rank lists L̃(v) instead of L(v). Following claim will be
crucial.
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Claim 3.1.6. For every v ∈ V (T ) it holds that ζ̃(v) ≥ σ(v).

We first verify that Claim 3.1.6 implies Lemma 1.1.6.

Proof of Lemma 1.1.6. Using also Claims 3.1.5 and 3.1.4 we infer that

td(S) > log3(ζ̃(S)) + log3(2) by Claim 3.1.5 for S
≥ log3(σ(T )) + log3(2) by Claim 3.1.6
= logϕ(σ(T )) · log3(ϕ) + log3(2) logarithm base change

≥ (td(T )− 1) · log3(ϕ) + log3(2) by Claim 3.1.4 for T
= td(T ) · log3(ϕ)− log3(ϕ) + log3(2) > td(T ) · log3(ϕ).

Thus it remains to prove Claim 3.1.6. To this end, we prove two auxiliary inequalities.

Claim 3.1.7. For every v ∈ V (T ) it holds that ζ̃(v) ≥ 1 +
∑
s∈C(v) ζ̃(s)

Proof. We express every ζ̃(x) for x ∈ {v} ∪ C(v) as a sum of powers of 3 and count how many times each
power occurs on both sides of this claimed inequality. Consider a summand 3c. If c > α(v) then, by the
choice of α(v), 3c appears at most once on the right side and if it appears there, then it appears on the left
side as well, so contributions of summands of form 3c for c > α(v) to both sides are equal. The summand
3α(v) appears once on the left side and does not appear on the right side. For c < α(v), the summands of
form 3c appear at most twice in

∑
s∈C(v) ζ̃(s), so their contribution to right side can be bounded from above

by
∑α(v)−1
c=0 2 · 3c = 3α(v) − 1, so in fact 3α(v) from the left side contributes at least as much as remaining

summands from the right side. This finishes the proof of the claim. y

Claim 3.1.8. For every v ∈ V (T ) it holds that σ(v) ≤ 1 +
∑
s∈C(v) σ(s)

Proof. Recall that by the definition C(v) is a set of two children of v in T with the biggest values of ζ or
a set of all children of v in case it has less than two of them. Observe that having bigger value of ζ(v) is
another way of expressing having the set L(v) bigger lexicographically when sorted in decreasing order.

If v is a leaf then C(v) is empty and σ(v) = 1, so the inequality is obvious. Henceforth we focus on a
vertex v that is not a leaf. In our proof following equation will come handy:

ϕ =

∞∑
i=0

ϕ−2i

It holds since
∑∞
i=0 ϕ

−2i = 1
1−ϕ−2 = ϕ2

ϕ2−1 = ϕ2

ϕ = ϕ.
Let us now analyze L(v). It consists of some prefix P of values that appeared exactly once in children

of v, then α(v) and then nothing (when enumerated from the biggest to the smallest). Let us now denote
by Ai intersection of L(ui) and P , where ui is i−th child of v when sorted in nonincreasing order by their
values ζ(ui) (1-based). We distinguish two cases:

Case 1: A2 is nonempty. If A2 is nonempty then in particular it means that v has at least two children.
Let us denote the biggest element of L(u2) by d. We have that d ∈ P , but d is not the biggest element of P .
Its contribution to σ(u2) is ϕd, however its contribution to σ(v) is at most ϕd−1 (because of the skew and
since d is not the biggest element of P ). Contribution to σ(v) of elements smaller than d can be bounded
from above by ϕd−3 + ϕd−5 + . . .. We know that d = lj for some j, where j ≥ 1 and L(v) consists of
elements l0 > l1 > . . . > l|L(v)−1|. We have that lk ∈ L(u1) for k < j and that lj ≥ li + (i− j) for i ≥ j, so
li − i ≤ lj − j − 2(i− j) = d− j − 2(i− j).
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We can deduce that

σ(v) =

|L(v)|−1∑
i=0

ϕli−i =

j−1∑
i=0

ϕli−i +

|L(v)|−1∑
i=j

ϕli−i ≤ σ(u1) +

|L(v)|−1∑
i=j

ϕd−j−2(i−j)

≤ σ(u1) + ϕd−j
∞∑
i=j

ϕ−2(i−j) = σ(u1) + ϕd−j
∞∑
i=0

ϕ−2i = σ(u1) + ϕd−j+1

≤ σ(u1) + ϕd ≤ σ(u1) + σ(u2) < 1 + σ(u1) + σ(u2),

which is what we wanted to prove.

Case 2: A2 is empty. Let us now introduce a few variables:

• d - the biggest integer number smaller than α(v) that is not an element of L(u1).
We know that elements from d+ 1 to α(v)− 1 belong to L(u1).

• k - shorthand for number of these elements (which is equal to α(v)− 1− d).
k can be zero, but cannot be negative.

• g - the number of elements of L(v) that are bigger than α(v).

Then from the definition of α(v) either

• d = −1; or

• v has at least two children and L(u2) contains a number that is at least d.

Let us now argue that 1+
∑
s∈C(v) σ(s) ≥ σ(u1)+ϕd. We know that

∑
s∈C(v) is either σ(u1) or σ(u1)+σ(u2),

depending on whether v has only one child or more. If d = −1 then 1 ≥ ϕd and stated inequality holds. If
d 6= −1 then u2 exists and σ(u2) ≥ ϕd.

Let us now argue that k > 0 or g > 0 and therefore k+ g ≥ 1. If k = g = 0 then d = α(v)− 1 and L(u1)
cannot contain elements bigger then α(v) (because g = 0), cannot contain α(v) (from the definition of α(v))
and cannot contain α(v) − 1 (since d = α(v) − 1), so its biggest element is at most d − 1. If d = −1 then
it means that v is a leaf, but we already assumed it is not one. However, if v has at least two children and
L(u2) contains a number that is at least d, then it contradicts the assumption that ζ(u1) ≥ ζ(u2). So indeed
it holds that k > 0 or g > 0 and therefore k + g ≥ 1.

We have that

σ(v)− σ(u1) ≤ ϕα(v)−g − (ϕα(v)−g−1 + ϕα(v)−g−3 + . . .+ ϕα(v)−g−2k+1),

which is because summands coming from numbers bigger than α(v) in L(v) and L(u1) cancel out (A2 is empty,
so all elements of L(v) different than α(v) come from L(u1)) and new rank α(v) contributes ϕα(v)−g to σ(v)
whereas L(u1) contains numbers from d + 1 up to α(v) − 1 and their contribution to σ(u1) is ϕα(v)−g−1 +
ϕα(v)−g−3 + . . .+ ϕα(v)−g−2k+1.
We conclude that σ(v)− σ(u1) ≤ ϕ−g(ϕα(v) − (ϕα(v)−1 + ϕα(v)−3 + . . .+ ϕα(v)−2k+1)).
On the other hand since ϕ2 = ϕ+ 1 we have that

ϕα(v) = ϕα(v)−1 + ϕα(v)−2 = ϕα(v)−1 + ϕα(v)−3 + ϕα(v)−4 = . . . =

= (ϕα(v)−1 + ϕα(v)−3 + . . .+ ϕα(v)−2k+1) + ϕα(v)−2k.

Because of that we have

σ(v)− σ(u1) ≤ ϕ−g · ϕα(v)−2k = ϕα(v)−2k−g = ϕα(v)−(α(v)−1−d)−k−g = ϕd+1−(k+g) ≤ ϕd.

From that we conclude that σ(v) ≤ σ(u1) + ϕd ≤ 1 +
∑
s∈C(v) σ(s), what concludes proof of this claim. y

Now, having claims 3.1.8 and 3.1.7 proven, we can wrap our reasoning up. If v is a leaf then σ(v) =

ζ̃(v) = 1. If v is not a leaf then we know that σ(v) ≤ 1 +
∑
s∈C(v) σ(s) and ζ̃(v) ≥ 1 +

∑
s∈C(v) ζ̃(s), so by

straightforward induction we get that σ(v) ≤ ζ̃(v) for every v ∈ V (T ), as desired by Claim 3.1.6.
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3.2 Proof of Theorem 1.1.4

Theorem 1.1.4 is a direct corollary of Lemma 1.1.6 and the following statement.

Theorem 3.2.1. Let G be a graph and a, b be positive integers. If the treewidth of G is less than a and G
does not contain any tree of treedepth more than b as a subgraph, then the treedepth of G is at most ab.

Proof. We prove the fact by induction on b. For b = 1, if G contains no tree of treedepth 2 as a subgraph,
then G is edgeless, and its treedepth is at most 1 ≤ ab, as desired.

Assume now b > 1 and that the statement is true for all b′ < b. Without loss of generality assume that
G is connected, as otherwise we prove the treedepth bound for each connected component of G separatedly.

Let B be the family of all subgraphs of G that are trees of treedepth exactly b. The crucial observation
is the following.

Claim 3.2.2. For every two B1, B2 ∈ B, V (B1) ∩ V (B2) 6= ∅.

Proof. Assume the contrary and let B1, B2 ∈ B be two offending trees in B. Since b > 1, B1 and B2 are
nonempty. Let P be a shortest path from V (B1) and V (B2); it exists as G is connected. Define a subgraph
B of G being the union of B1, P , and B2. Since P is a shortest path from B1 to B2, B is a tree. However,
since the treedepth of B1 and B2 equals b, the treedepth of B is more than b, a contradiction. y

Claim 3.2.2 implies that B is a bramble in G.
Let (T, β) be a tree decomposition of G of minimum width. By Lemma 2.1.1, there exists a bag β(t) for

some t ∈ V (T ) that intersects V (B) for every B ∈ B. By the definition of B, every tree that is a subgraph
of G′ := G − β(t) has treedepth less than b. By the inductive hypothesis, the treedepth of G′ is at most
a · (b− 1). Thus, the treedepth of G is at most td(G′) + |β(t)| ≤ a · (b− 1) + a = ab, as desired.

3.3 Proof of Theorem 1.1.7

We consider a greedy tree decomposition of a connected graph G, as defined in [50]. A greedy tree decom-
position is a tree decomposition that can be also interpreted as a treedepth decomposition. More formally,
a tree decomposition (T, β) of a graph G is greedy if

1. V (T ) = V (G),

2. for every uv ∈ E(G), the nodes u and v in T are in ancestor-descendant relation in T , and

3. for every vertex u ∈ V (T ) and its child v there is some descendant w of v in T such that uw ∈ E(G).

For the proof of Theorem 1.1.7, without loss of generality we can assume that the input graph G is
connected. As in the proof of Lemma 1.1.2, we apply the polynomial-time approximation algorithm for
treewidth [36], to compute a tree decomposition (T0, β0) of G with O(n) nodes of T0 and |β(t)| ≤ τ for
every t ∈ V (T0) and some τ = O(tw(G)

√
log tw(G)). As discussed in [50], one can in polynomial time turn

(T0, β0) into a greedy tree decomposition (T, β) of G without increasing the maximum size of a bag, that is,
still |β(t)| ≤ τ for every t ∈ V (T ). We apply Lemma 1.1.1 to (T, β), returning a treedepth decomposition
of G of width at most τ · td(T ) = O(td(T )tw(G)

√
log tw(G)). To conclude the proof of Theorem 1.1.7, it

remains to bound the approximation ratio by proving that td(T ) = O(td(G) log tw(G)).
To this end, we prove the following lemma that combines Lemma 1.1.6 with the machinery

of Kawarabayashi and Rossmann [50].

Lemma 3.3.1. Let G be a connected graph, (T, β) be a greedy tree decomposition of G, and let τ ≥ 2 be
such that |β(t)| ≤ τ for every t ∈ V (T ). Then G contains a subcubic tree of treedepth Ω(td(T )/ log τ).
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To prove Lemma 3.3.1, we first apply Lemma 1.1.6 to tree T and obtain a subcubic tree S such that

td(S) ≥ td(T ) · log3(ϕ). (3.1)

Second, we apply the core part of the reasoning of Kawarabayashi and Rossman [50]. The construction
of Section 5 of [50] can be encapsulated in the following lemma.

Lemma 3.3.2 (Section 5 of [50]). Let (T, β) be a greedy tree decomposition of graph G and let τ =
maxt∈V (T ) |β(t)|. Then for every subcubic subtree S of T there exists a subtree F of G such that V (S) ⊆ V (F )
and the maximum degree of F is bounded by τ + 2.

By application of Lemma 3.3.2 to our decomposition (T, β) and subtree S we get a tree F in G, which
has large treedepth, as we show in a moment. To this end, we need the following simple bound on treedepth
of trees.

Lemma 3.3.3. For every tree H with maximum degree bounded by d ≥ 2 it holds that

logd |V (H)| ≤ td(H) ≤ 1 + log2 |V (H)|.

Proof. We use the following equivalent recursive definition of treedepth: Treedepth of an empty graph is 0,
treedepth of a disconnected graph equals the maximum of treedepth over its connected components, while
for nonempty connected graphs G we have td(G) = 1 + minv∈V (G) td(G− v).

For the lower bound, for k ≥ 1 let fd(k) be the maximum possible number of vertices of a tree of maximum
degree at most d and treedepth at most k. Clearly, fd(1) = 1. Since removing a single vertex from a tree of
maximum degree at most d results in at most d connected components, we have that

fd(k + 1) ≤ 1 + d · fd(k).

Consequently, we obtain by induction that

fd(k) ≤ dk − 1.

This proves the lower bound. For the upper bound, note that in every tree T there exists a vertex v ∈ V (T )
such that every connected component of T − {v} has at most |V (T )|/2 vertices. Consequently, if we define
g(n) to be the maximum possible treedepth of an n-vertex tree, then g(1) = 1 and we have that

g(n) ≤ 1 + g(bn/2c).

This proves the upper bound.

By (3.1) and Lemma 3.3.3 we get that |V (S)| ≥ 2td(T )·log3(ϕ)−1. This implies that also

|V (F )| ≥ 2td(T )·log3(ϕ)−1. (3.2)

As S is subcubic, by Lemma 3.3.2 we know that the maximum degree of F is bounded by τ+2. Therefore
Lemma 3.3.3 and (3.2) jointly imply that

td(F ) ≥ log(τ+2) 2td(T )·log3(ϕ)−1 ≥ td(T ) · log3(ϕ)− 1

log(τ + 2)
= Ω(td(T )/ log τ). (3.3)

Here, the last inequality follows from the assumption τ ≥ 2.
As tree F is not necessarily subcubic, we apply one more time Lemma 1.1.6 and get a subcubic subtree

H of F such that
td(H) ≥ td(F ) · log3(ϕ) = Ω(td(T )/ log τ). (3.4)

which finishes the proof of Lemma 3.3.1.

With Lemma 3.3.1 in hand, we are ready to conlude the proof of Theorem 1.1.7. Recall that it suffices
to prove td(T ) = O(td(G) log tw(G)).

Lemma 3.3.1 asserts that G contains a subcubic tree H of treedepth Ω(td(T )/ log τ). Therefore td(T ) =
O(td(H) log τ) = O(td(G) log tw(G)) and thus the width of the computed treedepth decomposition is
O(td(G)tw(G) log3/2 tw(G)). This finishes the proof of Theorem 1.1.7.
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3.4 Proof of Theorem 1.1.8

Here we show how to assemble the proof of Theorem 1.1.8 from Theorem 1.1.4, a number of intermediate
results of [57], and an improved excluded grid theorem due to Chuzhoy and Tan [21]:

Theorem 3.4.1 ([21]). There exists a polynomial pGMT such that for every integer k if a graph G has
treewidth at least k9pGMT(log k) then G contains a k × k grid as a minor.

The following two results were proven in [57].

Lemma 3.4.2 ([57]). There exists a constant cgrid > 0 such that if a graph G contains a k × k grid as a
minor, then every linear coloring of G requires cgrid ·

√
k colors.

Lemma 3.4.3 ([57]). If G is a tree of treedepth d and maximum degree ∆, then every linear coloring of G
requires at least d/ log2(∆) colors.

Recall that Theorem 1.1.4 asserts that there exists a constant C such that for every graph G and integers
a, b ≥ 2, if the treedepth of G is at least Cab, then either the treewidth of G is at least a or G contains
a subcubic tree of treedepth at least b. Applying this theorem to a = dk/cgride2 and b = dk log2(3)e, one
obtains that if the treedepth of G is Ω(k19pGMT(log k)), then G contains either a (dk/cgride2)× (dk/cgride2)
grid minor or a subcubic tree of treedepth at least k log2(3). In the first outcome, Lemma 3.4.2 gives the
desired number of colors of a linear coloring, while in the second outcome the same result is obtained from
Lemma 3.4.3. This concludes the proof of Theorem 1.1.8.

3.5 An example of a tree with treedepth quadratic in the height of
the binary tree or logarithm of a length of a path

In this section we provide a construction of a family of trees (Gn)n≥1 such that

1. The tree Gn does not contain a path with 2n+2 vertices.

2. The tree Gn does not contain a subdivision of a full binary tree of depth n+ 2.

3. The treedepth of Gn is at least
(
n+1

2

)
.

We will consider each tree Gn as a rooted tree. The tree G1 consists of a single vertex. For n ≥ 2, the
tree Gn is defined recursively as follows. We take a path Pn with 2n vertices and for each v ∈ V (Pn) we
create a copy Cvn of Gn−1 and attach its root to v. We root Gn in one of the endpoints of Pn; see Figure 3.1.

2n vertices

Gn−1

Gn−1

Gn−1

Figure 3.1: Construction of Gn.

We now proceed with the proof of the properties of Gn. Since every path in Gn is contained in a union
of at most two root-to-leaf paths (not necessarily edge-disjoint), to show Property (1) it suffices to show the
following.
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Lemma 3.5.1. Every root-to-leaf path in Gn contains less than 2n+1 vertices.

Proof. We prove the statement by induction on n. For n = 1 the statement is straightforward. For the
inductive step, observe that every root-to-leaf path in Gn consists of a subpath of Pn (which has 2n vertices)
and a root-to-leaf path in one of the copies Cvn of Gn−1 (which has less than 2n vertices by the inductive
assumption).

We say that a subtree H of Gn that is a subdivision of a full binary tree of height h ≥ 1 is aligned if
h = 1 or h ≥ 2 and the closest to the root vertex of H is of degree 2 in H and its deletion breaks H into two
subtrees containing a subdivision of a full binary tree of height h − 1. In other words, an aligned subtree
has the same ancestor-descendant relation as the tree Gn. Observe that any subtree H0 of Gn that is a
subdivision of a full binary tree of height h ≥ 2 contains a subtree that is an aligned subdivision of a full
binary tree of height h− 1. Therefore, to prove Property (2), it suffices to show the following.

Lemma 3.5.2. Gn does not contain an aligned subdivision of a full binary tree of height n+ 1.

Proof. We prove the claim by induction on n. It is straightforward for n = 1. For n ≥ 2, assume for
contradiction that H is such an aligned subtree of Gn and let w be the closest to the root of Gn vertex of
H. If w ∈ V (Cvn) for some v ∈ V (Pn), then H is completely contained in Cvn, which is a copy of Gn−1.
Otherwise, w ∈ V (Pn) and thus one of the components of H − {w} lies in Cwn . However, this component
contains an aligned subdivision of a full binary tree of height n. In both cases, we obtain a contradiction
with the inductive assumption.

We are left with the treedepth lower bound of Property (3). To this end, we consider the following
families of trees. For integers a ≥ 0, b ≥ 1, the family Ga,b contains all trees H that are constructed from a
path PH with at least 2a vertices by attaching, for every v ∈ V (PH), a tree Tv of treedepth at least b by an
edge to v. We show the following.

Lemma 3.5.3. For every H ∈ Ga,b we have td(H) ≥ a+ b.

Proof. We prove the lemma by induction on a. For a = 0 it is trivial. Assume then a ≥ 1 and H ∈ Ga,b.
Then for every v ∈ V (H), H−v contains a connected component that contains a subtree belonging to Ga−1,b.
This finishes the proof.

We show Property (3) by induction on n. Clearly, td(G1) = 1 =
(

1+1
2

)
. Consider n ≥ 2. Since the

treedepth of Gn−1 is at least
(
n
2

)
, we have that Gn ∈ Gn,(n

2)
. By Lemma 3.5.3, we have that

td(Gn) ≥ n+

(
n

2

)
=

(
n+ 1

2

)
.

This finishes the proof of Property (3).
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Chapter 4

Obstructions for small treedepth

To recall, the main goal of this Chapter is to improve the upper bound on the size of minimal obstructions
for having a small treedepth. More specifically, we are going to prove the already mentioned Theorem 1.1.9.
Theorem 1.1.9. If G is a minimal obstruction for treedepth d, then the vertex count of G is at most

(d+ 1) ·
(
(d+ 1)((d+ 1)2 + 1)

)d+1 − 1

(d+ 1)((d+ 1)2 + 1)− 1
∈ dO(d).

In order to do that, first we are going to recall a few basic lemmas, then we are going to introduce a key
notion of a treedepth core and then, having done all the necessary preparations, we will conclude by proving
Theorem 1.1.9.

4.1 Basic terminology and treedepth tools
A rooted forest F is a directed acyclic graph in which each vertex u has at most one out-neighbor, called the
parent of u and denoted by parentF (u). A vertex u is a root of F if it has no parent, which we denote by
parentF (u) = ⊥. The set of roots of a forest F is denoted by rootsF . Two vertices of F that either are both
roots or have the same parent are called siblings.

By Fu we denote the subtree of F induced by the descendants of u.
A subset of vertices X ⊆ V (F ) is straight in F if for all u, v ∈ X, either u is an ancestor of v in F or v

is an ancestor of u in F . Equivalently, vertices of a straight set lie on one leaf-to-root path in F . Here, by a
root-to-leaf path in F we mean a path connecting a leaf with the root of some tree in F .

A prefix of a forest F is an ancestor-closed subset of vertices, that is, A ⊆ V (F ) is a prefix if u ∈ A
implies tailF [u] ⊆ A. The set of appendices of a prefix A, denoted AppF (A), comprises all ancestor-minimal
elements of V (F )\A, that is, vertices u /∈ A such that either u ∈ rootsF or parentF (u) ∈ A. Note that for all
u ∈ AppF (A), we have tailF (u) ⊆ A. If A is a prefix of F , then by F −A we denote the forest obtained from
F by removing all the vertices of A and keeping the parent/child relation on the remaining vertices intact.

If F is an elimination forest of a graph G and u ∈ V (G), then we define the strong reachability set of u:

SReachF,G(u) := NG(treeF [u]).

We remark that the name strong reachability set comes from the theory of structural sparsity, where this
concept is present and is an analogue of the definition above; see e.g. [52, 43, 85]. Note that for every vertex u
we have SReachF,G(u) ⊆ tailF (u).

An elimination forest of G is optimal if its height is equal to the treedepth of G. We will need a more
refined notion of “local” optimality, as expressed next.

Definition 4.1.1. An elimination forest F of G is recursively optimal if for every u ∈ V (G), we have that:
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• the graph G[treeF [u]] is connected; and
• the tree Fu is an optimal elimination forest of G[treeF [u]].

We remark that Dvořák et al. [30] also use this definition; they call such elimination forests just “optimal”.
We will also widely use a weakened version of this definition given below.

Definition 4.1.2. An elimination forest F of G is recursively connected if for every u ∈ V (G), we have that
the graph G[treeF [u]] is connected.

Let us note here that if F is an elimination forest of a graph G and A is a prefix of F , then F −A is an
elimination forest of G − A. If F is moreover recursively connected or recursively optimal, then the same
can be also said about F −A.

We now point out a simple, yet important property of recursively connected elimination forests.

Lemma 4.1.3. Suppose F is a recursively connected elimination forest of a graph G. Let u be a vertex of
G and v be a child of u in F . Then u ∈ SReachF,G(v).

Proof. Otherwise, no vertex of treeF [v] would have a neighbor in treeF [u] \ treeF [v], so the graph G[treeF [u]]
would not be connected.

Clearly, every recursively optimal elimination forest is recursively connected, as we require that explicitly
in the definition. Note also that every recursively optimal elimination forest is in particular optimal, as it
optimally decomposes each connected component of the graph.

Finally, we will use some basic properties of elimination forests related to the connectivity in graphs.
First, the following fact is well-known.

Lemma 4.1.4. Suppose that F is an elimination forest of a graph G and A ⊆ V (G) is such that G[A] is
connected. Then there exists x ∈ A such that A ⊆ treeF [x].

Proof. Let x be any vertex of A that minimizes depthF (x). Let B := A ∩ treeF [x] and suppose, for contra-
diction, that A \B is non-empty. Observe that every vertex y ∈ A \B can be neither an ancestor of x — by
the minimality of x — nor a descendant of x — for it would be included in B. Hence, for each y ∈ A \ B
and z ∈ B, the set {y, z} is not straight in F . As F is an elimination forest of G, this implies that there
is no edge between B and A \ B. Since B is non-empty due to containing x, this is a contradiction to the
assumption that G[A] is connected.

Next, vertices x and y of a graph G are k-vertex-connected in G if there exists k internally vertex-disjoint
paths with endpoints x and y. We will use the following simple claim.

Lemma 4.1.5. Suppose that x and y are d-vertex-connected in a graph G. Then for every elimination forest
F of G of height at most d, the set {x, y} is straight in F .

Proof. If {x, y} was not straight in F , then every path connecting x and y would have to contain an internal
vertex that belongs to ancF (x)∩ ancF (y). Since |ancF (x)∩ ancF (y)| < height(F ) ≤ d, this implies that there
cannot be d internally vertex-disjoint paths connecting x and y in G, a contradiction.

4.2 Treedepth cores
We now introduce the most important definition in this chapter: the core of an elimination forest of a graph.
Intuitively, this is a relatively small subset of vertices that retains all the relevant connectivity information
that is essential for, say, treedepth computation.

Definition 4.2.1. Suppose that F is an elimination forest of a graph G. For q ∈ N, a non-empty prefix
K of F is called a q-core of (G,F ) if the following condition holds for every vertex u ∈ AppF (K): for each
X ⊆ SReachF,G(u) with |X| ≤ 2, there exist at least q siblings w of u such that w ∈ K, X ⊆ SReachF,G(w),
and height(Fw) ≥ height(Fu).
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Figure 4.1: A graph G (black edges), an elimination tree F of G (thick gray arcs, directed from children to
parents), and a 2-core of F (vertices on blue background). White vertices are in AppF (K).

See Figure 4.1 for an illustration.
Before we proceed further, let us observe that in recursively optimal elimination forests we can always

find q-cores of size bounded by a function of q and the height. In the following, for a set A, by
(
A
≤2

)
we

denote the set of all subsets of X of size at most 2.

Lemma 4.2.2. Let F be a recursively optimal elimination forest of a graph G and let d be the height of F .
Then for every q ∈ N, there is a q-core K of (G,F ) such that

|K| ≤ q ·
(
q(d2 + 1)

)d − 1

q(d2 + 1)− 1
.

Proof. Consider the following recursive marking procedure recCore(q, u), which can be applied to any vertex
u ∈ V (G). For each X ∈

(
tailF [u]
≤2

)
, among vertices w ∈ chldF (u) that satisfy X ⊆ SReachF (w) mark q with

the highest value of height(Fw), or all of them if their number is smaller than q. Note that the total number of
vertices marked in this way is bounded by q·|

(
tailF [u]
≤2

)
| ≤ q(d2+1). Finally, apply the procedure recCore(q, w)

recursively for every marked child w of u.
Now, let R ⊆ rootsF comprise q roots r of F with the highest value of height(Fr), or all of them if their

number is smaller than q. We apply procedure recCore(q, r) to all r ∈ R, and let K be the set comprising all
the vertices marked this way. Clearly, for every i ∈ {1, . . . , d}, K contains at most q ·

(
q(d2 + 1)

)i−1 vertices
at depth i in F , hence

|K| ≤ q ·
d∑
i=1

(
q(d2 + 1)

)i−1
= q ·

(
q(d2 + 1)

)d − 1

q(d2 + 1)− 1
,

as claimed. That K is indeed a q-core of (G,F ) follows directly from the construction.

In subsequent lemmas we will establish several important properties of cores. The following notation
will be convenient: if K is a prefix in an elimination forest F of G, then for each u ∈ AppF (K) and
X ∈

(
SReachF,G(u)

≤2

)
, we define WK(u,X) to be the set of all siblings w of u in F such that:

• w ∈ K;
• X ⊆ SReachF,G(w); and
• height(Fw) ≥ height(Fu).

Then, provided that K is a q-core of (G,F ), we have |WK(u,X)| ≥ q for all u ∈ App(K) and X ∈(
SReachF,G(u)

≤2

)
. Note that the definition of WK(·, ·) depends on F and G; these will always be clear from the

context, as K will be a core with respect to some pair (G,F ).
As mentioned, the intuition is that a q-core for a sufficiently large q stores all the essential information

about the graph needed for the purpose of computing its treedepth. We now formalize this intuition in a
series of lemmas. First, we observe that cores retain the essential connectivity property from Definition 4.1.2.
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Lemma 4.2.3. Suppose that F is a recursively connected elimination forest of a graph G and K is a 1-core
of (G,F ). Then for every u ∈ K, we have that
(i) SReachF,G(u) = NG[K](K ∩ treeF [u]) and
(ii) the graph G[K ∩ treeF [u]] is connected.

Proof. We first prove (i) by induction on height(Fu). The base case when height(Fu) = 1 is trivial: then
K ∩ treeF [u] = treeF [u] = {u} and tailF [u] ⊆ K, hence SReachF,G(u) = NG(u) = NG[K](u) = NG[K](K ∩
treeF [u]).

Suppose now that height(Fu) > 1. The inclusion SReachF,G(u) ⊇ NG[K](K ∩ treeF [u]) is obvious, so it
remains to show the following: if some v ∈ tailF [u], v 6= u, has a neighbor in treeF [u], then v has also a
neighbor in K ∩ treeF [u]. For this, let a be a neighbor of v in treeF [u]. If a = u then we are done, because
u ∈ K. Otherwise a ∈ treeF [w] for some w ∈ chldF (u), which implies that v ∈ SReachF,G(w). As K is a 1-
core in F , there exists w′ ∈ chldF (u)∩K such that v ∈ SReachF,G(w′). By applying the induction hypothesis
to w′ we infer that SReachF,G(w′) = NG[K](K ∩ treeF [w′]), hence v has a neighbor a′ in K ∩ treeF [w′]. Then
also a′ ∈ K ∩ treeF [u]; this completes the proof of (i).

We now move to the proof of (ii), which we again perform by induction on height(Fu). As before, the
base case when height(Fu) = 1 is trivial, as then G[K ∩ treeF [u]] consists of one vertex u. So suppose that
height(Fu) > 1. Since F is recursively connected, by Lemma 4.1.3 u has a neighbor in each of the sets
treeF [w] for w ∈ chldF (u). Consider any w ∈ chldF (u) such that K ∩ treeF [w] 6= ∅. Since K is a prefix of
F , we have w ∈ K. By applying (i) and the induction hypothesis to w, we infer that u has a neighbor in
K∩treeF [w] and G[K∩treeF [w]] is connected. Thus, G[K∩treeF [u]] consists of a disjoint union of connected
graphs, plus there is vertex u which has neighbors in each of these connected graphs. Hence G[K ∩ treeF [u]]
is connected as well. This proves (ii).

We now present the following lemma, which intuitively provides good “re-attachment points” for trees
obtained by removing a core from an elimination forest.

Lemma 4.2.4. Let F be a recursively connected elimination forest of a graph G such that F has height at
most d. Let K be a d-core of (G,F ). Let FK be any elimination forest of G[K] of height at most d. Then
for every u ∈ AppF (K), the set SReachF,G(u) is straight in FK .

Proof. Consider any pair of distinct vertices x, y ∈ SReachF,G(u). DenoteW := WK(u, {x, y}); then |W | ≥ d.
Consider any w ∈W ; recall that w ∈ K and x, y ∈ SReachF,G(w). By Lemma 4.2.3, the graphG[K∩treeF [w]]
is connected and both x and y have neighbors in K ∩ treeF [w] in G[K]. This implies that in G[K] there is
a path P xyw with endpoints x and y such that every internal vertex of P xyw belongs to treeF [w]. Since the
sets in {treeF [w] : w ∈ W} are pairwise disjoint, this shows that x and y are d-vertex-connected in G[K].
By Lemma 4.1.5 we infer that {x, y} is straight in the elimination forest FK . Since x and y were chosen
arbitrarily from SReachF,G(u), we conclude that SReachF,G(u) is straight in FK , as claimed.

From Lemma 4.2.4 we can derive the following claim: restricting an elimination forest to a d-core preserves
the treedepth of each subgraph induced by a subtree.

Lemma 4.2.5. Let F be a recursively optimal elimination forest of a graph G such that F is of height at most
d, and let K be a d-core of (G,F ). Then for every v ∈ K, we have td(G[K ∩ treeF [v]]) = td(G[treeF [v]]).

Proof. Observe that for every v ∈ K, we have that Fv is a recursively optimal elimination tree of G[treeF [v]]
and K ∩ V (Fv) is a d-core for (G[treeF [v]], Fv). Hence, it suffices to prove the lemma for the case when F is
a tree and v is the root of F . Indeed, if we succeed in this, then applying the statement for this case to each
v ∈ K yields the general statement of the lemma.

We proceed by induction on height(F ). The base case where height(F ) = 1 is trivial. For the inductive
step, we may assume that

td(G[K ∩ treeF [z]]) = td(G[treeF [z]]) for each z ∈ K \ {v}. (4.1)
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Figure 4.2: The reattachment procedure carried out in Lemma 4.2.5. Left: A recursively optimal elimination
tree F of the graph G and a core K of F . Edges of F are gray and edges of G are black. X, Y and Z indicate
the subtrees of F that are disjoint from K. The edges of G drawn between K and X, Y and Z indicate the
sets SReachF,G of the roots of X, Y , and Z. Right: An elimination tree F̂ constructed from G, F and K
according to Lemma 4.2.5. We take a recursively optimal elimination tree FK for G[K] and reattach each
subtree X, Y , and Z at the deepest vertex of the set SReachF,G of the corresponding root of X, Y or Z.

We need to prove that td(G[K]) = td(G). Clearly td(G[K]) ≤ td(G), so for contradiction suppose that
td(G[K]) < td(G). Let FK be an elimination forest of G[K] of height strictly smaller than td(G); in
particular, height(FK) < d. Observe that, thus, V (G)\K 6= ∅. Our goal is to construct an elimination forest
F̂ of G of height equal to the height of FK , which will be a contradiction.

Consider any u ∈ AppF (K). By Lemma 4.2.4, the set M := SReachF,G(u) is straight in FK . Note here
that since u 6= v (due to u /∈ K and v ∈ K) and v is the only root of F , u has a parent in F , which by
Lemma 4.1.3 belongs to M . In particular M 6= ∅. Let then m be the vertex of M that is the deepest in FK ;
this is well-defined because M is straight in FK . Further, let M̂ := tailFK [m]; as height(FK) < d and M is
straight in FK , we have M ⊆ M̂ and |M̂ | < d.

Let W := WK(u, {m}); then |W | ≥ d as K is a d-core. Since |W | ≥ d, there exists w ∈ W such that
treeF [w] ∩ M̂ = ∅. Recall that m ∈ SReachF,G(w) and height(Fw) ≥ height(Fu) by the definition of W .

By Lemma 4.2.3, graph G[K ∩ treeF [w]] is connected and NG[K](K ∩ treeF [w]) = SReachF,G(w). As
G[K ∩ treeF [w]] is connected and FK is an elimination forest of G[K], by Lemma 4.1.4 there exists x ∈
K ∩ treeF [w] such that K ∩ treeF [w] ⊆ treeFK [x]. Note that x /∈ M̂ because treeF [w]∩ M̂ = ∅. On the other
hand, since m ∈ SReachF,G(w) = NG[K](K∩ treeF [w]), m has a neighbor in the set K∩ treeF [w] ⊆ treeFK [x].
As FK is an elimination forest of G[K], this implies that x ∈ treeFK (m). Since K∩ treeF [w] ⊆ treeFK [x] and
M ⊆ tailFK [m], we conclude that in FK , all the vertices of K ∩ treeF [w] are descendants of all the vertices
of M , hence also of all the vertices of M̂ . In particular,

|M̂ |+ td(G[K ∩ treeF [w]]) ≤ height(FK).

Since w 6= v, applying (4.1) with z = w yields td(G[K ∩ treeF [w]]) = td(G[treeF [w]]). Moreover, observe
that we have td(G[treeF [w]]) = height(Fw) ≥ height(Fu) = td(G[treeF [u]]), where the equalities follow from
the recursive optimality of F . By combining these, we find that

|M̂ |+ height(Fu) ≤ height(FK). (4.2)

We now construct a new elimination forest F̂ of G as follows. See Figure 4.2 for an illustration. Begin
with F̂ = FK and, for every u ∈ AppF (K), insert the tree Fu into F̂ by making u a child of m, defined as
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the vertex of SReachF,G(u) that is deepest in FK (this vertex is well-defined since SReachF,G(u) is straight
in FK). It is straightforward to see that F̂ constructed this way is an elimination forest of G. Moreover,
by (4.2) we conclude that height(F̂ ) = height(FK) (recall that M ⊆ M̂). As height(FK) < td(G), this is a
contradiction, and the inductive step is proved.

4.3 Obstructions for treedepth
In this section we consider bounds on the sizes of induced subgraphs that are obstructions for having low
treedepth, as explained formally through the following notion.

Definition 4.3.1. A graph G is a minimal obstruction for treedepth d if td(G) > d, but td(G − v) ≤ d for
each v ∈ V (G).

As mentioned earlier, Dvořák et al. [31] proved the following result.

Theorem 4.3.2 ([31]). Let d ∈ N. Then every minimal obstruction for treedepth d has at most 22d−1

vertices. Furthermore, there exists a minimal obstruction for treedepth d that has 2d vertices.

In fact, the lower bound of 2d provided by Theorem 4.3.2 is obtained by showing that every acyclic minimal
obstruction for treedepth d has exactly 2d vertices, and such obstructions can be precisely characterized by
means of an inductive construction. This led Dvořák et al. [31] to conjecture that in fact every minimal
obstruction for treedepth d has at most 2d vertices. We now show that from the combinatorial analysis
presented in the previous section we can derive an upper bound with asymptotic growth dO(d). While this
still leaves a gap to the conjectured value of 2d, the new estimate is dramatically lower than the doubly-
exponential upper bound provided in [31].

Let us recall Theorem 1.1.9.
Theorem 1.1.9. If G is a minimal obstruction for treedepth d, then the vertex count of G is at most

(d+ 1) ·
(
(d+ 1)((d+ 1)2 + 1)

)d+1 − 1

(d+ 1)((d+ 1)2 + 1)− 1
∈ dO(d).

Proof. Since G is a minimal obstruction for treedepth d, G is connected and td(G) = d + 1. Let F be a
recursively optimal elimination tree of G; then height(F ) = d+ 1. Let r be the root of F . By Lemma 4.2.2,
we can find a (d + 1)-core K of (G,F ) of size at most M(d), where M(d) is the bound provided in the
theorem statement. Clearly, r ∈ K. Applying Lemma 4.2.5 to v = r, we find that td(G[K]) = td(G). Since
G is a minimal obstruction for treedepth d, this means that K = V (G), implying |V (G)| ≤M(d).

We remark that a more careful analysis of the bounds used in Lemma 4.2.2 yields a slightly better upper
bound than the one claimed in Theorem 1.1.9, however with the same asymptotic growth of dO(d). It remains
open whether this can be improved to an upper bound of the form 2O(d).
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Chapter 5

Computing treedepth in polynomial
space and linear FPT time

In this Chapter we will present algorithms computing optimal treedepth decomposition of a graph in poly-
nomial space. More precisely, we are going to prove Theorem 1.1.10.

Theorem 1.1.10. There is an algorithm that given an n-vertex graph G and an integer d, either constructs
an elimination forest of G of depth at most d, or concludes that the treedepth of G is larger than d. The
algorithm runs in 2O(d2) · nO(1) time and uses nO(1) space.

The space and time complexities can be improved to dO(1) · n and expected 2O(d2) · n, respectively, at the
cost of allowing randomization: the algorithm may return a false negative with probability at most 1

c·nc , where
c is any constant fixed a priori; there are no false positives.

As mentioned in the statement, this algorithm comes in two versions — deterministic and randomized ones.
First, we are going to describe the deterministic version and then we are going to show how to improve it
through the usage of randomization.

5.1 Deterministic FPT algorithm

In this section we prove the first part of Theorem 1.1.10: we give a deterministic polynomial-space algorithm
with running time 2O(d2) ·nO(1) that for a given n-vertex graph G, either outputs an elimination forest of G
of depth at most d or concludes that no such forest exists. The most complex part of the algorithm will be
procedure CountElimTrees, which, roughly speaking, counts the number of different elimination trees of a
connected graph G of depth at most d. We describe CountElimTrees first, and then we utilize it to achieve
the main result.

5.1.1 Description of CountElimTrees

As mentioned above, procedure CountElimTrees counts the number of different elimination trees of G of
depth at most d. However, we will not count all of them, but only such that are in some sense minimal; a
precise formulation will follow later. We remark that this part is inspired by the 3d · nO(1)-time polynomial
space algorithm of Pilipczuk and Wrochna [73] for counting dominating sets in a graph of bounded treedepth.
This algorithm exploits the same underlying trick — sometimes dubbed “inclusion-exclusion branching” —
but the application here is technically more involved than in [73].

Before describing CountElimTrees, let us carefully define objects that we are going to count. We start
by recalling the following standard fact about the existence of elimination forests with basic connectivity
properties.
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Lemma 5.1.1. Let H be a graph and let R be an elimination forest of H. Then there exists an elimination
forest R′ of H such that
• for every vertex u of H, we have depthR′(u) ≤ depthR(u); and
• whenever vertices u, v ∈ V (H) belong to the same connected component of R′, they also belong to the
same connected component of H.

Proof. For every connected component C of H, let RC be the rooted tree on vertex set V (C) with the
ancestor relation inherited from R: for u, v ∈ V (C), u is an ancestor of v in RC if and only if u is an
ancestor of v in R. Let R′ be the disjoint union of trees RC over all connected components C of H. It is
straightforward to check that R′ constructed in this way is an elimination forest of H that satisfies both the
asserted properties.

We remark that computing R′ can be easily done in linear time by using depth-first search from the root of
each elimination tree in R. This procedure will be used many times throughout the algorithm when justifying
the usual assumption that our current graph is connected. (Disconnected graphs will often naturally appear
when recursing after performing some deletions in the original graph.)

The following lemma can be proved using a very similar, though a bit more involved reasoning. Recall
that we work with a fixed connected graph G and its elimination tree T .

Lemma 5.1.2. Let G be a connected graph of treedepth at most d and T be an elimination tree of G (possibly
of depth larger than d). Then there exists an elimination tree R of G of depth at most d that satisfies the
following property: for every u ∈ V (G) and v1, v2 ∈ chldT (u), v1 6= v2, we have

clR(compT [v1]) ∩ clR(compT [v2]) = clR(tailT [u]). (5.1)

Proof. Let R be an elimination tree of G of depth at most d that minimizes
∑
u∈V (G) depthR(u). We claim

that R satisfies the required property. Assume otherwise: there are u ∈ V (G) and distinct v1, v2 ∈ chldT (u)
such that (5.1) does not hold. Since the clR(·) operator is monotone under taking subsets, we have

clR(compT [v1]) ∩ clR(compT [v2]) ⊇ clR(tailT [u]) ∩ clR(tailT [u]) = clR(tailT [u]).

So there is r ∈ V (G) such that r /∈ clR(tailT [u]), but r ∈ clR(compT [v1]) and r ∈ clR(compT [v2]).
Note that since r ∈ clR(compT [v1])\clR(tailT [u]), we have r ∈ clR(treeT [v1]). So there exists u1 ∈ treeT [v1]

such that u1 ∈ treeR[r]. Similarly, there exists u2 ∈ treeT [v2] such that u2 ∈ treeR[r]. As r /∈ clR(tailT [u]),
we have tailT [u] ∩ treeR[r] = ∅.

Observe that since T is an elimination tree of G, we have NG[treeT [v1]] ⊆ compT [v1]. This implies that
NG\tailT [u][treeT [v1]] ⊆ treeT [v1]; analogously NG\tailT [u][treeT [v2]] ⊆ treeT [v2]. So in G \ tailT [u], each of the
sets treeT [v1] and treeT [v2] is the union of vertex sets of a collection of connected components. Note that
treeT [v1] ∩ treeT [v2] = ∅.

Consider now the graph H = G[treeR[r]]. As tailT [u] ∩ treeR[r] = ∅, H is an induced subgraph of
G \ tailT [u]. Further, H intersects both treeT [v1] and treeT [v2], namely u1 ∈ V (H) ∩ treeT [v1] and u2 ∈
V (H) ∩ treeT [v2]. Then the conclusion of the previous paragraph implies that H is disconnected.

Let RH be an elimination forest of H obtained by applying Lemma 5.1.1 to H and its elimination tree
inherited from R and rooted at r. Let R′ be the elimination tree of G obtained from R by first removing
all vertices of V (H) = treeR[r], and then reintroducing them again by adding forest RH and making all
roots of RH into children of the parent of r in R. Note that r is not the root of R, since G is connected.
It is straightforward to check that R′ is still an elimination tree of G, and from Lemma 5.1.1 it follows that
depthR′(w) ≤ depthR(w) for each w ∈ V (G). However, since R[treeR[r]] has only one root — r — while RH
has at least two roots — due to H being disconnected — it follows that depthR′(w) < depthR(w) for at least
one w ∈ V (H). So R′ is an elimination tree of G of depth at most d in which the sum of depths of vertices
is strictly smaller than in R. This is a contradiction with the choice of R.

An elimination tree R of a graph G satisfying the conclusion of Lemma 5.1.2 (that is, the depth of R
is at most d and for all u ∈ V (G) and distinct v1, v2 ∈ chldT (u) we have (5.1)) will be called sensible with
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respect to T . In our search for elimination trees of low depth, we will restrict attention only to trees that
are sensible with respect to some fixed elimination tree T . Then Lemma 5.1.2 justifies that we may do this
without losing all solutions.

With all ingredients introduced, we may finally precisely state the goal of this section.

Lemma 5.1.3. There exists an algorithm CountElimTrees(G,T, d) that, given a connected graph G on n
vertices, an elimination tree T of depth k, and an integer d, runs in time 2O(dk) · nO(1), uses nO(1) space,
and outputs the number of different elimination trees of G of depth at most d that are sensible with respect
to T .

Note here that the input to CountElimTrees consists not only of G and d, but also of an auxiliary
elimination tree T of G. The depth k of T may be, and typically will be, larger than d. Also, we assume
that an elimination tree is represented solely by its vertex set and the ancestor relation. In particular,
permuting children of a vertex yields the same elimination tree, which should be counted as the same object
by procedure CountElimTrees.

The remainder of this section is devoted to the proof of Lemma 5.1.3. We first need to introduce some
definition.

Let us arbitrarily enumerate the vertices of G as v1, v2, . . . , vn in a top-down manner in T . That is,
whenever vi is an ancestor of vj , we have i ≤ j. Consider another rooted tree R and a mapping φ : V (T )→
V (R). For a vertex u of T , we call a vertex vi ∈ treeT (u) a proper surplus image (for u and (R,φ)) if at least
one of the following conditions holds:
• φ(vi) ∈ clR(φ(tailT [u])), or
• there exists j such that j < i, vj ∈ treeT (u), and φ(vj) = φ(vi).

We define non-proper surplus images analogously, but using sets tailT (u) and treeT [u] instead of tailT [u] and
treeT (u), respectively.

We will work in the ring of polynomials Z[x], where x is a formal variable. By an abuse of notation, we
equip this ring with an operation of division by x defined through equations:

xi

x
=

{
xi−1 if i ≥ 1,

0 if i = 0

αA+ βB

x
= α · A

x
+ β · B

x
for all A,B ∈ Z[x] and α, β ∈ Z.

Formally speaking, division by x is just the unique function from Z[x] to Z[x] satisfying the two properties
above.

Even though our final goal is to count the number of elimination trees, along the way we are going to
count more general objects, called generalized elimination trees. A generalized elimination tree of a graph
H is a rooted tree R along with a mapping φ : V (H) → V (R) such that φ respects edges. Note that in
particular, it may be the case that im(φ) ( V (R) or that φ(u) = φ(v) for some u, v ∈ V (H). Clearly, a
generalized elimination tree is an elimination tree in the usual sense if and only if φ is a bijection between
V (H) and V (R). We shall call two generalized elimination trees (R,φ) and (R′, φ′) isomorphic if there is an
isomorphism of rooted trees ψ mapping R to R′ such that φ′ = ψ ◦ φ.

A generalized elimination tree (R,φ) of an induced subgraphH of G is sensible for T if for every u ∈ V (H)
and distinct v1, v2 ∈ chldT (u) ∩ V (H), we have clR(φ(compT [v1])) ∩ clR(φ(compT [v2])) = clR(φ(tailT [u])).
Thus, this notion projects to sensibility of (standard) elimination trees when H = G and (R,φ) is an
elimination tree of G. Generalized elimination trees of induced subgraphs of G that are sensible for T shall
be called monsters.

For a rooted tree K, a mapping φ with co-domain V (K) is called a cover of K if clK(im(φ)) = V (K), or
equivalently, every leaf of K is in the image of φ. For a vertex u ∈ V (G), rooted tree K of depth at most d,
a subset of vertices A ⊆ V (K) that contains all leaves of K, and a mapping φ : tailT (u)→ A that is a cover
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of K, we define

f(u,K, φ,A) =

n∑
i=0

aix
i ∈ Z[x],

where ai is the number of non-isomorphic monsters (R,φ) such that:
• (R,φ) is a generalized elimination tree of G[compT [u]] of depth at most d;
• K is a prefix of R;
• φ is an extension of φ satisfying

V (R) \ V (K) ⊆ im(φ) ⊆ (V (R) \ V (K)) ∪A; and

• in treeT [u] there are exactly i non-proper surplus images for u and (R,φ).
Note that since φ is assumed to be a cover of K, and by the second and third condition, the last condition
can be rephrased as follows:

i = |treeT [u]| − |V (R) \ V (K)|.
We define polynomial g(u,K, φ, L) analogously, but using tailT [u], treeT (u), and proper surplus images,

instead of tailT (u), treeT [u] and non-proper surplus images. That in treeT (u) there are i proper surplus
images is then equivalent to i = |treeT (u)| − |V (R) \ V (K)|.

Our goal now is to compute the polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) recursively over the elimination tree
T . It can be easily seen that if chldT (u) = ∅ then

g(u,K, φ,A) =

{
1 if φ respects edges,
0 otherwise.

(5.2)

Indeed, (R,φ) = (K,φ) is the only possible pair that can satisfy the last three conditions, and it is a sensible
generalized elimination tree of G[compT [u]] if and only if φ respects edges.

First, we show how to compute polynomials g(u, ·, ·, ·) based on the knowledge of polynomials f(v, ·, ·, ·)
for children v of u.

Lemma 5.1.4. If chldT (u) 6= ∅, then for all relevant u,K, φ,A we have

g(u,K, φ,A) =
∏

v∈chldT (u)

f(v,K, φ,A)

Proof. Let chldT (u) = {v1, . . . , vc} and let (R1, φ1), . . . , (Rc, φc) be any monsters such that (Ri, φi) is a
monster counted in the definition of f(vi,K, φ,A). Note that K is a prefix of each Ri, and each φi is an
extension of φ. Therefore, we can construct a monster (R,φ) as follows:
• R is the union of R1, . . . , Rc with the vertices of K identified naturally;
• φ is the union of φ1, . . . , φc (note that values on K match).

That (R,φ) constructed in this manner is sensible for T is easy to verify. Moreover, observe that every
distinct tuple of monsters (R1, φ1), . . . , (Rc, φc) gives rise to a different (non-isomorphic) monster (R,φ).

On the other hand, we argue that every monster (R,φ) counted in the definition of g(u,K, φ,A) can be
obtained from some monsters (R1, φ1), . . . , (Rc, φc) in the way described above. Indeed, (R,φ) is sensible for
T , hence every subtree of R−K accommodates images under φ of vertices from only one subtree treeT [vi],
for some i ∈ {1, . . . , c}. Distributing the subtrees of R−K according to the index i as above naturally gives
rise to monsters (R1, φ1), . . . , (Rc, φc) that are counted in the definitions of f(v1,K, φ,A), . . . , f(vc,K, φ,A),
respectively.

Altogether, we have shown that distinct tuples of monsters (R1, φ1), . . . , (Rc, φc) contributing to the
definitions of f(v1,K, φ,A), . . . , f(vc,K, φ,A) are in one-to-one correspondence with monsters (R,φ) con-
tributing to the definition of g(u,K, φ,A). This correspondence preserves the number of surplus vertices in
the following sense: if for each i ∈ {1, . . . , c}, treeT [vi] has ji non-proper surplus images for vi and (Ri, φi),
then treeT (u) has j1 + . . .+ jc proper surplus images for u and (R,φ). This directly implies the postulated
equality of polynomials.
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Let us elaborate on the intuition on what happened in Lemma 5.1.2. Intuitively, we aggregated infor-
mation about the children of u to the information about u itself. Since in the definitions of monsters we do
not insist on the mappings being injective, this aggregation could have been performed by a simple product
of polynomials (though, the assumption of sensibility was crucial for arguing the correctness). In a natural
dynamic programming, such as the one in [76], one would need to ensure injectivity when aggregating infor-
mation from the children of u, which would result in a dynamic programming procedure that would need to
keep track of all subsets of K (and thus use exponential space). Thus, relaxing injectivity here allows us to
use simple multiplication of polynomials, but obviously we will eventually need to enforce injectivity. The
idea is that we enforce surjectivity instead, and make sure that the size of the co-domain matches the size
of the domain. In turn, surjectivity is enforced using inclusion-exclusion in the computation of polynomials
f(u, ·, ·, ·) based on polynomials g(u, ·, ·, ·), which is the subject of the next lemma.

Lemma 5.1.5. For all relevant u,K, φ,A, we have:

f(u,K, φ,A) =
∑
v∈A

x · g(u,K, φ[u→ v], A)+

∑
w∈K

d−depth(w)∑
p=1

1

xp−1∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(u,K[w,w1, . . . , wp], φ[u→ wp], A ∪B ∪ {wp}),

where K[w,w1, . . . , wp] denotes the rooted tree obtained from K by adding a path [w,w1, . . . , wp] so that w
is the parent of w1 and each wi is the parent of wi+1, for i ∈ {1, . . . , p− 1}.

Proof. Let (R,φ) be a monster counted in the definition of f(u,K, φ,A). Observe that u is in the domain
of φ, but not in the domain of φ. The intuition is that extending φ by mapping u to φ(u) yields an object
that is indirectly taken into account in the polynomials g(u, ·, ·, ·), but we need to be careful that we express
the contribution of (R,φ) to f(u,K, φ,A) as a combination of contributions of different monsters to different
polynomials g(u, ·, ·, ·). Let v = φ(u).

Consider first the case when v ∈ V (K). Note that then we necessarily have v ∈ A. Then (R,φ) is a
monster that is counted in the definition of g(u,K, φ[u → v], A). Observe that u is a non-proper surplus
image for u and (R,φ), but it is not a proper surplus image for u and (R,φ), hence the number of proper
surplus images for u and (R,φ) is exactly one larger than the number of non-proper surplus images for u
and (R,φ). Also, every monster counted in the definition of g(u,K, φ[u→ v], A) contributes to f(u,K, φ,A)
as above. This justifies the summand

∑
v∈A x · g(u,K, φ[u→ v], A) in the formula.

Consider now the case when v ∈ V (R) \ V (K). We need to consider various cases on how clR(φ(tail[u]))
differs from clR(φ(tail(u))). The former can be described as the latter with a path attached, connecting
v with the least ancestor w of v that belongs to clR(φ(tail(u))). Let this path be P = [w,w1, . . . , wp],
where wp = v, and observe that the length of P , call it p, satisfies p + depth(w) ≤ d. Therefore, if we
denote K ′ = K[w,w1, . . . , wp], then it the case that (R,φ) is a monster that is counted in the definition of
g(u,K ′, φ[u → wp], A ∪ {w1, . . . , wp}). The problem is that not every monster counted in the definition of
g(u,K ′, φ[u→ wp], A ∪ {w1, . . . , wp}) contributes to f(u,K, φ,A), because in the definition of the latter we
require that φ is surjective onto V (R) \ V (K).

This issue is mitigated using the inclusion-exclusion principle. We iterate over all subsets
B ⊆ {w1, . . . , wp−1} and take into account the contribution from g(u,K ′, φ[u → wp], A ∪ B ∪ {wp}) with
sign (−1)p−1−|B|. In this way, the only monsters that survive in the summation are those corresponding to
monsters that are surjective onto {w1, . . . , wp−1}.

Finally, we need to be careful about properly counting surplus images through the degrees of the formal
variable x. As argued, the only summands that survive inclusion-exclusion summation are those correspond-
ing to monsters (R,φ) where {w1, . . . , wp−1} ⊆ im(φ); so fix such a monster. For each j ∈ {1, . . . , p − 1}
there is the smallest index s(j) such that vs(j) ∈ tree(u) and φ(vs(j)) = wj . Then vs(j) is a proper surplus
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image for u and (R,φ), but is not a non-proper surplus image for u and (R,φ). It is straightforward to check
that all vertices of tree[u] except for vs(1), . . . , vs(p) retain their status: they are a proper surplus image for
u and (R,φ) if and only if they are a non-proper surplus image for (R,φ). Hence, there are exactly p − 1
more proper surplus images for u and (R,φ) than there are non-proper surplus images for u and (R,φ). This
justifies dividing the result of the inclusion-exclusion summation by xp−1 and concludes the proof.

We need to take an additional care of how to deduce the overall number of elimination trees based on
the polynomial f(·, ·, ·, ·) and g(·, ·, ·, ·). Define polynomial

h =

d∑
p=1

1

xp−1

∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(r, [w1, . . . , wp], [r → wp], B ∪ {wp}) ∈ Z[x],

where r is the root of T , [w1, . . . , wp] is a path on p vertices rooted at w1, and [r → wp] denotes the function
with domain {r} that maps r to wp.

Lemma 5.1.6. The number of elimination trees of G that are sensible with respect to T and have depth at
most d is the term in h standing by x0.

Proof. By Lemma 5.1.5, the formula can be seen as the formula for f(r,K, φ,A) for empty K, φ, and A.
Therefore, h can be written as h =

∑n
i=0 aix

i, where ai is the number of non-isomorphic sensible generalized
elimination trees (R,φ) such that R has depth at most d, φ : V (G) → V (R) is surjective, and in G there
are i non-proper surplus images for r and (R,φ). However, since K is empty, the number of surplus images
is exactly the number of vertices vj ∈ V (G) that are mapped by φ to the same vertex of R as some other
vertex of G with a smaller index. Then the assertion that φ is injective is equivalent to the assertion that
the number of such surplus images is 0. It follows that the number of non-isomorphic sensible elimination
trees of G of depth at most d is equal to the term in h that stands by x0.

Having established Lemmas 5.1.4, 5.1.5 and 5.1.6, we can conclude the description of procedure
CountElimTrees. By 5.1.6, the goal is to compute polynomial h and return the coefficient standing by x0.
We initiate the computation using the formula for h, and then we use two mutually-recursive procedures to
compute polynomials f(·, ·, ·, ·) and g(·, ·, ·, ·) using formulas provided by Lemmas 5.1.4 and 5.1.5. The base
case of recursion is for a leaf of T , where we use formula (5.2).

The correctness of the procedure is established by Lemmas 5.1.4, 5.1.5 and 5.1.6. So it remains to bound
its time complexity and memory usage. It is clear that polynomials that we compute will always have degrees
at most n. Trees K relevant in the computation will never have more than dk vertices, for at every recursive
call the tree K can grow by at most d new vertices.

As the next step, we bound the numbers that can be present in the computations.

Lemma 5.1.7. Every coefficient of f(u,K, φ,A) is an integer from the range [0, (dk · 2d)|treeT [u]|] and every
coefficient of g(u,K, φ,A) is an integer from the range [0, (dk · 2d)|treeT (u)|]. Hence, all integers present in
the computations are at most (dk2d)n.

Proof. We prove this by induction on the recursion tree. The base of the induction (that is, calls of g on
leaves) is clear. Induction step for g called on a vertex u that is not a leaf is clearly following from the bounds
on f called on children of u as |treeT (u)| =

∑
v∈chldT (u) |treet[v]|. Induction step for f called on a vertex u

follows from the fact that it is a sum of at most |A|+|K|·(20+21+. . .+2d−1) ≤ dk+dk ·(2d−1) = dk ·2d calls
of g with coefficients from the set {−1, 1} on the same vertex and the fact that |treeT [u]| = |treeT (u)|+1.

It follows that all integers present in the computation have bitsize bounded polynomially in n.
As for the memory usage, the run of the algorithm is a recursion of depth bounded by 2k. The memory

used is a stack of at most 2k frames for recursive calls of procedures computing polynomials f(·, ·, ·, ·) and
g(·, ·, ·, ·) for relevant arguments. Each of these frames requires space polynomial in n, hence the total space
complexity is polynomial in n.
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As for the time complexity, each call to a procedure computing a polynomial of the form f(u, ·, ·, ·) makes
at most dk · 2d recursive calls to procedures computing polynomials of the form g(u, ·, ·, ·). In turn, each of
these calls makes one call to a procedure computing a polynomial of the form f(v, ·, ·, ·) for each child v of
u. It follows that the total number of calls to procedures computing polynomials of the form f(u, ·, ·, ·) and
g(u, ·, ·, ·) is bounded by 2 · (dk · 2d)k = 2O(dk). The internal work needed in each recursive call is bounded
by 2O(d) · nO(1). As T has n vertices, the total time complexity is 2O(dk) · 2O(d) · nO(1) · n = 2O(dk) · nO(1),
as claimed. This concludes the proof of Lemma 5.1.3.

We note that having designed CountElimTrees(G,T, d), it is easy to design a similar function
CountElimForest(G,T, d) that does not need an assumption of G being connected and where T is some
elimination forest instead of an elimination tree (by using the procedure described after Lemma 5.1.1).

5.1.2 Utilizing CountElimTrees

With the description of CountElimTrees completed, we can describe how we can utilize it in order to
construct a bounded-depth elimination tree of a graph. That is, we prove the first part of Theorem 1.1.10.

First, we lift CountElimTrees to a constructive procedure that still requires to be provided an auxiliary
elimination tree of the graph.

Lemma 5.1.8. There is an algorithm ConstructElimForest(G,T, d) that, given an n-vertex graph G, an
elimination forest T of G of depth at most k, and an integer d, runs in time 2O(dk) ·nO(1), uses nO(1) space,
and either correctly concludes that td(G) > d or returns an elimination forest of G of depth at most d.

Proof. By treating every connected component separately, we may assume that G is connected (see the
remark after Lemma 5.1.1). Thus T is an elimination tree of G.

The first step of ConstructElimForest(G,T, d) is calling CountElimTrees(G,T, d). If this call returns 0,
we terminate ConstructElimForest and report that td(G) > d; this is correct by Lemma 5.1.2. Otherwise
we are sure that td(G) ≤ d, and we need to construct any elimination tree of depth at most d. In order to do
so, we check, for every vertex v ∈ V (G), whether v is a feasible candidate for the root of desired elimination
tree. Note that a vertex v can be the root of an elimination tree of G of depth at most d if and only if
td(G−v) < d, or equivalently, if an only if the procedure CountElimForest(G\v, T−v, d−1) returns a positive
value. (Here, by T − v we mean the forest T with v removed and all former children of v made into children
of the parent of v, or to roots in case v was a root.) As td(G) ≤ d, we know that for at least one vertex v, this
check will return a positive outcome. Then we recursively call ConstructElimForest(G − v, T − v, d − 1),
thus obtaining an elimination forest F ′ of G− v of depth at most d− 1, and we turn it into an elimination
tree F of G by adding v as the new root and making it the parent of all the roots of F ′. As F has depth at
most d, it can be returned as the result of the procedure.

That the procedure is correct is clear. As for the time and space complexity, it is easy to see that there
will be at most dn calls to the procedure CountElimTrees in total, because at each level of the recursion there
will be at most one invocation of CountElimTrees per vertex of the original graph. As each of these calls uses
2O(dk) · nO(1) time and nO(1) space, the same complexity bounds also follow for ConstructElimForest.

It remains to show how to lift the assumption of being provided an auxiliary elimination forest of bounded
depth. For this we use the iterative compression technique.

Proof of the first part of Theorem 1.1.10. Arbitrarily enumerate the vertices of G as v1, v2, . . . , vn. For i ∈
{1, . . . , n}, let Gi = G[{v1, . . . , vi}] be the graph induced by the first i vertices. For each i = 1, 2, . . . , n
we will compute Fi, an elimination forest of Gi of depth at most d. For i = 1 this is trivial. Assume now
that we have already computed Fi and want to compute Fi+1. We first construct Ti+1, an elimination tree
of Gi+1, by taking Fi, adding vi+1, and making vi+1 the parent of all the roots of Fi. Note that Ti+1 has
depth at most d + 1. We now call ConstructElimForest(Gi+1, Ti+1, d). If this procedure concludes that
td(Gi+1) > d, then this implies that td(G) > d as well, and we can terminate the algorithm and provide a
negative answer. Otherwise, the procedure returns an elimination forest Fi+1 of Gi+1 of depth at most d,
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with which we can proceed. Eventually, the algorithm constructs an elimination forest F = Fn of G = Gn
of depth at most d.

The algorithm is clearly correct. Since every call to ConstructElimForest is supplied with an elimination
forest of depth at most d + 1, and there are at most n calls, the total time complexity is 2O(d2) · nO(1) and
the space complexity is nO(1), as desired.

5.2 Randomized linear FPT algorithm

In this section we prove the second part of Theorem 1.1.10: we reduce the time and space complexities
to linear in n at the cost of relying on randomization. There are three main reasons why the algorithm
presented in the previous section does not run in time linear in n.
• First, in procedure ConstructElimForest, we applied CountElimTrees O(dn) times. Even if
CountElimTrees runs in time linear in n, this gives at least a quadratic time complexity
for ConstructElimForest.

• Second, in the iterative compression scheme we add vertices one by one and apply procedure
ConstructElimForest n times. Again, even if ConstructElimForest runs in linear time, this gives
at least a quadratic time complexity.

• Third, in procedure CountElimTrees we handle polynomials of degree at most n and with coefficients
of bitsize bounded only polynomially in n. Algebraic operations on those need time polynomial in n.

In short, these obstacles are mitigated as follows:
• We give another implementation of ConstructElimForest that applies a modified variant

of CountElimTrees only dO(d) times. In essence, we sample a random coloring of the graph with
dO(d) colors, and for every color we apply a modification of CountElimTrees that is able to pinpoint a
candidate for the root of an optimum-depth elimination forest in this color, provided there is exactly
one. Since the total number of candidates in a connected graph of treedepth at most d is at most
dO(d) [18, 19], this procedure finds a candidate root with high probability.

• Iterative compression is replaced by a contraction scheme of Bodlaender [6] that allows us to replace
iteration with recursion, where every recursive step reduces the total number of vertices by a constant
fraction, rather than peels off just one vertex.

• We observe that in CountElimTrees, we may care only about monomials with degrees bounded by dk,
so the degrees are not a problem. As for coefficients, we hash them modulo a sufficiently large prime.
This is another source of randomization.

We proceed to formal details.

5.2.1 Optimizing the running time of CountElimTrees

We deal with monomials of high degree first.

Lemma 5.2.1. The output of CountElimTrees(G,T, d) does not change if we use the quotient ring Z[x]/(xdk)
instead of Z[x].

Proof. Recall that the final output of CountElimTrees is the free term of the polynomial h, that is, the
coefficient standing by x0. The only division by x in the whole algorithm happens in the formula provided
by Lemma 5.1.5, where we divide by xp−1, where p ≤ d. On any path of recursive calls in our algorithm,
there are at most k calls of this type, hence the summands of form xi for i > k(d − 1) will never have any
contribution to the free term in the polynomial returned at the root of the recursion. Therefore, ignoring
those summands does not affect the final result of the computation.

Now, we optimize the cost of arithmetic operations. To this end, we use the standard technique of
performing arithmetic operations modulo a random prime.

We start by recalling the following fact [73, Fact 29], which is based on [79, Theorem 4].
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Fact 2. There is a positive integer L such that for all integers ` ≥ L it holds that the product of primes
strictly between ` and 2` is larger than 2`.

Let C ≥ 1 be a sufficiently large constant, to be specified later. Let

A = max(L, n525Cd2).

Recall that by Lemma 5.1.7, the coefficients that appear during the computation of CountElimTrees are
upper bounded (dk2d)n. However, due to modifications that will be explained later when we will speak
about the weighted variant of procedure CountElimTrees, we will actually need to perform arithmetics on
numbers as large as (ndk2d)n. As k in our applications is never larger than 2d and as 2d ≤ 2d for positive
integers d, we have (ndk2d)n ≤ (n23d)n. Positive integers that are at most that large cannot have more
than n distinct prime factors in the interval (A, 2A), as An > (n23d)n. However, by Fact 2, we know that
there are at least log2 2A

log2 2A = A
log2 A+1 = Ω(n424Cd2) primes in this interval. Since each non-zero number

x that appears in the computation has no more than n distinct prime factors in the interval (A, 2A), it
means that the probability that a (uniformly sampled) random prime from this interval divides x is at most
n · O

(
1

n424Cd2

)
= O

(
1

n324Cd2

)
.

Consider the procedure CountElimTrees modified as follows: at the beginning we sample uniformly
at random a prime p ∈ (A, 2A) and instead of computing every number explicitly, we work in the ring
Zp = Z/(p) and thus only compute the remainders modulo p. If the number of elimination trees of G of
depth at most d is 0, then we are sure that this algorithm eventually obtains 0 as well. However, if this
number is nonzero, then this algorithm will obtain 0 modulo p with probability is at most O

(
1

n324Cd2

)
. Note

that the bitsize of p is dO(1)+O(log n), hence all arithmetic operations in Zp can be performed in dO(1) time in
the RAM model. Hence, by working in the ring Zp for a random prime p ∈ (A, 2A), we significantly improve
the cost of arithmetic operations while sacrificing only a little in terms of the correctness. That is, testing
whether the number of elimination trees of G of depth at most d is nonzero may result in a false negative
with probability O

(
1

n324Cd2

)
, so we have a Monte Carlo algorithm with one-sided error. Throughout the

remaining part of this article, we are sometimes going to refer to numbers that are present in the computation
of CountElimTrees working in Z as true numbers, as opposed to their corresponding remainders that appear
in the computation where CountElimTrees works in Zm for some number m.

Let us briefly describe how we sample a random prime from the interval (A, 2A). We repeat the following
procedure until we find the first prime: We first uniformly sample a random integer from this interval and
then we check whether it is prime using the AKS primality test [2]. As argued before, there are at least

A
log2 A+1 primes in this interval, hence the probability of finding a prime when sampling a random number
from this interval is at least 1

log2 A+1 . Therefore, the expected number of trials needed to sample a prime
will be at most log2A + 1. The AKS primality test works in time (logA)O(1), hence the expected work
spent till discovering a prime is (logA)O(1) = (d log n)O(1) ⊆ dO(1)n. So this is a Las Vegas algorithm (which
obviously can be turned into a Monte Carlo algorithm by stopping it after a certain number of failed trials).
Note that we draw only one random prime p at the very beginning of our algorithm, and whenever we want
to use a prime, we use this one.

After improving both the degrees of involved polynomials and the cost of arithmetic operations, single
call of CountElimTrees in its current version takes 2O(dk)n time.

5.2.2 Faster root recovery

Having improved the running time of CountElimTrees to linear, now we are going to improve the running
time of ConstructElimForest to linear. Recall that ConstructElimForest in its current version iterates
over all vertices v ∈ V (G) and checks whether td(G−v) ≤ d−1 (by calling CountElimTrees with appropriate
parameters) — such vertices v could be placed as roots of an elimination tree of G of depth at most d.
Finding any feasible root is the crucial part that needs to be optimized in order to achieve a linear running
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time for ConstructElimForest. The key fact we are going to use is that the number of possible roots of
optimum-depth elimination forests of a connected graph is bounded in terms of the treedepth [18, 19, 31].

We need a definition.

Definition 5.2.2. We say that a graph G is a minimal obstruction for treedepth d if td(G) > d, but
td(G− v) ≤ d for each v ∈ V (G).

Dvořák et al. [31] proved that every minimal obstruction for treedepth d satisfies |V (G)| ≤ 22d−1

. This
bound was later on improved by Chen et al. [18, 19] to dO(d), as we showed in Chapter 4. An easy consequence
of these facts is the following:

Lemma 5.2.3. Suppose G is a graph whose treedepth is equal to d. Then there are at most dO(d) vertices
v ∈ V (G) such that td(G− v) < d.

Proof. Let G′ be an inclusion-wise minimal induced subgraph of G satisfying td(G′) = d. By minimality, G′
is a minimal obstruction for treedepth d− 1. So by the result of Chen et al. [18, 19], |V (G′)| ∈ dO(d). Note
that for every v ∈ V (G) \ V (G′) we have td(G − v) = d, for in such case G − v contains G′ as an induced
subgraph and td(G′) = d. So, the number of vertices v satisfying td(G − v) < d is bounded by |V (G′)|,
which in turn is bounded by dO(d).

Note that any improvement in the upper bound on the sizes of obstructions entails an analogous improve-
ment in the bound of Lemma 5.2.3. Let us point out that improvement of this bound from Chapter 4 was
crucial, as otherwise we would not achieve desired complexity. Also observe that supposing G is connected,
vertices v satisfying td(G − v) < td(G) are exactly those that can be placed as roots of an optimum-depth
elimination tree.

As the next step, we are going to modify the procedure CountElimTrees(G,T, d) by introducing weights.
Let G be a connected graph. Enumerate vertices of G as V (G) = {v1, . . . , vn} and let ti be the number of
elimination trees of G that are sensible with respect to T and in which vi is the root. Then the result of
CountElimTrees(G,T, d) can be expressed as t1 + t2 + . . .+ tn. However, with a slight modification, we are
able to compute t1µ1 + t2µ2 + . . .+ tnµn for any sequence µ1, µ2, . . . , µn ∈ Z. In order to do so, we change
the formula from Lemma 5.1.5 to the following:

f(u,K, φ,A) =
∑
v∈A

x · g(u,K, φ[u→ v], A) · µ(u, v)+

∑
w∈K

d−depth(w)∑
p=1

1

xp−1∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(u,K[w,w1, . . . , wp], φ[u→ wp], A ∪B ∪ {wp}),

where

µ(vi, u) =

{
µi if u is the root of K,
1 otherwise.

Similarly, we adjust the formula for the polynomial h:

h =

d∑
p=1

1

xp−1

∑
B⊆{w1,...,wp−1}

(−1)p−1−|B|g(r, [w1, . . . , wp], [r → wp], B ∪ {wp}) · µ(r, wp)

(wp is the root of the path [w1, . . . , wp] if and only if p = 1).
Naturally, the definition of f(·, ·, ·, ·) and g(·, ·, ·, ·) change as well. Instead of simply counting monsters

in a weighted fashion so that the contribution of every monster to the sum is the product of numbers µi over
all vi-s that were mapped onto the root in the monster (the empty product is assumed to be equal to 1).
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However, we already know that the contribution of each monster that is not a valid elimination tree cancels
out, so only valid elimination trees remain in the final result. For these, exactly one vertex was mapped
to the root of the generalized elimination tree, hence the contribution of each such elimination tree is µi
instead of 1, where vi is the vertex that is mapped to the root. All in all, the final result is indeed equal to∑n
i=1 tiµi, as claimed.
Assume wishfully that there is exactly one vertex vi ∈ V (G) that could serve as the root of an elimination

tree of G of depth d; equivalently, vi is the only vertex such that td(G−vi) < d. In other words, tj is nonzero
if and only if i = j. Note that in such case we have i =

∑n
j=1 j·tj∑n
j=1 tj

. The denominator of this expression is
simply the number of all elimination trees of G of depth at most d that are sensible with respect to T , while
the numerator is the result of the modified version of CountElimTrees where we set µj = j for all j ∈ [n].
Hence, we can find i (that is: pinpoint the unique root) by dividing the outcomes of two calls to weighted
CountElimTrees, instead of calling CountElimTrees n times, as we did previously. Note that such division
can be performed both in Z and in Zp for any prime p, unless the denominator is zero. In case of Zp, it takes
O(log p) arithmetic operations to compute modular inverse, which unfortunately poses a technical challenge
in the time complexity analysis: if applied without care, it would lead to the increase of time complexity to
O(n log n) time, because we would perform a linear number of divisions in Zp. This issue will be resolved in
the final time complexity analysis, so let us ignore it for now.

Next, we lift the assumption about the uniqueness of the candidate for the root of an elimination tree.
There are two key ingredients here. The first one is Lemma 5.2.3, which bounds the number of possible
candidate roots for elimination trees of optimum depth. The second one is the color coding technique.

Suppose td(G) = d. We can do so, as we enter that part of the algorithm only if td(G) ≤ d and we
can determine td(G) by calling CountElimTrees(G,T, d′) for d′ = 1, 2, . . . , d and set d as the smallest value
of d′ where it returns a nonzero value, which will be equal to td(G) (assuming we did not encounter a
false negative). We can also assume that G is connected as otherwise we can make a separate call on each
connected component. Let R be the set of vertices that are potential roots of optimum-depth elimination
trees of G; that is, v ∈ R if and only if td(G − v) < d. Then, Lemma 5.2.3 implies that |R| ∈ dO(d), and
obviously, we have |R| ≥ 1. Let B ∈ dO(d) be the specific bound stemming from Lemma 5.2.3. Consider a
random coloring of V (G) with B colors, that is, a function C : V (G)→ [B] where each vertex is independently
and uniformly mapped to a random number from [B]. We note the following: (here, e is the Euler’s number)

Lemma 5.2.4. With probability at least 1
e there is a color c ∈ [B] such that |R ∩ C−1(c)| = 1.

Proof. Let v be any vertex from R (recall that R is nonempty). If all other vertices from R have colors
different from that of v, then C(v) is a color fulfilling the desired property. This happens with probability(

1− 1

B

)|R|−1

≥
(

1− 1

B

)B−1

=
1(

1 + 1
B−1

)B−1
≥ 1

e
.

For each c ∈ [B] we do the following. Create a sequence X = (x1, . . . , xn), where xi = 1 if C(vi) = c
and xi = 0 otherwise, and a sequence Y = (y1, . . . , yn), where yi = i if C(vi) = c and yi = 0 otherwise.
Then, we call the modified version of CountElimTrees, where X is supplied as the sequence µ1, . . . , µn, and
then call it again with Y instead of X. Similarly as in the case of unique candidates for a root from the
previous paragraph, the number i :=

∑n
j=1 tj ·yj∑n
j=1 tj ·xj

will be the index of a possible root, provided that there exists

exactly one possible root with that color. If the denominator of that expression is nonzero, i ∈ C−1(c), and
td(G− vi) = d− 1, then we are sure that vi ∈ R. If we do not succeed in finding any member of R for any
color c in this way, we repeat the procedure with a different coloring until we find one. As we execute this
part of the algorithm only if R is nonempty, by Lemma 5.2.4, the expected number of colorings we need to
try until we discover a member of R is at most e.

As checking each coloring takes at most 3B ∈ dO(d) executions of the modified version of CountElimTrees,
identifying any possible root of an optimum-depth elimination tree takes expected 2O(d2) · n time. After
identifying one, we remove it from the graph, partition the remaining part into connected components (and

46



appropriately distribute the elimination tree T into elimination trees of connected components). and recurse
for each connected component. After that, we connect roots of elimination trees returned from recursive
calls as children of the root found on this level, obtaining an elimination tree for the whole G. There will be
at most d recursion levels and the total size of graphs on each level is at most n, hence the expected total
work that CountElimTrees calls will perform will be 2O(d2) · n as well. However, as mentioned before, this
does not include the time needed for divisions in Zp and we defer this analysis to a later part.

5.2.3 Replacing iterative compression
Finally, we replace the iterative compression scheme with a technique proposed by Bodlaender in his linear-
time FPT algorithm to compute the treewidth of a graph [6]. The main part of this technique was succinctly
encapsulated in [7, Lemma 2.7]. We need a few definitions.

Definition 5.2.5. For a graph G and an integer d, the d-improved graph of G, denoted G〈d〉, is the graph
obtained from G by adding an edge between every pair of vertices that are non-adjacent, but have at least
d+ 1 common neighbours of degree at most d in G.

We note the following.

Lemma 5.2.6. For every graph G and integer d, we have td(G) ≤ d if and only if td(G〈d〉) ≤ d.

Proof. The right-to-left implication is obvious, so we need to prove that if td(G) ≤ d, then td(G〈d〉) ≤ d.
Let F be an elimination forest of G of depth at most d. We claim that F is also an elimination forest of
td(G〈d〉). Suppose otherwise. Then there are vertices u, v ∈ V (G) such that AncF (u, v) does not hold, while
uv is an edge in G〈d〉. Since F is an elimination forest of G, u and v are non-adjacent in G but have at least
d+ 1 common neighbors. However, as AncF (u, v) does not hold, every common neighbor of u and v belongs
to tailF (u) ∩ tailF (v), which is a set of cardinality smaller than d. This is a contradiction.

Recall that we are given an n-vertex graph G and we would like to construct an elimination forest of G
of depth at most d, or conclude that td(G) > d. It is well-known that an n-vertex graph of treedepth at
most d has at most dn edges, hence we may assume that |E(G)| ≤ dn; otherwise we immediately provide a
negative answer. In that case, as proved by Bodlaender [6], the d-improved graph G〈d〉 can be computed in
time dO(1) · n using radix sort. We call a vertex v of G d-improved-simplicial if the neighbourhood NG〈d〉 [v]
is a clique in G〈d〉. Note that if in G〈d〉 there is a clique of size at least d + 1, then td(G〈d〉) > d, which in
turn implies that td(G) > d due to Lemma 5.2.6.

We now recall the aforementioned statement from [7].

Lemma 5.2.7 (Lemma 2.7 of [7]). There is an algorithm working in time dO(1) · n time that, given an
n-vertex graph G and an integer d, either

1. returns a maximal matching in G of cardinality at least n
O(d6) , or,

2. returns a set of at least n
O(d6) d-improved-simplicial vertices, or

3. correctly concludes that the treewidth of G is larger than d.

With the lemma stated, we are ready to optimize the way we use ConstructElimForest in order to
construct an elimination forest of G.

We define a procedure Solve(G, d) that for a graph G and an integer d, either reports that td(G) > d
or provides an elimination forest of G of depth at most d. If G consists of a single vertex, we return it as
a valid elimination forest of depth 1, so we assume that |V (G)| > 1 from now on. As the very first step,
we check if |E(G)| ≤ dn. As argued, if this is not the case, then we report that td(G) > d and terminate.
Otherwise, we apply the algorithm of Lemma 5.2.7 with G and d as an input. If it reports that tw(G) > d,
then this implies that also td(G) > d, so this conclusion can be reported and the procedure terminated.

Next, suppose the procedure returns a matching M of size at least n
O(d6) . Contract all edges of M ,

thus obtaining a new graph GM as a result. Call Solve(GM , d). Note that if this procedure returned
that td(GM ) > d, then we also have td(G) > d, because GM is a minor of G and treedepth is monotone
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under taking minors. Therefore, we may assume that we have obtained an elimination forest F ′ of GM
of depth at most d. We can now easily transform F ′ into an elimination forest F ′′ of G of depth at most
2d, by replacing every vertex obtained from the contraction of an edge of M by the two endpoints of this
edge (these two vertices are put in place of the contracted as a parent and a child). Then, we may call
ConstructElimForest(G,F ′′, d) to either conclude that whether td(G) > d, to construct an elimination
forest of G of depth at most d.

Finally, suppose the procedure of Lemma 5.2.7 returned a set A consisting of at least n
O(d6) d-improved-

simplicial vertices. We compute G〈d〉 and call Solve(G〈d〉 \ A, d). If this call reports that td(G〈d〉 \ A) > d,
then by Lemma 5.2.6 we also have td(G) > d, hence we can return this conclusion and terminate the
algorithm. Otherwise, we have an elimination forest F ′ of G〈d〉 \ A of depth at most d. We order A
arbitrarily as v1, . . . , va and process these vertices one by one. We shall iteratively construct F0, F1, . . . , Fa,
where each Fi is an elimination forest of G \ {vi+1, . . . , va}. We set F0 to be F . Now, we argue how Fi can
be constructed from Fi−1, for i = 1, 2, . . . , a. Since vi is d-improved-simplicial in G, the neighbourhood in
G〈d〉 \ {vi+1, . . . , va} is a clique (we may assume that this clique has size smaller than d, for otherwise it is
safe to conclude that td(G〈d〉) > d, implying td(G) > d). This implies that all the neighbors of vi in this
graph lie on some root-to-leaf path in Fi−1. We can easily see that if we take the neighbor that is the lowest
in Fi−1 and attach vi as its child, what we get as a result is a valid elimination forest of G〈d〉 \ {vi+1, . . . , va}
and we may call it Fi. This way, we can compute Fa from F in time dO(1) · n, and such Fa is a valid
elimination forest of G〈d〉. We claim that if the depth of Fa is larger than 2d then td(G) > d. Suppose so and
take any u such that depthFa

(u) = 2d+ 1. Let u1, u2, . . . , u2d+1 be the path from the root to u in Fa, where
u2d+1 = u. Note that since the depth of F is at most d, the vertices ud+1, ud+2, . . . , u2d+1 were all added
in the process of obtaining Fa from F0, meaning that they are all d-improved-simplicial in G and pairwise
adjacent. In particular, ud+1, ud+2, . . . , u2d+1 is a clique of size d+ 1 in G〈d〉, implying td(G〈d〉) > d, which
in turn implies that td(G) > d; so it is safe to return this conclusion then. Otherwise, we have obtained an
elimination forest Fa of G of depth at most 2d. It now remains to call ConstructElimForest(G,Fa, d) to
either conclude that td(G) ≤ d, or construct an elimination forest of G of depth at most d.

In short, the size of our graph shrinks by a constant factor with each recursive call, hence we improve
the running time by a factor of n. We perform more detailed analysis in the next section.

5.2.4 Detailed specification and the analysis of the time and space complexity

Throughout previous subsections we introduced a series of modifications to the deterministic algorithm from
Theorem 1.1.10 in order to improve the nO(1) factor to n. However, as there are nontrivial dependencies be-
tween these improvements and interplays between various sources of randomness, some details were omitted.
Only now that we have an overall view of modifications, we may fully specify and analyze the algorithm. In
this section we assume that n always denotes the number of vertices of the original input graph, while r de-
notes the number of vertices of a graph that was passed to either CountElimTrees or ConstructElimForest
in some recursive call.

Each call of the modified version of CountElimTrees is computed in a ring Zm for some number m. If m
is prime, then Zm can be equipped with a division operation so that it becomes the field Fm. We promise
that it will always hold that m ∈ nO(d), hence the bitsizes of all numbers present in the computation will
never be larger than O(d log n). Hence, additions, subtractions and multiplications on such numbers take
dO(1) time and space in the RAM model.

For the unweighted version of CountElimTrees, Lemma 5.1.7 shows the bound of (dk ·2d)r for all numbers
present in the computation when performed on a graph with r vertices. However, with the introduction of
weights, this bound grows into (Wdk ·2d)r, whereW is the maximum supplied weight. After the appropriate
renumeration of vertices in each recursive call, we can assume thatW ≤ r, which gives a bound of (rdk·2d)r on
the numbers present in the computation. Interestingly enough, even though intermediate numbers present
in the computation of weighted CountElimTrees can be as large as rr, the final result

∑r
i=1 tiµi can be

bounded more efficiently. Namely, we have
∑r
i=1 tiµi ≤W

∑r
i=1 ti and we already know from Lemma 5.1.7

that
∑r
i=1 ti ≤ (dk · 2d)r. Hence the outcomes returned by the weighted version of CountElimTrees are
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bounded by r(dk · 2d)r.
We need to specify what numbers m we use as moduli in CountElimTrees. On one hand, we want to

use large numbers, so that probabilities of errors are small. On the other hand, we need to deal with the
issue of modular division cost potentially worsening our complexity to O(n log n). The idea to deal with it
is to distinguish two cases based on whether r is large or small. If r is large, the division cost will not be
larger than the cost of CountElimTrees. If r is small, then the bound on the result is sufficiently small so
that performing the whole computation without hashing modulo a large prime (almost) fits into the RAM
model and provides a true outcome at the end.

More specifically, we distinguish two cases:

1. r ≥ log2 n

In that case, we use as m the random prime p that we drew at the beginning from the interval (A, 2A),
where A = max(L, n525Cd2). We have logm ∈ dO(1) +O(log n) and the bound we use for the running
time of the call to CountElimTrees is 2O(d2)r. As a consequence, calling a modular inverse taking
logm · dO(1) time does not worsen the time complexity, as logm · dO(1) ⊆ 2O(d2)r.

2. r < log2 n

In that case we use r(dk · 2d)r + 1 as m. In all our calls k = O(d), hence numbers of this magnitude
will have bitsize O(d log n), so again, arithmetic operations on them can be performed in dO(1) time
in the RAM model. As explained before, even though true numbers that would be present in the
computations could hypothetically exceed the value of m, the final result will not, hence the result
modulo m is equal to the true result. In other words (

∑r
i=1 tiµi) mod m =

∑r
i=1 tiµi. Because of

that, the division
∑r

i=1 ti·i∑r
i=1 ti

can be performed on ordinary integers instead of on their moduli, and it
takes dO(1) time instead of O(log n) time. We note that if this division does not result in an integer
number, we already know that the we did not succeed in finding a candidate for a root in this color
and we may continue to search within other colors. We also note that there is no randomness in this
case, the output of this case is always correct.

The expected total cost of divisions in the first case is not larger than the work that CountElimTrees per-
forms, hence it can be bounded by 2O(d2)n. Because the expected number of CountElimTrees calls is dO(d)n,
and the expected total cost of divisions in the second case is dO(d)n as well. As such, we conclude that the
expected total cost of divisions is 2O(d2)n too. Therefore, the expected time that one ConstructElimForest
call takes on the graph on n vertices is 2O(d2)n.

In the next step, we come back to the time and space complexity analysis of the recursive scheme that
replaced iterative compression technique. As for the time complexity, in both non-trivial cases we make a
single recursive call on a graph with n(1 − 1

O(d6) ) vertices, and perform additional work taking expected

2O(d2) · n time. Hence the expected time complexity T (n, d) can be bounded using recurrence

T (n, d) ≤ T
(
n

(
1− 1

O(d6)

)
, d

)
+ 2O(d2) · n.

As in [6], this recurrence solves to T (n, d) = 2O(d2) · n, because unraveling the recursion results in a
geometric series. As for the space complexity, we have argued that both ConstructElimForest and internal
computation of Solve(G, d) use dO(1) · n space. Therefore, the space complexity S(n, d) can be bounded
using recurrence

S(n, d) ≤ S
(
n

(
1− 1

O(d6)

)
, d

)
+ dO(1) · n,

which again solves to S(n, d) = dO(1) · n.
In order to conclude, we need to bound the error probability. We recall that the randomness stemming

from color coding and drawing a random prime is of type Las Vegas, that is, there is a possibility that
the algorithm runs indefinitely long, but there are no errors that this randomness introduces. By using
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Markov’s inequality we know that there is at most 1
n chance that our algorithm takes time that is at least

n times longer than its expected execution time, hence with at least n−1
n probability there will be at most

2O(d2)n2 calls to CountElimTrees. As argued before, the errors stem only from cases where the true result
of CountElimTrees should be nonzero, but becomes zero as a result of unluckily chosen modulo m. The
probability of that happening for a particular call is at most 1

2Cd2n3
for any constant C of our choice. By

using the union bound, we conclude that the probability that we never encounter any error of this type is at
least n−1

n −
2O(d2)n2

2Cd2n3
≥ n−2

n , for any sufficiently large C. We remark that the errors are of the false negative
type, that is, if an elimination forest is returned, it is guaranteed to a be a valid elimination forest of depth at
most d. This concludes the description of the procedure Solve(G, d) and the analysis of its time complexity,
space complexity, and the probability of correctness.
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Chapter 6

Excluded-minor theorem for pathwidth

In this Chapter we are going to discuss polynomial excluded-minor theorem for pathwidth. More specifically,
we are going to prove Theorem 1.2.2.

Theorem 1.2.2. Every graph with treewidth t− 1 has pathwidth at most th+ 1 or contains a subdivision of
a complete binary tree of height h+ 1.

First, we will make necessary preparations for that, then we are going to prove this Theorem, show its
tightness and then discuss related work.

6.1 Basic tools

6.1.1 Witnesses for Large Pathwidth
Recall that (Th)∞h=0 is the sequence of classes of graphs defined inductively as follows: T0 is the class of all
connected graphs, and Th+1 is the class of connected graphs G that contain three pairwise disjoint sets of
vertices V1, V2, and V3 such that G[V1], G[V2], G[V3] ∈ Th and any two of V1, V2, and V3 can be connected in
G by a path avoiding the third one.

A Th-witness for a graph G ∈ Th is a complete ternary tree of height h of subsets of V (G) defined
inductively following the definition of Th. The T0-witness for a connected graph G is the tree with the single
node V (G), denoted by 〈V (G)〉. A Th+1-witness for a graph G ∈ Th+1 is a tree with root V (G) and with
three subtrees W1,W2,W3 of the root that are Th-witnesses of G[V1], G[V2], G[V3] for some sets V1, V2, V3 as
in the definition of Th+1; it is denoted by 〈V (G);W1,W2,W3〉.

It clearly follows from these definitions that every graph in Th has at least 3h vertices and every Th-witness
of an n-vertex graph has O(n) nodes. The next two lemmas explain the connection of Th to pathwidth and
to subdivisions of complete binary trees.

Lemma 6.1.1. If G ∈ Th, then pw(G) ≥ h.

Proof. The proof goes by induction on h. The case h = 0 is trivial. Now, assume that h ≥ 1 and the lemma
holds for h− 1. Since G ∈ Th, there are sets V1, V2, V3 ⊆ V (G) interconnected as in the definition of Th, such
that G[Vi] ∈ Th−1 and thus pw(G[Vi]) ≥ h − 1 for i = 1, 2, 3. Let P be a path decomposition of G. With
bags restricted to Vi, it becomes a path decomposition of G[Vi]. It follows that for i = 1, 2, 3, there is a bag
Bi in P such that |Bi ∩ Vi| ≥ h. Assume without loss of generality that B1, B2, B3 occur in this order in P .
Since G[V1] and G[V3] are connected, there is a path that connects B1 ∩ V1 and B3 ∩ V3 in G avoiding V2.
This path must have a vertex in B2, so |B2 \ V2| ≥ 1 and thus |B2| ≥ h+1. This proves that pw(G) ≥ h.

The proof of Lemma 6.1.1 generalizes the well-known proof of the fact that (a subdivision of) a complete
binary tree of height h has pathwidth at least dh/2e. Actually, it is straightforward to show that such a tree
belongs to Tdh/2e.
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Lemma 6.1.2. If G ∈ Th, then G contains a subdivision of a complete binary tree of height h as a subgraph.
Moreover, it can be computed in polynomial time from a Th-witness for G.

Proof. We prove, by induction on h, that for every graph G ∈ Th and every v ∈ V (G), the following structure
exists in G: a subdivision S of a complete binary tree of height h with some root r and a path P from v to
r such that V (P )∩V (S) = {r}. This is trivial for h = 0. For the induction step, assume that h ≥ 1 and the
statement holds for h − 1. Let G ∈ Th and v ∈ V (G). Let V1, V2, V3 ⊆ V (G) be as in the definition of Th.
Assume without loss of generality that v ∈ V3 or v can be connected with V3 by a path in G avoiding V1∪V2.
For i = 1, 2, since G[V3] is connected and G has a path connecting Vi with V3 and avoiding V3−i, there is also
a path in G from v to some vertex vi ∈ Vi avoiding V1∪V2\{vi}. These paths can be chosen so that they first
follow a common path P from v to some vertex r in G− (V1 ∪V2) and then they split into a path Q1 from r
to v1 and a path Q2 from r to v2 so that r is the only common vertex of any two of P,Q1, Q2. For i = 1, 2,
the induction hypothesis provides an appropriate structure in G[Vi]: a subdivision Si of a complete binary
tree of height h− 1 with root ri and a path Pi from vi to ri such that V (Pi) ∩ V (Si) = {ri}. Connecting r
with S1 and S2 by the combined paths Q1P1 and Q2P2, respectively, yields a subdivision S of a complete
binary tree of height h with root r in G. The construction guarantees that V (P ) ∩ V (S) = {r}.

Clearly, given a Th-witness for G, the induction step described above can be performed in polynomial
time, and therefore the full recursive procedure of computing a subdivision of a complete binary tree of
height h in G works in polynomial time.

6.1.2 Combining Path Decompositions

The following lemma will be used several times in the paper to combine path decompositions.

Lemma 6.1.3. Let G be a graph and (T, {Bx}x∈V (T )) be a tree decomposition of G of width t− 1.

1. If q ∈ V (T ) and every connected component of G− Bq has pathwidth at most `, then there is a path
decomposition of G of width at most `+ t which contains Bq in every bag.

2. If Q is the path connecting x and y in T and every connected component of G −
⋃
q∈V (Q)Bq has

pathwidth at most `, then there is a path decomposition of G of width at most `+ t which contains Bx
in the first bag and By in the last bag.

In either case, there is a polynomial-time algorithm to construct such a path decomposition of G from the
path decompositions of the respective components C of width at most `.

Proof. In case 1, the path decomposition of G is obtained by concatenating the path decompositions of the
connected components of G−Bq (which have width at most `) and adding Bq to every bag. Now, consider
case 2. For every node q of Q, let Tq be the subtree of T induced on the nodes z such that the path from
q to z in T contains no other nodes of Q, and let Vq =

⋃
z∈V (Tq)Bz. Apply case 1 to the graph G[Vq], the

tree decomposition (Tq, {Bz}z∈V (Tq)) of G[Vq], and the node q ∈ V (Tq) to obtain a path decomposition of
G[Vq] of width at most ` + t containing Bq in every bag. Then, concatenate the path decompositions thus
obtained for all nodes q of Q (in the order they occur on Q) to obtain a requested path decomposition of
G.

6.2 Proof of Theorem 1.2.2

The statement of Theorem 1.2.2 on a graph G follows from the same statement on every connected component
of G. By Lemma 6.1.2, every graph in Th contains a subdivision of a complete binary tree of height h. Thus,
Theorem 1.2.2 is a direct corollary to the following statement.

Theorem 6.2.1. For every h ∈ N, every connected graph with treewidth at most t−1 has pathwidth at most
th+ 1 or belongs to Th+1.
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A tree decomposition of G is optimal if its width is equal to tw(G). For the proof of Theorem 6.2.1, we
need optimal tree decompositions with an additional property. Namely, consider a connected graph G and
a tree decomposition (T, {Bx}x∈V (T )) of G. Every edge xy of T splits T into two subtrees: Tx|y containing
x and Ty|x containing y. For every oriented edge xy of T , let Gx|y denote the subgraph of G induced on the
union of the bags of the nodes in Tx|y. The property we need is that every subgraph of the form Gx|y is
connected. It is known that such a tree decomposition always exists [37], but for completeness, we present
a short proof of this fact in the following lemma.

Lemma 6.2.2. Every connected graph G has an optimal tree decomposition (T, {Bx}x∈V (T )) with the prop-
erty that Gx|y is connected for every oriented edge xy of T .

Proof. Let t = tw(G) + 1. The fatness of an optimal tree decomposition (T, {Bx}x∈V (T )) of G is the t-tuple
(k0, . . . , kt−1) such that ki is the number of bags Bx of size t − i. Let (T, {Bx}x∈V (T )) be an optimal tree
decomposition of G with lexicographically minimum fatness. (The idea of taking such a tree decomposition
comes from the proof of existence of optimal “lean” tree decompositions due to Bellenbaum and Diestel [4,
Theorem 3.1].) We show that it has the required property.

Suppose it does not. Let xy be an edge of T such that Gx|y is disconnected and the number of nodes in
the subtree Tx|y of T is minimized. Let C be the family of connected components of Gx|y, so that |C| ≥ 2.
Let Z = NT (x) \ {y}. For every node z ∈ Z, let Cz be the connected component of Gx|y that contains Gz|x,
which exists because the choice of xy guarantees that Gz|x is connected.

We modify (T, {Bx}x∈V (T )) into a new tree decomposition of G as follows. We keep all nodes other than
x (with their bags Bx) and all edges non-incident to x. We replace the node x by |C| nodes xC with bags
BxC

= Bx ∩ V (C) for each C ∈ C. We replace the edge xy by |C| edges xCy for each C ∈ C, and we replace
the edge xz by an edge xCz

z for each z ∈ Z. It is straightforward to verify that what we obtain is indeed a
tree decomposition of G and it has width t.

Since G is connected, we have BxC
= Bx ∩ V (C) 6= ∅ for every C ∈ C. This and the assumption that

|C| ≥ 2 imply that |BxC
| < |Bx| for all C ∈ C. We conclude that the fatness of the new tree decomposition is

lexicographically less than the fatness of (T, {Bx}x∈V (T )), which contradicts the assumption that the latter
is lexicographically minimal.

Proof of Theorem 6.2.1. The proof goes by induction on h. The statement is true for h = 0: if a connected
graph G has a cycle or a vertex of degree at least 3, then G ∈ T1, and otherwise G is a path, so pw(G) ≤ 1.
For the rest of the proof, assume that h ≥ 1 and the statement is true for h− 1.

Let G be a connected graph width treewidth at most t − 1 and (T, {Bx}x∈V (T )) be an optimal tree
decomposition of G obtained from Lemma 6.2.2. Thus |Bx| ≤ t for every node x of T and Gx|y is connected
for every oriented edge xy of T . For every oriented edge xy of T , let Fx|y be the subgraph of G induced on
the vertices not in Gy|x, that is, on the vertices that belong only to bags in Tx|y and to no other bags. Let
E be the set of edges xy of T such that both Fx|y and Fy|x have a connected component belonging to Th.

Suppose E = ∅. It follows that every pair of trees of the form Tx|y such that Fx|y has a connected
component in Th has a common node. This implies that all such trees have a common node, say z, by the
well-known fact that subtrees of a tree have the Helly property [49, Theorem 4.1]. For every neighbor y of z in
T and every connected component C of Fy|z, since C /∈ Th, the induction hypothesis gives pw(C) ≤ t(h−1)+1.
Lemma 6.1.3 1 applied with q = z yields pw(G) ≤ th+ 1.

For the rest of the proof, assume E 6= ∅. Since every connected supergraph of a graph from Th belongs
to Th, the set E is the edge set of some subtree K of T . Let Z be the set of leaves of K. Since K has at
least one edge, we have |Z| ≥ 2.

Suppose |Z| ≥ 3. Choose any distinct z1, z2, z3 ∈ Z. For each i ∈ {1, 2, 3}, let Ci be a connected
component of Fzi|xi

that belongs to Th, where xi is the unique neighbor of zi in K. For each i ∈ {1, 2, 3},
the subgraph Gxi|zi is connected, is vertex-disjoint from Ci, and contains the other two of C1, C2, and C3.
Consequently, any two of the sets V (C1), V (C2), and V (C3) can be connected by a path in G avoiding the
third one. This shows that G ∈ Th+1.
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Now, suppose |Z| = 2. It follows that K is a path x1 . . . xm, where Z = {x1, xm}. For every node xi of
K, every neighbor y of xi in T −K, and every connected component C of Fy|xi

, since C /∈ Th, the induction
hypothesis gives pw(C) ≤ t(h− 1) + 1. Lemma 6.1.3 2 applied with Q = K yields pw(G) ≤ th+ 1.

6.3 Tightness
Theorem 1.2.2 asserts that every graph with pathwidth at least th+ 2 has treewidth at least t or contains a
subdivision of a complete binary tree of height h+ 1. While this statement is true for all positive integers t
and h, we remark that the interesting case is when h > log2 t− 2. Indeed, if h ≤ log2 t− 2, then the second
outcome is known to hold for every graph with pathwidth at least t; this follows from a result of Bienstock,
Robertson, Seymour, and Thomas [5].1 We now show that Theorem 1.2.2 is tight up to a multiplicative
factor when h > log2 t− 2.

Theorem 6.3.1. For any positive integers t and h, there is a graph with treewidth t and pathwidth at least
t(h+ 1)− 1 that contains no subdivision of a complete binary tree of height 3 max(h+ 1, dlog2 te).

Fix a positive integer t. For a tree T , let T (t) be a graph obtained from T by replacing every node of
T with a clique on t vertices and replacing every edge of T with an arbitrary perfect matching between
the corresponding cliques. For h ∈ N, let Th be a complete ternary tree of height h. The following three
claims show that the graph T (t)

h satisfies the three conditions requested in Theorem 6.3.1, thus proving that
Theorem 6.3.1 holds for T (t)

h .

Claim 6.3.2. If T is a tree on at least two vertices, then tw(T (t)) = t.

Proof. For each node x of T , let Bx be the clique of t vertices in T (t) corresponding to x. A tree decomposition
of T (t) of width t is obtained from T by taking Bx as the bag of every node x of T and by subdividing every
edge xy of T into a path of length t + 1 with the following sequence of bags, assuming that the vertices
u1, . . . , ut in Bx are matched to v1, . . . , vt in By, respectively:

{u1, . . . , ut}, {u1, . . . , ut} ∪ {v1}, {u2, . . . , ut} ∪ {v1, v2}, . . . , {ut} ∪ {v1, . . . , vt}, {v1, . . . , vt}.

This way, for every matching edge uivi with 1 ≤ i ≤ t, there is a bag containing its two endpoints. Conse-
quently, this is a valid tree decomposition of T (t) with bags of size at most t+ 1.

For the proof that tw(T (t)) ≥ t, let xy be an edge of T , and assume that the vertices u1, . . . , ut of Bx
are matched to v1, . . . , vt in By, respectively, as before. In any tree decomposition of T (t), there is a node x′
whose bag contains the clique Bx and a node y′ whose bag contains the clique By. Walk on the path from
x′ to y′ and stop at the first node whose bag contains some vertex in By. This bag must also contain all of
Bx, so it has size at least t+ 1.

Claim 6.3.3. For every h ∈ N, we have pw(T (t)
h ) ≥ t(h+ 1)− 1.

Proof. We define the root clique of T (t)
h as the clique in T (t)

h corresponding to the root of Th. We prove the
following slightly stronger statement, by induction on h: in every path decomposition of T (t)

h , there are a
bag B of size at least t(h+ 1) and t vertex-disjoint paths in T (t)

h each having one endpoint in the root clique
and the other endpoint in B.

For the base case h = 0, the graph T (t)
0 is simply a complete graph on t vertices, and the statement

is trivial. For the induction step, assume that h ≥ 1 and the statement is true for h − 1. Let R be the
root clique of T (t)

h . Let (P, {Bx}x∈V (P )) be a path decomposition of T (t)
h of minimum width. The graph

T (t)
h −R has three connected components C1, C2, and C3 that are copies of T (t)

h−1 with root cliques R1, R2,
and R3, respectively. For each i ∈ {1, 2, 3}, the induction hypothesis applied to the path decomposition
(P, {Bx ∩ V (Ci)}x∈V (P )) of Ci provides a node xi of P such that

1In [5], it is proved that for every forest F , graphs with no F minors have pathwidth at most |V (F )| − 2. In particular, if G
contains no subdivision of a complete binary tree of height h+ 1, then pw(G) < 2h+2 ≤ t.
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• |Bxi ∩ V (Ci)| ≥ th, and

• there are t vertex-disjoint paths in Ci between Bxi
∩ V (Ci) and the root clique Ri of Ci.

Assume without a loss of generality that the node x2 occurs between x1 and x3 on P . We prove the induction
statement for B = Bx2

.
For each i ∈ {1, 2, 3}, we take the t vertex-disjoint paths from Bxi to Ri in Ci and extend them by the

matching between Ri and R to obtain t vertex-disjoint paths from Bxi to R in T (t)
h [R∪V (Ci)]. In particular,

there are t vertex-disjoint paths from Bx2
to R in T (t)

h , as required in the induction statement. Since |R| = t,
the t paths from Bx1

to R and the t paths from Bx3
to R together form t vertex-disjoint paths from Bx1

to
Bx3

in T (t)
h [V (C1) ∪ R ∪ V (C3)], which therefore avoid V (C2). Since x2 lies between x1 and x3 on P , the

set Bx2 \ V (C2) must contain at least one vertex from each of these t paths. Thus |Bx2 \ V (C2)| ≥ t. Since
|Bx2 ∩ V (C2)| ≥ th, we conclude that |Bx2 | ≥ t(h+ 1), as required in the induction statement.

Claim 6.3.4. For any h ∈ N, the graph T (t)
h contains no subdivision of a complete binary tree of height

3 max(h+ 1, dlog2 te).

Proof. A simple calculation shows that Th has 3h+1−1
2 nodes. Thus |V (T (t)

h )|+ 1 ≤ 3h+1t and so

log2

(
|V (T (t)

h )|+ 1
)
≤ log2(3h+1t) ≤ 3 max(h+ 1, dlog2 te).

If a graph G contains a subdivision of a complete binary tree of height c, then |V (G)| ≥ 2c+1 − 1 and so
log2(|V (G)| + 1) ≥ c + 1. Therefore, T (t)

h cannot contain a subdivision of a complete binary tree of height
3 max(h+ 1, dlog2 te).

6.4 Related work
In Theorem 1.2.2, we bound pathwidth by a function of treewidth in the absence of a subdivision of a large
complete binary tree. In Corollary 1.1.5, we bound treedepth by a function of treewidth in the absence of a
subdivision of a large complete binary tree and of a long path. Specifically, it is easy to generalize its proof
to a slightly more general version:

Theorem 6.4.1. Every graph with treewidth t that contains no subdivision of a complete binary tree of
height h and no path of order 2` has treedepth O(th`).

It is natural to ask how large treedepth can be as a function of pathwidth when there is no long path.
We offered the following conjecture.

Conjecture 6.4.2. Every graph with pathwidth p that contains no path of order 2` has treedepth O(p`).

We are happy to report that this conjecture was recently resolved positively by Hatzel et al. [45].
This conjecture and Theorem 1.2.2 directly imply Theorem 6.4.1 offering an alternative proof (proof from

[26] results in better constants though).
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Chapter 7

Maximum average degree results

In this Chapter we will focus on the notion of mad or maximum average degree. Let us recall the main result,
Theorem 1.3.1.

Theorem 1.3.1. For every undirected simple graph G and a positive integer k such that mad(G) ≥ k there
exists S ⊆ V (G) such that G[S] is (k− 1)-degenerate and mad(G− S) ≤ mad(G)− k. Moreover such S can
be computed in polynomial time.

First, we are going to prove this theorem and then we are going to discuss its multiple consequences.

7.1 Proof of Theorem 1.3.1

In order to prove Theorem 1.3.1 we are going to investigate a flow network that allows us to determine the
value of mad in polynomial time. An example of such network can be found in [40], however we are going
to use one adjusted to our own use.

Let us define a flow network F (G, c) for given undirected graph G and any nonnegative real number c.
The network will consist of one node for each v ∈ V (G), one node for each e ∈ E(G) denoted as ve and two
special nodes s and t, respectively source and sink. There will be three layers of directed edges in F (G, c):

• The first layer – Edges of capacity one from s to each node ve.

• The second layer – Edges of infinite capacity from each ve where e = uw ∈ E(G) to u and to w.

x z

y

u

s

vxzvxy vyz vyu

x y z u

t

1 1 1 1

∞
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∞

∞
∞

c c c c

Figure 7.1: Example of graph G and flow network F (G, c) corresponding to it.
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• The third layer – Edges of capacity c from each v ∈ V (G) to t.

Lemma 7.1.1. For any graph G and any real number c, maximum flow between s and t in F (G, c) is equal
to |E(G)| if and only if 2c ≥ mad(G).

Proof. By the max-flow min-cut theorem we know that maximum flow in a graph G is equal to the minimum
cut, so we are going to investigate structure of s − t cuts in this graph. We refer to cuts as sets of edges.
The set of all edges from first layer form an inclusion-wise minimal cut of weight |E(G)|. Since edges in the
second layer have infinite capacities they surely do not belong to any minimum cut, so if maximum flow is
smaller than |E(G)| then there exists a minimum cut with some edges in third layer. Let us fix some minimal
cut C ⊆ E(F (G, c)) and let W be the nonempty subset of V (G) of all vertices w such that −→wt belongs to
C. Let H = G[W ]. If e 6∈ E(H) then −→sve has to belong to C. Observe that all mentioned edges, that is −→wt
for w ∈W and −→sve for e 6∈ E(H) already form an s− t cut. Its weight is c|V (H)|+ |E(G)| − |E(H)|. If this
value is less than |E(G)| then we know that maximum flow in this graph is less than |E(G)|. However, if for
any H this value is not smaller than |E(G)| then we know that maxflow in this graph is |E(G)|.

We get that maxflow in this graph is smaller than |E(G)| if and only if there exists H ⊆ G such that
c|V (H)| + |E(G)| − |E(H)| < |E(G)| ⇔ c|V (H)| < |E(H)| ⇔ c < |E(H)|

|V (H)| . The maximum value of |E(H)|
|V (H)|

equals mad(G)
2 , so we get that maxflow in F (G, c) is equal to |E(G)| if and only if c ≥ mad(G)

2 , as desired.

Let us note that by using Lemma 7.1.1, observing that mad(G) = a
b for some a, b ∈ Z and a ≤ n2, b ≤ n

and knowing that we can compute maximum flow in polynomial time, we can conclude that mad(G) can be
computed in polynomial time.

Let us fix any graph G and denote F := F (G, mad(G)
2 ). Let us define a directed graph Gf for a given s− t

flow f in F of capacity |E(G)| by directing some of edges from G and discarding the rest. Flow f routes
one unit of flow through each vuw. Node vuw has two outgoing edges to u and to w. If f sends more than 1

2
unit of flow to w then in Gf we put directed edge −→uw, similarly if f sends more than 1

2 unit of flow to u we
put edge −→wu. Otherwise if f sends exactly 1

2 unit to both u and w we simply discard this edge.

Lemma 7.1.2. There exists flow f of capacity |E(G)| in F such that Gf is acyclic. Moreover, it can be
determined in polynomial time.

Proof. From Lemma 7.1.1 we know that there exists at least one flow f between s and t of capacity |E(G)|.
Let us take f such that number of edges in Gf is as small as possible. Suppose there is a cycle in Gf on
vertices c1, c2, . . . , ck respectively. Denote ck+1 := c1 as we are dealing with a cycle. Let x be the minimum
amount of flow that f sends through some edge −−−−−−−→vcici+1

ci+1 for some valid i. From definition of Gf we deduce
that x > 1

2 . Let us define f ′ by decreasing flow f on edges −−−−−−−→vcici+1
ci+1 and increasing it on edges −−−−−→vcici+1

ci
by x − 1

2 . The amount of flow leaving and entering each vertex remains unchanged hence f ′ is also a flow.
Moreover, f ′ still satisfies the capacity constraints. Flow f ′ for at least one vertex vcici+1

sends exactly 1
2

unit of flow through both edges outgoing from it, so at least one edge on the cycle is no longer present in
Gf ′ and edges outside the cycle remain unchanged when compared to Gf . This contradicts the assumption
that Gf has the smallest possible number of edges, which implies the existence of such an f .

In order to compute such f in polynomial time let us take any f of capacity |E(G)| in F (G, mad(G)
2 ) (let

us remind the reader that we can determine the value of mad(G) in the polynomial time). If Gf contains a
cycle, we can detect one, determine the corresponding value of x and adjust f in the manner described in
previous paragraph to remove this cycle. The number of edges in Gf ′ is strictly smaller than in Gf , so we
will not do this more than |E(G)| times, which gives us an algorithm performing a polynomial number of
operations. In order to omit dealing with rational numbers we can multiply all capacities in F by 2b, where
mad(G) = a

b for some coprime integers a, b. That concludes the description of a polynomial time algorithm
determining the desired f .

Let us fix f from the above lemma. We will present an algorithm in which:
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• the routine NoInEdges(Hf ) returns any vertex from directed acyclic graph Hf which has no incoming
edges (as the graph is acyclic there always exists at least one such vertex)

• the routine KNeighborhood(H,S, k) takes as input a given graph H, a subset of its vertices S and an
integer k, and returns the set of all vertices from H outside of S adjacent to at least k vertices from S.

Algorithm 1
function Solve(H,Hf , k)

S ← ∅
while Hf 6= ∅ do

x← NoInEdges(Hf )
S ← S ∪ {x}
Hf ← Hf − {x} −KNeighborhood(H,S, k)

return S

Theorem 7.1.3. For positive integer k such that mad(G) ≥ k algorithm Solve(G,Gf , k) returns a set
S ⊆ V (G) such that G[S] is a (k − 1)-degenerate and that mad(G− S) ≤ mad(G)− k.
Proof. First we argue that the graph induced on the set of vertices returned by the algorithm is (k − 1)-
degenerate. In each iteration the vertex x picked by the algorithm is adjacent to at most k−1 already picked
vertices. So G[S] is (k − 1)-degenerate indeed.

To show that mad(G−S) ≤ mad(G)−k we just have to find a flow f ′ in graph F ′ := F (G−S, mad(G)
2 − k

2 )
of value |E(G− S)| thanks to Lemma 7.1.1. Observe that F ′ is a subgraph of F with capacities of edges on
the third layer reduced by k

2 . The flow f ′ has to saturate all edges from the first layer in order to have value
|E(G− S)|. On the second layer we define f ′ using f , for each edge from the second layer of F ′ flow f ′ will
send exactly the same amount of flow as f on corresponding edge in F . Now we just have to argue that the
amount of flow sent by f ′ to any node between the second and third layer in F ′ is bounded by mad(G)

2 − k
2

i.e. capacity of edge going from that node to sink. Each such node corresponds to vertex from G− S, so let
us take arbitrary vertex u ∈ V (G− S). During execution of the algorithm vertex u has been removed from
Hf as incident to some k vertices already picked to S. Denote them x1, . . . , xk and let us consider arbitrary
xi. When the algorithm picked xi from Hf , there were no incoming edges to xi. In particular, in Hf there
was no edge −→uxi. At that time u still belonged to Hf , so there was no edge −→uxi even in Gf . Since u and xi
are adjacent in G, there was either an edge −→xiu in Gf which means that flow f sends more than 1

2 unit of
flow from vuxi

to u in F or there was no −→xiu and −→uxi which means that flow f sends exactly 1
2 unit of flow

from vuxi
to u in F . Through node u in F flow f sends at most mad(G)

2 units of flow and for every 1 ≤ i ≤ k
at least 1

2 unit of flow comes from vuxi
to u. Therefore flow going through u is decreased by at least 1

2 unit
per each xi in F ′ what implies that f ′ sends at most mad(G)

2 − k
2 units of flow to vertex u in F ′.

What is more, procedure Solve(G,Gf , k) can be trivially implemented in a polynomial time. Theorem
1.3.1 directly follows from Theorem 7.1.3. As two notable special cases we mention following corollaries:

Theorem 7.1.4. For every undirected simple graph G there exists I ⊆ V (G) such that I is an independent
set and mad(G− I) ≤ mad(G)− 1. Moreover such I can be computed in polynomial time.

Theorem 7.1.5. For every undirected simple graph G there exists F ⊆ V (G) such that G[F ] is a forest and
mad(G− F ) ≤ mad(G)− 2. Moreover such F can be computed in polynomial time.

7.2 Reconfiguration graphs results
The reconfiguration graph Rk(G) for a positive integer k and a graph G is the graph whose vertex set is the
set of k-colourings of G and there is an edge between two colourings if and only if they differ by colour of
exactly one vertex.
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Let us recall the Cereceda’s conjecture [15].

Conjecture 7.2.1. Let k and l ≥ k+ 2 be positive integers and let G be a k-degenerate graph on n vertices.
Then Rl(G) has diameter O(n2).

As we have already mentioned, our results imply the positive answer to the last remaining step in the
outline of the proof by Eiben and Feghali [32] of the following fact:

Theorem 7.2.2. Let k ≥ 2 and l ≥ k + 2 be integers and let G be a graph on n vertices such that
mad(G) < k + 1. Then Rl(G) has diameter kO(k2

√
n).

Let us remind that any graph with mad(G) < k + 1 is k-degenerate, hence the setting of Theorem
7.2.2 can be seen as an easier setting of Conjecture 7.2.1. The obtained bound on the diameter is worse
as well. Nonetheless, Theorem 7.2.2 seems interesting as previous proofs regarding the connectivity of such
reconfiguration graphs yield only exponential bounds. However, this bound under a slightly less general
assumption has already been improved by Feghali [34] to the polynomial one. Nevertheless, the idea of the
proof of Theorem 7.2.2 transfers over to a novel analogous result for reconfiguration graphs of colouring
viewed as homomorphism to a given graph H, which we shall present now.

For a given graph H, the H-colouring of a graph G is any homomorphism f : V (G) → V (H), that is,
a function f such that if uv ∈ E(G), then f(u)f(v) ∈ E(H). We call f(v) the colour of v. In particular, if
H is loopless and uv ∈ E(H), then it must hold that f(u) 6= f(v). The H-reconfiguration graph of G is the
graph whose vertex set consists of all H-colourings of G and two colourings are adjacent if and only if they
differ by colour of exactly one vertex.

The main result of this section is the following theorem:

Theorem 7.2.3. Let k ≥ 2 be a positive integer and let G = (V,E) be a graph on n vertices with mad(G) <
k + 1 and let H be a graph such that ∆(H) ≤ d and |V (H)| ≥ (d + 1)(k + 1) + 1. Let α and β be two
H-colourings of G. It is possible to get β from α by a sequence of kO(k2

√
n) recolourings.

Note that if we set H = Kl and d = 0 we get the exact statement of Theorem 7.2.2, as regular colouring
is exactly H-colouring for clique H. Moreover, to prove that fact we mainly follow the outline of the proof
by Eiben and Feghali [32] of Theorem 7.2.2.

As a motivation for such generalization, we use the notion of circular colourings. We focus on the following
description of the circular colourings [14], also known as (p, q)-colouring [84].

Definition 7.2.4. Let a and b, where a ≥ 2b, be positive integers. The circular clique Ga,b has the vertex
set {0, 1, . . . , a− 1} where ij is an edge when b ≤ |i− j| ≤ a− b. A homomorphism φ : G→ Ga,b is called a
circular colouring in general, and an (a, b)-colouring of G for the specific pair (a, b).

We remark that Ga,1 is isomorphic to Ka and so an (a, 1)-colouring is simply an a-colouring.
Brewster and Noel [14] have proved that for a given graph G and positive integers a, b if a

b ≥ 2l + 2,
where l is the degeneracy of G, then the reconfiguration graph of (a, b)-colourings of G is connected. However,
the bound on its diameter that follows from their proof is exponential. Based on our H-colourings result,
we are able to deduce the following bound on this diameter.

Corollary 7.2.5. Let k ≥ 2 and G = (V,E) be a graph on n vertices with mad(G) < k + 1. Let a ≥ 2b
be positive integers. If a

b ≥ 2k + 2, then the (a, b)-reconfiguration graph of G is connected and has diameter
kO(k2

√
n).

Proof. We use Theorem 7.2.3 for H := Ga,b. The complement of Ga,b is (2b − 2)-regular, hence we set
d := 2b − 2. If a

b ≥ 2k + 2, then V (H) = a ≥ b(2k + 2) = (d + 2)(k + 1) ≥ (d + 1)(k + 1) + 1, hence all
assumptions of that theorem are satisfied and the conclusion follows.
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7.2.1 Proof of the bound on the diameter of reconfiguration graphs of H-
colourings of graphs with bounded maximum average degree.

The overall structure of proof of Theorem 7.2.3 consists of combining the generalization of Lemma 2 from
[32] with Theorem 7.1.4 in the same way that Lemmas 8, 9 and 10 in [35] are combined to obtain Theorem
6 in [35]. It is the generalization of the outline of the analogous result for standard colourings from [32].

Lemma 7.2.6. Let k, d ≥ 0, and let G be the graph on n vertices such that mad(G) < k+1. Let {u1, . . . , us}
be the set of vertices of G of degree at least k + 2. Let H be a graph such that ∆(H) ≤ d and |V (H)| ≥
(d + 1)(k + 1) + 1 and let α be a H-colouring of G. Let F be any subset of V (H) of size at most d + 1. It
is possible to reconfigure α to some H-colouring α′ of G such that α′(V (G)) ⊆ V (H)− F by using at most
n2
∏s
i=1 deg(ui) recolourings.

Let us note that the case d = 0 coincides with Lemma 1 from [32] with the slight change in the assumption
on G. The proof presented here is a generalization of its proof.

Proof. Since mad(G) < k + 1, we know that G is k-degenerate, hence we can fix its k-degenerate ordering
σ = v1, . . . , vn and without loss of generality, let ui appear before uj in σ whenever i < j. In the following,
we will describe an algorithm Recolour(h, Fh), which given an index h ∈ [n] and the subset Fh ⊆ V (H)
of forbidden colours for vh such that |Fh| ≤ d + 1, outputs a sequence of recolourings with the following
properties:

• for i < h, vi is not recoloured,

• for i ≥ h, vi is recoloured at most
∏s
j=l deg(uj) times, where ul is the first vertex of degree at least

k + 2 with index at least h in σ

• vh ends up with a colour from V (H)−Fh (in particular, if f(vh) ∈ V (H)−Fh, then an empty sequence
is a feasible one, where f(vh) denotes the current colour of vh)

Notice that the algorithm takes at most n
∏s
i=1 deg(ui) recolourings to recolour vh. Hence, by repeatedly

calling Recolour(i, F ) for i = 1, . . . , n, we obtain the colouring α′ in which colours from F do not appear by
using at most n2

∏s
i=1 deg(ui) recolourings, as required.

Given h ∈ [n], k-degenerate ordering σ = v1, . . . , vn of G and the set Fh of forbidden colours, the
algorithm Recolour(h, Fh) works as follows:

1. If f(vh) 6∈ Fh, then terminate.

2. If vh has degree at most k, then

• Let c be a colour not belonging to NH [f(N(vh))] ∪ Fh. Such colour exists since ∆(H) ≤ d, so
|NH [f(N(vh))] ∪ Fh| ≤ (d+ 1)k + (d+ 1) < |V (H)|.
• Recolour vh to c.

3. If vh has degree at least k + 1, then

• Let c be a colour not belonging to NH [f(Z)]∪Fh, where Z is the set consisting of first k neighbours
of vh in ordering σ. Such colour exists since ∆(H) ≤ d, so |NH [f(Z)]∪Fh| ≤ (d+ 1)k+ (d+ 1) <
|V (H)|.
• Let vi1 , . . . , vit be the neighbours of vh outside Z with i1 < i2 < . . . < it. Note that h < i1, since
G is k-degenerate.
• For each j ∈ [t] in the ascending order call Recolour(ij , NH [c]).
• Recolour vh to c.

It is clear that this algorithm is correct. To estimate the number of used recolourings, it is sufficient to
observe that the recursion branches only on vertices of degree at least k + 2.

60



Lemma 7.2.7. Let k ≥ 1, d ≥ 0 and let G be a graph on n vertices and with mad(G) < k + 1. Let H be
a graph such that ∆(H) ≤ d and |V (H)| ≥ (d + 1)(k + 1) + 1 and let α be a H-colouring of G. Let F be
a subset of V (H) of size at most d+ 1. It is possible to reconfigure α to some H-colouring α′ of G such that
α′(V (G)) ⊆ V (H)− F by max(k, 2)O(k2

√
n) recolourings.

Let us note again that the case d = 0 coincides with Lemma 2 from [32] and that the proof presented
here is a generalization of its proof.

Proof. We will call H-colourings of G small if they do not use colours from F . We will denote k′ = max(k, 2).
We shall prove by the induction on the size n := |V (G)| that we can reconfigure α to a small H-colouring

α′, such that each vertex in G is recoloured at most n2 · k′9k′2
√
n times, which implies the lemma.

As the base case we distinguish graphs P on p vertices such that mad(P ) < k + 1 that contain at most
2(k+ 1)

√
p vertices of degree at most k. Let {u1, . . . , us} be a set of vertices of P of degree at least k+ 2. In

the case of such graphs
∏s
i=1 deg(ui) is bounded from above by (2(k+1))2k(k+1)

√
p ≤ (k′3)3k′2

√
p = k′9k

′2√p as
proven by Eiben and Feghali as part of the proof of Lemma 2 in [32]. Thus, in this case we can use algorithm
from Lemma 7.2.6 and prove that we can get α′ using at most p2

∏s
i=1 deg(ui) ≤ p2k′9k

′2√p recolourings in
total, in particular the number of recolourings of each particular vertex is bounded by p2k′9k

′2√p.
For the inductive step, suppose that G contains more than 2(k + 1)

√
n vertices of degree at most k and

that we can reconfigure any subgraph P of G with p < n vertices to some small H-colouring αP such that
each vertex gets recoloured at most p2k′9k

′2√p times. Let S be an independent set in G of size at least 2
√
n

containing only vertices of degree at most k. Note that G is k-degenerate, so it can be partitioned into k+ 1
independent sets and one of them has to contain at least 2

√
n vertices of degree at most k, so such S exists.

Using an inductive argument, we can recolour the graph P = G − S to some small H-colouring through
a recolouring sequence R. We can extend this sequence of recolourings in P to a sequence in G in the following
way. Let a recolouring of v ∈ V (P ) from c1 to c2 be one of the recolouring operations from R and let u ∈ S
be a neighbour of v. Let C be the sum of {c1, c2} and colours present in the neighbours of u in P other than
v. We have that |C| ≤ k+1, so NH [C] ≤ (d+1)(k+1) < |V (H)|, so there exists a colour c ∈ V (H)−NH [C].
In the reconfiguration sequence extended to G we put an operation of recolouring u to c before recolouring v.
This way we get a valid recolouring sequence for G. Finally, we recolour each vertex u ∈ S to any colour not
belonging to F ∪NH [f(NG(u))]. It is possible as |F ∪NH [f(NG(u))]| ≤ (d+ 1)(k + 1) < |V (H)|. For each
vertex outside S we recoloured it exactly as many times as in R, whereas for each vertex in S we recoloured
it at most as many times as all its neighbours were recoloured in total in R plus one.

Let g(n) be the maximum number of times that a vertex of a graph on n vertices is recoloured in this
process. In the base case we require at most n2k′9k

′2√n recolourings, while in the inductive step case we
require at most k ·g(bn−2

√
nc)+1 recolourings, hence we have g(n) ≤ max(n2 ·k′9k′2

√
n, k ·g(bn−2

√
nc)+1).

However, simple calculations show that k · k′9k′2
√
n−2
√
n + 1 ≤ k′9k

′2√n (as
√
n >

√
n− 2

√
n + 1), so

n2 ·k ·k′9k′2
√
n−2
√
n+1 ≤ n2 ·k′9k′2

√
n, hence g(n) ≤ n2 ·k′9k′2

√
n, which concludes this proof that each vertex

can be recoloured at most n2 · k′9k′2
√
n times. Thus, in total we get a sequence of at most n3 · k′9k′2

√
n =

max(2, k)O(k2
√
n) recolourings.

Remark. If we were a bit more meticulous, then in Lemma 7.2.6 it would be possible to get the bound
of O(n2

∏s
i=1(deg(ui)− k)) instead of O(n2

∏s
i=1 deg(ui)). In consequence, it would be possible to improve

the bound from Lemma 7.2.7 to 2O(k2
√
n), but proving that would lead to significantly longer exposition and

the improvement would not be that significant, hence we decided not to present it.

Now we are ready to prove Theorem 7.2.3.

Proof. Let k ≥ 0 be a positive integer and let G = (V,E) be a graph on n vertices with mad(G) < k + 1
and let H be a graph such that ∆(H) ≤ d and |V (H)| ≥ (d + 1)(k + 1) + 1. We will define a H-colouring
of G called γ and then prove that any H-colouring δ can be reconfigured to γ by a sequence of at most
max(2, k)O(max(k2,1)

√
n) recolourings, which clearly implies the thesis by using twice this statement for δ = α

and for δ = β.
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We will prove this inductively on k. The base case k = 0 is trivial: if mad(G) < 1, then G is an edgeless
graph and every colouring is valid. We can set γ as an arbitrary colouring of G. Now we can recolour each
vertex directly from colour from δ to colour from γ using at most n recolourings in total.

Now we present the inductive step. Let us consider an independent set I from Theorem 7.1.4 such that
mad(G − I) < k and any colour u ∈ V (H). For each v ∈ I we set γ(v) = u. Thanks to Lemma 7.2.7 for
F := NH [u], we are able to reconfigure δ to a colouring δ′ that does not use colours from NH [u]. Afterwards,
we reconfigure δ′ to δ′′ by recolouring each vertex from I to the colour u. We define G′ = G − I and
H ′ = H − NH [u]. Graphs G′ and H ′ meet the assumptions of the inductive hypothesis for k′ = k − 1. So
there exists γ′ independent of δ′′ and a sequence of recolourings R′ configuring δ′′ to γ′. Now we just need to
concatenate all those reconfiguration sequences and set γ(v) = γ′(v) for v ∈ G′. This concatenation yields a
valid reconfiguration sequence because colour c is connected to all colours from H ′.

To build the final reconfiguration sequence we used the construction from Lemma 7.2.7 exactly k times.
Apart from that, each vertex is recoloured at most once, to its final colour, so in total we used at most
n+ n ·max(2, k)O(k2

√
n) ≤ max(2, k)O(max(k2,1)

√
n) recolourings, as desired.

It is worth noting that all parts of this proof were constructive, hence we can compute such sequence of
recolourings in kO(k2

√
n) time and polynomial space.

7.3 Conclusions and open problems

Our main results imply many results for some specific classes of graphs as a direct consequence and here we
mention a few of them.

Following folklore fact will come in handy in deriving some of the consequences:

Fact 3. For every planar graph G we have (mad(G)− 2)(g(G)− 2) < 4.

Based on Theorems 7.1.4, we are able to improve Theorem 1 from [29] and one of its consequences.

Theorem 7.3.1 ([29]). Let M be a real number such that M < 3. Let d ≥ 0 be an integer and let G be a
graph with mad(G) < M . If d ≥ 2

3−M − 2, then V (G) can be partitioned into A ] B such that G[A] is an
independent set and G[B] is a forest with maximum degree at most d.

We are able to strengthen this to the following theorem:

Theorem 7.3.2. Let M be a real number such that M < 3. Let d ≥ 0 be an integer and let G be a graph with
mad(G) < M . If d ≥ 2

3−M − 2, then V (G) can be partitioned into A ] B such that G[A] is an independent
set and G[B] is a forest whose connected components have size at most d+ 1.

Proof. By using Theorem 7.1.4 one can partition V (G) into A]B such that G[A] is an independent set and
mad(G[B]) < M − 1. Let us bound M − 1 from above using assumed inequalities:

d ≥ 2

3−M
− 2 ⇒ d+ 2 ≥ 2

3−M
⇒ 3−M ≥ 2

d+ 2
⇒ M − 1 ≤ 2− 2

d+ 2
.

G[B] does not contain a cycle because mad(G[B]) < M−1 ≤ 2− 2
d+2 < 2. Assume thatG[B] contains a tree T

on d+2 vertices as a subgraph. Then mad(G[B]) ≥ 2|E(T )|
|V (T )| = 2(d+1)

d+2 = 2− 2
d+2 ≥M−1 > mad(G[B]). Note

that if G[B] contains a component which is a tree on at least d+ 2 vertices then it contains tree on exactly
d + 2 vertices as a subgraph, hence shown contradiction finishes the proof that connected components of
G[B] are trees on at most d+ 1 vertices.

Dross et al. [29] use their theorem and Fact 3 to deduce the following corollary:
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Corollary 7.3.3. For every planar graph G with g(G) ≥ 10, the vertex set V (G) can be partitioned into
A ]B such that A is an independent set and G[B] is a forest with maximum degree 2.

We are able to strengthen this to the following corollary:

Corollary 7.3.4. For every planar graph G with g(G) ≥ 10, the vertex set V (G) can be partitioned into
A ] B such that A is an independent set and G[B] is a forest whose connected components have size at
most 3.

Borodin et al. proved in [11] that the vertex set of any planar graph with g(G) ≥ 7 admits a partition
into an independent set and a set that induces graph with maximum degree at most 4. Dross et al. proved
in [29] that the vertex set of any planar graph with g(G) ≥ 7 admits a partition into an independent set and
a set that induces forest of max degree at most 5. In Corollary 7.3.5 we add another partition result for the
class of planar graphs with girth at least 7.

Corollary 7.3.5. For every planar graph G with g(G) ≥ 7, the vertex set V (G) can be partitioned into
A]B such that A is an independent set and G[B] is a forest where every connected component has at most 9
vertices.

Proof. Since g(G) ≥ 7 we deduce that mad(G) < 1 + 9
5 , so based on Theorem 7.1.4 we get that there exist A

and B such that V (G) = A]B, A is an independent set and mad(G[B]) < 9
5 . It can be readily verified that

class of graphs with value of their mad smaller than 9
5 is class of graphs which are forests with connected

components of size at most 9.

Recently, independently of our work, Cranston and Yancey [24] improved Corollaries 7.3.4 and 7.3.5.
Namely, they claim that every planar graph G of girth at least 9 (resp. 8, 7) has a partition of V (G) into
an independent set I and a set F such that G[F ] is a forest with each component of order at most 3 (resp.
4, 6).

Apart from that, based on Theorem 7.1.4 and 7.1.5 and Fact 3 we are able to deduce following corollaries:

Corollary 7.3.6. For every planar graph G, the vertex set V (G) can be partitioned into A ] B ] C such
that G[A], G[B], G[C] are forests.

Proof. Every planar graph satisfies mad(G) < 6, so using Theorem 7.1.5 we can partition V (G) into A and
D such that mad(G[A]) < 2 and mad(G[D]) < 4 and then using Theorem 7.1.5 again we can partition D
into B and C such that mad(G[B]) < 2 and mad(G[C]) < 2. Hence G[A], G[B], G[C] are forests.

Corollary 7.3.7. For every planar graph G without triangles, the vertex set V (G) can be partitioned into
A ]B such that G[A], G[B] are forests.

Proof. Based on Fact 3 we know that if G has no triangles then g(G) ≥ 4 ⇒ g(G)− 2 ≥ 2 ⇒ mad(G) < 4.
Therefore using Theorem 7.1.5 we deduce that there exist A,B such that V (G) = A]B and G[A], G[B] are
forests.

Corollary 7.3.8. For every planar graph G without cycles of length 3 and 4, the vertex set V (G) can be
partitioned into A ]B such that G[A] is a forest and ∆(G[B]) ≤ 1.

Proof. Since g(G) ≥ 5 we deduce that mad(G) < 2 + 4
3 , so based on Theorem 7.1.5 we get that there exist

A and B such that V (G) = A ] B and mad(G[A]) < 2 and mad(G[B]) < 4
3 . Therefore G[A] is a forest

and ∆(G[B]) ≤ 1, because if G[B] contains a vertex with degree ≥ 2 then this vertex together with its two
neighbours induce a graph with mad at least 4

3 .

Corollary 7.3.9. For every planar graph G with g(G) ≥ 6 its vertex set V (G) can be partitioned into A]B
such that G[A] is a forest and B is an independent set.

Proof. Since g(G) ≥ 6 we deduce that mad(G) < 3, so based on either Theorem 7.1.5 or Theorem 7.1.4 we
get that there exist A and B such that V (G) = A ] B and mad(G[A]) < 2 and mad(G[B]) < 1. Therefore
G[A] is a forest and B is an independent set.
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However, Corollaries 7.3.6, 7.3.7, 7.3.8 and 7.3.9 have already been proven and even improved before.
Corollary 7.3.6 was proven in [16] and later improved in [74]. An improved version of Corollary 7.3.7 was
proven in [75]. Theorem improving both Corollaries 7.3.8 and 7.3.9 was proven in [9].

7.3.1 Open problem
As the main open problem in the area of partitionability of graphs with bounded mad, we recall the following
conjecture.

Conjecture 7.3.10. For every graph G and positive real numbers c1, c2 if mad(G) < c1 + c2 then there
exists a partition of the vertex set V (G) = A ]B such that mad(G[A]) < c1 and mad(G[B]) < c2.

Our main result shows that this conjecture is true for c2 ∈ {1, 2}. Moreover, since for positive k we have
that k-degenerate graphs fulfill mad(G) < 2k we can deduce that for every integer k ≥ 2 and a graph G that
satisfies mad(G) < c1 + k there exists a partition of the vertex set V (G) = A]B such that mad(G[A]) < c1
and mad(G[B]) < 2k − 2.
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