
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Wiktor Zuba

Efficient enumerations in words
PhD dissertation

Supervisor:
prof. dr hab. Wojciech Rytter

Institute of Informatics
University of Warsaw

June 2021





Abstract

The dissertation presented here consists of a set of results in text processing
algorithms from four different scientific publications. The papers focus on al-
gorithms and data structures that allow efficient enumeration and counting of
certain classes of factors. Most of the results are based on different variations of
the same key property - regularity of the set of occurrences of factors of specific
types.

In ”Efficient Representation and Counting of Antipower Factors in Words”
we focused on a class of k-antipowers (words consisting of k pairwise differ-
ent segments of the same length). The results of the paper consist of effective
algorithms for enumerating all occurrences, counting all occurrences and count-
ing different k-antipower factors in a string, working in O(nk log k + output),
O(nk log k) and O(nk4 log k log n) time, respectively.

The paper ”Counting Distinct Patterns in Internal Dictionary Matching”
deals with a problem in which we are given an input word T and its internal
dictionary D. We want to answer questions of the form: ”How many distinct
words from D are the factors of T [i . . j]?”. We have shown few algorithms and
data structures, that allows us to do that effectively. The algorithms differ in
exploited properties and complexities (each one can be more effective from the
other depending on the ratio between T and D).

In ”The Number of Repetitions in 2D-Strings” we focused on the extensions
of the notions of squares and runs to the case of two-dimensional strings. We
gave new bounds on the maximal number of their occurrences in strings and
effective algorithms for enumerating them.

In the fourth paper titled ”Efficient Enumeration of Distinct Factors Us-
ing Package Representations”, we proposed a new compact representation of
string factors. It allows us to obtain new effective algorithms for enumeration
and counting of distinct factors it contains. In particular it allowed us to obtain
a new simple algorithm for finding distinct squares and a faster algorithm for
finding all distinct antipowers in a string (improving one of the results from the
first of enclosed papers).

Keywords: algorithm, data structure, enumeration, counting, factor, sub-
word, antipower, runs, two-dimensional string, internal dictionary

iii



Efektywne zliczanie w słowach.
Streszczenie

Przedstawiona rozprawa stanowi zbiór wyników prac na temat algorytmów
przetwarzających dane tekstowe. Prace skupiają się na zaprezentowaniu algo-
rytmów i struktur danych pozwalających na efektywne znajdowanie i zliczanie
podsłów należących do konkretnych klas podsłów. Innym elementem wspólnym
poniższych prac jest to, że wykorzystują one regularności w słowach związane z
wystąpieniami podsłów szczególnego typu.

W pracy ”Efficient Representation and Counting of Antipower Factors in
Words” zajęliśmy się klasą k-antypotęg (słów składających się z k parami różnych
członów o tej samej długości). Rezultatem pracy są efektywne algorytmy wyp-
isywania wszystkich wystąpień, zliczania wszystkich wystąpień oraz zliczania
różnych k-antypotęg w słowie, działające w czasach odpowiednio O(nk log k +
wynik), O(nk log k) i O(nk4 log k log n).

Praca ”Counting Distinct Patterns in Internal Dictionary Matching” przed-
stawia problem w którym mając dane słowo wejściowe T oraz słownik jego
podsłów D chcielibyśmy móc efektywnie odpowiadać na pytania ”Ile różnych
słów ze słownika D jest podsłowami słowa T [i . . j]?”. Przedstawiliśmy kilka al-
gorytmów/struktur danych, które pozwalają na rozwiązanie tego problemu. Al-
gorytmy różnią się wykorzystywanymi założeniami oraz złożonościami (każdy
może być lepszy od pozostałych w zależności od zastosowania, oraz stosunku
wielkości T i D).

W pracy ”The Number of Repetitions in 2D-Strings” zajęliśmy się uogól-
nieniami pojęć kwadratów i maksymalnych powtórzeń na teksty dwuwymiarowe.
Podaliśmy nowe ograniczenia na maksymalną ich ilość w tekstach, oraz efekty-
wne algorytmy ich wyznaczania.

Na końcu przedstawiam pracę ”Efficient Enumeration of Distinct Factors Us-
ing Package Representations”, w której wprowadziliśmy nowy, skompresowany
sposób reprezentacji wystąpień wielu podsłów. Pozwala ona na otrzymanie nowych,
efektywnych algorytmów wyznaczania i zliczania różnych słów przez nią reprezen-
towanych. W szczególności pozwoliło nam to na otrzymanie nowego prostego al-
gorytmu wyznaczania kwadratów i szybszego algorytmu wyznaczania antypotęg
(poprawiając jeden z wyników pierwszej z przedstawionych prac).

Słowa kluczowe: algorytm, struktura danych, wyliczanie, zliczanie, pod-
słowo, antypotęga, maksymalne powtórzenie, słowo dwuwymiarowe, słownik
wewnętrzny

iv



Contents

1 Extended abstract 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Presentation of the main results . . . . . . . . . . . . . . . . . . . 4

1.3.1 Efficient Representation and Counting of Antipower Fac-
tors in Words . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Counting Distinct Patterns in Internal Dictionary Matching 6
1.3.3 The Number of Repetitions in 2D-Strings . . . . . . . . . 8
1.3.4 Efficient Enumeration of Distinct Factors Using Package

Representations . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Autoreferat 14
2.1 Wstęp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Motywacja . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Skład pracy . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Preliminaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Przegląd wyników . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Efficient Representation and Counting of Antipower Fac-
tors in Words . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Counting Distinct Patterns in Internal Dictionary Matching 19
2.3.3 The Number of Repetitions in 2D-Strings . . . . . . . . . 21
2.3.4 Efficient Enumeration of Distinct Factors Using Package

Representations . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Pozostałe publikacje . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Efficient Representation and Counting of Antipower Factors in
Words 27

4 Counting Distinct Patterns in Internal Dictionary Matching 58

5 The Number of Repetitions in 2D-Strings 74

v



6 Efficient Enumeration of Distinct Factors Using Package Rep-
resentations 93

vi



Chapter 1

Extended abstract

1.1 Introduction

1.1.1 Motivation

The study of regular words and especially of algorithms finding and counting
such words in texts is one of the most popular areas of text algorithms. There
are many algorithms, which work differently on periodic and aperiodic parts of
strings, as such parts may show distinct properties. For example, high periodicity
of a word results in a very good compression rate - we can describe it using only
its period and length. On the other hand it may make searching (for it or in
it) much more difficult, as an aperiodic word of length m may occur in a word
of length n at most 2 nm times. That is not true if the word is periodic - for
instance a word aaaaaa appears in aaaaaaaaaaaaaaaaa n−m+ 1 = 11 times.
The number of such (distinct) structures in a word can by itself serve as a good
measure of the words regularity or complexity.

The presented dissertation is composed of publications in which (together
with my coauthors) we have concerned a few classes of such regular (or irregular
in a specific sense) subwords. In each of the papers we have shown new, effective
algorithms for enumerating and counting (all occurrences or all distinct) factors
from a specific class.

1.1.2 Contents

The dissertation is composed of four articles written together with my coau-
thors during the course of my doctoral studies at the Faculty of Mathematics,
Informatics and Mechanics of the University of Warsaw:

1. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński,
Tomasz Waleń, Wiktor Zuba: Efficient Representation and Counting of
Antipower Factors in Words. LATA 2019: 421-433

1



The paper is included in the version accepted for publication in the Special
Issue of Information & Computation derived from LATA 2019 conference.

2. Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, Wik-
tor Zuba: Counting Distinct Patterns in Internal Dictionary Matching.
CPM 2020: 8:1-8:15

3. Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz
Waleń, Wiktor Zuba: The Number of Repetitions in 2D-Strings. ESA 2020:
32:1-32:18

4. Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter, Tomasz Waleń, Wiktor Zuba: Efficient Enumeration of
Distinct Factors Using Package Representations. SPIRE 2020: 247-261

All those papers contain original results in text algorithms. They were written
by the authors representing the University of Warsaw together with scientists
from King’s College London (Panagiotis Charalampopoulos had a long term
stay in Warsaw) and Tomasz Kociumaka, who changed his affiliation from the
University of Warsaw to Bar-Ilan University in the meantime.

In section 1.2 of this abstract I introduce the basic notions - regular classes
of words and factors, which are used throughout the presented papers.

In section 1.3 I show a detailed overview of our results together with sketches
of methods used to obtain them.

In section 1.4 I list the publications I coauthored during the course of my
doctoral studies, which however are not included as a part of this dissertation.

Chapter 2 contains a polish version of this extended abstract, while chapters
3, 4, 5 and 6 contain the papers included in the dissertation. The bibliography
at the end contains references to papers cited in this abstract.

1.2 Preliminaries

To present the results we need to define the string regularities they use or search
for first. Many of them are used by more then just one of the papers included
in this dissertation.

Definition 1.1. Let us assume that x = y0y1 · · · yk−1 where k ­ 2 and yi are
words of length d. We say that:

• x is a k-power if all yi’s are the same (x is a square if in addition k = 2);

• x is a k-antipower if all yi’s are pairwise distinct;

• x is a weak k-power if it is not a k-antipower, that is, if yi = yj for some
i 6= j;

• x is a gapped square if y0 = yk−1.

2



a a b b a a b a b b a b b a b b a a a

Figure 1.1: Regularities in standard strings. A run (with the period equal to
3) is depicted by a green background. Blue lines mark an occurrence of a 4-
antipower. Notice that the words of length 16 starting one or two positions
later are not 4-antipowers as they are gapped squares generated by a maximal
3-gapped repeat.

Definition 1.2. We say that:

• p is a period of a word w if w[i] = w[i+ p] for all i ∈ [0 . . |w| − p) (by the
period of a word we usually mean the shortest one);

• a fragment w[i . . j] is a run (a maximal repetition) if its length is equal
to at least a double of its shortest period and it cannot be extended by a
one position to the left or to the right without breaking the period;

• a fragment w[i . . j] is a maximal α-gapped repeat (for α ­ 1) if it is
of a form uvu for p = |uv| ¬ α|u| and it cannot be extended by a one
position to the left or to the right without breaking the period.

Definition 1.3. For two-dimensional texts we define repetitions analogously.

• A tandem is a two-dimensional text of even width, in which its left and
right halves are equal as texts (extension of square to the case where
instead of letters we have columns of letters).

• A quartic is a two-dimensional text Q of even height and width, such
that Q and Q⊥ are tandems (it is composed of four identical texts in a
2× 2 grid).

• A 2D-run is a i × j fragment of a text such that its vertical period is
smaller or equal to i

2 and its horizontal period is smaller or equal to j
2 .

Moreover it cannot be extended by a row or a column from any side (if
such exist in the text) without breaking any of those periods.

By a square generated by a run I mean a square fully contained in it with
length equal to exactly double of its period. All such squares can be easily
obtained from a run, and every square is generated by a run. The generation of
gapped-squares by runs and maximal α-gapped repeats and the generation of
quartics by 2D-runs work analogously.

A square is primitively rooted if its root (half) is not a k-power for any
k > 1. Analogously a quartic is primitively rooted if its root (quarter) is not a
k-power for any k > 1 neither horizontally nor diagonally.

Definition 1.4. By an internal dictionary we mean a set of factors of a given
word represented by the starting and ending positions of a single occurrence of
each factor.

3



a c a a b a a b a a d c
a b c a b c a b c a b c
a b a a b a a b a a b a
a b c a b c a b c a b c
a d b a c d b a c a b d

Figure 1.2: Different types of repetitions in 2D-strings. A tandem is marked by
brown rims, a quartic by the blue ones, while the green background depicts a
2D-run.

1.3 Presentation of the main results

1.3.1 Efficient Representation and Counting of Antipower
Factors in Words

The paper presented here was presented on LATA 2019 conference and published
in conference proceedings. Extended version of that paper was later accepted
for publication (it is not published yet) in the Special Issue of Information
& Computation journal derived from that conference. It is included in this
dissertation in the mentioned extended version (in chapter 3).

Introduction
Badkobeh et al. in [5] presented a lower and upper bound Θ(n2/k) for the

maximal number of occurrences of k-antipowers in a string. Furthermore they
presented an O(n2/k) time algorithm that finds all those occurrences. Due to
the lower bound on the maximal size of the output the algorithm is optimal in
the pessimistic case. It does not mean however, that nothing more in this field
can be done.

In our publication we have focused on the problems that are not directly
influenced by those bounds - counting of antipowers and enumerating them
with complexity parameterized by the size of the output (more effective if a
word contains a small number of antipowers).

More formally - we presented algorithms, which for a word of length n count
all the occurrences of k-antipower factors in O(nk log k) time, find all those
occurrences in O(nk log k + output) time, and count all distinct k-antipowers
in a word in O(nk4 log k log n) time. We also presented a data structure that
allows us to check efficiently if a given subword is a k-antipower.

In (the most common) case when k is small in comparison to the length of
the word (smaller than

√
n) our algorithm has a better asymptotic performance

time than the one previously known.

Weak powers and a compact representation
Since antipowers itself are very irregular it is not that easy to effectively find

them. Due to that, we focused on computing a representation of all the other

4



words, that is of all weak k-powers. Every weak k-power on the other hand is a
consequence of the existence of a gapped square (possibly for a smaller k, but
certainly for the same d).

Observation 1.1.

(a) Each (gapped) square is generated by a run with (not necessarily shortest)
period (q + 1) · d or a maximal (q + 1)-gapped repeat with a period equal
to (q + 1) · d for some q ¬ k − 2.

(b) Each run and each maximal α-gapped repeat generate a single interval of
positions in which (gapped) squares of a given length start, moreover this
interval can be computed in constant time.

(c) In a word of length n there are at most O(n) general runs and their
representation can be computed in O(n) time ([6]).

(d) There are only O(nα) maximal α-gapped repeats in a word and their
representation can be computed in O(nα) time ([11, 12]).

With the use of those properties we can compute the representation of weak
k-powers for all d’s as O(nk) interval chains (set of intervals of the same lengths
and beginnings forming an arithmetic progression) in total. Then, using geo-
metric methods we can determine their set-theoretic sum in O(nk log k) total
time. This immediately gives us the number of all weak k-powers, hence also of
all k-antipower factors. Instead of counting the size of the complement of this
set we can enumerate through all of the positions it does not contain and thus
obtain an algorithm that finds all k-antipowers in O(nk log k + output) time.

Antipower queries
Paper [5] included descriptions of two data structures, that after being con-

structed answer queries ”Is a subword w[i . . j] a k-antipower?”. The first struc-
ture requires O(n) space and answers those questions in O(k) time, while the
other answers them in a constant time, but requires storing information of O(n2)
size.

In our paper we have shown a new structure parameterized by a value r ∈
[1, n]. After being built in O(n2/r) time our structure stores information of size
O(n2/r) and answers such questions in O(r) time.

If r < k then we know that the base of the power d equals at most n/r > n/k.
To answer the questions we store for each d ¬ n/r separately a data structure
based on the range minimum queries structure, that is of O(n) size and answers
questions in constant time. Otherwise (r ­ k) to obtain the right complexities
it is enough to just use the mentioned data structure from [5].

Counting distinct k-antipowers
In the journal version of the paper we have added a new result - an algorithm

for counting distinct k-antipowers in a word.
Due to a potentially large number of all occurrences of antipowers, the meth-

ods enumerating through those cannot obtain a satisfactory computation time.

5



To obtain such a result we made use of the connection between antipowers and
weak powers once again.

The number of distinct k-antipower factors can be obtained as a subtraction
of two other values. The first one is equal to the number of (all) distinct factors
of the word of length divisible by k. We can compute it in O(n) time with the
use of a suffix tree.

The second value needed is the number of distinct weak k-powers. To obtain
that we have strengthened the definition of weak powers, so that each such
subword can be generated only in one way. Then with the use of a reduction
to a graph problem we have acquired an algorithm computing that number in
O(nk4 log k log n) total time.

1.3.2 Counting Distinct Patterns in Internal Dictionary
Matching

In [8] my coauthors introduced a problem of pattern matching with internal
dictionary - for a given word T and its internal dictionary D they presented a
data structure that allows effective answering of questions for subwords T [i . . j]:

• does T [i . . j] contain a word from the dictionary?
• return all subwords of T [i . . j] that belong to the dictionary
• return all distinct factors from D contained in T [i . . j]
• count all subwords of T [i . . j] that belong to the dictionary
• count the number of distinct factors from D contained in T [i . . j]

The structure requires Õ(n + d) space and construction time (where n = |T |
denotes the length of the word, d = |D| the number of factors contained in the
dictionary, and Õ is the asymptotic notation ignoring polilogarithmic factors).
It answers the first four questions in Õ(1 + output) time.

Unfortunately for the last question only a data structure answering those
question O(log n) approximately was shown.

Space Preprocessing time Query time Variant

Õ(n+ d) Õ(n+ d) Õ(1) 2-approximation

Õ(n2/m2 + d) Õ(n2/m+ d) Õ(m) exact

Õ(nd/m+ d) Õ(nd/m+ d) Õ(m) exact

O(n log2 n) O(n log2 n) O(log n) D = squares, exact

Table 1.1: Our results for Count Distinct queries (m ∈ [1, n] is an arbitrarily
chosen parameter).

2-approximation
To improve the result from the previous paper we have designed a data

structure which stores all the exact results for the base words - that is for all
subwords of length b(1+δ)pc for all natural p’s and a fixed value δ = 1

9 . To obtain

6



the result for any given subword T [i . . j] we make use of two maximal length
base words T [i . . i′] and T [j′ . . j] contained in T [i . . j] to obtain its division into
three parts F1F2F3 (F1F2 = T [i . . i′], F2F3 = T [j′ . . j]).

The result is obtained by counting all the factors from the dictionary, which
have an occurrence starting in F1 and ending in F3, which at the same time
occurs in neither of the two base words. We can do that effectively thanks to
a large ratio of the length of F2 to the lengths of F1 and F3. To the obtained
value we add the results stored for the two base words, which however results
in only a 2-approximate result.

There are O(n log n) base words in a word of length n. The exact values for
them can be counted in O(n log1+ε n + d) total time (for any constant ε > 0)
with the use of the property that we can efficiently update the result after a
single position shift. The structure used to count the words described earlier
costs us additional O(n + d log n) space and O(n log n/ log log n + d log3/2 n)
construction time. It answers the questions in O(log2 n/ log log n) time.

Exact counting
Instead of the base words we can focus on storing the results for all the

words of the form T [c1m+ 1 . . c2m] for a chosen m and all the values c1 < c2 to
obtain a data structure ofO(n2/m2+n+d) size construable inO((n2 logε n)/m+
n
√

log n+d) time. We can update the result obtained after extending a subword
by a one position in O(logε n) time, and to obtain the exact result for any chosen
factor we only require up to O(m) such operations (we extend one of the words
for which the result is stored).

We can also approach the problem differently, namely, we can inspect the
structure of the dictionary.

If the dictionary does not contain a set of k distinct prefixes of the same
word, then at any given position only up to k − 1 dictionary words can start.
In this case we can store for each of the dictionary words the set of positions
in T , where such a word occurs. We can construct such a data structure of
O(nk log n) size in O(nk log n) time. In return, it allows us to respond to our
queries in O(log n) time.

To obtain a dictionary of such a form we can simply remove from it all such
large groups of prefixes (building new dictionaries). There are at most d/k such
groups, and for each of those we can answer the queries in O(logε n) time (for
any ε > 0) using a bounded LCP structure ([14]) of O(n

√
log n) size.

For k = d dme this gives us a query time equal to O(m logε n+ log n).

Counting distinct squares factors
For the popular case, where we want to count the number of distinct square

factors in a given subword we have described a yet different algorithm.
In a word of length n there can be up to O(n2) squares (only O(n) distinct

ones), however thanks to the runs (only O(n) such can appear in the word,
and all such can be computed in O(n) time) we can distinguish m = O(n log n)
occurrences which really affect our results. With the use of a geometrical data

7



structure of O(m logm) size and construction time from [13] we can answer the
queries for the number of distinct squares in a subword in O(logm) = O(log n)
time.

1.3.3 The Number of Repetitions in 2D-Strings

In the paper from chapter 5 we have focused on the repetitions in two-dimensional
texts. The table 1.2 contains a summary of the current knowledge about the
maximal possible number of 2D-runs, tandems and quartics (distinct or all oc-
currences of primitively rooted ones) in a two-dimensional string. It also shows
the time complexity of the fastest known algorithms which find those structures
in a text. Notice, that even though the maximal number of 2D-runs in a string
was previously studied the gap between the known lower and upper bounds was
linear. In our paper we have reduced this gap to a polilogarithmic one.

Bounds on the number
in an n× n string

Computation time

2D-runs
Ω(n2),O(n3)[2]
O(n2 log2 n)

O(n2 log n+output)[2]
O(n2 log2 n)

Occurrences of primitively
rooted quartics

Θ(n2 log2 n) [3] O(n2 log2 n)

Distinct quartics O(n2 log2 n) O(n2 log2 n)

Occurrences of primitively
rooted tandems

Θ(n3 log n)[3] O(n3 log n)[4]

Distinct tandems
Ω(n2),O(n4)(trivial)

Θ(n3)
O(n3)

Table 1.2: Overview of the previous knowledge and of our results (written in
bold).

2D-runs
To obtain our upper bound on the number of 2D-runs we made use of a

lemma from [1], to assign to every such 2D-run a maximal horizontal repetition
(no condition on vertical periodicity or maximality) of height equal to a power
of two (largest possible not exceeding the height of the 2D-run). Such repetition
meets three important conditions as well - its upper left or lower left corner
equals the respective corner of the 2D-run, its horizontal period is equal to the
horizontal period of the 2D-run, and its width equals at least the width of the
2D-run (see figure 1.3)

With the use of those properties, of the periodicity lemma, and of the three
squares lemma we proved that the horizontal repetitions occupying the rows
from i to i + 2k − 1 can be assigned to at most O(n log n) distinct 2D-runs in
total. By multiplying this value by the number of feasible choices of i and k we

8



Figure 1.3: Assignment of a maximal horizontal repetition of height 2k to a
2D-run.

b b a a a a
b a a a a a
a a a a a a
a a a a a b
a a a a b b

Figure 1.4: Many overlapping 2D-runs

obtain an upper bound on the number of 2D-runs in an n × n string equal to
O(n2 log2 n).

Our bound immediately shows that the algorithm finding all the 2D-runs
in a 2D-string from [2] works in O(n2 log2 n) time (their algorithm has time
complexity parameterized by the size of the output).

Primitively rooted quartics
In standard strings we can easily extract all the occurrences of primitively

rooted squares from the runs - it is enough to take all the subwords of the runs
of length equal to the double of their period.

In 2D situation it is somewhat similar - each primitively rooted quartic is a
rectangle of width equal to the double of the horizontal period and height equal
to the double of the vertical period of a 2D-run, fully contained in it. However,
while in one dimension two runs with the same period cannot have a big enough
overlap to generate the same square, in 2D many such overlaps can easily appear
(see figure 1.4), hence simple adaptation of such a one-dimensional algorithm
would result in reporting some of the quartics multiple times.

This problem can be solved with the use of a sweeping line technique ([7]),
which allows us to count set-theoretic sums of many families of rectangles on
an n× n grid in O(n+ r + output) total time (r denotes the number of all the
rectangles).

By dividing all the 2D-runs according to their periods, for each such group
of runs we count the set-theoretic sum of the rectangles containing the starting
positions of quartics generated by each 2D-run. This way we obtain the desired
algorithm.

Due to our bound on r from the previous paragraph (the number of 2D-runs),
and the O(n2 log2 n) bound on the number of the occurrences of primitively
rooted quartics from [3] our algorithm runs in O(n2 log2 n) total time (optimal

9



in the pessimistic case by the mentioned bound).

Distinct quartics
In an n×n unary string there are Θ(n4) occurrences of general quartics. Due

to that in the pessimistic case a trivial algorithm finding all such occurrences
in an optimal time. A more interesting problems are the one of bounding the
maximal number of distinct quartics (differing as texts and not only by their
positioning) and the one of enumerating through all of them.

[3] already gave us a bound on the number of distinct primitively rooted
quartics. All the other ones are composed of many adjacent occurrences of the
primitively rooted ones forming a larger rectangle. In other words, while a prim-
itively rooted quartic is constructed from occurrences of a primitive text W
arranged in a 2× 2 grid, in the case of the other ones it is a 2k× 2l grid (k > 1
or l > 1). We divide such quartics into the thin ones (k = 1 or l = 1), and the
thick ones (both k, l > 1).

Then again we perform a yet another division - we group quartics for which
their primitive string W has size in [2a, 2a+1) × [2b, 2b+1) for the same values
a, b ¬ log n.

Due to the periodicity lemma and the three squares lemma any position
can be the top left corner of the rightmost occurrence (same quartic does not
occur anywhere further to the right) of at most four distinct thin quartics from
a single group (it works analogously to a proof of a bound of the number of
distinct squares in a standard string [10]).

In the case of the thick quartics the multitude of the grid points in which an
occurrence of the W string begins in a large power of W allows us to uniquely
assign such points to every smaller power of W . Moreover, due to the periodicity
and the three squares lemmas such points cannot belong to a grid for a power
of a different string W ′ which belongs to the same group.

Due to this assignments of the points in [1, n] × [1, n] to the quartics and
due to the fact, that there are only log2 n choices of a and b we obtain an upper
bound on the number of distinct quartics of size O(n2 log2 n).

To compute all the distinct quartics in a text we use our previous algorithm
to find all the occurrences of primitively rooted quartics, and then we group
them by their roots.

Since other quartics are constructed from the occurrences of the primitive
ones (with the same root) we can distinguish the top left corners of all such
occurrences, and then find the largest possible grids they form.

This problem can be solved with the sweep line approach to obtain an algo-
rithm working in O(n2 log2 n) time.

Distinct tandems
In the same paper we also considered the related problem of finding all the

distinct tandems in a string (as with the quartics, there can be Θ(n4) occurrences
of all the tandems in a 2D-string).

10



In this problem we can easily identify the tandems occupying the rows from
i to j with squares in a standard string by assigning single letters to all the
columns of height j − i+ 1. In a standard word of length n there can be up to
Θ(n) distinct squares, hence the same bound applies to the number of distinct
tandems occupying the distinguished rows. Multiplying this value by a number
of possible choices of i and j we obtain O(n3) as the upper bound on the number
of distinct tandems.

Ω(n3) as a lower bound can be shown just as easy - it is obtained for a text
in which every row is a different unary word.

The assignment of standard letters to the columns of height equal to j−i+1
can be performed constructively. Thanks to that, we can obtain an O(n3) time
algorithm for finding all distinct tandems in a 2D-string, with the use of an
algorithm finding distinct squares in a standard string. Due to our lower bound
on the maximal size of the output our algorithm is optimal in the pessimistic
case.

1.3.4 Efficient Enumeration of Distinct Factors Using Pack-
age Representations

In the last of the described papers we introduced a new representation of sets
of subwords, which in many cases gives a compact representation, and at the
same time allows effective operations on the set.

By a package we mean a set of subwords of the same length, whose start-
ing positions form an interval. Our representation is composed of many such
packages represented as triples (starting position, length of words, length of in-
terval). Our greatest interest in this representation lies in the property, that the
set of the distinct factors it represents can be found efficiently.

More formally, we are interested in the set

Factors(F) = {T [j . . j + l) : j ∈ [i, i+ k] and (i, l, k) ∈ F}.

There are many families of subwords, which can be effectively represented
in this way - for example k-powers (when each package corresponds to a run)
and k-antipowers (when we can use the representation from section 1.3.1). The
obtained representations have size and computation time equal to O(n) and
O(nk2) respectively (each interval chain can be represented by at most k ordi-
nary intervals).

To enumerate through Factors(F), and compute |Factors(F)| most effectively
we consider two cases. The simpler one, called special, is the one in which if a
factor belongs to Factors(F), then each of its occurrences must be contained in a
package from F (it cannot be that some occurrences are represented, and some
are not).

In this case for a word of length n and F composed of m packages we make
use of a data structure for the longest previous factors ([9]) to obtain efficient
enumeration and counting of the result in O(n + m + output) and O(n + m)
time respectively. In the case of aforementioned distinct k-powers we obtain a

11



new, simple algorithm computing them in O(n) time, and in the case of distinct
k-antipowers we obtain a new algorithm working in O(nk2+ output) time. This
means, that the newly obtained algorithm has a better performance time than
the algorithm described in section 1.3.1, which counts those antipower factors
in O(nk4 log k log n) time, and is much more complicated.

The second case, called general does not require this extra assumption, which
however makes solving it much more difficult. To do that we adapt a method
we used in the paper about k-antipowers (counting of distinct such factors) to
obtain algorithms finding and counting Factors(F) in O(n log2 n + m log n +
output) and O(n log2 n+m log n) time respectively.

1.4 Other publications

During the course of my doctoral studies several other papers coauthored by me
have been published. I decided not to include them in this dissertation, since
they are not directly connected to its topic.

1. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyn-
ski, Tomasz Walen, Wiktor Zuba: Faster Recovery of Approximate Periods
over Edit Distance. SPIRE 2018: 233-240

2. Wojciech Rytter, Wiktor Zuba: Syntactic View of Sigma-Tau Generation
of Permutations. LATA 2019: 447-459
Extended version of the paper was accepted for publication in Theoretical
Computer Science journal.

3. Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociu-
maka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz
Walen, Wiktor Zuba: Quasi-Linear-Time Algorithm for Longest Common
Circular Factor. CPM 2019: 25:1-25:14

4. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Circular Pattern Matching with k Mismatches. FCT 2019: 213-
228

5. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Weighted Shortest Common Supersequence Problem Revisited.
SPIRE 2019: 221-238

6. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Shortest Covers
of All Cyclic Shifts of a String. WALCOM 2020: 69-80

7. Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Tomasz
Walen, Wiktor Zuba: Unary Words Have the Smallest Levenshtein k-
Neighbourhoods. CPM 2020: 10:1-10:12

12



8. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Internal Quasiperiod
Queries. SPIRE 2020: 60-75

9. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Shortest covers
of all cyclic shifts of a string. Theor. Comput. Sci. 866: 70-81 (2021)

10. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Circular pattern matching with k mismatches. J. Comput. Syst.
Sci. 115: 73-85 (2021)

13



Chapter 2

Autoreferat

2.1 Wstęp

2.1.1 Motywacja

Badanie regularnych fragmentów słów, w szczególności ich znajdowanie i zliczanie
jest jedną z najbardziej popularnych części algorytmiki tekstowej. Wiele algo-
rytmów inaczej działa na fragmentach słów które są okresowe niż na takich
w których ta własność nie występuje, jako że fragmenty te cechują często inne
własności. Przykładowo duża okresowość słowa pozwala na łatwą jego kompresję
- opisanie go przy pomocy samego okresu i długości, z drugiej strony może to
utrudniać wyszukiwanie takiego słowa - jeśli słowo długości m jest nieokresowe,
to w tekście długości n może się pojawić najwyżej 2 nm razy, nie jest to jednak
prawdą w przypadku słów okresowych (na przykład słowo aaaaaa pojawia się
w słowie aaaaaaaaaaaaaaaaa n−m+1 = 11 razy). Sama ilość takich (różnych)
struktur w słowie może służyć za miarę jego regularności lub skomplikowania.

W pracach wchodzących w skład doktoratu wraz z współautorami zajęliśmy
się kilkoma klasami podsłów regularnych lub takich, które można przedstawić
w zwarty sposób. W każdej z prac przedstawiliśmy nowe, efektywne algorytmy
wypisywania i zliczania wszystkich wystąpień, lub wszystkich różnych podsłów
pewnej klasy.

2.1.2 Skład pracy

Rozprawa składa się z czterech artykułów, napisanych podczas moich studiów
doktorskich na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu
Warszawskiego we współpracy z innymi autorami:

1. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński,
Tomasz Waleń, Wiktor Zuba: Efficient Representation and Counting of
Antipower Factors in Words. LATA 2019: 421-433

14



W wersji przyjętej do druku w Special Issue konferencji LATA 2019, które
ma być wydane w czasopiśmie Information & Computation.

2. Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, Wik-
tor Zuba: Counting Distinct Patterns in Internal Dictionary Matching.
CPM 2020: 8:1-8:15

3. Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz
Waleń, Wiktor Zuba: The Number of Repetitions in 2D-Strings. ESA 2020:
32:1-32:18

4. Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter, Tomasz Waleń, Wiktor Zuba: Efficient Enumeration of
Distinct Factors Using Package Representations. SPIRE 2020: 247-261

Wszystkie prace zawierają oryginalne wyniki z algorytmiki na słowach. Prace
zostały napisane przez autorów reprezentujących Uniwersytet Warszawski we
współpracy z naukowcami z King’s College London (Panagiotis Charalampopou-
los przebywał przez dłuższy czas w Warszawie) oraz Tomaszem Kociumaką,
który w międzyczasie zmienił afiliację z Uniwersytetu Warszawskiego na Uniw-
ersytet Bar-Ilan.

W sekcji 2.2 niniejszego autoreferatu przedstawiam podstawowe pojęcia -
definicje regularnych klas słów i podsłów, które są wykorzystywane w przed-
stawianych pracach.

W sekcji 2.3 pokazuję dokładny przegląd wyników załączonych prac oraz
szkice metod użytych do ich uzyskania.

W sekcji 2.4 wymieniam publikacje których jestem współautorem i które
zostały opublikowane podczas moich studiów doktoranckich, które jednak nie
zostały włączone w skład tej rozprawy.

W rozdziale 1 zamieszczone jest to samo streszczenie w języku angielskim,
zaś w rozdziałach 3, 4, 5 oraz 6 kolejne prace wchodzące w skład rozprawy.
Bibliografia na końcu zawiera referencje użyte w niniejszym streszczeniu.

2.2 Preliminaria

Aby przedstawić wyniki załączonych prac należy zacząć od przedstawienia typów
regularności w słowach, przez nie wykorzystywanych. Wiele z tych pojęć pojawia
się w więcej niż jednej z tych prac.

Definicja 2.1. Niech x = y0y1 · · · yk−1 dla k ­ 2 i słów yi o tej samej długości
d. Wtedy mówimy, że:

• x jest k-potęgą jeśli wszystkie yi są takie same (x jest kwadratem jeśli
dodatkowo k = 2);

• x jest k-antypotęgą jeśli wszystkie yi są parami różne;

15



a a b b a a b a b b a b b a b b a a a

Rysunek 2.1: Regularności w słowach jednowymiarowych. Zielonym tłem zaz-
naczono maksymalne powtórzenie (o okresie 3). Niebieskie linie pokazują wys-
tąpienie 4-antypotęgi. Zauważmy, że jedną i dwie pozycje dalej nie występują
4-antypotęgi o tej samej podstawie ponieważ te wyrazy długości 16 są przery-
wanymi kwadratami generowanymi przez zaznaczone nad słowem maksymalne
3-przerywane wystąpienie.

• x jest słabą k-potęgą jeśli nie jest k-antypotęgą, to jest jeśli yi = yj dla
pewnych i 6= j;

• x jest przerywanym kwadratem jeśli y0 = yk−1.

Definicja 2.2. Mówimy, że:

• p jest okresem słowa w jeśli w[i] = w[i+p] dla wszystkich i ∈ [0 . . |w|−p)
(przez okres słowa najczęściej rozumiemy jego najkrótszy okres);

• fragment słowa w[i . . j] jest maksymalnym powtórzeniem jeśli jego
długość jest równa co najmniej dwóm jego najkrótszym okresom i nie
można go rozszerzyć o jedną pozycję w lewo ani w prawo bez zmiany tego
okresu;

• fragment słowa w[i . . j] jest maksymalnym α-przerywanym powtórze-
niem (dla α ­ 1) jeśli jest postaci uvu dla p = |uv| ¬ α|u| i nie można go
rozszerzyć o jedną pozycję w lewo ani w prawo bez zmiany okresu.

Definicja 2.3. Dla tekstów dwuwymiarowych definiujemy analogiczne powtórzenia.

• Tandemem nazywamy dwuwymiarowy tekst o parzystej długości, w którym
lewa i prawa połowa tekstu są takie same (uogólnienie kwadratu na przy-
padek gdzie pojedynczą literą jest cała kolumna).

• Kwartyką nazywamy dwuwymiarowy tekst K o parzystej długości i sze-
rokości, taki że zarówno K jak i K⊥ są tandemami (cztery identyczne
teksty ułożone w kratę 2× 2).

• maksymalnym 2D-powtórzeniem nazywamy fragment tekstu dwuwymi-
arowego o wymiarach i × j, taki że jego okres poziomy jest wielkości co
najwyżej j

2 a pionowy co najwyżej i
2 . Co więcej powiększenie tego frag-

mentu o dodatkową kolumnę lub wiersz z dowolnej strony (o ile takie
istnieją w całym tekście) skutkowałoby zmianą tych okresów.

Przez kwadrat generowany przez maksymalne powtórzenie rozumiem kwadrat
zawarty w tym powtórzeniu o długości równej dokładnie dwóm okresom powtórzenia.

16



a c a a b a a b a a d c
a b c a b c a b c a b c
a b a a b a a b a a b a
a b c a b c a b c a b c
a d b a c d b a c a b d

Rysunek 2.2: Różne rodzaje powtórzeń w tekstach dwuwymiarowych. Kolorem
brązowym zaznaczono tandem, niebieskim kwartykę, zaś zielonym tłem maksy-
malne 2D-powtórzenie.

Wszystkie takie kwadraty można łatwo wyznaczyć z powtórzenia i każdy kwadrat
jest generowany przez jakieś maksymalne powtórzenie. Analogicznie wygląda
sytuacja generowania przerywanych kwadratów przez powtórzenia i α-przerywane
powtórzenia oraz generowania kwartyk przez 2D-powtórzenia.

Kwadrat ma pierwiastek pierwotny gdy jego pierwiastek (połowa) nie jest
k-potęgą dla żadnego k > 1. Analogicznie działa to w przypadku kwartyk, dla
których jego pierwiastek (ćwiartka) nie jest k-potęgą dla k > 1 ani poziomo ani
pionowo.

Definicja 2.4. Słownikiem wewnętrznym nazywamy zbiór pozycji początkowych
i końcowych wybranych podsłów zadanego słowa.

2.3 Przegląd wyników

2.3.1 Efficient Representation and Counting of Antipower
Factors in Words

Zaprezentowana tutaj praca została zaprezentowana na konferencji LATA 2019
i opublikowana w sprawozdaniu z konferencji. Rozszerzona wersja tej pracy
została później przyjęta do druku w Special Issue tej konferencji, wydawanym w
w czasopiśmie Information & Computation. Pracę właśnie w tej formie (przyjętej
do druku, lecz jeszcze nie opublikowanej) załączyłem do niniejszej rozprawy (w
rozdziale 3).

Wstęp
W pracy [5] przedstawione zostało górne i dolne ograniczenie Θ(n2/k) na

maksymalną liczbę wystąpień k-antypotęg w słowie. Praca ta podała również al-
gorytm wyznaczający te wystąpienia w czasieO(n2/k). Ze względu na ograniczenia
na wielkość wyjścia algorytm ten jest optymalny w przypadku pesymistycznym.
Nie oznacza to jednak, że nic w tej dziedzinie nie można poprawić.

W naszej publikacji skupiliśmy się na problemach które nie podlegają temu
ograniczeniu - zliczaniu antypotęg oraz ich wyznaczaniu ze złożonością zależną
od rozmiaru wyjścia (efektywniejszą gdy rozważane słowo zawiera mało anty-
potęg).

17



Pisząc dokładniej - zaprezentowaliśmy algorytmy, które dla słowa długości n
zliczają wszystkie podsłowa będące k-antypotęgami w czasie O(nk log k), wyz-
naczają wszystkie te podsłowa w czasie O(nk log k+rozmiar wyniku), oraz wyz-
naczają liczbę różnych k-antypotęg w słowie w czasie O(nk4 log k log n). Za-
prezentowaliśmy również nową strukturę danych pozwalającą na szybkie sprawdze-
nie, czy dane podsłowo jest k-antypotęgą.

Jak widać w (najczęściej wykorzystywanym) przypadku gdy rozważane k jest
małe w stosunku do długości słowa (mniejsze niż

√
n) nasz algorytm uzyskuje

lepszy asymptotyczny czas działania od poprzednio znanych.

Słabe potęgi i zwarta reprezentacja
Ze względu na nieregularną naturę antypotęg efektywne ich znajdowanie

nie jest proste. Dlatego też, skupiliśmy się na wyznaczeniu reprezentacji tych
podsłów, które nimi nie są, czyli słabych k-potęg. Jednocześnie każda słaba k-
potęga jest konsekwencją wystąpienia przerywanego kwadratu (być może dla
mniejszego k, lecz tego samego d).

Obserwacja 2.1.

(a) Każdy (przerywany) kwadrat jest generowany przez maksymalne powtórze-
nie o (nie koniecznie najkrótszym) okresie (q + 1) · d lub maksymalne
(q + 1)-przerywane powtórzenie o okresie (q + 1) · d dla q ¬ k − 2.

(b) Każde maksymalne powtórzenie i każde przerywane powtórzenie generuje
pojedynczy przedział pozycji w którym pojawiają się (przerywane) kwadraty
określonej długości, co więcej możemy ten przedział wyznaczyć w czasie
stałym.

(c) Wszystkich ogólnych maksymalnych powtórzeń w słowie o długości n jest
O(n) i ich reprezentację można wyliczyć w czasie O(n) ([6]).

(d) Wszystkich maksymalnych α-przerywanych powtórzeń w słowie jestO(nα)
i ich reprezentację można wyliczyć w czasie O(nα) ([11, 12]).

Korzystając z tych własności potrafimy wyliczyć reprezentację słabych k-
potęg dla wszystkich d w postaci łącznie O(nk) łańcuchów przedziałów (zbiór
przedziałów o tej samej długości i początkach tworzących postęp arytmetyczny).
Następnie korzystając z metod geometrycznych potrafimy wyznaczyć sumę teo-
riomnogościową tych łańcuchów w łącznym czasie O(nk log k). Daje nam to
bezpośrednio ilość słabych k-potęg dla każdego d, a więc i ilość k-antypotęg.
Zamiast liczyć wielkość zbioru pozycji pokrytych przez reprezentację wystąpień
słabych k-potęg możemy wyznaczyć wszystkie pozycje niepokryte i otrzymać
algorytm wyznaczający k-antypotęgi w czasie O(nk log k + wynik).

Pytania o podsłowa
W pracy [5] zaprezentowano również dwie struktury danych które po zbu-

dowaniu pozwalają odpowiadać na pytania ”Czy dane podsłowo w[i . . j] jest
k-antypotęgą?”. Pierwsza struktura o rozmiarze O(n) odpowiada na pytania

18



w czasie O(k), zaś druga robi to w czasie stałym, lecz wymaga zapamiętania
informacji rozmiaru O(n2).

W naszej pracy przedstawiliśmy nową strukturę, parametryzowaną przez
wartość r ∈ [1, n]. Po zbudowaniu w czasie O(n2/r) struktura ma rozmiar
O(n2/r) i odpowiada na pytania w czasie O(r).

Jeśli r < k, to wiemy, że podstawa potęgi d wynosi co najwyżej n/r > n/k.
Aby odpowiadać na pytania dla każdego d ¬ n/r osobno budujemy strukturę
danych opartą na range minimum queries, o rozmiarze O(n) i czasie zapytania
O(1). W komplementarnym przypadku aby uzyskać pożądany rezultat wystar-
czy skorzystać ze wspomnianej struktury z pracy [5].

Zliczanie różnych k-antypotęg
W wersji do czasopisma dodaliśmy kolejny wynik - zliczanie różnych k-

antypotęg w słowie.
Ze względu na potencjalną dużą ilość wszystkich wystąpień antypotęg metody

wykorzystujące ich wyznaczenie nie pozwalają na osiągnięcie satysfakcjonującej
szybkości. Aby uzyskać taki wynik ponownie skorzystaliśmy z powiązania anty-
potęg z bardziej regularnymi słabymi potęgami.

Liczbę różnych k-antypotęg możemy uzyskać odejmując od siebie dwie inne
wartości. Pierwszą wartością jest ilość (wszystkich) różnych podsłów o długości
podzielnej przez k. Możemy ją łatwo uzyskać w czasie O(n) przy użyciu drzewa
sufiksowego.

Drugą potrzebną wartością jest liczba różnych słabych k-potęg. Aby ją uzyskać
najpierw wzmocniliśmy definicję słabych potęg, tak aby każda była generowana
na dokładnie jeden sposób. Następnie przez redukcję do problemu grafowego
udało nam się wykonać liczenie różnych takich konstrukcji w łącznym czasie
O(nk4 log k log n).

2.3.2 Counting Distinct Patterns in Internal Dictionary
Matching

W pracy [8] moi współautorzy wprowadzili problem wyszukiwania przy użyciu
słownika wewnętrznego - dla zadanego słowa T i jego słownika wewnętrznego D
przedstawili konstrukcję struktury danych pozwalającą efektywnie odpowiadać
na pytania dla danego podsłowa T [i . . j]:

• czy T [i . . j] zawiera jakieś słowo ze słownika?
• zwróć wszystkie podsłowa słowa T [i . . j] które należą do słownika
• zwróć wszystkie słowa ze słownika D które są zawarte w T [i . . j]
• zwróć liczbę podsłów T [i . . j] które należą do słownika
• zwróć liczbę różnych słów ze słownika D które są zawarte w T [i . . j]

Przedstawiona struktura danych miała rozmiar i czas konstrukcji Õ(n+d) (gdzie
n = |T | oznacza długość słowa, d = |D| liczbę słów w słowniku, zaś Õ no-
tację asymptotyczną pomijającą czynniki polilogarytmiczne) i odpowiadającą
na pierwsze cztery pytania w czasie Õ(1 + wynik).

19



W przypadku ostatniego pytania tylkoO(log n) aproksymacja wyniku została
zaprezentowana.

Rozmiar Czas konstrukcji Czas zapytania Wariant

Õ(n+ d) Õ(n+ d) Õ(1) 2-aproksymacja

Õ(n2/m2 + d) Õ(n2/m+ d) Õ(m) dokładny

Õ(nd/m+ d) Õ(nd/m+ d) Õ(m) dokładny

O(n log2 n) O(n log2 n) O(log n) D = kwadraty, dokładny

Tabela 2.1: Nasze rezultaty dla zapytań policz różne (m ∈ [1, n] jest dowolnie
wybranym parametrem).

2-aproksymacja
Aby poprawić wynik z poprzedniej pracy stworzyliśmy strukturę danych,

która pamięta wyniki dla podsłów bazowych, czyli wszystkich podsłów długości
b(1 + δ)pc dla wszystkich liczb naturalnych p i ustalonego δ = 1

9 . Aby otrzy-
mać wynik dla dowolnego podsłowa T [i . . j] korzystamy z maksymalnych słów
bazowych postaci T [i . . i′] oraz T [j′ . . j] zawartych w T [i . . j] i otrzymujemy jego
podział na trzy części F1F2F3 (F1F2 = T [i . . i′], F2F3 = T [j′ . . j]).

Wynik uzyskujemy poprzez zliczenie słów ze słownika, które mają wystąpi-
enie zaczynające się w F1 i kończące w F3, jednak nie występujące w żadnym z
wymienionych słów bazowych, co udaje nam się zrobić efektywnie dzięki dużemu
stosunkowi długości F2 do F1 i F3. Do tego dodajemy ilości słów występujących
w obu słowach bazowych, co jednak skutkuje uzyskaniem jedynie 2-aproksymacji
ze względu na możliwe powtórzenia.

Wszystkich słów bazowych jest O(n log n), zaś wartości dla nich potrafimy
policzyć w łącznym czasie O(n log1+ε n+d) (dla dowolnego stałego ε > 0) wyko-
rzystując to, że wynik po przesunięciu o jedną pozycję można zaktualizować
niewielkim kosztem. Struktura danych używana do zliczania słów opisanych w
poprzednim akapicie kosztuje nas dodatkowe O(n log n/ log log n + d log3/2 n)
czasu preprocessingu oraz zajmujeO(n+d log n) pamięci. Pozwala ona odpowiadać
na pytania w czasie O(log2 n/ log log n).

Obliczanie dokładne
Jeśli zamiast dla słów bazowych zapamiętamy wyniki dla wszystkich pod-

słów postaci T [c1m+ 1 . . c2m] dla wybranego m oraz wszystkich c1 < c2 otrzy-
mamy strukturę danych o rozmiarze O(n2/m2 + n + d) obliczaną w czasie
O((n2 logε n)/m + n

√
log n + d). Rozszerzając takie słowo po jednej pozycji

możemy uzyskać wynik dla dowolnego słowa przy użyciu O(m) operacji o kosz-
cie O(logε n).

Innym podejściem do problemu jest zagłębienie się w strukturę słownika.
Jeśli słownik nie zawiera zbioru k różnych prefiksów tego samego słowa, to

na dowolnej pozycji może się zaczynać co najwyżej k − 1 różnych słów z tego

20



słownika. W takim przypadku możemy dla każdego słowa ze słownika zapamię-
tać wszystkie pozycje na których ono występuje. Daje nam to strukturę danych
wielkości O(nk log n), obliczalną w czasie O(nk log n) i pozwalającą odpowiadać
na pytania w czasie O(log n).

Aby uzyskać słownik w takiej postaci wydzielamy z niego (jako nowe słown-
iki) słowa niespełniające tej własności, to jest duże grupy słów będących pre-
fiksami tego samego słowa. Takich grup (o wielkości co najmniej k) jest co
najwyżej d/k, zaś dla każdej takiej grupy potrafimy efektywnie odpowiadać na
pytania przy pomocy struktury do pytań o ograniczone LCP ([14]) o rozmiarze
O(n
√

log n) w czasie O(logε n) dla dowolnego ε > 0.
Dla k = d dme daje nam to w sumie czas zapytania wielkości O(m logε n +

log n).

Słownik kwadratów
Dla popularnego przypadku obliczania liczby kwadratów w podsłowie opisal-

iśmy odrębny algorytm. Dzięki szczególnym własnościom takich podsłów możemy
otrzymać lepsze wyniki.

Wszystkich wystąpień kwadratów w słowie może byćO(n2) (różnych kwadratów
tylko O(n)), jednak dzięki skorzystaniu z maksymalnych powtórzeń, których
w całym słowie jest O(n) (i które można obliczyć w czasie O(n)) potrafimy
wyznaczyć m = O(n log n) istotnych wystąpień kwadratów, które są wystarcza-
jąco reprezentatywne dla naszych potrzeb. Dzięki skorzystaniu z geometrycznej
struktury danych o rozmiarze i czasie konstrukcji O(m logm) z pracy [13] po-
trafimy odpowiedzieć na pytanie o liczbę różnych takich słów w podsłowie w
czasie O(logm) = O(log n).

2.3.3 The Number of Repetitions in 2D-Strings

W pracy zamieszczonej w rozdziale 5 zajęliśmy się problemem powtórzeń w
tekstach dwuwymiarowych. W tabeli 2.2 przedstawiłem podsumowanie naszych
wyników oraz dotychczasowej wiedzy na temat możliwej ilości maksymalnych
2D-powtórzeń jak i maksymalnej liczby różnych tandemów i kwartyk oraz wszys-
tkich wystąpień tych o pierwotnym pierwiastku. Przedstawiłem również czasy al-
gorytmów pozwalających wyznaczyć te struktury w tekście. Warto zauważyć, że
ilość 2D-powtórzeń była już wcześniej badana, jednak granica pomiędzy dolnym
i górnym ograniczeniem pozostawała liniowa. W przedstawianej pracy udało
nam się zredukować tą wielkość do polilogarytmicznej.

maksymalne 2D-powtórzenia
Aby uzyskać ograniczenie na liczbę maksymalnych 2D-powtórzeń skorzystal-

iśmy z lematu z pracy [1] aby przypisać każde takie powtórzenie do maksymal-
nego powtórzenia poziomego (brak wymagania pionowej okresowości i maksy-
malności) o wysokości będącej potęgą dwójki (największą możliwą, nie większą
niż wysokość 2D-powtórzenia). Takie powtórzenie poziome spełnia również trzy
istotne warunki - jego lewy górny lub lewy dolny narożnik jest równy odpowiada-
jącemu narożnikowi 2D-powtórzenia, jego okres jest równy okresowi poziomemu

21



Ograniczenia na ilość
w tekście n× n Czas wyznaczania

maksymalne
2D-powtórzenia

Ω(n2),O(n3)[2]
O(n2 log2 n)

O(n2 log n+wynik)[2]
O(n2 log2 n)

Wystąpienia kwartyk
o pierwotnych pierwiastkach

Θ(n2 log2 n) [3] O(n2 log2 n)

Różne kwartyki O(n2 log2 n) O(n2 log2 n)

Wystąpienia tandemów
o pierwotnych pierwiastkach

Θ(n3 log n)[3] O(n3 log n)[4]

Różne tandemy
Ω(n2),O(n4)(trywialne)

Θ(n3)
O(n3)

Tabela 2.2: Przegląd wcześniejszych wyników i naszych rezultatów (pogrubione).

Rysunek 2.3: Przypisanie maksymalnemu 2D-powtórzeniu maksymalnego
powtórzenia poziomego o wysokości 2k.

powiązanego 2D-powtórzenia oraz jego długość jest co najmniej taka jak długość
2D-powtórzenia (rysunek 2.3).

Korzystając z tych własności, lematu o okresowości oraz lematu o trzech
kwadratach dowiedliśmy, że wszystkim poziomym powtórzeniom okupującym
wiersze od i do i + 2k − 1 może zostać przypisane łącznie O(n log n) różnych
maksymalnych 2D-powtórzeń. Mnożąc tą wartość, przez ilość możliwych wyborów
i oraz k otrzymujemy ograniczenie O(n2 log2 n) na liczbę maksymalnych 2D-
powtórzeń w tekście rozmiaru n× n.

Nasze ograniczenie na ilość maksymalnych 2D-powtórzeń automatycznie daje
nowe ograniczenie na czas działania algorytmu z pracy [2] (algorytm ten działa
w czasie zależnym od rozmiaru wyniku).

Kwartyki o pierwotnych pierwiastkach
W przypadku jednowymiarowym wszystkie kwadraty o pierwotnych pier-

wiastkach można bardzo łatwo wyznaczyć znając maksymalne powtórzenia w
słowie - wystarczy wziąć wszystkie słowa o długości dwóch okresów maksymal-
nego powtórzenia, które są w nim zawarte.

W przypadku dwuwymiarowym jest podobnie - każda kwartyka o pierwot-
nym pierwiastku jest prostokątem o długości dwóch okresów poziomych i wysokości
dwóch okresów pionowych pewnego maksymalnego 2D-powtórzenia, całkowicie
w nim zawartym. Pojawia się jednak pewien problem - o ile w przypadku jed-
nowymiarowym dwa maksymalne powtórzenia o tym samym okresie nie mogą

22



b b a a a a
b a a a a a
a a a a a a
a a a a a b
a a a a b b

Rysunek 2.4: Wiele przecinających się maksymalnych 2D-powtórzeń o tych
samych okresach

mieć dużego przecięcia i w szczególności nie mogą generować tego samego kwadratu,
o tyle w 2D coś takiego może bardzo łatwo zachodzić (rysunek 2.4), przez to
zwykłe użycie takiego algorytmu mogłoby skutkować wielokrotnym zwracaniem
tych samych kwartyk.

Rozwiązaniem tego problemu jest metoda zamiatania - algorytm z pracy
[7], który pozwala na liczenie sum teoriomnogościowych kilku różnych rodzin
prostokątów na kracie n × n w łącznym czasie O(n + r + wynik), gdzie r to
liczba wszystkich prostokątów.

Dzieląc wszystkie maksymalne 2D-powtórzenia na grupy o takich samych
okresach i dla każdej takiej biorąc prostokąty wyznaczające lewe górne rogi
generowanych kwartyk otrzymujemy pożądany algorytm.

Dzięki naszemu ograniczeniu na liczbę r z poprzedniej podsekcji oraz ogranicze-
niu O(n2 log2 n) na liczbę kwartyk o pierwotnym pierwiastku z pracy [3] algo-
rytm działa w łącznym czasie O(n2 log2 n) (optymalnym ze względu na dolne
ograniczenie z tej samej pracy).

Różne kwartyki
W tekście rozmiaru n×n złożonym z samych liter a zawarte jest Θ(n4) wys-

tąpień dowolnych kwartyk, przez co trywialny algorytm znajduje wszystkie takie
wystąpienia w optymalnym pesymistycznym czasie. Dlatego też ciekawszym
problemem jest wyznaczenie różnych kwartyk (fragmenty różniące się nie tylko
położeniem, ale też jako teksty).

Wynik z pracy [3] daje ograniczenie na liczbę kwartyk o pierwiastku pierwot-
nym. Inne kwartyki złożone są z wielu przylegających do siebie wystąpień ta-
kich samych pierwotnych kwartyk tworzących większy prostokąt. Innymi słowy
o ile w przypadku tych poprzednich kwartyk wystąpienia pierwotnego tekstu W
tworzyły kratę 2 × 2, to w przypadku tych pozostałych tworzą kraty 2k × 2l,
gdzie k > 1 lub l > 1. Kwartyki takie dzielimy na wąskie, czyli takie dla których
k = 1 lub l = 1 i szerokie dla których k, l > 1.

Następnie dokonujemy kolejnego podziału - kwartyki dla których słowo pier-
wotne W ma rozmiary w przedziałach [2a, 2a+1)× [2b, 2b+1) dla pewnych a, b ¬
log n rozważamy razem.

Ze względu na lematy o okresowości oraz o trzech kwadratach każdy punkt
może być lewym górnym rogiem ostatniego wystąpienia (w tym samym wierszu,
bardziej na prawo w tekście nie występuje taka sama kwartyka) co najwyżej

23



czterech różnych kwartyk wąskich z jednej grupy (analogicznie działa dowód na
ograniczenie liczby różnych kwadratów w standardowym tekście [10]).

W przypadku kwartyk szerokich dzięki mnogości punktów kratowych w
których zaczyna się wystąpienie słowa W każdej takiej kwartyce będącej potęgą
W możemy przypisać unikalny punkt na tej kracie. Dodatkowo dzięki lematowi
o okresowości taki punkt nie może należeć do kraty dla kwartyki będącej potęgą
innego W ′ o rozmiarze należącym do [2a, 2a+1)× [2b, 2b+1).

Dzięki przypisywaniu punktów z [1, n]×[1, n] do kwartyk oraz log2 n wyborom
a, b otrzymujemy ograniczenia O(n2 log2 n) na ilość różnych kwartyk każdego z
typów.

W celu wyznaczenia wszystkich unikalnych kwartyk w tekście korzystamy z
naszego wcześniejszego algorytmu by wyznaczyć wszystkie wystąpienia kwartyk
o pierwiastkach pierwotnych i grupujemy je według pierwiastków.

Kwartyki będące potęgami słowa pierwotnego W powstają z połączenia
wielu kwartyk pierwotnych o tym samym pierwiastku. Możemy więc wyznaczyć
lewe górne rogi wszystkich wystąpień takich kwartyk i wyszukać maksymalne
kraty utworzone przez takie punkty.

Problem ten rozwiązujemy używając ponownie metody zamiatania by uzyskać
algorytm działający w czasie O(n2 log2 n).

Różne tandemy
Jako powiązanym problemem zajęliśmy się też wyznaczaniem różnych tandemów

(podobnie jak w przypadku kwartyk wszystkich wystąpień tandemów może być
Θ(n4)).

W wypadku tego problemu można łatwo utożsamić tandemy zaczynające się
w wierszu i oraz kończące w wierszu j z kwadratami w standardowym słowie
(jednowymiarowym), poprzez przypisanie kolumnom wysokości j − i + 1 stan-
dardowych liter. W standardowym słowie długości n może być Θ(n) różnych
kwadratów, stąd też takie samo ograniczenie obowiązuje tandemy okupujące
wyznaczone wiersze. Mnożąc tę wartość przez liczbę wyborów wartości i oraz j
otrzymujemy ograniczenie O(n3) na liczbę różnych tandemów.

Dolne ograniczenie Ω(n3) na maksymalną liczbę takich tandemów otrzymu-
jemy równie prosto - otrzymujemy je na przykład dla tekstu w którym każdy
wiersz jest słowem nad alfabetem jednoliterowym, dla każdego wiersza innym.

Przypisanie kolumnom wysokości j− i+1 standardowych liter można zrobić
konstrukcyjnie. Dzięki temu i dzięki skorzystaniu z algorytmów wyszukujących
różne kwadraty w standardowym słowie otrzymujemy algorytm wyznaczający
różne tandemy w słowie dwuwymiarowym w czasie O(n3). Ze względu na dolne
ograniczenie maksymalnego rozmiaru wyniku żaden bardziej skomplikowany al-
gorytm nie pozwala na uzyskanie lepszego rezultatu w pesymistycznym przy-
padku.

24



2.3.4 Efficient Enumeration of Distinct Factors Using Pack-
age Representations

W ostatniej z opisywanych prac zajęliśmy się nową reprezentacją podzbiorów
podsłów która w wielu przypadkach zapewnia zwięzłą reprezentację, która jed-
nocześnie pozwala na efektywne operowanie opisywanym podzbiorem.

Przez pakiet rozumiemy zbiór podsłów tej samej długości występujących na
kolejnych pozycjach w słowie. Nasza reprezentacja składa się ze zbioru takich
pakietów reprezentowanych jako trójki (pierwsza pozycja początkowa, długość
słów, długość przedziału). Rzeczą, która interesuje nas szczególnie jest zbiór
wszystkich podsłów które należą do przynajmniej jednego z tych pakietów.

Bardziej formalnie

Factors(F) = {T [j . . j + l) : j ∈ [i, i+ k] and (i, l, k) ∈ F}.

Przykładami rodzin podsłów, dla których łatwo można uzyskać taką reprezen-
tację są potęgi (kiedy to każdy pakiet reprezentuje bezpośrednio jedno maksy-
malne powtórzenie) oraz k-antypotęgi (gdy możemy wykorzystać bezpośrednio
ich reprezentację z pracy opisanej w sekcji 2.3.1). Reprezentacje te mają rozmiar
(i czas obliczania) równy odpowiednio O(n) i O(nk2) (każdy łańcuch przedzi-
ałów reprezentuje co najwyżej k zwykłych przedziałów).

W celu znalezienia zbioru Factors(F), czyli różnych podsłów należących do
reprezentacji oraz |Factors(F)|, czyli ilości takich słów rozpatrujemy dwa przy-
padki. Pierwszy prostszy przypadek, nazywany w pracy specjalnym, to taki
w którym jeśli podsłowo należy do Factors(F), to każde jego wystąpienie w
rozważanym słowie należy do któregoś z pakietów należących do F .

W tym przypadku dla słowa długości n i F składającej się z m pakietów ko-
rzystając ze struktury danych najdłuższych poprzednich podsłów (longest previ-
ous factors [9]) otrzymujemy wyznaczenie i zliczanie wyniku w czasie odpowied-
nio O(n+m+ wynik) i O(n+m). W przypadku przedstawionych przykładów
daje nam to nowy, prosty algorytm wyznaczania różnych potęg w słowie, dzi-
ałający w czasie O(n), oraz nowy algorytm wyznaczania różnych k-antypotęg
działający w czasie O(nk2+wynik), a więc lepszy od naszego algorytmu z pracy
opisanej w sekcji 2.3.1, który zwraca ilość różnych k-antypotęg, działa w czasie
O(nk4 log k log n) i jest dużo bardziej skomplikowany.

Drugi rozważany przypadek, nazywany w pracy ogólnym nie wymaga tego
dodatkowego założenia, co jednak czyni go istotnie trudniejszym do rozwiąza-
nia. Aby go rozwiązać adaptujemy metodę użytą poprzednio w pracy o k-
antypotęgach (zliczanie różnych k-antypotęg) i uzyskujemy algorytmy wyznacza-
nia i zliczania wyniku Factors(F), działające w czasie odpowiednio O(n log2 n+
m log n+ wynik) i O(n log2 n+m log n).

2.4 Pozostałe publikacje

Podczas moich studiów doktorskich zostały opublikowane również inne prace
których jestem współautorem. Zdecydowałem się nie dołączać ich do niniejszej

25



rozprawy ze względu na niedostateczne dopasowanie do jej tematu.

1. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyn-
ski, Tomasz Walen, Wiktor Zuba: Faster Recovery of Approximate Periods
over Edit Distance. SPIRE 2018: 233-240

2. Wojciech Rytter, Wiktor Zuba: Syntactic View of Sigma-Tau Generation
of Permutations. LATA 2019: 447-459
Rozszerzona wersja pracy została przyjęta do druku w czasopiśmie Theo-
retical Computer Science.

3. Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociu-
maka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz
Walen, Wiktor Zuba: Quasi-Linear-Time Algorithm for Longest Common
Circular Factor. CPM 2019: 25:1-25:14

4. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Circular Pattern Matching with k Mismatches. FCT 2019: 213-
228

5. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Weighted Shortest Common Supersequence Problem Revisited.
SPIRE 2019: 221-238

6. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Shortest Covers
of All Cyclic Shifts of a String. WALCOM 2020: 69-80

7. Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Tomasz
Walen, Wiktor Zuba: Unary Words Have the Smallest Levenshtein k-
Neighbourhoods. CPM 2020: 10:1-10:12

8. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Internal Quasiperiod
Queries. SPIRE 2020: 60-75

9. Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszynski, Tomasz Walen, Wiktor Zuba: Shortest covers
of all cyclic shifts of a string. Theor. Comput. Sci. 866: 70-81 (2021)

10. Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub
Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, Wik-
tor Zuba: Circular pattern matching with k mismatches. J. Comput. Syst.
Sci. 115: 73-85 (2021)

26



Chapter 3

Efficient Representation
and Counting of Antipower
Factors in Words

27



Efficient Representation and Counting of Antipower
Factors in Words

Tomasz Kociumakaa,b,1, Jakub Radoszewskib,2,∗, Wojciech Rytterb,1, Juliusz
Straszyńskib,2, Tomasz Waleńb, Wiktor Zubab

a Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
b Institute of Informatics, University of Warsaw, Warsaw, Poland

Abstract

A k-antipower (for k ≥ 2) is a concatenation of k pairwise distinct words of the
same length. The study of fragments of a word being antipowers was initiated
by Fici et al. (ICALP 2016) and first algorithms for computing such fragments
were presented by Badkobeh et al. (Inf. Process. Lett., 2018). We address
two open problems posed by Badkobeh et al. We propose efficient algorithms
for counting and reporting fragments of a word which are k-antipowers. They
work in O(nk log k) time and O(nk log k + C) time, respectively, where C is
the number of reported fragments. For k = o(

√
n/ log n), this improves upon

the time complexity O(n2/k) of the solution by Badkobeh et al. We also show
that the number of different k-antipower factors of a word of length n can be
computed in O(nk4 log k log n) time. Our main algorithmic tools are runs and
gapped repeats. Finally, we present an improved data structure that checks, for
a given fragment of a word and an integer k, if the fragment is a k-antipower.

This is a full and extended version of a paper presented at LATA 2019.
In particular, no algorithm counting different antipower factors has been an-
nounced in the conference proceedings.

Keywords: antipower, gapped repeat, run (maximal repetition)

1. Introduction

Typical types of regular words are powers. If equality is replaced by in-
equality, other versions of powers are obtained. Antipowers are a new type of

∗Corresponding author
Email addresses: kociumaka@mimuw.edu.pl (Tomasz Kociumaka), jrad@mimuw.edu.pl

(Jakub Radoszewski), rytter@mimuw.edu.pl (Wojciech Rytter), jks@mimuw.edu.pl (Juliusz
Straszyński), walen@mimuw.edu.pl (Tomasz Waleń), w.zuba@mimuw.edu.pl (Wiktor Zuba)

1Supported by the Polish National Science Center, grant no 214/13/B/ST6/00770.
2Supported by the “Algorithms for text processing with errors and uncertainties” project

carried out within the HOMING program of the Foundation for Polish Science co-financed by
the European Union under the European Regional Development Fund.

Preprint submitted to Elsevier April 6, 2021



regularity of words, based on diversity rather than on equality, that was recently
introduced by Fici et al. [1, 2]. Algorithmic study of antipowers was initiated
by Badkobeh et al. [3]. Very recently, a related concept of antiperiods was
considered by Alamro et al. [4].

Let us assume that x = y0 · · · yk−1, where k ≥ 2 and yi are words of the
same length d. We then say that:

• x is a k-power if all yi’s are the same;

• x is a k-antipower (or a (k, d)-antipower) if all yi’s are pairwise distinct;

• x is a weak k-power (or a weak (k, d)-power) if it is not a k-antipower,
that is, if yi = yj for some i 6= j;

• x is a gapped (q, d)-square if y0 = yk−1 and q = k − 2.

In the first three cases, the length d is called the base of the power or antipower x.
If w is a word, then by w[i . . j] we denote a fragment of w composed of

letters w[i], . . . , w[j]. The corresponding word w[i] · · ·w[j] is called a factor of w.
The fragment w[i . . j] (which is an occurrence of the factor w[i] · · ·w[j]) can be
concisely represented by the indices i and j. Badkobeh et al. [3] considered
fragments of a word that are antipowers and obtained the following result.

Fact 1.1 ([3]). The maximum number of k-antipower fragments in a word of
length n is Θ(n2/k), and they can all be reported in O(n2/k) time. In particular,
all k-antipower fragments of a specified base d can be reported in O(n) time.

Badkobeh et al. [3] asked for an output-sensitive algorithm that reports all
k-antipower fragments in a given word. We present such an algorithm. En route
to enumerating k-antipowers, we (complementarily) find weak k-powers. Also
gapped (q, d)-squares play an important role in our algorithm.

2-antipowers can be called antisquares. An antisquare is simply an even-
length word that is not a square. The number of fragments of a word of length
n being squares can obviously be Θ(n2), e.g., for the word an. However, the
number of different square factors in a word of length n is O(n); see [5, 6]. In
comparison, the number of different antisquare factors of a word of length n can
already be Θ(n2). For example, this is true for a de Bruijn word. Still, we show
that the number of different antisquare factors of a word can be computed in
O(n) time and that the number of different k-antipower factors for relatively
small values of k can also be computed efficiently.

For a given word w, an antipower query (i, j, k) asks to check if a fragment
w[i . . j] is a k-antipower. Badkobeh et al. [3] proposed the following data struc-
tures for answering such queries.

Fact 1.2 ([3]). Antipower queries can be answered (a) in O(k) time with a data
structure of size O(n); (b) in O(1) time with a data structure of size O(n2).

In either case, answering n antipower queries using Fact 1.2 requires Ω(n2)
time in the worst case (including construction of the data structure). We show
a trade-off between the data structure space (and construction time) and query
time that allows answering any n antipower queries more efficiently.

2



Our results. We assume an integer alphabet {1, . . . , nO(1)}. Our first result is
an algorithm that computes the number C of k-antipower fragments of a word
of length n in O(nk log k) time and reports them in O(nk log k + C) time.

Our second result is an algorithm that computes the number of different
factors of a word of length n that are k-antipowers in O(nk4 log k log n) time.

Our third result is a construction in O(n2/r) time of a data structure of size
O(n2/r), for any r ∈ {1, . . . , n}, which answers antipower queries in O(r) time.
Thus, any n antipower queries can be answered in O(n

√
n) time and space.

This is a full and extended version of [7].

Structure of the paper. Our algorithms are based on a relation between
weak powers and two notions of periodicity of words: gapped repeats and runs.
In Section 2, we recall important properties of these notions. Section 4 shows
a simple algorithm that counts k-antipower fragments in a word of length n
in O(nk3) time. In Section 5, it is improved in three steps to an O(nk log k)-
time algorithm. One of the steps applies static range trees that are recalled
in Section 3. Algorithms for reporting k-antipower fragments and answering
antipower queries are presented in Section 6. The reporting algorithm makes a
more sophisticated application of the static range tree that is also described in
Section 3. Finally, an algorithm that counts the number of different k-antipower
factors in a word of length n in O(nk4 log k log n) time is shown in Section 7.

2. Preliminaries

The length of a word w is denoted by |w| and the letters of w are numbered
0 through |w| − 1, with w[i] representing the ith letter. Let [i . . j] denote the
integer interval {i, i + 1, . . . , j} and [i . . j) denote [i . . j − 1]. By w[i . . j] we
denote the fragment of w between the ith and the jth letter, inclusively. If
i > j, the fragment is empty. Let us further denote w[i . . j) = w[i . . j − 1]. The
word w[i] · · ·w[j] that corresponds to the fragment w[i . . j] is called a factor
of w. Thus the two main counting algorithms that we develop count differ-
ent k-antipower fragments and different k-antipower factors of the input word,
respectively.

By wR we denote the reversed word w. We say that p is a period of the word
w if w[i] = w[i+ p] holds for all i ∈ [0 . . |w| − p).

An α-gapped repeat γ (for α ≥ 1) in a word w is a triple (i, j, p) such that
w[i . . j] is of the form uvu for p = |uv| ≤ α|u|. The two occurrences of u are
called arms of the α-gapped repeat and p, denoted per(γ), is called the period
of the α-gapped repeat. Note that an α-gapped repeat is also an α′-gapped
repeat for every α′ > α. An α-gapped repeat is called maximal if its arms can
be extended simultaneously with the same character neither to the right nor to
the left. In short, we call maximal α-gapped repeats α-MGRs and the set of
α-MGRs in a word w is further denoted by MGRepsα(w).

Kolpakov et al. [8] showed the first upper bound O(nα2) on the number of
α-MGRs and proposed an O(nα2)-time algorithm computing α-MGRs. This
result was later improved by Tanimura et al. [9] and Crochemore et al. [10]

3



resulting in an upper bound of O(nα) and an O(nα)-time algorithm working
for constant-sized alphabets. Gawrychowski et al. [11] provided a constant of 18
in the upper bound and obtained an algorithm that works for integer alphabets.
The constant was later improved by I and Köppl [12] to 3(π2/6+5/2) ≈ 12.435.
We use the following fact that summarizes the state of the art.

Fact 2.1 ([11, 12]). Given a word w of length n and a parameter α, the set
MGRepsα(w) can be computed in O(nα) time and satisfies |MGRepsα(w)| ≤
3(π2/6 + 5/2)αn.

Other results related to gapped repeats were shown in [13, 14].
A run (a maximal repetition) in a word w is a triple (i, j, p) such that w[i . . j]

is a fragment with the smallest period p, 2p ≤ j − i + 1, that can be extended
neither to the left nor to the right preserving the period p. Its exponent e is
defined as e = (j − i + 1)/p. Kolpakov and Kucherov [15] showed that a word
of length n has O(n) runs, that the sum of their exponents is O(n), and that
they can be computed in O(n) time. Bannai et al. [16] recently refined these
combinatorial results and developed a simpler the linear-time algorithm.

Fact 2.2 ([16]). A word of length n has at most n runs, and the sum of their
exponents does not exceed 3n. All these runs can be computed in O(n) time.

Further work [17, 18] led to improved constants in the upper bound, although
only for the case of binary strings.

A generalized run in a word w is a triple γ = (i, j, p) such that w[i . . j] is
a fragment with a period p, not necessarily the shortest one, 2p ≤ j − i + 1,
that can be extended neither to the left nor to the right preserving the period p.
By per(γ) we denote p, called the period of the generalized run γ. The set of
generalized runs in a word w is denoted by GRuns(w).

A run (i, j, p) with exponent e corresponds to
⌊
e
2

⌋
generalized runs: (i, j, p),

(i, j, 2p), (i, j, 3p), . . . , (i, j,
⌊
e
2

⌋
p). By Fact 2.2, we obtain the following.

Corollary 2.3. For a word w of length n, |GRuns(w)| ≤ 1.5n and this set can
be computed in O(n) time.

Our algorithm uses a relation between weak powers, α-MGRs, and general-
ized runs; see Fig. 1 for an example presenting the interplay of these notions.

The interval representation of a finite set X of integers is

X = [i1 . . j1] ∪ [i2 . . j2] ∪ · · · ∪ [it . . jt],

where i1 ≤ j1, j1 + 1 < i2, i2 ≤ j2, . . . , jt−1 + 1 < it, and it ≤ jt. We denote
this representation by R(X). The value t, denoted |R(X)|, is called the size
of the representation. The following simple lemma allows implementing basic
operations on interval representations.

Lemma 2.4. Assume that X1, . . . ,Xr are non-empty families of subintervals of
[0 . . n). The interval representations of

⋃X1,
⋃X2, . . . ,

⋃Xr can be computed
in O(n + m) time, where m is the total size of the families Xi. Similarly, the
interval representation of

⋂r
i=1 (

⋃Xi) can be computed in O(n+m) time.

4



c c c a b a b a c b a b b a c b

* * * * b a b a
* * a b a b * *

* * b a b a * *
a b a b * * * *

b a b a * * * *

a b a c b a b bantipower

b a * * * * b a
a c * * * * a c

c b * * * * c b

c c c a b a b a c b a b b a c b

* * * b a c * * * b a c
* * * a c b * * * a c b

Figure 1: To the left: all weak (4, 2)-powers and the only (4, 2)-antipower in a word of length
16. An asterisk denotes any character. The first five weak (4, 2)-powers are generated by the
run ababa with period 2, and the last three are generated by the 1.5-MGR bacb ab bacb, whose
period 6 is divisible by 2. To the right: all weak (4, 3)-powers in the same word are generated
by the same MGR because its period is a multiple of 3.

Proof. We start by sorting the endpoints of the intervals and grouping them by
the index i of the family Xi. This can be done in O(n + m) time using bucket
sort [19]. Next, for each i, to compute the interval representation of

⋃Xi, we
scan the endpoints left to right maintaining the number of intervals containing
the current point. We start an interval when this number becomes positive and
end one when the number drops to 0. This processing takes O(m) time.

In order to compute the representation of the intersection, we use the same
type of a counter when simultaneously processing the interval representations
of
⋃X1,

⋃X2, . . . ,
⋃Xr, but start an interval only when the counter becomes

equal to r and end one when the counter drops below r.

Let J be a family of subintervals of [0 . .m), initially empty. Let us consider
the following operations on J , where I is an interval: insert(I): J := J ∪{I};
delete(I): J := J \ {I} for I ∈ J ; and count, which returns |⋃J |. It is
folklore knowledge that all these operations can be performed efficiently using
a static range tree (sometimes called a segment tree; see, e.g., [20, Section 2.1]).
In Section 3, we prove the following lemma for completeness.

Lemma 2.5. There exists a data structure of size O(m) that, after O(m)-
time initialization, supports insert and delete in O(logm) time and count in
O(1) time.

Let us introduce another operation report that returns all elements of the
set A = [0 . .m) \⋃J . We also show in Section 3 that a static range tree can
be augmented to support this operation efficiently.

Lemma 2.6. There exists a data structure of size O(m) that, after O(m)-time
initialization, supports insert and delete in O(logm) time and report in
O(|A|) time.

5



3. Applications of static range tree

Let m be a power of two. We define a basic interval as an interval of
the form [2ia . . 2i(a+ 1)) ⊆ [0 . .m − 1) such that i and a are non-negative
integers. For example, the basic intervals for m = 8 are [0 . . 1), . . . , [7 . . 8),
[0 . . 2), [2 . . 4), [4 . . 6), [6 . . 8), [0 . . 4), [4 . . 8), [0 . . 8). In a static range tree (some-
times called a segment tree; see [20, Section 2.1]), each node is identified with
a basic interval. The children of a node J = [2ia . . 2i(a + 1)), for i > 0, are
lchild(J) = [2i−1·2a . . 2i−1(2a+1)) and rchild(J) = [2i−1(2a+1) . . 2i−1(2a+2)).
Thus, a static range tree is a full binary tree of size O(m) rooted at root =
[0 . .m).

Every interval I ⊆ [0 . .m) can be decomposed into a disjoint union of at
most 2 logm basic intervals. The decomposition can be computed in O(logm)
time recursively starting from the root. Let J be a node considered in the
algorithm. If J ⊆ I, the algorithm adds J to the decomposition. Otherwise, for
each child J ′ of the node J , if J ′∩I 6= ∅, the algorithm makes a recursive call to
the child. At each level of the tree, the algorithm makes at most two recursive
calls. The resulting set of basic intervals is denoted by Decomp(I); see Fig. 2.

[0 . . 8)

[0 . . 4) [4 . . 8)

[0 . . 2) [2 . . 4) [4 . . 6) [6 . . 8)

[0 . . 1) [1 . . 2) [2 . . 3) [3 . . 4) [4 . . 5) [5 . . 6) [6 . . 7) [7 . . 8)

Figure 2: A static range tree for m = 8 with the set of nodes that comprises Decomp( [1 . . 7) ).
The paths visited in the recursive decomposition algorithm are shown in bold.

Proofs of the Lemmas 2.5 and 2.6 follow. Instead of Lemma 2.5, we show
an equivalent lemma with an operation count′ which returns |[0 . .m) \⋃J |.

Lemma 3.1. There exists a data structure of size O(m) that, after O(m)-time
initialization, supports insert and delete in O(logm) time and count′ in O(1)
time.

Proof. Let m′ be the smallest power of two satisfying m′ ≥ m. Observe that
the data structure for m can be simulated by an instance constructed for m′:
it suffices to insert an interval [m. .m′) in the initialization phase to make sure
that integers i ≥ m will not be counted when count′ is invoked. Henceforth, we
may assume without loss of generality that m is a power of two.

We maintain a static range tree; every node J stores two values (see Fig. 3):

• bi(J) = | {I ∈ J : J ∈ Decomp(I)} |

6



• val(J) = | J \ ⋃{J ′ : J ′ ⊆ J, J ′ ∈ Decomp(I), I ∈ J } |.

The value val(J) can also be defined recursively:

• If bi(J) > 0, then val(J) = 0.

• If bi(J) = 0 and J is a leaf, then val(J) = 1.

• Otherwise, val(J) = val(lchild(J)) + val(rchild(J)).

This allows computing val(J) from bi(J) and the values in the children of J .

[0 . . 8)

[0 . . 4) [4 . . 8)

[0 . . 2) [2 . . 4) [4 . . 6) [6 . . 8)

[0 . . 1) [1 . . 2) [2 . . 3) [3 . . 4) [4 . . 5) [5 . . 6) [6 . . 7) [7 . . 8)

3

2 1

2 0 0 1

1 1 0 0 0 1 0 1

Figure 3: A static range tree for m = 8 that stores the family J = {[2 . . 3), [3 . . 5),
[4 . . 7), [6 . . 7)}. The values val(J) are shown in bold. The arrows present selected jump
pointers (described in the proof of Lemma 2.6).

The data structure can be initialized bottom-up in O(m) time. The respec-
tive operations on the data structure are now implemented as follows:

• insert(I): Compute Decomp(I) recursively. For each J ∈ Decomp(I), in-
crement bi(J). For each node J encountered in the recursive computation,
recompute val(J).

• delete(I): Similar to insert, but we decrement bi(J) for each node
J ∈ Decomp(I).

• count′: Return val(root).

The complexities of the respective operations follow.

Lemma 2.6. There exists a data structure of size O(m) that, after O(m)-time
initialization, supports insert and delete in O(logm) time and report in
O(|A|) time.

Proof. As in the proof of Lemma 3.1, we assume without loss of generality that
m is a power of two. Again, the data structure applies a static range tree. We
also reuse the values bi(J) for nodes; we generalize the val(J) values, though.

7



If J and J ′ are basic intervals and J ′ ⊆ J , then we define valJ(J ′) as 0
if there exists a basic interval J ′′ on the path from J to J ′ (i.e., such that
J ′ ⊆ J ′′ ⊆ J) for which bi(J ′′) > 0, and as val(J ′) otherwise. These values
satisfy the following properties.

Observation 3.2. For every node J , (a) valJ(J) = val(J) and (b) valroot(J) =
|J \⋃J |.

By point (b) of the observation, our goal in a report query is to report
all leaves J such that valroot(J) = 1. The first idea how to do it would be to
recursively visit all the nodes J ′ of the tree such that valroot(J

′) > 0. However,
this approach would cost Ω(|A| logm) time since, for every leaf, all the nodes
on the path to the root would need to be visited.

In order to efficiently answer report queries, we introduce jump pointers,
stored in each node J , such that jump(J) is the lowest such node J ′ in the
subtree of J such that valJ(J ′) = valJ(J); see Fig. 3.

The pointer jump(J) can be computed in O(1) time from the values in the
children of J :

jump(J) =





J if J is a leaf or 0 < val(lchild(J)) < val(J),
jump(lchild(J)) if val(rchild(J)) = 0,
jump(rchild(J)) otherwise.

This formula allows recomputing the jump pointers on the paths visited during
a call to insert or delete without altering the time complexity.

Let us consider a subtree that is composed of all the nodes J with positive
values valroot(J). Using jump pointers, we make a recursive traversal of the
subtree that avoids visiting long paths of non-branching nodes of the subtree.
It visits all the leaves and branching nodes of the subtree and, in addition,
both children of each branching node. With this traversal, a report query is
therefore answered in O(|A|) time.

4. Computing a compact representation of weak k-powers

Let us denote by Squares(q, d) the set of starting positions of gapped (q, d)-
square fragments in the input word w.

We say that an occurrence at position i of a gapped (q, d)-square is generated
by a gapped repeat γ if per(γ) = (q+1)d and w[i . . i+(q+2)d) is fully contained
in this gapped repeat. In other words, if γ is of the form uvu, then u =
u1u2u3, |u2| = d, |u3vu1| = qd, and γ starts at position i − |u1| of the input
word; cf. Fig. 4.

Similarly, an occurrence at position i of a gapped (q, d)-square is generated
by a generalized run γ if per(γ) = (q+1)d and w[i . . i+(q+2)d) is fully contained
in this generalized run. See Fig. 5 for a concrete example.

Lemma 4.1. Let q ≥ 0 and 1 ≤ d ≤ n/(q + 2) be integers.

(a) Every gapped (q, d)-square fragment is generated by a (q + 1)-MGR with
period (q + 1)d or by a generalized run with period (q + 1)d.

8



u

d

v
u

dq · d

Figure 4: An occurrence of a gapped (q, d)-square generated by a gapped repeat with period
(q + 1)d. Gray rectangles represent equal words.

b a b b a c a a b b a c a a b b a c a a b b a c a a b b a c ac

Figure 5: An occurrence of a gapped (2, 4)-square acaa bbac aabb acaa generated by a gener-
alized run with period 12. Note that the generalized run has its origin in a (generalized) run
with period 6 (depicted below) that does not generate this gapped square.

(b) Each gapped repeat with period (q + 1)d and each generalized run γ with
period (q+ 1)d generates a single interval of positions where gapped (q, d)-
squares occur; see Fig. 6. Moreover, this interval can be computed in
constant time.

Proof. (a) Let i be the starting position of an occurrence of a gapped (q, d)-
square x of length ` := |x| = (q + 2)d. Observe that x has period p := (q + 1)d.
We denote by w[i′ . . j′] the longest factor with period p that contains x (i.e.,
such that i′ ≤ i and i+ `− 1 ≤ j′), and denote γ := (i′, j′, p).

If |w[i′ . . j′]| < 2p, then γ is a gapped repeat with period p, and it is maximal
by definition. Moreover, it is a (q+1)-MGR since its arms have length at least d.

If |w[i′ . . j′]| ≥ 2p, then γ is a generalized run that generates the gapped
square x. In particular, this happens for q = 0.

(b) Let γ = (i, j, p) be a gapped repeat or a generalized run with period
p = (q + 1)d. Then γ generates gapped (q, d)-squares that start at positions in
the interval [i . . j + 1− (p+ d)].

The interval defined in Lemma 4.1(b) will be further denoted by Squares(q, d, γ).

d

u
v

u

d

Figure 6: An interval, represented as a sequence of four consecutive positions (black dots), of
starting positions of gapped (q, d)-square fragments generated by a gapped repeat with period
(q + 1)d.

9



Corollary 4.2. For all integers q ≥ 0 and d ≥ 1, we have R(Squares(q, d)) =
{Squares(q, d, γ) : γ ∈ MGRepsq+1(w) ∪ GRuns(w) and per(γ) = (q + 1)d}.
Moreover, for every q ≥ 0,

bn/(q+2)c∑

d=1

|R(Squares(q, d))| = O(n(q + 1))

and these representations R(Squares(q, d)) can be computed in O(n(q+1)) time.

Proof. Lemma 4.1 shows that Squares(q, d) can be expressed as the union of
intervals Squares(q, d, γ), where γ is a generalized run with period (q + 1)d or
a (q + 1)-MGR with period (q + 1)d. Moreover, by maximality of generalized
runs and (q + 1)-MGRs, no two such intervals Squares(q, d, γ) overlap (contain
a common position) or touch (contain adjacent positions).

As for the second claim, the total number of interval chains in these represen-
tations is O(n(q+1)) because the number of (q+1)-MGRs and generalized runs
γ is bounded by O(n(q + 1)) due to Facts 2.1 and 2.2, respectively. Since each
interval Squares(q, d, γ) can be computed in constant time (by Lemma 4.1(b)),
this also yields an O(n(q + 1)) bound on the construction time.

Let us denote

Chaink(q, d, i) = { i, i− d, i− 2d, . . . , i− (k − q − 2)d }.

This definition can be extended to intervals I. To this end, let us denote

I 	 r = { i− r : i ∈ I }

and define

Chaink(q, d, I) = I ∪ (I 	 d) ∪ (I 	 2d) ∪ · · · ∪ (I 	 (k − q − 2)d).

This set, further referred to as an interval chain, can be stored in O(1) space. A
chain representation of a set of integers is its representation as a union of interval
chains, limited to some base interval. The size of the chain representation is the
number of chains.

We denote by WeakPk(d) the set of starting positions in w of weak (k, d)-
power fragments. The following lemma shows how to compute small chain
representations of the sets WeakPk(d) (with base intervals [0 . . n− kd]).

Lemma 4.3.

(a) WeakPk(d) =
⋃k−2
q=0

⋃
I∈R(Squares(q,d)) Chaink(q, d, I) ∩ [0 . . n− kd].

(b) For d = 1, . . . , bn/kc, the sets WeakPk(d) have chain representations of
total size O(nk2); these representations can be computed in O(nk2) time.

10



d dq · d

ii− di− 2di− (k − q − 2)d

k · d

. . .

Figure 7: The fact that i ∈ Squares(q, d) witnesses inclusion (Chaink(q, d, i) ∩ [0 . . n−kd]) ⊆
WeakPk(d).

Proof. As for point (a), x = y0 · · · yk−1 for |y0| = · · · = |yk−1| = d is a weak
(k, d)-power if and only if yi · · · yj is a gapped (j − i − 1, d)-square for some
0 ≤ i < j < k. Conversely, a gapped (q, d)-square occurring at position i
implies occurrences of weak (k, d)-powers at positions in the set Chaink(q, d, i),
limited to the interval [0 . . n− kd] due to the length constraint; see Fig. 7.

We obtain point (b) by applying the formula from point (a) to compute the
chain representations of sets WeakPk(d) for all d = 1, . . . , bn/kc. The interval
representations R(Squares(q, d)) are computed using Corollary 4.2, which costs
O(n(q+1)) time for each q ∈ [0 . . k−2] and O(nk2) time in total. The total size
of the interval representations and the chain representations is also O(nk2).

Lemma 4.3 lets us count k-antipowers by computing the sizes of the com-
plementary sets WeakPk(d). Thus, we obtain the following preliminary result.

Proposition 4.4. The number of k-antipower fragments in a word of length n
can be computed in O(nk3) time.

Proof. See Algorithm 1. We use Corollary 4.2 and Lemma 4.3 to express the
sets WeakPk(d) for all d = 1, . . . , bn/kc as unions of O(nk2) interval chains.

Algorithm 1: SimpleCount(w, n, k)

(Cd)bn/kcd=1 := (∅, . . . , ∅)
for q := 0 to k − 2 do

foreach (q + 1)-MGR or generalized run γ in w do
p := per(γ)
d := p

q+1

if d ∈ Z then
I := Squares(q, d, γ)
Cd := Cd ∪ {Chaink(q, d, I) }

antipowers := 0
for d := 1 to bn/kc do

WeakPk(d) := (
⋃ Cd) ∩ [0 . . n− kd]

antipowers := antipowers + (n− kd+ 1)− |WeakPk(d)|
return antipowers

11



That is, the total size of the sets Cd is O(nk2). Each of the interval chains
consists of at most k intervals. Hence, Lemma 2.4 can be applied to compute
interval representations of the sets WeakPk(d) in O(nk3) total time. Finally,
the size of the complement of the set WeakPk(d) (in [0 . . n−kd]) is the number
of (k, d)-antipowers.

Next, we improve the time complexity of this algorithm to O(nk log k).

5. Counting k-antipower fragments in O(nk log k) time

We improve the algorithm SimpleCount threefold. First, we show that the
chain representation of weak k-powers actually consists of only O(nk) chains.
Then, instead of converting the chain representations to the interval represen-
tations, we introduce a geometric interpretation that reduces the problem to
computing the area of the union of O(nk) axis-aligned rectangles. This area
could be computed directly in O(nk log n) time, but we improve this complex-
ity to O(nk log k) by exploiting properties of the dimensions of the rectangles.

5.1. First improvement of SimpleCount

First, we improve the O(nk2) bounds of Lemma 4.3(b). By inspecting the
structure of MGRs, we show that the formula from Lemma 4.3(a) generates
only O(nk) interval chains in total for d ≥ 2k−2. Trivially, the sets WeakPk(d)
for d < 2k − 2 can be represented using O(n) interval chains each. A careful
implementation lets us compute all such chain representations in O(nk) time.

We say that an α-MGR for integer α with period p is nice if α | p and
p ≥ 2α2. Let NMGRepsα(w) denote the set of nice α-MGRs in the word w.
The following lemma provides a combinatorial foundation of the improvement.

Lemma 5.1. For a word w of length n and an integer α > 1, |NMGRepsα(w)| ≤
9(π2/6 + 5/2)n.

Proof. Let us consider a partition of the word w into blocks of α letters (the final
n mod α letters are not assigned to any block). Let uvu be a nice α-MGR in
w. We know that 2α2 ≤ |uv| ≤ α|u|, so |u| ≥ 2α. Now, let us fit the considered
α-MGR into the structure of blocks. Since α | |uv|, the indices in w of the
occurrences of the left and the right arm are equal modulo α. We shrink both
arms to u′ such that u′ is the maximal inclusion-wise interval of blocks which
is encompassed by each arm u. Then, let us expand v to v′ so that it fills the
space between the two occurrences of u′.

We have u = xu′y and v′ = yvx for some words x, y, so |u′v′| = |u′|+ |x|+
|y|+ |v| = |uv|. Moreover, |u′| ≥ 1

3 |u| since u encompasses at least one full block
of w. Consequently, |u′v′| ≤ 3α|u′|.

Let t be a word whose letters correspond to whole blocks in w and u′′, v′′

be factors of t that correspond to u′ and v′, respectively. We have |u′′| = |u′|/α
and |v′′| = |v′|/α, so u′′v′′u′′ is a 3α-gapped repeat in t. It is also a 3α-MGR
because it can be expanded by one block neither to the left nor to the right, as

12



it would contradict the maximality of the original nice α-MGR. This concludes
that every nice α-MGR in w has a corresponding 3α-MGR in t. Also, every 3α-
MGR in t corresponds to at most one nice α-MGR in w, as it can be translated
into blocks of w and expanded in a single way to a 3α-MGR (that can happen
to be a nice α-MGR).

We conclude that the number of nice α-MGRs in w is at most the number of
3α-MGRs in t. As |t| ≤ n/α, this is at most 9(π2/6+5/2)n due to Fact 2.1.

Lemma 5.2. For d = 1, . . . , bn/kc, the sets WeakPk(d) have chain represen-
tations of total size O(nk) which can be computed in O(nk) time. Moreover,∑bn/kc
d=2k−2

∑k−2
q=0 |R(Squares(q, d))| = O(nk).

Proof. The chain representations of sets WeakPk(d) are computed for d < 2k−2
and for d ≥ 2k − 2 separately.

From Fact 1.1, we know that all (k, d)-antipowers for given k and d can be
found in O(n) time. This lets us compute the set WeakPk(d) (and its trivial
chain representation) in O(n) time. Across d ∈ [1 . . 2k − 2), this gives O(nk)
chains and O(nk) time.

Henceforth we consider the case that d ≥ 2k − 2. Let us note that if a
gapped (q, d)-square with d ≥ 2(q+ 1) is generated by a (q+ 1)-MGR, then this
(q + 1)-MGR is nice. Indeed, by Lemma 4.1(a) this (q + 1)-MGR has period
p = (q+ 1)d ≥ 2(q+ 1)(k− 1) ≥ 2(q+ 1)2. This observation lets us express the
formula of Corollary 4.2 for R(Squares(q, d)) using NMGRepsq+1(w) instead of
MGRepsq+1(w) provided that d ≥ 2(q + 1).

By Fact 2.2 and Lemma 5.1, for every q we have only

|NMGRepsq+1(w) ∪GRuns(w)| = O(n)

MGRs and generalized runs to consider. Hence, the total size of chain repre-
sentations of sets WeakPk(d) for d ≥ 2k− 2 is O(nk) as well. The same applies
to the total size of interval representations of sets Squares(q, d) for d ≥ 2k − 2.

The last piece of the puzzle is the following claim.

Claim 5.3. The sets NMGRepsα(w) for α ∈ [1 . . k − 1] can be built in O(nk)
time.

Proof. The union of those sets is a subset of MGRepsk−1(w). Therefore, we can
consider each (k−1)-MGR uvu with period p = |uv| and report all α ∈ [αL . . αR]
such that α | p, where

αL =
⌈
p
|u|

⌉
, αR = min

(
k − 1,

⌊√
p
2

⌋)
.

We will use an auxiliary table next such that

nextp[α] = min{α′ ∈ [α+ 1 . . k) : α′ | p}. 3

3We assume that min ∅ =∞.

13



This table has size O(nk). For every p ∈ [1 . . n], all values nextp[α] for
α ∈ [1 . . k) can be computed, right to left, in O(k) time. Then, all values
α for which uvu is a nice α-MGR can be computed by iterating α := nextp[α]
until a value greater than αR is reached, starting from α = αL − 1. Thus,
the total time of constructing the sets NMGRepsα(w) is O(|MGRepsk−1(w)|+∑k−1
α=1 |NMGRepsα(w)|) = O(nk).

This concludes the proof.

5.2. Second improvement of SimpleCount

We reduce the problem to computing unions of sets of orthogonal rectangles
with bounded integer coordinates.

For a given value of d, let us fit the integers from [0 . . n− kd] into the cells
of a grid of width d so that the first row consists of numbers 0 through d − 1,
the second of numbers d to 2d− 1, etc. Let us call this grid Gd. The main idea
behind the lemma presented below is shown in Fig. 8.

Lemma 5.4. The set Chaink(q, d, I) is a union of O(1) orthogonal rectangles in
Gd, each of height at most k or width exactly d. The coordinates of the rectangles
can be computed in O(1) time.

(a) I = [21 . . 23], q = 0 6 7 8 11 12 13 16 17 18 21 22 23

(b) I = [19 . . 21], q = 1 9 10 11 14 15 16 19 20 21

(c) I = [13 . . 20], q = 2

8 . . . 15 13 . . . 20

(d) I = [31 . . 33], q = 0 16 17 18 21 22 23 26 27 28 31 32 33

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27

(a) (b) (c) (d)

Figure 8: Examples of decompositions of various interval chains Chaink(q, d, I) into orthogonal
rectangles in the grid Gd for d = 5, k = 5, n = 52.

14



Proof. Translating the set Chaink(q, d, I) onto our grid representation, it be-
comes a union of horizontal strips, each corresponding to an interval I 	 ad,
for a ∈ [0 . . k − q − 2], that possibly wrap around into the subsequent rows.
Those strips have their beginnings in the same column, occupying consecutive
positions. Depending on the column index of the beginning of a strip and its
length, we have three cases:

• The strip does not wrap around at all (Fig. 8(a)). Then, the union of all
strips is simply a single rectangle. Its height is exactly k − q − 1.

• The strip’s length is smaller than the length of the row, but it wraps
around at some point (Fig. 8(b)). Then, there exists a column which does
not intersect with any strip. The strips’ parts that have wrapped around
(that is, to the left of the column) form a rectangle and similarly the
strips’ parts that have not wrapped around form a rectangle as well. Both
of these rectangles have height equal to k − q − 1.

• The strip’s length is greater than or equal to the length of the row. In
this case, excluding the first and the last row, the union of the strips is
actually a rectangle fully encompassing all columns (Fig. 8(c)). Therefore
the union of all strips can be represented as a union of three rectangles:
the first row, the last row and what is in between. Both the first and the
last row have height equal to 1 and the rectangle in between has width
equal to d.

In some cases, such decomposition into orthogonal rectangles may include cells
that are not on the grid, that is, negative numbers or numbers greater than
n − kd; see Fig. 8(d). Then, the rectangles need to be trimmed to fit inside
the grid. Moreover, in the case of numbers greater than n − kd, we may need
to consider the part of the union that is located in the last row of the grid as
a separate rectangle, since it may have a smaller width than the rectangle it
originates from (as shown on Fig. 8(d)).

Thus, by Lemma 5.2, our problem reduces to computing the area of unions
of rectangles in subsequent grids Gd. In total, the number of rectangles is O(nk).

5.3. Third improvement of SimpleCount

Assume that r axis-aligned rectangles in the plane are given. The area
of their union can be computed in O(r log r) time using a classic sweep line
algorithm of Bentley [21] (obtaining a more efficient solution to this problem,
even for integer coordinates bounded by O(n), seems hard [22]). This approach
would yield an O(nk log n)-time algorithm for counting k-antipowers. We refine
this approach in the case that the rectangles have bounded height or maximum
width and their coordinates are bounded.

Lemma 5.5. Assume that r axis-aligned rectangles in [0 . .mh]× [0 . .mw] with
integer coordinates are given and that each rectangle has height at most k or
width exactly mw. The area of their union can be computed in O(r log k+mh+
mw) time and O(r +mh +mw) space.

15



Proof. We assume first that all rectangles have height at most k.
Let us partition the plane into horizontal strips of height k. Thus, each of

the rectangles is divided into at most two pieces. The algorithm performs a line
sweep in each of the strips.

Let the sweep line move from left to right. The events in the sweep cor-
respond to the left and right sides of rectangles. The events can be sorted
left-to-right, across all strips simultaneously, in O(r + mh) time using bucket
sort [19].

For each strip, the sweep line stores a data structure that allows insertion
and deletion of intervals with integer coordinates in [0 . . k] and querying for the
total length of the union of the intervals that are currently stored. This corre-
sponds to the operations of the data structure from Lemma 2.5 for m = k (with
elements corresponding to unit intervals), which supports insertions and dele-
tions in O(log k) time and queries in O(1) time after O(k)-time preprocessing
per strip. The total preprocessing time is O(mh) and, since the total number
of events in all strips is at most 2r, the sweep works in O(r log k) time.

Finally, let us consider the width-mw rectangles. Each of them induces an
interval on the second component. First, in O(r + mh) time, the union S of
these intervals, represented as a union of pairwise disjoint maximal intervals, is
computed by bucket sorting the endpoints of the intervals. Then, each maximal
interval in S is partitioned by the strips and the resulting subintervals are in-
serted into the data structures of the respective strips before the sweep. In total,
at most 2r + mh/k additional intervals are inserted, so the time complexity is
still O((r +mh/k) log k +mh +mw) = O(r log k +mh +mw).

We arrive at the main result of this section.

Theorem 5.6. The number of k-antipower fragments in a word of length n can
be computed in O(nk log k) time and O(nk) space.

Proof. We use Lemma 5.2 to express the sets WeakPk(d) for d = 1, . . . , bn/kc
as unions of O(nk) interval chains. This takes O(nk) time. Using Lemma 5.4,
each chain is represented on the corresponding grid Gd as the union of a constant
number of rectangles, with each rectangle of height at most k or width exactly d.
Denoting by rd the number of rectangles in Gd, we can bound the total number
of rectangles by

∑
d rd = O(nk).

As the next step, in each grid we assign consecutive numbers to the (sorted)
first coordinates of rectangle vertices and repeat the same procedure for the
second coordinates. This can be done in O(nk) time, for all the grids simulta-
neously, using bucket sort [19]. This gives new coordinates to rectangle vertices;
the new coordinates also store the original values. After this transformation,
rectangles with height at most k retain this property and rectangles with width
d retain maximal width. Moreover, the coordinates of the rectangles are now
within [0 . . 2rd), so the application of Lemma 5.5 costs O(rd log k) time and
O(rd) space. One can readily verify that the underlying procedure can be
adapted to compute the total area in the original coordinate values. In total,
computing |WeakPk(d)| for all d costs O(nk log k) time and O(nk) space.

16



In the end, the number of (k, d)-antipower fragments is calculated as n −
kd+ 1− |WeakPk(d)|.

6. Reporting antipowers and answering antipower queries

The same technique can be used to report all k-antipower fragments. In
the grid representation, they correspond to grid cells of Gd that are not covered
by any rectangle. Hence, in Lemma 5.5, instead of computing the area of the
rectangles with the aid of Lemma 2.5, we need to report all grid cells excluded
from rectangles using Lemma 2.6. The computation takes O(r log k + d + Cd)
time where Cd is the number of reported cells. By plugging this routine into
the algorithm of Theorem 5.6, we obtain the following result.

Theorem 6.1. All fragments of a word of length n being k-antipowers can be
reported in O(nk log k + C) time and O(nk) space, where C is the size of the
output.

Finally, we present our data structure for answering antipower queries that
introduces a smooth trade-off between the two data structures of Badkobeh et
al. [3] (see Fact 1.2). Let us recall that an antipower query (i, j, k) asks to check
if a fragment w[i . . j] of the word w is a k-antipower.

Theorem 6.2. Assume that a word of length n is given. For every r ∈ [1 . . n],
there is a data structure of size O(n2/r) that can be constructed in O(n2/r)
time and answers antipower queries in O(r) time.

Proof. Let w be a word of length n and let r ∈ [1 . . n]. If an antipower query
(i, j, k) satisfies k ≤ r, we answer it in O(k) time using Fact 1.2(a). This is
always O(r) time, and the data structure requires O(n) space.

Otherwise, if w[i . . j] is a k-antipower, then its base is at most n/r. Our
data structure will let us answer antipower queries for every such base in O(1)
time.

Let us consider a positive integer b ≤ n/r. We group the length-b fragments
of w by the remainder modulo b of their starting position. For a remainder
g ∈ [0 . . b − 1] and index i ∈ [0 . .

⌊
n−g
b

⌋
), we store, as Abg[i], the smallest index

j > i such that w[jb + g . . (j + 1)b + g) = w[ib + g . . (i + 1)b + g) (j = ∞ if
it does not exist). We also store a data structure for range minimum queries
over Abg for each group; it uses linear space, takes linear time to construct, and
answers queries in constant time (see [23]). The tables take O(n) space for a
fixed b, which gives O(n2/r) in total. They can also be constructed in O(n2/r)
total time, as shown in the following claim.

Claim 6.3. The tables Abg for all b ∈ [1 . .m] and g ∈ [0 . . b − 1] can be con-
structed in O(nm) time.

Proof. Let us assign to each fragment of w of length at most m an identifier in
[0 . . n) such that factors corresponding to two equal-length fragments are equal
if and only if their identifiers are equal. For length-1 fragments, this requires

17



sorting the alphabet symbols, which can be done in O(n) time for an integer
alphabet. For factors of length ` > 1, we construct pairs that consist of the
identifiers of the length-(` − 1) prefix and length-1 suffix and bucket sort the
pairs. This gives O(nm) time in total.

To construct the tables Abg for a given b, we use an auxiliary array D that
is indexed by identifiers in [0 . . n). Initially, all its elements are set to ∞. For a
given g, the indices i are considered in descending order. For each i, we take as
x the identifier of the factor w[ib+ g . . (i+ 1)b+ g), set Abg[i] to D[x] and then
D[x] to i. Afterwards, in the same loop, all such values D[x] are reset to ∞.
For given b and g, both loops take O(n/b) time.

Given an antipower query (i, j, k) such that (j − i+ 1)/k = b, we set

g = i mod b, i′ =
⌊
i
b

⌋
, j′ =

⌊
j+1
b

⌋
− 2,

and ask a range minimum query on Abg[i
′], . . . , Abg[j

′]. Then, w[i . . j] is a k-
antipower if and only if the query returns a value that is at least j′ + 2.

7. Counting different k-antipower factors

7.1. Warmup: Counting different antisquare factors

Let us first show how to count different antisquare factors, that is, different
2-antipowers in a word w of length n.

Recall that the suffix tree of a word w is a compact trie representing all the
suffixes of the word w$, where $ is a special end-marker. The root, the branching
nodes, and the leaves are explicit in the suffix tree, whereas the remaining nodes
are stored implicitly. Explicit and implicit nodes of the suffix tree are simply
called its nodes. Each implicit node is represented as its position within a
compacted edge. The string-depth of a node v is the length of the path from
v to the root in the uncompacted version of the trie. The locus of a factor of
w is the node it corresponds to. The suffix tree of a word of length n can be
constructed in O(n) time [24].

Proposition 7.1. The number of different antisquare factors in a word of length
n can be computed in O(n) time.

Proof. The algorithm counts different factors of even length and subtracts the
number of different square factors. The latter can be computed in O(n) time [25,
26]. The former can be computed by counting (explicit and implicit) nodes of
the suffix tree of w at even string-depths. For every edge of the suffix tree, this
number can be easily retrieved in constant time.

We will use the same idea, i.e., subtract the number of weak k-powers from
the number of all factors of length divisible by k, to count the number of different
k-antipower factors. The algorithm requires at some point an auxiliary data
structure that answers the following queries related to the suffix tree.

A weighted ancestor query in the suffix tree, given a leaf v and a non-negative
integer d, returns the ancestor of v located at depth d (being an explicit or

18



implicit node). A weighted ancestor query can be used to compute, for a factor
u of w given by its occurrence, the locus of u in the suffix tree.

Fact 7.2 ([27, Section 7]). A batch of m weighted ancestor queries (for any
rooted tree of n nodes with positive polynomially-bounded integer weights of
edges) can be answered in O(n+m) time.

7.2. Representing the set of weak powers

We say that x = y0 · · · yk−1, where |y0| = · · · = |yk−1| = d, is a weak
(k, i, j, d)-power if i < j, yi = yj , and this is the “leftmost” pair of equal factors
among y0, . . . , yk−1, i.e., for any i′ < j′ such that yi′ = yj′ , either i′ > i, or
i′ = i and j′ > j. This definition satisfies the following uniqueness property.

Observation 7.3. A weak (k, d)-power is a weak (k, i, j, d)-power for exactly
one pair of indices 0 ≤ i < j < k.

We denote by WeakPk,i,j(d) the set of starting positions of weak (k, i, j, d)-
powers in w; see Fig. 9. The following lemma shows that this set can be com-
puted efficiently. Let us recall that Squares(q, d) denotes the set of starting
positions of gapped (q, d)-square fragments.

b
0

a
1

c
2

a
3

b
4

a
5

a
6

b
7

c
8

a
9

b
10

a
11

a
12

b
13

a
14

b
15

b
16

b
17

a
18

b
19

c
20

y0 y1 y2 y3 y4 y5 y6

Figure 9: This weak (7, 3)-power is actually a weak (7, 1, 3, 3)-power. We have 0 ∈
WeakP7,1,3(3), since 3 ∈ Squares(1, 3), 3 6∈ Squares(0, 3), and 0 6∈ Squares(q, 3) for q ∈ [0 . . 5].

Lemma 7.4. For a given k, the sets WeakPk,i,j(d) for all d = 1, . . . , bn/kc and
0 ≤ i < j < k have interval representations of total size O(nk4 log k) which can
be computed in O(nk4 log k) time.

Proof. Let us note that a ∈WeakPk,i,j(d) if and only if all the following condi-
tions are satisfied:

1. a+ i · d ∈ Squares(j − i− 1, d)

2. a+ i · d 6∈ Squares(q, d) for q < j − i− 1

3. for every c ∈ [0 . . i) and q ≤ k − c− 2, we have a+ c · d 6∈ Squares(q, d).

Intuitively, if y0 · · · yk−1, with all factors of length d, is a weak (k, i, j, d)-power,
then the first condition corresponds to yi = yj , the second condition to yi 6= yj′
for i < j′ < j, and the third condition to yi′ 6= yj′ for i′ < i and i′ < j′ < k.

19



Hence, WeakPk,i,j(d) = (Ai,j(d) \ (Bi,j(d) ∪ Ci,j(d))) ∩ [0 . . n− kd], where

Ai,j(d) = Squares(j − i− 1, d)	 (i · d),

Bi,j(d) =

j−i−2⋃

q=0

(Squares(q, d)	 (i · d)) ,

Ci,j(d) =
i−1⋃

c=0

k−c−2⋃

q=0

(Squares(q, d)	 (c · d)) .

By Corollary 4.2, the interval representations of all sets Squares(q, d) for
0 ≤ q ≤ k − 2 and 1 ≤ d ≤ n/k can be computed in O(nk2) time. By
Lemma 5.2, the total size of interval representations of sets Squares(q, d) over
all d ≥ 2k − 2 is O(nk). We further have:

Claim 7.5.
∑k−2
q=0

∑2k−3
d=1 |R(Squares(q, d))| = O(nk log k).

Proof. The interval representation of the set Squares(q, d) has size O(n/d). In-
deed, if a < b < a + d and a, b ∈ Squares(q, d), then c ∈ Squares(q, d) for any
a < c < b, so the endpoints of any two consecutive intervals in the representation
are at least d positions apart. Hence, the total size of interval representations
of the sets in question is O(k

∑2k−3
d=1 n/d) = O(nk log k).

In conclusion,
∑k−2
q=0

∑bn/kc
d=1 |R(Squares(q, d))| = O(nk log k).

If X1, . . . , Xp ⊆ Z, then |R(
⋃p
i=1Xi)| ≤

∑p
i=1 |R(Xi)|. Consequently, for

any i, j, and d,

|R(Ai,j(d))|+ |R(Bi,j(d))|+ |R(Ci,j(d))| ≤

|R(Squares(j−i−1, d))|+
k−2∑

q=0

|R(Squares(q, d))|+(k−2)

k−2∑

q=0

|R(Squares(q, d))| ≤

≤ k
k−2∑

q=0

|R(Squares(q, d))|.

Hence, over all i, j, d, the size of these interval representations does not exceed

k2(k + 2)

bn/kc∑

d=1

k−2∑

q=0

|R(Squares(q, d))| = O(nk4 log k).

Finally, Lemma 2.4 can be used to compute the sets Ai,j(d) \ (Bi,j(d)∪Ci,j(d))
in O(nk4 log k) total time (note that set subtraction can be computed as inter-
section with set complement).

We say that a weak (k, i, j, d)-power y0 · · · yk−1 is generated by an MGR
or a generalized run γ if the (j − i − 1, d)-square yi · · · yj is generated by γ.

20



We denote by WeakPk,i,j(d, γ) the set of starting positions of weak (k, i, j, d)-
powers generated by γ. By Lemma 4.1(b), this set is an interval. It can be
readily verified that the intervals generated in the above lemma can be labeled
by the MGR or generalized run γ that generated them. This labelling is unique
due to the following simple observation.

Observation 7.6. For any different MGRs or generalized runs γ1, γ2, the inter-
vals WeakPk,i,j(d, γ1) and WeakPk,i,j(d, γ2) neither overlap nor touch (contain
adjacent positions).

Proof. It suffices to note that for any q ≤ k− 2 and d, the sets Squares(q, d, γ1)
and Squares(q, d, γ2) neither overlap not touch (as already noted in the proof of
Corollary 4.2).

Let us first show how to count different weak (k, i, j, d)-powers for i > 0.
The case of i = 0 will be handled in Section 7.5.

Definition 7.7. Let i > 0. We say that a function g that assigns to every weak
(k, i, j, d)-power factor x of w a position g(x) ∈ [0 . . kd) is a synchronizer if for
a given MGR or generalized run γ, for every a ∈ WeakPk,i,j(d, γ) the value
a+ g(w[a] · · ·w[a+ kd− 1]) is the same.

Note that a synchronizer function is defined on factors of w, not on fragments;
i.e., it has the same value for every occurrence of the same weak (k, i, j, d)-power
factor.

We will now show how to efficiently construct a synchronizer in the case
of i > 0. For a fragment α = w[a . . b] of w, let us denote start(α) = a and
end(α) = b.

Lemma 7.8. A function synch that assigns to every weak (k, i, j, d)-power x,
for i > 0, such that x = w[a] · · ·w[a + kd − 1] and a ∈ WeakPk,i,j(d, γ), the
position start(γ)− a, is a synchronizer; see Fig. 10.

Proof. Clearly, for any positions a1, a2 ∈WeakPk,i,j(d, γ) we have

a1+synch(w[a1] · · ·w[a1+kd−1]) = a2+synch(w[a2] · · ·w[a2+kd−1]) = start(γ).

Now let us show that synch is indeed a function on the set of weak k-power
factors, i.e., that its value does not depend on the particular occurrence of a
weak k-power and that is satisfies synch(x) ∈ [0 . . |x|). Let w[a] · · ·w[a+kd−1] =
y0 · · · yk−1 = x be an occurrence of a weak (k, i, j, d)-power for length-d words
y0, . . . , yk−1 and let γ be the MGR or generalized run that generates it. We have
yi = yj and γ has period p = (j − i)d. Let r = max{b < i · d : x[b] 6= x[b+ p]}.
We have r > (i− 1)d, since otherwise we would have yi−1 = yj−1 and x would
not be a weak (k, i, j, d)-power. Then position r+ 1 corresponds to the starting
position of γ, i.e., synch(x) = start(γ)−a = r+1. Hence, indeed this value does
not depend on the position a and synch(x) ∈ [0 . . |x|).

21



b
1

a
2

c
3

a
4

b
5

a
6

a
7

b
8

c
9

a
10

b
11

a
12

a
13

b
14

a
15

b
16

b
17

b
18

a
19

b
20

c
21

a
0

a
22

a
23

γa1 s

a
2

c
3

a
4

b
5

a
6

a
7

b
8

c
9

a
10

b
11

a
12

a
13

b
14

a
15

b
16

b
17

b
18

a
19

b
20

c
21

a
22

a
0

b
1

a
23

γa2 s

Figure 10: Here, γ is a run starting at position s = start(γ) = 2 and we have a1 = 1, a2 =
2 ∈WeakP7,1,3(3, γ). Moreover, synch(w[a1] · · ·w[a1 + 20]) = s− a1 = 2 and synch(w[a2] · · ·
w[a2 + 20]) = s− a2 = 1.

7.3. Reduction to Path Pairs Problem

We say that T is a compact tree if it is a rooted tree with positive integer
weights on edges. If an edge weight is e > 1, this edge contains e − 1 implicit
nodes. We make an assumption that the depth of a compact tree with N explicit
nodes does not exceed N . A path in a compact tree is an upwards or downwards
path that connects two explicit nodes. Let us introduce the following convenient
auxiliary problem.

Problem 7.9. Path Pairs Problem

Input: Two compact trees T and T ′ containing up to N explicit nodes
each and a set P of M pairs (π, π′) of equal-length paths where π is a path
going downwards in T and π′ is a path going upwards in T ′.

Output: |⋃(π,π′)∈P Induced(π, π′)|, where by Induced(π, π′) we denote the

set of pairs of (explicit or implicit) nodes (u, u′) such that u is the ith node
on π and u′ is the ith node on π′, for some i.

Example 7.10. Let us consider the instance of Path Pairs Problem from
Fig. 11. We have P = {(π1, π′1), (π2, π

′
2), (π3, π

′
3)}, where

• π1 = 1→ 6, π′1 = 8→ 3 (solid lines),

• π2 = 2→ 10, π′2 = 10→ 1 (dotted lines),

• π3 = 1→ 14, π′3 = 13→ 1 (dashed lines).

Then

Induced(π1, π
′
1) = {(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3)},

Induced(π2, π
′
2) = {(2, 10), (3, 6), (4, 5), (7, 4), (8, 3), (9, 2), (10, 1)},

Induced(π3, π
′
3) = {(1, 13), (2, 12), (12, 11), (13, 2), (14, 1)}.

22



1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T

1

2
3 11

4 12

5 13

6 14

7

9

8

10

T ′

Figure 11: Illustration of Path Pairs Problem and Example 7.10. For simplicity, the trees
in this example do not contain implicit nodes.

In total |⋃3
i=1 Induced(πi, π

′
i)| = 16 and Induced(π1, π

′
1) ∩ Induced(π2, π

′
2) =

{(3, 6), (4, 5)}.
Synchronizers let us reduce the problem in scope to the auxiliary problem.

Lemma 7.11. Computing the number of different weak (k, i, j, d)-powers for
given k and all 0 < i < j < k, d ≤ n

k in a word of length n reduces in
O(nk4 log k) time to an instance of the Path Pairs Problem with M,N =
O(nk4 log k).

Proof. Let us consider the suffix tree T of w and the suffix tree T ′ of wR.
For an interval [a . . b] in the interval representation of WeakPk,i,j(d), let

us denote q = a + synch(w[a] · · ·w[a + kd − 1]). By Observation 7.6, q =
c+ synch(w[c] · · ·w[c+ kd− 1]) for all c ∈ [a . . b]. We create a downwards path
π in T that connects the loci of w[q . . a+ kd) and w[q . . b+ kd) and an upwards
path π′ in T ′ that connects the loci of (w[a . . q))R and (w[b . . q))R. We use
weighted ancestor queries (Fact 7.2) to find the endpoints of the paths in the
suffix trees, which can be explicit or implicit nodes.

Finally, the endpoints of the paths are made explicit in both trees. This can
be achieved by grouping the endpoints by the compact edges they belong to
and sorting them, within each edge, in the order of non-decreasing string-depth,
which can be done in linear time via radix sort.

The resulting instance of the Path Pairs Problem is equivalent to counting
the number of different weak powers thanks to the fact that synchronizers are
defined for factors.

By Lemma 7.4, the number of intervals in the interval representation of
WeakPk,i,j(d) over all 0 < i < j and d is O(nk4 log k). Each of them produces
one pair of paths. In the end, we obtain O(nk4 log k) paths in two compact
trees containing O(nk4 log k) explicit nodes each. The conclusion follows.

23



7.4. Solution to Path Pairs Problem

Let us recall the notion of a heavy-path decomposition of a rooted tree T that
was introduced in [28]. Here, we only consider explicit nodes of T . A path in T
is a sequence of nodes. For each non-leaf node u of T , the heavy edge (u, v) is
a downwards edge for which the subtree rooted at v has the maximal number
of leaves (in case of several such subtrees, we fix one of them). The remaining
edges are called light. A heavy path is a maximal path containing only heavy
edges. A known property of the heavy-path decomposition is that the path from
any leaf u in T towards the root visits at most logN heavy paths, where N is
the number of nodes of T .

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T

1

2
11

4 12

5 13

6 14

7

9

8

10

3

T ′

Figure 12: Partitioning of the second pair of paths from Example 7.10 into 2→ 2, 3→ 4, 7→
8, 9→ 10 and 10→ 10, 6→ 5, 4→ 3, 2→ 1 along the heavy paths (drawn as thick edges).

In the solution to the Path Pairs Problem, we compute the heavy path
decompositions of both trees T and T ′. For each pair of paths (π, π′) in P , we
decompose each path π, π′ into maximal fragments belonging to different heavy
paths. Note that the decomposition of the upwards path π′ can be computed
in O(log n) time assuming that each tree node stores the topmost node in its
heavy path and the decomposition of the downwards path π can be computed
in O(log n) time by traversing π in the reverse direction. Then we further
decompose the paths π, π′ into maximal subpaths π = π1, . . . , π`, π

′ = π′1, . . . , π
′
`

so that the lengths of πi and π′i are the same and each πi and each π′i is a
fragment of one heavy path in T and in T ′, respectively; we have ` ≤ 2 logN .
For an illustration, see Fig. 12. Finally, we create new pairs of paths (πi, π

′
i),

label each of them by the pair of heavy paths they belong to, and group them
by their labels. This can be done using radix sort in O(N+M logN) time, since
the number of new path pairs is O(M logN) and the number of heavy paths in
each tree is O(N).

In the end, we obtain O(M logN) very simple instances of the Path Pairs
Problem, in each of which the compact trees T and T ′ are single paths corre-
sponding to pairs of heavy paths from the original compact trees. We call such

24



an instance special. The total number of path pairs across the special instances
is O(M logN). In the lemma below, we use the assumption that the depth of
the initial compact tree is at most N in order to efficiently sort the depths of
path endpoints.

Lemma 7.12. The answers to up to K special instances of the Path Pairs
Problem containing compact trees of depth at most N and at most K paths in
total can be computed in O(N +K) time.

Proof. For convenience let us reverse the order of edges in the tree T ′ of each
instance so that both paths in each path pair lead downwards. Let us number
the (explicit and implicit) nodes of trees T and T ′ top-down as 0, 1, . . . ,O(N)
in every instance. Then a path pair (π, π′) such that π connects nodes with
numbers i and j and π′ connects nodes with numbers i′ and j′, with j−i = j′−i′,
can be viewed as a diagonal segment that connects points (i, i′) and (j, j′) in
a 2D grid. Thus, each instance reduces to counting the number of grid points
that are covered by the segments. Again for convenience we can rotate each
grid by 45 degrees to make the segments horizontal.

This problem can easily be solved by a top-down, and then left-to-right
sweep. We only need the segment endpoints to be ordered first by the vertical,
and then by the horizontal coordinate. This ordering can be achieved using
radix sort in O(N +K) time across all instances.

This concludes the proof of the following lemma.

Lemma 7.13. Path Pairs Problem can be solved in O(N +M logN) time.

7.5. Counting different weak powers with i = 0

We say that word v is a cyclic shift of word u if there exist words x and y
such that u = xy and v = yx. For a word s, by minrot(s) we denote a position
i ∈ [0 . . |s|) such that s[i . . |s|)s[0 . . i) is the lexicographically minimum cyclic
shift of s. If there is more than one such position (i.e., that s is a power of a
shorter word), we select as minrot(s) the leftmost such position.

If i = 0, we partition every interval A = WeakPk,0,j(d, γ) into four (possibly
empty) intervals. Let

J1 = [start(γ) . . end(γ)− kd+ 1], J2 = J1 ∩ [0 . . start(γ) + per(γ)).

We denote pos(γ) = minrot(γ[0 . . per(γ))) and

I1 = J2 ∩ [0 . . start(γ) + pos(γ)], I2 = J2 \ I1, I3 = J1 \ J2,
I4 = [start(γ) . . end(γ)] \ J1.

Example 7.14. If per(γ) + kd ≤ |γ|, then

I1 = [start(γ) . . pos(γ)], I2 = (pos(γ) . . start(γ) + per(γ)),

I3 = [start(γ) + per(γ) . . end(γ)− kd+ 1], I4 = [end(γ)− kd+ 2 . . end(γ)].

25



We define WeakPq
k,j(d, γ) as WeakPk,0,j(d, γ)∩Iq for q = 1, 2, 3, 4; see Fig. 13

for an example. By the following observation, these intervals will be of interest
only for q = 1, 2, 4, since each weak power generated for q = 3 is also generated
for some q ∈ {1, 2, 4}.
Observation 7.15. If a ∈ WeakP3

k,j(d, γ), then a′ = a − per(γ) satisfies a′ ∈
WeakPk,0,j(d, γ) and w[a . . a + kd) = w[a′ . . a′ + kd). In this case, γ is a
generalized run.

a b a a b c a b a a b c a b a a b c a d d d

a b a a b c a b a a b c

b a a b c a b a a b c a

a a b c a b a a b c a b

WeakP1
4,2(3, γ)

a b c a b a a b c a b a

b c a b a a b c a b a a

c a b a a b c a b a a b

WeakP2
4,2(3, γ)

a b a a b c a b a a b c

b a a b c a b a a b c a
WeakP3

4,2(3, γ)

a a b c a b a a b c a d

a b c a b a a b c a d d

b c a b a a b c a d d d

WeakP4
4,2(3, γ)

Figure 13: The sets WeakPq
4,2(3, γ) for a run γ. Note that the weak powers from the

third set occur also in the first set. For a ∈WeakP1
4,2(3, γ), a+ synch(a) = start(γ) + 2. For

a ∈WeakP2
4,2(3, γ), a+synch(a) = start(γ)+8. For a ∈WeakP4

4,2(3, γ), a+synch(a) = end(γ).

We can then extend Definition 7.7 by saying that a function synch on weak
(k, 0, j, d)-power factors that assigns to each of them a number in [0 . . kd) is a
0-synchronizer if a+ synch(w[a] · · ·w[a+ kd− 1]) is the same for each element
a ∈ WeakPq

k,j(d, γ), for a given MGR or generalized run γ and q ∈ {1, 2, 4}.
This lets us extend Lemma 7.8 as follows.

Lemma 7.16. A function synch that assigns to every weak (k, 0, j, d)-power x,
such that x = w[a] · · ·w[a+ kd− 1] and a ∈WeakPk,0,j(k, d, γ), a number:

• start(γ) + pos(γ)− a if a ∈WeakP1
k,j(d, γ)

• start(γ) + pos(γ) + per(γ)− a if a ∈WeakP2
k,j(d, γ)

• end(γ)− a if a ∈WeakP4
k,j(d, γ)

is a 0-synchronizer. (See also Fig. 13.)

Proof. The proof in the case that a ∈WeakP4
k,j(d, γ) is analogous to the proof

of Lemma 7.8. In the first two cases, for a weak k-power y0 . . . yk−1 we have

26



synch(y0 . . . yk−1) = minrot(y0 . . . yj−1). Therefore, for any positions a1, a2 ∈
WeakPq

k,j(d, γ), we have

a1 + synch(w[a1] · · ·w[a1 + kd− 1]) = a2 + synch(w[a2] · · ·w[a2 + kd− 1]).

This shows that synch is indeed a 0-synchronizer.

We use the following internal queries in texts by Kociumaka [29] to efficiently
partition the intervals comprising WeakPk,i,j(d, γ) into maximal intervals that
belong to WeakPq

k,i,j(d, γ).

Fact 7.17 ([29]). One can preprocess a word w of length n in O(n) time so that
minrot(s) can be computed in O(1) time for any factor s of w.

Then, the problem of counting different weak (k, 0, j, d)-powers reduces to
the Path Pairs Problem, as in the previous section.

Lemma 7.18. Computing the number of different weak (k, 0, j, d)-powers for
given k and all 0 < j < k, d ≤ n

k in a word of length n reduces in O(nk3 log k)
time to an instance of the Path Pairs Problem with M,N = O(nk3 log k).

We finally arrive at the main result of this section.

Theorem 7.19. The number of different k-antipower factors in a word of length
n can be computed in O(nk4 log k log n) time.

Proof. Let w be a word of length n. We reduce counting different k-antipower
factors of w to counting the numbers of different factors of w of length that is
divisible by k and of different weak k-power factors of w. As in the proof of
Proposition 7.1, the former can be computed in O(n) time using the suffix tree
of w. By Observation 7.3, every weak (k, d)-power is a weak (k, i, j, d)-power
for exactly one pair of indices 0 ≤ i < j < k. We reduce counting the number
of different weak (k, i, j, d)-power factors of w to instances of the Path Pairs
Problem with N,M = O(nk4 log k) using Lemmas 7.11 and 7.18 for i > 0 and
i = 0, respectively, and solve these instances in O(nk4 log k log n) time using
Lemma 7.13.

References

[1] G. Fici, A. Restivo, M. Silva, L. Q. Zamboni, Anti-powers in infinite words,
in: I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, D. Sangiorgi (Eds.),
Automata, Languages and Programming, ICALP 2016, Vol. 55 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 124:1–124:9.
doi:10.4230/LIPIcs.ICALP.2016.124.

[2] G. Fici, A. Restivo, M. Silva, L. Q. Zamboni, Anti-powers in infinite words,
Journal of Combinatorial Theory, Series A 157 (2018) 109–119. doi:10.

1016/j.jcta.2018.02.009.

27



[3] G. Badkobeh, G. Fici, S. J. Puglisi, Algorithms for anti-powers in strings,
Information Processing Letters 137 (2018) 57–60. doi:10.1016/j.ipl.

2018.05.003.

[4] H. Alamro, G. Badkobeh, D. Belazzougui, C. S. Iliopoulos, S. J. Puglisi,
Computing the antiperiod(s) of a string, in: N. Pisanti, S. P. Pissis (Eds.),
30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019,
Vol. 128 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019, pp. 32:1–32:11. doi:10.4230/LIPIcs.CPM.2019.32.

[5] A. S. Fraenkel, J. Simpson, How many squares can a string contain?,
Journal of Combinatorial Theory. Series A 82 (1) (1998) 112–120. doi:

10.1006/jcta.1997.2843.

[6] A. Deza, F. Franek, A. Thierry, How many double squares can a string
contain?, Discrete Applied Mathematics 180 (2015) 52–69. doi:10.1016/

j.dam.2014.08.016.

[7] T. Kociumaka, J. Radoszewski, W. Rytter, J. Straszyński, T. Waleń,
W. Zuba, Efficient representation and counting of antipower factors in
words, in: C. Mart́ın-Vide, A. Okhotin, D. Shapira (Eds.), Language and
Automata Theory and Applications - 13th International Conference, LATA
2019, Vol. 11417 of Lecture Notes in Computer Science, Springer, 2019, pp.
421–433. doi:10.1007/978-3-030-13435-8_31.

[8] R. Kolpakov, M. Podolskiy, M. Posypkin, N. Khrapov, Searching of gapped
repeats and subrepetitions in a word, Journal of Discrete Algorithms 46-47
(2017) 1–15. doi:10.1016/j.jda.2017.10.004.

[9] Y. Tanimura, Y. Fujishige, T. I, S. Inenaga, H. Bannai, M. Takeda, A faster
algorithm for computing maximal α-gapped repeats in a string, in: C. S. Il-
iopoulos, S. J. Puglisi, E. Yilmaz (Eds.), String Processing and Information
Retrieval, SPIRE 2015, Vol. 9309 of Lecture Notes in Computer Science,
Springer, 2015, pp. 124–136. doi:10.1007/978-3-319-23826-5_13.

[10] M. Crochemore, R. Kolpakov, G. Kucherov, Optimal bounds for computing
α-gapped repeats, in: A. Dediu, J. Janousek, C. Mart́ın-Vide, B. Truthe
(Eds.), Language and Automata Theory and Applications, LATA 2016, Vol.
9618 of Lecture Notes in Computer Science, Springer, 2016, pp. 245–255.
doi:10.1007/978-3-319-30000-9_19.

[11] P. Gawrychowski, T. I, S. Inenaga, D. Köppl, F. Manea, Tighter bounds
and optimal algorithms for all maximal α-gapped repeats and palindromes
- finding all maximal α-gapped repeats and palindromes in optimal worst
case time on integer alphabets, Theory of Computing Systems 62 (1) (2018)
162–191. doi:10.1007/s00224-017-9794-5.

[12] T. I, D. Köppl, Improved upper bounds on all maximal α-gapped repeats
and palindromes, Theoretical Computer Science 753 (2019) 1–15. doi:

10.1016/j.tcs.2018.06.033.

28



[13] M. Dumitran, P. Gawrychowski, F. Manea, Longest gapped repeats and
palindromes, Discrete Mathematics and Theoretical Computer Science
19 (4) (2017) 4. doi:10.23638/DMTCS-19-4-4.

[14] D. Kosolobov, Online detection of repetitions with backtracking, in: F. Ci-
calese, E. Porat, U. Vaccaro (Eds.), Combinatorial Pattern Matching - 26th
Annual Symposium, CPM 2015, Vol. 9133 of Lecture Notes in Computer
Science, Springer, 2015, pp. 295–306. doi:10.1007/978-3-319-19929-0_
25.

[15] R. Kolpakov, G. Kucherov, Finding maximal repetitions in a word in linear
time, in: 40th Annual Symposium on Foundations of Computer Science,
FOCS 1999, IEEE Computer Society, 1999, pp. 596–604. doi:10.1109/

SFFCS.1999.814634.

[16] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, K. Tsuruta, The
“runs” theorem, SIAM Journal on Computing 46 (5) (2017) 1501–1514.
doi:10.1137/15M1011032.

[17] J. Fischer, S. Holub, T. I, M. Lewenstein, Beyond the runs theorem, in:
C. S. Iliopoulos, S. J. Puglisi, E. Yilmaz (Eds.), String Processing and
Information Retrieval - 22nd International Symposium, SPIRE 2015, Vol.
9309 of Lecture Notes in Computer Science, Springer, 2015, pp. 277–286.
doi:10.1007/978-3-319-23826-5_27.

[18] S. Holub, Prefix frequency of lost positions, Theoretical Computer Science
684 (2017) 43–52. doi:10.1016/j.tcs.2017.01.026.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 3rd Edition, MIT Press, 2009.
URL http://mitpress.mit.edu/books/introduction-algorithms

[20] M. Rubinchik, A. M. Shur, Counting palindromes in substrings, in: G. Fici,
M. Sciortino, R. Venturini (Eds.), String Processing and Information Re-
trieval - 24th International Symposium, SPIRE 2017, Proceedings, Vol.
10508 of Lecture Notes in Computer Science, Springer, 2017, pp. 290–303.
doi:10.1007/978-3-319-67428-5_25.

[21] J. L. Bentley, Algorithms for Klee’s rectangle problems, Unpublished notes,
Computer Science Department, Carnegie Mellon University (1977).

[22] H. Yu, Cell-probe lower bounds for dynamic problems via a new commu-
nication model, in: D. Wichs, Y. Mansour (Eds.), Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
ACM, 2016, pp. 362–374. doi:10.1145/2897518.2897556.

[23] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin,
Lowest common ancestors in trees and directed acyclic graphs, Journal of
Algorithms 57 (2) (2005) 75–94. doi:10.1016/j.jalgor.2005.08.001.

29



[24] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-
complexity of suffix tree construction, Journal of the ACM 47 (6) (2000)
987–1011. doi:10.1145/355541.355547.

[25] D. Gusfield, J. Stoye, Linear time algorithms for finding and representing all
the tandem repeats in a string, Journal of Computer and System Sciences
69 (4) (2004) 525–546. doi:10.1016/j.jcss.2004.03.004.

[26] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter,
T. Waleń, Extracting powers and periods in a word from its runs structure,
Theoretical Computer Science 521 (2014) 29–41. doi:10.1016/j.tcs.

2013.11.018.

[27] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter, T. Waleń, A linear-
time algorithm for seeds computation, ACM Transactions on Algorithms
16 (2) (2020) 27:1–27:23. doi:10.1145/3386369.

[28] D. D. Sleator, R. E. Tarjan, A data structure for dynamic trees, Journal
of Computer and System Sciences 26 (3) (1983) 362–391. doi:10.1016/

0022-0000(83)90006-5.

[29] T. Kociumaka, Minimal suffix and rotation of a substring in optimal
time, in: R. Grossi, M. Lewenstein (Eds.), 27th Annual Symposium on
Combinatorial Pattern Matching, CPM 2016, Vol. 54 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 28:1–28:12. doi:

10.4230/LIPIcs.CPM.2016.28.

30



Chapter 4

Counting Distinct Patterns
in Internal Dictionary
Matching

58



Counting Distinct Patterns
in Internal Dictionary Matching
Panagiotis Charalampopoulos
King’s College London, UK
University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Tomasz Kociumaka
Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Manal Mohamed
London, UK
manalabd@gmail.com

Jakub Radoszewski
University of Warsaw, Poland
Samsung R&D, Warsaw, Poland
jrad@mimuw.edu.pl

Wojciech Rytter
University of Warsaw, Poland
rytter@mimuw.edu.pl

Juliusz Straszyński
University of Warsaw, Poland
jks@mimuw.edu.pl

Tomasz Waleń
University of Warsaw, Poland
walen@mimuw.edu.pl

Wiktor Zuba
University of Warsaw, Poland
w.zuba@mimuw.edu.pl

Abstract
We consider the problem of preprocessing a text T of length n and a dictionary D in order to be
able to efficiently answer queries CountDistinct(i, j), that is, given i and j return the number of
patterns from D that occur in the fragment T [i . . j]. The dictionary is internal in the sense that each
pattern in D is given as a fragment of T . This way, the dictionary takes space proportional to the
number of patterns d = |D| rather than their total length, which could be Θ(n ·d). An Õ(n+d)-size 1

data structure that answers CountDistinct(i, j) queries O(log n)-approximately in Õ(1) time was
recently proposed in a work that introduced internal dictionary matching [ISAAC 2019]. Here we
present an Õ(n+d)-size data structure that answers CountDistinct(i, j) queries 2-approximately in
Õ(1) time. Using range queries, for any m, we give an Õ(min(nd/m, n2/m2) + d)-size data structure
that answers CountDistinct(i, j) queries exactly in Õ(m) time. We also consider the special case
when the dictionary consists of all square factors of the string. We design an O(n log2 n)-size data
structure that allows us to count distinct squares in a text fragment T [i . . j] in O(log n) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases dictionary matching, internal pattern matching, squares

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.8

Related Version Full version at https://arxiv.org/abs/2005.05681.

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL under the EU’s
Horizon 2020 Research and Innovation Programme (agreement no. 677651).
Tomasz Kociumaka: Supported by ISF grants no. 1278/16 and 1926/19, a BSF grant no. 2018364, and
an ERC grant MPM (no. 683064) under the EU’s Horizon 2020 Research and Innovation Programme.
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Juliusz Straszyński: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

1 The Õ(·) notation suppresses logO(1) n factors for inputs of size n.

© Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



8:2 Counting Distinct Patterns in Internal Dictionary Matching

1 Introduction

Internal Dictionary Matching was recently introduced in [5] as a generalization of Internal
Pattern Matching. In the classical Dictionary Matching problem, we are given a dictionary D
consisting of d patterns, and the goal is to preprocess D so that, presented with a text T , we
can efficiently compute the occurrences of the patterns from D in T . In Internal Dictionary
Matching, the text T is given in advance, the dictionary D is a set of fragments of T , and
the Dictionary Matching queries can be asked for any fragment of T .

The Internal Pattern Matching problem consists in preprocessing a text T of length n
so that we can efficiently compute the occurrences of a fragment of T in another fragment
of T . A data structure of nearly linear size that allows for sublogarithmic-time Internal
Pattern Matching queries was presented in [15], while a linear-size data structure allowing
for constant-time Internal Pattern Matching queries in the case that the ratio between the
lengths of the two factors is constant was presented in [18]. Other types of internal queries
have been also studied; we refer the interested reader to [17].

In [5], several types of Internal Dictionary Matching queries about fragments T [i . . j] in a
string T were considered: Exists(i, j), Report(i, j), ReportDistinct(i, j), Count(i, j),
CountDistinct(i, j). Data structures of size Õ(n+ d) and query time Õ(1 + output) were
shown for answering each of the first four queries, with Count queries requiring most
advanced techniques. For CountDistinct queries, only a data structure answering these
queries O(logn)-approximately was shown. In this work, we focus on more efficient data
structures for such queries. CountDistinct queries are formally defined as follows.

CountDistinct
Input: A text T of length n and a dictionary D consisting of d patterns, each given as a
fragment T [a . . b] of T (represented only by integers a, b).
Query: CountDistinct(i, j): Count all distinct patterns P ∈ D that occur in T [i . . j].

Observe that the input size is n+ d, while the total length of strings in D could be Θ(n · d).
We also consider a special case of this problem when the dictionary D is the set of all

squares (i.e., strings of the form UU) in T . The case that D is the set of palindromes in T
was considered by Rubinchik and Shur in [20].

I Example 1. Let us consider the following text:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T a d a a a a b a a b b a a c

For the dictionary D = {aa, aaaa, abba, c}, we have:

CountDistinct(5, 12) = 2, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 3.

In particular, T [5 . . 12] contains two distinct patterns from D: aa (two occurrences) and
abba. When the dictionary D represents all squares in T , we have

CountDistinct(5, 12) = 3, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 4.

In particular, T [5 . . 12] contains three distinct squares: aa (two occurrences), bb and aabaab.

Let us note that one could answer CountDistinct(i, j) queries in time O(j − i) by
running T [i . . j] over the Aho–Corasick automaton of D [1] or in time Õ(d) by performing
Internal Pattern Matching [18] for each element of D individually. Neither of these approaches
is satisfactory as they can require Ω(n) time in the worst case.



P. Charalampopoulos et al. 8:3

Our results and a roadmap. We start with preliminaries in Section 2 and an algorithmic
toolbox in Section 3. Our results for the case of a static dictionary are summarized in Table 1.
Our solutions exploit string periodicity using runs and use data structures for variants of the
(colored) orthogonal range counting problem and for auxiliary internal queries on strings.

Table 1 Our results for CountDistinct queries. Here, m is an arbitrary parameter.

Space Preprocessing time Query time Variant Section
Õ(n + d) Õ(n + d) Õ(1) 2-approximation 4

Õ(n2/m2 + d) Õ(n2/m + d) Õ(m) exact 5.1
Õ(nd/m + d) Õ(nd/m + d) Õ(m) exact 5.2
O(n log2 n) O(n log2 n) O(log n) D =squares, exact 6

For the case of a dynamic dictionary, where queries are interleaved with insertions and
deletions of patterns in the dictionary, it was shown in [5] that the product of the time to
process an update and the time to answer an Exists(i, j) query cannot be O(n1−ε) for any
constant ε > 0, unless the Online Boolean Matrix-Vector Multiplication conjecture [13] is
false. In the full version of this paper, we outline a general scheme that adapts our data
structures for the case of a dynamic dictionary. In particular, we show how to answer
CountDistinct(i, j) queries 2-approximately in Õ(m) time and process each update in
Õ(n/m) time, for any m.

2 Preliminaries

We begin with basic definitions and notation. Let T = T [1]T [2] · · ·T [n] be a string of length
|T | = n over a linearly sortable alphabet Σ. The elements of Σ are called letters. By ε we
denote an empty string. For two positions i and j on T , we denote by T [i . . j] = T [i] · · ·T [j]
the fragment of T that starts at position i and ends at position j (the fragment is empty
if j < i). A fragment is called proper if i > 1 or j < n. A fragment of T is represented
in O(1) space by specifying the indices i and j. A prefix of T is a fragment that starts at
position 1 and a suffix is a fragment that ends at position n. By UV and Uk we denote the
concatenation of strings U and V and k copies of the string U , respectively. A cyclic rotation
of a string U is any string V such that U = XY and V = Y X for some strings X and Y .

Let U be a string of length m with 0 < m ≤ n. We say that U is a factor of T if there
exists a fragment T [i . . i+m− 1], called an occurrence of U in T , that is matches U . We
then say that U occurs at the starting position i in T .

A positive integer p is called a period of T if T [i] = T [i+ p] for all i = 1, . . . , n− p. We
refer to the smallest period as the period of the string, and denote it by per(T ). A string is
called periodic if its period is no more than half of its length and aperiodic otherwise. The
weak version of the periodicity lemma [9] states that if p and q are periods of a string T and
satisfy p+ q ≤ |T |, then gcd(p, q) is also a period of T . A string T is called primitive if it
cannot be expressed as Uk for a string U and an integer k > 1.

The elements of the dictionary D are called patterns. Henceforth, we assume that ε 6∈ D,
i.e., that the length of each P ∈ D is at least 1. We also assume that each pattern of D
is given by the starting and ending positions of its occurrence in T . Thus, the size of the
dictionary d = |D| refers to the number of patterns in D and not their total length. A compact
trie of D is the trie of D in which all non-terminal nodes with exactly one child become
implicit. The path-label L(v) of a node v is defined as the path-ordered concatenation of the
string-labels of the edges in the root-to-v path. We refer to |L(v)| as the string-depth of v.

CPM 2020



8:4 Counting Distinct Patterns in Internal Dictionary Matching

3 Algorithmic Tools

3.1 Modified Suffix Trees
A D-modified suffix tree [5], denoted as TT,D, of a given text T of length n and a dictionary D
is obtained from the trie of D ∪ {T [i . . n] : 1 ≤ i ≤ n} by contracting, for each non-terminal
node u other than the root, the edge from u to the parent of u. As a result, all the nodes of
TT,D (except for the root) correspond to patterns in D or to suffixes of T . For 1 ≤ i ≤ n, the
node representing T [i . . n] is labelled with i; see Figure 1. For a dictionary D whose patterns
are given as fragments of a text T , we can construct TT,D in O(|D|+ |T |) time [5].

6 13 1 7 11 10 2

abba

9
14

c

aa

4 5 8 12

aaaa

3

Figure 1 Example of a D-modified suffix tree for text T = adaaaabaabbaac and dictionary
D = {aa, aaaa, abba, c} (figure from [5]).

Let us denote by Occ(D) the set of all occurrences of dictionary patterns in T , that is,
the set of all fragments of T that match a pattern in D. Using TT,D, the set Occ(D) can be
computed in time O(n+ d+ |Occ(D)|).

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on each
node v, denoted by ω(v), such that the weight of the root is zero and ω(u) < ω(v) if u is the
parent of v. We say that a node v is a weighted ancestor at depth ` of a node u if v is the
top-most ancestor of u with weight of at least `.

I Theorem 2 ([2, Section 6.2.1]). After O(n)-time preprocessing, weighted ancestor queries
for nodes of a weighted tree T of size n can be answered in O(log logn) time per query.

The D-modified suffix tree TT,D is a weighted tree with the weight of each node defined
as the length of the corresponding string. We define the locus of a fragment T [i . . j] in TT,D
to be the weighted ancestor of the leaf i at string-depth j − i+ 1.

3.2 Auxiliary Internal Queries
In a Bounded LCP query, one is given two fragments U and V of T and needs to return
the longest prefix of U that occurs in V ; we denote such a query by BoundedLCP(U, V ).
Kociumaka et al. [18] presented several tradeoffs for this problem, including the following.

I Lemma 3 ([18],[17, Corollary 7.3.4]). Given a text T of length n, one can construct in
O(n
√

logn) time an O(n)-size data structure that answers Bounded LCP queries in O(logε n)
time, for any constant ε > 0.

Recall that Count(i, j) returns the number of all occurrences of all the patterns of D in
T [i . . j]. The following result was proved in [5].

I Lemma 4 ([5]). The Count(i, j) queries can be answered in O(log2 n/ log logn) time with
an O(n+ d logn)-size data structure, constructed in O(n logn/ log logn+ d log3/2 n) time.



P. Charalampopoulos et al. 8:5

3.3 Geometric Toolbox
For a set of n points in 2D, a range counting query returns the number of points in a given
rectangle.

I Theorem 5 (Chan and Pătraşcu [4]). Range counting queries for n integer points in 2D
can be answered in time O(logn/ log logn) with a data structure of size O(n) that can be
constructed in time O(n

√
logn).

A quarterplane is a range of the form (−∞, x1]× (−∞, x2]. By reversing coordinates we
can also consider quarterplanes with some dimensions of the form [xi,∞). Let us state the
following result on orthant color range counting due to Kaplan et al. [14] in the special case
of two dimensions.

I Theorem 6 ([14, Theorem 2.3]). Given n colored integer points in 2D, we can construct
in O(n logn) time an O(n logn)-size data structure that, given any quarterplane Q, counts
the number of distinct colors with at least one point in Q in O(logn) time.

We show how to apply geometric methods to a special variant of the CountDistinct
problem, where we are interested in a small subset of occurrences of each pattern.

Let D = {P1, P2, . . . , Pd} and S be a family of sets S1, . . . , Sd such that Sk ⊆ Occ(Pk),
where Occ(Pk) is the set of positions of T where Pk occurs. Let ‖S‖ =

∑
k |Sk|. For each

pattern Pk, we call the positions in the set Sk the special positions of Pk. Counting distinct
patterns occurring at their special positions in T [i . . j] is called CountDistinctS(i, j).

I Lemma 7. The CountDistinctS(i, j) queries can be answered in O(logn) time with a
data structure of size O(n+ ‖S‖ logn) that can be constructed in O(n+ ‖S‖ logn) time.

Proof. We assign a different integer color ck to every pattern Pk ∈ D. Then, for each
fragment T [a . . b] = Pk such that a ∈ Sk, we add point (a, b) with color ck in an initially
empty 2D grid G. A CountDistinctS(i, j) query reduces to counting different colors in the
range [i,∞)× (−∞, j] of G. The complexities follow from Theorem 6. J

3.4 Runs
A run (also known as a maximal repetition) is a periodic fragment R = T [a . . b] which can be
extended neither to the left nor to the right without increasing the period p = per(R), i.e.,
T [a− 1] 6= T [a+ p− 1] and T [b− p+ 1] 6= T [b+ 1] provided that the respective positions
exist. If R is the set of all runs in a string T of length n, then |R| ≤ n [3] and R can be
computed in O(n) time [19]. The exponent exp(R) of a run R with period p is |R|/p. The
sum of exponents of runs in a string of length n is O(n) [3, 19].

The Lyndon root of a periodic string U is the lexicographically smallest rotation of
its per(U)-length prefix. If L is the Lyndon root of a periodic string U , then U may be
represented as (L, r, a, b); here U = L[|L| − a+ 1 . . |L|]LrL[1 . . b], and r is called the rank of
U . Note that the minimal rotation of a fragment of a text can be computed in O(1) time
after an O(n)-time preprocessing [16].

For a periodic fragment U , let run(U) be the run with the same period that contains U .

I Lemma 8 ([3, 7, 17]). For a periodic fragment U , run(U) and its Lyndon root are uniquely
determined and can be computed in constant time after linear-time preprocessing.

We use runs in 2-approximate CountDistinct(i, j) queries and in counting squares.

CPM 2020



8:6 Counting Distinct Patterns in Internal Dictionary Matching

4 Answering CountDistinct 2-Approximately

4.1 CountDistinct for Extended or Contracted Fragments
For two positions ` and r, we define PrefD(`, r) as the longest prefix of T [` . . r] that matches
some pattern P ∈ D; the length of such prefix is at most r − ` + 1. Let us show how
to compute the locus of PrefD(`, r) in the D-modified suffix tree TT,D. To this end, we
preprocess TT,D for weighted ancestor queries and store at every node v of TT,D a pointer p(v)
to the nearest ancestor u (including v) of v such that L(u) ∈ D. To return PrefD(`, r), we
find the locus u of T [` . . r] in the D-modified suffix tree. We return p(u) if |L(u)| = |T [` . . r]|
and p(v), where v is the parent of u, otherwise.

Lemma 9 applies the D-modified suffix tree to the problem of maintaining the count of
distinct patterns occurring in a fragment subject to extending or shrinking the fragment.

I Lemma 9. For any constant ε > 0, given CountDistinct(i, j), one can compute
CountDistinct(i±1, j) and CountDistinct(i, j±1) in O(logε n) time with an O(n+d)-
size data structure that can be constructed in O(n

√
logn+ d) time.

Proof. We only present a data structure for CountDistinct(i ± 1, j) queries. Queries
CountDistinct(i, j ± 1) can be handled analogously by building the same data structure
for the reverses of all the strings in scope.

We show how to compute the number of patterns P ∈ D whose only occurrence in some
fragment T [` . . r] starts at position `. The computation of CountDistinct(i± 1, j) follows
directly by setting j = r and ` equal to i− 1 or i.

Data structure. We preprocess T for Bounded LCP queries (Lemma 3) and construct the
D-modified suffix tree TT,D of text T and dictionary D. In addition, we preprocess TT,D
for weighted ancestor queries and store at every node v of TT,D the number #(v) of the
ancestors u (including v) of v such that L(u) ∈ D.

T

` r

P0

P1

P2

P3

k

k

root

`

u = PrefD(`, `+ k − 1)

v = PrefD(`, r)

Figure 2 The setting of Lemma 9. Left: text T . Right: the path from the root of TT,D to the
leaf with path-label T [` . . n]. The nodes of the path whose path-labels match some patterns from D
are drawn in red. Here, P0 is the longest pattern that occurs at ` and also has an occurrence in
T [` + 1 . . r]; its locus in TT,D is u = PrefD(`, ` + k − 1). The patterns that occur in T [` . . r] only at
position ` are P1, P2 and P3. The locus of P3 is v = PrefD(`, r). Then, #(v)−#(u) = 5− 2 = 3.

Query. We want to count patterns longer than k = |BoundedLCP(T [` . . r], T [` + 1 . . r])|.
Let u = PrefD(`, `+ k − 1) and v = PrefD(`, r). The desired number of patterns is equal to
#(v)−#(u). See Figure 2 for a visualization. J



P. Charalampopoulos et al. 8:7

4.2 Auxiliary Operation
Two fragments U = T [i1 . . j1] and V = T [i2 . . j2] are called consecutive if i2 = j1 + 1. We
denote the overlap T [max{i1, i2} . .min{j1, j2}] of U and V by U ∩ V .

3-Fragments-Counting
Input: A text T of length n and a dictionary D consisting of d patterns
Query: Given three consecutive fragments F1, F2, F3 in T such that |F1| = |F3| and
|F2| ≥ 8 · |F1|, count distinct patterns P from D that have an occurrence starting in F1
and ending in F3 and do not occur in either F1F2 or F2F3

Let us fix |F1| = |F3| = x and |F2| = y ≥ 8x. Additionally, let us call an occurrence of
P ∈ D that starts in fragment Fa and ends in fragment Fb an (Fa, Fb)-occurrence. We will
call an (F1, F3)-occurrence an essential occurrence.

We say that a string S is highly periodic if per(S) ≤ 1
4 |S|. We first consider the case that

all patterns in D are not highly periodic.

I Lemma 10. If each P ∈ D is not highly periodic, then

3-Fragments-Counting(F1, F2, F3) =
Count(F1F2F3)−Count(F1F2)−Count(F2F3) + Count(F2).

Proof. Let us start with the following claim.

B Claim 11. Any P ∈ D that has an essential occurrence occurs exactly once in F1F2F3.

Proof. We have |F1F2F3| = x + y + x = 2x + y. String P has an essential occurrence, so
|P | ≥ y. Therefore, if there are two occurrences of P in F1F2F3, then they overlap in

2|P | − (2x+ y) ≥ 2|P | − ( 1
4 |P |+ |P |) = 3

4 |P |

positions. This implies that P is highly periodic, which is a contradiction. C

Claim 11 shows that 3-Fragments-Counting(F1, F2, F3) is equal to the number of
essential occurrences. Let us prove that the stated formula does not count any (Fa, Fb)-
occurrences other than (F1, F3)-occurrences.

Each (F1, F2)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F2, F3)-occurrences.
Each (F2, F2)-occurrence is registered when we add Count(F1F2F3), Count(F2) and
unregistered when we subtract Count(F1F2), Count(F2F3).
Each (F1, F1)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F3, F3)-occurrences. J

We now proceed with answering 3-Fragments-Counting queries for the dictionary of
highly periodic patterns.

I Lemma 12. If F2 is aperiodic, then there are no essential occurrences of highly periodic
patterns. Otherwise, all essential occurrences of highly periodic patterns are generated by the
same run, that is, run(F2).

CPM 2020



8:8 Counting Distinct Patterns in Internal Dictionary Matching

Proof. The first claim follows from the fact that such an occurrence of a pattern P ∈ D has
an overlap of length at least 2per(P ) with F2 and hence per(P ) ≤ 1

2 |F2| is a period of F2.
As for the second claim, it suffices to show that, for any pattern P ∈ D that has an essential

occurrence, we have per(P ) = per(F2). The inequalities |F2| ≥ 2per(F2) and |F2| ≥ 2per(P )
imply |F2| ≥ per(F2) + per(P ). Hence, by the periodicity lemma, q = gcd(per(P ), per(F2)) is
a period of F2. As q ≤ per(F2), we conclude that q = per(F2). Thus, per(F2) divides per(P ),
and therefore per(P ) = per(F2). This concludes the proof. J

For a periodic factor U of T , let Periodic(U) denote the set of distinct patterns from D
that occur in U and have the same shortest period. Let us make the following observation.

I Observation 13. If all P ∈ D are highly periodic, F2 is periodic, and R = run(F2), then

3-Fragments-Counting(F1, F2, F3) =
|Periodic(F1F2F3 ∩R)| − |Periodic(F1F2 ∩R) ∪ Periodic(F2F3 ∩R)|.

Next we now show how to efficiently evaluate the right-hand side of the formula in the
observation above, using Theorem 5 for efficiently answering range counting queries in 2D.

We group all highly periodic patterns by Lyndon root and rank; for a Lyndon root L
and a rank r, we denote by DpL,r the corresponding set of patterns. Then, we build the data
structure of Theorem 5 for the set of points obtained by adding the point (a, b) for each
(L, r, a, b) ∈ DpL,r. We refer to the 2D grid underlying this data structure as GL,r. Note that
the total number of points in the data structures over all Lyndon roots and ranks is O(d).

Each occurrence of a pattern (L, r, a, b) lies within some run in R with Lyndon root L.
Let us state a simple fact.

I Fact 14. A periodic string (L, r, a, b) occurs in a periodic string (L, r′, a′, b′) if and only if
at least one of the following conditions is met:
(1) r = r′, a ≤ a′, and b ≤ b′;
(2) r = r′ − 1 and a ≤ a′;
(3) r = r′ − 1 and b ≤ b′;
(4) r ≤ r′ − 2.

I Lemma 15. One can compute |Periodic(U)| for any periodic fragment U in time
O(logn/ log logn) using a data structure of size O(n + d) that can be constructed in time
O(n+ d

√
logn).

Proof. For U = (L, r, a, b), we count points contained in at least one of the rectangles
(1) (−∞, a]× (−∞, b] in GL,r,
(2) (−∞, a]× (−∞, |L|] in GL,r−1,
(3) (−∞, |L|]× (−∞, b] in GL,r−1,
and we add to the count the number of patterns of the form (L, r′, a, b) with r′ < r − 1. For
the latter term, it suffices to store an array XL[1 . . t] such that XL[r] =

∑r
i=1 |D

p
L,i|, where

t is the maximum rank of a pattern with Lyndon root L. The total size of these arrays is
O(n) by the linearity of the sum of exponents of runs in a string [3, 19]. J

I Remark 16. In particular, in the proof of the above lemma, we count points that are
contained within at least one out of a constant number of rectangles. Therefore, not only we
can easily compute |Periodic(U)|, but similarly we are able to compute |Periodic(U1) ∪
Periodic(U2)| for some periodic factors U1, U2 of T .

We are now ready to prove the main result of this subsection.



P. Charalampopoulos et al. 8:9

I Lemma 17. The 3-Fragments-Counting(F1, F2, F3) queries can be answered in time
O(log2 n/ log logn) with a data structure of size O(n + d logn) that can be constructed in
O(n logn/ log logn+ d log3/2 n) time.

Proof. By Lemma 10, in order to count the patterns that are not highly periodic, it suffices
to perform three Count queries. To this end, we employ the data structure of Lemma 4
which answers Count queries in O(log2 n/ log logn) time, occupies space O(n + d logn),
and can be constructed in time O(n logn/ log logn+ d log3/2 n).

We now proceed to counting highly periodic patterns. First, we check whether F2 is
periodic; this can be done in O(1) time after an O(n)-time preprocessing of T [18, 17]. If F2
is not periodic, then by Lemma 12 no highly periodic pattern has an essential occurrence, and
we are thus done. If F2 is periodic, three |Periodic(U)| queries suffice to obtain the answer
due to Observation 13. They can be efficiently answered due to Lemma 15 and Remark 16; the
complexities are dominated by those for building the data structure for Count queries. J

4.3 Approximation Algorithm
Let us fix δ = 1

9 . A fragment of length b(1 + δ)pc for any positive integer p will be called a
p-basic fragment. Our data structure stores CountDistinct(i, j) for every basic fragment
T [i . . j]. Using Lemma 9, these values can be computed in O(n log1+ε n + d) time with a
sliding window approach. The space requirement is O(n logn+ d).

i j′ i′ j

F1 F2 F3

Figure 3 A 2-approximation of CountDistinct(i, j) is achieved using precomputed counts for
basic factors T [i . . i′] and T [j′ . . j].

In order to answer an arbitrary CountDistinct(i, j) query, let T [i . . i′] and T [j′ . . j]
be the longest prefix and suffix of T [i . . j] being a basic factor; see Figure 3. We sum
up CountDistinct(i, i′) and CountDistinct(j′, j) and the result of a 3-Fragments-
Counting query for F1 = T [i . . j′ − 1], F2 = T [j′ . . i′], F3 = T [i′ + 1 . . j]. (Note that
(|F1|+ |F2|) · (1 + δ) > |F1|+ |F2|+ |F3| implies δ(|F1|+ |F2|) > |F3|, and since |F1| = |F3|,
we have that |F1| = |F3| ≤ 1

8 |F2|.) Now, a pattern P ∈ D is counted at least once if and
only if it occurs in T [i . . j]. Also, a pattern P ∈ D is counted at most twice (exactly twice if
and only if it occurs in both F1F2 and F2F3). The above discussion and Lemma 17 yield the
following result.

I Theorem 18. The CountDistinct(i, j) queries can be answered 2-approximately in time
O(log2 n/ log logn) with a data structure of size O((n+ d) logn) that can be constructed in
time O(n log1+ε n+ d log3/2 n) for any constant ε > 0.

5 Time-Space Tradeoffs for Exact Counting

5.1 Tradeoff for Large Dictionaries
The following result is yet another application of Lemma 9.

CPM 2020



8:10 Counting Distinct Patterns in Internal Dictionary Matching

I Theorem 19. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n) time using an O(n2/m2 + n+ d)-size data structure
that can be constructed in O((n2 logε n)/m+ n

√
logn+ d) time.

Proof. A fragment of the form T [c1m+1 . . c2m] for integers c1 and c2 will be called a canonical
fragment. Our data structure stores CountDistinct(i′, j′) for every canonical fragment
T [i′ . . j′] and the data structure of Lemma 9. Hence the space complexity O(n2/m2 + n+ d).

We can compute in O(n logε n) time CountDistinct(i′, j) for a given i′ and all j using
Lemma 9. There are O(n/m) starting positions of canonical fragments and hence the
counts for all canonical fragments can be computed in O((n2 logε n)/m) time. Additional
preprocessing time O(n

√
logn+ d) originates from Lemma 9.

i ji′ j′

canonical fragmentextend extend

Figure 4 An illustration of the setting in the query algorithm underlying Theorem 19.

We can answer a CountDistinct(i, j) query in O(m logε n) time as follows. Let T [i′ . . j′]
be the maximal canonical fragment contained in T [i . . j]. We retrieve CountDistinct(i′, j′)
for T [i′ . . j′]. Then, we apply Lemma 9 O(m) times; each time we extend the fragment for
which we count, until we obtain CountDistinct(i, j). See Figure 4. J

5.2 Tradeoff for Small Dictionaries
We call a set of strings H a path-set if all elements of H are prefixes of its longest element.
We now show how to efficiently handle dictionaries that do not contain large path-sets.

I Lemma 20. If D does not contain any path-set of size greater than k, then we can construct
in O(kn logn) time an O(kn logn)-size data structure that answers CountDistinct(i, j)
queries in O(logn) time.

Proof. Let D = {P1, . . . , Pd} and S = {Occ(P1), . . . ,Occ(Pd)}. Every position of T contains
at most k occurrences of patterns from D. This implies that ‖S‖ ≤ kn. We can obviously
treat a CountDistinct(i, j) query as a CountDistinctS(i, j) query. The complexities
follow from Lemma 7. J

A proof of the following lemma is rather standard and is included in the full version of
the paper.

I Lemma 21. For any k ∈ [1, n], we can compute a maximal family F of pairwise-disjoint
path-sets in D, each consisting of at least k elements, in O(n+ d) time.

We now combine Lemmas 3, 20 and 21 to get the main result of this section.

I Theorem 22. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n+ logn) time using an O((nd logn)/m+ d)-size data
structure that can be constructed in O((nd logn)/m+ d) time.

Proof. We first apply Lemma 21 for k = dd/me. We then have a decomposition of D
to a family F of at most m path-sets and a set D′ with no path-set of size greater than
bd/mc. We directly apply Lemma 20 for D′. In order to handle path-sets, we build the data



P. Charalampopoulos et al. 8:11

structure of Lemma 3. Then, upon a CountDistinct(i, j) query, for each path-set H ∈ F ,
we compute the longest pattern in H that occurs in T [i . . j] using a Bounded LCP query
followed by a predecessor query [24] in a structure that stores the lengths of the elements
of H, with the lexicographic rank in H stored as satellite information. The data structure
of [24] is randomized, but it can be combined with deterministic dictionaries [21] using a
simple two-level approach (see [23]), resulting in a deterministic static data structure. J

I Remark 23. Let us fix the query time to be O(m logε n) form = Ω(logn). Then, Theorem 22
outperforms Theorem 19 in terms of the required space for d = o(n/(m logn)). For example,
for m = d = n1/4, the data structure of Theorem 22 requires space Õ(n) while the one
of Theorem 19 requires space Õ(n

√
n).

6 Internal Counting of Distinct Squares

The number of occurrences of squares could be quadratic, but we can construct a much
smaller O(n logn)-size subset of these occurrences (called boundary occurrences) that, from
the point of view of CountDistinct queries, gives almost the same answers. This is the
main trick in this section. Distinct squares with a boundary occurrence in a given fragment
can be counted in O(logn) time due to Lemma 7. The remaining squares can be counted
based on their structure: we show that they are all generated by the same run.

Now, the dictionary D is the set of all squares in T . By the following fact, d = O(n) and
D can be computed in O(n) time.

I Fact 24 ([7, 8, 10, 12]). A string T of length n contains O(n) distinct square factors and
they can all be computed in O(n) time.

We say that an occurrence of a square U2 is induced by a run R if it is contained in R
and the shortest periods of U and R are the same. Every occurrence of a square is induced
by exactly one run.

We need the following fact (note that it is false for the set of all runs; see [11]).

I Fact 25. The sum of the lengths of all highly periodic runs is O(n logn).

Proof. We will prove that each position in T is contained in O(logn) highly periodic runs. Let
us consider all highly periodic runs R containing some position i, such that m ≤ per(R) < 3

2m

for some even integer m. Suppose for the sake of contradiction that there are at least 5 such
runs. Note that each such run fully contains one of the fragments T [i− 3m+ 1 + t . . i+ t]
for t ∈ {0,m, 2m, 3m}. By the pigeonhole principle, one of these four fragments is contained
in at least two runs, say R1 and R2. In particular, the overlap of these runs is at least
3m ≥ per(R1) + per(R2), which is a contradiction by the periodicity lemma. J

We define a family of occurrences B = B1, . . . , Bd such that, for each square U2
i , the set

Bi contains the leftmost and the rightmost occurrence of U2
i in every run. We call these

boundary occurrences. Boundary occurrences of squares have the following property.

I Lemma 26. ‖B‖ = O(n logn) and the set family B can be computed in O(n logn) time.

Proof. Let us define the root of a square U2 to be U . A square is primitively rooted if its
root is a primitive string. Let p-squares be primitively rooted squares, np-squares be the
remaining ones. The number of occurrences of p-squares in a string of length n is O(n logn)
and they can all be computed in O(n logn) time; see [6, 22].

CPM 2020



8:12 Counting Distinct Patterns in Internal Dictionary Matching

We now proceed to np-squares. Note that for any highly periodic run R, the leftmost
occurrence of each np-square induced by R starts in one of the first per(R) positions of R; a
symmetric property holds for rightmost occurrences and last per(R) positions. In addition,
it can be readily verified that such a position is the starting (resp. ending) position of at
most exp(R) squares induced by R. It thus suffices to bound the sum of exp(R) · per(R) over
all highly periodic runs R. The fact that exp(R) · per(R) = |R| concludes the proof of the
combinatorial part by Fact 25.

For the algorithmic part, it suffices to iterate over the O(n) runs of T . J

I Lemma 27. If T [i . . j] is non-periodic, CountDistinct(i, j) = CountDistinctB(i, j).

Proof. Let us consider an occurrence of a square U2 inside T [i . . j]. Let R be the run that
induces this occurrence. By the assumption of the lemma, R does not contain T [i . . j]. Then
at least one of the boundary occurrences of U2 in R is contained in T [i . . j]. J

For a periodic fragment F of T , by RunSquares(F ) we denote the number of distinct
squares that are induced by F (being a run if interpreted as a standalone string). The value
RunSquares(F ) can be computed in O(1) time, as it was shown in e.g. [7].

Let F1 be a prefix and F2 be a suffix of a periodic fragment F , such that each of F1 and
F2 is of length at most per(F ) – and hence they are disjoint. By BSq(F, F1, F2) (“bounded
squares”) we denote the number of distinct squares induced by F which have an occurrence
starting in F1 or ending in F2.

I Lemma 28. Given per(F ), the BSq(F, F1, F2) queries can be answered in O(1) time.

Proof. We are to count distinct squares induced by F that start in F1 or end in F2.
We introduce an easier version of BSq queries. Let BSq′(F, F1) = BSq(F, F1, ε) be the

number of squares induced by F which start in its prefix F1 of length at most p := per(F ).

Reduction of BSq to BSq′. First, observe that the set of squares induced by F starting
at some position q ∈ [1, p] and the set of squares induced by F ending at some position
q′ ∈ [|F | − p+ 1, |F |] are equal if q ≡ q′ + 1 (mod p) and disjoint otherwise. Also note that
F2 = UV for some prefix V and some suffix U of F [p]F [1 . . p− 1]; we consider this rotation
of F [1 . . p] to offset the +1 factor in the above modular equation. Let |U | = a and |V | = b.

Then, by the aforementioned observation, we are to count distinct squares that start in
some position in the set [1, |F1|] ∪ [1, b] ∪ [p− a+ 1, p]; see Figure 5.

F

b a a b

|F2|

per(R)

Figure 5 Reduction of BSq to BSq′; the case that |F1| ≤ b.

Hence the computation of BSq(F, F1, F2) is reduced to at most two instances of the
special case when F2 is the empty string.



P. Charalampopoulos et al. 8:13

Computation of BSq′(F, F1). The number of squares induced by F starting at F [i] is
b(|F | − i+ 1)/(2p)c. Consequently, BSq′(F, F1) =

∑|F1|
i=1b(|F | − i+ 1)/(2p)c = |F1| · t −

max{0, |F1| − k − 1}, where t = b|F |/(2p)c and k = |F | mod (2p). J

I Lemma 29. Assume that F = T [i . . j] is periodic and R = T [a . . b] = run(T [i . . j]). Let
F1 = T [i . . a+ p− 1] and F2 = T [b− p+ 1 . . j], where per(R) = p. Then:

CountDistinct(i, j) = CountDistinctB(i, j) + RunSquares(F )−BSq(F, F1, F2). (1)

Proof. In the sum CountDistinctB(i, j) + RunSquares(F ), all squares are counted once
except for squares whose boundary occurrences are induced by R, which are counted twice.
They are exactly counted in the term BSq(F, F1, F2); see Figure 6. J

T

i

F1

j

F2

F

R
a b

per(R) per(R)

Figure 6 The setting in Lemma 29. Note that F1 is empty if i ≥ a + per(R); similarly for F2.

I Theorem 30. If D is the set of all square factors of T , then CountDistinct(i, j) queries
can be answered in O(logn) time using a data structure of size O(n log2 n) that can be
constructed in O(n log2 n) time.

Proof. We precompute the set B in O(n logn) time using Lemma 26 and perform O(n log2 n)
time and space preprocessing for CountDistinctB(i, j) queries.

In order to answer a CountDistinct(i, j) query, first we ask a run(T [i . . j]) query of
Lemma 8 to check if T [i . . j] is periodic.

We compute CountDistinctB(i, j) which takes O(logn) time due to Lemma 7. If
T [i . . j] is non-periodic, then it is the final result due to Lemma 27.

Otherwise T [i . . j] is periodic. Let F, F1, F2 be as in Lemma 29. We answer RunSquares(F )
and BSq(F, F1, F2) queries in O(1) time using the algorithm from [7] and Lemma 28,
respectively. Finally, CountDistinct(i, j) is computed using (1). J

7 Final Remarks

The general framework for dynamic dictionaries, presented in the full version of this paper,
essentially consists in rebuilding a static data structure after every k updates. We return
correct answers by performing individual queries for the patterns inserted or deleted from the
dictionary since the data structure was built. In particular, we show that an application of
this framework – with some tweaks – to the data structure of Section 4 yields the following.

I Theorem 31. For any k ∈ [1, n], we can construct a data structure in Õ(n+d) time, which
processes each update to the dictionary in Õ(n/k) time and answers CountDistinct(i, j)
queries 2-approximately in Õ(k) time.

We leave open the problem of whether an Õ(n + d)-size data structure answering
CountDistinct(i, j) queries exactly in time Õ(1) exists.

CPM 2020



8:14 Counting Distinct Patterns in Internal Dictionary Matching

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Communications of the ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static

pattern matching. ACM Transactions on Algorithms, 3(2):19, 2007. doi:10.1145/1240233.
1240242.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

4 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 161–173. SIAM, 2010. doi:10.1137/1.9781611973075.15.

5 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń. Internal dictionary matching. In 30th International
Symposium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.22.

6 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-
tion Processing Letters, 12(5):244–250, 1981. doi:10.1016/0020-0190(81)90024-7.

7 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

8 Antoine Deza, Frantisek Franek, and Adrien Thierry. How many double squares can a string
contain? Discrete Applied Mathematics, 180:52–69, 2015. doi:10.1016/j.dam.2014.08.016.

9 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

10 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

11 Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer Science,
501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

12 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. Journal of Computer and System Sciences, 69(4):525–546, 2004.
doi:10.1016/j.jcss.2004.03.004.

13 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In 47th Annual ACM on Symposium on Theory of Computing,
STOC 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

14 Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal range
counting. SIAM Journal on Computing, 38(3):982–1011, 2008. doi:10.1137/070684483.

15 Orgad Keller, Tsvi Kopelowitz, Shir Landau Feibish, and Moshe Lewenstein. Generalized
substring compression. Theoretical Computer Science, 525:42–54, 2014. doi:10.1016/j.tcs.
2013.10.010.

16 Tomasz Kociumaka. Minimal suffix and rotation of a substring in optimal time. In 27th
Annual Symposium on Combinatorial Pattern Matching, CPM 2016, volume 54 of LIPIcs,
pages 28:1–28:12. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.CPM.2016.28.

17 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, 2018. URL: https://mimuw.edu.pl/~kociumaka/files/phd.pdf.

18 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal pattern
matching queries in a text and applications. In 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.



P. Charalampopoulos et al. 8:15

19 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

20 Mikhail Rubinchik and Arseny M. Shur. Counting palindromes in substrings. In 24th
International Symposium on String Processing and Information Retrieval, SPIRE 2017, volume
10508 of Lecture Notes in Computer Science, pages 290–303. Springer, 2017. doi:10.1007/
978-3-319-67428-5_25.

21 Milan Ružić. Constructing efficient dictionaries in close to sorting time. In Automata, Languages
and Programming, ICALP 2008, Part I, volume 5125 of Lecture Notes in Computer Science,
pages 84–95. Springer, 2008. doi:10.1007/978-3-540-70575-8_8.

22 Jens Stoye and Dan Gusfield. Simple and flexible detection of contiguous repeats using a suffix
tree. Theoretical Computer Science, 270(1-2):843–856, 2002. doi:10.1016/S0304-3975(01)
00121-9.

23 Mikkel Thorup. Space efficient dynamic stabbing with fast queries. In 35th Annual ACM
Symposium on Theory of Computing, STOC 2003, pages 649–658. ACM, 2003. doi:10.1145/
780542.780636.

24 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inform-
ation Processing Letters, 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

CPM 2020



Chapter 5

The Number of Repetitions
in 2D-Strings

74



The Number of Repetitions in 2D-Strings
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Poland, Warsaw, Poland
jrad@mimuw.edu.pl

Wojciech Rytter
Institute of Informatics, University of Warsaw, Poland
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Poland
walen@mimuw.edu.pl

Wiktor Zuba
Institute of Informatics, University of Warsaw, Poland
w.zuba@mimuw.edu.pl

Abstract
The notions of periodicity and repetitions in strings, and hence these of runs and squares, naturally
extend to two-dimensional strings. We consider two types of repetitions in 2D-strings: 2D-runs and
quartics (quartics are a 2D-version of squares in standard strings). Amir et al. introduced 2D-runs,
showed that there are O(n3) of them in an n × n 2D-string and presented a simple construction
giving a lower bound of Ω(n2) for their number (Theoretical Computer Science, 2020). We make a
significant step towards closing the gap between these bounds by showing that the number of 2D-runs
in an n× n 2D-string is O(n2 log2 n). In particular, our bound implies that the O(n2 logn+ output)
run-time of the algorithm of Amir et al. for computing 2D-runs is also O(n2 log2 n). We expect this
result to allow for exploiting 2D-runs algorithmically in the area of 2D pattern matching.

A quartic is a 2D-string composed of 2× 2 identical blocks (2D-strings) that was introduced by
Apostolico and Brimkov (Theoretical Computer Science, 2000), where by quartics they meant only
primitively rooted quartics, i.e. built of a primitive block. Here our notion of quartics is more general
and analogous to that of squares in 1D-strings. Apostolico and Brimkov showed that there are
O(n2 log2 n) occurrences of primitively rooted quartics in an n× n 2D-string and that this bound is
attainable. Consequently the number of distinct primitively rooted quartics is O(n2 log2 n). The
straightforward bound for the maximal number of distinct general quartics is O(n4). Here, we prove
that the number of distinct general quartics is also O(n2 log2 n). This extends the rich combinatorial
study of the number of distinct squares in a 1D-string, that was initiated by Fraenkel and Simpson
(Journal of Combinatorial Theory, Series A, 1998), to two dimensions.

Finally, we show some algorithmic applications of 2D-runs. Specifically, we present algorithms for
computing all occurrences of primitively rooted quartics and counting all general distinct quartics in
O(n2 log2 n) time, which is quasi-linear with respect to the size of the input. The former algorithm is
optimal due to the lower bound of Apostolico and Brimkov. The latter can be seen as a continuation
of works on enumeration of distinct squares in 1D-strings using runs (Crochemore et al., Theoretical
Computer Science, 2014). However, the methods used in 2D are different because of different
properties of 2D-runs and quartics.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases 2D-run, quartic, run, square

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.32

© Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor
Zuba;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



32:2 The Number of Repetitions in 2D-Strings

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL under the EU’s
Horizon 2020 Research and Innovation Programme (agreement no. 677651).
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

1 Introduction

Periodicity is one of the main and most elegant notions in stringology. It has been studied
extensively both from the combinatorial and the algorithmic perspective; see e.g. the books [18,
25, 39]. A classic combinatorial result is the periodicity lemma due to Fine and Wilf [27].
From the algorithmic side, periodicity often poses challenges in pattern matching, due to
the following fact: a pattern P can have many occurrences in a text T that are “close” to
each other if and only if P has a “small” period. On the other hand, the periodic structure
indeed allows us to overcome such challenges; see [18, 25].

Runs, also known as maximal repetitions, are a fundamental notion in stringology. A
run is a periodic fragment of the text that cannot be extended without changing the period.
Runs were introduced in [35]. Kolpakov and Kucherov presented an algorithm to compute
all runs in a string in time linear with respect to the length of the string over a linearly-
sortable alphabet [38]. Runs fully capture the periodicity of the underlying string and, since
the publication of the algorithm for their linear-time computation, they have assumed a
central role in algorithm design for strings. They have been exploited for text indexing [36],
answering internal pattern matching queries in texts [16, 37], or reporting repetitions in a
string [2, 15, 22], to name a few applications.

Kolpakov and Kucherov also posed the so-called runs conjecture which states that there
are at most n runs in a string of length n. A long line of work on the upper [19, 20, 21,
31, 42, 43, 44] and lower bounds [30, 41, 45] was concluded by Bannai et al. who positively
resolved the runs conjecture in [10] (see also an alternative proof in [23] and a tighter upper
bound for binary strings from [28]).

A square is a concatenation of two copies of the same string. Fraenkel and Simpson [29]
showed that a string of length n contains at most 2n distinct square factors. This bound was
improved in [26, 34]. All distinct squares in a string of length n can be computed in O(n)
time assuming an integer alphabet [11, 22, 33] (see [46] for an earlier O(n logn) algorithm).

Pattern matching and combinatorics on 2D strings have been studied for more than 40
years, see e.g. [1, 4, 9, 14, 18, 25]. In this paper we consider 2-dimensional versions of runs,
introduced by Amir et al. [5, 6], and of repetitions in 2D-strings, introduced by Apostolico
and Brimkov [7]. As discussed in [6, 8], one could potentially exploit such repetitions in a
2D-string, which could for instance be an image, in order to compress it.

A 2D-run in a 2D-string A is a subarray of A that is both horizontally periodic and
vertically periodic and that cannot be extended by a row or column without changing the
horizontal or vertical periodicity (a formal definition follows in Section 2); see Figure 1(a).
Amir et al. [5, 6] have shown that the maximum number of 2D-runs in an n×n array is O(n3)
and presented an example with Θ(n2) 2D-runs. In [6] they presented an O(n2 logn+ output)-
time algorithm for computing 2D-runs.

A quartic is a configuration that is composed of 2 × 2 occurrences of an array W (see
Figure 1(b)) and a tandem is a configuration consisting of two occurrences of an arrayW that
share one side (Apostolico and Brimkov [7] also considered another type of tandems, which



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:3

share one corner; see also [3]). An array W is called primitive if it cannot be partitioned
into non-overlapping replicas of some array W ′. Apostolico and Brimkov [7] considered only
quartics and tandems with primitive W (we call them primitively rooted) and showed tight
asymptotic bounds Θ(n2 log2 n) and Θ(n3 logn) for the maximum number of occurrences of
such quartics and tandems in an n× n array, respectively. In [8] they presented an optimal
O(n3 logn)-time algorithm for computing all occurrences of tandems with primitive W . This
extends a result that a 1D-string of length n contains O(n logn) occurrences of primitively
rooted squares and they can all be computed in O(n logn) time; see [17, 46]. In this paper
we consider the numbers of all distinct quartics, which is a more complicated problem.

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(a) a 2D-run

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(b) a quartic

Figure 1 Examples of a 2D-run and a quartic.

When computing 2D-runs we consider positioned runs: two 2D-runs with same content
but starting in different points are considered distinct. However in case of quartics, similarly
as in case of 1D-squares, we consider unpositioned quartics; if two quartics have the same
content but start in different positions, we consider them equal.

Our Results.
We show that the number of 2D-runs in an n× n array is O(n2 log2 n). This improves
upon the O(n3) upper bound of Amir et al. [5, 6] and proves that their algorithm computes
all 2D-runs in an n× n 2D-string in O(n2 log2 n) time (Section 3).
We show that the number of distinct quartics in an n × n array is O(n2 log2 n). This
can be viewed as an extension of the bounds on the maximum number of distinct square
factors in a 1D-string [26, 29] (Section 4).
We present algorithmic implications of the new upper bound for 2D-runs. We show
that all occurrences of primitively rooted quartics can be computed in quasi-linear,
O(n2 log2 n) time, which is optimal by the bound of Apostolico and Brimkov [7]. Thus
our algorithm complements the result of Apostolico and Brimkov [8] who gave an optimal
algorithm for computing all occurrences of primitively rooted tandems. We also show that
all distinct quartics can be computed in quasi-linear, O(n2 log2 n) time, which extends
efficient computation of distinct squares in 1D-strings [11, 22, 33] to 2D (Section 5).
As an easy side result, we show tight Θ(n3) bounds for the maximum number of distinct
tandems in an n× n array and how to report them in O(n3) time (Section 2).

2 Preliminaries

1D-Strings. We denote by [a, b] the set {i ∈ Z : a ≤ i ≤ b}. Let S = S[1]S[2] · · ·S[|S|] be
a string of length |S| over an alphabet Σ. The elements of Σ are called letters. For two
positions i and j on S, we denote by S[i . . j] = S[i] · · ·S[j] the fragment of S that starts at
position i and ends at position j (it equals ε if j < i). A positive integer p is called a period
of S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p. We refer to the smallest period as the period
of the string, and denote it by per(S).

ESA 2020



32:4 The Number of Repetitions in 2D-Strings

I Lemma 1 (Periodicity Lemma (weak version), Fine and Wilf [27]). If p and q are periods of
a string S and satisfy p+ q ≤ |S|, then gcd(p, q) is also a period of S.

A string S is called periodic if per(S) ≤ |S|/2. By ST and Sk we denote the concatenation
of strings S and T and k copies of the string S, respectively. A string S is called primitive if
it cannot be expressed as Uk for a string U and an integer k > 1.

A string of the form U2 for string U is called a square. A square U2 is called primitively
rooted if U is primitive. We will make use of the following important property of squares.

I Lemma 2 (Three Squares Lemma, [24]). Let U , V and W be three strings such that U2 is
a proper prefix of V 2, V 2 is a proper prefix of W 2 and U is primitive. Then |U |+ |V | ≤ |W |.

A run (also known as maximal repetition) in S is a periodic fragment R = S[i . . j] which
cannot be extended either to the left or to the right without increasing the period p = per(R),
i.e. if i > 1 then S[i − 1] 6= S[i + p − 1] and if j < |S| then S[j + 1] 6= S[j − p + 1]. Let
R(S) denote the set of all runs of string S. For periodic fragment U = S[a . . b], the run that
extends U is the unique run R = S[i . . j] such that i ≤ a ≤ b ≤ j and per(R) = per(U). An
occurrence of a square U2 is said to be induced by a run R if R extends U2. Every square is
induced by exactly one run [22].

2D-Strings. Let A be an m×n array (2D-string). We denote the height and width of A by
height(A) = m and width(A) = n, respectively. By A[i, j] we denote the cell in the ith row
and jth column of A; see Figure 2(a). By A[i1 . . i2, j1 . . j2] we denote the subarray formed
of rows i1, . . . , i2 and columns j1, . . . , j2.

A positive integer p is a horizontal period of A if the i-th column of A equals the (i+p)-th
column of A for all i = 1, . . . , n − p. We denote the smallest horizontal period of A by
hper(A). Similarly, a positive integer q is a vertical period of A if the i-th row of A equals
the (i+ q)-th row of A for all i = 1, . . . ,m− q; the smallest vertical period of A is denoted
by vper(A).

1
...
i

...
m

n. . .j. . .1

A[i, j]

(a) 2D string A

W

W

W

W

W

W

W

W

W

. . .

β

α

(b) Wα,β

Figure 2 A 2D-string and the structure of Wα,β .

An r×c subarray B = A[i1 . . i2, j1 . . j2] of A is a 2D-run if hper(B) ≤ c/2, vper(B) ≤ r/2
and extending B by a row or column, i.e. either of A[i1 − 1, j1 . . j2], A[i2 + 1, j1 . . j2],
A[i1 . . i2, j1 − 1], or A[i1 . . i2, j2 + 1], would result in a change of the smallest vertical or the
horizontal period.

If W is a 2D array, then by Wα,β we denote an array that is composed of α× β copies of
W ; see Figure 2(b). A tandem of W is an array of the form W 1,2 and a quartic of W is the
array W 2,2. A 2D array A is called primitive if A = Bα,β for positive integers α, β implies
that α = β = 1. The primitive root of an array A is the unique primitive array B for which
A = Bα,β for α, β ≥ 1.



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:5

Apostolico and Brimkov [7] proved the following upper bound, and showed that it is tight
by giving a corresponding lower bound.

I Fact 3 (Lemma 5 in [7]). A 2D array of size n × n has O(n2 log2 n) occurrences of
primitively rooted quartics.

We say that a quartic Q = W 2,2 is induced by a 2D-run R if Q is a subarray of R and
hper(R) and vper(R) divide the width and height of W , respectively.

Figure 3 Shaded positions contain letters b, all the other the letters a. Each rectangle with
top-left and bottom-right corners marked is a 2D-run; altogether there are 18 distinct 2D-runs,
including two of the form b2,2. There are also 10 distinct quartics aα,β , where 0 < α, β ≤ 8 are even
and α+ β ≤ 10. There is also the quartic b2,2 (altogether 11 distinct quartics). The centrally placed
quartic a2,2 is contained in 16 2D-runs. There are only two distinct primitively rooted quartics.

I Observation 4. Every quartic is induced by a 2D-run. However; the same quartic can be
induced even by Θ(n2) 2D-runs; say the middle quartic a2,2 in Figure 3.

I Remark 5. The fact that a string of length n has O(n logn) occurrences of primitively
rooted squares immediately shows (by the fact that a square is induced by exactly one
run) that it has O(n logn) runs. However, an analogous argument applied for quartics and
2D-runs does not give a non-trivial upper bound for the number of the latter because of
Observation 4.

In our algorithms, we use a variant of the Dictionary of Basic Factors in 2D (2D-DBF in
short) that is similar to the one presented in [25]. Namely, to each subarray of A whose width
and height is an integer power of 2 we assign an integer identifier from [0, n2] so that two
arrays with the same dimensions are equal if and only if their identifiers are equal. The total
number of such subarrays is O(n2 log2 n) and the identifiers can be assigned in O(n2 log2 n)
time; see [25]. Using 2D-DBF, we can assign an identifier to a subarray of A of arbitrary
dimensions r × c being a quadruple of 2D-DBF identifiers of its four 2i × 2j subarrays that
share one of its corners, where 2i ≤ r < 2i+1 and 2j ≤ c < 2j+1. Such quadruples preserve
the property that two subarrays of the same dimensions are equal if and only if the 2D-DBF
quadruples are the same.

As an illustration, we show a tight bound for the number of distinct tandems and an
optimal algorithm for computing them.

I Theorem 6. The maximum number of distinct tandems in an n×n array A is Θ(n3). All
distinct tandems in an n× n array can be reported in the optimal Θ(n3) time.

Proof. Let us fix two row numbers i < i′ in A. Then, the number of distinct tandems with
top row i and bottom row i′ is O(n) by the fact that a string of length n contains O(n)
squares [26, 29]. Thus, in total there are O(n3) distinct tandems. For the lower bound, let

ESA 2020



32:6 The Number of Repetitions in 2D-Strings

the ith row of A be filled with occurrences of the letter i. Every subarray of A of even width
is a tandem. For each distinct triplet of top and bottom rows and even width, we obtain a
distinct tandem.

Let us proceed to the algorithm. For a height h ∈ [1, n], we assign integer identifiers from
[1, n2] that preserve lexicographical comparison to all height-h substrings of columns of A.
They can be assigned using the generalized suffix tree [18, 47] of the columns of A inO(n2 logn)
time. Let Bh be an array such that Bh[i, j] stores the identifier of A[i . . i+ h− 1, j]. To a
subarrayW = A[i . . i+h−1, j . . j+w−1] we assign an identifier id(W ) = Bh[i, j . . j+w−1].
Then for any two subarrays W and W ′ of height h, W = W ′ if and only if id(W ) = id(W ′).
For every height h = 1, . . . , n and row i, we find all distinct squares in Bh[i, 1], . . . , Bh[i, n]
in O(n) time [11, 22, 33]. This corresponds to the set of distinct tandems with top row i

and bottom row i+ h− 1. Finally, we assign identifiers from 2D-DBF of A to each of the
tandems and use radix sort to sort them and enumerate distinct tandems. J

3 Improved Upper Bound for 2D-Runs

We introduce the framework that Amir et al. used for efficiently computing 2D-runs [5, 6].
We say that a subarray B = A[i1 . . i2, j1 . . j2] of A is a horizontal run if it is horizont-

ally periodic (that is, hper(B) ≤ width(B)/2) and extending B by either of the columns
A[i1 . . i2, j1−1] or A[i1 . . i2, j2 + 1] would result in a change of the smallest horizontal period.
(Note that B does not have to be vertically periodic.)

For k ∈ [1, blognc] and i ∈ [1, n − 2k + 1], let Hk
i be the string obtained by replacing

the columns of array A[i . . i+ 2k − 1, 1 . . n] with metasymbols such that Hk
i [j] = Hk

i [j′] if
and only if A[i . . i+ 2k − 1, j] = A[i . . i+ 2k − 1, j′]. Notice that each such horizontal run of
height 2k corresponds to a run in some Hk

i .
The following lemma will enable us to “anchor” each 2D-run R in the top-left or bottom-

left corner of a horizontal run of “similar” height as R. It was proved in [6], but we provide
a proof for completeness.

I Lemma 7 (Lemma 7 in [6]). Let R be a 2D-run whose height is in the range [2k, 2k+1). Then
there is a horizontal run R′ of height 2k with hper(R′) = hper(R) and width(R′) ≥ width(R)
such that top-left or bottom-left corners of R and R′ coincide (see Figure 4).

Proof. Let R = A[i1 . . i2, j1 . . j2] be the 2D-run in scope and let k = blog(i2 − i1 + 1)c. We
have to show that at least one of the two following statements holds.

There is a run R1 = S[j1 . . b] in S = Hk
i1

with smallest period p and b ≥ j2.
There is a run R2 = T [j1 . . d] in T = Hk

i2−2k+1 with smallest period p and d ≥ j2.

Since vper(R) ≤ height(R)/2, all distinct rows of R are represented in each of U =
S[j1 . . j2] and V = T [j1 . . j2] and hence p = per(U) = per(V ). Let R1 = S[a . . b] be the
run that extends U and R2 = T [c . . d] be the run that extends V . Let us suppose towards
a contradiction that max(a, c) < j1. Then, A[i1 . . i2, j1 − 1] = A[i1 . . i2, j1 − 1 + p], which
contradicts R being a run, since R and B = A[i1 . . i2, j1 − 1 . . j2] have the same horizontal
and vertical periods. J

The sum of the lengths of the runs in a string of length n can be Ω(n2) as shown in [32].
However, we prove the following lemma, which is crucial for our approach. We will use it to
obtain an overall bound on the possible widths of 2D-runs for our anchors.



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:7

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a a a a a a

b b b b b b b b b b b b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b b b

Figure 4 The shaded 7× 6 subarray is a 2D-run R, with vertical period 3 and horizontal period
p = 3. The other marked 4× 9 rectangle encloses a horizontal run R′ with the same top-left corner
and the same horizontal period as R. We have 2 · p ≤ width(R) ≤ width(R′).

I Lemma 8. For any string S of length n we have that

ρ(S) :=
∑

R∈R(S)

(|R| − 2 · per(R) + 1) = O(n logn).

Proof. We consider for each run R = S[i . . j] of S the interval IR = [i, j − 2 · per(R) + 1].
Note that ρ(S) =

∑
R∈R(S) |IR|.

Observe that for every a ∈ IR the string S[a . . a+ per(R)− 1] is primitive, since if it was
of the form Uk for a string U and an integer k > 1, then |U | < per(R) would be a period of
R, a contradiction. Hence, at each position a ∈ IR there is an occurrence of a primitively
rooted square of length 2 · per(R).

A direct application of the Three Squares Lemma (Lemma 2) implies that at most O(logn)
primitively rooted squares can start at each position a. Each such square extends to a unique
run. Thus, each position i belongs to O(logn) intervals IR for R ∈ R(S). This completes
the proof. J

We are now ready to prove the main result of this section.

I Theorem 9. There are O(n2 log2 n) 2D-runs in an n× n array A.

Proof. We will iterate over all horizontal runs R′ = A[i . . i′, j . . j′] whose height is a power
of 2, i.e. i′ = i+ 2k − 1 for some k. For each such horizontal run R′, we consider the 2D-runs
R with:
(a) top-left corner A[i, j] or bottom-left corner A[i′, j],
(b) hper(R) = hper(R′), and
(c) height(R) ∈ [2k, 2k+1).
For each such 2D-run R, we have width(R) ∈ [2 · hper(R′),width(R′)], else the horizontal
period would break, i.e. property (b) would be violated. Let us notice that R′ corresponds
to a run U = Hk

i [j . . j′] ∈ R(Hk
i ). In particular, width(R) ∈ [2 · per(U), |U |].

Lemma 7 implies that each 2D-run is accounted for at least once in this manner. It is thus
enough to bound the number of considered runs. We have n choices for i and logn choices
for k. Further, due to Lemma 8, for each corresponding meta-string Hk

i we have O(n logn)
choices for a pair (j, c) such that U = Hk

i [j . . j′] ∈ R(Hk
i ) and c ∈ [2 · per(U), |U |]. In total,

we thus have O(n2 log2 n) choices for (i, k, j, c). We will complete the proof by showing that
there is only a constant number of 2D-runs with top-left corner A[i, j], width w and whose
height is in the range [2k, 2k+1). (2D-runs with bottom-left corner A[i′, j] can be bounded
symmetrically.)

ESA 2020



32:8 The Number of Repetitions in 2D-Strings

B Claim 10 (cf. Lemma 10 in [6]). Let B be an r × c array with r ∈ [2k, 2k+1). Then, there
are at most two integers p > 2k−1 such that p = vper(B′) ≤ height(B′)/2 for B′ consisting
of the top height(B′) ≥ 2k rows of B.

Proof. Consider S to be the meta-string obtained by replacing the rows of B by single letters.
Then, a direct application of the Three Squares Lemma (Lemma 2) to S yields the claimed
bound. C

We apply Claim 10 to B = A[i . .min(i+ 2k+1 − 2, n), j . . j + c− 1]. If vper(R) ≤ 2k−1,
then vper(R) = vper(R′) by the Periodicity Lemma (Lemma 1) applied to the meta-string
obtained by replacing the rows of the intersection of R′ and B by single letters. Now Claim 10
implies that there are at most three choices to make for the vertical period: vper(R′) and
the two integers from the claim. Finally, for fixed top-left corner, width and vertical period
we can have a single 2D-run. This concludes the proof. J

Amir et al. [6] presented the following algorithmic result.

I Theorem 11 ([6]). All 2D-runs in an n×n array can be computed in O(n2 logn+ output)
time, where output is the number of 2D-runs reported.

By combining Theorems 9 and 11 we get the following corollary.

I Corollary 12. All 2D-runs in an n× n array can be computed in O(n2 log2 n) time.

4 Upper Bound on the Number of Distinct Quartics

Fact 3 that originates from [7] shows that an n× n array A has O(n2 log2 n) occurrences of
primitively rooted quartics. This obviously implies that the number of distinct primitively
rooted quartics is upper bounded by O(n2 log2 n). Unfortunately, an array can contain Θ(n4)
occurrences of general quartics; this takes place e.g. for a unary array. In this section we
show that O(n2 log2 n) is also an upper bound for the number of distinct general quartics,
i.e. subarrays of A of the form Wα,β for even α, β ≥ 2 and primitive W .

The following lemma and its corollary are the combinatorial foundation of our proofs. An
array W with height(W ) ∈ [2a, 2a+1) and width(W ) ∈ [2b, 2b+1) will be called an (a, b)-array.

I Lemma 13. Let a, b be non-negative integers and W,W ′ be different primitive (a, b)-arrays.
If occurrences of W 2,3 and (W ′)2,3 (of W 3,2 and (W ′)3,2, respectively) in A share the same
corner (i.e., top-left, top-right, bottom-left or bottom-right), then width(W ) = width(W ′)
(height(W ) = height(W ′), respectively).

Proof. Clearly it is sufficient to prove the lemma for W 2,3 and (W ′)2,3. Assume w.l.o.g. that
occurrences of W 2,3 and (W ′)2,3 in A share the top-left corner and consider their overlap X.

Each of the rows of X has periods width(W ) and width(W ′). Assume w.l.o.g. that
width(W ) ≤ width(W ′). Then

width(X) = 3 · width(W ) ≥ width(W ) + 2a+1 ≥ width(W ) + width(W ′).

By the Periodicity Lemma (Lemma 1), p = gcd(width(W ),width(W ′)) is a horizontal period
of X.

The array X contains at least one occurrence of W and W ′ in its top-left corner. Hence,
W and W ′ have a horizontal period p. If width(W ) < width(W ′), then width(W ′) cannot
be a multiple of width(W ), because then we would have width(W ′) > 2a+1. Hence, if
width(W ) < width(W ′), we would have p < width(W ) which by p | width(W ) would mean
that W is not primitive. This indeed shows that width(W ) = width(W ′). J



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:9

I Corollary 14. Let a, b be non-negative integers and W,W ′ be different (a, b)-arrays. If
occurrences of W 3,3 and (W ′)3,3 in A share the same corner (i.e., top-left, top-right, bottom-
left or bottom-right), then at least one of W , W ′ is not primitive.

If V 2,2 is a non-primitively rooted quartic, then there exists a primitive array W such
that V = Wα,β and at least one of α, β is greater than one. We will call the quartic W 2α,2β

thin if α = 1 or β = 1 for this decomposition, and thick otherwise. We refer to points in A as
the (n + 1)2 positions where row and column delimiters intersect. Let us first bound the
number of distinct thin quartics. For β > 1, we consider any rightmost occurrence of every
such quartic, that is, any occurrence A[i1 . . i2, j1 . . j2] that maximizes j1.
I Lemma 15. The total number of distinct thin quartics in A is O(n2 log2 n).
Proof. We give a proof for quartics of the form W 2,2β for primitive W and β > 1; the proof
for quartics of the form W 2α,2 for α > 1 is symmetric. We consider each pair of positive
integers a, b and show that each point holds the top-left corner of at most two rightmost
occurrences of W 2,2β for primitive (a, b)-arrays W and β > 1.

Assume to the contrary that the rightmost occurrences ofW 2,2β , (W ′)2,2β′ and (W ′′)2,2β′′

share their top-left corner for primitive (a, b)-arrays W,W ′,W ′′. The arrays W,W ′,W ′′ are
pairwise different, since otherwise one of the occurrences would not be the rightmost. By
Lemma 13, we have width(W ) = width(W ′) = width(W ′′). Assume w.l.o.g. that height(W ) <
height(W ′) < height(W ′′).

Let (i, j) denote the top-left corner of the three quartics. Let us consider three length-2`
strings formed of metacharacters that correspond to row fragments:

(A[i, j . . j + w − 1]), . . . , (A[i+ 2`− 1, j . . j + w − 1])

for w = width(W ) and ` ∈ {height(W ), height(W ′), height(W ′′)}. All the three strings need
to be primitively rooted squares. We apply the Three Squares Lemma (Lemma 2) to conclude
that height(W ′′) > height(W ) + height(W ′) > 2a+1, a contradiction. J

Now let us proceed to thick quartics. Unfortunately, in this case a single point can be
the top-left corner of a linear number of rightmost occurrences of thick quartics; see the
example in Figure 3. Let us consider an occurrence of Wα,β for even α, β > 2 and primitive
W , called a positioned quartic. It implies α · β occurrences of W . Let us call all corners of
all these occurrences of W special points of this positioned quartic. Each special point stores
a direction in {top-left, top-right, bottom-left,bottom-right}. A special point has one of the
directions if it is the respective corner of an occurrence of W 3,3 in this positioned quartic.
Clearly, since α, β ≥ 4, for every special point in Wα,β except for the middle row if α = 4 or
middle column if β = 4, one can assign such a direction (if many directions are possible, we
choose an arbitrary one); see Figure 5.

The quartics with primitive root W are called W -quartics. The set of all special
points (with directions) of all positioned thick W -quartics for a given W is denoted by
SpecialPoints(W ). Among W -quartics of the same height we distinguish the ones with
maximal width, which we call h-maximal (horizontally maximal). Let us observe that each
W -quartic is contained in an occurrence of some h-maximal W -quartic.
I Theorem 16. The number of distinct quartics in an n× n array is O(n2 log2 n).

Proof. By Fact 3 and Lemma 15 it suffices to show that the total number of distinct thick
quartics in A is O(n2 log2 n). Let us fix non-negative integers a, b. It is enough to show that
the number of distinct subarrays of A of the form Wα,β for even α, β > 2 and any primitive
(a, b)-array W is O(n2).

The sets of special points have the following properties. Claim 17 follows from Corollary 14.

ESA 2020



32:10 The Number of Repetitions in 2D-Strings

W 6,6 W 4,4

Figure 5 Special points of a positioned quartic with primitive root W with associated directions
of four types. The arrow indicates the corner (four possibilities) of W 3,3 which is contained in the
quartic. If several assignments of directions are possible, only one of them is chosen (it does not
matter which one). In case of W 4,4 the middle row and column are not special.

B Claim 17. For primitive (a, b)-arraysW 6= W ′ , SpecialPoints(W )∩SpecialPoints(W ′) = ∅.

For an array W , let us denote by ThickQuartics(W ) the total number of thick quartics
in A with primitive root W .

B Claim 18. For a primitive (a, b)-array W , ThickQuartics(W ) < |SpecialPoints(W )|.

Proof. For each α = 4, 6, . . . in this order, we select one positioned h-maximal W -quartic Uα
of height α · height(W ). The number of distinct W -quartics in A of height α · height(W ) is
at most the number of special points in Uα in any of its rows. Note that this statement also
holds if Uα = Wα,4; then there are still four special points in each (non-middle if α = 4) row.

We describe a process of assigning distinct W -quartics to distinct special points in
SpecialPoints(W ). Assume all points in this set are initially not marked. We choose any
single row from Uα with all special points in this row still not marked. Then we mark all
these special points. We can always choose a suitable row because the heights are increasing.

This way each W -quartic is assigned to only one special point from SpecialPoints(W ).
C

By the claims, the total number of thick W -quartics for primitive (a, b)-arrays W is
bounded by:

∑

W

ThickQuartics(W ) <
∑

W

|SpecialPoints(W )| ≤ 4(n+ 1)2,

where the sum is over all primitive (a, b)-arrays W . The conclusion follows. J

5 Algorithms for Computing Quartics

In this section we show algorithmic applications of 2D-runs related to quartics.

I Theorem 19. All occurrences of primitively rooted quartics in an n× n array A can be
computed in the optimal O(n2 log2 n) time.

Proof. Let us consider a 2D-run R = A[i1 . . i2, j1 . . j2] with periods hper(R) = p and
vper(R) = q. It induces primitively rooted quartics of width 2p and height 2q. The set of
top-left corners of these quartics forms a rectangle R̂ = [i1, i2− 2p+ 1]× [j1, j2− 2q+ 1]. We
denote by Fp,q the family of such rectangles R̂ over 2D-runs R with the same periods p, q.

Such rectangles for different 2D-runs may overlap, even when the dimensions of the
quartic are fixed (see Observation 4). In order not to report the same occurrence multiple
times, we need to compute, for every dimensions of a quartic, all points in the union of



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:11

the corresponding rectangles. This could be done with an additional logn-factor in the
complexity using a standard line sweep algorithm [12]. However, we can achieve O(n2 log2 n)
total time using the fact that the total number of occurrences reported is O(n2 log2 n).

B Claim 20. Let F1, . . . ,Fk be families of 2D rectangles in [1, n]2 and let r =
∑k
i=1 |Fi|. We

can compute k (not necessarily disjoint) sets of grid points Outi =
⋃Fi in O(n+ r+ output)

total time, where output =
∑
i |Outi| is the total number of reported points.

Proof. We design an efficient line sweep algorithm. We will perform a separate line sweep,
left to right, for each family Fi.

The sweep goes over horizontal (x) coordinates in a left-to-right manner. The broom
stores vertical (y) coordinates of horizontal sides of rectangles that it currently intersects.
They are stored in a sorted list L of pairs (y, c), where y is the coordinate, and c is the count
of rectangles with bottom side at coordinate y minus the count of the rectangles with top
side at coordinate y. Only pairs with non-zero second component are stored. Clearly, the
second components of the list elements always sum up to 0.

A coordinate x is processed if L is non-empty before accessing it or there exist any vertical
sides of rectangles at x. All vertical sides with the same y-coordinate are processed in a
batch. For every such batch we want to guarantee that endpoints of all sides are stored in a
list B in a top-down order.

A top (bottom) endpoint at vertical coordinate y is stored as (y,+1) ((y,−1), respectively).
Let us now describe how to process a horizontal coordinate x. Let us merge the list L

that is currently in the broom with the list B of the batch by the first components. If there is
more than one pair with the same first component, we merge all of them together, summing
up the second components.

Let us denote by L′ the resulting list. We iterate over all elements of L′, keeping track of
the partial sum of second components, denoted as s. For every element (y, c) of L′, the point
(x, y) is reported for

⋃Fi. Moreover, if the partial sum s before considering c was positive
and the previous element of L′ is (y′, c′), all points (x, y′ + 1), . . . , (x, y − 1) are reported to
Outi.

Finally, all pairs with second component equal to zero are removed from L′ which becomes
the new list L.

Let us now analyze the complexity of the algorithm. The line sweep makes n steps. The
total size of lists B across all families Fi is O(r) and they can be constructed simultaneously
in O(n+ r) time via bucket sort.

Processing a batch with list B takes O(|L|+ |B|) time plus the time to report points in
Outi. As we have already noticed, the sum of O(|B|) components is O(r). For every element
(y, c) of the initial list L, a point with the vertical coordinate y is reported upon merging;
hence, the sum of O(|L|) components is dominated by O(output). Overall we achieve time
complexity O(n+ r + output). C

We apply the claim to the families Fp,q. Then r and output are upper bounded by
O(n2 log2 n) by Theorem 9 and Fact 3, respectively. The optimality of our algorithm’s
complexity is due to the Ω(n2 log2 n) lower bound on the maximum number of occurrences
of primitively rooted quartics from [7]. J

We proceed to an efficient algorithm for enumerating distinct, not necessarily primitively
rooted, quartics using 2D-runs. The solution for an analogous problem for 1-dimensional
strings (computing distinct squares from runs) uses Lyndon roots of runs [22]. However, in 2
dimensions it is not clear if a similar approach could be applied efficiently, say, with the aid

ESA 2020



32:12 The Number of Repetitions in 2D-Strings

of 2D Lyndon words [40] as Lyndon roots of 2D-runs. We develop a different approach in
which the workhorse is the following auxiliary problem related to the folklore nearest smaller
value problem.

Let us consider a grid of height m in which every cell can be black or white. We say
that the grid forms a staircase if the set of white cells in each row is nonempty and is
a prefix of this row (see Figure 6). A staircase can be uniquely determined by an array
Whites[1 . .m] such that Whites[i] is the number of white cells in the ith row. We consider
shapes of white rectangles. Each shape is a pair (p, q) that represents the dimensions
of the rectangle. These shapes (and corresponding rectangles) are partially ordered by:
(p, q) < (p′, q′) ⇔ (p, q) 6= (p′, q′) ∧ p ≤ p′ ∧ q ≤ q′.

Max White Rectangles
Input: An array Whites[1 . .m] that represents a staircase.
Output: Shapes of all maximal white rectangles in this staircase.

I Lemma 21. Max White Rectangles problem can be solved in O(m) time.

Proof. Assume that Whites[0] = Whites[m+ 1] = −1. Let us define two tables of size m:

NSVUp[i] = max{j : j < i, Whites[j] < Whites[i]},
NSVDown[i] = min{j : j > i, Whites[j] < Whites[i]}.

They can be computed in O(m) time by a folklore algorithm for the nearest smaller
value table; see e.g. [13]. Then the problem can be solved as in Algorithm 1 presented below.
After the first for-loop, for each maximal white rectangle R we have MaxWidth[height(R)] =
width(R), but we could have redundant values for non-maximal rectangles. In order to filter
out non-maximal rectangles, we process the candidates by decreasing height and remove the
ones that are dominated by the previous maximal rectangle in the partial order of shapes. J

Algorithm 1 The first phase computes a set of shapes of type (h,MaxWidth[h]), at most
one for each height h; see also Figure 6. In the second phase only inclusion-maximal shapes
from this set are reported.

ComputeCandidates:
MaxWidth[1 . .m] := (0, . . . , 0)
for i := 1 to m do

h := NSVDown[i]−NSVUp[i]− 1
MaxWidth[h] := max(MaxWidth[h],Whites[i])

ReportMaximal:
mw := 0
for h := m down to 1 do

if MaxWidth[h] > mw then
Report the shape (h,MaxWidth[h])
mw := MaxWidth[h]

I Remark 22. Note that the total area (and width) of a staircase can be large but the
complexity of our algorithm is linear with respect to the number of rows, thanks to the small
representation (array Whites).



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:13

i

NSVUp[i]

NSVDown[i]

Figure 6 A maximal white rectangle containing row i is computed using the NSV tables for i.

Now our approach is graph-theoretic. The graph nodes correspond to occurrences of
primitively rooted quartics. For a fixed primitively rooted quartic W 2,2 we consider the
graph GW = (V,E), where V is the set of top-left corners of occurrences of W 2,2. Let
r = height(W ) and c = width(W ). The edges in G connect vertex (i, j) with vertices (i± r, j)
and (i, j ± c), if they exist. See also Figure 7. This graph can be efficiently computed since
we know its nodes due to Theorem 19.

b

c

a

c

a

b

a

b

c

W

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

A
GW

Figure 7 Graph GW has 12 vertices that form two components with 3 vertices each (green and
brown) and one component with 6 vertices (blue). Note the non-trivial occurrences of W in W 3,4.

I Lemma 23. All graphs GW , and their connected components, for all W which are primitive
roots of quartics in A can be constructed in O(n2 log2 n) time.

Proof. We first compute all occurrences of primitively rooted quartics in A using Theorem 19.
By Fact 3, there are O(n2 log2 n) of them in total.

We can assign 2D-DBF identifiers (quadruples) to each of the occurrences and group the
occurrences by distinct primitively rooted quartics via radix sort in O(n2 log2 n) time. This
gives us the vertices of GW .

To compute the edges, we use an auxiliary n× n Boolean array D that will store top-left
corners of occurrences of each subsequent primitively rooted quartic W 2,2.

Initially D is set to zeroes and after each W , all cells with ones are zeroed in O(|GW |)
time. Using this array and the positions of occurrences of W 2,2, the edges of GW can be
computed in O(|GW |) time. It also allows to divide GW into connected components via
graph search in O(|GW |) time. J

I Theorem 24. All distinct quartics in an n× n array A can be computed in O(n2 log2 n)
time.

ESA 2020



32:14 The Number of Repetitions in 2D-Strings

Proof. We first apply Lemma 23. Now consider a fixed primitive W of height c and width r.
Let us note that if (i, j), (i′, j′) belong to the same connected component H of GW , then
i ≡ i′ (mod r) and j ≡ j′ (mod c). We say that a connected component H of GW generates
an occurrence of a power Wα,β if the αβ occurrences of W that are implied by it belong to
H. If Wα,β has an occurrence in A, then it is generated by some connected component H of
GW , unless min(α, β) = 1.

We say that Wα,β is a maximal power if there is no other power Wα′,β′ in A such that
α′ ≥ α, β′ ≥ β, and (α′, β′) 6= (α, β). Similarly, we consider powers that are maximal among
ones that are generated by a connected component H. Let MaxPowersW (H) be the set of
maximal powers generated by a connected component H. It can be computed in linear time
using Lemma 21 as shown in Algorithm 2, which we now explain.

For each vertex (i, j) in H, we insert four points to a set S, which correspond to the
four occurrences of W underlying the occurrence of quartic W 2,2 at position (i, j). If S is
treated as a set of white cells in a grid, then Wα,β for α > 1 is a power generated by H
if and only if the grid contains a white rectangle of shape (α, β). For a cell (i, j) ∈ S, we
denote R[i, j] = min{p ≥ 0 : (i, j + p) 6∈ S}. Assuming that the cells of S are sorted by
non-increasing second component, each value R[i, j] can be computed from R[i, j + 1] in
constant time, for a total of O(|S|) time. The sorting for all S can be done globally, using
radix sort. Also, the array R can be stored globally and used for all S, cleared after each use.
Finally, we process each maximal set of consecutive cells (i, j), . . . , (i+m− 1, j) ∈ S that
are located in the same column and apply Lemma 21 to solve the resulting instance of the
Max White Rectangles problem. The total time required by this step is O(|S|).

Algorithm 2 Computing MaxPowersW (H) for a component H of GW .

S := ∅
foreach (i, j) in V (H) do

a := bi/rc; b = bj/cc
S := S ∪ {(a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1)}

R[0 . . n, 0 . . n] := (0, . . . , 0)
foreach (i, j) in S in non-increasing order of j do

R[i, j] := R[i, j + 1] + 1
Result := ∅
foreach maximal set {(i, j), (i+ 1, j) . . . , (i+m− 1, j)} ⊆ S do

Whites[1 . .m] := R[i . . i+m− 1, j]
Result := Result ∪MaxWhiteRectangles(Whites)

remove redundant rectangles from Result
return Result

In the end we filter out the powers Wα,β that are not maximal in A similarly as
in the proof of Lemma 21, using a global array MaxWidth. Let Wα1,β1 , . . . ,Wαk,βk be
the resulting sequence of maximal powers, sorted by increasing first component, and let
α0 = β0 = 0. Then the set of all quartics in A with primitive root W contains all W 2α,2β

over αp−1 < 2α ≤ αp, 1 ≤ 2β ≤ βp, for p ∈ [2, k]. They can be reported in O(n2 log2 n) total
time over all W due to the upper bound of Theorem 16. J



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:15

6 Final Remarks

We showed that the numbers of distinct runs and quartics in an n× n array are O(n2 log2 n).
This improves upon previously known estimations. We also proposed O(n2 log2 n)-time
algorithms for computing all occurrences of primitively rooted quartics and all distinct
quartics. A straightforward adaptation shows that for an m × n array these bounds and
complexities all become O(mn logm logn).

We pose two conjectures for n× n 2D-strings:
The number of 2D-runs is O(n2).
The number of distinct quartics is O(n2).

References
1 Amihood Amir, Gary Benson, and Martin Farach. An alphabet independent approach

to two-dimensional pattern matching. SIAM Journal on Computing, 23(2):313–323, 1994.
doi:10.1137/S0097539792226321.

2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
detection in a dynamic string. In 27th Annual European Symposium on Algorithms, ESA 2019,
volume 144 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ESA.2019.5.

3 Amihood Amir, Ayelet Butman, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Double
string tandem repeats. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM
2020, volume 161 of LIPIcs, pages 3:1–3:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CPM.2020.3.

4 Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. In Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, pages 212–223. ACM/SIAM, 1991. URL: http://dl.acm.org/citation.
cfm?id=127787.127829.

5 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional
maximal repetitions. In 26th Annual European Symposium on Algorithms, ESA 2018, volume
112 of LIPIcs, pages 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.2.

6 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional maximal
repetitions. Theoretical Computer Science, 812:49–61, 2020. doi:10.1016/j.tcs.2019.07.
006.

7 Alberto Apostolico and Valentin E. Brimkov. Fibonacci arrays and their two-dimensional repe-
titions. Theoretical Computer Science, 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)
00182-0.

8 Alberto Apostolico and Valentin E. Brimkov. Optimal discovery of repetitions in 2D. Discrete
Applied Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.

9 Theodore P. Baker. A technique for extending rapid exact-match string matching to arrays of
more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978. doi:10.1137/
0207043.

10 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

11 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in linear
time for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern Matching,
CPM 2017, volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.22.

12 Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Unpublished notes, Computer
Science Department, Carnegie Mellon University, 1977.

ESA 2020



32:16 The Number of Repetitions in 2D-Strings

13 Omer Berkman, Baruch Schieber, and Uzi Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. Journal of Algorithms, 14(3):344–370,
1993. doi:10.1006/jagm.1993.1018.

14 Richard S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168–
170, 1977. doi:10.1016/0020-0190(77)90017-5.

15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.8.

16 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń. Internal dictionary matching. In 30th International
Symposium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.22.

17 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-
tion Processing Letters, 12(5):244–250, 1981. doi:10.1016/0020-0190(81)90024-7.

18 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

19 Maxime Crochemore and Lucian Ilie. Analysis of maximal repetitions in strings. In Math-
ematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS
2007, volume 4708 of Lecture Notes in Computer Science, pages 465–476. Springer, 2007.
doi:10.1007/978-3-540-74456-6_42.

20 Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and System Sciences, 74(5):796–807, 2008. doi:10.1016/j.jcss.2007.09.003.

21 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theoretical Computer
Science, 412(27):2931–2941, 2011. doi:10.1016/j.tcs.2010.06.019.

22 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

23 Maxime Crochemore and Robert Mercaş. On the density of Lyndon roots in factors. Theoretical
Computer Science, 656:234–240, 2016. doi:10.1016/j.tcs.2016.02.015.

24 Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

25 Maxime Crochemore and Wojciech Rytter. Jewels of stringology. World Scientific, 2002.
doi:10.1142/4838.

26 Antoine Deza, Frantisek Franek, and Adrien Thierry. How many double squares can a string
contain? Discrete Applied Mathematics, 180:52–69, 2015. doi:10.1016/j.dam.2014.08.016.

27 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

28 Johannes Fischer, Stepan Holub, Tomohiro I, and Moshe Lewenstein. Beyond the runs
theorem. In String Processing and Information Retrieval - 22nd International Symposium,
SPIRE 2015, volume 9309 of Lecture Notes in Computer Science, pages 277–286. Springer,
2015. doi:10.1007/978-3-319-23826-5_27.

29 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

30 Frantisek Franek and Qian Yang. An asymptotic lower bound for the maximal number of runs
in a string. International Journal of Foundations of Computer Science, 19(1):195–203, 2008.
doi:10.1142/S0129054108005620.

31 Mathieu Giraud. Not so many runs in strings. In Language and Automata Theory and
Applications, Second International Conference, LATA 2008, volume 5196 of Lecture Notes in
Computer Science, pages 232–239. Springer, 2008. doi:10.1007/978-3-540-88282-4_22.



P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:17

32 Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer Science,
501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

33 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. Journal of Computer and System Sciences, 69(4):525–546, 2004.
doi:10.1016/j.jcss.2004.03.004.

34 Lucian Ilie. A note on the number of squares in a word. Theoretical Computer Science,
380(3):373–376, 2007. doi:10.1016/j.tcs.2007.03.025.

35 Costas S. Iliopoulos, Dennis W. G. Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1-2):281–291, 1997.
doi:10.1016/S0304-3975(96)00141-7.

36 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, pages 756–767. ACM, 2019.
doi:10.1145/3313276.3316368.

37 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

38 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

39 M. Lothaire. Combinatorics on words, Second Edition. Cambridge mathematical library.
Cambridge University Press, 1997.

40 Shoshana Marcus and Dina Sokol. 2D Lyndon words and applications. Algorithmica, 77(1):116–
133, 2017. doi:10.1007/s00453-015-0065-z.

41 Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi Shinohara.
New lower bounds for the maximum number of runs in a string. In Proceedings of the Prague
Stringology Conference 2008, pages 140–145, 2008. URL: http://www.stringology.org/
event/2008/p13.html.

42 Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string contain?
Theoretical Computer Science, 401(1-3):165–171, 2008. doi:10.1016/j.tcs.2008.04.020.

43 Wojciech Rytter. The number of runs in a string: Improved analysis of the linear upper
bound. In 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS
2006, volume 3884 of Lecture Notes in Computer Science, pages 184–195. Springer, 2006.
doi:10.1007/11672142_14.

44 Wojciech Rytter. The number of runs in a string. Information and Computation, 205(9):1459–
1469, 2007. doi:10.1016/j.ic.2007.01.007.

45 Jamie Simpson. Modified Padovan words and the maximum number of runs in a word. The
Australasian Journal of Combinatorics, 46:129–146, 2010. URL: http://ajc.maths.uq.edu.
au/pdf/46/ajc_v46_p129.pdf.

46 Jens Stoye and Dan Gusfield. Simple and flexible detection of contiguous repeats using a suffix
tree. Theoretical Computer Science, 270(1-2):843–856, 2002. doi:10.1016/S0304-3975(01)
00121-9.

47 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

A Alternative Algorithm for the Proof of Lemma 21

An alternative, space efficient and more direct algorithm that does not use additional tables
NSVDown and NSVUp, is shown below. The algorithm computes only the table MaxWidth.
Then, we can use the second phase from Algorithm 1. We assume that the table MaxWidth
is initially filled with zeros.

ESA 2020



32:18 The Number of Repetitions in 2D-Strings

Algorithm 3 Alternative implementation of the first phase in Algorithm 1.

Whites[0] := Whites[m+ 1] := 0
S := empty stack; push(S, 0)
for i := m down to 0 do

while Whites[i] < Whites[top(S)] do
k := top(S); h := top(S)− i− 1
MaxWidth[h] := max(MaxWidth[h],Whites[k])
pop(S)

if Whites[top(S)] = Whites[i] then pop(S)
push(S, i)

The algorithm is a version of a folklore algorithm for the Nearest Smaller Values problem
and correctness can be shown using the same arguments. If Whites[i] < Whites[i+ 1], then
the algorithm produces shapes of all Max White Rectangles anchored at i + 1, otherwise
i+ 1 is “nonproductive”. Observe that i+ 1 = top(S) when we start processing i ≥ 1.

Let us analyze the time complexity of the algorithm. In total m+ 2 elements are pushed
to the stack. Each iteration of the while-loop pops an element, so the total number of
iterations of this loop is O(m). Consequently, the algorithm works in O(m) time. In the end
one needs to filter out non-maximal rectangles as in the previous proof of Lemma 21.



Chapter 6

Efficient Enumeration of
Distinct Factors Using
Package Representations

93



Efficient Enumeration of Distinct Factors Using
Package Representations

Panagiotis Charalampopoulos1,2,?[0000−0002−6024−1557], Tomasz
Kociumaka3,??[0000−0002−2477−1702], Jakub

Radoszewski2,? ? ?[0000−0002−0067−6401], Wojciech Rytter2[0000−0002−9162−6724],
Tomasz Waleń2,???[0000−0002−7369−3309], and Wiktor

Zuba2,???[0000−0002−1988−3507]

1 Department of Informatics, King’s College London, UK,
panagiotis.charalampopoulos@kcl.ac.uk

2 Institute of Informatics, University of Warsaw, Poland
{jrad,rytter,walen,w.zuba}@mimuw.edu.pl

3 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Abstract. We investigate properties and applications of a new compact
representation of string factors: families of packages. In a string T , each
package (i, `, k) represents the factors of T of length ` that start in the
interval [i, i + k]. A family F of packages represents the set Factors(F)
defined as the union of the sets of factors represented by individual
packages in F . We show how to efficiently enumerate Factors(F) and
showcase that this is a generic tool for enumerating important classes of
factors of T , such as powers and antipowers. Our approach is conceptually
simpler than problem-specific methods and provides a unifying framework
for such problems, which we hope can be further exploited.
We also consider a special case of the problem in which every occurrence
of every factor represented by F is captured by some package in F . For
both applications mentioned above, we construct an efficient package
representation that satisfies this property.
We develop efficient algorithms that, given a family F of m packages
in a string of length n, report all distinct factors represented by these
packages in O(n log2 n+m logn+ |Factors(F)|) time for the general case
and in the optimal O(n + m + |Factors(F)|) time for the special case.
We can also compute |Factors(F)| in O(n log2 n + m logn) time in the
general case and in O(n+m) time in the special case.
In particular, we improve over the state-of-the-art O(nk4 log k logn)-time
algorithm for computing the number of distinct k-antipower factors, by
providing an algorithm that runs in O(nk2) time, and we obtain an
alternative linear-time algorithm to enumerate distinct squares.

? Partially supported by ERC grant TOTAL under the EU’s Horizon 2020 Research
and Innovation Programme (agreement no. 677651).

?? Supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant no. 2018364,
and by an ERC grant MPM under the EU’s Horizon 2020 Research and Innovation
Programme (grant no. 683064).

? ? ? Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.



Keywords: square in a string · antipower · longest previous factor array
· string synchronising set

1 Introduction

There are many interesting subsets of factors of a given string T of length n
which can be described very concisely (sometimes in O(n) space, even for subsets
of quadratic size). In this paper, we consider compact descriptions, called package
representations, defined in terms of weighted intervals: each interval [i, i+k] gives
starting positions of factors and the weight ` gives the common length of these
factors. Formally, F is a set of triples (i, `, k).

By Factors(F) we denote the set of factors in a given text T of length n that
are represented by packages from F . More formally,

Factors(F) = {T [j . . j + `) : j ∈ [i, i+ k] and (i, `, k) ∈ F}.

A package representation F is called special if it represents all occurrences of
Factors(F). Formally, F is special if for every factor F ∈ Factors(F) and for every
occurrence T [j . . j + `) = F , there is a triple (i, `, k) ∈ F such that j ∈ [i, i+ k].
Special representations describe all occurrences of factors with a given property.

We consider the following subsets of factors.

Powers. A square is a string of the form X2. In general, for an integer k > 1, a
k-power is a string of the form Xk. This notion can be generalized to rational
exponents γ > 1, setting Xγ = XkX[1 . . r] for γ = k + r/|X|, where k and
r < |X| are non-negative integers.

Antipowers. A k-antipower (for an integer k ≥ 2) is a concatenation of k
pairwise distinct strings of the same length. Antipowers were introduced
in [15] and have already attracted considerable attention [1,2,4,14,25].

Example 1. Consider a string T = abababababa. The squares in T can be
represented by a set of packages F = {(1, 4, 7), (1, 8, 3)}. The package (1, 4, 7)
represents all the squares of length 4 and the package (1, 8, 3)—those of length 8.

Our problem can be related to computing the subword complexity of the
string T ; see, e.g., [31]. Let us recall that the subword complexity is a function
which gives, for every ` ∈ [1, n], the number of different factors of T of length `.
The subword complexity of a given string can be computed using the suffix tree
in linear time. Our algorithm can be easily augmented to determine, for each
length `, the number of length-` factors in Factors(F).

Our results. We compute |Factors(F)| in O(n log2 n + m log n) time in the
general case and in O(n + m) time in the special case, both for any length-n
string T over an integer alphabet. The solution to the general case uses string
synchronising sets and runs, whereas the solution to the special case is based on the
longest previous factor array. Our algorithms for special package representations



yield new simple algorithms for reporting and counting powers and antipowers.
In particular, we present the first linear-time algorithms to count and enumerate
distinct γ-powers for a given rational constant γ > 1; Crochemore et al. [11]
showed how to do this for integer γ only. For k-antipowers, we improve the
previously known best time complexity.

2 Algorithms for Special Package Representations

Let T = T [1] · · ·T [n]. The longest previous factor array LPF [1 . . n] is defined as

LPF [i] = max{` ≥ 0 : T [i . . i+ `) = T [j . . j + `) for some j ∈ [1, i− 1]}.

This array can be computed in O(n) time [9,10]. Let

U` = { j ∈ [1, n] : LPF [j] ≥ ` }
Pairs(F) =

⋃

(i,`,k)∈F
{(j, `) : j ∈ [i, i+ k] \ U`}.

The algorithms are based on the following crucial observation that links the
solution to the special case with the LPF table.

Observation 2. If F is a special package representation, then Factors(F) =
{T [j . . j + `) : (j, `) ∈ Pairs(F) } and |Factors(F)| = |Pairs(F)|.

2.1 Reporting Distinct Factors

Due to Observation 2, reporting all distinct factors reduces to computing the
set Pairs(F). We can assume that packages representing factors of the same
length are disjoint; this can be achieved by merging overlapping packages in a
preprocessing step that can be executed in O(n) time using radix sort.

The definition of Pairs(F) yields the following (inefficient) algorithm. It
constructs the sets U` for all ` = n, . . . , 1 and, for each of them, generates all
elements of the set Pairs(F) with the second component equal to `.

Algorithm 1: High-level structure of the algorithm.

U := ∅; P := ∅
for ` := n down to 1 do

U := U ∪ {j : LPF [j] = `} // U = U`
foreach (i, `, k) ∈ F do

foreach j ∈ [i, i+ k] \ U do
P := P ∪ {(j, `)} // Ultimately, P = Pairs(F)

Next, we describe an efficient implementation of Algorithm 1 based on the
union-find data structure. In our algorithm, the elements of the data structure
are [1, n+ 1] and the sets stored in the data structure always form intervals. The



operation Find(i) returns the rightmost element of the interval containing i, and
the operation Union(i) joins the intervals containing elements i and i− 1.

Algorithm 2: Implementation of Algorithm 1.

P := ∅
for i := 0 to n+ 1 do Create set {i}
for ` := n down to 1 do

foreach j such that LPF [j] = ` do Union(j)
foreach (i, `, k) ∈ F do

j := Find(i− 1) + 1
while j ≤ i+ k do
P := P ∪ {(j, `)}
j := Find(j) + 1

Theorem 3. In the case of special package representations, all elements of
Factors(F) can be reported (without duplicates) in O(n+m+ |Factors(F)|) time.

Proof. We use Algorithm 2. The set U` is stored in the union-find data structure
so that for each interval [i, j] in the data structure, i /∈ U` and [i+ 1, j] ⊆ U`.

The elements of F are sorted by the second component using radix sort. The
union-find data structure admits at most n union operations and m+ |Factors(F)|
find operations. We use a data structure for a special case of the union-find
problem, where the sets of the partition have to form integer intervals at all
times, so that each operation takes O(1) amortized time [18]. ut

2.2 Counting Distinct Factors

Let us start with a warm-up algorithm. Recall that, in a preprocessing, we made
sure that packages representing factors of the same length are disjoint.

By Observation 2, for each (i, `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i+ k] that are smaller than `. This can be done using range
queries in time O((n+m)

√
log n).

Let us proceed to a linear-time algorithm. We start with a simple fact.

Fact 4. For every length-n text T , we have
∑n−1
i=1 |LPF [i+1]−LPF [i]| = O(n).

Proof. The claim follows from the fact that LPF [i + 1] ≥ LPF [i] − 1 for i ∈
[1, n−1]. To prove this inequality, let ` = LPF [i]. We have T [i . . i+`) = T [j . . j+`)
for some j < i. Hence, T [i+1 . . i+`) = T [j+1 . . j+`), so LPF [i+1] ≥ `−1. ut

We reduce the counting problem to answering off-line a linear number of
certain queries. The off-line structure of the computation is crucial for efficiency.

Theorem 5. In the case of special package representations, |Factors(F)| can be
computed in O(n+m) time.



Proof. Consider the following queries:

Q(i, `) = | [1, i] \ U` | = |{j ∈ [1, i] : LPF [j] < `}|.

Then, the counting version of our problem reduces to efficiently answering such
queries. Indeed, by Observation 2, we have

|Factors(F)| =
∑

(i,`,k)∈F
Q(i+ k, `)−Q(i− 1, `).

Thus, we have to answer O(m) queries of the form Q(i, `). An off-line algorithm
answering q queries in O(n+ q) time would be sufficient for our purposes.

We maintain an array A[1 . . n] such that during the ith phase of the algorithm:

A[`] =

{
i−Q(i, `) if ` > LPF [i],

Q(i, `) otherwise.

Since LPF [1] = 0, the array needs to be filled with 1’s for the first phase. Next,
we observe that i+1−Q(i+1, `) = i−Q(i, `) if ` > max(LPF [i+1],LPF [i]) and
Q(i+ 1, `) = Q(i, `) if ` ≤ min(LPF [i+ 1],LPF [i]). Hence, in the transition from
the ith phase to the (i+1)th phase, we only need to updateO(|LPF [i+1]−LPF [i]|)
entries of A. By Fact 4, the cost of maintaining the array A for i = 1 to n is O(n)
in total. Each query Q(i, `) can be answered in O(1) time during the ith phase.

Consequently, we can answer off-line q queries Q(i, `) in O(n + q) time,
assuming that the queries are sorted by the first component. Sorting can be
performed in O(n+ q) time using radix sort. ut

3 Applications

In this section, we show three applications of special package representations.

3.1 Squares

It is known that a string of length n contains at most 11
6 n distinct squares [12,17],

and the same bound hold for γ-powers with γ ≥ 2. Moreover, all the distinct
square factors in a string over an integer alphabet can be reported in O(n)
time [6,11,20]. The algorithm from [11] can report distinct string powers of a
given integer exponent using a run-based approach via Lyndon roots. Hence, it
can report distinct squares and cubes in particular. We show that our generic
approach—which is also much simpler—applies to this problem.

A generalised run in a string T is a triple (i, j, p) such that:

– T [i . . j] has a period p (not necessarily the shortest) with 2p ≤ j − i+ 1,
– T [i− 1] 6= T [i− 1 + p] if i > 1, and T [j + 1] 6= T [j + 1− p] if j < n.

A run is a generalised run for which p is the shortest period of T [i . . j]. The
number of runs and generalised runs is O(n) and they can all be computed in
O(n) time; see [5,30].



Proposition 6. All distinct squares in a string of length n can be computed in
O(n) time.

Proof. A generalised run (i, j, p) induces squares T [k . . k + 2p) for all k ∈ [i,
j − 2p + 1]. Moreover, each occurrence of a square is induced by exactly one
generalised run. For every generalised run (i, j, p), we add package (i, 2p, j− 2p−
i+ 1) to F ; see Fig. 1. Then, we solve the factors problem using Theorem 3. ut

b

1

a

2

b

3

a

4

b

5

a

6

b

7

a

8

b

9

a

10

a

11

a

12

b

13

a

14

a

15

a

16

b

17

a

18

b

1

a

2

b

3

a

4

b

5

a

6

b

7

a

8

b

9

a

10

b

1

a

2

b

3

a

4

b

5

a

6

b

7

a

8

b

9

a

10

a

10

a

11

a

12

a

14

a

15

a

16

a

8

b

9

a

10

a

11

a

12

b

13

a

14

a

15

a

16

b

17

a

18

Fig. 1. Four runs (presented at the top) generate a package representation (below)
of all squares as a set of five packages: {(1, 8, 2), (1, 4, 6), (10, 2, 1), (14, 2, 1), (8, 8, 3)}.
One of the runs induces two generalised runs: with periods 2 and 4.

3.2 Powers with Rational Exponents

Proposition 6 can be easily generalised to powers of arbitrary exponent γ ≥ 2. For
exponents γ < 2, however, we need α-gapped repeats apart from the generalised
runs. An α-gapped repeat (for α ≥ 1) in a string T is a quadruple (i1, j1, i2, j2)
such that i1 ≤ j1 < i2 ≤ j2, and the factors T [i1 . . j1] = T [i2 . . j2] = U and
T [j1 + 1 . . i2 − 1] = V satisfy |UV | ≤ α|U |. The two occurrences of U are called
the arms of the α-gapped repeat and |UV | is called the period of the α-gapped
repeat. In other words, a gapped repeat is a string S = T [i1 . . j2] associated with
one of its periods larger than 1

2 |S|. Consequently, the same factor T [i1 . . j2] can
induce many α-gapped repeats.

An α-gapped repeat is called maximal if its arms cannot be extended simul-
taneously with the same character to either direction. The number of maximal
α-gapped repeats in a string of length n is O(nα) and they can all be computed
in O(nα) time assuming an integer alphabet [19].

Theorem 7. For a given rational number γ > 1, all distinct γ-powers in a length-
n string can be counted in O( γ

γ−1n) time and enumerated in O( γ
γ−1n+ output)

time.



Proof. Each γ-power Xγ with γ < 2 is a 1
γ−1 -gapped repeat with period |X|,

and therefore it is contained in a maximal 1
γ−1 -gapped repeat or in a generalised

run with the same period; see [29]. Moreover, each γ-power Xγ with γ ≥ 2 is
contained in a generalised run with period |X|.

In other words, to generate all γ-powers, for each generalised run and 1
γ−1 -

gapped repeat (if γ < 2) with period p, we need to consider all factors contained
in it of length γp, provided that γp is an integer; see Fig. 2.

a

1

a

2

b

3

b

4

a

5

b

6

a

7

a

8

b

9

b

10

a

11

b

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

a

21

a

22

a

23

run
maximal 2-gapped repeat

arm arm

a

1

a

2

b

3

b

4

a

5

b

6

a

7

a

8

b

9

b

10

a

11

b

12

a

13

b

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

a

21

a

22

Fig. 2. A string with a (generalised) run with period 6 and a maximal 6
5
-gapped repeat

(hence, also a maximal 1.5-gapped repeat) with period 6. The run and the gapped
repeat generate 1.5-powers of length 9. Equal 1.5-powers are drawn with the same color;
in total, the string contains 6 distinct 1.5-powers of length 9.

We proceed as follows. For each generalised run (i, j, p), if γp is an integer
and j − i+ 1 ≥ γp, then we insert (i, γp, j − i+ 1− γp) to F . Moreover, if γ < 2,
then for each maximal 1

γ−1 -gapped repeat (i1, j1, i2, j2) with period p = i2 − i1,

if γp is an integer, then we insert (i1, γp, j2 − i1 + 1− γp) to F . By the above
discussion, the constructed family F is a special package representation of all
γ-powers. The claim follows by Theorems 3 and 5. ut
Remark 8. For every fixed rational number γ < 2, strings of length n may contain
Ω(n2) distinct γ-powers. Specifically, if γ = 2− x

y , where x and y are coprime

positive integers, then the number of γ-powers in ambam is Θ(m
2x
y2 ) [28].

3.3 Antipowers

In [25], it was shown how to report all occurrences of k-antipowers in O(nk log k+
output) time and count them in O(nk log k) time. In [26], it was shown that the
number of distinct k-antipower factors in a string of length n can be computed
in O(nk4 log k log n) time. Below, we show how to improve the latter result.

Theorem 9. All distinct k-antipower factors of a string of length n can be
reported in O(nk2 + output) time and counted in O(nk2) time.



A6

b b a b b a b b a a b a b

b b a b b a

b a b b a b

a b b a b b

b b a b b a

b a b b a a

a b b a a b

b b a a b a

b a a b a b

Fig. 3. Here, we consider 3-antipowers of length ` = 6. The set of their starting positions
is A6 = [1, 5] ∪ [7, 7]. Note that the first and the fourth antipower are the same, so we
have only 5 distinct 3-antipowers of length 6. Interestingly A` = ∅ for ` 6= 6. Hence, the
total number of distinct 3-antipowers equals 5.

Proof. The interval representation of a set A ⊆ [1, n] is a collection of all maximal
intervals in A. Let A` be the interval representation of the set of k-antipower
factors of T of length ` (it can be non-empty only if k divides `); see Fig. 3.
In [25, Lemma 13], it was shown that the total size of the interval representations
of sets A1, . . . , An is O(nk2). Moreover, they can be computed in O(nk2) time.

For each ` and each interval [i, j] ∈ A`, we insert (i, `, j − i) to F . The
conclusion follows by Theorems 3 and 5. ut

4 Enumerating General Package Representations

For most of this section, we will focus on computing |Factors(F)|. In the end, we
will briefly explain how our solution can be adapted to enumerate Factors(F).

We consider highly periodic and non-highly-periodic factors separately (a
precise definition follows). In both cases, we will employ the solution of Kociumaka
et al. [26] for the so-called Path Pairs Problem, which we define below.

We say that T is a compact tree if it is a rooted tree with positive integer
weights on edges. If an edge weight is e > 1, this edge contains e − 1 implicit
nodes. A path in a compact tree is an upwards or downwards path that connects
two explicit nodes.

Path Pairs Problem

Input: Two compact trees T and T ′ containing up to N explicit nodes each,
and a set Π of M pairs (π, π′) of equal-length paths, where π is a path going
downwards in T and π′ is a path going upwards in T ′.
Output: |⋃(π,π′)∈Π Induced(π, π′)|, where by Induced(π, π′) we denote the

set of pairs of (explicit or implicit) nodes (u, u′) such that, for some i, the
ith node on π is u and the ith node on π′ is u′.

Lemma 10 ([26]). The Path Pairs Problem can be solved in time O(N +
M logN) assuming that the weighted heights of the input trees do not exceed N .



4.1 Non-Highly-Periodic Factors

Our solution uses the string synchronising sets recently introduced by Kempa
and Kociumaka [22].

Informally, in the simpler case that T is cube-free, a τ -synchronising set of T
consists in a small set of positions of T , called here synchronisers, such that each
length-τ fragment of T contains at least one synchroniser, and the synchronisers
within two long enough matching fragments of T are consistent.

Formally, for a string T and a positive integer τ ≤ 1
2n, a set S ⊆ [1, n−2τ +1]

is a τ -synchronising set of T if it satisfies the following two conditions:

1. If T [i . . i+ 2τ) = T [j . . j + 2τ), then i ∈ S if and only if j ∈ S.

2. For i ∈ [1, n−3τ+2], S∩[i . . i+τ) = ∅ if and only if per(T [i . . i+3τ−2]) ≤ 1
3τ .

Theorem 11 ([22]). Given a string T of length n over an integer alphabet and
a positive integer τ ≤ 1

2n, one can construct in O(n) time a τ -synchronising set
of T of size O(nτ ).

As in [22], for a τ -synchronising set S, let succS(i) := min{j ∈ S∪{n−2τ+2} :
j ≥ i} and predS(i) := max{j ∈ S ∪ {0} : j ≤ i}.

Lemma 12 ([22]). If a factor U of T with |U | ≥ 3τ − 1 and per(U) > 1
3τ

occurs at positions i and j in T , then succS(i)− i = succS(j)− j ≤ |U | − 2τ .

By UR we denote the reversal of a string U . We show the following result.

Lemma 13 (Aperiodic Lemma). Assume that we are given a text T of length
n, a positive integer x ≤ 1

3n, and a family F of m packages that represent factors
of lengths in [3x, 9x) and shortest periods greater than 1

3x. Then, |Factors(F)|
can be computed in O((n+m) log n) time.

Proof. We compute an x-synchronising set S of T in O(n) time using Theorem 11
and build the suffix trees T and T ′ of T and TR, respectively, in O(n) time [13].

Let us now focus on all packages representing factors of a fixed length `. By
relying on Lemma 12, we will intuitively assign each factor to its first synchroniser.

Let us denote A` =
⋃{[i, i + k] : (i, `, k) ∈ F}. For each j ∈ A`, let

s = succS(j) and consider Pj = T [j . . s] and Qj = [s+ 1 . . j + `); see Fig. 4.

T
∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Fig. 4. The elements of an x-synchronising set S of string T are denoted by asterisks.
The position j is an element of [i, i + k] for some package (i, `, k). The red asterisk
denotes the synchroniser s = succS(j).



Note that, by Lemma 12, s−j ≤ x and, as j ≤ n−`+1, we have s ≤ n−2x+1.
Thus, s ∈ S. Hence, Lemma 12 implies that, for any j, j′ ∈ A` such that
T [j . . j + `) = T [j′ . . j′ + `), we have Pj = Pj′ and Qj = Qj′ . Consequently, our
problem reduces to computing the size of the set P` = {(Pj , Qj) : j ∈ A`}. In
turn, in our instance of the Path Pairs Problem, we want to count the pairs of
nodes u ∈ T ′, v ∈ T such that (L(u)R,L(v)) ∈ P`, where L(u) is the label of the
path from the root to the node u. It remains to show how to compute path pairs
that induce exactly these pairs of nodes. To this end, we design a line-sweeping
algorithm.

We initialize an empty set Π that will eventually store the desired pairs of
paths. We will scan the text T in a left-to-right manner with two fingers: fp
for packages and fs for synchronisers, both initially set to 0. We maintain an
invariant that fp ≤ fs. Whenever fp−1 = fs ≤ n−2x, we set fs = succS(fs+ 1).

The finger fp is repeatedly incremented until it reaches fs. For each maximal
interval [i, j] ⊆ A` that fp encounters, we do the following: If j > fs, we split the
interval into [i, i+ fs] and [fs + 1, j] and consider the first of them as [i, j]. Let

X1 = T [i . . fs], X2 = T [j . . fs], Y1 = T [fs + 1 . . i+ `), Y2 = T [fs + 1 . . j + `).

For k = 1, 2, let uk be the locus of XR
k in T ′ and vk be the locus of Yk in T . If

either of these loci is an implicit node, we make it explicit. Finally, we add to Π
the pair of paths u1-to-u2 in T ′ and v1-to-v2 in T .

Let us denote the number of packages representing factors of length ` by m`.
As there are O(nx ) synchronisers, the line-sweeping algorithm can be performed
in O(nx +m`) time. Thus, the number of paths (and extra explicit nodes) that
we introduce in the two suffix trees is also O(nx +m`).

Over all ` ∈ [3x, 9x), we have

O
(
x · n

x
+

9x−1∑

`=3x

m`

)
= O(n+m)

pairs of paths. The only operations that we need to explain how to perform
efficiently are (a) computing the loci of strings in T and T ′ and (b) making all
of them explicit. Part (a) can be implemented using an efficient algorithm for
answering a batch of weighted ancestor queries from [24]. In part (b), we process
the weighted ancestors in an order of non-decreasing weights, after globally
sorting them using radix sort. The whole construction works in O(n+m) time.
We obtain an instance of the Path Pairs Problem with N,M = O(n+m). The
suffix trees are of weighted height O(n), so Lemma 10 completes the proof. ut

4.2 Highly Periodic Factors

A string U is called periodic if 2·per(U) ≤ |U | and highly periodic if 3·per(U) ≤ |U |.
The Lyndon root of a periodic string U is the lexicographically smallest

rotation of its length-per(U) prefix. If L is the Lyndon root of a periodic string



U , then U can be uniquely represented as (L, y, a, b) for 0 ≤ a, b < |L| such that
U = L[|L| − a+ 1 . . |L|]LyL[1 . . b]. We call this the Lyndon representation of U .

In O(n) time, one can compute the Lyndon representations of all runs [11].
The unique run that extends a periodic factor of T can be computed in O(1)
time after O(n)-time preprocessing [5,27]. This allows computing its Lyndon
representation in O(1) time.

For highly periodic factors, we will use Lyndon roots instead of synchronisers.
The rest of this subsection is devoted to proving the following lemma.

Lemma 14 (Periodic Lemma). Given a text T of length n and a set F of
m packages of highly periodic factors, |Factors(F)| can be computed in O((n +
m) log n) time.

Proof. For each (i, `, k) ∈ F and j ∈ [i, i + k], the fragment T [j . . j + `) has a
(unique) Lyndon representation (L, y, a, b) for some Lyndon root L. Let

Pj,` = L[|L| − a+ 1 . . |L|] and Qj,` = LyL[1 . . b]

Our problem consists in computing the size of the set

P = {(Pj,`, Qj,`) : j ∈ [i, i+ k], (i, `, k) ∈ F}

Let T and T ′ be the suffix trees of T and TR, respectively. Then, we want to
compute the number of pairs of nodes u ∈ T ′ and v ∈ T with (L(u)R,L(v)) ∈ P
We will show how this reduces to an instance of the Path Pairs Problem.

We have to appropriately define pairs of paths over T and T ′. Let us note
that all the factors that each package of F represents have the same Lyndon
root, since two strings with different periods at most 1

3` cannot overlap on `− 1
positions by the Fine and Wilf’s periodicity lemma [16].

We initialize an empty set Π that will store pairs of paths. Let us consider
a package (i, `, k) ∈ F such that T [i . . i + k + `) is represented by (L, y, a, b).
By periodicity, we may focus on the factors starting in the first (at most) |L|
positions of T [i . . i+ k + `).

To this end, let t = min{|L|, k + 1}. We will insert at most two paths to Π,
specified below:

– Let X1 be the suffix of L of length a, X2 be the suffix of L of length
a′ = max{a− t, 0}, Y1 = L∞[1 . . `− a] and Y2 = L∞[1 . . `− a′].

– If t > a, let X ′1 be the suffix of L of length |L| − 1 and X ′2 be the suffix of L
of length d = |L|+ a− t, Y ′1 = L∞[1 . . `− |L|+ 1] and Y ′2 = L∞[1 . . `− d].

See Fig. 5 for an illustration. It can be readily verified that these pairs of paths
induce exactly the required pairs of nodes.

For k = 1, 2, let uk be the locus of XR
k in T ′ and vk be the locus of Yk in T .

If either of these loci is an implicit node, we make it explicit. Finally, we add to
Π the pair of paths u1-to-u2 in T ′ and v1-to-v2 in T . Similarly for X ′ks and Y ′ks.

Let us consider the time complexity of the algorithm. The suffix trees T and
T ′ can be computed in O(n) time [13]. Computing the loci of strings and making



X1 X ′2· · · · · ·T
i

`

t = k + 1

|L|

a

Fig. 5. The shaded part of the text denotes T [i . . i+k+ `), which can be represented as
(L, y, a, b), for some package (i, `, k) ∈ F`. X1 is shaded in red, while X2 is the empty
string. We are in the case that t = k + 1 > a; X ′

2 is shaded in green.

them explicit can be performed in O(n+m) time as in the proof of Lemma 13.
We obtain an instance of the Path Pairs Problem with N = O(n+m) and
M ≤ 2m. Lemma 10 completes the proof. ut

4.3 Wrap-up

Let F` be the set of triples from F with the second component `. Note that one
can easily compute the contributions of all packages representing factors whose
length is bounded by 2 in O(n) time using radix sort; we can thus assume that
all packages represent factors of length at least 3.

We will iterate over x = 3j for all integers j ∈ [1, blog3 nc − 1]. For each
` ∈ [3x, 9x), we want to replace F` by two—not too large—sets of packages:

– Fp` representing factors with shortest period at most x/3, and
– Fa` representing factors with shortest period greater than x/3,

such that Factors(F`) = Factors(Fp` ) ∪ Factors(Fa` ).
Our aim is to decompose each package in F` in pieces (i.e., decompose [i, i+k]

into subintervals), such that all factors represented by each piece either have
shortest period at most x/3 or none of them does. We then want to group the
resulting pieces into the two sets.

Let Rx denote the set of runs of T with length at least 3x and period at most
x/3. As shown in [23, Section 4.4], |Rx| = O(n/x). Further, Rx can be computed
in O(n) time, by filtering out the runs that do not satisfy the criteria.

Lemma 15. Given Rx, we can compute sets Fp` and Fa` in O(n/x+ |F`|) time.

Proof. Initially, let I = ∅. For each run R = T [a . . b] with per(R) ≤ x/3 and
|R| ≥ `, we set I := I ∪ [a, b− `+ 1]. There are O(n/x) such runs and hence our
representation of I consists of O(n/x) intervals.

Recall that packages are pairwise disjoint. We decompose a package (i, `, k) ∈
F` as follows.

For each maximal interval [r, t] in [i, i+k]∩I we insert (r, `, t−r) to Fp` , while
for each maximal interval [r′, t′] in [i, i+ k] \ I we insert (r′, `, t′− r′) to Fa` . This
can be done in O(n/x+ |F`|) time with a standard line-sweeping algorithm. ut



Now, let us put everything together. First of all, we compute Rx for each
x ∈ [1, blog3 nc − 1] in O(n log n) total time. Then, for each `, we replace F` by
Fp` and Fa` in O(n/`+ |F`|) time, employing Lemma 15.

We process all Fp` ’s together, as each factor U represented by them must be
highly periodic; since per(U) ≤ x/3 and |U | ≥ 3x for some x, we surely have

3 ·per(U) ≤ |U |. The total size of these sets is
n∑
`=3

O(n/`+ |F`|) = O(n log n+m),

and hence a call to Lemma 14 requires O(n log2 n+m log n) time.

Then, we make a call to Lemma 13 for each x ∈ [1, blog3 nc − 1], and the
union of sets Fa` for ` ∈ [3x, 9x). Again by Lemma 15, for each such `, we have
|Fa` | = O(n/x+ |F`|).

The total time complexity required by the calls to Lemma 13 is:

blog3 nc−1∑

x=1

O
(
n log n+

9x−1∑

`=3x

|F`| log n

)
= O(n log2 n) +

n∑

`=3

O(|F`| log n)

= O(n log2 n+m log n).

We have thus proved the main result of this section.

Theorem 16. |Factors(F)| can be computed in O(n log2 n+m log n) time.

4.4 Reporting Factors

The reporting version of the Path Pairs Problem, where one is to output⋃
(π,π′)∈Π Induced(π, π′), can be solved in O(N + M logN + output) time by a

straightforward modification of the proof of Lemma 10.1 We can also retrieve a
pair of paths inducing each pair of nodes within the same time complexity (in
order to be able to represent the relevant string as a factor of T ).

Theorem 17. All elements of Factors(F) can be reported (without duplicates)
in O(n log2 n+m log n+ output) time.

5 Final Remarks

Another natural representation of factors consists in a set of intervals I, such that
each [i, j] ∈ I represents all factors of T [i . . j]. This problem is very closely related
to the problem of property indexing [3,7,8,21]. Employing either of the optimal
property indexes that were presented in [7,8], one can retrieve the (number of)
represented factors in optimal time.

1 The workhorse of Lemma 10 is computing the size of the union of certain 1D-intervals.
For the reporting version, we simply have to report all elements of this union.



References

1. Alamro, H., Badkobeh, G., Belazzougui, D., Iliopoulos, C.S., Puglisi,
S.J.: Computing the antiperiod(s) of a string. In: 30th Annual Sympo-
sium on Combinatorial Pattern Matching, CPM 2019. LIPIcs, vol. 128,
pp. 32:1–32:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.CPM.2019.32

2. Alzamel, M., Conte, A., Greco, D., Guerrini, V., Iliopoulos, C.S., Pisanti, N.,
Prezza, N., Punzi, G., Rosone, G.: Online algorithms on antipowers and antiperiods.
In: String Processing and Information Retrieval - 26th International Symposium,
SPIRE 2019. Lecture Notes in Computer Science, vol. 11811, pp. 175–188. Springer
(2019). https://doi.org/10.1007/978-3-030-32686-9 13

3. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395(2-3), 298–310 (2008).
https://doi.org/10.1016/j.tcs.2008.01.006

4. Badkobeh, G., Fici, G., Puglisi, S.J.: Algorithms for anti-powers in strings. Inf.
Process. Lett. 137, 57–60 (2018). https://doi.org/10.1016/j.ipl.2018.05.003

5. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta,
K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017).
https://doi.org/10.1137/15M1011032

6. Bannai, H., Inenaga, S., Köppl, D.: Computing all distinct squares in linear time for
integer alphabets. In: 28th Annual Symposium on Combinatorial Pattern Matching,
CPM 2017. LIPIcs, vol. 78, pp. 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.22

7. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: In-
dexing weighted sequences: Neat and efficient. Inf. Comput. 270 (2020).
https://doi.org/10.1016/j.ic.2019.104462

8. Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property suffix array
with applications in indexing weighted sequences. ACM Journal of Experimental
Algorithmics 25(1) (2020). https://doi.org/10.1145/3385898

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press (2007)

10. Crochemore, M., Ilie, L.: Computing longest previous factor in lin-
ear time and applications. Inf. Process. Lett. 106(2), 75–80 (2008).
https://doi.org/10.1016/j.ipl.2007.10.006

11. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a word from its runs structure. Theor. Comput.
Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

12. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discret. Appl. Math. 180, 52–69 (2015). https://doi.org/10.1016/j.dam.2014.08.016

13. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997. pp. 137–143. IEEE
Computer Society (1997). https://doi.org/10.1109/SFCS.1997.646102

14. Fici, G., Postic, M., Silva, M.: Abelian antipowers in infinite words. Adv. Appl.
Math. 108, 67–78 (2019). https://doi.org/10.1016/j.aam.2019.04.001

15. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in
infinite words. J. Comb. Theory, Ser. A 157, 109–119 (2018).
https://doi.org/10.1016/j.jcta.2018.02.009

16. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society 16(1), 109–114 (1965).
https://doi.org/10.2307/2034009



17. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory, Ser. A 82(1), 112–120 (1998). https://doi.org/10.1006/jcta.1997.2843

18. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set
union. J. Comput. Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/0022-
0000(85)90014-5

19. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and opti-
mal algorithms for all maximal α-gapped repeats and palindromes - finding all max-
imal α-gapped repeats and palindromes in optimal worst case time on integer alpha-
bets. Theory Comput. Syst. 62(1), 162–191 (2018). https://doi.org/10.1007/s00224-
017-9794-5

20. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all
the tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004).
https://doi.org/10.1016/j.jcss.2004.03.004

21. Hon, W., Patil, M., Shah, R., Thankachan, S.V.: Compressed property suffix trees.
Inf. Comput. 232, 10–18 (2013). https://doi.org/10.1016/j.ic.2013.09.001

22. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019. pp. 756–767. ACM (2019).
https://doi.org/10.1145/3313276.3316368

23. Kociumaka, T.: Efficient Data Structures for Internal Queries in Texts. Ph.D. thesis,
University of Warsaw (2018), https://mimuw.edu.pl/~kociumaka/files/phd.pdf

24. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-
time algorithm for seeds computation. ACM Trans. Algorithms 16(2) (2020).
https://doi.org/10.1145/3386369

25. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba,
W.: Efficient representation and counting of antipower factors in words. In: 13th
International Conference on Language and Automata Theory and Applications,
LATA 2019. Lecture Notes in Computer Science, vol. 11417, pp. 421–433. Springer
(2019). https://doi.org/10.1007/978-3-030-13435-8 31

26. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba,
W.: Efficient representation and counting of antipower factors in words (2020),
https://arxiv.org/abs/1812.08101v3

27. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern
matching queries in a text and applications. In: 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015. pp. 532–551. SIAM (2015).
https://doi.org/10.1137/1.9781611973730.36

28. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: String powers in trees.
Algorithmica 79(3), 814–834 (2017). https://doi.org/10.1007/s00453-016-0271-3

29. Kolpakov, R.: Some results on the number of periodic factors in words. Inf. Comput.
270 (2020). https://doi.org/10.1016/j.ic.2019.104459

30. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word
in linear time. In: 40th Annual Symposium on Foundations of Com-
puter Science, FOCS 1999. pp. 596–604. IEEE Computer Society (1999).
https://doi.org/10.1109/SFFCS.1999.814634

31. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press
(2002). https://doi.org/10.1017/cbo9781107326019



Bibliography

[1] Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-
dimensional maximal repetitions. In 26th Annual European Symposium
on Algorithms, ESA 2018, volume 112 of LIPIcs, pages 2:1–2:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ESA.2018.2.

[2] Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-
dimensional maximal repetitions. Theoretical Computer Science, 812:49–61,
2020. doi:10.1016/j.tcs.2019.07.006.

[3] Alberto Apostolico and Valentin E. Brimkov. Fibonacci arrays and their
two-dimensional repetitions. Theoretical Computer Science, 237(1-2):263–
273, 2000. doi:10.1016/S0304-3975(98)00182-0.

[4] Alberto Apostolico and Valentin E. Brimkov. Optimal discovery of rep-
etitions in 2D. Discrete Applied Mathematics, 151(1-3):5–20, 2005. doi:
10.1016/j.dam.2005.02.019.

[5] Golnaz Badkobeh, Gabriele Fici, and Simon J. Puglisi. Algorithms for
anti-powers in strings. Information Processing Letters, 137:57–60, 2018.
doi:10.1016/j.ipl.2018.05.003.

[6] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki
Takeda, and Kazuya Tsuruta. The “runs” theorem. SIAM Journal on
Computing, 46(5):1501–1514, 2017. doi:10.1137/15M1011032.

[7] Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Unpublished
notes, Computer Science Department, Carnegie Mellon University, 1977.

[8] Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal dictio-
nary matching. In 30th International Symposium on Algorithms and Com-
putation, ISAAC 2019, volume 149 of LIPIcs, pages 22:1–22:17. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019. arXiv:1909.11577, doi:
10.4230/LIPIcs.ISAAC.2019.22.

109

https://doi.org/10.4230/LIPIcs.ESA.2018.2
https://doi.org/10.4230/LIPIcs.ESA.2018.2
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1016/j.dam.2005.02.019
https://doi.org/10.1016/j.dam.2005.02.019
https://doi.org/10.1016/j.ipl.2018.05.003
https://doi.org/10.1137/15M1011032
http://arxiv.org/abs/1909.11577
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22


[9] Maxime Crochemore and Lucian Ilie. Computing longest previous factor
in linear time and applications. Inf. Process. Lett., 106(2):75–80, 2008.
doi:10.1016/j.ipl.2007.10.006.

[10] Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string
contain? J. Comb. Theory, Ser. A, 82(1):112–120, 1998. doi:10.1006/
jcta.1997.2843.

[11] Paweł Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl,
and Florin Manea. Tighter bounds and optimal algorithms for all max-
imal α-gapped repeats and palindromes - finding all maximal α-gapped
repeats and palindromes in optimal worst case time on integer alpha-
bets. Theory of Computing Systems, 62(1):162–191, 2018. doi:10.1007/
s00224-017-9794-5.

[12] Tomohiro I and Dominik Köppl. Improved upper bounds on all maximal α-
gapped repeats and palindromes. Theoretical Computer Science, 753:1–15,
2019. doi:10.1016/j.tcs.2018.06.033.

[13] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient col-
ored orthogonal range counting. SIAM Journal on Computing, 38(3):982–
1011, 2008. doi:10.1137/070684483.

[14] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Internal pattern matching queries in a text and applications. In
26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

110

https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1016/j.tcs.2018.06.033
https://doi.org/10.1137/070684483
https://doi.org/10.1137/1.9781611973730.36

	Extended abstract
	Introduction
	Motivation
	Contents

	Preliminaries
	Presentation of the main results
	Efficient Representation and Counting of Antipower Factors in Words
	Counting Distinct Patterns in Internal Dictionary Matching
	The Number of Repetitions in 2D-Strings
	Efficient Enumeration of Distinct Factors Using Package Representations

	Other publications

	Autoreferat
	Wstep
	Motywacja
	Skład pracy

	Preliminaria
	Przeglad wyników
	Efficient Representation and Counting of Antipower Factors in Words
	Counting Distinct Patterns in Internal Dictionary Matching
	The Number of Repetitions in 2D-Strings
	Efficient Enumeration of Distinct Factors Using Package Representations

	Pozostałe publikacje

	Efficient Representation and Counting of Antipower Factors in Words
	Counting Distinct Patterns in Internal Dictionary Matching
	The Number of Repetitions in 2D-Strings
	Efficient Enumeration of Distinct Factors Using Package Representations

