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Abstract

A uniformisation of a binary relation R ⊆ X × Y assigns to each element x of the domain
of R a particular y ∈ Y such that the pair 〈x, y〉 is in the relation. The regular-uniformisation
problem asks if, in the context of words or trees, every regular relation admits a uniformi-
sation that is also regular, i.e. definable in Monadic Second-Order Logic (MSO).

It is already known that the answer to this question is positive in the context of finite
and infinite words. In this thesis, we search for possible generalisations of these results.

First, we study the possibility of uniformising relations of finite words in fragments of
First-Order Logic (FO), the formalism where one can quantify over positions but not over
sets of positions. We rely on algebraic characterisations of these fragments in order to
emphasise their limitations in providing uniformisations. We also discuss the decidability
of uniformising given regular relations in some of these fragments.

Second, we highlight the strong connection between uniformisations and the expressive
power of the considered formalisms. Namely, among varieties of regular languages, the
assumption that the given formalism has uniformisation property, already guarantees the
full power of all regular languages. The notion of a variety of languages is a standard
concept which guarantees certain natural closure properties, such as closure under Boolean
operations.

Third, we study the possibility to uniformise regular relations of words defined over
finitary domains : those are the domains that are infinite but admit a particular kind of
finite representation. We show that, over these domains, the only obstacle to regular uni-
formisations is the existence of non-trivial automorphisms, meaning bijective functions that
preserve the order and that are not the identity function. We also prove that, in this context
of finitary domains, the regular-uniformisation problem is equivalent to being able to define
in MSO natural objects over the domain, such as choice functions and well orders.

All these results provide a broad perspective on the notion of uniformisation in the realm
of subclasses and variants of regular languages.
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Streszczenie

Uniformizacja relacji binarnej R ⊆ X×Y przypisuje, dla każdego elementu x z dziedziny R
pewien unikalny element y ∈ Y w taki sposób by para 〈x, y〉 należała do relacji R. Problem
regularnej uniformizacji pyta czy, w kontekście słów lub drzew, każda regularna relacja
posiada uniformizację która również jest regularna, czyli definiowalna w monadycznej logice
drugiego rzędu (MSO).

Wiadomym jest, że odpowiedź na to pytanie jest pozytywna w przypadku skończonych i
nieskończonych słów. W ramach tej rozprawy szukamy możliwych rozszerzeń tych wyników.

Po pierwsze, studiujemy możliwość uniformizacji relacji słów skończonych we fragmen-
tach logiki pierwszego rzędu (FO), formalizmu gdzie możliwa jest kwantyfikacja po pozycjach
danej struktury, ale nie po zbiorach takich pozycji. Polegamy przy tym na algebraicznych
charakteryzacjach rozważanych fragmentów by unaocznić ich ograniczenia w możliwości
definiowania uniformizacji. Dodatkowo badamy problem rozstrzygania uniformizowalności
danej regularnej relacji w niektórych rozważanych fragmentach.

Po wtóre, podkreślamy silne związki pomiędzy uniformizacjami a siłą wyrazu rozwa-
żanych formalizmów. Dokładniej, wśród rozmaitości języków regularnych, założenie że dany
formalizm posiada własność uniformizacji gwarantuje nam pełną siłę wyrazu wszystkich
języków regularnych. Użyty tu koncept rozmaitości języków jest standardowym pojęciem
gwarantującym pewne naturalne własności domknięcia, jak domknięcie ze względu na op-
eracje boolowskie.

Po trzecie, studiujemy możliwość uniformizacji relacji regularnych na słowach defin-
iowanych nad dziedzinami finitarnymi: dziedzinami które są nieskończone, ale dopuszczają
pewien szczególny rodzaj skończonej reprezentacji. Wykazujemy, że nad tymi dziedzinami,
jedyną przeszkodą ku istnieniu regularnych unifomizacji jest istnienie nietrywialnych auto-
morfizmów, czyli bijekcji które zachowują porządek, ale nie są identycznościowe. Dodatkowo
wykazujemy, że w kontekście dziedzin finitarnych, problem regularnej uniformizowalności
jest równoważny możliwości zdefiniowania z ramach MSO pewnych naturalnych obiektów
nad daną dziedziną, jak funkcje wyboru, czy dobre porządki.

Wszystkie te wyniki dostarczają szerokiej perspektywy na pojęcie uniformizacji w sferze
podklas i wariantów języków regularnych.
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Introduction

The following thesis studies multiple variants of a general question, that asks, given some
property, under which hypotheses it is possible to assign in some formalism an individual
witness satisfying it. The question under study is related to areas as diverse as constructibil-
ity of mathematics, logic, model theory, formal languages and their correlation with algebra,
and the theory of linear and well orders. The thesis is based on the following three published
articles: [Mic18], [LMS19], and [MS20], and contains some additional related unpublished
results.

Motivations and context

Foundations of mathematics have been a widely studied field of research since the end of
the 19th century. At that time, many renowned mathematicians, such as Frege, Hilbert,
or Russell, aimed at coming up with a logical system that encompasses mathematics in its
entirety. Notably, from their works was born set theory, the main ground on which the
whole mathematics is still formalised nowadays.

At this period, some mathematicians, among them Brouwer, were critical about the
then-obtained formalisms, feeling that they allowed some reasonings that were counter-in-
tuitive. As an example, one of the main objections was that said formalisms could be
used to prove mathematical statements such as “there exists an object x that satisfies the
property P”, without having to provide any concrete example of such an object x.

Brouwer’s works in the field of mathematical foundations led to the construction of
a family of formalisms, known today as intuitionistic logics. These formalisms have the
property that, in order to prove statements such as the previous one, one has to provide
a proper witness of such an object x.

The question of constructiveness of mathematics is still a very active research area today,
that has applications in numerous fields of mathematics. Indeed, whether it is in algebra, in
arithmetic, or in real analysis, when one comes up with some result stating the existence of
objects that satisfy interesting properties, one is inclined to ask if there is a way to describe
said objects in a comprehensive way.
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In this thesis, we focus on the possibility to provide choice functions in a constructive
manner. In set theory, a choice over a family of disjoint non-empty sets is a function that
selects one element from each of the sets.

2 π · · ·

1 2
3

f f

√
2
e

π

f

· · ·

Figure 1: The choice function f selects an element from every set of the family.

The axiom of choice, introduced for the first time by Zermelo in [Zer04], states that
every such family of subsets admits a choice function. This axiom, considered as intuitive
by a majority of mathematicians, has applications in many domains of mathematics. Let
us cite a few. In topology, Tychonoff’s theorem states that the product of compact sets is
also a compact set [Tyc30]. In analysis, Hahn-Banach theorem tells about the possibility
to extend a partial linear form into a total one [Ban32]. In linear algebra, it is well known
that the axiom of choice is equivalent to the fact that every vector space has a basis (see
for instance [Bar13, Lemma 3.1]).

Yet, applying the axiom of choice allows us to obtain mathematical objects and re-
sults that are somehow counter-intuitive. For instance, it implies the existence of Vitali
sets, i.e. sets on which a common notion of measure cannot be defined (see [Vit05]). One
could also cite Banach-Tarski paradox, stating that it is possible, via the axiom of choice,
to decompose a ball into five parts and put them back together in a different way to obtain
two identical copies of the original ball [BT24].

This motivates the search of conditions under which choice functions can be effectively
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constructed. The main goal of the thesis can be elusively stated as the following:

Problem 0.1. Let (Ai)i∈I be a family of disjoint non-empty sets. Can we provide a concrete
example of a choice function over (Ai)i∈I?

In Chapter XII of his Introduction to Mathematical Philosophy [Rus19], Russel gave
an illustration of what we could understand by a concrete example of a choice function. If
the family (Ai)i∈I is an infinite family of pairs of boots, then it is possible to select a unique
boot from each pair by simply saying “I choose the right boot of each pair”. This choice
function is completely comprehensible, as long as we do have a notion of left and right in
our mathematical vocabulary.

On the opposite, if the family is an infinite family of pairs of socks, then there is no
such natural way of distinguishing the socks of each pair. Of course, if a particular pair is
given to us, then we can always proceed to an arbitrary selection of one of the two, but it is
impossible to process an infinite amount of such choices. In that case, if we need an infinite
selection of socks, then we have to rely on the axiom of choice, that, in a sense, provides
this infinite computation for us. However, we cannot know how this infinite computation
was made, and we have no clue about the properties satisfied by the obtained infinite set of
socks.

Hence, informally speaking, Problem 0.1 asks if we are rather in the case of boots, or in
the case of socks.

We will study many variations of Problem 0.1. Among these variations, we mainly focus
on an instance which involves objects called uniformisations. A partial function f : E → F

uniformises some relation R ⊆ E × F if it selects, for each x ∈ E, a particular y in F such
that the pair 〈x, y〉 is in the relation R, whenever there exists one, see Figure 2.

It can be shown that the axiom of choice is true if and only if all relations admit
uniformisations. This justifies the study of conditions under which uniformisations can be
explicitly constructed for specific classes of relations.

Uniformisations are well-studied objects in descriptive set theory, the branch of mathe-
matics that studies subsets of the real line or of other spaces that are, roughly, definable and
well-behaved [Mos80, Kec95]. Many known results, stated in these two books, highlight the
correspondences between the constructive complexities of the sets E and F , the relation R,
and of an eventual uniformisation of it.

In this thesis, we decide to study this question of constructible uniformisations in the
field of formal languages. The theory of formal languages is the domain that takes an
interest in syntactic objects such as words or trees. These syntactic objects can be used in
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F

E

R

f

Figure 2: The function f uniformises the relation R.

numerous fields, including practical ones. In computer science, a word can represent a trace
of some computation, while a tree can be used to describe different paths an algorithm can
go. A language, i.e. a set of words or trees, is interpreted as a family of computations which
we want to consider.

0 1 1 1 0 1 · · · return y

return NO return x ∗ y

x == 0 x 6= 0

y == 0 y 6= 0

Figure 3: Words can represent outputs of a computation, while trees can represent the
different possible paths of an algorithm.

To know which words, or trees, are contained in a language L, it is convenient to be able
to define it by some property. For instance, L can be the language of computations that
“output a 1 right after each 0”. One of the most commonly used formalism to express such
properties over words or trees is Monadic Second-Order Logic (MSO) [Büc60, Elg61, Tra62].
The reason why it is the most commonly used is that it is one of the most expressible yet still
decidable formalism over words: there exists an algorithm that inputs an MSO sentence,
and tells if there exists a word that satisfies it, and the same for trees [Rab69]. A language
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that can be defined via an MSO sentence is called regular.
As an example, here is how MSO over words can express Russel’s example we gave above,

about selecting infinitely many boots. In our vocabulary, we are given two letters: ` (for
“left”) and r (for “right”). An infinite word over this alphabet {`, r} represents a selection
of boots among the infinitely many pairs. For instance, the word ` · r · ` · ` · r · · · represents
the choice function that selects the left boot from the first pair, the right boot from the
second pair, the left boot from the third pair, etc. A sentence like “At each position of the
word, we have the letter r”, which we write ∀x. r(x) in MSO, defines exactly the infinite
word r · r · r · r · · · , that represents the fact of selecting the right boot from each pair.

This leads to our main regular uniformisation problem. It asks if it is possible to define,
in Monadic Second-Order Logic, a uniformisation of a given relation of words or trees.There
already exists a wide and active field of research about regular uniformisations, in these
contexts of words and trees.

For instance, we can cite [GS83], that presents this problem of regular uniformisations in
a general way, and [LS98, RS08], that give an exhaustive survey about regular uniformisa-
tions in the fields of words and trees. A very important result is that, among finite words and
infinite words, MSO has the ability to produce uniformisations for its own relations [LS98]:

Proposition 0.2. Every regular relation of finite or infinite words admits a regular unifor-
misation.

There are already known limitations of Proposition 0.2, since [GS83] and [CL07] prove
that MSO does not admit this convenient uniformisation property when we consider the
infinite binary tree:

Theorem 0.3 ([GS83]). There exists a regular relation over the infinite binary tree that
admits no regular uniformisation.

Our main goal is to explore how Proposition 0.2 can be generalised.

Overview of the thesis

The thesis is composed as follows.
Chapter 1 is our preliminary chapter, in which are introduced all the notions we will be

using all along the document. The concepts involved are: basic notions of set theory and
of order theory, words and languages of words, First- and Monadic Second-Order Logics,
algebra and its connections with languages of words, axiom of choice and uniformisations.
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Then, in Chapter 2, we study different instances of the following problem:

Problem 0.4. Given C1 and C2 two classes of regular languages, does every relation of C1

admit a uniformisation in C2?

We show that, for many such classes included in FO (i.e. the class of languages definable
in First-Order Logic), C2 is too weak to uniformise all relations of C1, and this holds even
when C2 is more powerful than C1. From these results, which were originally published
in [Mic18], follows the following proposition:

Proposition 0.5. For any signature Σ contained in {<, s}, neither FO[Σ] nor FOk[Σ], for
k ≥ 1, admit the uniformisation property.

The logics involved in the proposition are fragments of First-Order Logic: some can
express the comparison between positions of words using the order <, some only have
access to the relation s, which relates each pair of successive positions, while some only have
access to letter tests. Finally, by FOk, we denote the logic where the number of distinct
variables in the formulae is limited by the natural number k.

Although we know from the proposition above that the class FO[ ], meaning First-Order
Logic with only letter tests, cannot uniformise all of its relations, we propose, in the same
chapter, an algorithm testing if a given regular relation can be uniformised in it:

Proposition 0.6. It is decidable whether a given regular language of finite words admits
a uniformisation in FO[ ].

This result opens the door to a whole class of problems:

Problem 0.7. Let C be a class of regular languages. Is it decidable whether a given regular
language admits a uniformisation in C?

From Proposition 0.5, together with Proposition 0.2, arises a question, whether there
exists some robust subclass of regular languages of finite words, which can also uniformise
its own relations. By robust, we mean a subclass which admits nice closure properties, such
as closure under Boolean operations, closure under extensions of alphabets. . .

In Chapter 3, we answer negatively to this question when considering varieties of lan-
guages [Eil74], meaning subclasses of regular languages which are closed under Boolean
operations, preimages under homomorphisms, and quotients:

Theorem 0.8. MSO is the unique non-empty variety of languages that satisfies the uni-
formisation property.
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In other words, the ability of uniformising its own relations characterises the class MSO

among all the non-empty robust classes. Therefore, this theorem, which was originally
proven in [LMS19], gives another argument to the very particularity of the class of regular
languages.

In Chapter 4, based on [MS20], we generalise Proposition 0.2 to finitary linear orders,
which were first introduced in [LL66]. A linear order is finitary if it is obtained from
singleton sets using a finite amount of the following operations:
− the operation +: λ+ µ being the concatenation of the orders λ and µ;
− the operation ×ω: λ × ω consists of an infinite number of copies of λ concatenated

one after the other (λ+ λ+ λ+ · · · );
− the operation ×ω?: λ × ω? consists also of an infinite number of copies of λ, but in

the other direction (· · ·+ λ+ λ+ λ);
− the operation η, which produces dense sets, such as Q (i.e. the set of rational numbers).
Finitary linear orders are of great interest because although they may be infinite, they

admit a finite representation, and can be given as the input of an algorithm. Moreover, they
are a representative way to approach countable linear orders, in the sense that any MSO

sentence that is satisfied by a linear order is a fortiori satisfied by some finitary one [LL66].
We characterise the finitary linear orders λ admitting the regular-uniformisation property

as the ones that do not admit any non-trivial automorphisms : a non-trivial automorphism
of λ is a function from λ to itself which preserves the order and which is not the identity
function. In fact, we prove that, considering a finitary linear order λ, the absence of such
automorphisms is also equivalent to the possibility to regularly define natural objects such as
well orders or choice functions, as states the following theorem, originally proven in [MS20]:

Theorem 0.9. Let λ be a finitary linear order, then the following are equivalent:
i) λ does not admit any non-trivial automorphism,
ii) every regular relation over λ admits a regular uniformisation,
iii) λ admits a regular choice function,
iv) λ admits a regular well order,
v) each element of λ is definable in MSO.

Moreover, Item i) is decidable, and, if it is true, then Items ii) to v) are constructible.

A well order over λ being an order v that does not admit any infinite decreasing se-
quence x0 A x1 A x2 A . . . Item v) has to be understood as the following: for each
element x ∈ λ, there exists a formula ϕdef

x (y) such that for all y ∈ λ, ϕdef
x (y) is satisfied if

and only if y = x.
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In a sense, Proposition 0.2 can now be seen as a particular case of Theorem 0.9, as
finite and infinite words (which we call ω-words in the thesis) are finitary. As a conse-
quence, the set Z of integers is an example of finitary linear order which does not satisfy
the uniformisation property.

The crucial part of the theorem is the implication of Items ii) to v) by Item i), which we
prove by introducing a notion of condensation trees for finitary linear orders, and navigating
through them using algebraic tools introduced in [CCP18].

Finally, in Chapter 5, we study which implications of Theorem 0.9 hold and do not hold
when removing the assumption of finitariness. As it turns out, the assumption of finitariness
not only is important as a way of representing the given order but also plays an essential
role in a number of implications of Theorem 0.9—without this assumption, the conditions
are no longer equivalent.

Along the thesis, the proofs are mostly based on the algebraic approach to languages,
via semigroups and ◦-semigroups (pronounced “circle”-semigroups). Hence, the whole thesis
makes no mention of any automaton—another commonly used tool when it comes to regular
languages [RS59]. However, most aspects of our algebraic approach can be equivalently seen
from the automata-theoretic perspective.
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Chapter 1

Preliminaries

In this first chapter, we introduce the main objects involved in the thesis. We also set the
notations and the vocabulary that will be used throughout the whole document.

In Section 1.1, we recall some common notions of set theory, and introduce the mathe-
matical objects which we work on in the whole thesis: linear orders, words, and languages
of words. Then, in Section 1.2, we give a survey of Monadic Second-Order Logic, a formal-
ism often used to express properties of words. In Section 1.3, we present some examples
of algebraic structures and how they can be used to study languages of words. Finally, in
Section 1.4, we expose the problem of constructive choice, and our objectives in regards
to it.

1.1 Orders, words, and languages

1.1.1 Basic notions of set theory

Today, the context in which mathematics is most commonly studied is Zermelo-Fraenkel
set theory , denoted by ZF, in which all mathematical objects are seen as sets. Although
we do not go into a detailed description of the theory, we give in this subsection some basic
notions of it. These notions are mostly standard, yet it is also the occasion to entirely fix
their notations, as some may vary among the literature.

We call a set any collection E of mathematical objects. If x is an object of said collection,
we write x ∈ E and say that x is an element of E, that x belongs to E, that x is in E, or
that E contains x. Sets are defined by their elements and are said equal (written E = F )
if they contain exactly the same elements, and we generally write them with their elements
between braces: E = {x, y, . . . }. There exists a unique set, the empty set, denoted by
∅, that does not contain any element (i.e. ∅ = {}), and all sets that contain at least one
element are called non-empty. A set that contains a unique element is called a singleton.
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An important set is the set N := {0, 1, 2, . . . } of natural numbers, usually with its addition,
written +, and its multiplication, written ×. We say that a natural number is positive if it
is not 0.

Let E and F be two sets. Then E ∪ F denotes the union of E and F , i.e. the set of
elements that belong to E or to F (not only here but in the whole thesis, this “or” has to be
understood in the inclusive sense: said elements can belong to both E and F ), and E ∩ F
denotes the intersection of E and F , i.e. the set of elements that belong to both E and F .
The sets E and F are said disjoint if E ∩ F = ∅, meaning if no mathematical object is
an element of both E and F . Under this assumption, we rather write E t F for E ∪ F , to
emphasise that the union is disjoint. These notions of union and intersection are extended
to more than two sets: if I is a set, and for each i ∈ I, so is Ei, then

⋃
i∈I Ei (resp.

⋂
i∈I Ei)

denotes the set of elements that belong to at least one of the Ei’s (resp. to all of the Ei’s).
Similarly, if the Ei’s are assumed pairwise disjoint (Ei∩Ej = ∅ for all i 6= j), then we rather
write

⊔
i∈I Ei for

⋃
i∈I Ei. Finally, we denote by E \F the set of elements that are in E and

not in F .
We write E ⊆ F to say that the set E is included in the set F , meaning that each

element of E is also an element of F . It is equivalent to saying that the set E \F is empty.
In this case we also say that E is a subset of F . The set of subsets of E is written P(E).
We denote by E * F the fact that E is not included in F , meaning that there exists some
element of E that is not an element of F . We also use the symbol ⊂ for the strict inclusion:
we write E ⊂ F if E ⊆ F and moreover E 6= F , meaning that there exists some element x
of F that is not an element of E.

We denote by E × F the product set of E and F , meaning the set of pairs 〈x, y〉 with x
being an element of E and y an element of F . We write E2 for the product set E×E, and,
more generally, if n is a positive natural number, we write En for the product E×E×· · ·×E,
with E appearing exactly n times. It is the set of n-tuples over E, meaning the set of
elements of the shape 〈x0, x1 . . . , xn−1〉, where each xi is an element of E.

A binary relation R between E and F is a subset of E × F . In this case, we more often
write xRy rather than 〈x, y〉 ∈ R. If E = F , we say that R is a binary relation over E.
In the same way, a subset of En, for some positive natural number n, is called an n-ary
relation over E. If E ′ is a subset of E, then we denote by R�E′ the restriction of R to E ′:
it is the binary relation between E ′ and F such that for all 〈x, y〉 ∈ E ′×F , we have xR�E′y
if and only if xRy.

A function from E to F is a binary relation f between E and F such that for all x ∈ E,
there exists a unique y ∈ F such that xfy. We denote by f(x) this said y, and say that f
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maps x to y. This y is also called the image of x under f , and x is called a preimage of y
under f . We write f : E → F to tell that f is a function from E to F , and f : x 7→ y

(or sometimes x f7→ y) to express that x is mapped to y by f . Notice that the restriction
f�E′ of f to a subset E ′ of E is also a function, from E ′ to F . Two functions f and g

from E to F are said equal (denoted by f = g) if they map the same elements of E to the
same elements of F , i.e. f(x) = g(x) for every x ∈ E. For each subset E ′ of E, we denote
by f(E ′) the set {f(x) | x ∈ E ′} of images of elements of E ′, and for each subset F ′ of F ,
we denote by f−1(F ′) the set {x ∈ E | f(x) ∈ F ′} of preimages of elements of F ′. For each
set E, there exists a particular function called the identity of E. It is the function mapping
each element x of E to itself. We denote it by idE. If f is a function from E to F , and g
a function from F to a set G, then by g ◦ f we denote the composition of g and f , it is
the function from E to G that maps every x ∈ E to the element g(f(x)) ∈ G. For every
function f from E to F , we have the equalities f ◦ idE = f , and idF ◦ f = f .

Let f be a function from E to F . If every element of F admits at most one preimage
under f , then f is called injective (or an injection), and if every element of F admits at least
one preimage under f , then f is called surjective (or a surjection). It is easy to see that
the composition of two injective functions (resp. of two surjective functions) is also injective
(resp. surjective). If f is both injective and surjective, meaning that each element of F
admits exactly one preimage under f , then it is called bijective (or a bijection). In this case,
the function from F to E that maps each y ∈ F to the unique x ∈ E such that f(x) = y

is a bijection from F to E. This function, denoted by f−1, is called the inverse function
of f , and has the property that f−1 ◦ f = idE and f ◦ f−1 = idF . Since the composition of
two injections is an injection and the composition of two surjection is a surjection, we know
that the composition of two bijection is also a bijection.

A function f from E to F can also be denoted by (f(x))x∈E, in which case it is called
a family. Finally, a partial function from E to F is a function f from a subset of E to F .
In this case, said subset is called the domain of f , and is denoted by Dom(f).

A set E is finite if there exists a bijection from E to the set {0, 1, . . . , n−1} for some
natural number n ∈ N. Said set {0, 1, . . . , n−1} is usually identified with n itself, which is
called the cardinality of E, and is denoted by |E|. Finally, E is countable if either it is finite
or there exists a bijection from E to the set of natural numbers N.

In the thesis, we will often meet the term class. A class is also a collection of ma-
thematical objects, simply less formal. We do not state a rigorous definition of classes, in
comparison to sets. It is enough for the reader to remember that the notions we defined in
this subsection do not always make sense when considering classes.
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1.1.2 Equivalence relations and orders

Let R be a binary relation over a set E. It is reflexive if for every x ∈ E, we have xRx.
On the contrary, it is antireflexive if xRx is true for no element x ∈ E. It is transitive
if for all x, y, z ∈ E, if xRy and yRz then xRz. It is symmetric if for all x, y ∈ E, xRy
implies yRx. Finally, it is antisymmetric if for all x, y ∈ E, if xRy and yRx then x = y.

A binary relation over E that is reflexive, transitive, and symmetric is called an equiv-
alence relation over E. In this thesis, we will denote equivalence relations by symbols such
as ≡, or ∼=. If ≡ is an equivalence relation over a set E, we say that two elements x and y
of E are ≡-equivalent, or simply equivalent, if x ≡ y. If x ∈ E, then we define [x]≡ as the
set {y ∈ E | x ≡ y}, the equivalence class of x. We denote by E/ ≡ the set

{
[x]≡ | x ∈ E

}
of all these equivalence classes.

A binary relation over E that is transitive, reflexive (resp. antireflexive), and antisym-
metric is called an order (resp. a strict order) over E. Orders (resp. strict orders) are
generally denoted by the symbol ≤ (resp. <). Any order ≤ over E induces a strict order <,
defined by x < y if x ≤ y and moreover x 6= y. Reciprocally, any strict order < over E
induces an order ≤, defined by x ≤ y if either x < y or x = y. Therefore, we often identify
the two notions, the symbols ≤ and < indicating whether we consider the pairs 〈x, x〉 in
the relation or not. In this thesis, an ordered set, meaning a set with an order, is generally
denoted by the letter ϑ and identified with its order. If ϑ is an ordered set, and x, y ∈ ϑ, then
we write x ≥ y for y ≤ x and x > y for y < x. If X is a subset of ϑ, then it can be provided
with the order of ϑ restricted to X2, meaning ≤�X :=

{
〈x, y〉 | x, y ∈ X and x ≤ y

}
. It is

clear that this new relation is an order over X, which explains why a subset of an order is
sometimes called a suborder. We generally simply write it ≤ rather than ≤�X .

Let ϑ be an ordered set. A maximal (resp. minimal) element of ϑ is an element m ∈ ϑ

such that for all x ∈ ϑ, if m ≤ x (resp. x ≤ m) then x = m. A greatest element (resp. least
element) of ϑ is an element m ∈ ϑ such that x ≤ m (resp. m ≤ x) for all x ∈ ϑ. Such
an element of ϑ, if it exists, is necessarily unique. Notice that a greatest (resp. least) element
is necessarily maximal (resp. minimal), but the contrary is not true in general. The notion
of maximal elements naturally extends to any suborder X of ϑ: a maximal element of X is
an element m ∈ X such that for all x ∈ X, if m ≤ x then x = m, and, the same way, we
extend to X the notions of minimal, greatest, or least elements.

Let ϑ be an order. We say that it is linear, or total, if all elements are comparable with
each other, meaning that for all x, y ∈ ϑ, we have either x ≤ y or x ≥ y. Elements of
a linear order are called positions of this order. In this thesis, we mostly denote a linearly
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ordered set by the letter λ. Naturally, any suborder of a linear order is linear as well. Notice
that in a linear order λ, the notions of maximal and greatest elements coincide, the same
for the notions of minimal and least elements. A linear order λ is dense if it has at least
two distinct elements and if for all x < z in λ, there exists some y ∈ λ with x < y < z. If λ
does not admit any dense subset, it is called scattered. A subset X of λ is convex if for all
x ≤ y ≤ z ∈ λ, if x and z are in X then so is y. Finally, if X and Y are two subsets of λ,
we denote by X < Y the fact that x < y for all elements x ∈ X and y ∈ Y .

If an order has the property that each of its non-empty suborders admits a least element,
then it is called a well order. Well orders are generally denoted by the letter $ in this thesis.
Naturally, any suborder of a well order is also a well order. In particular, any well order $ is
necessarily linear, because each subset {x, y} must admit a least element. A family defined
on a linear order is called a sequence.

Let ϑ1 and ϑ2 be two orders. An isomorphism from an ϑ1 to ϑ2 is a bijection ι from ϑ1

to ϑ2 such that for all x, y ∈ ϑ1, we have x < y if and only if ι(x) < ι(y). We say that it
preserves the order. If there exists such an isomorphism, these orders are said isomorphic
(to each other). Isomorphisms preserve the properties of being linearly and well ordered:
if ϑ1 and ϑ2 are two isomorphic orders, and if ϑ1 is a linear order (resp. a well order), then
so is ϑ2. In the thesis, we will sometimes identify isomorphic orders with each other, and
whenever that happens, we will explicitly write it. An isomorphism from an order ϑ to
itself is called an automorphism of ϑ. A particular automorphism of ϑ is idϑ, the identity
function of ϑ. We say that an automorphism of ϑ is non-trivial if it is not this identity
function idϑ. Finally, we notice that the composition of two isomorphisms, and the inverse
of an isomorphism are also isomorphisms.

We say that an order is finite (resp. countable) if it is as a set. A few linear orders
are given a particular attention: the set N of natural numbers itself, which we will denote
by ω to emphasise that we provide it with its usual order (0 < 1 < 2 < . . . ); the set ω? :=

{. . . ,−3,−2,−1} of negative integers ; the set Z := ω? t ω of integers ; and Q, the set of
rational numbers. All of them are with their usual orders. Notice that ω is a well order, but
the other three are not.

We state two theorems linking Q with all the other countable linear orders:

Theorem 1.1 (Cantor). Any countable linear order is isomorphic to a suborder of Q.

A proof of Theorem 1.1 can be found in [Ros81, Theorem 2.5]. It is a well-known result
that, under the additional assumption that the countable linear order is also dense and
without least nor greatest element, the same proof can be modified to obtain an isomorphism
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from the linear order to the whole set Q:

Theorem 1.2. Up to isomorphism, Q is the only countable linear order that is dense and
without least nor greatest element.

1.1.3 Words

An alphabet is any non-empty set A, and we call its elements letters. The alphabets we
consider in the thesis are usually finite, unless explicitly stated otherwise. Let A be an al-
phabet and λ be a linear order. Any function w from λ to A is called a λ-word over A, or
more simply a word over A. A position of w is simply a position of λ, and it is said to be
labelled by a letter a ∈ A (in w) if w(x) = a. We call λ the domain of w, and we denote it
by Dom(w). The unique word of empty domain ∅ is written ε. If A is a singleton, then we
identify w with its domain Dom(w). If X is a subset of Dom(w), then we denote by w�X
the word over A of domain X defined by w�X(x) = w(x) for all x ∈ X. If moreover X is
convex, w�X is called a factor of w.

Let w1 and w2 be two words over an alphabet A. An isomorphism from w1 to w2 is
an isomorphism ι from Dom(w1) to Dom(w2) that additionally preserves the labels, meaning
that for all x ∈ Dom(w1), w2(ι(x)) = w1(x). Two words over A are called isomorphic (to
each other) if there exists an isomorphism from one to the other. Similarly as for orders, we
will sometimes identify isomorphic words with each other, and whenever we do so, it will be
explicitly noted. An isomorphism from a word w to itself is called an automorphism, and we
call it non-trivial if is is not the identity function x 7→ x. The same way, the composition
of two isomorphisms, and the inverse of an isomorphism, are also isomorphisms.

If λ is a linear order, the set of λ-words over A is denoted Aλ, and a λ-language over A
is any subset of Aλ. If L is a λ-language over A, then we define Lc, the complement of L, as
the λ-language Aλ\L, this operation, together with the union ∪ and the intersection ∩, forms
the Boolean operations of Aλ. When the linear order λ is clear in the context, a λ-language
is simply called a language.

In this thesis, we simply denote a λ-language by the letter L, i.e. without any explicit
mention of the alphabet. In most cases, this will not be a problem since the considered
alphabet will be clear. Yet, in some cases, in particular in Subsection 1.2.4 and in the first
section of Chapter 3, we will want to avoid any possible ambiguity, and we will write 〈L,A〉
for L, to make clear that it shall be considered as a language over A and not over any bigger
alphabet.
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Finite words

Words of finite domains are of particular interest in this thesis. We call them finite words. Up
to isomorphism, we always suppose that the domain of a finite word w is the set {0, . . . , n−1}
itself, for a particular n ∈ ω. The number n in question is also called the length of w, and
denoted by |w|. For each letter a ∈ A, we also denote by |w|a the cardinality of the set
{x ∈ Dom(w) | w(x) = a}, meaning the number of occurrences of a in w.

In this thesis, for the sake of convenience, we make the choice to not take the empty word
into consideration when finite words are involved, unless explicitly stated otherwise. With
this convention, the set of finite words is denoted by A+, i.e. A+ :=

⊔
n∈N\{0}An, and by A∗

we denote the set of possibly empty finite words over A, i.e. A∗ :=
⊔
n∈NAn = A+ t {ε}.

We call a language of finite words over A any subset of A+ (or, once again, of A∗ when
it is explicitly stated than the empty word is considered). Thus, we also call ∅ the empty
language and A+ the full language over the alphabet A. Although alphabets are non-empty,
there will be along this thesis some constructions involving the notations ∅+ and ∅∗: the
former is understood as the empty language, while the latter is understood as {ε}, the
language composed of a unique word, the empty word. The Boolean operations of A+ are
composed of the union ∪, the intersection ∩, and the complement L 7→ Lc, where here Lc,
the complement of L, denotes here the language A+ \ L.

If w1 and w2 are two (possibly empty) finite words, over A and B respectively, of lengths p
and q respectively, then we define the concatenation (or product) of w1 and w2, written w1 ·
w2, as the finite word w over A∪B, of length p+q, defined by w(i) = w1(i) for 0 ≤ i < p and
w(i) = w2(i−p) for p ≤ i < p+q. We often use this notation to write w(0)·w(1) · · ·w(|w|−1)

for a finite word w, identifying any word of length 1 labelled by the letter a with the letter a
itself. If w is a finite word, and n ∈ N, then we denote by wn the product w · w · · ·w,
where w appears exactly n times (if n = 0 then it is the empty word ε). We call it the
exponentiation of w to the power n.

These notions of product and exponentiation are extended to languages: if L1 and L2 are
two languages of (possibly empty) words, over A and B respectively, then L1 ·L2 denotes the
concatenation (or product) of L1 and L2, defined as the language of finite words w over A∪B
that can be written as w1 ·w2, with w1 ∈ L1 and w2 ∈ L2. The same way, if L is a language
of finite words over A and n ∈ N, then Ln denotes the exponentiation of L to the power n,
defined as the set of words over A that can be written as w0 ·w1 · · ·wn−1, with each wi ∈ L.

If the alphabet A is linearly ordered, then we can also define a linear order on A∗. We
call it the lexicographic order, written ≤lex. It is defined by w1 ≤lex w2 if either w1 is a
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prefix of w2 (meaning that w2 = w1 · w3 for some word w3 ∈ A∗), or there exists some
position k ∈ Dom(w1) ∩ Dom(w2) such that w1(k) < w2(k) and w1(i) = w2(i) for all i < k.
In particular, ε ≤lex w for all words w ∈ A∗. If A is finite (and, once again, this is the
main assumption in the thesis, even when we do not specify it explicitly), then this order
restricted to each set An, for n ∈ N, is a well order. This is a clear consequence of the fact
that An is finite. However, except in the trivial case where A is a singleton, this statement
becomes false for the full set A∗, for if a and b are two distinct letters in A ordered by a < b,
then the language {ai · b | i ∈ N} ⊆ A∗ does not admit a lexicographically least word
(because ai+1 · b <lex a

i · b for every i ∈ N).

ω-words and Q-words

Another important class of words in this thesis is the class of ω-words. An ω-word is a word
whose domain is isomorphic to ω, the ordered set of natural numbers. Once again, up to
isomorphism, we always suppose that the domain of any ω-word is ω itself. We extend the
notions of concatenations and exponentiations defined in the previous paragraph: if w1 is
a finite word over A and w2 is an ω-word over B, then w1 · w2, the concatenation of w1

and w2, and wω1 , the exponentiation of w1 to the power ω, are also two ω-words. Formally,
if p is the length of w1, the former is defined as the ω-word w over A ∪ B with each
position i ∈ ω labelled by w1(i) if 0 ≤ i < p and by w2(i − p) if p ≤ i, while the latter is
defined as the ω-word w over A with each position i ∈ ω labelled by w1(i[p]), i[p] being the
unique j ∈ p such that i = p× k+ j for some k ∈ N. Notice that we can allow w1 to be the
empty word in the definition of w1 · w2, but not in the definition of wω1 .

We can also define a lexicographic order ≤lex on the set of ω-words over a linearly ordered
alphabet A. It is defined by w1 ≤lex w2 if either w1 = w2 or there exists a position k ∈ ω
such that w1(k) < w2(k) and w1(i) = w2(i) for all i < k. Similarly as for A+, ≤lex is a linear
order but not a well order (unless A is a singleton).

In this thesis, we will also consider Q-words, meaning words whose domain is (isomorphic
to) the set of rational numbers. The proof of Theorem 1.2 can be generalised, in order to
show that for any alphabet A, there exists, up to isomorphism, a unique Q-word w over A
that is densely labelled, min the sense that for each positions p < r and each letter a ∈ A,
there exists some position q labelled by a in w with p < q < r. We call this Q-word the
perfect shuffle over A, and denote it by Aη.
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Countable and finitary words

A word over an alphabet A whose domain is countable is called a countable word. The
class of countable words over A is denoted by A◦. As for finite words, when we introduce
a countable word, we consider it non-empty by default, unless we state it otherwise. As
Theorem 1.1 states that any countable linear order is isomorphic to some subset of Q, set
theory allows us to treat A◦ as a set, and we call a language of countable words any subset
of A◦. As usual, we provide A◦ with Boolean operations : ∪, ∩, and L 7→ Lc, which here
denotes the set A◦ \ L.

In this paragraph, we generalise the notion of concatenation which we previously defined
for finite and ω-words. Let I be a set, which we suppose linearly ordered, and, for each i ∈ I,
let wi be a countable word over A. We define the generalised concatenation, or simply con-
catenation, of the wi’s as being the word w over A of domain

⊔
i∈I
{
〈xi, i〉 | xi ∈ Dom(wi)

}
,

such that w(〈xi, i〉) = wi(xi) for each i ∈ I and xi ∈ Dom(wi). The domain is linearly
ordered by 〈xi, i〉 ≤ 〈yj, j〉 if either i < j, or i = j and xi ≤ yi in Dom(wi). We denote
by
∑

i∈I wi this concatenation. Since words over a singleton alphabet are identified with
their domains, we deduce a definition of a generalised concatenation of linear orders.

We use special notations in some particular cases. If I is (isomorphic to) {1, 2}, then
this concatenation is written w1 ·w2. Note that if w1 is a finite word and w2 is either a finite
word or an ω-word, it boils down to our previous definitions of concatenation. If I is ω
(resp. ω?), and if all the wi’s are isomorphic to a same word w, then this concatenation
is written wω (resp. wω?), and we call it the exponentiation of w to the power ω (resp. to
the power ω?). Once again, it coincides to our previous definition of exponentiation if w is
a finite word. Similarly, we write wn in the case I = n and all the wi’s are isomorphic to w.
Finally, if w0, . . . , wn−1 are words over A, then {w0, . . . , wi−1}η denotes the word

∑
q∈Qwu(q),

where u = {0, . . . , n−1}η is the perfect shuffle of {0, . . . , n−1}. This word is called the perfect
shuffle of the wi’s.

These concatenations and exponentiations allow us to give finite representations to some
countable words: finitary words. These words, first introduced in [LL66], are of great inter-
est, since they can be put in algorithms and can efficiently approach unrestricted countable
words (see the same article).

A finitary word over A is a word that can be constructed from single letters using finitely
many times the operations ·, (·)ω, (·)ω? , and (·)η. More formally: for each a ∈ A, the word
composed of a single position labelled by a is finitary; if w1 and w2 are both finitary, then so is
w1 ·w2; if w is a finitary, then so are wω and wω? ; if w0, . . . , wn−1 are all finitary, with n ∈ N,
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then so is {w0, . . . , wn−1}η. In particular, a finitary word is countable. As an example,
the Z-word over {a, b} in which each even position is labelled by the letter a and each odd
position is labelled by the letter b is finitary, because it is obtained as (a · b)ω? · (a · b)ω.
On the contrary, the ω-word Σi∈ωa · bi, consisting of i letters b between the i-th and the
(i+1)-th a is an example of a word that is not finitary, since it is does not fulfil the condition
stated in the following fact:

Fact 1.3. A finitary ω-word over A is necessary of the shape u·vω, with u ∈ A∗ and v ∈ A+.

The proof of this fact involves cuts : a cut of a linear order λ is a subset X ⊆ λ that is
closed downward, meaning that for all x ≤ y ∈ λ, if y ∈ X then x ∈ X. It is strict if it is
not λ itself.

Proof. Let us first notice that each strict cut of ω is finite. Therefore, the operations (·)ω?

and (·)η cannot be used to obtain an ω-word, since they would involve infinite strict cuts.
Similarly, one cannot use the operation (·)ω more than once, and the fact follows.

Since a word over a singleton alphabet is identified with its domain, the above operations
can be used to construct linear orders, and we deduce a notion of finitary linear orders. In
this case, we rather write λ1 + λ2 for λ1 · λ2 and λ× ω (resp. λ× ω?) for λω (resp. λω?), to
keep the operations consistent with the ordinal-theoretic ones (see [Sie58]). The previous
example Σi∈ωa · bi shows that a non-finitary word can yet have a finitary domain. Like for
words, a finitary linear order is necessarily countable, and, finally, a linear order obtained
only via the operations +, ×ω, and ×ω? is necessarily scattered: only the operation (·)η can
create dense subsets.

Fact 1.4. A finitary linear order whose construction does not involve the operation (·)η is
scattered.

Indeed, one clearly sees that the concatenation preserves the scattered property. The
same for the two other operations ×ω and ×ω?. Moreover, Haussdorf’s theorem [Hau08]
characterises the countable linear orders that are scattered as the ones obtained from sin-
gleton sets and using generalised concatenation over the linear orders {1, 2}, ω, and ω?.

1.2 Logic and regularity

Most of our objectives concern the ability to express some properties on linear orders and
on languages of words in certain formalisms, which we present in this subsection. In Sub-
sections 1.2.1 and 1.2.2, we give a formal definition of Modal Second-Order Logic and some

28



of its common fragments, such as First-Order Logic. Then, in Subsection 1.2.3, we intro-
duce Ehrenfeucht-Fraïssé games, important tools to disprove the possibility to express some
properties in said fragments. Finally, in Subsection 1.2.4, we see how Monadic Second-Order
Logic and its fragments are understood in the framework of words, and we define at the
same time the classes of languages which we study in the thesis.

1.2.1 Model theory and Monadic Second-Order Logic

The formalisms which we work on are characterised by a grammar, i.e. a family of rules
allowing the construction of mathematical sentences, and by a signature, that consists of the
mathematical objects allowed as a “basis” of the sentences. For the sake of completeness, we
give here a complete survey of these notions, and also of the link between the sentences in
the formalism—the syntax, and their interpretations in an actual mathematical model—the
semantics. These definitions are standard and can be found for instance in [Sha91].

A signature Σ is a set of symbols, each given with its own arity n ∈ N, meaning its own
number of arguments. Some are called functional symbols (generally written with lower case
letters such as c, f, g, h . . . ), and others are called relational symbols (generally written with
capital letters such as P,Q,R, S . . . ). A functional symbol of arity 0 is called a constant
symbol, and a relational symbol of arity 1 is called a predicate symbol. A model of Σ is a set
M with an interpretation of each symbol s ∈ Σ, written sM and given in the following way:
the interpretation of a functional symbol f of arity n is a function fM : Mn → M, and
the interpretation of a relational symbol R of arity n is an n-ary relation RM ⊆ Mn. In
particular, the interpretation of a constant symbol c is an element cM ∈M. It is generally
clear whether we speak about a symbol in the signature or about its interpretation in
a model, therefore, we will often simply write s for sM. By default, all the signatures
involved in the thesis contain the equality symbol =, even if we do not explicitly state it.
The interpretation =M of this symbol is the usual relation

{
〈x, x〉 | x ∈M

}
.

Let M and N be two models of a signature Σ. A function ι from M to N is an iso-
morphism if it is bijective and if it preserves the interpretations of the symbols of Σ,
i.e. ι

(
fM(m0, . . . ,mn−1)

)
= fN

(
ι(m0), . . . , ι(mn−1)

)
for each functional symbol f of Σ of

arity n, and all m0, . . . ,mn−1 in M, and RM(m0, . . . ,mn−1) if and only if RN
(
ι(m0), . . . ,

ι(mn−1)
)
for each relational symbol R of arity n and all m0, . . . ,mn−1 inM.

We are given a countable number of symbols, which we call the first-order variables : x, y,
z, . . . , and another, disjoint, whose symbols are called monadic second-order variables, or
simply second-order variables : X, Y, Z, . . . Given a signature Σ, we define inductively a no-
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tion of terms over Σ (or simply terms): each first-order variable x is a term; if c ∈ Σ is a
constant symbol, then c is a term; and if t0, . . . , tn−1 are terms and f ∈ Σ is a functional
symbol of arity n, then also f(t0, . . . , tn−1) is a term.

Now, with this notion of terms, we define inductively the notion ofMonadic Second-Order
formulae over Σ, whose class forms theMonadic Second-Order Logic over Σ, written MSO[Σ]

(or simply MSO): if t0, . . . , tn−1 are terms and R ∈ Σ is a relational symbol of arity n,
then R(t0, . . . , tn−1) is a formula; if t is a term and X a second-order variable, then t ∈ X
is a formula; if ϕ is a formula, then so is ¬ϕ; if ϕ1 and ϕ2 are two formulae, then so
is ϕ1 ∨ ϕ2; if ϕ is a formula and x is a first-order variable, then ∃x. ϕ is a formula; finally,
if ϕ is a formula and X is a second-order variable, then ∃X. ϕ is a formula. A formula of
the shape R(t0, . . . , tn−1) is called atomic, the formula ¬ϕ is called the negation of ϕ, the
formula ϕ1 ∨ ϕ2 is the disjunction of ϕ1 and ϕ2, and the symbol ∃ is called the existential
quantifier (and is of the same order as the variable that follows it).

The precedence of the constructors is the following: ¬ binds stronger than ∨, which binds
stronger than the existential quantifier. Hence, for instance, if P is a predicate symbol and ϕ
a formula, then ∃x. ¬P (x)∨ϕ shall be understood as the formula ∃x.

(
(¬P (x))∨ϕ

)
. Also,

we consider the precedence to the left for different constructors ∨: if ϕ1, ϕ2, and ϕ3 are
three formulae, then ϕ1∨ϕ2∨ϕ3 shall be understood as the formula (ϕ1∨ϕ2)∨ϕ3. Finally,
if (ϕi)i∈n is a family of formulae, we write

∨
i∈n ϕi for ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕn−1.

To each term t over Σ, we assign the set V ar(t) of variables that occur in t. It is formally
defined inductively, by: V ar(c) = ∅ for each constant symbol c, V ar(x) = {x} for each
first-order variable x, and V ar(f(t0, . . . , tn−1)) =

⋃
i∈n V ar(ti) for every n-ary functional

symbol f and all terms t0, . . . , tn−1.
Now, we assign, to each MSO[Σ] formula ϕ, the set FreeV ar(ϕ) of its free variables : it

is the set of variables (both first- and second-order) that occur in ϕ but that are not intro-
duced by an existential quantifier ∃. More formally, it is inductively defined as follows: if R
is an n-ary relational symbol and for each i ∈ n, ti is a term, then FreeV ar(R(t0, . . . , tn−1))

is
⋃
i∈n V ar(ti); if t is a term and X a second-order variable, then FreeV ar(t∈X) is the

set V ar(t) ∪ {X}; if ϕ1 and ϕ2 are two formulae, then FreeV ar(ϕ1∨ϕ2) is FreeV ar(ϕ1) ∪
FreeV ar(ϕ2); if ϕ is a formula and x, X are variables (respectively first- and second-
order), then FreeV ar(¬ϕ) is FreeV ar(ϕ), FreeV ar(∃x. ϕ) is FreeV ar(ϕ) \ {x}, and
FreeV ar(∃X. ϕ) is FreeV ar(ϕ) \ {X}. A variable that occurs in ϕ but is not free is
called a bounded variable of ϕ. For instance, x is a free variable of the formula ∃y. R(x, y),
while y is bounded. Notice that, if x is a bounded variable of the formula ∃x. Q(x), it is
yet a free variable of the formula P (x) ∨ ∃x. Q(x).
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We usually write a formula ϕ with its free variables in parentheses, meaning ϕ(x0, . . . ,

xp−1, X0, . . . Xq−1) if its free variables are x0, . . . , xp−1, X0, . . . Xq−1. We say that a formula
is a sentence if it is without free variables.

As symbols of a signature Σ have interpretations in a modelM, MSO[Σ] formulae have
an induced semantic interpretations in M, first introduced by Tarski in his definition of
truth [Tar33]1. This is now considered as the standard way of defining the satisfaction of
a formula in a model.

We first have a notion of valuations. LetM be a model of a signature Σ. A valuation
inM is a function ρ from a set V of variables that maps first-order variables of V to elements
of M and second-order variables of V to subsets of M. If ρ is a valuation of a set V of
variables, x is a first-order variable, and m ∈M, then by ρ[x 7→m] we denote the valuation
of V ∪ {x} that maps x to m, and that agrees with ρ on all other variables in V . We have
a similar definition for ρ[X 7→M ], with X being a second-order variable and M ⊆M.

We use these valuations to evaluate terms into elements ofM: for each term t, each set V
of variables such that V ar(t) ⊆ V , and each valuation of V inM, we define the ρ-evaluation
of t, written tρ this way: cρ = cM for every constant symbol c, xρ = ρ(x) for every first-
order variable, and f(t0, . . . , tn−1)ρ = fM

(
tρ0, . . . , t

ρ
n−1

)
for every n-ary functional symbol

and terms t0, . . . , tn−1.
Now, let us consider ϕ a formula over a signature Σ. LetM be a model of Σ, and let ρ

be a valuation of V in M, with V being a set of variables such that FreeV ar(ϕ) ⊆ V .
We inductively define the fact that M satisfies ϕ up to the valuation ρ, which we denote
byM, ρ � ϕ.
− If R is a relational symbol of arity n, and if t0, . . . , tn−1 are n terms over Σ, then
M, ρ � R(t0, . . . , tn−1) if the n-tuple

〈
tρ0, . . . , t

ρ
n−1

〉
is in RM.

− If t is a term, and X a second-order variable, thenM, ρ � t ∈ X if the element tρ is
in the set ρ(X).

− If ϕ is a formula, thenM, ρ � ¬ϕ if M does not satisfy ϕ up to ρ, a condition which
we denote byM, ρ 2 ϕ.

− If ϕ1 and ϕ2 are two formulae, then M, ρ � ϕ1∨ϕ2 if M, ρ � ϕ1 or M, ρ � ϕ2.
We remind that this “or” has to be understood in the mathematical inclusive sense,
meaning that both conditions can be true.

− If ϕ is a formula, then M � ∃x. ϕ if there exists some element m ∈ M such
thatM, ρ[x 7→m] � ϕ.

1To be more precise, Tarski introduced this notion in the context of First-Order Logic, which we discuss
in Subsection 1.2.2.
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− Similarly, if ϕ is a formula, then M, ρ � ∃X. ϕ if there exists some subset M ⊆ M
such thatM, ρ[X 7→M ] � ϕ.

Starting from now, when we write M, ρ � ϕ, we always assume that ρ is a valuation
defined on a set V of variables such that FreeV ar(ϕ) ⊆ V , even without stating it explicitly.

Sometimes, we will write the valuations inside the parentheses of the formulae. For
instance, if ϕ(x) is a formula with a single free first-order variable, and if we actually defined
some m as a particular element of M, then we will simply write M � ϕ(m) for M, x 7→
m � ϕ(x). We will make sure along the thesis that no confusion can arise from this.

An first important result is that satisfactions are preserved by isomorphisms of models:

Fact 1.5. Let M and N be two models of a signature Σ. We suppose that there exists
an isomorphism ι fromM to N . Then for every MSO[Σ] formula ϕ, and every valuation ρ,
we haveM, ρ � ϕ if and only if N , ι ◦ ρ � ϕ.

This fact is easily shown by induction on ϕ.
In the thesis, we will simplify our formulae by defining some well-known constructors

with the ones already introduced: we define the conjunction of ϕ1 and ϕ2, written ϕ1 ∧ ϕ2,
as ¬(¬ϕ1 ∨ ¬ϕ2); we define the implication of ϕ2 from ϕ1, written ϕ1 =⇒ ϕ2, as ¬ϕ1 ∨ ϕ2;
we define the equivalence of ϕ1 and ϕ2, written ϕ1 ⇐⇒ ϕ2, as (ϕ1 =⇒ ϕ2) ∧ (ϕ2 =⇒ ϕ1);
and we write ∀x. ϕ(x) for ¬∃x. ¬ϕ(x), ∀ being called the universal quantifier (we define
a similar quantifier for second-order variables). The notions of free variables and satisfaction
naturally follow: for instance,M � ϕ1 ∧ϕ2 is true if and only if bothM � ϕ1 andM � ϕ2

are. Also, we define > as the formula ∀x. x = x, it is satisfied by all models. On the
contrary, ⊥, defined as ¬>, is never satisfied. A final shortened notation which we give is
the existential quantifier with unicity : if ϕ(x) is a formula with a free first-order variable x,
then ∃!x. ϕ(x) stands for the formula ∃x. ϕ(x) ∧ ∀y. ϕ(y) =⇒ x = y. It expresses the
existence of a unique element x that satisfies ϕ. We naturally have such a similar quantifier
for second-order variables.

Moreover, we often simplify the use of the quantifiers: we write ∃x0, . . . , xp−1, X0, . . . ,

Xq−1. ϕ for ∃x0. . . .∃xp−1.∃X0. . . .∃Xq−1. ϕ, we write ∃x∈X. ϕ(x) for ∃x. x∈X ∧ϕ(x), and
similarly for universal quantifiers (∀x∈X. ϕ(x) shall be understood as ∀x. x∈X =⇒ ϕ(x)).
Similarly as we use the notation

∨
i∈n ϕi (see page 30), we write

∧
i∈n ϕi for the formula ϕ1∧

ϕ2 ∧ · · · ∧ ϕn−1. The constructors ¬, ∨, and ∧ are called the Boolean operators of Monadic
Second-Order Logic.

Finally, we give a notion of subformulae: if ϕ is a formula, we inductively define
a set SubForm(ϕ) of formulae in the following way: if ϕ is of the shape R(t0, . . . , tn−1) or of
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the shape t ∈ X, then SubForm(ϕ) = {ϕ}; if ϕ is of the shape ¬ψ, of the shape ∃x. ψ, or of
the shape ∃X. ψ, then SubForm(ϕ) = {ϕ}∪SubForm(ψ); and if ϕ is of the shape ϕ1∨ϕ2,
then SubForm(ϕ) = {ϕ} ∪ SubForm(ϕ1) ∪ SubForm(ϕ2). Similarly for the constructors
defined in the previous paragraph. A subformula of ϕ is any formula in SubForm(ϕ).

1.2.2 First-Order Logic and fragments using k variables

In this subsection, we define some fragments of MSO which we also study in the thesis.
Let Σ be a signature. First-Order Logic over Σ, written FO[Σ], is the subclass of MSO[Σ]

formulae ϕ that do not contain second-order quantifiers: no subformula of ϕ is of the
shape ∃X. ψ nor ∀X. ψ. We say that ϕ is an FO[Σ] formula, or that it is first order. Nat-
urally, First-Order Logic inherits all the notions defined in Subsection 1.2.1 (free variables,
satisfaction. . . ), as well as the simplifications of notations. Notice that our definition al-
lows FO[Σ] formulae to have free second-order variables. A complete survey of First-Order
Logic can be found in [Rau09].

Many fragments of MSO stronger than FO have been studied. An example of them is
Weak Monadic Second-Order Logic (denoted by WMSO), see for instance [Rab70]. In this
formalism, the second-order quantifiers ∃fin and ∀fin only range over finite subsets of the
models. Yet, this grammar is not to be worked with in the thesis.

Finally, we introduce another fragment, this time of FO. Let k be some natural number.
We define First-Order Logic over Σ with k variables, written FOk[Σ], as the class of formulae
in FO[Σ] that quantify over only k distinct variables, usually x0, . . . , xk−1. For instance, if
P is a predicate symbol of Σ, then the formula ϕ(x) defined as

∃y, z. P (x) ∧ P (y) ∧ P (z) ∧ x 6= y ∧ y 6= z ∧ z 6= x

is an FO2[Σ] formula but not an FO1[Σ] formula, since it quantifies over two variables y
and z.

1.2.3 Ehrenfeucht-Fraïssé games

First introduced as the back-and-forth method in [Fra55], and then formalised as games
in [Ehr61], Ehrenfeucht-Fraïssé games are a powerful tool to prove the impossibility to
express some properties in given formalisms, such as FO and MSO.

In order to detail the games, we must define two notions: a notion of submodels, and
a notion of quantifier depth of a formula.
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Let Σ be a signature, and let us suppose that it contains only relational symbols. LetM
be a model of Σ, and letM′ be a subset of it. It can be seen as a model of Σ, where relational
symbols have their interpretations induced from their interpretations in M. Under this
assumption, M′ is called a submodel of M. If m0, . . . ,mk−1 are elements of M, then
a particular submodel is the set {m0, . . . ,mk−1}. We denote it byM�〈m0, . . . ,mk−1〉.

A notion of submodels can also be considered when Σ does contain functional symbols,
but in this thesis, we will work only with signatures that are fully relational, therefore our
definition will be sufficient.

LetM and N be two models of a relational signature Σ, let m0, . . . ,mk−1 (resp. n0, . . . ,

nk−1) be elements ofM (resp. of N ). We say that the k-tuples 〈m0, . . . ,mk−1〉 and 〈n0, . . . ,

nk−1〉 are similar if the function mapping each mi to ni exists (in the sense that mi = mj

if and only if ni = nj for all i, j ∈ k) and is an isomorphism from M�〈m0, . . . ,mk−1〉
to N �〈n0, . . . , nk−1〉 (we refer to the page 29 for the definition of an isomorphism of models).
In particular, the order of the elements is important.

Finally, we define the quantifier depth of a formula ϕ, denoted by ∃∀−depth(ϕ). Its
definition is inductive. It is equal to 0 if ϕ is atomic, equal to ∃∀−depth(ψ) if ϕ is of
the shape ¬ψ, equal to max

(
∃∀−depth(ϕ1),∃∀−depth(ϕ2)

)
if ϕ is of the shape ϕ1 ∨ ϕ2

or of the shape ϕ1 ∧ ϕ2, and equal to ∃∀−depth(ψ) + 1 if ϕ is of the shape ∃x. ψ, ∀x. ψ,
∃X. ψ, or ∀X. ψ. We write MSOd[Σ] for the class of MSO[Σ] formulae of quantifier depth
at most d. More generally, if C is any class of MSO formulae, then we denote by Cd the
class of formulae in C of quantifier depth at most d.

Now that we have these notions of quantifier depth, we can define the Ehrenfeucht-Fraïssé
game, and explain how it is linked to Monadic Second-Order Logic.

The Ehrenfeucht-Fraïssé game for FO[Σ] and (M,N ), with d turns, which we denote
here by GFO[Σ]

d (M,N ), is a game played between two players, one called Spoiler, the other
called Duplicator. The rules are the following, on each turn i ∈ d:
− Spoiler selects an element of one of the two models;
− Duplicator also selects an element, but in the other model as Spoiler, more precisely:

if Spoiler selected an element mi (resp. ni) inM (resp. in N ), then Duplicator has to
select an element ni (resp. mi) in N (resp. inM).

After the d turns, Spoiler and Duplicator have defined together two d-tuples 〈m0, . . . ,

md−1〉, 〈n0, . . . , nd−1〉, inM and N respectively. We say that Duplicator wins the game if
these d-tuples are similar.

Intuitively, Spoiler wants to prove that the structures of two models are different, while
Duplicator tries to show that, even if they are not the same, the structures do have some
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similarities. We say that the latter player has a winning strategy if whatever the selections
made by Spoiler, he has a possibility to select elements that ensure him the victory, and
we denote byM ≡d N this assumption (the signature Σ being implicit). It is a standard
result that this relation ≡d is an equivalence relation over models of Σ, see the definition on
page 222.

Notice that the rules do not forbid Spoiler to change the model he selects an object from:
if he selects an element m0 inM on turn 0, he has perfectly the right to select an element n1

in N on the next turn.

The following theorem relates this game with the class FOd[Σ]:

Theorem 1.6 ([EF95]). Let Σ be a relational signature, M, N two models of Σ, and d

some natural number. If M ≡d N , then the two models M and N are indistinguishable
in FOd[Σ]. Moreover, if Σ is finite, then the converse is also true.

In the theorem,M and N being indistinguishable in a formalism C means that for any
sentence ϕ in C without free variables, we have thatM satisfies ϕ if and only so does N .

This theorem is very useful to prove that some class C of models is not definable in FO[Σ]:
if for all d ∈ N, we can exhibit two modelsMd and Nd of Σ such thatMd is in C, Nd is not,
andMd ≡d Nd, then we know by Theorem 1.6 that there is no hope of defining a sentence ϕC
such that a model is in C if and only if it satisfies ϕC.

We now present a variation of the game, in which players are allowed to select not only
elements, but also subsets of the models. For this, we need a notion of similarity when such
subsets are considered.

Each subset M of a model M can be seen as the interpretation PM of a new predi-
cate symbol P , with M = {x ∈ M | M � P (x)}. Therefore, if M0, . . .Ml−1 are subsets
of M, and N0, . . . , Nl−1 are subsets of N , M and N being two models of Σ, then we
can see M and N as models of the new signature Σ t {P0, . . . , Pl−1}, with Mj = PMj

and Nj = PNj for each j ∈ `, and say that the tuples 〈m0, . . . ,mk−1,M0, . . . ,M`−1〉
and 〈n0, . . . , nk−1, N0, . . . , N`−1〉 are similar if the k-tuples 〈m0, . . . ,mk−1〉 and 〈n0, . . . , nk−1〉
are similar when considering the new signature Σt{P0, . . . , P`−1}. In other words, 〈m0, . . . ,

mk−1,M0, . . . ,M`−1〉 and 〈n0, . . . , nk−1, N0, . . . , N`−1〉 are similar if the function mi 7→ ni

exists, is an isomorphism fromM�〈m0, . . . ,mk−1〉 to N �〈n0, . . . , nk−1〉, and if moreover we
have mi ∈Mj if and only if ni ∈ Nj for all i ∈ k, j ∈ `.

2Technically, we defined equivalence relations on sets, and the models of Σ form a class, but this will not
be problematic.
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Now, in the new game, denoted by GMSO[Σ]
d (M,N ), as stated above, Spoiler decides on

each turn i to select a single element, or a subset, in one of the two models, and Duplicator
has to answer with an object of the same type (meaning an element if Spoiler selected
an element, and a subset if he selected a subset) and in the other model. After d turns,
Spoiler and Duplicator have defined together two d-tuples 〈m0, . . . ,mk−1,M0, . . . ,M`−1〉,
〈n0, . . . , nk−1, N0, . . . , N`−1〉, with k+` = d. We say that Duplicator wins the game if these d-
tuples are similar, in the second sense defined above. And, as previously, we say that he
has a winning strategy, which we write M ∼=d N , if whatever selections made by Spoiler,
he has a possibility to select elements and subsets that ensure him the victory. We write
M ∼= N ifM ∼=d N for all d ∈ N. These two relations are also equivalence relations over
models of Σ.

In the same way that GFO[Σ]
d (M,N ) is linked with definability in First-Order Logic, this

new game GMSO[Σ]
d (M,N ) is linked with definability in Monadic Second-Order Logic:

Theorem 1.7. Let Σ be a relational signature, M, N two models of Σ, and d some nat-
ural number. If M ∼=d N , then the models M and N are indistinguishable in MSOd[Σ].
Moreover, if Σ is finite, then the converse is also true.

A proof of Theorem 1.7 can be directly adapted from the proof of Theorem 1.6 given
in [EF95].

Hence, similarly, this version of the game is very useful to prove that a given class of
models is not definable by an MSO[Σ] sentence.

We will use this theorem when working with linear orders. We will also make use of the
following proposition, which can be seen as a variant of the composition method often used
by Shelah [She75]:

Proposition 1.8. Let λ1, λ2, µ1, and µ2 be four linear orders, seen as models of the
signature Σ = {<}. We suppose that λ1

∼= µ1 and that λ2
∼= µ2. Then λ1+λ2

∼= µ1+µ2.

A proof of this proposition is rather simple, Duplicator’s winning strategy for the
game GMSO[Σ]

d 〈λ1+λ2, µ1+µ2〉 being basically the “concatenation” of his winning strategies
for GMSO[Σ]

d 〈λ1, µ1〉 and GMSO[Σ]
d 〈λ2, µ2〉.

Finally, we give a last variation of the original Ehrenfeucht-Fraïssé game: the first-order
variation with k tokens, written GFOk[Σ]

d 〈M,N〉.
In this version, we consider, as previously, two modelsM and N of a relational signa-

ture Σ, but, this time, 2k tokens are given between the two players: two tokens with the
number 0 on them, two tokens with the number 1 on them, and so on up to the number k−1.
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The tokens with the number j on them are called the two j-tokens. At the beginning of the
game, all the tokens are unplaced. Then, at each turn, Spoiler takes one token (let us say
that it is a j-token) and places it on one element of one of the models. Notice that, before
that, this token could be unplaced, as it could already be placed somewhere on one of the
models. After this, Duplicator takes the other j-token, and places it on an element of the
other model.

With these rules, we ensure that for each j ∈ k, either the two j-tokens are unplaced, or
they are both placed on the two different models. At each turn i ∈ d, we denote by Ei the
set of numbers j in {0, . . . , k−1} such that, after turn i, the two j-tokens have been placed
on the models. Hence, after each turn i, the two players have defined two |Ei|-tuples: one
tuple (mj)j∈Ei of elements of M, and one tuple (nj)j∈Ei of elements of N . We say that
Duplicator wins this game if after each turn i ∈ d, these two tuples are similar (in the first
sense, since no subsets are involved here). We writeM ≡kd N if Duplicator has a winning
strategy (the notion of a winning strategy being similar as the ones above). Finally, we
write M ≡k N if M ≡kd N for every d ∈ N. Like the previous relations, ≡kd and ≡k are
equivalence relations over models of Σ.

Now, we can state the following theorem linking this variation and the class FOk[Σ]:

Theorem 1.9 ([Imm99]). Let Σ be a relational signature,M, N two models of Σ, and k, d,
two natural numbers. If M ≡kd N , then the models M and N are indistinguishable
in FOk

d[Σ]. Moreover, if Σ is finite, then the converse is also true.

There are many more variations of the original Ehrenfeucht-Fraïssé game. In fact, there
are as many variations as there are formalisms. However, only the ones introduced in this
section will be used later in the thesis.

1.2.4 Regular and First-Order Logic definable languages of words

In Subsections 1.2.1 and 1.2.2, we introduced MSO and some of its fragments, in the general
sense. Here, we focus our study of these formalisms in the case of words.

Let A be an alphabet. We consider the signature A t {<}, where: for each a ∈ A, a is
a predicate (sometimes also denoted by Pa in the literature), and < is a binary relational
symbol. Amodel of At{<} is any word w over A: the elements of the model are the positions
of Dom(w), the interpretation <w of < in w is naturally the order of Dom(w), and the
interpretation aw of the predicate symbol a, for a ∈ A, is the set {x ∈ Dom(w) | w(x) = a}
of positions labelled by a. Since we always suppose the equality symbol is in the signature
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(see our remark about this convention on page 29), we can also use the non-strict order
relation ≤ when needed. Finally, we allow some natural shortcuts in the grammar: for
instance ∃y<x. ϕ(x, y) is a shortened notation for the formula ∃y. y<x ∧ ϕ(x, y).

If ϕ is an MSO[A, <] formula, with A being an alphabet, and if λ is a linear order, then
we denote by Lλ(ϕ) the λ-language {w ∈ Aλ | w � ϕ}, and we call it the language of ϕ
over λ. We also define L+(ϕ) := {w ∈ A+ | w � ϕ} and L◦(ϕ) := {w ∈ A◦ | w � ϕ}, the
languages of ϕ, respectively in the cases of finite and of countable words. In the thesis, we
will often simply write L(ϕ) for all these languages, the context making it clear whether
we speak of finite words, of countable words, or of words over a particular linear order λ.
A language over A is called regular if it is L(ϕ) for some MSO[A, <] formula ϕ. In this case
we say that it is defined by ϕ. We denote by MSO[A, <], with bold letters, the class of
regular languages over the alphabet A, and, more generally, MSO[<] is the class of regular
languages over any alphabet.

We extend theses notions of definability to subclasses of MSO[A, <] formulae. In general,
if C is a class of formulae (for instance the class FO[A, <]), then we say that a language L
of words is definable in C if it is L(ϕ) for some formula ϕ in C, and we denote by C, with
bold letters, the class of these languages of words definable in C. Once again, the context
making it clear whether we consider these languages over finite words, over countable words,
or over a fixed linear order.

We also extend these notions to relations: ifR is a binary relation over a linear order λ, we
say that it is regular (resp. definable in C) if there exists some MSO[A, <] formula (resp. some
formula in C) ϕ such that R =

{
〈x, y〉 ∈ λ×λ | λ � ϕ(x, y)

}
. We do the same for predicates,

for n-ary relations, for relations between elements and subsets, etc.
In the case of finite words, we will often consider another relation between positions: the

successor relation, denoted by the bold letter s. If the domain is the natural number n, and
if x, y ∈ n, then s(x, y) expresses that y = x+1. In the literature, s is also often defined
as a function from n to itself, with each element x 6= n−1 being mapped to x+1 and n−1

being mapped to itself. When at least two variables are allowed in the formulae, these two
definitions are equivalent, and, in the thesis, we choose the former option, in order to have
a fully relational signature At{s}. Naturally, this successor relation can also be introduced
when considering ω-words.

We will now focus on the context of finite words, and state some known results of inclu-
sions and equalities between the different fragments (MSO, FO, FOk . . .). The majority
of the inclusions, but not all of them, are naturally deduced from the richness of the for-
malisms: if a first formalism is richer than a second, then any language definable in the
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latter is naturally also definable in the former.
A first thing to notice is that using the successor relation s or the order relation does

not change the expressive power of MSO:

Proposition 1.10. In the case of finite words, the following three classes have exactly the
same languages: MSO[<], MSO[s], and MSO[<, s].

Proof. First, if x and y are two positions of a word, then the property s(x, y) can be defined
by the formula x<y ∧ ∀z. x<z =⇒ y≤z, which is an MSO[<] formula. Reciprocally, x ≤ y

can be defined by the MSO[s] formula saying that any subset of the domain containing x
and stable by s necessarily contains y: ∀X.

[
x ∈ X ∧ ∀x0, x1.

(
x0 ∈ X ∧ s(x0, x1)

)
=⇒ x1 ∈

X
]

=⇒ y ∈ X.

Hence, in Monadic Second-Order Logic, in the case of finite words, the question of using
one relation or the other is simply a matter of convenience: we will simply write MSO[<]

for the class, but we will also use s whenever we need it. Notice that our definition of the
successor relation, using <, does not involve any second-order variable, hence, it can also
be used to prove the inclusion FO[s] ⊆ FO[<]:

Corollary 1.11. In the case of finite words, we have FO[s] ⊆ FO[<] = FO[<, s].

Hence, we can now simply write FO[<] for FO[<, s], even if we use the relation s in our
formulae when it is useful.

Now, we show some results for the classes FOk[Σ]. First, it is evident that, independently
of the signature Σ, FOk[Σ] ⊆ FOk′[Σ] as soon as k ≤ k′. An important result was shown
in Kamp’s PhD thesis [Kam68]. It states that we reach the whole class FO[<] with only 3

variables:

Theorem 1.12 ([Kam68]). In the case of finite words, we have FO3[<] = FO3[<, s] =

FO[<].

All these inclusions and equalities leads to the following graph of class of languages of
finite words, each arrow representing an inclusion:

On the last line of the graph, the classes FOk[ ] and FO[ ] are the classes of languages
defined by formulae using neither the order <, nor the successor symbol s, but only the
predicate symbols inherited from the alphabets. We will tell more about these languages in
Chapter 2.

In fact, it happens that all the inclusions of Figure 1.1 are strict, as we are going to see
later in the thesis.
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FO2[ ] FOk[ ] FO[ ]

FO2[<]∩ FO2[s] FO2[s] FOk[s] FO[s]

FO2[<] FO2[<, s] FO[<]

MSO[<]

· · · · · ·

· · · · · ·

Figure 1.1: The main classes of regular languages of finite words studied in the thesis.

The semantic interpretation of the constructors ∨, ∧, and ¬ (see pages 31 and 32) make
it clear that all of these classes are closed under Boolean operations : if the languages L1

and L2 are in one of these classes, say C, then the languages L1 ∪ L2, L1 ∩ L2, and Lc
1 are

also in C.
Additionally, these classes have the other property of being closed under extensions of

alphabets : if L is a language of finite words over some alphabet A1 (i.e. we consider the
language 〈L,A1〉, see page 24) that is in one of these classes, say C, and if A2 is an alphabet
such that A1 ⊆ A2, then the language 〈L,A2〉, is also inC. Indeed, if ϕ is a formula in C that
defines 〈L,A1〉, then the formula ϕ∧∀x.

∨
a∈A1

a(x) is also in C and clearly defines 〈L,A2〉.
Notice that these properties of closure under Boolean operations and extensions of al-

phabets hold not only for the classes of Fig 1.1 over finite words, but also for classes such
as MSO[<] over countable words, or the class of languages of countable words definable by
a formula in WMSO (see the definition on page 33).

A class of languages that has some natural closure properties such as these, is called
robust. There is no formal definition of robustness, since many different closures can be
considered, as we shall see in the very next section of this chapter. Most well-studied classes
happen to have these closures under Boolean operations and extensions of alphabets.

1.3 Algebra

Regular languages are often studied through algebraic objects, i.e. sets with operations satis-
fying some properties. This usage is convenient since, as we will show it in this section, a lot
of theorems highlight that regular languages, even if infinite, admit finite representations.
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In Subsection 1.3.1, we show the link between semigroups and languages over finite
words. In particular, we present the Myhill-Nerode theorem, which states that regular lan-
guages of finite words can be represented with finite semigroups. In Subsection 1.3.2, we see
that natural closures of classes of languages of finite words, such as closure under Boolean
operations, correspond to particular closures of classes of finite semigroups, called varieties
of finite semigroups. Finally, in Subsection 1.3.3, we introduce ◦-semigroups and ◦-alge-
brae (the symbol ◦ being pronounced “circle”), which can be seen as a generalisation of
semigroups, and which are useful in the study of languages of countable words.

1.3.1 Semigroups and their connections to classes of languages of

finite words

A law over a set S is any function from S2 to S, we generally denote it by the symbol ∗,
in the thesis. It is called associative if it satisfies (r ∗ s) ∗ t = r ∗ (s ∗ t) for all r, s, t ∈ S.
A non-empty set S with an associative law ∗ is called a semigroup. The law is also called
the product of S. Because it is associative, if s0, . . . , sn−1 are n elements of S, we can simply
write s0 ∗s1 ∗s2 ∗ · · · ∗sn−2 ∗sn−1 for (· · · ((s0 ∗s1)∗s2)∗ · · · ∗sn−2)∗sn−1, i.e. without taking
care of the parentheses. If s ∈ S and n is a positive natural number, then we write sn for
the product s ∗ s ∗ · · · ∗ s, with s appearing exactly n times.

If S1 and S2 are two semigroups, then we denote by S1×S2 the product semigroup of S1

and S2, with its law defined by 〈s1, s2〉∗〈t1, t2〉 = 〈s1∗t1, s2∗t2〉 for s1, t1 ∈ S1 and s2, t2 ∈ S2.
A subsemigroup of a semigroup S is a subset T of S that is stable by the law of S, i.e. that
is such that for all s, t ∈ S, if s, t ∈ T then also s ∗ t ∈ T . It is immediate to see that
in this case, T with ∗ restricted to it is a semigroup. Finally, a homomorphism h between
two semigroups S1 and S2 is a function from S1 to S2 that preserves the associative law,
meaning that for all s, t ∈ S1, we have h(s ∗ t) = h(s) ∗ h(t). Notice that the symbol ∗ on
the left-hand side of the equality refers to the law of S1, while the one on the right-hand
side refers to the law of S2. In this case, the subset h(S1) ⊆ S2 of images of S1 under h is
a subsemigroup of S2. The composition of two homomorphisms is also a homomorphism.
Moreover, a homomorphism is called an isomorphism (of semigroups) if it is also bijective.
The inverse function of an isomorphism is an isomorphism, and the composition of two
isomorphisms is also an isomorphism.

For any alphabet A, the set A+ of finite words over A, with the concatenation operation,
is a semigroup, called the free semigroup generated by A. A language L ⊆ A+ is recognised
by a semigroup S if there exists a homomorphism h between A+ and S such that L =
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h−1(H) := {w ∈ A+ | h(w) ∈ H} for some H ⊆ S, or, equivalently, if L = h−1(h(L)). We
also say that the language L is recognised by S via h. Notice that, if h is any homomorphism
from A+ to a semigroup S, then for every natural number n and all letters a0, . . . , an−1, we
have h(a0 ·a1 · · · an−1) = h(a0)∗h(a1)∗· · ·∗h(an−1). This means that the image of any word
of A+ by h is induced from the images of the letters, and, therefore, throughout the thesis,
we often define such a homomorphism simply by its values on the letters. In particular,
a homomorphism between A+ to B+ is induced from a function from letters of A to finite
words over B.

Let L ⊆ A+ be a language of finite words, over an alphabet A. We define the Myrill-Ne-
rode relation ≡L over A+, first introduced in [Ner58], by u ≡L v if for all w1, w2 ∈ A∗, we
have w1 · u ·w2 ∈ L if and only if w1 · v ·w2 ∈ L. We verify easily that ≡L is an equivalence
relation on A+ (see the definition on page 22).

Moreover, ≡L is a congruence: it has the property that for all u1, u2, v1, and v2 in A+,
if u1 ≡L v1 and u2 ≡L v2 then u1 · u2 ≡L v1 · v2. This implies that the set A+/ ≡L of the
equivalence classes of ≡L can be given the product defined by [u]≡L ∗ [v]≡L = [u · v]≡L , to
form a semigroup. This semigroup recognises L via the natural homomorphism u 7→ [u]≡L ,
and we call it the syntactic semigroup of L. In this thesis, we denote it by SL, and we
denote the homomorphism from A+ to SL defined above by hSL .

Proposition 1.13. Let L be a language of finite words, over an alphabet A. Then SL is the
smallest semigroup recognising L, in the sense that for every semigroup S recognising L via
some homomorphism h : A+ → S, there exists a surjective homomorphism f from S to SL
such that hSL = f ◦ h.

All these notions and theorems can be found in Chapter 3 of [HMU06], but in terms of
deterministic finite automata, similar tools useful to the study regular languages.

The Myhill-Nerode Theorem makes the link between regular languages and finite syn-
tactic semigroups:

Theorem 1.14 ([Ner58]). Let L be a language of finite words over an alphabet A. Then L
is regular if and only if its syntactic semigroup is finite.

This theorem is of high importance, as it tells us that working with regular languages,
which are generally infinite, is equivalent to working with finite semigroups. Moreover, the
translations from formulae to finite semigroups, and inversely, are computable:
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Proposition 1.15. There exists an algorithm that inputs an MSO[A, <] sentence ϕ, A being
any alphabet, and outputs the (finite) syntactic semigroup SL of the language L = L(ϕ), the
syntactic homomorphism hL (given as a function from A to SL), and the subset hSL(L) ⊆ SL.

Reciprocally, there exists an algorithm that inputs a finite semigroup S, a homomor-
phism from A+ to S (given as a function from A to S), and a subset H ⊆ S, and outputs
an MSO[A, <] sentence ϕ satisfying L(ϕ) = h−1(H).

These two constructions can also be found in [HMU06, Chapter 3]. The corollary of this
result is that it is decidable to test if a given formula is a tautology:

Corollary 1.16. There exists an algorithm that inputs an MSO[A, <] sentence ϕ, with A
being any alphabet, and outputs YES if the language L(ϕ) is the full language A+, and NO

if it is not.

Proof. It suffices to notice that the syntactic semigroup of A+ is composed of a unique
element. Let L = L(ϕ). Considering this, in order to test if L is the full language, it suffices
to compute the syntactic semigroup SL of L and H = hSL(L) ⊆ SL (via the algorithm of
Proposition 1.15), and to check if SL is a singleton and if H = SL.

From this, we know that it is also decidable whether a regular language is included in
another, a result which we will use later:

Corollary 1.17. There exists an algorithm that inputs two MSO[A, <] sentences ϕ and ψ,
with A being any alphabet, and outputs YES if the language L(ϕ) is included in the lan-
guage L(ψ), and NO if it is not.

Proof. It suffices to test if the formula ϕ =⇒ ψ defines the full language A+, via the algo-
rithm of Corollary 1.16.

Now, an important notion in the study of semigroups is the notion of idempotence:
let S be a semigroup, we say that e ∈ S is idempotent if e2 = e, and therefore if en = e

for all n ≥ 1. A known result states that, in finite semigroups, exponentiation eventually
produces idempotent elements:

Proposition 1.18. Let S be a finite semigroup. Then there exists some positive natural
number n such that for all s ∈ S, the element sn is idempotent. Moreover, there exists
an algorithm that inputs S and outputs such an n.
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A proof of a weaker proposition, where the natural number n(s) also depends on the
element s, can be found for example in [Whi78, Chapter 5, Exercise 4]. Then, n obtained
as the product of all these individual n(s) satisfies the wanted property. Notice that for
all s ∈ S, sn is the unique idempotent power of s, for if p, q ≥ 1 are such that sp and sq

are both idempotent, we have sp = (sp)q = sp×q = (sq)p = sq. Therefore, it makes sense to
denote by ](S) the least natural positive number n such that sn is idempotent for all s ∈ S.

In the literature, we sometimes meet the notation ω(S) for ](S), but we rather avoid it
here, since we already defined the operation (·)ω in Subsection 1.1.3. We will also simply
write ] for ](S).

A finite semigroup S such that for every s ∈ S, s] ∗ s = s] is called aperiodic. Schützen-
berger’s theorem gives a characterisation of languages definable in FO[<] using aperiodic
semigroups:

Theorem 1.19 ([Sch65]). Let L ⊆ A+ be a language of finite words, over an alphabet A.
Then L is definable in FO[A, <] if and only if its syntactic semigroup SL is finite and
aperiodic.

Another characterisation which we will use in the thesis is the one concerning FO[s]:

Theorem 1.20 ([BP91, Theorem 4.3, together with Corollary 3.8]). Let L ⊆ A+ be
a language of finite words, over an alphabet A. Then L is definable in FO[A, s] if and
only if its syntactic semigroup SL is finite, aperiodic, and satisfies the following equa-
tion: e∗r∗f∗s∗e∗t∗f = e∗t∗f∗s∗e∗r∗f for all e, f, r, s, t ∈ S, with e and f idempotent.

Later in the thesis, we will use the following implication of this theorem:

Corollary 1.21. Let L ⊆ A+ be a language of finite words over an alphabet A. If it
is definable in FO[A, s], then, for all s, t, e ∈ SL, the syntactic semigroup of L, with e

idempotent, we have e∗s∗e∗t∗e = e∗t∗e∗s∗e.

Proof. It suffices to consider the case e = f = r in the equation of Theorem 1.20.

In the thesis, we will also use the algebraic characterisation of the class FO2[<, s]:

Theorem 1.22 ([PS16, Theorem 3]). Let L ⊆ A+ be a language of finite words, over
an alphabet A. Then L is definable in FO2[A, <, s] if and only if its syntactic semigroup SL
is finite, aperiodic, and satisfies the following equation: (e∗s∗e∗ t∗e)] ∗ t∗ (e∗s∗e∗ t∗e)] =

(e ∗ s ∗ e ∗ t ∗ e)] for all s, t, e ∈ S, with e idempotent.
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Similar algebraic characterisations are also known for other fragments of First-Order
Logic. For instance, see [TW98, Theorem 6], or [WI07, Fact 1.1], for an algebraic charac-
terisation of FO2[<]. However, we will not use them in the thesis.

From these algebraic characterisations, we can deduce that some inclusions of classes
depicted on Figure 1.1 of the previous section are strict. For instance, FO[s] ⊂ FO[<] ⊂
MSO[<].

1.3.2 Varieties of finite semigroups and varieties of languages

At the end of Section 1.2, we gave an informal notion of robustness: a class of languages
is said robust if it has some convenient closure properties, such as closure under Boolean
operations. We explicit this idea here and state an important result, the theorem of Eilen-
berg, highlighting a relation between closure properties for regular languages and closure
properties for finite semigroups.

First, let us notice that, thanks to the theorem of Myhill-Nerode, we have a natural
correspondence between classes of regular languages and classes of finite semigroups. If C
is a class of languages of finite words, then we can define Synt(C) as the class of syntactic
semigroups SL of the languages L in C. In this case, if C contains only regular languages,
meaning that all the languages in C are regular, then by Theorem 1.14, we know that each
semigroup in Synt(C) is finite. Reciprocally, if V is a class of semigroups, then Reco(V)

is the class of languages recognised by some semigroup in V. Here again, if V is a class
of finite semigroups, we know by the Myhill-Nerode theorem that Reco(V) contains only
regular languages.

Now, we specify the closure properties we want our classes of languages to satisfy. We
say that a class C of regular languages is a variety of languages if it satisfies the three
following closure properties:
− closure under Boolean operations: if L1, L2 ∈ C, over some alphabet A, then also the

languages Lc1 and L1 ∪ L2 are in C;
− closure under quotients : if L ∈ C, over some alphabet A, and u ∈ A+, then the two

quotient languages u−1 · L := {v ∈ A+ | u · v ∈ L} and L · u−1 := {v ∈ A+ | v · u ∈ L}
also are in C;

− closure under preimages under homomorphisms : if L ∈ C, over an alphabet B, and if
h is a homomorphism from A+ to B+, then the language h−1(L), over the alphabet
A, also is in C.

Concerning the second closure property of this definition, notice indeed that the two
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quotient languages are regular when L is: if L ⊆ A+ is recognised by some finite semigroup S
via a homomorphism h, with H ⊆ S such that L = h−1(H), and if u ∈ A+, then we
define H ′ = h(u)−1 ∗ H := {x ∈ S | h(u) ∗ x ∈ H}, and we obtain, for v ∈ A+, the
equivalences v ∈ h−1(H ′) iff h(u) ∗h(v) ∈ H iff h(u · v) ∈ H iff u · v ∈ L (by the assumption
on H) iff v ∈ u−1 · L, and therefore u−1 · L = h−1(H ′) is also recognised by S via h, and
similarly for L · u−1.

The same way, if L ⊆ B+ is recognised by some finite semigroup S, via some homomor-
phism g, and if h : A+ → B+ is a homomorphism, then h−1(L) is also recognised by S, via
the homomorphism g ◦ h, hence it is regular.

With these two remarks, we can conclude that the class of regular languages is an
example of varieties of languages:

Proposition 1.23. MSO[<], the class of regular languages of finite words, is a variety of
languages.

In a second step, we define natural closure properties for a class V of finite semigroups.
We say that it is a variety of finite semigroups (or more simply, a v.f.s.) if it satisfies these
three closure properties:
− closure under products : if S1 and S2 are in V, then also the product semigroup S1×S2

is in V;
− closure under subsemigroups : if S is in V and T is a subsemigroup of S, then also T

is in V;
− closure under images under homomorphisms : if S1 is in V and h is a homomorphism

from S1 to some semigroup S2, then also the image semigroup h(S1) is in V.
In the literature, a variety of finite semigroups is sometimes also called a pseudo-variety

of semigroups. Most classes, if not all classes of finite semigroups considered in this thesis
are varieties of finite semigroups, which justifies why we denote them by the bold letter V.

It happens that these closure properties of v.f.s. correspond to the closure properties of
varieties of languages, as states the following theorem:

Theorem 1.24 ([Eil74]). The function Synt makes a bijection from the varieties of lan-
guages to the varieties of finite semigroups, and the function Reco is its inverse.3

Knowing this one-to-one correspondence, we will often identify a variety C of languages
with its corresponding v.f.s. Synt(C). We can verify that MSO[<], FO[<], FO[s], and

3Here again, we technically defined functions and bijections only for sets, and not classes, but this will
not be problematic.
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more generally all the classes of languages introduced in Section 1.2 are varieties of lan-
guages:

Proposition 1.25. The classes of languages of finite words pictured on Figure 1.1, on
page 40, are all varieties of languages.

This proposition is proven in Appendix A.

1.3.3 ◦-semigroups and ◦-algebrae

We saw in Subsection 1.3.1 that languages of finite words can be studied through semigroups.
Following the work of Carton, Colcombet, and Puppis in [CCP18], we show here how this
notion can be generalised to ◦-semigroups and ◦-algebrae, which will be useful in the study
of languages of countable words.

Let S be a non-empty set. We decide to treat it as an alphabet and to consider countable
words over it (see Paragraph 1.1.3). This is one of the very few cases in the thesis where we
allow an alphabet to be infinite. A generalised product over S is an operation π : S◦ → S such
that π(s) = s for every element s ∈ S, and that moreover satisfies the following property of
generalised associativity : if I is a countable linearly ordered set, and if for each i ∈ I, γi is
a countable word over S, then we must have

π

(∑
i∈I

π(γi)

)
= π

(∑
i∈I

γi

)
, (1.1)

where the left-hand side sum ranges over single-letter words π(γi); and the right-hand side
sum is just the concatenation of all the words γi.

We call a ◦-semigroup (pronounced “circle-semigroup”) any set with a generalised pro-
duct. A remark could be made on the fact that we denote ◦-semigroups by the same letter
we use to denote semigroups, i.e. S, but the context will never leave doubt on which of the
two notions we are working with.

Let us define homomorphisms for ◦-semigroups: a function h from a ◦-semigroup S1 to
a ◦-semigroup S2 is a homomorphism if for every word γ ∈ S◦1 , we have h(π(γ)) = π(h(γ)),
where h(γ) has to be understood as the generalised concatenation Σx∈Dom(γ)h(γ(x)). Here
also, notice that the product π on the left-hand side of the equality refers to the generalised
product of S1, while the one on the right-hand side refers to the generalised product of S2.

For any alphabet A, the set A◦ of countable words over A, with the generalised concatena-
tion operation (γi)i∈I 7→ Σi∈Iγi, is a ◦-semigroup, called the free ◦-semigroup generated by A.
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As over finite words, we have a notion of recognition by ◦-semigroups: a language L ⊆ A◦

is recognised by a ◦-semigroup S via a homomorphism h : A◦ → S if L = h−1(H) for
some H ⊆ S (or, equivalently, if L = h−1(h(L))). As for finite words, regularity can be
expressed in terms of recognition by finite algebraic objects:

Theorem 1.26 ([CCP18, Theorems 27 and 30]). Let L ⊆ A◦ be a language of countable
words over A. Then L is regular if and only if it is recognised by some finite ◦-semigroup.

The inherent difficulty with ◦-semigroups is that they are not finite objects: even if S is
finite, there is no way to represent every countable word in S◦ and therefore no way either
to represent the generalised product π, in general. This justifies the introduction of similar
algebraic objects, but admitting finite representations: ◦-algebrae.

A ◦-algebra (which we pronounce “circle-algebra”) is a set S with four operations: a
law ∗ : S2 → S, two operations τ, τ ? : S → S, and an operation κ : P(S)\{∅} → S. These
operations must fulfil a certain number of axioms:
− S with the law ∗ is a semigroup, meaning that ∗ is associative;
− for all s, t ∈ S, (s ∗ t)τ = s ∗ (t ∗ s)τ and (sn)τ = sτ for any natural number n ≥ 1;
− symmetrically for τ ?: for all s, t ∈ S, (s ∗ t)τ? = (t ∗ s)τ? ∗ t and (sn)τ

?
= sτ

? for
any n ≥ 1;

− for each non-empty subset K of S, for all r ∈ K,K ′ ⊆ K, and each non-empty
subsetK ′′ of

⋃
s,t∈K{Kκ, s∗Kκ, Kκ∗t, s∗Kκ∗t}, we haveKκ = Kκ∗Kκ = Kκ∗r∗Kκ =

(Kκ)τ = (Kκ ∗ r)τ = (Kκ)τ
?

= (r ∗Kκ)τ
?

= (K ′ ∪K ′′)κ.
The four operations are finitary : they all take a finite number of arguments. Considering

this, finite ◦-algebrae can be represented by a finite set and four multiplication tables. Hence,
algorithms can input finite ◦-algebrae, unlike finite ◦-semigroups.

As for semigroups and ◦-semigroups, ◦-algebrae are given a notion of homomorphisms:
a homomorphism between two ◦-algebrae S1 and S2 is a function that preserves the four
operations (meaning that we have the equalities: h(s∗t) = h(s) ∗ h(t), h(sτ ) = h(s)τ ,
h(sτ

?
) = h(s)τ

? , and h({s0, . . . , sn−1}κ) = {h(s0), . . . , h(sn−1)}κ). A particular ◦-algebra
is, for an alphabet A, the set A◦ with the operations ·, (·)ω, (·)ω? , and (·)η. Once again,
a language L ⊆ A◦ is recognised by a ◦-algebra S via a homomorphism h : A◦ → S if
L = h−1(H) for some H ⊆ S.

Quite naturally, every ◦-semigroup S induces a ◦-algebra, with the four operations de-
fined in the following way, where, in each case, the operation π is applied to a word over
the alphabet S:
− for all s, t ∈ S, the product s ∗ t is defined as π(s · t);
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− for every s ∈ S, sτ and sτ? are defined respectively as π(sω) and π(sω
?
);

− for every finite K ⊆ S, Kκ is defined as π(Kη).
We also say that the structure of ◦-semigroup (i.e. 〈S, π〉) extends the structure of ◦-al-

gebra (i.e. 〈S, ∗, τ, τ ?, κ〉). In the assumption that S is finite, Carton, Colcombet, and
Puppis proved that this generalised product π is actually the unique generalised product
that extends the ◦-algebra:

Theorem 1.27 ([CCP18, Theorem 24]). Every finite ◦-algebra admits a unique extension
into a ◦-semigroup.

Considering that the algebraic objects we consider in the thesis are finite, we will not
make the distinction between ◦-semigroups and ◦-algebrae: when one of the two is defined,
we will use the generalised product π as much as the other four operations. A corollary of
Theorem 1.27 is that the regularity of a language in A◦ can be expressed by finite ◦-algebrae:

Corollary 1.28. Let L ⊆ A◦ be a language of countable words over an alphabet A. Then L
is regular if and only if it is recognised by some finite ◦-algebra.

Corollary 1.28 implies that whenever we want to effectively represent a regular language
of countable words L ⊆ A◦, then it can be done by providing the structure of a finite ◦-al-
gebra S, together with a representation of a homomorphism h : A◦ → S recognising L. The
structure of S can be explicitly given, as written on page 48. The homomorphism h can
be represented by providing the values for all single letters

(
h(a)

)
a∈A—such a representa-

tion uniquely determines h, as noted in a comment in the proof of Theorem 26 on page 22
of [CCP18]. Similarly, the respective set H = h(L) ⊆ S can also be enumerated, since S is
finite.

1.3.4 Ramsey’s theorems for words

To conclude this section, we state two variants of Ramsey’s theorem, in the context of finite
semigroups and ◦-semigroups, which we will use later in the thesis.

Theorem 1.29 ([Sim84], see also [Lot97, Theorem 4.1.4]). Let A be an alphabet, and h a ho-
momorphism from A+ to some finite semigroup S. Then, for every natural number n ≥ 2,
there exist a natural number N(n) such that for each word w over A of length at least N(n),
there exists an idempotent e in S and a decomposition w = u · w0 · · ·wn−1 · v, where for
all i ∈ n, wi is non-empty and h(wi) = e.

49



Theorem 1.30 ([CPP08, Theorem 3.1]). Let A be an alphabet, and h a homomorphism
from Aω to some finite ◦-semigroup S. Then for each ω-word w over A, there exists a de-
composition w = v · w0 · w1 · w2 · · · , where v and all the wi’s are non-empty finite words,
such that h(v) = s and h(wi) = e for all i ∈ N, where s and e are two elements of S
satisfying s · e = s, e · e = e, and s · eω = π(w).

1.4 Choice and uniformisation

In this section, we establish the main questions we aim to answer in the thesis. These
questions are about the possibility of expressing choices in constructive ways. First, in
Subsection 1.4.1, we explain which mathematical meaning we give to a choice, by presenting
a quick history of the axiom of choice. We highlight the interest of being able to define
choices in a constructive way, and we also define related notions, such as uniformisations. In
Subsection 1.4.2, we reword this problem in terms of logic and languages of words. Finally, in
Subsection 1.4.3, we recall a few known results about uniformisations and regular languages,
which we use as a basis to our new results in the thesis.

1.4.1 Axiom of choice and uniformisations

A choice function over a set E is a function f from P(E)\{∅}, the set of non-empty subsets
of E, to E itself, such that for each non-empty X ⊆ E, f(X) ∈ X. In other terms, f
distinguishes a particular element for each non-empty subset of E.

To the basic Zermelo-Fraenkel set theory is often added what we call the axiom of choice,
introduced for the first time by Zermelo in 1904. It states that choice functions always exist:

Axiom 1.31 (Choice, [Zer04]). Every set admits a choice function.

Historically, the notion of choice functions used by Zermelo was not the same. He
described a choice function over a family (Ai)i∈I of non-empty sets as a function from I

to
⋃
i∈I Ai, the union of all the Ai’s, such that f(i) ∈ Ai for each i ∈ I. However, one can

quickly verify that the two versions of the axiom are equivalent, by defining I := P(E)\{∅}
and AX = X for one direction of the equivalence, and by defining E :=

⋃
i∈I Ai for the

other. The reason we use this different notion of choice function is that it fits better our
purpose in the thesis. It is not a problem, not only because we saw that these two notions
lead to equivalent axioms, but also because the axiom of choice has always been known
under many equivalent statements.
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Now, we state some other statements which are well-known to be equivalent to the
axiom of choice in ZF. The first one is known as Zermelo’s theorem, proved in [Zer04] to
be an implication of the axiom:

Theorem 1.32 (Zermelo, [Zer04]). Every set admits a well order.

On the other hand, the fact that Zermelo’s theorem implies the axiom of choice is clear,
for if a set E admits a well order, then the function that maps each non-empty subset of E
to its least element in this order is a choice function over E. Therefore, the axiom of choice
and Zermelo’s theorem are two equivalent statements in ZF.

Another example of a result equivalent to the axiom of choice is the Kuratowski-Zorn
lemma:

Lemma 1.33 (Kuratowski-Zorn, [Kur22]). Let ϑ be a non-empty partially ordered set. We
suppose that every chain of ϑ admits an upper bound in ϑ. Then ϑ admits at least one
maximal element.

In this lemma, a chain C of ϑ is a sequence (xj)j∈J indexed by a linear order J (not
necessarily countable) that is increasing : xj < xk for all j < k in J , and an upper bound
of C in ϑ is an element m ∈ E such that xj ≤ m for each j ∈ J . The Kuratowski-Zorn
lemma is often simply called Zorn’s lemma, as Zorn gave in [Zor35] many applications of
this result—stated as the maximum principle. However, Kuratowski was the first to give in
1922 a proof that this result is implied by Zermelo’s theorem (and therefore by the axiom
of choice). A standard proof that in ZF the Kuratowski-Zorn lemma implies the axiom of
choice is more straightforward:

Proof. Let us suppose that the Kuratowski-Zorn lemma is true, and let (Ai)i∈I be any family
of non-empty sets. We show that it admits a choice function in Zermelo’s sense.

We define ϑ as the set of partial functions f from I to
⋃
i∈I Ai such that for all i ∈

Dom(f), f(i) ∈ Ai. We provide ϑ with the partial order defined by f ≤ g if Dom(f) ⊆
Dom(g) and for all i ∈ Dom(f), f(i) = g(i). The set ϑ is non-empty, and each chain (fj)j∈J

of ϑ admits an upper bound f ∈ ϑ, defined by Dom(f) =
⋃
j∈J Dom(fj), and by f(i) = fj(i)

if i ∈ Dom(fj). Therefore, because the Kuratowski-Zorn lemma is true by assumption, ϑ
must admit a maximal element f , which is necessarily defined over the whole set I. Indeed,
if k was an element of I \ Dom(f), then we could consider any x ∈ Ak, and we would
obtain f < f ′, with f ′ ∈ ϑ defined by Dom(f ′) = Dom(f)t {k}, f(k) = x, and f ′(i) = f(i)

for i ∈ Dom(f). This proves that f is a choice function over (Ai)i∈I , and we can conclude
the proof.
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An important result is that, if we assume that the foundation ZF is consistent (i.e. no
contradiction can be deduced from it), then the axiom of choice is independent of ZF,
meaning that it can neither be proven nor be refuted in this theory:

Theorem 1.34 ([Göd38], [Coh63]). If ZF is consistent, then the axiom of choice is inde-
pendent of ZF.

Gödel was the first to prove, in 1938, that, under the assumption of the consistency
of ZF, the addition of the axiom of choice in the theory would not lead to a contradiction,
and Cohen proved 25 years later that, under the same assumption, the axiom of choice could
not be proven in ZF, which completes the theorem.

Hence, accepting the axiom of choice or not is rather a philosophical question than a ma-
thematical one, and nowadays, it is considered as a valid principle for most mathematicians.
Nevertheless, as we stated it in the introduction, the axiom of choice can be used to justify
the existence of mathematical objects that are not perceptible to us and are uneasy to ma-
nipulate. As examples of such objects, we can cite Vitali sets: intuitively, these are subsets
of R, the set of real numbers, that cannot be given a consistent measure, see [Leb02] for the
definition of the Lebesgue measure, and [Vit05] for the construction of the first Vitali set.

This difficulty justifies the search of more concrete choice functions, whose existence can
be proved without reference to the axiom. Our aim in the thesis is to find conditions under
which such choice functions can be explicitly constructed:

Problem 1.35. Under which condition can we constructively provide choice functions?

In this thesis, as we are going to state it more formally in Subsection 1.4.2, we will focus
on the case of words and linear orders, and our aim will be to describe choice functions with
regular formulae, when it is possible. In this quest, we will also focus on another object,
called a uniformisation.

Let R ⊆ E × F be a binary relation between two sets E and F . We define ΠE(R), the
projection of R onto E, as the set {x ∈ E | there exists some y ∈ Y such that 〈x, y〉 ∈ R},
and, if x ∈ E, each y ∈ F such that 〈x, y〉 ∈ R is called a candidate for x in R. We say that
a function f from ΠE(R) is a uniformisation of R, or that it uniformises R, if 〈x, f(x)〉 ∈ R
for each x ∈ ΠE(R) (see Figure 1.2). In other words, f selects a unique candidate in R

for each element of its projection ΠE(R). This is why in the literature, f is sometimes also
called a selector of R.

Proposition 1.36. The axiom of choice is true if and only if every binary relation admits
a uniformisation.
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Figure 1.2: The function f uniformises the relation R.

Proof. Let us suppose that the axiom of choice is true, and let R ⊆ E × F , with E and F
being two sets. We consider the family ({y ∈ F | 〈x, y〉 ∈ R})x∈ΠE(R), and then a choice
function in Zermelo’s sense over this family is in fact a uniformisation of R.

To prove that the existence of uniformisations implies the axiom of choice (in our sense),
it is enough to consider the binary relation R :=

{
〈X, x〉 | X ⊆ E and x ∈ X

}
⊆ P(E)×E:

a uniformisation over R is in fact a choice function over E.

Proposition 1.36 justifies the following reformulation of Problem 1.35, yet not less elusive:

Problem 1.37 (Quest of uniformisations). In which condition can we constructively provide
uniformisations?

As stated above, we will focus on the field of linear orders and words. In the next
subsection, we give some proper instance of Problem 1.37 and explicit how we understand
this notion of “constructibility” in said field.

1.4.2 The case of words and regular languages

In this subsection, we explain how Problems 1.35 and 1.37 can be understood when working
with linear orders and words. In particular, we explain what it means for a binary relation
between sets of words to be definable in some formalism.

Let Σ be a signature, and M a model of Σ. A choice function f over M is regular if
there exists a formula ϕMchoice(X, x) with exactly two free variables, one second-order and
one first-order, such that for every non-empty X ⊆ M, there exists a unique x ∈ M such
thatM � ϕMchoice(X, x), and moreover this particular x is f(X), the image of X under f (in
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particular it must belong to X). We can also say that f is an MSO[Σ] choice function, if
we want to emphasise the signature. More generally, we say that f is a C choice function
if said formula ϕMchoice(X, x) belongs to C, C being a class of MSO formulae. For instance,
if ϕMchoice does not contain any second-order quantifier, i.e. the only second-order variable in
ϕMchoice is the free variable X, then f is called a first-order choice function (or FO[Σ] choice
function, FO choice function).

Example 1.38. Let $ be a well order. By definition, every non-empty subset X of $ admits
a least element. Therefore, the formula ϕ(X, x) := x ∈ X∧∀y∈X. x ≤ y is an FO[<] choice
function over $.

Now, we can give an example of how Problem 1.35 can be concretely rephrased: “consi-
dering a linear order λ, on which condition does there exist a choice function over λ definable
in a given formalism C?”. In particular, Example 1.38 tells us that if said order is a well
order, then it admits a regular choice function (and even an FO one). We will try to find
other conditions allowing such functions.

To give a more explicit meaning to Problem 1.37, we also provide a notion of a regular
uniformisation, in the context of words.

Let A and B be two alphabets, and let λ be a linear order. To each pair of words 〈w, σ〉
in Aλ×Bλ corresponds a unique λ-word p over the product alphabet A×B, defined by p(x) =

〈w(x), σ(x)〉 for each x ∈ λ, and reciprocally, to each λ-word over the product alphabet A×B
corresponds a unique pair of words in Aλ × Bλ. Therefore, it makes sense to identify this
pair 〈w, σ〉 with this word p. We introduce convenient notations: we now write

(
A
B
)
for the

product alphabet A×B; if a ∈ A and b ∈ B, then we write
(
a
b

)
for the corresponding letter

in
(
A
B
)
; and if w ∈ Aλ, σ ∈ Bλ, then we denote by

(
w
σ

)
the λ-word over

(
A
B
)
corresponding

to the pair 〈w, σ〉. We continue by identifying every binary relation R ⊆ Aλ × Bλ with
the λ-language

{(
w
σ

)
∈
(
A
B
)λ | wRσ}. Similarly, a language R ⊆

(
A
B
)+ is seen as a relation

of finite words whose property is that only pairs of words of same length are in this relation.
Now, we can say that a relation between words is regular (resp. in FO[<], FO[s]. . . ) if so
is the corresponding language.

We adapt to languages of words our notion of uniformisation. Let A and B be two alpha-
bets, and let F , R be two relations included in

(
A
B
)λ. We say that F is a uniformisation of R,

or that it uniformises R, if the two following conditions are fulfilled: F ⊆ R; for every w
in Aλ, there exists some σ ∈ Bλ such that

(
w
σ

)
∈ R if and only if there exists a unique σ ∈ Bλ

such that
(
w
σ

)
∈ F . The second condition is in fact the conjunction of the following two oth-

ers: first, the projections ΠAλ(F ) := {w ∈ Aλ | there exists some σ in Aλ such that
(
w
σ

)
∈
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F} and ΠAλ(R) must be the same, and, second, F must be functional, i.e. it cannot re-
late a word w ∈ ΠAλ(F ) with two distinct words σ in Bλ or more. Part of the literature
might call partially functional a relation satisfying this last condition, and rather reserve
the adjective functional for relations whose projections are moreover the full set Aλ. In the
thesis, we will never take into account whether the projection of a relation is the full set or
not, therefore, we keep our definition of functional. Once again, we consider an analogous
definition of a uniformisation for a binary relations R ⊆

(
A
B
)+ of finite words.

Now, if C1 and C2 are two classes of languages, we say that C2 uniformises C1 if every
relation in C1 (in the sense that it corresponds to a language in C1 over some product
alphabet) admits a uniformisation in C2. We also say that C1 is (or can be) uniformised
in C2. This definition allows us to state the following problem:

Problem 1.39. Given C1 and C2 two classes of languages, can C1 be uniformised in C2?

In the thesis, we will mainly study the question when C1 and C2 are classes of regular
languages, namely when C1 and C2 are MSO[<], FO[<], FO[s]. . . The following fact gives
us a natural restriction when C1 and C2 are varieties and are closed under extensions of
alphabets (see page 40 for the definition):

Fact 1.40. Let C1 and C2 be two varieties of languages closed under extensions of alphabets
and such that C2 uniformises C1. Then C1 ⊆ C2.

Proof. Let L ∈ C1, over the alphabet A. We define Lidentity as the relation containing all
the pairs

(
w
w

)
, for w ∈ L. This language Lidentity, over the alphabet

{(
a
a

)
| a ∈ A

}+, is the
preimage of L under the homomorphism induced from the function

(
a
a

)
7→ a. Since C1 is

a variety of languages, Lidentity is in C1. Since C1 is closed under extensions of alphabets,
the language

〈
Lidentity,

(
A
A
)〉

is also in C1, and, by the assumption, it must admit a uniformi-
sation F ∈ C2. It is clear that F must be Lidentity itself: every word w ∈ ΠA+(Lidentity) = A+

is actually the only σ such that
(
w
σ

)
∈ Lidentity. Hence,

〈
Lidentity,

(
A
A
)〉
∈ C2 and, therefore,

also L is in C2, since it is the preimage of
〈
Lidentity,

(
A
A
)〉
∈ C2 by the homomorphism

from A+ to
(
A
A
)+ induced from the function a 7→

(
a
a

)
, and this concludes the proof.

Notice that the assumption that the class C is closed under extensions of alphabets does
not follow from the fact that C is a variety of languages. Indeed, the class EF consisting of
the empty languages 〈∅,A〉 and full languages 〈A+,A〉 over all alphabets A is an example
of a variety that it is not closed under extensions of alphabets.

As the totality of classes of languages considered in this thesis are varieties of languages
and are closed under extensions of alphabets, Problem 1.39 is only relevant when C1 is

55



included in C2. For instance, over finite words, it does make sense to ask whether FO2[s]

is uniformised by FO[<], when the reciprocal question is immediately answered negatively.
When C1 cannot be uniformised in C2, a less restrictive version of the problem can be asked:

Problem 1.41. Given two classes of languages C1 and C2, can we characterise the relations
in C1 that admit a uniformisation in C2?

Now, the question is relevant not only when C1 * C2. As an example, it could be
interesting to know which individual regular relations admit a uniformisation in FO[s].

Naturally, we can also focus on Problems 1.39 and 1.41 in the special case C1 = C2:

Problem 1.42. Given C a class of languages, does C uniformise itself?

If a class uniformises itself, we also say that it satisfies the uniformisation property, or
that it is self-uniformisable.

Problem 1.43. Given C a class of languages, can we characterise the relations in C that
admit a uniformisation also in C?

1.4.3 Known results about regular uniformisations

In this subsection, we state some already known results about uniformisations. Namely,
that MSO[<], the class of regular languages, satisfies the uniformisation property over both
finite words and ω-words. We say that finite and ω-words satisfy the regular-uniformisation
property. A proof of the result for ω-words can be found in [Rab07], but there is no reliable
source for the former case, over finite words, since it is mostly considered as folklore. For
the sake of completeness, we propose a proof of this result in this section.

Let A, B be two alphabets, and let λ be a linear order. Without loss of generality, we
assume that B = {b0, . . . , bk−1}, with k = |B|. If (Xi)i∈k is a family of subsets of λ that
forms a k-partition of λ (or simply a partition of λ), meaning if the Xi’s are pairwise disjoint
and

⊔
i∈kXi = λ, then it induces a λ-word over B, which we write σ(X0, . . . , Xk−1), in which

each position is labelled by bi if and only if it is in Xi. Reciprocally, to any λ-word σ over B
corresponds a partition (Xi)i∈k, defined by Xi = {x ∈ λ | σ(x) = bi}. A first thing to notice
is that forming a k-partition can be defined regularly.

Fact 1.44. Being a k-partition is regular.

Proof. Let X0, . . . , Xk−1 be k second-order variables. The fact that their interpretations
in λ form a k-partition is defined by the formula ∀x.

∨
i∈k x ∈ Xi ∧

∧
j∈k,j 6=i x /∈ Xj, which

we denote by ϕkpart(X0, . . . , Xk−1).
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Now, we can use this correspondence between words over B and k-partitions to express
regular properties on a third λ-word, as formalised in the following two claims:

Claim 1.45. Let (Xi)i∈k be a k-partition of λ, and ϕ be a sentence in MSO[
(
A
B
)
, <]. Then

there exists a formula ϕ′(X0, . . . , Xk−1) in the same class such that for all
(
w
σ

)
∈
(
A
B
)λ, we

have
(
w
σ

)
� ϕ′(X0, . . . , Xk−1) if and only if

( w
σ(X0,...,Xk−1)

)
� ϕ.

Proof. The formula ϕ′(X0, . . . , Xk−1) is obtained from ϕ by replacing each subformula of
the shape

(
a
bi

)
(x) by the formula

∨
b∈B
(
a
b

)
(x) ∧ x ∈ Xi.

Claim 1.46. Let (Xi)i∈k be a k-partition of λ, and ϕ be a formula in MSO[
(
B
B
)
, <]. Then

there exists a formula ϕ′′(X0, . . . , Xk−1) in MSO[
(
A
B
)
, <] such that for all

(
w
σ

)
∈
(
A
B
)λ, we

have
(
w
σ

)
� ϕ′′(X0, . . . , Xk−1) if and only if

( σ
σ(X0,...,Xk−1)

)
� ϕ.

Proof. This time, the formula ϕ′′(X0, . . . , Xk−1) is obtained from ϕ by replacing each sub-
formula of the shape

(
b
bi

)
(x), by the formula

∨
a∈A
(
a
b

)
(x) ∧ x ∈ Xi.

Before finally proving the theorem, we use these k-partitions to show that MSO[<] is
closed under projections, a result which we will use later in the thesis:

Proposition 1.47. Let ϕ be a formula in MSO[
(
A
B
)
, <], A and B being two alphabets. Then

there exists an MSO[A, <] formula ϕproj such that for all w ∈ Aλ, w � ϕproj if and only
if
(
w
σ

)
� ϕ for some σ ∈ Bλ.

Proof. Here again we assume that B = {b0, . . . , bk−1}, with k = |B|. If we replace each sub-
formula of ϕ of the shape

(
a
bi

)
(x) by a(x)∧x ∈ Xi, then we obtain a formula ϕ′′′(X0, . . . , Xk−1)

such that, if X0, . . . , Xk−1 is a k-partition of λ, then w � ϕ′′′(X0, . . . , Xk−1) if and only if( w
σ(X0,...,Xk−1)

)
� ϕ. Then, it suffices to define ϕproj as ∃X0, . . . , Xk−1. ϕ

k
part(X0, . . . , Xk−1) ∧

ϕ′′′(X0, . . . , Xk−1).

We can now prove the first theorem of this subsection:

Theorem 1.48. Over finite words, MSO[<] satisfies the uniformisation property: for any
alphabets A, B, every regular relation R ⊆

(
A
B
)+ admits a regular uniformisation F ⊆

(
A
B
)+.

Proof. The proof is based on the fact that for all n ∈ ω, if we consider B with a linear
order, then Bn with ≤lex is a well order (see page 25). If R ⊆

(
A
B
)+ is regular, then for

each w ∈ ΠA+(R), there exists a word σ ∈ B|w| such that
(
w
σ

)
∈ R and for all σ′ ∈ B|w|

satisfying
(
w
σ′
)
∈ R, we have σ ≤lex σ

′. Our aim is to define this condition in MSO[
(
A
B
)
, <].
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Let k = |B|, and let us assume that B is {b0, . . . , bk−1}, without loss of generality. As writ-
ten before, we identify words over B with k-partitions. Therefore, we want to express regu-
larly that for each k-partition (Xi)i∈k, if

( w
σ(X0,...,Xk−1)

)
∈ R, then σ ≤lex σ(X0, . . . , Xk−1).

First, quantifying over k-partitions is possible, as it is stated in Fact 1.44, and, if ϕ ∈
MSO[

(
A
B
)
, <] defines R, then, using Claim 1.45, we can construct ϕ′(X0, . . . , Xk−1) defining

the condition
( w
σ(X0,...,Xk−1)

)
∈ R.

It remains to deal with the lexicographic order. We consider that B = {b0, b1, . . . , bk−1}
is ordered by bi < bj when i < j. First, make it clear that an MSO[

(
B
B
)
, <] formula ϕlex is

satisfied by
(
σ
σ′
)
if and only if σ ≤lex σ

′ can be constructed. Indeed, for a single position x,
conditions σ(x) = σ′(x) and σ(x) < σ′(x) can both be defined by MSO formulae, respectively
by ϕ=(x) :=

∨
i∈k
(
bi
bi

)
(x) and by ϕ<(x) :=

∨
i∈j∈k

(
bi
bj

)
(x). Therefore, the formula ϕlex :=

∀x. ϕ=(x)∨∃y. ϕ<(y)∧∀x<y. ϕ=(x) fulfils our need (in fact, it is even a first-order formula).
Now, with Claim 1.46, we obtain a formula ϕ′′lex(X0, . . . , Xk−1) such that

(
w
σ

)
� if and only

if σ ≤lex σ
′(X0, . . . , Xk−1).

Putting it all together, we obtain a formula ϕunif , defined as:

ϕ ∧ ∀X0, . . . , Xk−1. ϕ
k
part(X0, . . . , Xk−1)

=⇒
(
ϕ′(X0, . . . , Xk−1) =⇒ ϕ′′lex(X0, . . . , Xk−1)

)
,

that selects for each w ∈ ΠA+(R) the lexicographically least candidate in R: L(ϕunif) uni-
formises R = L(ϕ), and the proposition is proven.

Finally, we write the result over ω-words. This result was first stated in [LS98], claiming
that it came from [BL67]. However, this reference was not legitimate, since [BL67] does not
involve uniformisations, but another non-equivalent problem, about games with finite-mem-
ory strategies. This is the reason why Rabinovich provided a second proof of the theorem
in the Appendix of [Rab07].

Theorem 1.49 ([Rab07, Theorem 27]). Over ω-words, MSO satisfies the uniformisation
property: for any alphabets A, B, every regular relation R ⊆

(
A
B
)ω admits a regular unifor-

misation F ⊆
(
A
B
)ω.

There is another field of research in which one is interested in providing uniformisations
to rational relations of words, meaning relations given by asynchronous transducers (see for
instance [DFKL20] for a definition). However, since we do not consider this kind of relations
in the thesis, we do not get into the details of these. We simply state that, in that branch,
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results similar to Theorems 1.48 and 1.49 have been proven: [Kob69] proves that rational
relations of finite words admit rational uniformisations, while [CG99, Theorem 5] proves
that rational relations of ω-words admit rational uniformisations.
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Chapter 2

Uniformising in fragments of First-Order
Logic

In this chapter, we give some results, both positive and negative, when it comes to uniformise
regular relations of finite words in First-Order Logic, FO[<], and some of its fragments,
defined in Subsection 1.2.4. In particular, we give answers to Problems 1.39 and 1.41 in
some particular cases.

First, we prove the following three negative results, originally published in [Mic18]:

Proposition 2.1. Over finite words, FO[<] does not uniformise FO2[s].

Proposition 2.2. Over finite words, FO[s] does not uniformise FO2[ ].

Proposition 2.3. Over finite words, FO2[<, s] does not uniformise FO2[<]∩ FO2[s].

These three propositions are depicted in Figure 2.1, where a crossed arrow from a classC1

to a class C2 represents the impossibility to uniformise in C2 all the relations of C1. On the
opposite, a green arrow from a class C1 to a class C2 represents the fact that all relations
from C1 admit uniformisations in C2, see Proposition 2.5 below.

As a consequence of these propositions, none of the fragments of First-Order Logic
introduced in Subsection 1.2.4 admit the uniformisation property, since they are all between
the two classes involved in some of these three negative results.

Indeed, if C satisfies the uniformisation property, then it is immediate that for all
classes C1 and C2 such that C1 ⊆ C ⊆ C2, C2 does uniformise C1: if R is a relation
in C1, then it is also in C and therefore admits a uniformisation F ∈ C, which is in C2.

Corollary 2.4. Over finite words, none of the following classes satisfy the uniformisation
property: FO[<], FO[s], FO[ ], FOk[<], FOk[s], FOk[<, s], FOk[<]∩FOk[s], and FOk[ ],
for k ≥ 2.
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FO2[ ] FOk[ ] FO[ ]

FO2[<]∩ FO2[s] FO2[s] FOk[s] FO[s]

FO2[<] FO2[<, s] FO[<]

MSO[<]

· · · · · ·

· · · · · ·

Figure 2.1: Illustration of Propositions 2.1 to 2.3, and 2.5.

This corollary contrasts with Theorem 1.48, stating that, over finite words, the class
MSO[<] does satisfy the uniformisation property. Therefore, this chapter helps us to
understand what is missing in First-Order Logic in order to provide witnesses.

On the other hand, we prove a positive result, on the possibility to uniformise every
relation of FO[ ] in the class FO[<]:

Proposition 2.5. Over finite words, the class FO[<] uniformises the class FO[ ].

And, finally, we prove another positive result. It states the decidability of uniformising
regular relations in the former class FO[ ]:

Theorem 2.6. Let R be a regular relation of finite words. It is decidable whether R admits
a uniformisation in FO[ ].

Proposition 2.5 and Theorem 2.6 have not been published yet.
Finally, we discuss the possibility to extend this decidability result to other fragments

of First-Order Logic.
This chapter is divided into four sections. Section 2.1 is dedicated to the proof of the

three negative propositions. In Section 2.2, we characterise the languages in the class FO[ ]

in terms of functions which we call 〈A, N〉-maps, and we show some basic properties of
these maps. Then, we use this characterisation in Sections 2.3 and 2.4, where we prove
Proposition 2.5 and Theorem 2.6 respectively.
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2.1 Negative results

In this first section, we prove Propositions 2.1, 2.2, and 2.3. It is divided into three subsec-
tions, each one dedicated to each of these negative results.

The strategy in these three proofs is similar: to show that a class C2 does not uniformise
a classC1, we exhibit some alphabets A and B, a particular relation R inC1 over the product
alphabet

(
A
B
)
, and we show that it cannot admit any uniformisation in C2, typically using

algebraic arguments stated in Section 1.3.

2.1.1 The class FO[<] does not uniformise the class FO[s]

First, we give a proof of Proposition 2.1, the first negative result of this chapter. As stated
above, we prove that a particular relation R ∈ FO2[

(
A
B
)
, s] does not admit any uniformi-

sation in FO[
(
A
B
)
, <].

Consider the alphabets A = {a, b} and B = {0, 1,B,C}. We define the relation R1 as
the regular language ((

a

0

)
·
(
a

1

))+

·
(
b

C

)+

,

over the product alphabet
(
A
B
)
, and the relation R2 as the symmetric language

(
a

B

)+

·

((
b

0

)
·
(
b

1

))+

.

Less formally, R1 counts an even and positive number of a’s before any positive number
of b’s, while, on the opposite R2 counts an even and positive number of b’s after any positive
number of a’s. Notice that these two relations are disjoint. Then, we define R, the relation
which interests us, as the union R1 tR2 of these two languages.

A generic description of elements of R is drawn in Figure 2.2, with the left pair being
a typical element of R1 and the right pair a typical element of R2.

w1:
σ1:

a a · · · a a b b · · · b b

0 1 · · · 0 1 C C · · · C C
w2:
σ2:

a a · · · a a b b · · · b b

B B · · · B B 0 1 · · · 0 1

Figure 2.2: Generic pairs in the relation R.

Since two variables and the successor function are enough to express the alternations
of 0’s and 1’s, this relation is definable in FO2[s]:
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Fact 2.7. The relation R is in FO2[
(
A
B
)
, s].

Proof. The relation R1 is defined by the following FO2[
(
A
B
)
, s] formula:

ϕ1 :=

∃x.
(
a
0

)
(x) ∧ ∀y. ¬s(y, x)

∧ ∀x.
(
a
0

)
(x) =⇒ ∃y. s(x, y) ∧

(
a
1

)
(y)

∧ ∀x.
(
a
1

)
(x) =⇒ ∃y. s(x, y) ∧

((
a
0

)
(y) ∨

(
b
C

)
(y)
)

∧ ∀x, y.
((

b
C

)
(x) ∧ s(x, y)

)
=⇒

(
b
C

)
(y).

A symmetric formula ϕ2 defines R2, and, finally, the disjunction ϕ1 ∨ ϕ2 defines our rela-
tion R.

We will now prove that our relation does not admit a uniformisation in FO[<]. For this,
we count the number of candidates in R for each word of A+. Remember that a candidate
for a word w in A+ is a word σ ∈ B+ such that

(
w
σ

)
∈ R.

Let p, q be two positive natural numbers, and let w be the word ap · bq. It is immediate
to see that the number of candidates σ for w in R is: 0 if both p and q are odd; 1 if among p
and q, one is even and the other is odd (and in this case, the only possible σ is (0 · 1)

p
2 ·Cq

if for instance p is even); or 2 if both p and q are even (and in this case, the two possible
candidates σ are (0 · 1)

p
2 ·Cq and Bp · (0 · 1)

q
2 ).

The intuition is that FO[<] is too weak to express parity and therefore to distinguish
these crucial cases, and this implies that a uniformisation of R cannot be definable in FO[<].

Claim 2.8. R does not admit any FO[<]-definable uniformisation.

Proof. To prove this claim properly, let F ⊆
(
A
B
)+ be a relation between finite words, defin-

able in FO[
(
A
B
)
, <]. Let us assume, in order to get a contradiction, that F is a uniformisation

of R.
Let SF be the syntactic semigroup of F , and let H ⊆ SF be such that F = h−1

SF
(H),

where hSF :
(
A
B
)+ → SF is the syntactic homomorphism of F .

We define n as the natural number ](SF ) ≥ 1, and three words: w = a2n · b2n over the
alphabet A, and σ1 = (0 · 1)n ·C2n, σ2 = B2n · (0 · 1)n over the alphabet B. From the remark
which we wrote before the claim, we know that σ1 and σ2 are the only two candidates
for w in R, and therefore, since F is a uniformisation of R, we have

(
w
σ1

)
∈ F if and only
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if
(
w
σ2

)
/∈ F (see Figure 2.3). We prove that, in fact, this equivalence does not hold, which

will conclude the proof.

If the above equivalence holds, then it means that among the two pairs
(
w
σ1

)
and

(
w
σ2

)
,

one must not be in F . Without loss of generality, we suppose that
(
w
σ1

)
/∈ F . Then, we

consider the two words w′ = w · b = a2n · b2n+1 and σ′1 = σ1 ·C = (0 · 1)n ·C2n+1 (again, see
Figure 2.3). Since w′ is composed of an even number of a’s before an odd number of b’s, σ′1
is its only candidate in R.

w:
σ1:

/∈ Fa a · · · a a b b · · · b b

0 1 · · · 0 1 C C · · · C C

w:
σ2:

∈ Fa a · · · a a b b · · · b b

B B · · · B B 0 1 · · · 0 1

2n 2n

2n 2n

/∈ Fa a · · · a a b b · · · b b b

0 1 · · · 0 1 C C · · · C C C

w′:
σ′1:

2n 2n+1

Figure 2.3: If the first pair of words is not in F , then neither is the third pair.

Let x = hSF (
(
a·a
0·1
)
) and y = hSF (

(
b
C

)
). Theorem 1.19 on page 44 tells us that SF is

aperiodic, and therefore we have y2n = y2n+1. Thus, we obtain:

hSF (
(
w′

σ′1

)
) = xn · y2n+1 = xn · y2n = hSF (

(
w
σ1

)
) /∈ H.

Hence,
(
w′

σ′1

)
/∈ F . Considering that σ′1 is the unique candidate for w′ in R, F is not

a uniformisation of R, and we get our wanted contradiction.

This concludes the proof of Claim 2.8: R does not admit any uniformisation that is
definable in FO[

(
A
B
)
, <].

From Fact 2.7 and Claim 2.8, we deduce Proposition 2.1:

Proposition 2.1. Over finite words, FO[<] does not uniformise FO2[s].
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2.1.2 The class FO[s] does not uniformise the class FO2[ ]

In this second subsection, we prove Proposition 2.2, which states that there is no possibility
to uniformise FO2[ ] in FO[s]. Here again, it is enough to show that a particular relation
in the former class does not admit any uniformisation in the latter.

Let us define a relation R ⊆
(
A
B
)+, with A = {a, b} and B = {♦,�}, that contains

exactly the pairs of words
(
w
σ

)
such that:

− a letter a at any position in w implies a letter ♦ at the same position in σ;
− there exists exactly one position labelled by � in σ.
The first condition is definable by the formula ¬∃x.

(
a
�
)
(x), while the second by the

formula ∃x.
(
b
�
)
(x) ∧ ∀y.

(
b
�
)
(y) =⇒ x = y. Therefore:

Fact 2.9. R is definable in FO2[ ].

It is immediate to see that a word in A+ admits as many candidates in R as it has
positions labelled by b. The key is that an FO[s] formula cannot distinguish these positions
if there are too many a’s between them.

Claim 2.10. R does not admit any uniformisation in FO[s].

Proof. Let us assume that R admits a uniformisation F ⊆
(
A
B
)+ definable in FO[s], in order

to get a contradiction. Let SF be its syntactic semigroup, hSF its syntactic homomorphism,
H ⊆ SF such that F = h−1

SF
(H), and let n = ](SF ).

Consider the three words w = an·b·an·b·an, σ1 = ♦n·♦·♦n·�·♦n, and σ2 = ♦n·�·♦n·♦·♦n

(see Figure 2.4). It is clear that σ1 and σ2 are the only two candidates for w in R.

w:
σ1:

a · · · · · · a b a · · · · · · a b a · · · · · · a

♦ · · · · · · ♦ ♦ ♦ · · · · · · ♦ � ♦ · · · · · · ♦

w:
σ2:

a · · · · · · a b a · · · · · · a b a · · · · · · a

♦ · · · · · · ♦ � ♦ · · · · · · ♦ ♦ ♦ · · · · · · ♦

n n n

n n n

Figure 2.4: The word w and its two candidates σ1 and σ2 in R.

Let e = hSF (
(
a
♦

)n
) (it is idempotent), s = hSF (

(
b
♦

)
), and t = hSF (

(
b
�
)
). We have the

equalities hSF (
(
w
σ1

)
) = e∗s∗e∗t∗e and hSF (

(
w
σ2

)
) = e∗t∗e∗s∗e, and from Corollary 1.21 on
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page 44, we can deduce that hSF (
(
w
σ1

)
) = hSF (

(
w
σ2

)
). This equality implies that

(
w
σ1

)
∈ F

if and only if
(
w
σ2

)
∈ F , and this enters into contradiction with the assumption that F is

a uniformisation of R.

From Fact 2.9 and Claim 2.10, we deduce Proposition 2.2:

Proposition 2.2. Over finite words, FO[s] does not uniformise FO2[ ].

2.1.3 The class FO2[s] does not uniformise the class FO2[<]∩FO2[s]

Finally, we focus on Proposition 2.3, the last negative result of this chapter. Once again,
a study of a single relation is enough to deduce the proposition.

Let A and B be respectively the alphabets {a, b, c, d} and {B, �, C}. We consider the
relation R as the following language, over the product alphabet

(
A
B
)
:

(
A
B

)∗
·
(
a

�

)
·
(
A \ {b}
�

)∗
·
(
c

�

)
·
(
A
C

)∗
.

w:
σ:

· · · · · · · · · a · · · · · · · · · c · · · · · · · · ·

B · · · B � � · · · � � C · · · C

no b’s

Figure 2.5: A generic pair of words in the relation R.

Expressing the existence of the three consecutive factors of a pair in R (i.e. the factor
with the B’s, the factor with the �’s, and the factor with the C’s) can be done either with <
or with s, using only two variables:

Fact 2.11. R is definable in both FO2[
(
A
B
)
, <] and FO2[

(
A
B
)
, s].

Proof. We define, for x being a first-order variable, B2(x) as being the FO0[
(
A
B
)
] for-

mula
(
a
B

)
(x) ∨

(
b
B

)
(x) ∨

(
c
B

)
(x) ∨

(
d
B

)
(x). We define �2(x) and C2(x) similarly.

We define also ϕs
first(x) as the FO1[

(
A
B
)
, s] formula ∀y. ¬s(y, x), expressing that the

free variable x is evaluated into the first position of the word. Symmetrically, the for-
mula ϕs

last(x) := ∀y. ¬s(x, y) expresses that x is evaluated into the last position of the
word.
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Then, we can define R by the FO2[
(
A
B
)
, s] formula:

ϕs :=

∀x. ¬
(
b
�
)
(x)

∧ ∃x. ϕs
first(x) ∧

(
B2 (x) ∨

(
a
�
)
(x)
)

∧ ∃x. ϕs
last(x) ∧

((
c
�
)
(x) ∨C2(x)

)
∧ ∀x, y. s(x, y) =⇒

[
B2 (x) =⇒

(
B2 (y) ∨

(
a
�
)
(y)
)]

∧
[((

a
�
)
(x) ∨

(
d
�
)
(x)
)

=⇒ �2(y)
]

∧
[(

c
�
)
(x) =⇒

(
�2 (y) ∨C2(y)

)]
∧
[
C2 (x) =⇒ C2(y)

]
.

The definition of R by an FO2[
(
A
B
)
, <] formula is similar:

ϕ< :=

∀x. ¬
(
b
�
)
(x)

∧ ∃x.
(
a
�
)
(x) ∧ ∀y<x. B2 (y)

∧ ∃x.
(
c
�
)
(x) ∧ ∀y>x. C2 (y)

∧ ∀x, y. x < y =⇒
[
�2 (x) =⇒

(
�2 (y) ∨C2(y)

)]
∧
[
C2 (x) =⇒ C2(y)

]
.

Here again, in order to prove that R is not uniformisable in FO2[s], we count the number
of candidates each word of A+ has in R. By definition, it is exactly the number of pairs of
positions x < y of w such that w(x) = a, w(y) = c, and w has no b’s between x and y. The
idea is that two variables are not enough to distinguish two such pairs of positions x1 < y1

and x2 < y2, and, therefore, the formalism FO2[s] is not capable of distinguishing these
candidates:

Claim 2.12. R does not admit any uniformisation definable in FO2[
(
A
B
)
, s].

Proof. In order to get a contradiction, let us assume that there exists a uniformisation F
of R definable in FO2[

(
A
B
)
, s]. Let SF be the syntactic semigroup of F , hSF its syntactic
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homomorphism, and H ⊆ SF such that F = h−1
SF

(H).

We set n = ](S), and define u as the word (dn · b · dn · c · a · dn)n over A (see Figure 2.6).
The word u does not belong to ΠA+(R), since it admits an occurrence of b in-between its
occurrences of a and c. However, u · c · a · u does belong to ΠA+(R). We will use this fact
to get to a contradiction.

u: d · · · d b d · · · d c a d · · · d( )n
n times n times n times

Figure 2.6: The word u.

Let w = u · c · a · u · u · c · a · u. We notice that w admits exactly two candidates in R,
and we denote them σ1 and σ2 (see Figure 2.7). Thus, F being a uniformisation of R,
we have

(
w
σ1

)
∈ F if and only if

(
w
σ2

)
/∈ F . Without loss of generality, we can suppose

that
(
w
σ2

)
/∈ F .

w:
σ1:

∈ F· · · dn c a dn c a · · · dn c a dn · · · dn c a dn c a · · · dn c a dn

B∗ Bn B � �n � C C∗ · · · · · · · · · · · · C Cn

u u u u

w:
σ2:

/∈ F· · · dn c a dn c a · · · dn c a dn · · · dn c a dn c a · · · dn c a dn

B∗Bn · · · · · · · · · Bn B � �n � C · · · C Cn

u u u u

u · w′:
B|u| · σ′: /∈ F· · · dn c a dn · · · dn c a dn c a · · · dn c a dn

B∗ Bn · · · B � �n � C · · · C Cn

u u u

Figure 2.7: If the second pair is not in F , then neither is the third pair.

We consider now the word w′ = u · c · a · u ∈ A+. This time, this word admits a unique
candidate σ′ in R (again, see Figure 2.7). Moreover, w = u · c · a · u ·w′, σ2 = B|u|+2+|u| · σ′,
and B|u| · σ′ is the unique candidate for u · w′ in R.

Now, let e = hSF (
(
d
B

)n
), let x = hSF (

(
b
B

))
, and let y = hSF (

(
c·a
B·B
)
). We have

hSF (
( u
B|u|
)
) = (e ∗ x ∗ e ∗ y ∗ e)n, and it follows:
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hSF

(( u · w′

B|u| · σ′

))
= hSF

(( u

B|u|

))
∗ hSF

((w′
σ′

))
= (e ∗ x ∗ e ∗ y ∗ e)n ∗ hSF

((w′
σ′

))
= (e ∗ x ∗ e ∗ y ∗ e)n ∗ y ∗ (e ∗ x ∗ e ∗ y ∗ e)n ∗ hSF

((w′
σ′

))
= hSF

((u · c · a · u
B|u|+2+|u|

)
) ∗ hSF

((w′
σ′

))
= hSF

((u · c · a · u · w′
B|u|+2+|u| · σ′

))
= hSF

((w
σ2

))
/∈ H,

where the equality (e ∗ x ∗ e ∗ y ∗ e)n = (e ∗ x ∗ e ∗ y ∗ e)n ∗ y ∗ (e ∗ x ∗ e ∗ y ∗ e)n comes from
Theorem 1.22 on page 44 (indeed, e is idempotent). This implies that

(
u·w′
B|u|·σ′

)
/∈ F . This,

together with the fact that B|u| · σ′ is the unique candidate for u · w′ in R, contradicts our
hypothesis that F is a uniformisation of R.

Once again, from Fact 2.11 and Claim 2.12, we deduce Proposition 2.3:

Proposition 2.3. Over finite words, FO2[<, s] does not uniformise FO2[<]∩ FO2[s].

2.2 The expressive power of FO[ ]

In this section, we study the expressive power of FO[ ], to give an overview of which rela-
tions can be defined in this formalism. We give two characterisations of this class. First,
a semantic one: we show that FO[ ] is exactly capable of counting the letters up to some
threshold. Second, an algebraic one, in terms of syntactic semigroups. These character-
isations are not entirely new, but, since the formalism is mostly considered as somewhat
weak, it is barely studied, and there is no reliable reference to them. It is worth citing
Pin’s lecture notes [Pin20], whose subsection 1.2 of Chapter XIV speaks about commutative
languages, but yet without explicit mention of the formalism FO[ ] in itself. Thus, we give
these characterisations for the sake of completeness.
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2.2.1 Semantic characterisation of FO[ ]

In a first step, we formalise this intuition of “counting the letters up to some threshold”
with notions of 〈A, N〉-maps, and show that languages in FO[ ] can be described using such
maps.

We consider, for each natural number N , a specific new symbol, DN . If A is an alphabet,
and N is a natural number, then an 〈A, N〉-map is a function from the alphabet A to the
set N t {DN} = {0, 1, . . . , N−1,DN}.

Naturally, since A and the set N t {DN} are both finite, so is the set of 〈A, N〉-maps:

Fact 2.13. For each natural number N and each alphabet A, there exists a finite number of
〈A, N〉-maps.

For each 〈A, N〉-mapm, we define the language Lm as the language of words in which the
occurrences of each letter a match with the value of m(a), the symbol DN being interpreted
as “at least N occurrences”. More formally, Lm is the language{

w ∈ A+ | for each a ∈ N , if m(a) ∈ N then |w|a = m(a)

if m(a) = DN then |w|a ≥ N

}
.

We recall that |w|a denotes the number of occurrences of the letter a in the word w (see the
definition on page 25).

Example 2.14. Let a, b, c be three distinct letters, and let m be the 〈A, 2〉-map that maps a
to 1, b to D2, and c to 0. Then, its corresponding language is the set of words in {a, b, c}+

that have exactly one occurrence of a, no occurrences of c, and at least two occurrences of b.

If m is an 〈A, N〉-map, then we denote by AN(m) the sets of letters of A mapped to
some natural number i < N by m, and by ADN (m) the sets of letters of A mapped to DN
by m.

First, we shall notice that two distinct 〈A, N〉-maps induce two disjoint languages:

Remark 2.15. If m1 and m2 are two distinct 〈A, N〉-maps, then the languages Lm1 and Lm2

are disjoint.

Proof. Let a be a letter such that m1(a) 6= m2(a). It is immediate to see that for no
words w ∈ A+, the value of |w|a can match with both m1(a) and m2(a): if m1(a) and m2(a)

are both natural numbers smaller than N , then naturally |w|a cannot be equal to bothm1(a)

and m2(a), and if m1(a) = DN and m2(a) = n < N (or the contrary), then |w|a cannot be
both equal to n and greater or equal to N . Therefore Lm1 ∩ Lm2 = ∅.

70



We define now MN [A] as the class of finite languages over A that can be written as
a union of languages induced from 〈A, N〉-maps: L ∈MN [A] if L =

⊔
m∈Λ Lm, with Λ being

a set of 〈A, N〉-maps. We may abuse the definition and say that L is obtained as a union
of 〈A, N〉-maps.

Our aim now is to prove that the class FO[A] is exactly the union of all the MN [A]’s,
for N ∈ N. First, let us notice that FO[ ] is capable of counting letters. We recall
that FON [A], which we denote here by FOd=N [A], is the class of FO[A] formulae of quantifier
depth at most N (see the definition on page 34 of the quantifier depth of a formula).

Fact 2.16. Let a be a letter of an alphabet A and let n ∈ N. There exist two formulae ϕ=n
a

and ϕ≥na , respectively in FOd=n+1[A] and FOd=n[A] such that for all w ∈ A+:
− w � ϕ=n

a if and only if |w|a = n;
− w � ϕ≥na if and only if |w|a ≥ n.

Proof. We define ϕ≥na as

∃x0, . . . , xn−1.
∧
i∈j∈n

xi 6= xj ∧
∧
i∈n

a(xi)

and ϕ=n
a as the formula ϕ≥n ∧ ¬ϕ≥n+1.

Using this lemma, we can prove the correlation between FO[ ] and maps. In the following
proposition, FOk=N [A] is another notation for FON [A]:

Proposition 2.17. For each alphabet A and each natural number N , the classes MN [A],
FOd=N [A], and FOk=N [A] are the same.

Proof. We begin by the inclusion FOd=N [A] ⊆ FOk=N [A], which is immediate: in general,
for any signature Σ, a formula ϕ in FOd=N [Σ] is easily equivalent to a formula in FOk=N [Σ].
To show this, it suffices to rename by xi each variable of ϕ that is introduced by the
quantifiers of depth i. For instance, if ϕ(x, y) and ψ(x, z) are two formulae over Σ, both of
quantifier depth 0, then the sentence ∃x.

(
∀y. ϕ(x, y) ∧ ∃z. ψ(x, z)

)
, which is in FOd=2[Σ],

but not in FOk=2[Σ], is equivalent to the sentence ∃x0.
(
∀x1. ϕ(x0, x1) ∧ ∃x1. ψ(x0, x1)

)
,

which is in FOk=2[Σ].
It remains to show the inclusions MN [A] ⊆ FOd=N [A] and FOk=N [A] ⊆MN [A].
For the former inclusion, we rely on the formulae defined in Fact 2.16. For each

〈A, N〉-map m, the language Lm is defined by the formula:

ϕm :=
∧

a∈AN (m)

ϕ=m(a) ∧
∧

a∈ADN
(m)

ϕ≥N ,
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which is in FOd=N [A]. Hence, if L =
⊔
m∈Λ Lm is in MN [A], then it is defined by the

formula
∨
m∈Λ ϕm, and it is in FOd=N [A].

Now, we prove the inclusion FOk=N [A] ⊆MN [A].
We consider, for any w ∈ A+ and for any integer N , the following 〈A, N〉-map:

mN(w) =

 A → N t {DN}
a 7→ |w|a if |w|a < N

DN if |w|a ≥ N

 .

Notice that, if w1 and w2 are two finite words over A, then the functions mN(w1)

and mN(w2) coincide (meaning that they map the same letters to the same elements) if
and only if for all a ∈ A, if |w1|a 6= |w2|a then min{|w1|a, |w2|a} ≥ N . We denote this
condition by w1 ∼N w2.

For all w1, w2 ∈ A+, we consider, for all d ∈ N, the game GFON [A]
d (w1, w2) introduced on

page 36, in Section 1.2. This is the Ehrenfeucht-Fraïssé game for First-Order Logic that is
played during d turns over w1 and w2, and with 2N tokens, each number j ∈ N being on
exactly two of them. After each turn, some tokens are placed on the positions of each word,
and Duplicator wins the game if at each turn, the related tokens (meaning with the same
number on them) are on positions of different words, labelled by the same letter of A.

It immediately appears that w1 ∼N w2 if and only if w1 ≡N w2, meaning if and only if
for every d ∈ N, Duplicator has a winning strategy for the game GFON [A]

d (w1, w2).

Indeed, let us suppose that w1 ∼N w2, and let us say that on some turn of the game,
Spoiler places a token on a position x of w1, on which there was no token yet, and let a
be the letter w1(x). If |w1|a ≥ N , then also |w2|a ≥ N , and Duplicator can move the
corresponding token to a new position y of w2 also labelled by a. On the contrary, if
|w1|a < N , then |w1|a = |w2|a, and, the same way, Duplicator can select a new position
of w2 labelled by a. With this strategy, Duplicator always ensures that corresponding
tokens are placed on positions identically labelled, and eventually wins the game.

Reciprocally, let us suppose that w1 �N w2. It means that there is some letter a in A such
that min{|w1|a, |w2|a} < N and |w1|a 6= |w2|a. Without loss of generality, let us suppose that
min{|w1|a, |w2|a} = |w1|a. The strategy for Spoiler is to put on every turn a new token on
a previously unselected position of w2 labelled by a. On turn |w1|a, Duplicator has no more
labelled-by-a positions to select in Dom(w1), and eventually loses the game GFON [A]

d (w1, w2),
with the number of turns being d = |w1|a+1.

Let L be a language of finite words over A, defined by an FOk=N [A] formula. From
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Theorem 1.9 and the observation above, we know now that for all w1 ∼N w2, we have w1 ∈ L
if and only if w2 ∈ L. Therefore, L is exactly the union of all the Lm’s, m ∈ Λ, where Λ is
the set {mN(w) | w ∈ L}, and we have proven the final inclusion.

An immediate consequence of this characterisation is that the classes MN [A] inherit the
closures of First-Order Logic:

Corollary 2.18. For any alphabet A and natural numbers N , N ′:
− MN [A] is closed under Boolean combinations,
− if N ≤ N ′ then MN [A] ⊆MN ′[A].

Notice that these two properties were directly deducible from definitions of maps and of
the languages Lf , but a formal proof of it would have been less straightforward.

Another consequence of Proposition 2.17 is that belonging to the classes MN [A] is de-
cidable:

Corollary 2.19. There exists an algorithm that inputs an MSO[A, <] sentence, with A
being any alphabet and N any natural number, and outputs a set Λ of 〈A, N〉-maps such
that L(ϕ) =

⊔
m∈Λ Lm if there exists such, and NO if L(ϕ) does not belong to MN [A].

Proof. Recall from Corollary 1.17 on Page 43 that there exists an algorithm that tells
whether one regular language is included in another. We can deduce from it an algorithm
that inputs two formulae and tests whether their corresponding languages are equal.

Fact 2.13 tells us that there exists a finite number of 〈A, N〉-maps, and therefore there
exists a finite number of sets of 〈A, N〉-maps. Since we know now from Proposition 2.17
an MSO[A] formula ψΛ that defines the language

⊔
m∈Λ Lm for each of these subsets Λ, we

simply have to test the equality between L(ϕ) and all of these languages L(ψΛ).

There may exist more efficient methods. However, since we focus on decidability issues
in this chapter, we content ourselves with this naive algorithm.

Before concluding this subsection, we show some basic results about projections of lan-
guages written as unions of

〈(
A
B
)
, N
〉
-maps, with A and B being two alphabets. In such

cases, the maps are more likely denoted by the letter r, and the languages Lr are rather
written Rr, to emphasise that we see them as relations.

Let r be an
〈(

A
B
)
, N
〉
-map, and let a ∈ A. We define a way of partitioning the alphabet B.

We define BaN(r) as the set {b ∈ B | r(
(
a
b

)
) ∈ N}, and BaDN (r) as the set {b ∈ B |

r(
(
a
b

)
)= DN}, in such a way that B = BaN(r) t BaDN (r). Finally, we define r∗(a) as being

the natural number Σb∈BaN (r)r(
(
a
b

)
).
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Lemma 2.20. Let N ∈ N and let r be an
〈(

A
B
)
, N
〉
-map, with A and B being two alphabets.

Then, a word w in A+ belongs to ΠA+(Rr) if and only if for all letters a ∈ A:
− if BaDN (r) = ∅ then |w|a = r∗(a),
− if BaDN (r) 6= ∅ then |w|a ≥ r∗(a) +N×|BaDN (r)|.

Proof. This lemma is simply about counting.

Let w ∈ A+ and let us suppose that there exists some σ ∈ B+ such that
(
w
σ

)
∈ Rr.

Let a ∈ A. We have the equality:

|w|a = Σb∈B|
(
w
σ

)
|( a
b

)
= Σb∈BaN (r)|

(
w
σ

)
|( a
b

) + Σb∈BaDN (r)|
(
w
σ

)
|( a
b

)
= r∗(a) + Σb∈BaDN (r)|

(
w
σ

)
|( a
b

).
Hence, if BaDN (r) = ∅ then |w|a = r∗(a), and if BaDN (r) 6= ∅ then |w|a ≥ r∗(a) +

N×|BaDN (r)|.
Reciprocally, if w ∈ A+ is such that the two implications hold for each a ∈ A, then

we can easily construct some word σ ∈ B+ such that
(
w
σ

)
∈ Rr, in the following way. For

each a ∈ A, let us rename BaN(r) as {b0, . . . , bk−1}, and BaDN (r) as {bk, . . . , bm−1}. Then σ
maps to b0 the first r(

(
a
b0

)
) labelled-by-a positions of w, to b1 the next r(

(
a
b1

)
) such positions,

and so on, up to bk−1. Then, σ maps to bk the eventual next N labelled-by-a positions of
w, and so on up to bm−2. Finally, the remaining labelled-by-a positions of w are mapped
to bm−1 by σ.

Our construction ensures that for each
(
a
b

)
∈
(
A
B
)
, if r(

(
a
b

)
) ∈ N then |

(
w
σ

)
|( a
b

)
is r(

(
a
b

)
), and if r(

(
a
b

)
) is DN then |

(
w
σ

)
|( a
b

) ≥ N , and we can conclude.

The direct corollary of this lemma is that the projection of a map is also a map:

Corollary 2.21. Let R be a binary relation of finite words, over a product alphabet
(
A
B
)
.

We suppose that R ∈ MN [
(
A
B
)
], for some N ∈ N. Then, ΠA+(R), the projection of R

onto A+, is in MN×|B|[A].

Proof. It is a direct consequence of Lemma 2.20, and of the fact that for every letter a
in A, the natural number r∗(a) is smaller than N × |BaDN (r)| and r∗(a) +N×|BaDN (r)| is at
most N × |B|.
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2.2.2 Algebraic characterisation of FO[ ]

After having described the expressive power of the class FO[ ] in terms of maps in the
previous subsection, we characterise here its languages as those whose syntactic semigroups
satisfy some constraints. These constraints being finiteness, aperiodicity, and commutativity.

A semigroup such that s ∗ t = t ∗ s for all s, t ∈ S is called commutative. We recall that
a finite semigroup is called aperiodic if for all s ∈ A, we have s] ∗ s = s] (see the definition
on page 44).

Theorem 2.22. Let L ⊆ A+ be a language of finite words, over an alphabet A. Then L

is definable in FO[A] if and only if its syntactic semigroup SL if finite, aperiodic, and
commutative. Moreover in the latter case, L is definable by a formula in FO[A] of depth
at most ](SL).

Proof. To prove the “only if” implication, we recall the definition of the syntactic semigroup
of L, defined on page 42. It is obtained from the equivalence relation ≡L over A+ defined
by u ≡L v if for all w1, w2 ∈ A∗, w1 · u · w2 ∈ L if and only if w1 · v · w2 ∈ L. To
each u ∈ A+ corresponds its equivalence class [u]≡L = {v ∈ A+ | u ≡L v}, and SL is the
set {[u]≡L | u ∈ A+} of these equivalence classes, with the product [u]≡L ∗ [v]≡L = [u · v]≡L ,
and the syntactic homomorphism hSL is defined by hSL(u) = [u]≡L .

Let us suppose that L is in FO[A]. By Proposition 2.17, L can be written as
⊔
m∈Λ Lm,

where Λ is a set of 〈A, N〉-map, N being the quantifier depth of a formula defining L.
By Theorem 1.19, we know that SL is finite and aperiodic. It remains to prove that it is
commutative.

This is rather straightforward: let s, t ∈ SL. These elements can be written as s = [u]≡L
and t = [v]≡L , with u and v being two finite words over A, and we have s ∗ t = [u · v]≡L ,
t ∗ s = [v · u]≡L . Therefore, we have to prove that u · v ≡L v · u, which is immediate: for
all w1, w2 ∈ A∗, w1 ·u ·v ·w2 and w1 ·v ·u ·w2 contain exactly the same letters, and therefore,
for all m ∈ Λ, w1 · u · v · w2 ∈ Lm if and only if w1 · v · u · w2 ∈ Lm, which means that
w1 ·u ·v ·w2 and w1 ·v ·u ·w2 equivalently belong to L, and therefore u ·v ≡L v ·u: s∗ t = t∗s,
and SL is commutative. We have proven one implication.

Now, we prove the “if” implication. Let us suppose that L is recognised by some finite,
aperiodic, and commutative semigroup S, via a homomorphism h.

We suppose without loss of generality that A is the set {a0, . . . , ak−1}. For any finite
word w ∈ A+, we have h(w) = h

(
w(0)

)
∗ h
(
w(1)

)
∗ · · · ∗ h

(
w(|w|−1)

)
, and, because S is

commutative, we have h(w) = h(a0)|w|a0 ∗ h(a1)|w|a1 ∗ · · · ∗ h(ak−1)|w|ak−1 (if |w|ai = 0 for
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some i, we can simply ignore it by defining s ∗ h(ai)
0 = h(ai)

0 ∗ s = s, and this will not be
a problem since there are necessarily other i’s such that |w|ai 6= 0).

We define N = ](S). By the aperiodicity of S, we have, for each s ∈ S, and all i ∈ k
such that |w|ai ≥ N , h(ai)

|w|ai = h(ai)
N . Therefore, for each 〈A, N〉-map m, if w1 and w2

are in Lm, then h(w1) = h(w2), because h(ai)
|w1|ai = h(ai)

|w2|ai for all i ∈ k. Hence, w1 ∈ L
if and only if w2 ∈ L, and we have L =

⊔
w∈L LmN (w), where mN(w) is the 〈A, N〉-map

defined as in the proof of Proposition 2.17: it maps each a ∈ A to |w|a if |w|a < N , and
to DN if |w|a ≥ N .

We can deduce from this algebraic characterisation that belonging to the class FO[ ] is
decidable:

Corollary 2.23. There exists an algorithm that inputs an MSO[A, <] sentence, with A being
any alphabet, and outputs a natural number N and a set Λ of 〈A, N〉-maps such that L(ϕ)

is
⊔
m∈Λ Lm if there exist some, and NO if L(ϕ) does not belong to FO[A].

Proof. From Proposition 1.15 on page 42, we can compute the syntactic semigroup SL

of L = L(ϕ). Since it is finite, we can compute ](SL) and test if the semigroup is aperiodic
and commutative. If it is not, we output NO. If it is, we input ϕ and N := ](SL) in the
algorithm of Corollary 2.19, to obtain the 〈A, N〉-maps defining L.

2.3 Uniformising FO[ ] in FO[<]

Now, we use the characterisation of FO[ ], proven in the previous subsection, to show how
to uniformise in FO[<] relations definable in FO[ ].

First, we prove that FO[<] can uniformise each individual relation Rr, for any
〈(

A
B
)
,

N
〉
-map r:

Lemma 2.24. Let N ∈ N and let r be an
〈(

A
B
)
, N
〉
-map, with A and B being two alphabets.

Then Rr admits a uniformisation in FO[<].

Proof. Without loss of generality, we can assume that B is the alphabet {b0, b1, . . . , bm−1},
with m = |B|. To define a particular candidate σ in Rr for each word w ∈ ΠA+(Rr), we
repeat the strategy we used in the proof of Lemma 2.20: we divide, for each letter a ∈ A,
the set {x ∈ Dom(w) | w(x) = a} into disjoint subsets X0 < X1 < . . . < Xm−1, and to
ensure that each position of σ is labelled by bj when it is in Xj.
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Let us consider a letter a of A. Again, without loss of generality, we can assume that
the bj’s are such that the first k are in BaN(r), and that the last m−k are in BaDN (r), for

some k. Then, we define a finite word ua over B as b
r(
(
a
b0

)
)

0 · · · b
r(
(

a
bk−1

)
)

k−1 · bNk · · · bNm−1, like
depicted on Figure 2.8:

ua: b0 b0 · · · bk−1 bk−1 bk bk · · · bm−1 bm−1· · · · · · · · · · · ·

r(
(
a
b0

)
) times r(

( a
bk−1

)
) times N times N times

Figure 2.8: The word ua used in the proof of Lemma 2.24.

The idea is to associate to the i-th a in w the i-th letter in ua, with the following
FO[<] formula (n being the length of ua):

ϕr,a :=

∃x0, . . . , xn−1.
∧
j∈n

(
a

ua(j)

)
(xj) ∧

∧
j∈n−1

xj < xj+1

∧ ∀x.
∨
b∈B

(
a

b

)
(x)

=⇒
(∨
i∈n

x = xi ∨
(
xn−1 < x ∧

(
a

bm−1

)
(x)
))
.

In the case when BaDN (r) = ∅ (i.e. k = m), we replace the subformula
(∨

i∈n x =

xi ∨
(
xn−1 < x ∧

( a
bm−1

)
(x)
))

by the simpler
∨
i∈n x = xi.

If σ ∈ B+ is such that
(
w
σ

)
� ϕr,a, then by construction we know that σ has, for

each bi ∈ BaN(r), exactly r(
(
a
bi

)
) positions labelled by bi, and for each bi ∈ BaDN , at least N

positions labelled by bi. Moreover, any two such words σ and σ′ agree on the positions
labelled by a in w.

Now, we define ϕr as being the formula
∧
a∈A ϕr,a. From the paragraph above, we know

that L(ϕr) is a uniformisation of Rr.

Now, we can prove Proposition 2.5 and conclude the section:

Proposition 2.5. Over finite words, the class FO[<] uniformises the class FO[ ].

Proof. Let A and B be two alphabets. Let R be a relation definable in FO[ ], over the
product alphabet

(
A
B
)
. Proposition 2.17 tells us that there exists a natural number N and
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a set Υ of
〈(

A
B
)
, N
〉
-maps such that R =

⊔
r∈ΥRr.

Lemma 2.24 tells us that for each r ∈ Υ, Rr admits a uniformisation Fr = L(ϕr),
where ϕr is an FO[<] formula. The seemingly natural formula ϕ :=

∨
r∈Υ ϕr does a pri-

ori not define a uniformisation of R, because some w’s in ΠA+(R) may appear in diffe-
rent ΠA+(Rr)’s.

However, Fact 2.21 tells us that for each r ∈ Υ, there exists an FO[A] sentence ϕrproj

over A defining ΠA+(Rr). If we replace, in one formula ϕrproj, all subformulae of the
shape a(x) by the corresponding formula

∨
b∈B
(
a
b

)
(x), we obtain a formula ϕrproj

′ such
that

(
w
σ

)
� ϕrproj

′ if and only if w ∈ ΠA+(Rr).
Now, if we name the

〈(
A
B
)
, N
〉
-maps of Υ as r0, r1, . . . , r`−1, it is now possible, in FO[

(
A
B
)
],

to map each w ∈ ΠA+(R) to one of its candidates in R: if w ∈ ΠA+(Rr0), then we choose
the corresponding σ0 associated by the uniformisation L(ϕr0); if it is not the case but
if w ∈ ΠA+(Rr1), we choose the corresponding σ1 associated by the uniformisation L(ϕr1),
and so on. . .

The corresponding FO[<] formula is ψ0, where: ψ`−1 is ϕr`−1
, and for 0 ≤ i < `−1, ψi

is
(
ϕriproj

′ ⇒ ϕri
)
∧
(
¬ϕriproj

′ ⇒ ψi+1

)
.

We have shown that R admits a uniformisation in FO[<], which concludes the proof of
the proposition.

2.4 The decidability to uniformise a regular relation in

FO[ ]

In this final section, we prove the decidability of uniformising regular relations in FO[ ].
The key is to prove that if a regular relation R ⊆

(
A
B
)+ admits a uniformisation in FO[

(
A
B
)
],

then it must admit one in MZ[
(
A
B
)
], with Z being a natural number which we can compute

from R.
We recall our remark on page 56 and emphasise that, in order to admit a uniformisation

in FO[ ], the relation R needs not be definable in FO[ ] itself. For instance, if A = {a},
and B = {�,♦}, then the relation R ⊆

(
A
B
)+ composed of the pair of words

(
w
σ

)
such

that σ contains an even number of occurrences of ♦ is not even definable in FO[
(
A
B
)
, <]

(the fact that parity cannot be defined in FO[<] is proven similarly as Claim 2.8, via the
algebraic characterisation of this formalism). Yet it admits as uniformisation the relation
F =

{(
w
σ

)
∈
(
A
B
)+ | |σ|♦ = 0

}
, which is in FO[

(
A
B
)
].

In Section 2.2, we decided to denote
〈(

A
B
)
, N
〉
-maps by the letter r, and their correspond-
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ing languages by Rr, to emphasise that we see them as relations. In this section, when we
have the additional assumption that said relations are functional, we denote the maps by f
and their corresponding languages by Ff . Finally, in this section, we denote 〈A, N〉-maps
by the letter m, their languages Lm’s are domains of functions Ff ’s.

2.4.1 Basic properties of relational maps

We begin this section by enumerating some basic properties about relations and uniformi-
sations in the class MN [

(
A
B
)
].

Corollary 2.21 tells us that the projection of a language in MN [
(
A
B
)
] is in MN×|B|[A].

We obtain the same conclusion if a relation R is not in the class MN [
(
A
B
)
] itself, but if it

admits some uniformisation in it:

Corollary 2.25. Let R be a binary relation of finite words, over the product alphabet
(
A
B
)
.

We suppose that R admits a uniformisation F ∈MN [
(
A
B
)
], for some N ∈ N. Then, ΠA+(R),

the projection of R onto A+, is in MN×|B|[A].

Proof. By the definition of a uniformisation, we have ΠA+(R) = ΠA+(F ), which we know is
in MN×|B|[A], by Corollary 2.21.

We noticed in Remark 2.15 that distinct maps induce disjoint languages. Under the
additional assumption that the union of these maps is functional, then we have a stronger
conclusion, which is that also the projections are disjoint, as stated in the following lemma:

Lemma 2.26. Let F be a binary relation of finite words, over a product alphabet
(
A
B
)
. We

suppose that F is functional, and also that it is in MN [
(
A
B
)
]: F =

⊔
f∈Υ Ff , with Υ being

a set of
〈(

A
B
)
, N
〉
-maps. Then the ΠA+(Ff )’s, the projections of these Ff ’s onto A+, are

pairwise disjoint.

Proof. Suppose that there exists some w ∈ A+ being both in ΠA+(Ff1) and ΠA+(Ff2), with f1

and f2 being two distinct
〈(

A
B
)
, N
〉
-maps of Υ. By the definition of the projection, there

exist two finite words σ1 and σ2, both over B, such that
(
w
σ1

)
∈ Ff1 and

(
w
σ2

)
∈ Ff2 . Since Ff1

and Ff2 are disjoint (by Remark 2.15), σ1 and σ2 must be distinct, and therefore w has two
different candidates in F , which contradicts the assumption that F is functional.

Notice that this lemma is not specific to
〈(

A
B
)
, N
〉
-maps: more generally, if F is a func-

tional relation that can be written as
⊔
i∈I Fi, with the Fi’s being pairwise disjoint functional

relations, then their projections must be disjoint too, by the same argument.
Finally, we show that maps that induce functional relations have some strong restrictions:
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Lemma 2.27. Let f be an
〈(

A
B
)
, N
〉
-map. Then the relation Ff is functional if and only

if for all a ∈ A, there exists at most one b ∈ B such that f(
(
a
b

)
) 6= 0.

Proof. It is clear that a map f that satisfies this property induces a functional relation Ff : in
this case, the letters in a word w ∈ ΠA+(Ff ) uniquely determine the letters of a word σ ∈ B+

such that
(
w
σ

)
∈ Ff .

Now, let us suppose that Ff is functional. Let w ∈ ΠA+(Ff ) and let σ ∈ B|w| such
that

(
w
σ

)
∈ Ff . If there exist two distinct letters b1 and b2 such that f(

(
a
b1

)
) 6= 0

and f(
(
a
b2

)
) 6= 0, then there exist two distinct positions x and y in Dom(w) such that(

w
σ

)
(x) =

(
a
b1

)
and

(
w
σ

)
(y) =

(
a
b2

)
. If we define σ′ as the word over B having the same

domain as σ, but that swaps the labels of x and y (meaning it maps x to b2, y to b1, and
any other position z ∈ Dom(w) to σ(z)), then it is immediate to see that it still satis-
fies

(
w
σ′
)
∈ Ff . Since σ 6= σ′, it contradicts the assumption that Ff is functional. Therefore,

there cannot exist more than one such letter b.

2.4.2 Inductive lemma and decidability theorem

In this second subsection, we prove the following crucial lemma, which we mentioned at the
beginning of our section: if R ⊆

(
A
B
)+ admits some uniformisation in FO[

(
A
B
)
], and if its

projection also is in FO[A], then we can compute some natural number Z such that R also
admits a uniformisation in MZ[

(
A
B
)
].

Lemma 2.28. Let A, B be two alphabets and let R ⊆
(
A
B
)+ be a regular relation. Then,

for every natural number N , and every 〈A, N〉-map m, if the following two assumptions are
true:
− Lm ⊆ ΠA+(R),
− R�Lm, the restriction of R to Lm, admits a uniformisation in FO[

(
A
B
)
],

then R�Lm admits a uniformisation obtained as a union of
〈(

A
B
)
, Z
〉
-maps, where Z is the

natural number (N + |SR|+ 1)×
(
|A|× (|SR|+ 1)

)|ADN
(m)|, SR being the syntactic semigroup

of R.

We recall that ADN (m) is the set of letters of A that are mapped to DN by m.

Proof. The lemma is shown by induction on |ADN (m)|.
First, we study the case when |ADN (m)| = 0, which means thatmmaps every letter a of A

to a natural number smaller than N . Let R ⊆
(
A
B
)+ be a regular relation, and let us suppose

that Lm ⊆ ΠA+(R) and that R�Lm admits a uniformisation F ∈ FO[
(
A
B
)
]: according to
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Proposition 2.17, F can be written as
⊔
f∈Υ Ff , where Υ is a set of

〈(
A
B
)
,M
〉
-maps, M

being some natural number.

Let f ∈ Υ, and let
(
w
σ

)
be a pair in Ff . Since w ∈ Lm, all letters of A have at most N−1

occurrences in w, by assumption on m. Hence, each pair
(
a
b

)
∈
(
A
B
)
has at most N−1

occurrences in
(
w
σ

)
. Therefore, each f ∈ Υ is in particular a

〈(
A
B
)
, N
〉
-map, and we have

the result: R�Lm admits a uniformisation in MN [
(
A
B
)
]. Since N ≤ N + |SR| + 1, which is

the overall number Z of our statement here, we can conclude this case |ADN (d)| = 0.

Now, we suppose that q is a positive natural number such that the lemma holds for all N
and m such that |ADN (m)| < q, and we want to show that the lemma still holds for all N
and m such that |ADN (m)| = q.

Let N be a natural number, and let m be an 〈A, N〉-map such that |ADN (m)| = q.

For the sake of simplicity, we assume without loss of generality that a0, . . . , ap−1 are
the letters in AN(m), and a′0, . . . a′q−1 are the letters in ADN (m): m maps each ak to some
natural number smaller than N , and each a′k to DN .

Let us suppose that the assumptions of the lemma hold, meaning that Lm ⊆ ΠA+(R)

and that R�Lm admits a uniformisation F in FO[
(
A
B
)
]: again by Proposition 2.17, F can

be written as
⊔
f∈Υ Ff , where Υ is a set of

〈(
A
B
)
,M
〉
-maps, M being some natural number.

If M < N , then we have our result. Let us suppose that M ≥ N .

For each f ∈ Υ, since Ff is functional, we know from Lemma 2.27 that for all k ∈ p, there
exists at most one b ∈ B such that f(

(
ak
b

)
) 6= 0. We denote this b by bk,f . If f(

(
ak
b

)
) = 0

for all b ∈ B, then we define bk,f as being any b ∈ B. Let k ∈ p. Since m(ak) < N ,
and ΠA+(Ff ) ⊆ Lm, f(

( ak
bk,f

)
) is necessarily equal to m(ak).

Also by Lemma 2.27, there exists, for every k ∈ q, exactly b′ ∈ B such that f(
(
a′k
b′

)
) 6= 0,

and we denote it by b′k,f . Here, f(
( a′k
b′k,f

)
) may have different value: it can be either DM , or

any natural number in {N,N+1, . . . ,M−1}.
Let us show that among these f ’s in Υ, there must exist one that is maximal in the

sense that f maps
( a′k
b′k,f

)
to DM , for each k ∈ q. To show this, it is enough to consider

the word w = a
m(a0)
0 · am(a1)

1 · · · am(ap−1)
p−1 · a′0

M · · · a′q−1
M : it has exactly m(ak) occurrences

of each ak, and M occurrences of each a′k. Since M ≥ N , w is in Lm ⊆ ΠA+(R) =

ΠA+(
⊔
f∈Υ Ff ) =

⊔
f∈Υ ΠA+(Ff ), and therefore there exists some f ∈ Υ such that w is

in ΠA+(f). This f is necessarily maximal: for all k ∈ q, f(
( a′k
b′k,f

)
) cannot be a natural

number smaller than M (since w is in the projection and |w|a′k = M), which means that f

necessarily maps
( a′k
b′k,f

)
to DM .

Now that we have our maximal f ∈ Υ, we define P as the natural number
(
(N .−1)×|A|+
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1
)
× (|SR|+1), where N .−1 denotes N−1 if N ≥ 1, and 0 if N = 0. Notice that P ≥ N . We

define f ′ as the
〈(

A
B
)
, P
〉
-map induced from f : it maps each pair

( ak
bk,f

)
to m(ak) < N ≤ P ,

each pair
( a′k
b′k,f

)
to DP , and all other pairs to 0. The obtained relation Ff ′ is functional, and

its projection onto A+ is included in Lm. We prove now that the relation is included in R
(and therefore in R�Lm).

Claim 2.29. Ff ′ ⊆ R�Lm.

Proof. We consider some pair
(
w
σ

)
in Ff ′ , in order to prove that it is also in R. For

all i < |w|, we define γw(i) as being the element hSR(
( w(0)···w(i)
σ(0)···σ(i)

)
), in SR. The function γw

is therefore a finite word over the alphabet SR and of length |γw| = |w|. Notice that for
all 0 ≤ i < j < |w|, we have γw(j) = γw(i) ∗ hSR(

( w(i+1)···w(j)
σ(i+1)···σ(j)

)
).

We define that a convex subset X of Dom(w) is maximal if each position of X is labelled
by one of the a′k’s, and if for every convex subset Y of Dom(w) with X ⊂ Y , there exists
some position of Y \X labelled by one of the ak’s. Figure 2.9 depicts an example of such
maximal convex subset. The factor w�X of w is called maximal if the subset X is.

a3 a′0 a′7 a′6 a′3 a′2 a4

b3 b′0 b′7 b′6 b′3 b′2 b4

· · ·

· · ·

· · ·

· · ·

w :

σ :

· · ·

· · ·

X

Figure 2.9: This subset X of Dom(w) is maximal.

Claim 2.30. The word w admits at most (N .−1)× |A|+ 1 maximal factors.

Proof. Since w ∈ Lm, it admits, for each k ∈ p, at most N .−1 positions labelled by ak,
and therefore at most (N .−1)× |A| positions labelled by one of the ak’s. A maximal factor
of w being defined either as the set of positions between two such positions, or as the set of
positions before (resp. after) the first (resp. last) such position, which justifies the claim.

Now, let us consider the positions of w labelled by
( a′0
b′0,f

)
. By the definition of Ff ′ ,

there are at least P =
(
(N .−1)×|A| + 1

)
× (|SR| + 1) such positions. Since there are

at most (N .−1)×|A| + 1 maximal factors in w, there exists at least one restricted to a
convex subset X ⊆ Dom(w) which contains at least |SR| + 1 occurrences of a′0. Thus,
among these positions in X labelled by a′0 in w, there must be two, distinct, labelled by
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the same element of SR in γw: i < j ∈ X are such that
( w(i)
σ(i)

)
=
( w(j)
σ(j)

)
=
( a′0
b′0,f

)
and

γw(i) = γw(j).

We define w0 as the finite word w(0) · · ·w(i) ·
(
w(i+1) · · ·w(j)

)M ·w(j+1) · · ·w(|w|−1):
it is basically w but with the factor w(i+1) · · ·w(j) appearing M times instead of just once.
Similarly, we define σ0 as σ(0) · · ·σ(i) ·

(
σ(i+1) · · ·σ(j)

)M · σ(j+1) · · ·σ(|w|−1).

A first thing to notice is that the pair
(
w0
σ0

)
is in R if and only if

(
w
σ

)
also is. Indeed,

we have:

hSR(
(
w0
σ0

)
) = hSR(

( w(0)···w(i)
σ(0)···σ(i)

)
) ∗ hSR(

( w(i+1)···w(j)
σ(i+1)···σ(j)

)
)M ∗ hSR(

( w(j+1)···w(|w|−1)
σ(j+1)···σ(|w|−1)

)
)

= γw(i) ∗ hSR(
( w(i+1)···w(j)
σ(i+1)···σ(j)

)
) ∗ hSR(

( w(i+1)···w(j)
σ(i+1)···σ(j)

)
)M−1 ∗ hSR(

( w(j+1)···w(|w|−1)
σ(j+1)···σ(|w|−1)

)
)

= γw(j) ∗ hSR(
( w(i+1)···w(j)
σ(i+1)···σ(j)

)
)M−1 ∗ hSR(

( w(j+1)···w(|w|−1)
σ(j+1)···σ(|w|−1)

)
)

= γw(i) ∗ hSR(
( w(i+1)···w(j)
σ(i+1)···σ(j)

)
)M−1 ∗ hSR(

( w(j+1)···w(|w|−1)
σ(j+1)···σ(|w|−1)

)
)

...
= γw(i) ∗ hSR(

( w(i+1)···w(j)
σ(i+1)···σ(j)

)
) ∗ hSR(

( w(j+1)···w(|w|−1)
σ(j+1)···σ(|w|−1)

)
)

= γw(|w|−1)

= hSR(
(
w
σ

)
).

Therefore,
(
w0
σ0

)
∈ h−1

SR
(hSR(R)) = R if and only if

(
w
σ

)
∈ h−1

SR
(hSR(R)) = R, and we

have our equivalence.

Moreover, since in
(
w
σ

)
, all positions between i and j are labelled by letters among

the
( a′k
b′k,f

)
’s, we have for each k ∈ p, |

(
w0
σ0

)
|( ak
bk,f

) = |
(
w
σ

)
|( ak
bk,f

) = m(ak), and since
( w(i)
σ(i)

)
=( w(j)

σ(j)

)
=
( a′0
b′0,f

)
, the letter

( a′0
b′0,f

)
has at least M occurrences in

(
w0
σ0

)
. To summarise, our

pair
(
w0
σ0

)
is such that:

− |
(
w0
σ0

)
|( ak
bk,f

) = m(ak) for each k ∈ p,

− |
(
w0
σ0

)
|( a′0
b′0,f

) ≥M ,

−
(
w0
σ0

)
∈ R if and only if

(
w
σ

)
∈ R.

Now, we can repeat the same process, but on w0, and focusing on the occurrences
of
( a′1
b′1,f

)
, we obtain a pair

(
w1
σ1

)
which is such that:

− |
(
w1
σ1

)
|( ak
bk,f

) = m(ak) for each k ∈ p,

− |
(
w1
σ1

)
|( a′0
b′0,f

) ≥M ,

− |
(
w1
σ1

)
|( a′1
b′1,f

) ≥M ,

−
(
w1
σ1

)
∈ R if and only if

(
w
σ

)
∈ R.
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When we inductively repeat the procedure, for each of the
( a′k
b′k,f

)
’s, we obtain, after q

steps, a pair
( wq−1
σq−1

)
that satisfies:

− |
( wq−1
σq−1

)
|( ak
bk,f

) = m(ak) for each k ∈ p,

− |
( wq−1
σq−1

)
|( a′k
b′k,f

) ≥M for each k ∈ q,

−
( wq−1
σq−1

)
∈ R if and only if

(
w
σ

)
∈ R.

By the definition of Ff , the pair
( wq−1
σq−1

)
is in Ff and therefore in R. Thus,

(
w
σ

)
is in R,

and we have proven our inclusion: Ff ′ ⊆ R�Lm .

As we defined f ′ from f , we define now m′ from m: m′ is the 〈A, P 〉-map that maps
each ak to m(ak) and each a′k to DP . The language Lm′ , included in Lm, is exactly the
projection of Ff ′ onto A+, and therefore, the relation Ff ′ , which we proved in Claim 2.29
to be included in R, is a uniformisation of R�m′ .

It remains to take care of the restriction of R to the set Lm \Lm′ , which we denote by L.
We use the induction hypothesis for this. First, L is in MN [A] by definition, and therefore
in MP [A], hence, L, as a union of languages in MP [A], is in MP [A], by Corollary 2.18.
Thus, we write L as

⊔
o∈Λ Lo, with Λ being a set of 〈A, P 〉-maps. Our point is to prove that

for each o ∈ Λ, R�Lo admits a uniformisation that is the union of
〈(

A
B
)
, (P + |SR| + 1) ×(

|A| × (|SR|+ 1)
)q〉-maps.

Let o ∈ Λ. Because Lo ⊆ Lm, we have o(ak) = m(ak) for each k ∈ p. Also, it is not
possible for each o(a′k) to be equal to DP , for o would be exactly the function m′. Therefore,
we have |ADP (o)| < |ADP (m′)| = q.

We have Lo ⊆ Lm ⊆ R. Hence, to apply our inductive hypothesis on the pair 〈o, P 〉, we
have to prove that R�Lo admits a uniformisation in FO[ ], and this is immediate:

⊔
f∈Υ Ff

is a uniformisation of R�Lm in FO[ ], and therefore
(
Lo
B+

)
∩
⊔
f∈Υ Ff is a uniformisation

of R�Lo in FO[ ]. Indeed,
(
Lo
B+

)
is clearly definable in FO[

(
A
B
)
], and we know that this class

is closed under Boolean combinations.
Since |ADP (o)| < q, we can apply our induction hypothesis: R restricted to Lo admits

a uniformisation that is the union of
〈(

A
B
)
, (P + |SR| + 1) ×

(
|A| × (|SR| + 1)

)q−1〉-maps.
Since P ≤

(
N × |A|+ 1

)
× (|SR|+ 1), we also have:

(P + |SR|+ 1)×
(
|A| × (|SR|+ 1)

)q−1 ≤ (N + |SR|+ 1)×
(
|A| × (|SR|+ 1)

)q
= Z,

and therefore R�Lo admits a uniformisation Fo that is the union of
〈(

A
B
)
, Z
〉
-maps.

Finally, we can conclude: R restricted to Lm admits Ff ′ t
⊔
o∈Λ Fo as a uniformisation

that is a union of
〈(

A
B
)
, (N + |SR|+ 1)×

(
|A| × (|SR|+ 1)

)q〉-maps, and we have proven the
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lemma.

We directly deduce the corollary, stating about the whole relation R:

Corollary 2.31. Let R ⊆
(
A
B
)+ be a regular relation. We suppose that its projection ΠA+(R)

belongs to MN [A] for some N ∈ N. Then, if R admits a uniformisation in FO[
(
A
B
)
], it

admits a uniformisation in MZ[
(
A
B
)
], with Z being the natural number (N + |SR| + 1) ×

(|A| × (|SR|+ 1))|A|.

Proof. We can write ΠA+(R) as
⊔
m∈Λ Lm, with Λ being a set of 〈A, N〉-maps. Let us sup-

pose that R admits indeed a uniformisation F in FO[
(
A
B
)
]. Then for each m ∈ Λ, R�Lm

admits F �Lm = F ∩
(
Lm
B+

)
as uniformisation in FO[ ]. Moreover, by definition, each Lm is

included in ΠA+(R). Therefore, by Lemma 2.28, we know that R�Lm admits a uniformi-
sation Fm in MZ[

(
A
B
)
]. Hence,

⊔
m∈Λ Fm, the union of all of these, is a uniformisation of R

in MZ[
(
A
B
)
].

We can deduce the main theorem: it is decidable whether a given regular relation admits
a uniformisation in the class FO[ ].

Theorem 2.32. There exists a algorithm that inputs an MSO[
(
A
B
)
, <] sentence ϕ, A and B

being any alphabets, and outputs an FO[
(
A
B
)
] formula ψ such that the relation L(ψ) uni-

formises the relation L(ϕ) if there exists one, and NO in the opposite case.

Proof. Let R = L(ϕ) ⊆
(
A
B
)+.

Proposition 1.47 in Chapter 1 gives us a formula ϕproj that defines ΠA+(R). Inputting ϕπ

to the algorithm of Corollary 2.23, we either get aNO, telling us that ΠA+(R) is not in FO[ ],
or a set Λ of 〈A, N〉-maps, N being some natural number, such that ΠA+(R) =

⊔
m∈Λ Lm.

In the former case, we output NO, since a relation whose projection is not in FO[A]
cannot have a uniformisation in FO[

(
A
B
)
], by Corollary 2.25.

In the latter case, we can use Corollary 2.31, with the natural N : we know that if R
admits a uniformisation in FO[ ], then it must admit one of the shape

⊔
f∈Υ Ff , with Υ being

a set of MZ[
(
A
B
)
]-maps, with Z being the natural number (N+|SR|+1)×(|A|×(|SR|+1))|A|

(which we can compute, since we can compute SR—see Proposition 1.15 on page 42).
Given a set Υ of

〈(
A
B
)
, Z
〉
-maps, we can test if FΥ =

⊔
f∈Υ Ff is a uniformisation of R.

Indeed, remember that FΥ is a uniformisation of R if the following three conditions hold:
i) FΥ is functional,
ii) FΥ ⊆ R,
iii) ΠA+(F ) = ΠA+(R).
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First, we can ensure Condition i) by considering only the sets Υ whose maps f induce
functions, meaning such that for all a ∈ A, there exists at most one b ∈ B such that
f(
(
a
b

)
) 6= 0 (see Lemma 2.27). Then, we can test the inclusion FΥ ⊆ R using the algorithm

of Corollary 1.17, since Proposition 2.17 gives us a formula for FΥ. Finally, we can compute
ΠA+(FΥ) and compare it with ΠA+(R).

Hence, if among the finite amount of sets of
〈(

A
B
)
, Z
〉
-maps, we find some whose induced

language is a uniformisation of R, we output it (or an FO[
(
A
B
)
] sentence defining it). If not,

then we output NO, and we are done.

2.5 Conclusion and further interrogations

In this chapter, we proved both negative and positive results about uniformising relations
of finite words in First-Order Logic and its different fragments, which we introduced in
Subsection 1.2.4.

First, we proved that most of these fragments, unlike the full class MSO[<] of regular
languages, are too weak to uniformise not only themselves, but also weaker formalisms,
as state Propositions 2.1, 2.2, and 2.3. The counterexamples we provided, and the proofs
relying on the algebraic characterisations of these classes, give us an idea about what these
formalisms are missing in order to construct uniformisations.

Yet, using a characterisation of FO[ ], which we proved in Section 2.2, we were able
to prove two positive results. The first one, stating that FO[<] is actually strong enough
to uniformise relations in FO[ ], contrasts with our first three negative results, and raises
different questions.

First, one could ask whether the class FO[<] is capable of uniformising more than rela-
tions expressible in FO[ ]. For instance, what about the possibility to uniformise in FO[<]

the relations definable in FO2[<], the fragment using only two different variables?

Question 2.33. Does the class FO[<] uniformise the class FO2[<]?

Indeed, it is noticeable that the class FO2[<] contains FO[ ], for the property of
containing at least k occurrences of some letter a can be defined by the FO2[<] for-
mula ∃x0. a(x0) ∧ ∃x1>x0. a(x1) ∧ ∃x0>x1. a(x0) ∧ . . ., where k existential quantifiers are
involved, and, thus, we can define in FO2[<] the languages induced from maps, introduced
in Section 2.2. Yet, this inclusion is not directly inherited from the syntax, which explains
why we did not picture it on Figure 1.1 on page 40.
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The author was not able yet to construct a relation definable in FO2[<] that does not
admit uniformisation in FO[<]. If, on the other hand, the answer to Question 2.33 is
positive, it shall be proven using the semantic characterisation of FO2[<] [WI07], as we use
the characterisation of FO[ ] in order to prove Proposition 2.5.

Also, although the chapter focuses on fragments of First-Order Logic, it seems legit-
imate to study the possibility to uniformise relations in formalisms lying between FO[<]

and MSO[<]. As an example, what about the possibility to uniformise relations in the
formalism FO[<,mod], which enriches FO[<] with modular predicate (meaning that it can
test if a position is dividable by some natural number [CPS06])?

Another natural question that arises from these results is the existence of a robust
non-empty subclass of MSO[<] that has the possibility to uniformise its relations. For
instance, if we consider, for a binary relation R ∈ FO[ ], a uniformisation FR of it in the
class FO[<], then the class U := FO[ ] ∪ {FR | R ∈ FO[ ]} ⊂ FO[<] ⊂ MSO[<] easily
satisfies the uniformisation property, but this class is of limited interest: it does not admit
any natural closure properties.

In the next chapter, we answer this question negatively, when considering the robustness
of varieties of languages, defined in Subsection 1.3.2: any non-empty variety of languages
that does not contain all the regular languages necessarily admits a relation that it cannot
uniformise.

Another positive result which we obtained in this chapter is on the decidability of uni-
formising regular relations in FO[ ]. The proof that we proposed rely on both semantic and
algebraic characterisations of this formalism, but also on a very strong property of it, which
is its closure under projections: if R ∈ FO[

(
A
B
)
], then ΠA+(R) ∈ FO[A] (see Corollary 2.21).

This property is very rare among formalisms: natural classes such as FO[<] or FO[s] do
not share it. Hence, generalising our proof to other classes, such as these two, does not seem
feasible. Yet, we have the following proposition, stating that, even though FO2[<] is not
closed under projections, it does satisfy a similar property, which we prove in Appendix B:

Proposition 2.34. Let A and B be two alphabets, and let F ∈ FO2[
(
A
B
)
, <]. If F is

functional, then its projection ΠA+(F ) is in FO2[A, <].

In particular, if some relation R ⊆
(
A
B
)+ admits a uniformisation F in FO2[

(
A
B
)
, <],

then its projection ΠA+(R) must be in FO2[A, <], since it is equal to the projection of F .
For this reason, FO2[<] would be a natural candidate to see if our proof can somehow be
adapted. Yet, at the moment, the author was not able to come with an algorithm deciding
the uniformisability in this class.
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Chapter 3

MSO[<] as the unique non-empty variety
with the uniformisation property

In the previous chapter, we studied the capacity of certain fragments of First-Order Logic,
over finite words, to uniformise each other. We were able to find many examples in which
said fragments are unable to provide uniformisations for other classes, even much weaker
ones. Now, we focus on the capacity of a class to uniformise its own relations. Indeed, the
results of Chapter 2 do not exclude, a priori, the existence of a robust self-uniformising
class, for example between FO[ ] and FO[<].

Recall that a class C of languages satisfies the uniformisation property if for each rela-
tion R in C, there exists a relation F also in C that is a uniformisation of R. Two very
robust classes of regular languages of finite words are known to have this property: the empty
class ∅, trivially, and the full class of regular languages, MSO[<], by Theorem 1.48. In this
chapter, we show that, among varieties of languages (see the definition on page 45), these
two classes are the only ones, as states the following theorem, originally proven in [LMS19]:

Theorem 3.1. MSO[<] is the unique non-empty variety of languages that satisfies the
uniformisation property.

A graphical representation of Theorem 3.1 is depicted in Figure 3.1.
In the right-hand side ellipse, one can find all the non-empty classes of regular languages

that satisfy the convenient closure properties of varieties of languages: the full classMSO[<]

of regular languages, fragments of First-Order Logic, the class FC of languages that are
either finite or cofinite1, the class EF of empty and full languages introduced on page 55, . . .

1A language L ⊆ A+ is called cofinite if its complement language Lc := A+ \ L is finite. The class FC
is naturally closed under Boolean operations, by definition. If u ∈ A+, then for any language L, w 7→ u·w
and w 7→ w·u are injections from u−1·L and L·u−1, respectively, to L, therefore FC is also closed under
quotients. Finally, if h : A+ → B+ is a homomorphism, then any word w ∈ B+ admits at most |A| × |w|
preimages under h. By this argument, FC is also closed under preimages of homomorphisms, and we can
conclude that it is a variety of languages.
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non-empty
varieties of

languagesFO[ ]
×

FO451[s]
×

FO[s]
×

FC
×

FO[<]
×

EF
×

classes satisfying
the uniformisation property

∅
×

{F}
×

U
×

MSO[<]
×

MSO[<]

Figure 3.1: A graphical representation of Theorem 3.1.

In the left-hand side ellipse are depicted the classes that can uniformise their relations:
one can see MSO[<], the empty class ∅, and some more artificial classes. For instance,
a class containing a unique relation F that happens to be functional clearly satisfies the
uniformisation property, but it is not a variety of languages since it is not even closed under
Boolean operations. On the figure, one can also see U, the class we defined on page 87 and
that contains relations in FO[ ], as well as uniformisations of these in FO[<].

Theorem 3.1 tells us that these two ellipses intersect each other exactly in one class: the
class MSO[<] of regular languages. In other words, the capacity of providing uniformisa-
tions characterises MSO among all the non-empty varieties of finite semigroups.

Except for its last section, the whole chapter is dedicated to the proof of the theorem.
We consider a class C of regular languages of finite words, and we suppose that it satisfies
the three hypotheses of the theorem (it is non-empty, it is a variety of languages, and it
uniformises itself), and we prove that it is necessarily the class MSO[<]. The strategy
is to depict step by step how C must contain more and more regular properties, until we
ultimately show that it contains every single regular language.

We begin by proving in Section 3.1 thatC can test letters: if a is a letter of an alphabet A,
then the language {w ∈ A+ | at least one position of w is labelled by a} is a language of C.
This is equivalent to saying that C contains FO1[ ], the class of languages definable by
a formula using only one variable and whose signature is composed only of letter tests
(in addition to the equality). Indeed, we recall that we gave a semantic characterisation
of this class in Proposition 2.17. In Section 3.2, we show that C is capable not only of
testing its letters, but also of counting them: for any n ∈ N, also the language {w ∈ A+ |
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at least n positions of w are labelled by a} is in C. This time, this capacity is equivalent
to FO[ ] ⊆ C (again, see Proposition 2.17 for the semantic characterisation of this class).

In Section 3.3, a more important step is completed as we prove that C can recognise
subwords: if a0, a1, . . . , an−1 are letters of an alphabet A, then the language A∗ · a0 ·A∗ · a1 ·
A∗ · · ·A∗·an−1·A∗ belongs toC. This sort of languages correspond to the existential fragment
of FO[<], i.e. they can be defined by a formula of the shape ∃x0, . . . , xn−1. ψ(x0, . . . , xn−1),
with ψ(x0, . . . , xn−1) being a FO[<] formula of quantifier depth 0 (it is a Boolean combina-
tion of formulae of the shape a(xi), xi < xj, or xi = xj). We refer to [DGK08, Section 6]
for the expressive power of said fragment.

Finally, we reach our aim in Section 3.4, when we prove that the recognition by semi-
groups can be expressed in C, and therefore that every regular language is in C.

In most of the proofs of this chapter, we make use of the algebraic closures of the
class V := Synt(C) of (finite) syntactic semigroups of languages in C (see its definition on
page 45). Theorem 1.24 tells us that it is a variety of finite semigroups (again, the definition
of a v.f.s. can be found on page 46), and that C is exactly Reco(V), the class of languages
recognised by some semigroup in V.

3.1 Testing letters and extending alphabets

This section is devoted to a first step of the proof of Theorem 3.1: we show that C must
be able to detect which letters appear in the given word. More formally, the main result of
this section is the following lemma, and its immediate corollaries:

Lemma 3.2. For all alphabets A1 ⊆ A2, the language {w ∈ A+
2 | w(x) ∈ A1 for each x ∈

|w|} is in C.

In this section, we write 〈A+
1 ,A2〉 for the language of the lemma (see the remark on

page 24). The information about the alphabet A2 is indeed important: a+ is a crucially
different object whether it is considered as a language over the alphabet {a} or over a bigger
alphabet {a, b}.

Before proving the main lemma, we prove a shorter one, stating that C contains all the
full languages:

Lemma 3.3. For any alphabet A, C contains the full language 〈A+,A〉.

Proof. Since C is not empty by assumption, it contains some language L over an alpha-
bet A1. Let S be a semigroup in V that recognises L. We know that there exists one, since
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the syntactic semigroup of L is in V. Then, we can consider any homomorphism h from A
to S: we know by Proposition 1.18 on page 43 that there exists some idempotent element
e in S, and the function mapping each word w of A+ to e is a homomorphism. We obtain
that 〈A+,A〉 = h−1(S). Therefore, 〈A+,A〉 is recognised by S, and therefore it is in C,
since C = Reco(V).

From this, we know that C contain EF, the class of empty and full languages, defined
on page 55. Now, we can prove the wanted result:

Proof of Lemma 3.2. To prove it, we show that the semigroup 2 = {0, 1}, with the maximum
law max (defined by max(0, 0) = 0 and max(0, 1) = max(1, 0) = max(1, 1) = 1), belongs
to V. Indeed, if this semigroup is in V, then we consider the homomorphism h from A+

2

to 2, defined by h(a) = 0 for a ∈ A1 and h(a) = 1 for a ∈ A2\A1. Then 〈A+
1 ,A2〉 = h−1({0})

and therefore it belongs to C.

Let R be the full relation
〈(

A
B
)+
,
(
A
B
)〉

between words over A = {x} and words over
B = {�,4}. Lemma 3.3 tells us that R is in C, as a full language. By the assumption,
C must contain a uniformisation F of R that is recognised by some semigroup S ∈ V via
a homomorphism h from

(
A
B
)+ to S: F = h−1(H) with H ⊆ S.

Let N = N(2) be the number obtained from Theorem 1.29 on page 49 applied for S
and h in the particular case n = 2. Consider the word w = xN , and take the unique word σ
in {�,4}N such that

(
w
σ

)
∈ F . For convenience, for all i < j ≤ N , we write wi,j (resp. σi,j)

for the word w(i) · · ·w(j−1) (resp. σ(i) · · ·σ(j−1)), and si,j for h(
( wi,j
σi,j

)
).

By the definition of N , we know that there exists an idempotent element e of S, and
numbers i < j < k ≤ N , such that si,j = sj,k = e. Since j−i > 0 and |B| ≥ 2, we can define
a word σ′i,j ∈ Bj−i distinct from σi,j (typically: by changing all �’s of σi,j into 4’s, and
vice-versa). We define now s′i,j = h(

( wi,j
σ′i,j

)
). An illustration of this paragraph is depicted on

Figure 3.2.

As e is an idempotent of S, for all ` ≥ 1 we have s0,i · e` · sk,N = s0,N ∈ H. Recall that ]
is a natural number such that for every s ∈ S the element s] is idempotent (once again, see
Proposition 1.18 on Page 43). Considering the particular case of the above equality for `
being 3× ], we obtain:

(
w0,i

σ0,i

)
·

((
wi,j

σi,j

)
·
(
wi,j

σi,j

)
·
(
wi,j

σi,j

))]

·
(
wk,N

σk,N

)
∈ F.
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w :

σ :

0 1 i j−1 j k−1 k N−1

x x x x x x x x

� 4 � 4 4 � � �
· · · · · · · · · · · ·

(
wi,j
σi,j

)
h7→ e

(
wj,k
σj,k

)
h7→ e

x x

4 �
· · ·

wi,j :

σ′i,j : (
wi,j
σ′i,j

)
h7→ s′i,j

Figure 3.2: Ramsey’s theorem applied to the pair 〈w, σ〉, and the definition of s′i,j.

As σi,j 6= σ′i,j and F is a uniformisation, we know that:

(
w0,i

σ0,i

)
·

((
wi,j

σi,j

)
·
(
wi,j

σ′i,j

)
·
(
wi,j

σi,j

))]

·
(
wk,N

σk,N

)
/∈ F.

This implies that the element e′ defined as
(
si,j · s′i,j · si,j

)] is different from e. Now,
we set s0 = e and s1 = e′. As both e and e′ are idempotents of S, we have s0 ∗ s0 = s0

and s1∗s1 = s1. But we also have s0∗s1 = s1. Indeed, if ] = 1, then s0∗s1 = e∗e∗s′i,j ∗si,j =

e∗s′i,j∗si,j = s1, and if ] > 1, then s0∗s1 = e∗(e∗s′i,j∗si,j)] = e∗(e∗s′i,j∗si,j)∗(e∗s′i,j∗si,j)]−1 =

(e ∗ s′i,j ∗ si,j) ∗ (e · s′i,j ∗ si,j)]−1 = (e ∗ s′i,j ∗ si,j)] = s1. By the same argument, we have
s1 ∗ s0 = s1. Therefore, the subset {s0, s1} of S is a subsemigroup and it is isomorphic to
2 with the law max. Because V is closed under subsemigroups and under images under
surjective homomorphisms, said semigroup is in V, and this concludes the proof of the
lemma.

We can now state that C is closed under extensions of alphabets, and, even more, it
recognises languages independently of the alphabets:

Corollary 3.4. Let A1 ⊆ A2 be two alphabets and L ⊆ A+
1 , regular. Then 〈L,A1〉 ∈ C if

and only if 〈L,A2〉 ∈ C.

Proof. For the forward implication, suppose that S ∈ V recognises L via some homomor-
phism h1 : A+

1 → S. We showed in the proof of Lemma 3.2 that the semigroup 2 with the law
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max is in V. This implies that S1×2, with the natural product law, is also in V (because V
is closed under products, by the definition of a v.f.s.). Now, let h2 be the homomorphism
from A+

2 to S×2 defined by h2(a) = 〈h1(a), 0〉 for a ∈ A1, and h2(a) = 〈s, 1〉 for a ∈ A2\A1,
where s is any element of S. Then we have clearly L = h−1

2 (h1(L) × {0}): 〈L,A2〉 is reco-
gnised by S and therefore it is in C.

For the backward implication, let us suppose that S ∈ V recognises L via a homo-
morphism h2 : A+

2 → S. Let h1 be the homomorphism from A+
1 to S simply defined

by h1(w) = h2(w) for w ∈ A+
1 . By assumption, we have L = h−1

2 (h2(L)) = h−1
2 (h1(L)) =

h−1
1 (h1(L)): 〈L,A1〉 is recognised by S and therefore it is in C.

Thus, we can simply state that a language L is in the class C, without being specific
about the alphabet considered. Until the end of the chapter, we will speak simply about
a language L, instead of a pair 〈L,A〉.

Now, if a is any letter of an alphabet A, we denote by [∃a]A the language of finite words
over A that contain at least one occurrence of a, and by A⊕ we denote the language of finite
words over A in which each letter of A appears at least once. Using Lemma 3.2, we can
deduce that these two languages are in C.

Corollary 3.5. Let A be an alphabet and a be any letter of it. Then [∃a]A and A⊕ are both
languages of C.

Proof. It is enough to observe that [∃a]A =
(
(A \ {a})+

)c, where the complement is over
the full language A+. Lemma 3.2 tells us that (A \ {a})+, as a language over A, is in C,
and, since C is closed under complements, [∃a]A ∈ C.

Now, A⊕ =
⋂
a∈A[∃a]A, and therefore A⊕ ∈ C.

This corollary reveals thatC has at least the expressive power of FO1[ ], the one-variable
fragment of FO admitting only letter tests in its signature (see Proposition 2.17 on page 71
in the previous chapter for the expressive power of this class).

3.2 Counting letters

Our second step towards Theorem 3.1 is to prove that C is able to test single occurrences
of letters. Let A1 and A2 be two alphabets, with A1 ⊆ A1. We denote by [∃=1A1]A2 the
language of finite words over A2 that contain exactly one occurrence of a letter of A1. We
prove in this section that this language is in C:
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Lemma 3.6. Let A1 ⊆ A2 be two alphabets, then the language [∃=1A1]A2 is in C.

Similarly as for Lemma 3.2, the above lemma can be equivalently expressed by saying
that FO2[ ] ⊆ C (again, we expose the expressive power of this class in Proposition 2.17).

Proof. To prove the lemma, consider three distinct letters, x, y, and z, and four distinct
symbols ⊗, ⊕, 	, and �. Let Rx and Ry be the relations defined as:

Rx =
{(

x
⊕
)
,
(
x
	
)
,
( y
⊗
)
,
(
z
�
)}⊕

,

Ry =
{(

x
⊗
)
,
( y
⊕
)
,
( y
	
)
,
(
z
�
)}⊕

,

where (·)⊕ is the operation defined on page 93. These two relations are over the product
alphabet

( {x,y,z}
{⊕,	,⊗,�}

)
.

It is immediate to see that these two relations are disjoint, and we know that they are
both in C, by Corollary 3.5. Finally, we define R = RxtRy, which is also in C because the
latter is closed under unions.

Since C satisfies the uniformisation property, there exists F ∈ C uniformising R.
Let S be a semigroup in V recognising F : F = h−1(H), where h is a homomorphism
from

( {x,y,z}
{⊕,	,⊗,�}

)+ to S and H is a subset of S.
Now, for p, q ∈ N, we define Lxp and Lyq as the following two relations:

Lxp =
{(

u
σ

)
∈
{(

x
⊗
)
,
(
z
�
)}+ | ⊗ appears exactly p times in σ

}
,

Lyq =
{(

v
τ

)
∈
{( y
⊗
)
,
(
z
�
)
}+ | ⊗ appears exactly q times in τ

}
.

Once again, all these languages are pairwise disjoint. Notice furthermore that we have the
equality

⊔
p∈N L

x
p =

{(
x
⊗
)
,
(
z
�
)}+. Similarly

⊔
q∈N L

y
q =

{( y
⊗
)
,
(
z
�
)}+.

Claim 3.7. At least one of the two following propositions is true:
− for all p ≥ 2 we have h(Lx1) ∩ h(Lxp) = ∅,
− for all q ≥ 2 we have h(Ly1) ∩ h(Lxq ) = ∅.

Proof. Assume the contrary and take:

p ≥ 2,
(
u1
σ1

)
∈ Lx1 , and

( up
σp

)
∈ Lxp such that h(

(
u1
σ1

)
) = h(

( up
σp

)
); and (3.1)

q ≥ 2,
(
v1
τ1

)
∈ Ly1, and

( vp
τq

)
∈ Lyq such that h(

(
v1
τ1

)
) = h(

( vq
τq

)
). (3.2)

Let w be the word up · vq · z. By construction, it is in the projections onto {x, y, z}+

of both Rx and Ry, since it admits at least two x’s, two y’s, and one z. Therefore, it is
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in Π{x,y,z}+(R). Let ν be the unique word over {⊕,	,⊗,�} such that
(
w
ν

)
∈ F . Since we

have the inequality F ⊆ R = Rx tRy, we know that
(
w
ν

)
is either in Rx or in Ry. Without

loss of generality we suppose that
(
w
ν

)
∈ Rx. As Rx uniquely determines the symbols below

the letters y and z, we know that ν is of the shape σ · τq ·�, for some word σ over {⊕,	,�}
of length |up|.

Consider now the new word w′ over {x, y, z} defined as w′ = u1 · vq · z. We know
that w′ belongs to the projection of Ry but not to the projection of Rx, because u1 has
only one occurrence of x. Let ν ′ be the unique word such that

(
w′

ν′

)
∈ F . Similarly as

before, ν ′ = σ1 · τ ′ · � for some word τ ′ over {⊕,	,�} of length |vq|.
Using (3.1), we know that h(

(
u1
σ1

)
) = h(

( up
σp

)
), and therefore

( up
σp

)
·
( vq
τ ′

)
·
(
z
�
)
∈ F ,

whose projection onto {x, y, z}+ equals w. Since ν = σ · τq · � and σp · τ ′ · � are distinct
words (σ and σp have the same length, but σp contains some ⊗ and σ does not), the word w
has at least two candidates in F , which enters in contradiction with the fact that the latter
relation is functional. This concludes the proof of the claim.

By symmetry, let us assume that the first item of Claim 3.7 holds, i.e. for all
(
u1
σ1

)
∈ Lx1

and
( up
σp

)
∈ Lxp with p ≥ 2, we have h(

(
u1
σ1

)
) 6= h(

( up
σp

)
).

Claim 3.8. The language Lx1 is in C.

Proof. The language Lx0 =
{(

z
�
)}+ is in C. Therefore,

⊔
p≥1 L

x
p = {

(
x
⊗
)
,
(
z
�
)
}+ \ Lx0

also belongs to C. Thus, the above assumption about h-values implies the claim, because
Lx1 = h−1(h(Lx1)) ∩

⊔
p≥1 L

x
p .

Now, take A1 ⊆ A2 as in the statement of Lemma 3.6, and consider a homomorphism g

from A+
2 to

{(
x
⊗
)
,
(
z
�
)}+ mapping each letter a ∈ A1 to

(
x
⊗
)
and each letter a ∈ A2 \ A1

to
(
z
�
)
. We have [∃=1A1]A2 = g−1(Lx1), and, because C is closed under preimages under

homomorphisms, [∃=1A1]A2 is in C. This concludes the proof of Lemma 3.6.

With a similar—yet more technical—proof, one can show that for all p ∈ N, C also
contains [∃=pA1]A2 , the language of words over A2 having exactly p letters in A1, but the
result with p = 1 will be sufficient in the sequel of the demonstration. These results
show that C must contain FO[ ], First-Order Logic with only letter tests. Recall that
by Proposition 2.5 on Page 61, all relations in FO[ ] can be uniformised in FO[<]. This
explains why our proof of Theorem 3.1 needs to use more than once the hypothesis of C
uniformising itself.

In the next sections, we will also use a weaker version of Lemma 3.6, when the alpha-
bet A1 is composed of a unique letter:
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Corollary 3.9. Let A be an alphabets, and let a ∈ A. Then the language [∃=1a]A, the
language of finite words over A that contain exactly one occurrence of a, is in C.

3.3 Expressing subwords

Our next goal is to introduce the order < on the positions of letters in a given word, meaning
that C is capable of recognising which letters appear before the others. This is achieved
gradually, with the first instance of the order expressed by the following lemma:

Lemma 3.10. Let A be an alphabet and a0, . . . , ap−1 be p ≥ 1 pairwise distinct letters, that
do not belong to A. Then the language A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ is in C.

Proof. In this proof, L denotes the language A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗.
We consider two distinct letters, x and y, and p+1 distinct symbols �, 40, . . . ,4p−1,

and we define the relation R = C⊕, where C is the alphabet
{(

y
�

)}
t
{(

x
4i
)
| i ∈ p

}
.

We know from Corollary 3.5 that R ∈ C, and therefore it admits by assumption a uni-
formisation F ∈ C. Let S ∈ V, recognising F , let h be a homomorphism from C+ to S,
and let H ⊆ S be such that F = h−1(H).

We define now the word u = y] · x · y] · · · y] · x · y], where x appears exactly p times,
and ] is the natural number ](S). Since u is in the projection of R, it also belongs to the
projection of F . Let σ be the unique word satisfying

(
u
σ

)
∈ F . The word σ is necessarily of

the shape �] · 4δ(0) ·�] · · ·�] · 4δ(p−1) ·�], where δ is a permutation of p = {0, . . . , p−1},
i.e. a bijection from p to itself.

Let e be h(
(
y
�

)]
). It is an idempotent element of S. Consider g the homomorphism

from words over A′ := A t {ai | i ∈ p} to S defined by g(ai) = e ∗ h(
( x
4δ(i)

)
) ∗ e for i ∈ p,

and g(a) = e for a ∈ A.
Now, consider δ′ a second permutation of p, and let w be any word over A′ of the shape

w0 · aδ′(0) · w1 · · ·wp−1 · aδ′(p−1) · wp, with the wi’s being arbitrary words over A. We obtain
the following equalies:

g(w) = g(w0) · g(aδ′(0)) · g(w1) · · · g(wp−1) · g(aδ′(p−1)) · g(wp)

= e|w0|+1 · h(
( x
4δ(δ′(0))

)
) · e|w1|+2 · · · e|wp−1|+2 · h(

( x
4δ(δ′(p−1))

)
) · e|wp|+1

= e · h(
( x
4δ(δ′(0))

)
) · e · · · e · h(

( x
4δ(δ′(p−1))

)
) · e

= h(
(
y
�

)]
) · h(

( x
4δ(δ′(0))

)
) · h(

(
y
�

)]
) · · ·h(

(
y
�

)]
) · h(

( x
4δ(δ′(p−1))

)
) · h(

(
y
�

)]
)

= h
((

y
�

)] · ( x
4δ(δ′(0))

)
·
(
y
�

)] · · · ( y� )] · ( x
4δ(δ′(p−1))

)
·
(
y
�

)])
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Since F is functional, g(w) ∈ H if and only if the words σ = �]·4δ(0)·�] · · ·�]·4δ(p−1)·�]

and �] · 4δ(δ′(0)) · �] · · ·�] · 4δ(δ′(p−1)) · �] are the same words, meaning if and only if
δ(i) = δ(δ′(i)) for all i ∈ p, which is true if and only if δ′ is the identity of p. Therefore,

g−1(H) ∩
⋂
i∈p

[∃=1ai]A′ = A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ = L.

Using Lemma 3.9, each of the languages [∃=1ai]A′ is in C. Because C is closed under
intersections, we can conclude that L is in C.

Now we need to strengthen the above lemma, to be able to compare the positions of
letters not necessarily distinct, and that may belong to the main alphabet A:

Lemma 3.11. Let A be an alphabet and let a0, . . . , ap−1 be letters of A, with p ≥ 1. Then
the language A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ is in C.

The language in the lemma is denoted by [∃a0<a1< . . . <ap−1]A.
As stated in the introduction of this chapter, this lemma is equivalent to saying that C

contains all Boolean combinations of existential First-Order sentences with the order.

Proof. Let B := {40, . . . ,4p−1,�} be an alphabet containing p+1 pairwise distinct sym-
bols. First, we consider the following relation:

R =
(
A
�

)∗ · ( a0
40

)
·
(
A
�

)∗ · · · ( A� )∗ · ( ap−1

4p−1

)
·
(
A
�

)∗
It is immediate to see that R is functional, and moreover that ΠA+(R) is exactly the

language [∃a0< . . . <ap−1]A. Consider the relations R1 := R ·
( •
/

)
·
(
A
�

)∗ and R2 :=
(
A
�

)∗ ·( •
.

)
·R, where • is a letter not in A, and /, . are two symbols both not in B.
To conclude the proof of Lemma 3.11, we will use a fairly technical lemma. It may be

seen as an abstract generalisation of the technique used in the proof of Claim 2.8 in the
previous chapter:

Lemma 3.12. Let T be a relation of finite words over a product alphabet
(
A
B
)
. Let •, �,

/, and . be four distinct symbols, with • not belonging to A, and /, . both not belonging
to B. We define T1 and T2 as the two relations T ·

( •
/

)
·
(
A
�

)∗ and ( A� )∗ · ( •. ) ·T respectively,
and Tt as the union T1 t T2. Then, if Tt is in C then so is ΠA+(T ).

Proof. Suppose that the relation Tt belongs to C. Let F ∈ C be a uniformisation of it,
recognised by S ∈ V via a homomorphism h from

( At{•}
B∪{�,/,.}

)+ to S, and let H ⊆ S be such
that F = h−1(H).
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Let g be the homomorphism from A+ to S defined by g(a) = h(
(
a
�

)
), for every a ∈ A.

We define L as ΠA+(T ). Notice that if for all words w1, w2 in A+, the equality g(w1) = g(w2)

implies the equivalence w1 ∈ L iff w2 ∈ L, then L = g−1
(
g(L)

)
, and therefore L ∈ C.

We show that this implication holds indeed for all w1, w2 ∈ A+. Suppose that there exist
two words w1 ∈ L and w2 ∈ Lc such that g(w1) = g(w2), in order to provide a contradiction.

Let w be the word w1·•·w1, over the alphabet At{•}. This word w is in both Π(At{•})+(T1)

and Π(At{•})+(T2), and therefore in Π(At{•})+(Tt). Let σ be the unique word over B∪{�, /, .}
such that

(
w
σ

)
∈ F . This pair of words is either in T1 or in T2.

We suppose for instance that
(
w
σ

)
∈ T1 (the case

(
w
σ

)
∈ T2 is symmetric). Because • is

not in A, σ is necessarily of the shape σ1 · / ·�|w1|, with σ1 ∈ B|w1| such that
(
w1
σ1

)
∈ T .

Let w′ be the word w2 ·•·w1, also over At{•}, and also in Π(At{•})+(T2) ⊆ Π(At{•})+(Tt).
Let σ′ be the unique word over B∪{�, /, .} such that

(
w′

σ′

)
∈ F . Again, σ′ is necessarily of

the shape �|w2| · . · σ′1, with σ′1 ∈ B|w1| such that
( w1

σ′1

)
∈ T . Since g(w2) = g(w1), we know

that h
(( w2

�|w2|

)
·
( •
.

)
·
( w1

σ′1

))
= h

(( w1

�|w1|

)
·
( •
.

)
·
( w1

σ′1

))
. The latter value does not belong

to H because
( w1

�|w1|

)
·
( •
.

)
·
( w1

σ′1

)
/∈ F—we know that F is functional and σ 6= �|w1| · . · σ′1.

This means that
(
w′

σ′

)
is not in F , contradicting the assumption, and concluding the proof

of this lemma.

Now we go back to the proof of Lemma 3.11. The letters
( a0
40

)
, . . . ,

( ap−1

4p−1

)
,
( •
/

)
,
( •
.

)
are

all pairwise distinct, and none of them is in the alphabet
( A
{�}
)
. Therefore, Lemma 3.10

tells us that R1 and R2 are in C. This means that the union relation Rt = R1 tR2 is in C,
and we can conclude with Lemma 3.12 that [∃a0< . . . <ap−1]A = ΠA+(R) is in C.

Corollary 3.13. Let A0, . . . ,Ap−1 be pairwise disjoint alphabets, with p being a positive
natural number. Then the language A∗0 · A∗1 · · ·A∗p−1 \ {ε} is in C.

Proof. It is enough to observe that this language is exactly
⋂
i∈j∈p

⋂
ai∈Ai

⋂
aj∈Aj [∃aj < ai]

c
A

(where A is the union of the Ai’s).

3.4 Evaluating words in semigroups

We will now prove a variant of Lemma 3.11 for polynomials. A monomial over an alphabet A
is a language of the shape L0 · L1 · · ·Lp−1, where each Li is either of the shape A∗i , with Ai
being a subset of A, or a language having a single word over A, of length one, and such
that at least one of the Li’s is of the latter kind (in order to avoid the empty word). Notice
that, in the former kind, the subset Ai may be empty, and in this case, A∗i = {ε}, as stated
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on page 25. An example of a monomial is the language {a, b}∗ · {d} · {c}∗, which we simply
write {a, b}∗ · d · {c}∗.

For convenience, we can write that a monomial is of the shape Aξ00 · A
ξ1
1 · · ·A

ξp−1

1 , with
each ξ being either the symbol ∗, or 1, and Ai being a singleton in the latter case. Notice
that the alphabets Ai are not required to be pairwise disjoint in that definition.

We define a polynomial as being a finite union of monomials.

Remark 3.14. The family of polynomials is closed under unions and concatenations.

Proof. The closure under unions follows directly from definition. The closure under concate-
nations follows from the fact that the concatenation is distributive over the union, meaning
that for any languages L1, L2, and L, we have L · (L1 ∪ L2) = (L · L1) ∪ (L · L2) and
(L1 ∪ L2) · L = (L1 · L) ∪ (L2 · L).

The results of the previous sections give us the ingredients to prove that polynomials
are elements of C.

Lemma 3.15. Any polynomial is in C.

Proof. First, since C is closed under unions, it is enough to prove the lemma for monomials.
Consider a monomial L over an alphabet A, i.e. L = Aξ00 ·A

ξ1
1 · · ·A

ξp−1

p−1 , where each ξi is un-
derstood either as ∗ or as 1, with Ai being a singleton {ai} in the latter case. We define A′ as
the alphabet At{•}, with • not being in A, and B as the alphabet {∆0, . . . ,∆p−1,�, /, .},
all these symbols being distinct. Let R be the relation

( A0
∆0

)ξ0 · · · ( Ap−1

∆p−1

)ξp−1 , whose pro-
jection onto A+ is L, and let R1, R2 be the relations R ·

( •
/

)
·
(
A
�

)∗ and
(
A
�

)∗ · ( •. ) · R
respectively.

Notice that:

R1 =
( A0

∆0

)∗ · · · ( Ap−1

∆p−1

)∗ · ( •/ )∗ · ( A� )∗ ∩ [∃=1
( •
/

)](
A′
B

) ∩ ⋂
i∈p

Ti, (3.3)

where, for each i ∈ p, the language Ti is either:
(
A′
B
)+ if ξi is ∗; or

[
∃=1
( ai

∆i

)](
A′
B

) if ξi is 1.

Now, the first ingredient on the right-hand side of (3.3) is as in Corollary 3.13 and thus
belongs to C. The second ingredient also is in C, by Corollary 3.9, and so is each Ti: by
Lemma 3.3 if it is

(
A′
B
)+, and by Corollary 3.9 again if it is

[
∃=1
( ai

∆i

)](
A′
B

). Therefore, R1

is in C, and similarly, we have R2 ∈ C. Thus, Lemma 3.12 implies that L = ΠA+(R) ∈ C,
which concludes the proof of Lemma 3.15.
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We can now conclude the proof of Theorem 3.1. Let L be a regular language over some
alphabet A, recognised by a finite semigroup S (a priori not in V) via the automorphism h

from A+ to S: L = h−1(H) with some H ⊆ S. We dedicate the end of the section to the
proof that L ∈ C.

Consider a pair of words
(
w
γ

)
∈
(
A
S

)+ of length n. We say that such a word is an evalu-
ation if for every i ∈ n we have γ(i) = h

(
w(0) · · ·w(i)

)
. Notice that, in this case, w ∈ L if

and only if γ(n−1) ∈ H. Let E be the set of words
(
w
γ

)
∈
(
A
S

)+ that are evaluations and
such that γ(n−1) ∈ H.

Claim 3.16. We have ΠA+(E) = L.

Proof. For each word w ∈ An with n ≥ 1, there exists a unique word γ ∈ Sn such that
(
w
γ

)
is

an evaluation. In that case, h(w) = γ(n−1). Thus, w ∈ L iff γ(n−1) ∈ H iff
(
w
γ

)
∈ E.

Our aim is to show that a variant of the set of evaluations E belongs to C and then
invoke Lemma 3.12 to conclude that L is in C.

Consider a, b ∈ A and r, s ∈ S and define

Ia,r :=
(
a
r

)
·
(
A
S

)∗
, Ma,r,b,s :=

(
A
S

)∗ · ( ar ) · ( bs ) · ( AS )∗, Fa,r :=
(
A
S

)∗ · ( ar ).
Let W be the union of the following languages: the languages Ia,r ranging over a ∈ A

and r ∈ S such that h(a) 6= r; the languages Ma,r,b,s ranging over a, b ∈ A and r, s ∈ S such
that r ∗ h(b) 6= s; and the languages Fa,r ranging over r /∈ H. Notice that W , as a union of
polynomials, is a polynomial.

Claim 3.17. The complement of W is exactly E.

Proof. Clearly E ∩W = ∅. Thus, it is enough to prove that if
(
w
γ

)
/∈ W then

(
w
γ

)
∈ E.

Let n = |w| = |γ|. Since
(
w
γ

)
/∈ W , we know that γ(n−1) ∈ H (see the languages Fa,r), thus

it is enough to show that
(
w
γ

)
is an evaluation. We prove it inductively over i ∈ n. The fact

that γ(0) = h
(
w(0)

)
follows from the assumption that

(
w
γ

)
/∈ W (see the languages Ia,r).

Take i < n−1 and assume that γ(i) = h
(
w(0) · · ·w(i)

)
. Observe that γ(i+1) must be

equal to γ(i) ∗ h
(
w(i+1)

)
(see the languages Ma,r,b,s). Thus, γ(i+1) = h

(
w(0) · · ·w(i+1)

)
.

This concludes the proof.

Consider distinct letters •, �, /, ., all neither in A nor in S, and let A′ and S ′ be the
alphabets A t {•} and S t {�, /, .} respectively. We define the following four languages of
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finite words over
(
A′
S′

)
:

R1 := W ·
( •
/

)
·
(
A
�

)∗
, R2 :=

(
A
�

)∗ · ( •. ) ·W,
R′1 := Rc

1 ∩
(
A
S

)∗ · ( •/ ) · ( A� )∗, R′2 := Rc
2 ∩

(
A
�

)∗ · ( •. ) · ( AS )∗.
Notice that both R1 and R2 are polynomials (see Remark 3.14).

Claim 3.18. Using the above notions, we have R′1 = E ·
( •
/

)
·
(
A
�

)∗ and R′2 =
(
A
�

)∗ ·( •. ) ·E.
Proof. These equalities follow directly from definition and Claim 3.17.

By Lemma 3.15, the languages R1 and R2 are in C, since they are polynomials. Now,
because C is closed under Boolean operations, R′1, R′2, and their union Rt = R′1 t R2 are
also in C. Therefore, Lemma 3.12 guarantees that ΠA+(E) ∈ C. Thus, by Claim 3.16 we
know that L ∈ C. We can finally conclude Theorem 3.1:

Theorem 3.1. MSO[<] is the unique non-empty variety of languages that satisfies the
uniformisation property.

3.5 Conclusion and further questions

In this chapter, we were able to prove that, among all the non-empty varieties of lan-
guages, MSO[<], the class of all regular languages, can be characterised by the property of
uniformising its own relations. In other words, the second-order quantifiers ∃X are a crucial
tool in order to construct uniformisations. This is another argument for the very natural
character of MSO[<].

Nevertheless, we could wonder if this result holds when considering less restrictive closure
properties than the one of varieties of languages: for example, what about the classes that
are also closed under Boolean combinations, under preimages under homomorphisms, but
not necessarily under quotients?

Indeed, when relying on Eilenberg’s correspondence between varieties of languages and
varieties of semigroups, we implicitly make use of the closures under quotients. Yet, along
our proof, we never namely use this assumption, in contrast to the closures under Boolean
combinations and preimages under homomorphisms. Therefore, we could wonder if it is
a less important assumption, and if MSO[<] would also be the unique non-empty class of
languages closed under Boolean combinations, preimages of homomorphisms, and satisfying
the uniformisation property.
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Question 3.19. Is MSO[<] the unique non-empty self-uniformising class of languages
which is closed under Boolean combinations and preimages under homomorphisms?

Another interesting question is whether our theorem remains true if we consider closures
under preimages under not all homomorphisms, but only a certain class of them. For
instance, there exists a field of research studying classes closed under preimages of length-
preserving homomorphisms: those are the homomorphisms induced from a function A →
B. One also meets another notion of length-multiplying homomorphisms: those are the
homomorphisms induced from a function A→ Bk, where k is some positive natural number.
We refer to [Pin12] for a more complete descriptions of these homomorphisms and of the
classes of languages closed by their preimages.

Question 3.20. Is MSO[<] the unique non-empty self-uniformising class of regular lan-
guages which is closed under Boolean combinations, left and right quotients, and preimages
under length-preserving homomorphisms?

Question 3.21. Is MSO[<] the unique non-empty self-uniformising class of regular lan-
guages which is closed under Boolean combinations, left and right quotients, and preimages
under length-multiplying homomorphisms?

Our proof seems to crucially use the assumption that our variety C of languages is
closed under preimages under any homomorphism. Indeed, in our proofs of Lemmata 3.2
and 3.10, the ]-numbers of semigroups are involved, and these are a priori not bounded.
That would suggest a negative answer to Questions 3.20 and 3.21. However, the author and
his supervisors were not able to construct an example of a second class satisfying all these
properties.

More generally, Questions 3.19 to 3.21 are particular instances of the natural problem:

Problem 3.22. Considering some closures of classes of languages, weaker than the closures
of varieties of languages. Is MSO[<] the unique class of languages satisfying these closures
and uniformising its own relations?

Figure 3.3 is an illustration of Problem 3.22: the dashed ellipse depicts the classes of
languages satisfying these weaker closures, and we wonder if it does intersect with the green
ellipse in some other class than MSO[<].

Since we know that MSO[<] uniformises itself in the case of ω-words (see Theorem 1.49
on page 58), another natural question arising from Theorem 3.1 is whether it still holds
when considering said ω-words. In this field of research, the natural robustness to consider
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the uniformisation property
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×
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?
?

MSO[<]
×

MSO[<]

Figure 3.3: Do these ellipses intersect in some other class than MSO[<]?

is the robustness of ω-varieties of languages, or ∞-varieties of languages. Algebraically,
they correspond to varieties of finite Wilke algebrae. A survey of these notions, which we
do not develop in the thesis, can be found in [CPP08, Section 3.3].

Question 3.23. Is MSO[<] the unique non-empty ω-variety of languages that uniformise
its own relations?

At the moment of writing these lines, the author was not able to answer this question,
neither positively nor negatively. IfMSO[<] is indeed the unique such non-empty ω-variety,
the strategy to prove it shall follow a pattern similar to this chapter: consider any non-empty
such ω-variety, and use both its uniformisation property and its closures to show that it can
express more and more properties of ω-words, until we ultimately show that it necessarily
contains all the regular ω-languages.

During this process, the author was able to adapt the results of Section 3.1, and to show
that any non-empty self-uniformising ω-variety of languages necessarily has the capacity of
testing if an ω-word contains certain letters, and also of testing if it contains these letters
a certain number of times. Yet, it seems that, in order to go further, we need to prove also
that our ω-variety is moreover capable of testing if a letter appears in an ω-word infinitely
many times. The author did not succeed in this seemingly crucial step yet.
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Chapter 4

Regular uniformisations on finitary linear
orders

In this chapter, we give a characterisation of finitary linear orders on which regular relations
admit uniformisations that are also regular. Recall that a finitary linear order is a count-
able linear order that is obtained from singleton sets using a finite number of times the
operations +, ×ω, ×ω?, and η (see page 27 for a complete definition of these operations),
and therefore admits a finite representation. Furthermore, finitary linear orders and words
are convenient since it is decidable whether they satisfy a given MSO[<] formula. This is
a direct corollary of Theorem 26 in [CCP18], and also of Theorem 6.2 of [She75].

We characterise the possibility of uniformising regular relations by the non-existence of
non-trivial automorphisms. In this sense, the theorem, originally proved in [MS20], can
be seen as a generalisation of Theorem 1.49 on page 58, that states that the linear order ω
satisfies the regular-uniformisation property. In fact, a part of the proof we propose relies on
this theorem. In addition, we give other equivalent conditions to this regular-uniformisation
property, such as the existence of regular choice functions.

In Section 4.1, we state the main theorem of this chapter. We additionally explain how
a stronger version can be obtained, where relations are defined not over a given finitary
linear order, but over a given finitary word. In Section 4.2, we prove the most direct
implications of our theorem. In Section 4.3, we display a certain number of objects initially
introduced in [CCP18], such as condensation trees and tree decompositions, and we explain
how they relate to automorphisms of finitary linear orders. In Section 4.4, we finally prove
that a finitary linear order satisfies the regular-uniformisation property when it is without
non-trivial automorphisms. In the last section, we show how to express, in MSO, and under
the same assumption, related objects, such as regular choice functions.
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4.1 Stating the theorem

In this section, we give a full formulation of the main theorem of the chapter, and explicit
some notions and notations involved in the formulation. This section is divided into two
subsection, each one stating a version of the theorem: the first one being about finitary
linear orders, the second one about finitary words.

4.1.1 Main statement

Here is the statement of the main theorem of this chapter:

Theorem 4.1. Let λ be a finitary linear order. The following conditions are equivalent:
i) λ is rigid (i.e. it does not admit any non-trivial automorphism),
ii) λ does not have any convex subset isomorphic to µ × Z, for any non-empty linear

order µ,
iii) λ satisfies the regular-uniformisation property,
iv) λ admits a regular choice function,
v) λ admits a regular well order,
vi) each position of λ can be regularly defined.
Moreover, Items iii) to vi) are effective: there is a procedure that inputs a representation

of a regular relation R ⊆
(
A
B
)λ, and outputs a representation of a regular uniformisation

of it if there exists one, and NO if the above conditions fail for λ. And there is a similar
procedure for choice functions, for well orders, and for definitions of the positions.

Let us define precisely the notions involved in the theorem.
As defined on page 23 in Chapter 1, an automorphism of λ is a bijective function α

from λ to itself such that for all x, y ∈ λ, α(x) < α(y) if and only if x < y. It is called
non-trivial if it is not the identity function idλ : x 7→ x. For instance, the function x 7→ x+1

is a non-trivial automorphism of the linear order Z.
We say that λ is rigid if idλ is its unique automorphism. Hence, linear orders that admit

non-trivial automorphisms, like Z, are called non-rigid.
We can give ω and ω? as examples of rigid linear orders:

Example 4.2. The linear order ω is rigid.

Proof. Let α be an automorphism of ω. We define X as the subset {n ∈ N | α(n) 6= n},
and show that it is necessarily the empty set.
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In order to reach a contradiction, let us suppose that X is not empty. Since ω is a well
order, X must have some least element m, which, by definition, is such that α(m) 6= m.

If α(m) < m, then, α(m) is not in X (because m is its least element), and therefore α
maps it to itself: α(α(m)) = α(m). Hence, α(m) and m are two distinct positions of ω,
mapped to the same element, which contradicts the assumption that α is injective. There-
fore, we necessarily have m < α(m).

But now, we realise that α does not map any element to m. Indeed, any n < m is
mapped to itself by assumption, and if n ≥ m, then we have α(n) ≥ α(m) > m because α
preserves the order. Therefore, the very existence of m enters into contradiction with the
surjectivity of α, and we have reached our point: X is empty, and α is the identity.

In Item ii), µ × Z has to be understood as a simplified notation for µ × ω? + µ × ω: it
consists of a bi-infinite number of copies of µ. For instance, if µ is a singleton, or even any
finite linear order, then µ× Z is isomorphic to Z itself.

Item iii) tells us that for all alphabets A and B, for any relation R ⊆
(
A
B
)+ defined by

an MSO[
(
A
B
)
, <] formula, there exists a relation F ⊆

(
A
B
)+ that uniformises R and is also

defined by an MSO[
(
A
B
)
, <] formula. The linear order ω can be given as an example of

a linear order satisfying this item, see Theorem 1.49 on page 58.
We defined on page 53, also in Chapter 1, that a choice function f over λ is regular if

it is defined by an MSO[<] formula ϕλchoice(X, x) in the following sense: for any non-empty
subset X of λ, there exists a unique x ∈ λ such that λ � ϕλchoice(X, x), and moreover said x
is f(X) (and therefore belongs to X). Example 1.38 in the same chapter, highlights that
the hypothesis of λ being well ordered naturally induces such a formula.

In Item v), a well order �wo over λ is regular if it is defined by an MSO[<] for-
mula ϕλwo(x, y): �wo is the relation

{
〈x, y〉 | λ � ϕλwo(x, y)

}
. In the case when λ is a well

order itself, it suffices to take �wo as ≤ (defined by the formula ϕλwo(x, y) := x<y ∨ x=y).
As an instance of a linear order that is not a well order and that however admits a regular
well order, we can consider ω?: in this case, the order �wo, defined as x �wo y if y ≤ x, is
a regular well order.

We choose to consider said well order as non-strict, meaning that it is reflexive. This
choice is not problematic since we can always consider the formula ϕλwo(x, y)∧x 6=y to obtain
the induced strict order ≺wo, and, reciprocally, if ϕλwo(x, y) defines any strict well order ≺wo,
then ϕλwo(x, y) ∨ x=y defines the related non-strict well order �wo.

Finally, we say that an element of x of λ is regularly definable if there exists an MSO[<]

formula ϕλ,xdef (y) such that for all y ∈ λ, we have λ � ϕλ,xdef (y) if and only if x = y. In this
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case we say that ϕλ,xdef (y) defines x. Item vi) says that we can construct such a formula ϕλ,xdef

for each individual x ∈ λ. Once again, ω can be given as an example of a linear order for
which this item is true:

Example 4.3. Each position of ω is regularly definable.

Proof. A natural number n can be defined as the only element of ω having exactly n prede-
cessors, i.e. elementsm ∈ ω such thatm < n. The property of having at least n predecessors
can be defined by the formula ϕ≥n(x) := ∃x0, . . . , xn−1. x0 < x1 < · · · < xn−1 < x (if n = 0

then this formula is > by default), and the property of having at most n predecessors is de-
fined by the formula ¬ϕ≥n+1(x). Thus, the formula ϕω,ndef (x) obtained as ϕ≥n(x)∧¬ϕ≥n+1(x),
defines n.

Theorem 4.1 makes a link between all these notions. In the original article [MS20],
there is no mention of Items v) and vi), as their equivalence with the first four items was
discovered later. In fact, the author thanks and pays credit to the unknown reviewer who
suggested in their comments that the construction involved in the paper could be adjusted
to also deduce a construction of a regular well order.

4.1.2 A stronger version involving labellings

Before proving the theorem, we state a stronger version of it, in which the involved linear
order λ comes with a labelling, i.e. when considering a finitary word w (see page 1.1.3 for
the definition of them):

Theorem 4.4. Let w be a finitary word. The following conditions are equivalent:
i) w is rigid,
ii) w does not have any factor isomorphic to uZ, for some non-empty word u,
iii) w satisfies the regular-uniformisation property,
iv) w admits a regular choice function,
v) w admits a regular well order,
vi) each position of w is regularly definable.

We shall make explicit these readjusted notions. Let A be the finite alphabet of w.
Item i) of Theorem 4.4 is weaker than the related item in Theorem 4.1 because it involves

automorphisms not only of linear orders but of words, i.e. functions that preserve not only
the order but also the labels (see the definition on page 24). As for linear orders, we say
that w is rigid if the identity is its unique automorphism. It is possible for a finitary word
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w to be rigid, while Dom(w) on the contrary does admit some non-trivial automorphism (of
linear order).

Example 4.5. Let A be an alphabet with at least two different letters: a and b. Then the
finitary word w over the alphabet A, of domain Z, and obtained as aω? · b · aω, is rigid.

Proof. Let α be an automorphism of w, and let x0 be the unique position of Z labelled by b
in w.

Since α preserves the labels, α(x0) is also labelled by b in w, which implies that it is
necessarily x0 itself.

Then, α conserving the order, we have, for every x ∈ Z, the equivalences x0 < x

iff α(x0) < α(x) iff x0 < α(x). This means that α�>x0
, the function obtained by restrict-

ing α to the positions of Z greater than x0, is an automorphism of w�>x0 , the word obtained
by restricting w to these positions. In particular, α�>x0

is an automorphism (of linear
order) of Dom(w�>x0) that is isomorphic to ω. Hence, Example 4.2 tells us that this isomor-
phism α�>x0

is necessarily the identity of Dom(w�>x0): for all x > x0, we have α(x) = x.
The equality α(x) = x for all x < x0 is proven symmetrically, and this concludes the

proof that α is necessarily the identity function.

We recall the definition of a factor of w: it is the word w restricted to a convex subset of
its domain (see page 24). Considering that, Item ii) is exactly the same as its related item
in Theorem ii), modulo the labels: uZ is a simplified notation for uω? · uω.

Items iv) to vi) are similar to their corresponding items in Theorem 4.1, with the differ-
ence that the considered formulae are now in the class MSO[A, <]: they have access to the
labels of w. As an example, we show that the same word aω? · b · aω satisfies Item v):

Example 4.6. Let A be an alphabet with at least two different letters: a and b. Then the
finitary word w over the alphabet A, of domain Z, and obtained as aω? ·b·aω, admits a regular
well order.

Proof. Let x0 be the unique position of Z labelled by b in Z.
We consider the linear order �wo on λ defined by x < y if one of the three conditions is

true: x0 ≤ x < y, y < x0 ≤ x, or y < x < x0. The fact that �wo is a well order results from
the facts that ω is a well order, and that ω? with its reversed order ≤? (x ≤? y if y ≤ x) is
also one. Now, we can define x0 in MSO[A, <], as it is the unique position labelled by b, and
therefore, the three conditions above can be defined in the same class: �wo is regular.
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Item iii) is more technical. Let B and C be two alphabets. We say that a relation
R ⊆

(
B
C
)Dom(w) is regular over w if there exists some MSO[

(
A
B
C

)
, <] fomula ϕ such that

R =
{(

σ
κ

)
∈
(
B
C
)Dom(w) |

(
w
σ
κ

)
� ϕ

}
. Notice that it does not imply a priori that it is

regular in the common sense. Item iii) tells us that for any MSO[
(
A
B
C

)
, <] formula, the

induced relation R is uniformised by some relation F ⊆
(
B
C
)Dom(w) that can be also defined

by some MSO[
(
A
B
C

)
, <] formula.

4.1.3 Overview of the proof

The next sections of the chapter are dedicated to the proof of Theorem 4.1. A proof of
Theorem 4.4 is obtained from it via minor changes, i.e. by considering some additional
labellings in the formulae we construct.

In Section 4.2, we prove the most straightforward implications of the theorem, which
can be considered as folklore: the equivalence of Items i) and ii), as well as the implication
of Item i) by Items iii) to vi).

In Section 4.4, we show how evaluation trees, a notion which we define in Section 4.3,
can be used to construct, under the assumption that the finitary linear order λ is rigid,
regular uniformisations for regular relations over λ.

Finally, in Section 4.5, we provide an algorithm to construct, again under the same
assumption, a regular choice function over λ, a regular well order, and MSO[<] formulae
defining positions of λ.

4.2 Proving the first implications of the theorem

In this section, we consider a linear order λ and prove the more direct implications of
Theorem 4.1, such as the impossibility to define some properties in Monadic Second-Order
Logic when λ is non-rigid. Figure 4.1 draws a complete picture of these implications. We
will notice that the assumption of λ being finitary is not needed in any of these proofs.

First, we show the equivalence between non-rigidity and convex subsets isomorphic to
the linear order µ× Z, for some non-empty linear order µ:

Claim 4.7. The following two conditions are equivalent:
¬i) λ is non-rigid,
¬ii) some convex subset of λ is isomorphic to µ×Z, with µ being some non-empty linear

order.
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ii) no µ× Z as convex subset

i) no non-trivial automorphism

iv) regular
choice function

v) regular
well order

vi) positions
regularly definable

iii) regular uniformisations
for regular relations

Figure 4.1: None of these implications require the linear order to be finitary.

Proof. First, let us suppose that λ admits a non-trivial automorphism α. For k ∈ N
and x ∈ λ, we naturally define αk(x) as the element α(α(. . . α(x))), where the function α
is applied exactly k times to x (if k = 0 then the resulting element is x by convention),
and α−k(x) as the element (α−1)

k
(x).

Let x0 ∈ λ be a position such that α(x0) 6= x0 (there must exist one, by the assumption).
Without loss of generality, we can suppose that x0 < α(x0). In this case, we define µ as
the suborder [x0, α(x0)[ := {x ∈ λ | x0 ≤ x < α(x0)}. Because α preserves the order,
we immediately get αk(x0) < αk

′
(x0) for all integers k < k′, and even αk(x) < αk

′
(x) for

all x ∈ µ and all integers k < k′.

We consider now the subset X of all elements of λ of the form αk(x), for some x ∈ µ
and for some k ∈ Z. By construction, it is isomorphic to µ× Z, since for each k ∈ Z, αk is
an isomorphism from µ = [x0, α(x0)[ to [αk(x0), αk+1(x0)[. Moreover, the convexity of X is
deduced from the convexity of [x0, α(x0)[.

Now, we prove the implication from ¬ii) to ¬i). We suppose that there exists some
isomorphism ι from a convex subset X of λ to the linear order µ × Z, with µ being
a non-empty linear order. We define, for x ∈ λ, the element α(x) as being either x if
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x /∈ X, or ι−1
(
〈y, k+1〉

)
if x ∈ X and ι(x) = 〈y, k〉, with y ∈ µ and k ∈ Z. The obtained

function α is clearly an automorphism of λ, and it is non-trivial: α(x) 6= x for any x ∈ X.

In the next claim, we prove that, assuming the existence of a non-trivial automorphism
for λ, it is impossible to define regularly a choice function or a well order over λ, and also
to define all the elements of λ regularly.

The proofs of these implications are similar to each other, and are a direct corollary
of Fact 1.5 on page 32, stating that if α is an automorphism of λ, then for any MSO[<]

formula ϕ(x0, . . . , xp−1, X0, . . . , Xq−1), we have λ � ϕ(x0, . . . , xp−1, X0, . . . , Xq−1) if and only
if λ � ϕ

(
α(x0), . . . , α(xp−1), α(X0), . . . , α(Xq−1)

)
.

Claim 4.8. The condition:
¬i) λ is non-rigid,
implies the following three:
¬iv) λ does not admit any regular choice function,
¬v) λ does not admit any regular well order,
¬vi) not every element of λ is regularly definable.

Proof. We suppose that λ admits a non-trivial automorphism α, and we can therefore
consider an element x0 ∈ λ such that α(x0) 6= x0.

Proof of ¬iv) We define X as the subset {αk(x0) | k ∈ Z}. If ϕ(X, x) is an MSO[<] for-
mula such that λ � ϕ

(
X,αk(x0)

)
for some k ∈ Z, then we also obtain λ � ϕ

(
α(X), αk+1(x0)

)
,

i.e. λ � ϕ
(
X,αk+1(x0)

)
: there cannot be a unique x ∈ X such that λ � ϕ(X, x). This proves

that λ cannot admit any regular choice function.
Proof of ¬v) Let ϕ(x, y) be an MSO[<] formula. We suppose that it defines a linear

order ≺ over λ, and we prove that said order cannot be a well order. Because ≺ is linear,
we must have either λ � ϕ

(
x0, α(x0)

)
or λ � ϕ

(
α(x0), x0

)
. In the former case, we have

λ � ϕ
(
αk(x0), αk+1(x0)

)
for all k ∈ Z, and in the latter case, we have λ � ϕ

(
αk+1(x0), αk(x0)

)
for all k ∈ Z. In both cases, the subset {αk(x0) | k ∈ Z} does not admit a least element
by �, which therefore cannot be a well order.

Proof of ¬vi) Let ϕ(y) be an MSO[<] formula. If we suppose that λ � ϕ(x0), then we
have also λ � ϕ

(
α(x0)

)
, and therefore ϕ cannot define the position x0. This shows that not

all elements of λ are regularly definable, and our proof is complete.

Finally, we prove that the existence of a regular choice function can be seen as a particular
regular uniformisation of a regular relation:
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Claim 4.9. The condition:
iii) every regular relation of λ admits a regular uniformisation
implies the following:
iv) λ admits a regular choice function.

Proof. Let R ⊆
( {0,1}
{0,1}

)λ be the binary relation between λ-words over {0, 1} defined by: each
pair

(
w
σ

)
is in R if a unique position of σ is labelled by 1 and moreover this position is also

labelled by 1 in w.
This way, the word w is identified with any non-empty subset X of λ, and σ selects

a particular position of X.
A first thing to notice is that R is regular, since it is defined by the formula ∀x. ¬

(
0
1

)
(x)∧

∃!x.
(

1
1

)
(x) (we recall that the definition of the existential quantifier with unicity can be

found on page 32). Hence, if Item iii) is true, R admits a regular uniformisation F , which is
de facto a choice function over λ: by selecting a particular σ ∈ {0, 1}λ such that

(
w
σ

)
∈ R,

for each w ∈ {0, 1}λ admitting at least one position labelled by 1, it selects a particular
position among all the ones labelled by 1 in w.

Formally, if ψ defines the relation F , then the formula ϕ(X, x) is defined as x ∈ X ∧ ψ′,
where ψ′ is obtained from ψ by substituting each of its atomic subformulae of the shape(

1
1

)
(y) by the formula x = y, each of its atomic subformulae of the shape

(
1
0

)
(y) by the

formula y ∈ X ∧ x 6= y, each of its atomic subformulae of the shape
(

0
0

)
(y) by the formula

y /∈ X, and each of its atomic subformulae of the shape
(

0
1

)
(y) by the formula y 6= y.

4.3 Tree decompositions and the possibility to define

them regularly

After Section 4.2, we prove that the rigidity of a linear order λ implies the possibility to
regularly uniformise the relations of domain λ, and also to define well orders and choice
functions in MSO[<]. For this purpose, we develop a notion of terms and a notion of
condensation trees. A term will be a finite representation of a finitary word w, while
a condensation tree makes the link between the nodes of said term and w.

In Subsection 4.3.1, we define these two notions, while from Subsections 4.3.2 to 4.3.4, we
introduce tree decompositions, a tool constructed from condensation trees, which we show
to be related to the presence (or absence) of non-trivial automorphisms of a given word or
linear order. Finally, in Subsection 4.3.5, we show how these tree decompositions can be
defined in Monadic Second-Order Logic.
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Before all of that, we notice that a finitary linear order constructed via the η-operation
is necessarily non-rigid:

Fact 4.10. If the construction of a finitary linear order λ involves the η-operation, then λ
is non-rigid.

Proof. Suppose that the construction of λ involves the η-operation: one of its convex subsets,
name it X, is (isomorphic to) the linear order {λ0, . . . , λn−1}η, with each λi being a finitary
linear order.

We recall the definition of {λ0, . . . , λn−1}η (see page 27): we consider u = {0, . . . , n−1}η,
the unique (up to isomorphism) densely labelled word over the alphabet {0, . . . , n−1} whose
domain has no least nor greatest element (see Theorem 1.2 on page 24 and the definition of
{0, . . . , n−1}η on page 26), and {λ0, . . . , λn−1}η is obtained as Σq∈Dom(u)λu(q).

Now, we consider v = uZ, obtained as a bi-infinite number of copies of u. It is clear
that Dom(v) is also without least nor greatest element, and that v is densely labelled. There-
fore, there exists an isomorphism ι from v to u, and X is Σq∈Dom(v)λu(ι(q)). Since Dom(v) is
Dom(u) × Z, X is isomorphic to

(
Σq∈Dom(u)λu(q)

)
× Z. Using Claim 4.7, we deduce that λ

is non-rigid.

Thus, when we prove that if a linear order λ is rigid then it satisfies the regular-
uniformisation property, we can assume without loss of generality that its construction
does not involve the η-operation, meaning that it is scattered. We make this assumption
when defining our notions of terms and condensation trees.

4.3.1 Terms and condensation trees

In this chapter, we define a ranked symbol as a symbol ` together with a (possibly empty)
convex subset of Z. Said convex subset is called the arity of `, and is denoted by ar(`). We
say that ` is nullary (resp. unary, binary) if ar(`) = ∅ (resp. if ar(`) = {0}, if ar(`) = {1, 2}).
A ranked set is a set of ranked symbols.

A ranked tree over a fixed ranked set S is defined inductively: if ` ∈ S is nullary, then
there exists a ranked tree that is simply denoted by `; if ` ∈ S is not nullary, and if for
each i ∈ ar(`), ti is a ranked tree, then there exists a ranked tree that is denoted `[(ti)i∈ar(`)].
In a few cases, we use the following notations for said ranked tree: `[t0] when ` is unary,
and `[t1, t2] when ` is binary.

Each ranked tree t = `[(ti)i∈I ] can be seen as a structure consisting of a set of nodes
(which are formally elements of Z∗—finite words labelled by integers), defined inductively:
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if t is the ranked tree `, with ` being a nullary symbol, then Nodes(t) = {ε}, and if t is
the ranked tree `[(ti)i∈ar(`)], with ` being a non-nullary ranked symbol, and each ti being
a ranked tree, then Nodes(t) = {ε} t

⊔
i∈I{i·u | u ∈ Nodes(ti)}. The node ε is called the

root of t; if u is a node labelled by a symbol of arity I, then u·i is called a child of u, for
each i ∈ I, and u is the father of each of its children u·i. A leaf is a node that has no
children—it must be labelled by a nullary symbol. By Leaves(t) we denote the set of all
leaves of t. A node that is not a leaf is called internal.

If u and v are two nodes of t (internal nodes or leaves), we say that u is a predecessor
of v, which we denote u �pred v if there exists a sequence u0, . . . , uk−1 of nodes of t such
that u0 = u, uk−1 = v, and for all i < k−1, ui+1 is a child of ui. Notice that this notion
of predecessors coincide exactly with the notion of prefixes when u and v are seen as words
(see the definition on page 25). It is clear that the obtained relation, �pred, is an order over
Nodes(t), but it is a priori not linear. The inductive definition of ranked trees guarantees
that for every node v, the set {u ∈ Nodes(τ) | u �pred v} of its predecessors is finite.

Since nodes of t are words over the alphabet Z, which is linearly ordered, we can also
provide Nodes(t) with the lexicographic order ≤lex, which is linear. Once again, we refer to
page 25 for the definition. Notice that for all nodes u and v, u �pred v implies u ≤lex v.

Let A be an alphabet. We consider two families of ranked sets using the alphabet A.
First, a term over A is a ranked tree over the ranked set A t {(·), (·)ω, (·)ω?} where each
letter a of A is a nullary ranked symbol, (·) is a binary ranked symbol, and (·)ω, (·)ω? are
unary ranked symbols. Since the arities of all these ranked symbols are finite, a term is
always a finite object.

We say that a word is scattered if its domain is, meaning that it does not contain any
dense subset (see the definition on page 22). Each finitary scattered word over some alpha-
bet A can be identified with a term τ over A: the singleton word a can be identified with the
term a; if w1 and w2 are two finitary words, identified with the terms τ1 and τ2 respectively,
then the concatenation word w1·w2 is identified with (·)[τ1, τ2]; and if w is identified with
the term τ , then the word wω (resp. wω?) is identified with the term (·)ω[τ ] (resp. (·)ω? [τ ]).
When w is identified with τ , we also say that τ represents, or is a representation of w.

An example of a term can be seen on Figure 4.2: it represents the scattered finitary
word (a·b)ω. The labels are written under the nodes, and an arrow represents the father-child
relation.

Second, a condensation tree over A is a ranked tree over the ranked set A t {(·),
(Σω), (Σω?)}, where, again, each letter a of A is a nullary ranked symbol and (·) is a binary
ranked symbol, but (Σω) and (Σω?) are ranked symbols of arity respectively ω = {0, 1, 2, . . . }
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ε

(·)ω

0

(·)

0·1
a

0·2
b

Figure 4.2: The term for the finitary word (a · b)ω.

and ω? = {. . . ,−2,−1}. The leaves of a condensation tree, with the order ≤lex, form a
countable word over A, which we denote by Word(t).

Each term τ over A corresponds to a particular condensation tree, which we denote
by Tree(τ): Tree(a) is the condensation tree a, for each a ∈ A, Tree((·)[τ1, τ2]) is the conden-
sation tree (·)[Tree(τ1),Tree(τ2)], Tree((·)ω[τ0]) is the condensation tree (Σω)[(Tree(τ0))i∈ω],
and, symmetrically, Tree((·)ω? [τ0]) is the condensation tree (Σω?)[(Tree(τ0))i∈ω? ].

In this construction, each node v of Tree(τ) is obtained from a particular node u of τ ,
and, very naturally, if τ is a representation of the scattered finitary word w, then the
word Word(Tree(τ)), which we simply write Word(τ), is isomorphic to w. But on the other
way, two distinct trees can represent isomorphic words: for instance, the words aω and a·(aω)

are isomorphic to each other, yet they are not represented by the same terms.
When we apply these rules to the term τ of Figure 4.3, we obtain the condensation tree

on Figure 4.3, whose word Word(τ) is (isomorphic to) (a · b)ω.
As stated on page 24, words over a singleton alphabet are identified with their domains.

Thus, we deduce a notion of terms and evaluation trees for linear orders when A is the
singleton {•}. Only, in this case, the ranked symbols (·), (·)ω, and (·)ω? are respectively
denoted by (+), (×ω), and (×ω?), and we write Order(τ) for Word(τ). With this convention,
Figure 4.4 depicts the condensation tree constructed from the term that represents the linear
order ω + ω?.

4.3.2 Tree decompositions and how they relate to automorphisms

Here, we define a notion of tree decomposition, and explain how they relate to automorphisms
of finitary words or linear orders. We make use of a notion of condensations : introduced

115



ε

(Σω)

0

(·)

0·1
a

0·2
b

1

(·)

1·1

a

1·2

b

2

(·)

2·1

a

2·2

b

3

(·)

3·1

a

3·2

b

4

(·)

4·1

a

4·2

b

5

(·)

5·1

a

5·2

b

. . .

. . .

w = Word(t)

Figure 4.3: This condensation tree t is obtained from the term of Figure 4.2.

ε

(+)

1

(Σω)
2

(Σω?)

1 · 0
•

1 · 1

•

1 · 2

•

1 · 3

•

1 · 4

•

1 · 5

•

. . .

) 2·(-1)

•
2·(-2)

•

2·(-3)

•

2·(-4)

•

2·(-5)

•

. . .

(
λ = Order(τ)

Figure 4.4: The condensation tree for the linear order ω + ω?.
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in [CCP18], they are a very powerful tool to express properties over linear orders.
Let λ be a linear order and X be a subset of λ, not necessarily convex. We say that

a subset U of λ is a piece of X if it is convex, included in X, and maximal in the following
sense: if V is also a convex subset of λ included in X, then it is either disjoint from U or
included in it. Every element of the subset X belongs to a particular piece of it, therefore,
any subset X of λ is the disjoint union of all its pieces.

A condensation of a linear order λ is an equivalence relation C over a subset of λ,
written Dom(C) and called the domain of C, such that every equivalence class of C is
convex, meaning that for all x ≤ y ≤ z in Dom(C) such that xCz, we also have xCy
and yCz. Notice that, unlike the equivalence classes of C, the subset Dom(C) does not
need to be convex. We call a piece of C any equivalence class of C.

Let τ be a term over an alphabet A and let w be a countable word over A. A tree
decomposition with shape τ of w is a family Ξ = (Cu)u∈Nodes(τ) of condensations of Dom(w),
indexed by the nodes of τ , satisfying a certain number of conditions, for each u ∈ Nodes(τ):

1) if u is ε, the root of the term, then Cu has Dom(w) for domain and is the full rela-
tion: xCuy for all x, y ∈ Dom(w);

2) if u is a leaf, labelled by a letter a ∈ A, then each piece of Cu must be a singleton {x},
with x being a position of w labelled by a;

3) if u is a binary internal node, labelled by (·), with children u·1 <lex u·2, then for every
piece U of Cu, for each i ∈ {1, 2}, there exists a unique piece Ui of Cu·i that is included
in U , and moreover we have U1 < U2, and U1 t U2 = U ;

4) if u is a unary internal node, labelled by (·)ω, with a unique child u·0, then for every
piece U of Cu, there exists an infinite number of pieces of Cu·0 contained in Cu, which
we name U0, U1, U2, . . . Moreover they satisfy U0 < U1 < U2 < . . .,

⊔
i∈ω Ui = U , and

there is no other pieces of Cu·0 included in U ;
5) in a symmetric way, if u is a unary internal node, labelled by (·)ω? , with a unique

child u·0, then for every piece U of Cu, there exists an infinite number of pieces
of Cu·0 that are contained in Cu, which we name U−1, U−2, U−3, . . . , moreover they
satisfy . . . < U−3 < U−2 < U−1,

⊔
i∈ω? Ui = U , and there is no other pieces of Cu·0

included in U .
On Figure 4.5 is depicted a condensation tree of shape τ of the word Word(τ), where τ

is the term representing the word (a · b)ω, depicted on Figure 4.2. It is actually the unique
condensation tree of shape τ of this word. Each condensation is depicted with its pieces,
bellow the leaves of Tree(τ). Notice that, even though it is convenient to represent the
condensations bellow the condensation tree Tree(τ), they are indexed by the nodes of τ .
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(·)
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4·2
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(·)

5·1
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5·2

b

. . .

. . .

Cε :

C0 : . . .

C0·1 : . . .

C0·2 : . . .

Figure 4.5: On the left-hand side of this picture is depicted the term τ representing the
finitary word (a · b)ω. On the right-hand side of this picture, we see the evaluation tree
Tree(τ) and a tree decomposition of Word(τ) with shape τ .

A first thing to notice is that the propriety of being a tree decomposition is preserved
by isomorphisms:

Lemma 4.11. Let w and w′ be two countable words over A. If ι is an isomorphism from w

to w′ and if Ξ = (Cu)u∈Nodes(τ) is a tree decomposition with shape τ of w, then the fa-
mily Ξ′ :=

(
ι(Cu)

)
u∈Nodes(τ)

is a tree decomposition with shape τ of w′.

Proof. All the inductive conditions required for
(
ι(Cu)

)
u∈Nodes(τ)

to be a tree decomposition
with shape τ , stated above, are preserved by isomorphism.

Proposition 4.12. Let τ be a term over an alphabet A and w ∈ A◦. There exists a bi-
jection Ξ 7→ ιΞ from the set of tree decompositions Ξ with shape τ of w, to the set of
isomorphisms ιΞ from w to Word(τ).

In particular, words isomorphic to Word(τ), and only them, admit a tree decomposition
with shape τ .
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The proof of Proposition 4.12 will be given in the next two subsections. Before that, let
us observe the following corollary:

Corollary 4.13. Let τ be a term over an alphabet A and w a countable word over A
isomorphic to Word(τ). Then w admits a unique tree decomposition with shape τ if and
only if it is rigid.

Proof. One implication is a consequence of the fact that if ι and ι′ are two distinct isomor-
phisms from w to Word(τ), then ι−1 ◦ ι′ is a non-trivial automorphism of w.

The other implication is a consequence of the fact that if ι is an isomorphism from w

to Word(τ), and α a non-trivial automorphism of w, then ι ◦ α is a isomorphism from w to
Word(τ), distinct from ι.

4.3.3 From tree decompositions to isomorphisms

In this subsection, we explain how to construct the function Ξ 7→ ιΞ mentioned in Proposi-
tion 4.12, and we prove that it is an injection.

If u is a node of a term τ , then it induces a subterm of τ : it is the set {v ∈ Nodes(τ) |
u �pred v} of nodes of τ that admit u as a prefix. This term, which we write τ�u, naturally
preserves the labels and the father-child relations, and we obtain from it a word Word(τ�u)

that is isomorphic to a factor of Word(τ).
With this notion, we can state and prove the following lemma:

Lemma 4.14. Let Ξ = (Cu)u∈Nodes(τ) be a tree decomposition with shape τ of a word w,
and let u ∈ Nodes(τ). Then for every piece U of Cu, there exists an isomorphism ιΞ,u,U

from w�U to Word(τ�u).

Proof. We construct the isomorphism ιΞ,u,U by induction on u.
− Let us suppose that u is a leaf of τ , labelled by a letter a ∈ A. Then τ�u is composed

of this unique leaf, and Word(τ�u) is a word composed of a unique position labelled
by a. By the definition of a tree decomposition, U , as a piece of Cu, is a single-
ton {x}, with x ∈ Dom(w) being labelled by a. Therefore, w�U is clearly isomorphic
to Word(τ�u).

− Let us suppose that u is an internal node of τ labelled by (·), having two chil-
dren u·1 <lex u·2. By definition, U is U1 t U2, with U1 < U2, with each Ui being
a piece of Cu·i. Let us suppose that the lemma holds for u·1 and u·2, in order to show
that it also holds for u: there exists an isomorphism ιΞ,u·1,U1 from w�U1

to Word(τ�u·1)

and an isomorphism ιΞ,u·2,U2 from w�U2
to Word(τ�u·2).
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By the definition of subterms, the word Word(τ�u·1) · Word(τ�u·2) is isomorphic
to Word(τ�u). Let ι be an isomorphism from the former to the latter. Then, the
function

ιΞ,u,U =

 U → Dom(Word(τ�u))

x 7→
ι
(
〈ιΞ,u·1,U1(x), 1〉

)
if x ∈ U1

ι
(
〈ιΞ,u·2,U2(x), 2〉

)
if x ∈ U2


is clearly an isomorphism of words, and we have proven the lemma for the node u.

− Let us suppose now that u is an internal node of τ labelled by (·)ω, having a unique
child u·0. By definition, U is

⊔
i∈ω Ui, with U0 < U1 < U2 < . . . , with each Ui being

a piece of Cu·0. Let us suppose that the lemma holds for u·0: for each i ∈ ω, there
exists an isomorphism ιΞ,u·0,Ui from w�Ui to Word(τ�u·0).
Again, it follows from the definition of the subterms that Word(τ�u) is isomorphic
to Word(τ�u·0)ω. Let ι be the isomorphism from Word(τ�u·0)ω to Word(τ�u).
Now, for x ∈ U , let i be the unique natural number such that x ∈ Ui, and let y
be ιΞ,u·0,Ui(x), in Dom(Word(τ�u·0)), then we define ιΞ,u,U(x) as ι

(
〈y, i〉

)
, an element

of Dom(Word(τ�u)). By construction, the obtained function ιΞ,u,U is an isomorphism
from w�U to Word(τ�u), which proves the lemma for the node u.

− We conclude by saying that the proof in the case when u is an internal node labelled
by (·)ω? is completely symmetric to the previous case.

Now that our isomorphisms ιΞ,u,U are constructed for all u ∈ Nodes(τ) and all pieces U
of Cu, we can define the wanted isomorphism ιΞ from w to Word(τ) as being ιΞ,ε,Dom(w),
since Dom(w) is the unique piece of the condensation Cε.

A first thing to notice, which follows from our construction, is that distinct tree decom-
positions induce distinct isomorphisms:

Lemma 4.15. If Ξ and Ξ′ are two distinct tree decompositions with shape τ of a word w,
then the isomorphisms ιΞ and ιΞ′ are distinct.

Proof. This lemma follows from the proof of Lemma 4.14: if u is a node of τ , and if the
condensations Cu (from Ξ) and C ′u (from Ξ′) differ, then it means that there exists a piece
of Cu that is not a piece of C ′u (or the converse). Therefore, ιΞ, whose construction involves
these pieces, differs from ιΞ′ .

Lemma 4.15 tells us that the function Ξ 7→ ιΞ is an injection from the set of tree
decompositions with shape τ of w to the set of isomorphisms from w to Word(τ). In the
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next subsection, we show that it is also a surjection, and therefore a bijection.

4.3.4 From isomorphisms to tree decompositions

Let τ be a term over an alphabet A. Recall that each node of Tree(τ) is obtained from a
unique node of τ . Let x, y be two positions of Word(τ), meaning two leaves of Tree(τ), and
let u ∈ Nodes(τ). We define that xCuy if there exists a node v of Tree(τ) obtained from u

such that v �pred x and v �pred y. The construction of Tree(τ) ensures that two distinct
nodes obtained from u are incomparable with respect to �pred, hence, there can be at most
one node v satisfying this property. This means that Cu is an equivalence relation, and
moreover it is a condensation (because the set {x ∈ Leaves(Nodes(τ)) | v �pred x} is convex
for all v ∈ Nodes(Tree(τ))). We can verify easily that the obtained tuple (Cu)u∈Nodes(τ)

satisfies the inductive conditions described on page 117, therefore, it is a tree decomposition
of Word(τ) with shape τ . We call it the canonical tree decomposition of Word(τ) with
shape τ , and we denote it by Ξτ .

Claim 4.16. The isomorphism ιΞτ , obtained from the canonical tree decomposition with
shape τ , of Word(τ), is idWord(τ), the identity function of Word(τ).

Proof. We refer to the proof of Lemma 4.14: we can prove by induction that for every
node u ∈ Nodes(τ) and every piece U of Cu, the isomorphism ιΞτ ,u,U is the identity function
of Word(τ)�U . Since ιΞτ is defined as ιΞτ ,ε,Dom(Word(τ)), we conclude the claim.

Now, we can prove that our function Ξ 7→ ιΞ is a surjection:

Corollary 4.17. Let ι be an isomorphism from a word w ∈ A◦ to Word(τ). Then there
exists a tree decomposition Ξ with shape τ of w such that ιΞ = ι.

Proof. Let Ξτ = (Cu)u∈Nodes(τ) be the canonical tree decomposition of Word(τ) with shape τ ,
and let Ξ be the family

(
ι−1(Cu)

)
u∈Nodes(τ)

. By Lemma 4.11, Ξ is a tree decomposition with
shape τ of w. By the construction of Lemma 4.14, ιΞ = ι ◦ ιΞτ . Since ιΞτ is the identity
function of Dom(Word(τ)), we have ιΞ = ι.

With Lemma 4.15 and Corollary 4.17, we can conclude Proposition 4.12, telling that our
construction Ξ 7→ ιΞ is in fact a bijection from the set of tree decompositions with shape τ
of w to the set of isomorphisms from w to Word(τ).
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4.3.5 Representing tree decompositions in Monadic Second-Order

Logic

In this final subsection of Section 4.3, we prove a very important result: tree decompositions,
our crucial tools, are definable in MSO[<].

First, we show how condensations can be represented in MSO[<]. Let X and D be two
subsets of a linear order λ, with X ⊆ D. Let x, y ∈ D. For simplicity, by [x, y] we denote
the set of elements of λ between x and y, i.e. either the set {z ∈ λ | x ≤ z ≤ y} (if x ≤ y),
or the set {z ∈ λ | y ≤ z ≤ x} (if y ≤ x). Now, we define that x ∼DX y if [x, y] ⊆ D and one
of the following conditions is true: either [x, y] ⊆ X, or [x, y] ∩X = ∅.

Proposition 4.18. The relation ∼DX is a condensation of domain D.

Proof. The fact that ∼DX is reflexive and symmetric follows immediately from definition. We
show that it is transitive: let x ≤ y ≤ z in D, and suppose that x ∼DX y ∼DX z. A first thing
to notice is that [x, z] ⊆ D, since [x, y] ⊆ D, [y, z] ⊆ D, and [x, z] = [x, y]∪ [y, z]. Then, we
suppose that [x, y] ⊆ X (the case [x, y]∩X = ∅ being symmetric). Considering that y ∈ X,
the condition [y, z]∩X = ∅ does not hold, and therefore we necessarily have also [y, z] ⊆ X

(since y ∼DX z). Since [x, z] = [x, y] ∪ [y, z], we have [x, z] ⊆ X, and x ∼DX z. Therefore, ∼DX
is indeed an equivalence relation.

Now, it remains to show that the equivalence classes of ∼DX are convex, which follows
from definition. Indeed, if x ≤ y ≤ z are elements of λ such that x ∼DX z, then, considering
that [x, y] ⊆ [x, z], we naturally have [x, z] ⊆ D, but also [x, y] ⊆ X as long as [x, z] ⊆ X,
and [x, y]∩X = ∅ as long as [x, z]∩X = ∅. Therefore, x ∼DX y, and the same for y ∼DX z.

Hence, any pair 〈D,X〉 of subsets of λ, with X ⊆ D, can be seen as a representation
of a condensation over λ, by considering the relation ∼DX . Carton, Colcombet, and Puppis
proved a reciprocal: all condensations of a linear order can be represented like this:

Lemma 4.19 ([CCP18, Lemma 35]). For any condensation C of a linear order λ, there
exist two subsets D and X of λ such that C is the relation ∼DX over D.

It shall be pointed as a remark that Lemma 35 of [CCP18] actually does not involve the
subset D, since they assume condensations to be defined on the whole linear order λ. Yet,
this result is easily generalisable to condensations defined on subsets of λ.

Also, notice that the representations are not unique, for if the pair 〈D,X〉 is a rep-
resentation of the condensation C, then the pair 〈D,D\X〉 is an example of a different
representation for C.
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For all subsetsD, X, and for all positions x, y, the three conditions [x, y] ⊆ D, [x, y] ⊆ X,
and [x, y] ∩X = ∅ are clearly definable by MSO[<] formulae, and therefore so is the condi-
tion x ∼DX y, definable by a formula ϕcond(D,X, x, y). This tells that, if C is a condensation,
we can express properties over C in MSO, by considering subsets D, X representing it. For
convenience, we can even enrich our grammar by quantifiers ∃cond and ∀cond, in order to
quantify over condensations, and by an equality symbol =cond, comparing condensations.

Having said that, we prove that also tree decompositions are expressible in MSO:

Proposition 4.20. There exists an MSO[A, <] formula ϕτdecomp

(
(Cu)u∈Nodes(τ)

)
such that for

any countable word w over A, and any family (Cu)u∈Nodes(τ) of condensations of Dom(w),
we have w � ϕτdecomp

(
(Cu)u∈Nodes(τ)

)
if and only if the family (Cv)v∈Nodes(τ) forms a tree

decomposition with shape τ of w.

To clarify, when we say that the formula ϕτdecomp admits condensations as variables,
then we formally implement them with second-order variables Du and Xu. With that
implementation, in ϕτdecomp, any atom of the shape xCuy shall be understood as a shortened
notation for the formula ϕcond(Du, Xu, x, y).

Proof. We make sure that all the items in the definition of a tree decomposition (see this
definition on page 117) are definable in Monadic Second-Order Logic.

− The first item, for the node ε, is simple to express:

ϕroot(Cε) := ∀x, y. xCεy.

For the following items, we first define a formula ϕpiece(C,U) that expresses the fact
that U , a subset of Dom(w), is a piece of the condensation C:

ϕpiece(C,U) :=

ϕconvex (U) ∧ U 6=∅

∧ ∀x∈U, y∈U. xCy

∧ ∀V. [ϕconvex(V ) ∧ ∀x∈V, y∈V. xCy]

=⇒ U∩V=∅ ∨ V⊆U,

where ϕconvex(U) is naturally the formula ∀x < y < z. (x∈U∧z∈U) =⇒ y∈U , stating
that U is a convex subset of Dom(w).
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− Now, we can see that if u is a leaf of τ , labelled by some letter a ∈ A, then the second
item, applying to u, can be expressed by the formula:

ϕa(Cu) :=

∀U. ϕpiece(Cu, U) =⇒ ∃x∈U. a(x) ∧ ∀y∈U. x = y.

− If u is an internal node of τ labelled by (·) and having two children u·1 <lex u·2, then
the third item, applying to u, can be expressed by the formula:

ϕ(·)(Cu, Cu·1, Cu·2) :=

∀U. ϕpiece(Cu, U) =⇒

∃U1, U2. U1<U2

∧ U = U1∪U2

∧ ∀V ⊆ U. ϕpiece(Cu·1, V ) ⇐⇒ U1 = V

∧ ∀V ⊆ U. ϕpiece(Cu·2, V ) ⇐⇒ U2 = V.

− Now, we express the condition for the case when u is an internal node of τ labelled
by (·)ω and having one child u·0. We recall that we must express in MSO[A, <] that,
if U is a piece of Cu, then there exist infinitely many pieces U0 < U1 < U2 . . . of Cu·0
such that U =

⊔
n∈ω Un.

We consider two second-order variables Ueven and Uodd, and our idea is to express
that Ueven =

⊔
n∈ω U2n and Uodd =

⊔
n∈ω U2n+1, in a way that a piece of Ueven or

of Uodd is necessarily one of the Un’s.
To express this, it is sufficient to say that there exists a subsetN of U that is isomorphic
to ω and that intersects with all the pieces of Ueven and of Uodd in only one element.
First, the fact that a subset N is isomorphic to ω can be defined by the formula:

ϕiso,ω(N) :=

∀x∈N. ∃y∈N. ϕsucc(N,x, y)

∧ ∃x0∈N. ∀x∈N. x0 ≤ x

∧ ∀P⊆N.
(
x0 ∈ N

∧
(
∀x, y∈N. (x∈P ∧ ϕsucc(N, x, y)) =⇒ y∈P

))
=⇒ N ⊆ P,
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where ϕsucc(N, x, y) is the formula x<y ∧ ∀z∈N. z≤x ∨ y≤z. The last three lines of
the formula ϕiso,ω(N) express the induction principle: N must be the smallest of its
subsets that both contains x0 and is stable by ϕsucc.
Now, the fact that a subset V of Ueven is a piece of it is defined by the formula:

ϕpiece(Ueven, V ) :=

V ⊆ Ueven

∧ ϕconvex(V )

∧ ∀W⊆Ueven. ϕconvex(W ) =⇒ (V ∩W=∅ ∨W⊆V ).

Notice that this is the second formula ϕpiece which we define, but there is no confusion,
since the first one, ϕpiece(C,U), had a condensation as one of its arguments, while this
one has two subsets as argument.
Now, we have all we need to define in MSO[A, <] the full condition for the item:

ϕ(·)ω(Cu, Cu·0) :=

∀U. ϕpiece(Cu, U) =⇒

∃Ueven, Uodd. Ueven∩Uodd=∅ ∧ Ueven∪Uodd=U

∧ ∃N⊆U. ϕiso,ω(N)

∧ ∀V.
(
ϕpiece(Ueven, V ) ∨ ϕpiece(Uodd, V )

)
=⇒(

ϕpiece(Cu·0, V )

∧ ∃x∈N∩V. ∀y. y∈N∩V =⇒ x=y
)
.

− Finally, in the case when u is an internal node labelled by (·)ω? , we obtain the wanted
formula ϕ(·)ω? (Cu, Cu·0) with a symmetric construction.
Now that we defined our formulae corresponding to the different items, we can define
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our final formula:

ϕτdecomp

(
(Cu)u∈Nodes(τ)

)
:=

ϕroot(Cε)

∧
∧
a∈A

∧
u∈leavesa(τ)

ϕa(Cu)

∧
∧

u∈Nodes(·)(τ)

ϕ(·)(Cu, Cu·0, Cu·1)

∧
∧

u∈Nodes(·)ω (τ)

ϕ(·)ω(Cu, Cu·0)

∧
∧

u∈Nodes
(·)ω? (τ)

ϕ(·)ω? (Cu, Cu·0),

where, leavesa(τ), with a ∈ A is the set of leaves of τ labelled by a, and Nodes(·)(τ),
Nodes(·)ω(τ), Nodes(·)ω? (τ) are the sets of nodes labelled by (·), (·)ω, and (·)ω? respec-
tively.

Now that we have defined in MSO[A, <] this important property, we can use it to test
if given finitary words are non-rigid:

Proposition 4.21. Item i) of Theorem 4.1 is decidable: there exists an algorithm that
inputs a term τ , representing a finitary word w over A, and outputs YES if w is rigid, and
NO if it is not.

Proof. By Corollary 4.13, we know that w is rigid if and only if does not admit two distinct
tree decompositions with shape τ . Using our formula ϕτdecomp defined above, we can define
this property in MSO[<]:

¬∃cond(Cu)u∈Nodes(τ). ∃cond(C ′u)u∈Nodes(τ).
∨

u∈Nodes(τ)

¬(Cu =cond C ′u)

∧ϕτdecomp

(
(Cu)u∈Nodes(τ)

)
∧ϕτdecomp

(
(C ′u)u∈Nodes(τ)

)
.

As we recalled in the introduction of this chapter, it is decidable whether w satisfies said
formula, and we can conclude.
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Using this formula, we can also recognise words over a given finitary linear order:

Corollary 4.22. If λ is a finitary scattered linear order, then the language of all countable
words w over a given alphabet A, such that Dom(w) is isomorphic to λ, is regular.

Proof. The domain Dom(w) of a countable word w is isomorphic to λ if and only if it admits
a tree decomposition with shape τ , with τ being a term over the singleton alphabet {•}
which represents λ. In the construction of ϕτdecomp, in the proof of Proposition 4.20, it suffices
to replace the subformula a(x), in the formula ϕa, by >, to obtain an MSO[A, <] formula
which expresses this property and which can be satisfied by w itself (instead of Dom(w)).
This suffices to prove the corollary.

4.4 Using evaluation trees to construct regular uniformi-

sations

In this section, we finally prove that a rigid finitary linear order satisfies the regular-unifor-
misation property.

In Subsection 4.4.1, we explain that, in order to prove that such a linear order λ satisfies
this property of regular uniformisations, it is sufficient to construct regular uniformisation to
a restricted number of binary relations, over algebraic alphabets. Then, in Subsections 4.4.2
and 4.4.3, we conclude by proving that they indeed admit regular uniformisations. For this,
we introduce a notion of τ -evaluations.

4.4.1 Algebraic formulation of the regular-uniformisation property

In this subsection, we prove that, in order to show that all regular relations over a given
linear order admit regular uniformisations, it is enough to consider particular relations
having ◦-semigroups as alphabets.

For this, we begin to explain how one can give a natural structure of ◦-semigroup
to P(S), the set of subsets of a given ◦-semigroup S. Once again, we take this construction
from [CCP18].

We denote by πS its induced generalised product. We define, for each countable word Γ,
over the alphabet P(S), πP(S)(Γ) as the subset:

{
πS(γ) | γ ∈ SDom(Γ) and for all x ∈ Dom(Γ), γ(x) ∈ Γ(x)

}
.
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Carton, Colcombet, and Puppis showed that it is a generalised product over P(S).
Hence, it induces a ◦-algebra 〈P(S), ∗, (·)ω, (·)ω? , (·)κ〉. The first three functions are easily
definable:
− for all K1, K2 ⊆ S, K1 ∗K2 is the set {s1 ∗ s2 | s1 ∈ K1 and s2 ∈ K2};
− for each K ⊆ S, Kτ is the set {πS(s0 · s1 · s2 · · · ) | (si)i∈ω ∈ Kω};
− symmetrically, Kτ? is the set {πS(· · · s−3 · s−2 · s−1) | (si)i∈ω? ∈ Kω?}.
In the definition ofKτ , s0·s1·s2 · · · stands for the ω-word over S where each position i ∈ ω

is labelled by si. And symmetrically in the definition of Kτ? .
A formal definition of {K0, . . . , Kn−1}κ—with each Ki being a subset of S—can be found

in [CCP18]. We do not give it here, since it is less intuitive, and we will not use it in our
proofs.

Now, we prove the main lemma of this subsection. Let λ be a linear order, let R ⊆
(
A
B
)λ

be a regular relation, which we will want to uniformise, and let S be a finite ◦-semigroup
recognising R via some homomorphism h from

(
A
B
)◦ to S. We set H = h(R). Our lemma

states that, in order to uniformise R, it is sufficient to uniformise a certain amount of
relations over the algebraic product set

( P(S)
S

)
, treated as an alphabet:

Lemma 4.23. Let us suppose that for every s ∈ S, there exists a regular uniformisation of
the following relation:

Rλ,s :=
{(

Γ
γ

)
∈
( P(S)

S

)λ | πS(γ) = s and for all x ∈ λ, γ(x) ∈ Γ(x)
}
.

Then the relation R admits a regular uniformisation. Moreover, such a regular unifor-
misation can be effectively constructed based on R and the uniformisations of the above
relations.

Proof. Let us suppose that for each individual s ∈ S, the relation Rλ,s admits a regular uni-
formisation Fλ,s, defined by an MSO[

( P(S)
S

)
, <] formula ψλ,s. Before constructing an actual

formula defining a uniformisation of R, we explain briefly how we proceed to assign, to each
w ∈ ΠAλ(R), a particular σ ∈ Bλ such that

(
w
σ

)
∈ R.

First, we consider Γ the λ-word over the alphabet P(S) defined by Γ(x) = {h(
(
w(x)
b

)
) |

b ∈ B} for each x ∈ λ. Then, we choose some s ∈ H such that Γ ∈ ΠP(S)λ(Rλ,s) (because of
the definition of Γ, of πP(S)(Γ), and because Γ ∈ ΠP(S)λ(R), we know that there necessarily
exists such an element s). In the next step, Fλ,s, the uniformisation of Rλ,s, selects for
us some γ ∈ Sλ: there exists a unique γ ∈ Sλ such that

(
Γ
γ

)
∈ Fλ,s. Finally, for each

position x ∈ λ, we choose a particular letter b ∈ B such that h(
(
w(x)
b

)
) = γ(x): once again,
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such a letter b necessarily exists since γ(x) ∈ Γ(x). If we denote this letter by σ(x), we
obtain a word σ ∈ Bλ such that h(

(
w
σ

)
) = s ∈ H, and therefore such that

(
w
σ

)
∈ R.

Now, we come back to these four steps and construct an MSO[
(
A
B
)
, <] formula ψ that

defines all these elements.

− First, we define an MSO[
( A
P(S)

)
, <] formula ϕ1 such that for all w ∈ Aλ, Γ ∈ P(S)λ,

we have
(
w
Γ

)
� ϕ1 if and only if Γ(x) = {h(

(
w(x)
b

)
) | b ∈ B} for all x ∈ λ. Indeed, for

all a ∈ A, we can compute the set Ka = {h(
(
a
b

)
) | b ∈ B} ⊆ S, and therefore we can

define the formula:
ϕ1 := ∀x.

∨
a∈A

(
a
Ka

)
(x),

that fulfils the wanted condition.
− Now, we rename the letters of S: S = {s0, . . . , s|S|−1}. This induces a natural linear

order on S. Our point is to choose, for any word Γ ∈ P(S)λ, the least s ∈ H such
that

(
Γ
γ

)
∈ Fλ,s for some γ ∈ Sλ, if there exists one. First, remember that MSO is

closed under projections, as stated in Proposition 1.47 on page 57. Hence, for each
s ∈ S, we construct, from ψλ,s, a formula ψλ,sproj ∈ MSO[P(S), <] such that a word
Γ ∈ P(S)λ satisfies it if and only if it belongs to ΠP(S)λ(Fλ,s) (which we recall is equal
to ΠP(S)λ(Rλ,s)).
Now, we want to define an MSO[

( P(S)
S

)
, <] formula ϕ2 such that for every product

word
(

Γ
γ

)
,
(

Γ
γ

)
� ϕ2 if and only if there exists some sj ∈ H such that:

−
(

Γ
γ

)
� ψλ,sj (which in particular implies Γ � ψλ,sjproj);

− for every i < j such that si ∈ H, Γ 2 ψλ,siproj.
The second condition can be expressed in MSO[

( P(S)
S

)
, <], via the formulae ψλ,sproj.

Indeed, for every s ∈ S, if we substitute every atomic subformula of ψλ,sproj that is
of the shape K(x) by the formula

∨
t∈S
(
K
t

)
(x), then we obtain an MSO[

( P(S)
S

)
, <]

formula ψλ,sproj

′
such that

(
Γ
γ

)
� ψλ,sproj

′
if and only if Γ � ψλ,sproj.

Then, we can define the formula:

ϕ2 :=
∨

j∈|S|, sj∈H

ψλ,sj ∧
∧

i∈j, si∈H

¬ψλ,sjproj

′
.

− In the next step, this is B we rename: B = {b0, . . . , b|B|−1}, and we define E as
the set

{
〈a, s, bj〉 ∈ A × S × B | h(

( a
bj

)
) = s, and for all i ∈ j, h(

(
a
bi

)
) 6= s

}
. By

construction, for all x ∈ λ, there exists a unique b ∈ B such that 〈w(x), γ(x), b〉 is
in E, and, therefore, there exists a unique σ ∈ Bλ such that the triple satisfies the
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following MSO[
(
A
S
B

)
, <] formula:

ϕ3 := ∀x.
∨

<a,s,b>∈E

(
a
s
b

)
(x).

− Now that we have our three MSO formulae ϕ1, ϕ2, and ϕ3, we construct our for-
mula ψ, that defines a uniformisation of R. For this, we apply the same strategy as
we did in Subsection 1.4.2: we use partitions. If (XK)K⊆S and (Ys)s∈S are respectively
2|S|- and |S|-partitions of λ, and if we define Γ(X∅, . . . , XS) and γ(Ys0 , . . . , Ys|S|−1

)

as the λ-words over respectively P(S) and S that are induced from these parti-
tions, we can construct the following three MSO[

(
A
B
)
, <] formulae ϕ′1(X∅, . . . , XS),

ϕ′2(X∅, . . . , XS, Ys0 , . . . , Ys|S|−1
), and ϕ′3(Y0, . . . , Y|S|−1) such that for each pair

(
w
σ

)
∈(

A
B
)
:

i)
(
w
σ

)
� ϕ′1(X∅, . . . , XS) if and only if

( w
Γ(X∅,...,XS)

)
� ϕ1,

ii)
(
w
σ

)
� ϕ′2(X∅, . . . , XS, Ys0 , . . . , Ys|S|−1

) if and only if
( Γ(X∅,...,XS)
γ(Ys0 ,...,Ys|S|−1

)

)
� ϕ2,

iii)
(
w
σ

)
� ϕ′3(Ys0 , . . . , Ys|S|−1

) if and only if
(

w
γ(Y0,...,Y|S|−1)

σ

)
� ϕ3.

Finally, we can give the final formula ψ:

ψ := ∃X∅, . . . , XS, Y0, . . . , Y|S|−1. ϕ
2|S|

part(X∅, . . . , XS) ∧ ϕ|S|part(Ys0 , . . . , Ys|S|−1
)

∧ ϕ′1(X∅, . . . , XS)

∧ ϕ′2(X∅, . . . , XS, Ys0 , . . . , Ys|S|−1
)

∧ ϕ′3(Ys0 , . . . , Ys|S|−1
).

By construction, ψ is such that for all w ∈ Aλ, there exists a unique σ ∈ Bλ such
that

(
w
σ

)
� ψ, and in particular

(
w
σ

)
∈ R: Lλ(ψ) is a regular uniformisation of the

relation R.

Therefore, our aim now is to prove that, if λ is rigid, then each of these relations Rλ,s

admits a regular uniformisation, and our implication of Item iii) by Item i) of Theorem 4.1
will be proven. This is what we do in the next subsection.
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4.4.2 Regularity of the relation Rs, in the particular cases {1, 2}, ω,
and ω?

This section is devoted to the proof that the relation Rλ,s, defined in the previous subsection,
is regular in the particular cases when λ being {1, 2}, ω, and ω?.

Proposition 4.24. Let S be a finite ◦-semigroup. Then for any element s ∈ S, the three
relations:

R{1,2},s :=
{(

K1
s1

)
·
(
K2
s2

)
| s1 ∈ K1 ⊆ S, s2 ∈ K2 ⊆ S, and s1 ∗ s2 = s

}
,

Rω,s :=
{(

K0
s0

)
·
(
K1
s1

)
· · · | si ∈ Ki ⊆ S for all i ∈ ω, and π(s0 · s1 · · · ) = s

}
,

and

Rω?,s :=
{
· · ·
(
K−2
s−2

)
·
(
K−1
s−1

)
| si ∈ Ki ⊆ S for all i ∈ ω?, and π(· · · s−2 · s−1) = s

}
are all regular.

Proof.
− The relation R{1,2},s is finite, hence it is naturally regular. Here is a formula defining

it:

ϕ{1,2},s :=

∃x1, x2. x1 < x2

∧ ∀x. (x = x1 ∨ x = x2)

∧
∨

s1∈K1⊆S
s2∈K2⊆S
s1∗s2=s

(
K1
s1

)
(x1) ∧

(
K2
s2

)
(x2).

In this formula, x1 is interpreted as the position 1 of {1, 2}, and x2 as the position 2.
− The relation Rω,s is more interesting. Notice that it is enough for us to define a formula
µω,s ∈ MSO[S,<] such that for all ω-words γ over S, γ � µω,s if and only if πS(γ) = s.
Indeed, if we do define such a formula, since we know how to add a coordinate in
MSO[<], we can easily deduce a formula ϕω,s defining Rω,s.
Thus, let us define our formula µω,s. For this, we make use of Ramsey’s infinite
theorem, which we stated on page 50. It tells us that γ ∈ Sω is mapped to s by πS if
and only if there exists two elements t, e ∈ S satisfying t ∗ e = t, e ∗ e = e, t ∗ eτ = s,
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and γ admits a decomposition γ = γ0 · γ1 · γ2 · · · , where each γi is a finite non-empty
word, such that πS(γi) is t if i = 0 and e if i > 0. We call such a decomposition
a 〈t, e〉-decomposition of γ.
For each t ∈ S, we define a formula µtfinite(xfirst, xlast), xfirst and xlast being two first-or-
der variables, such that γ � µtfinite(xfirst, xlast) if the subword γ�[xfirst,xlast], induced from
the positions between xfirst and xlast, is mapped to t by πS. The idea is to introduce
a second-order variable Xu for each u ∈ S: a position x ∈ [xfirst, xlast] will be in Xu if
and only if πS

(
γ�[xfirst,x]

)
= u:

µtfinite(xfirst, xlast) :=

(∃Xu)u∈S.∧
u∈S

xfirst∈Xu ⇐⇒ u(x)

∧ ∀x, y.
(
xfirst ≤ x < xlast ∧ s(x, y)

)
=⇒

∧
t1,t2∈S

x ∈ Xt1 =⇒
(
t2(y) ⇐⇒ y ∈ Xt1∗t2

)
∧ xlast∈Xt,

s(x, y) being the successor relation, which we met before, defined here with the order
by the formula x<y ∧ ∀z. z≤x ∨ y≤z.
Notice that this strategy is similar as the one we used in Subsection 1.3.1 when we
showed that our variety C was able to express the recognisability by finite semigroups.
Now that we defined this formula µtfinite, we can simply express in MSO[<] the existence
of a 〈t, e〉-partition: we express the existence of an infinite number of positions 0 =

x0 < x1 < x2 . . . such that γ � µtfinite(x0, x1−1), and γ � µefinite(xn, xn+1−1) for every
natural number n > 0.

µt,edecomp :=

∃x0. ∀x. x0 ≤ x

∧ ∃N. x0 ∈N ∧ ∀x∈N. ∃y>x. y ∈ N

∧ ∃x1∈N, y. ϕsucc(N, x0, x1) ∧ s(y, x1) ∧ µtfinite(x0, y)

∧ ∀xn∈N. xn 6= x0 =⇒

∃xn+1∈N, y. ϕsucc(N, xn, xn+1) ∧ s(y, xn+1) ∧ µefinite(xn, y),
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where ϕsucc(N, x, y) is the formula x<y ∧ ∀z∈N. z≤x ∨ y≤z, already defined in Sub-
section 4.3.5.
It shall be understood that, in this formula, xn and xn+1 are two fixed variables: they
are not indexed by some natural number n.
Finally, we define our formula µω,s as∨

〈t,e〉∈Ds

µt,edecomp,

Ds being the set of pairs 〈t, e〉 ∈ S2 such that e ∗ e = e, t ∗ e = t, and t ∗ eτ = s.
− By reversing the order in our formula ϕω,s, we obtain a formula ϕω?,s defining the

relation Rω?,s, and our proof is complete.

Since all these relations are regular, Theorems 1.48 and 1.49 tell us that they do admit
regular uniformisations, which we denote by F{1,2},s, Fω,s, and Fω?,s. We use them in the
next section, to show that the relations Rλ,s defined in Lemma 4.23 also admit regular
uniformisations.

4.4.3 τ -evaluations and how to use them to uniformise

In this subsection, we finally prove that the relations Rλ,s, defined in Lemma 4.23, admit
regular uniformisations, under the assumption that λ is rigid. For this, we define the
important notion of τ -evaluations.

In this whole subsection, we consider a finitary linear order λ, represented by a term τ

over {•}. We suppose that λ is rigid. By Corollary 4.13, this means that there exists
a unique tree decomposition Ξ = (Cu)u∈Nodes(τ) for λ with shape τ , and that ιΞ is the unique
isomorphism from λ to Order(τ). The unicity of Ξ is crucial, because our construction of
a uniformisation of R works relatively to any tree decomposition of λ: it there were more
than one, then our obtained relation would not be functional.

We consider also a finite ◦-algebra S, and denote by πS the induced generalised product
of it (see Theorem 1.27 on page 49).

Let f be a function from Nodes(Tree(τ)) to S. We say that it is a τ -evaluation for S if
it satisfies the following conditions:
− f(u) = f(u·1)∗f(u·2) for every node u labelled by (+), and having two children u·1 <lex

u·2;
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− f(u) = πS
(
f(u·0) · f(u·1) · f(u·2) · · ·

)
for each node u labelled by (Σω) and having

children u·0 <lex u·1 <lex u·2 <lex . . . ;
− f(u) = πS

(
· · · f(u·(-3)) · f(u·(-2)) · f(u·(-1))

)
for each node u labelled by (Σω?) and

having children . . . <lex u·(-3) <lex u·(-2) <lex u·(-1).
In the second condition, f(u·0) · f(u·1) · f(u·2) · · · denotes the ω-word over S where

each position i ∈ ω is labelled by the element f(u·i) ∈ S, and symmetrically in the third
condition.

To each τ -evaluation f for S corresponds the word γ ∈ Sλ defined by γ(x) = f(ιΞ(x))

for each x ∈ λ (remember that ιΞ is the unique isomorphism from λ to Order(τ) =

Leaves(Tree(τ))). And reciprocally, to each word γ ∈ Sλ corresponds the τ -evaluation f

defined by f(u) = πS
(
γ�U
)
, with U being the piece {v ∈ Leaves(Tree(τ)) | u �pred v}

of Cu, for each u ∈ Nodes(Tree(τ)). Hence, there is a natural one-to-one correspondence
between λ-words over S and τ -evaluations.

In Subsection 4.4.1, we gave P(S), the set of subsets of S, a structure of ◦-semigroup.
Thus, we also define a notion of τ -evaluations for P(S): those are the functions, from
Nodes(Tree(τ)) to P(S), which satisfy the same conditions (with P(S) instead of S). Once
again, there is a natural correspondence between λ-words over P(S) and τ -evaluations for
P(S).

In particular, if fS and fP(S) are τ -evaluations, for P(S) and S respectively, and if,
for every leaf u of Tree(τ), fS(u) ∈ fP(S)(u), then, by the definition of the generalised
product πP(S), we know that fS(u) ∈ fP(S)(u) for all nodes u, and in particular for the
root, ε. For this reason, under this assumption, if Γ and γ are the λ-words corresponding
to fP(S) and fS respectively, we must have

(
Γ
γ

)
∈ Rλ,fS(ε).

Let s ∈ S. Considering the previous paragraph, in order to define a uniformisation of
Rλ,s, we have to choose, for each Γ such that s ∈ πP(S)(Γ), a particular τ -evaluation fS

over S such that fS(ε) = s. This is what we do now: let Γ be a λ-word over P(S) such
that s ∈ πP(S)(Γ), and let fP(S) be the τ -evaluation for P(S) corresponding to it. We
say that fS, a τ -evaluation for S, is obtained from fP(S) and s if it satisfies the following
conditions:
− fS(ε) is equal to s.
− for every node u of Tree(τ) labelled by (+) and having two children u·1 <lex u·2, the

uniformisation F{1,2},fS(u) maps the word fP(S)(u·1) ·fP(S)(u·2) ∈ P(S){1,2} to the word
fS(u·1) · fS(u·2) ∈ S{1,2};

− for every node u of Tree(τ) labelled by (Σω), having children u·0 <lex u·1 <lex u·2 <lex

. . . , the uniformisation Fω,fS(u) maps the word fP(S)(u·0) · fP(S)(u·1) · fP(S)(u·2) · · · ∈
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P(S)ω to the word fS(u·0) · fS(u·1) · fS(u·2) · · · ∈ Sω;
− symmetrically, for every node u of Tree(τ) labelled by (Σω?) and having children
. . . <lex u·(-3) <lex u·(-2) <lex u·(-1), the uniformisation Fω?,fS(u) maps the word
· · · fP(S)(u·(-3)) · fP(S)(u·(-2)) · fP(S)(u·(-1)) ∈ P(S)ω

? to the word · · · fS(u·(-3)) ·
fS(u·(-2)) · fS(u·(-1)) ∈ Sω? ;

where F{1,2},s, Fω,s, and Fω? are the uniformisations defined for each s ∈ S on page 133.
Since they are uniformisations, there cannot be two such fS’s. In that case, we also say,

naturally, that the word γ ∈ Sλ corresponding to fS is obtained from Γ and s. If u is a node
of τ , and U a piece of Cu, we also say that the subword γ�U is obtained from Γ�U and s,
considering the subtree τ�u.

Finally, we define Fλ,s as the set of pairs
(

Γ
γ

)
∈
( P(S)

S

)
, with s ∈ πP(S)(Γ), and γ being

obtained from Γ and s.
For all the reasons stated above, Fλ,s is a uniformisation of Rλ,s. The whole point of it

is that, very conveniently, it is be definable in MSO[
( P(S)

S

)
, <]:

Proposition 4.25. The uniformisation Fλ,s of Rλ,s is definable in MSO[
( P(S)

S

)
, <].

Proof. Our method is to define, for each node u of the term τ , for each t ∈ S, and for
each K ⊆ S such that t ∈ K, a formula ϕτ,u,K,tobtained

(
(Cu)u∈Nodes(τ), U

)
such that for every

piece U of Cu, we have
(

Γ
γ

)
� ϕτ,u,K,tobtained

(
(Cu)u∈Nodes(τ), U

)
if and only if πP(S)(Γ�U) = K

and γ�U is obtained from Γ�U and s.
We define this formula by induction on u.
− If u is a leaf, then any piece U of Cu must be a leaf labelled by

(
K
t

)
:

ϕτ,u,K,tobtained

(
(Cu)u∈Nodes(τ), U

)
:= ∃x.

(
K
t

)
(x) ∧ ∀y.

(
y ∈ U ⇐⇒ x = y

)
.

− Let us suppose that u is a (+)-node of τ , with two children u·1 <lex u·2, and let
us suppose that we have already defined our formulae ϕτ,u·1,K1,t1

obtained and ϕτ,u·2,K2,t2
obtained , for

all t1 ∈ K1 ⊆ S, t2 ∈ K2 ⊆ S. Let U be a piece of Cu. By definition, U can be
decomposed as the union of U1 and U2, with each Ui being a piece of Cu·i.
Since

( P(S)
S

)
is finite, then so is the language F{1,2},t. It is recognised by the formula:

ψ{1,2},t :=

∃x1, x2. x1 < x2 ∧ ∀x. (x = x1 ∨ x = x2)

∧
∨(

K1
t1

)
·
(
K2
t2

)
∈F{1,2},t

(
K1
t1

)
(x1) ∧

(
K2
t2

)
(x2).
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In this formula, which is similar to the formula defining the relation R{1,2},t of Propo-
sition 4.24, x1 is also interpreted as the position 1 of {1, 2}, and x2 as the position 2.
From ψ{1,2},t, we construct our formula ϕτ,u,K,tobtained, where x1 is substituted to our piece U1,
and x2 to U2.

ϕτ,u,K,tobtained

(
(Cu)u∈Nodes(τ), U

)
:=

∃U1, U2. U1<U2 ∧ U1∪U2= U

∧ ϕpiece(Cu·1, U1)∧ ϕpiece(Cu·2, U2)

∧
∨(

K1
t1

)
·
(
K2
t2

)
∈F{1,2},t

ϕτ,u·1,K1,t1
obtained

(
(Cu)u∈Nodes(τ), U1

)
∧ ϕτ,u·2,K2,t2

obtained

(
(Cu)u∈Nodes(τ), U2

)
.

− Now, let us suppose that u is a (×ω)-node, with one child u·0, and let us suppose that
we have already defined our formula ϕτ,u·0,K0,t0

obtained , for all t0 ∈ K0 ⊆ S. Let U be a piece
of Cu: it is decomposed as U =

⊔
i∈ω Ui, where U0 < U1 < U2 < . . . are pieces of Cu·0

(and there is no other piece of Cu·0 included in U).
In a similar way as in the previous item, we construct a new formula from ψω,s—
a formula defining the regular uniformisation Fω,s from page 133. We consider, for each
first-order variable x, a second-order variable Ux. The idea is that if x is interpreted
as i ∈ ω, then Ux will be interpreted as the piece Ui. Similarly, for each second-order
variable X, we consider another second-order variable VX : if X is interpreted as
a subset I ⊆ ω, then VX will be interpreted as

⊔
i∈I Ui. We consider the following

transformation ϕ 7→ ϕ′ of formulae:
– x < y is transformed into Ux < Uy;
– x = y is transformed into Ux = Uy;
– x ∈ X is transformed into Ux ⊆ VX ;
–
(
K0
t0

)
(x), with t0 ∈ K0 ⊆ S, is transformed into ϕτ,u·0,K0,t0

obtained

(
(Cu)u∈Nodes(τ), Ux

)
,

– ∃x. ϕ is transformed into ∃Ux⊆U. ϕpiece(Cu·0, Ux) ∧ ϕ′, with ϕ′ being the trans-
formation of ϕ;

– ∃X. ϕ is transformed into

∃VX⊆U. ∀Ux⊆U. ϕpiece(Cu·0, Ux) =⇒
(
Ux⊆VX ∨ Ux∩VX=∅

)
∧ ϕ′
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– naturally, ¬ϕ and ϕ ∨ ψ are respectively transformed into ¬ϕ′ and ϕ′ ∨ ψ′.
The obtained transformation ψω,t′ of ψω,t is our formula ϕτ,u,K,tobtained

(
(Cu)u∈Nodes(τ), U

)
.

− In the case when u is a (×ω?)-node, our construction is symmetric.
Now that we have constructed our formulae, it suffices to define ψλ,s as:

∃cond(Cu)u∈Nodes(τ). ϕ
τ
decomp

(
(Cu)u∈Nodes(τ)

)
∧ ∃U. ϕpiece(Cε, U)

∧
∨
K⊆S
s∈K

ϕτ,ε,K,sobtained

(
(Cu)u∈Nodes(τ), U

)
,

where ϕτdecomp

(
(Cu)u∈Nodes(τ)

)
is the formula defined in Subsection 4.3.5, expressing that

the family (Cu)u∈Nodes(τ) is a tree decomposition with shape τ . As stated above, λ admits
a unique such tree decomposition and moreover λ is the unique piece of Cε. Therefore, ψλ,s

defines Fλ,s.

Now that we have proved Proposition 4.25, we can use Lemma 4.23 of Subsection 4.4.1,
and conclude this section with the most important proposition of this chapter:

Proposition 4.26. A rigid finitary linear order satisfies the regular-uniformisation pro-
perty.

4.5 Constructing regular choice functions, regular well

orders, and regularly defining positions using evalu-

ation trees

In this section, we prove the last implications of Theorem 4.1: we prove that if a finitary
linear order λ is rigid, then it admits a regular choice function, a regular well order, and
that all its positions are definable in MSO[<].

4.5.1 Regular choice functions

This first subsection is devoted to the construction of a regular choice function for a finitary
linear order without non-trivial automorphism. Notice that, in this case, a construction of
such a regular choice function can be deduced from Claim 4.9 together with Proposition 4.26.
Yet, the construction we provide here is more straight-forward.
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Proposition 4.27. Let λ be a finitary linear order. If λ is rigid, then we can construct
an MSO[<] formula that defines a choice function over λ.

Proof. Let τ be a term over the singleton alphabet {•} representing λ, meaning that
Order(τ) is isomorphic to λ, and let us suppose that the identity is the unique automorphism
of λ. According to Corollary 4.13, there exists a unique tree decomposition Ξ = (Cu)i∈Nodes(τ)

of λ with shape τ .
Our aim is to define, for each u ∈ Nodes(τ), a formula ϕτ,uchoice

(
(Cu)u∈Nodes(τ), U,X, x

)
such that, if U is a piece of Cu intersecting with X (meaning that U ∩X 6= ∅), then there
exists a unique x ∈ U ∩X such that λ � ϕτ,uchoice

(
(Cu)u∈Nodes(τ), U,X, x

)
.

If we can do it, then it will be enough to define ϕτchoice(X, x) as the formula:

∃cond(Cu)u∈Nodes(τ). ϕ
τ
decomp

(
(Cu)u∈Nodes(τ)

)
∧ ∃U. ϕpiece(Cε, U)

∧ ϕτ,εchoice

(
(Cu)u∈Nodes(τ), U,X, x

)
,

to get our regular choice function.
Once again, we define these formulae inductively.
− If u ∈ Leaves(τ), then a piece of Cu is a singleton. Therefore, it is sufficient to define

the formula ϕτ,uchoice

(
(Cu)u∈Nodes(τ), U,X, x

)
as x∈U .

− Let u ∈ Nodes(τ), labelled by (+), with two children u·1 and u·2, and let U be a piece
of Cu that intersects with X. We suppose that we have defined our formulae ϕτ,u·1choice

and ϕτ,u·2choice. There exists a unique pair 〈U1, U2〉 of subsets of U such that each Ui is
a piece of Cu·i, U1 < U2, and U1 t U2 = U .
Since U intersects with X, then so does U1 or U2. Knowing this, to select a particular
element of U ∩X, we can select either a particular element of U1∩X when there exists
one (using ϕτ,u·1choice), or a particular element of U2 ∩X in the opposite case.
This procedure is naturally definable in MSO[<], and we obtain ϕτ,uchoice as the formula:

∃U1, U2⊆U. ϕpiece(Cu·1, U1) ∧ ϕpiece(Cu·2, U2)

∧
(
U1∩X 6=∅ =⇒ ϕτ,u·1choice

(
(Cu)u∈Nodes(τ), U1, X, x

))
∧
(
U1∩X=∅ =⇒ ϕτ,u·2choice

(
(Cu)u∈Nodes(τ), U2, X, x

))
.

− Let u ∈ Nodes(τ), labelled by (×ω), with one child u·0, and let U a piece of Cu
intersecting withX. We suppose that we have defined our formula ϕτ,u·0choice. There exists
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a unique family (Ui)i∈ω of pieces of Cu·0 included in U such that U0 < U1 < U2 < . . .

and
⊔
i∈ω Ui = U .

Here, our strategy is to select the least i such that Ui∩X 6= ∅, and to choose a particular
element in this set Ui ∩X via the formula ϕτ,u·0choice.
Here again, this procedure is definable in MSO, via the formula ϕτ,uchoice

(
(Cu)u∈Nodes(τ),

U,X, x
)
defined as:

∃V⊆U. V ∩X 6=∅ ∧ ϕpiece(Cu·0, V )

∧ ∀W.
(
W∩X 6=∅ ∧ ϕpiece(Cu·0,W )

)
=⇒ (V=W ∨ V <W )

∧ ϕτ,u·0choice

(
(Cu)u∈Nodes(τ), V,X, x

)
.

− The construction of the formula when the node is labelled by (×ω?) is symmetric, and
we can conclude the proof of our proposition.

4.5.2 Regular well orders

In the second subsection, we prove that, if λ is a finitary linear order that satisfies the same
crucial rigidity assumption, then it admits a well order that can be defined by an MSO[<]

formula ϕλwo(x, y).
For this, we define, for each finitary linear order, an alternative lexicographic order, which

we will prove to be a well order.
First, we define v, the alternative order of Z, as follows: for i, j ∈ Z, i v j if one

of the three cases holds: 0 ≤ i ≤ j, j < 0 ≤ i, or j ≤ i < 0. It is a well order, and
it induces an alternative lexicographic order vlex over Z∗, the set of finite words over the
infinite alphabet Z. Unlike v, vlex is not a well order. Yet, it is when restricted to Z≤n,
the set of finite words w over Z of length |w| ≤ n, as states the following proposition:

Proposition 4.28. Let $ be a well order. Then, for all n ∈ ω, $≤n, the set of finite
words w over $ and of length |w| ≤ n, with its induced lexicographic order, is a well order.

Proof. This is provable by induction on n: $≤0 is {ε}, which is obviously a well order.
Let us suppose now that $≤n is a well order, and let us consider a non-empty subset X

of $≤n+1, in order to show that it admits a least element.
If ε ∈ X, then it is indeed the least element of X.
Let us assume the opposite case: ε /∈ X. Then we can write X as the disjoint

union
⊔
x∈$Xx, where, for each element x in $, Xx is the set X ∩ {x · u | u ∈ $≤n}.
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Since ε /∈ X and X 6= ∅, there must exist some x in $ such that Xx 6= ∅. Let x be the
least of these elements (it necessarily exists, since $ is a well order). By the induction
hypothesis, $≤n being a well order, {u ∈ $≤n | x · u ∈ X} admits a least element u, and,
by the definition of the lexicographic order, x · u is the least element of Xx. Also, if y · v is
any word in X \Xx, then we have x < y by the very definition of x, and thus x·u <lex y·v.
Hence, x · u is the least element of X.

In both cases, we have shown thatX has a least element, and we can conclude that$≤n+1

is a well order.

Let τ be a term over the singleton alphabet {•}. We recall that the leaves of Tree(τ)

are finite words over the alphabet Z. Therefore, we can order them with vτlex defined
as vlex �Order(τ)2 , where vlex is the alternative lexicographic order of Z∗, introduced above.
Also, by construction, we can show that these words all have a length no greater than
a certain depth1. Hence, vτlex is a well order over Order(τ), considering Proposition 4.28.

If λ is a finitary scattered linear order, there exists some isomorphism ι from λ to
Order(τ), with τ being some term over {•}, and we can naturally define vλ,ιlex, the alternative
lexicographic order of λ with respect to ι, as x vλ,ιlex y if ι(x) vτlex ι(y). Since vτlex is a well
order, vλ,ιlex also is one:

Proposition 4.29. For every finitary linear order λ, represented by a term τ over {•}, and
every isomorphism from from λ to Order(τ), the alternative lexicographic order vλ,ιlex is a
well order.

Finally, now that we have defined a convenient well order for any finitary linear order,
we show that it is definable in MSO[<] when λ is rigid:

Proposition 4.30. Let λ be a finitary linear order. We suppose that λ is rigid. Then we
can construct an MSO[<] formula defining a well order over λ.

Proof. Let τ be a term representing λ. We know that there exists a unique tree decompo-
sition Ξ = (Cu)u∈Nodes(τ) of λ with shape τ (once again, see Proposition 4.12).

Our aim is to construct, for each u ∈ Nodes(τ), a formula ϕλ,ιΞ,ulex

(
(Cu)u∈Nodes(τ), U, x, y

)
such that for every piece U of Cu, and all x, y ∈ U , λ � ϕλ,ιΞ,ulex

(
(Cu)u∈Nodes(τ), U, x, y

)
if and

only if x vλ,ιΞlex y.
− If u is a leaf, then U is a singleton, and we define ϕλ,ιΞ,ulex

(
(Cu)u∈Nodes(τ), U, x, y

)
as >.

1The depth of a ranked tree being naturally defined by depth(`) = 0 for nullary symbols `, and
depth(`[(ti)i∈ar(`)]) = max

(
depth(ti)

)
i∈ar(`) + 1 for non-nullary symbols `.
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− Let u be a node of τ labelled by (+), with two children u·1 and u·2. We suppose that
we have defined the two relative formulae ϕλ,ιΞ,u·1lex and ϕλ,ιΞ,u·2lex .
Let U be a piece of Cu, we know that there exists a unique pair 〈U1, U2〉 of subsets
of U such that each Ui is a piece of Cu·i, U1 < U2, and U1 t U2 = U . Let x, y ∈ U .
By the definition of vλ,ιΞlex , if x and y are not in the same Ui, then x vλ,Ξlex y if and
only if x ∈ U1 and y ∈ U2. Hence, we can define ϕλ,ιΞ,ulex

(
(Cu)u∈Nodes(τ), U, x, y

)
as the

formula:

∃U1, U2 ⊆ U. ϕpiece(Cu·1, U1) ∧ ϕpiece(Cu·2, U2)∧[(
x ∈ U1 ∧ y ∈ U2

)
∨
(
x ∈ U1 ∧ y ∈ U1 ∧ ϕλ,ιΞ,u·1lex

(
(Cu)u∈Nodes(τ), U1, x, y

))
∨
(
x ∈ U2 ∧ y ∈ U2 ∧ ϕλ,ιΞ,u·2lex

(
(Cu)u∈Nodes(τ), U2, x, y

))]
− Now, let u be a node of τ labelled by (×ω), and having one child u·0. We suppose to

have defined our formula ϕλ,ιΞ,u·0lex . Let U be some piece of Cu. We know that there
exists a infinite number of pieces of Cu·0, U0 < U1 < U2 . . . such that ti∈ωUi, and there
exists no other piece of Cu·0 in U . Let x, y ∈ U : x is in some Ui, and y in some Uj.
Here again, by the definition of vλ,ιΞlex , if i 6= j, then x vλ,ιΞlex y if and only if i < j.
Hence, we can define ϕλ,ιΞ,ulex as follows:

ϕλ,ιΞ,ulex

(
(Cu)u∈Nodes(τ), U, x, y

)
:=

∃Ui ⊆ U,Uj ⊆ U. ϕpiece(Cu·0, Ui) ∧ ϕpiece(Cu·0, Uj)

∧ x ∈ Ui ∧ y ∈ Uj

∧
[
Ui < Uj

∨
(
Ui = Uj ∧ ϕλ,ιΞ,u·0lex

(
(Cu)u∈Nodes(τ), Ui, x, y

))]
.

− The case when u is a node of τ labelled by (×ω?) is completely symmetric to the
previous case, only the subformula Ui < Uj is replaced by Uj < Ui.

Now that our formulae ϕλ,ιΞ,ulex are defined, it suffices to define ϕλ,ιΞ,ιΞlex (x, y) as the formula:

∃(Cu)u∈Nodes(τ), U. ϕ
τ
decomp

(
(Cu)u∈Nodes(τ)

)
∧ ϕpiece(Cε, U)

∧ ϕλ,ιΞ,εlex

(
(Cu)u∈Nodes(τ), U, x, y

)
.
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Since, as said previously, Ξ = (Cu)u∈Nodes(τ) is the unique tree decomposition of λ with
shape τ , this formula defines vλ,ιΞlex , which we have proved to be a well order over λ.

4.5.3 Regularly defining the positions

In this third and final subsection, we prove that, under the same hypothesis about a linear
order λ, we can construct, for each position x of λ, an MSO[<] formula ϕλ,xdef (y) that is
satisfied for y = x and only for y = x.

Proposition 4.31. Let λ be a finitary linear order. We suppose that λ is rigid. Then, for
every position x of it2, we can construct a formula that defines it.

Proof. Here again, let τ be a term over the singleton alphabet {•}, representing λ, and let
us suppose that λ is rigid. Let Ξ = (Cu)u∈Nodes(τ) be the unique tree decomposition of λ
with shape τ , and ιΞ the unique isomorphism from λ to Order(τ). We refer to the proof of
Proposition 4.12 for the relation between the two of them.

We want to construct, for any leaf v of Tree(τ), a formula ϕτ,vdef(x) such that for every
position x of λ, we have λ � ϕτ,vdef

(
(Cu)u∈Nodes(τ), x

)
if and only x = ι−1

Ξ (v).
To do this, we define, for each node u of Tree(τ), a formula ϕτ,vdef

(
(Cu)u∈Nodes(τ), x

)
such

that for all x ∈ λ, λ � ϕτ,vdef

(
(Cu)u∈Nodes(τ), x

)
if and only if x is in the set {ι−1

Ξ (v′) | v′ ∈
Nodes(Tree(τ)) and v �pred v

′}. Notice that when v is a leaf, the condition is exactly the
same as the one we are aiming to prove (since v is the only leaf v′ such that v �pred v

′).
As usually in this chapter, we construct our formula inductively. This time from top

(the root) to bottom (the leaves).
− If v is the root ε, then all positions of λ are in the set {ι−1

Ξ (v′) | v′ ∈ Nodes(Tree(τ))

and v �pred v
′}. Therefore, ϕτ,εdef

(
(Cu)u∈Nodes(τ), x

)
:= > satisfies our need.

− Let us suppose that we have constructed the formula ϕτ,vdef for a node v of Tree(τ)

labelled by (+), and let us construct the two formulae ϕτ,v·1def and ϕτ,v·2def . Via the con-
struction of Tree(τ) from τ (which can be found on page 115), v is obtained from
a node u of τ that is labelled by (+).
The set

{
ι−1
Ξ (v′) | v′ ∈ Nodes(Tree(τ)) and v �pred v

′}, is some piece U of the con-
densation Cu. By definition, U can be divided into two disjoint subsets U1 and U2,
with U1 < U2 and each Ui being a piece of the condensation Cu·i, and there is no other
piece of Cu·i included in U .

2In a procedure, while the linear order λ can naturally be given via a term, the position x can be given
as a sequence of integers that position it in the condensation tree. More details about it can be found in
Appendix C.
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Therefore, the set {ι−1
Ξ (v′) | v′ ∈ Nodes(Tree(τ)) and v·1 �pred v′} (resp. the set

{ι−1
Ξ (v′) | v′ ∈ Nodes(Tree(τ)) and v·2 �pred v

′}) is exactly U1 (resp. U2), and we can
define ϕτ,v·1def

(
(Cu)u∈Nodes(τ), x

)
as:

ϕτ,vdef

(
(Cu)u∈Nodes(τ), x

)
∧∃U1. ϕpiece(Cv·1, U1)

∧ x ∈ U1,

and ϕτ,v·2def

(
(Cu)u∈Nodes(τ), x

)
as the formula:

ϕτ,vdef

(
(Cu)u∈Nodes(τ), x

)
∧∃U2. ϕpiece(Cv·2, U2)

∧ x ∈ U2,

− Finally, we treat the case when u is a node labelled by (Σω) and has an infinite number
of children u · 0 <lex u · 1 <lex u · 2 <lex . . . (here again, the case when it is labelled by
(Σω?) is symmetric). The node v is obtained from a node u of τ , labelled by (×ω).
Here, the set {ι−1

Ξ (v) | v ∈ Nodes(Tree(τ)) and u �pred v} is a piece U of the conden-
sation Cu that is divided into an infinite number of pieces of Cu·0: U =

⊔
i∈ω Ui, with

U0 < U1 < U2 < . . . There is no other piece of Cu·0 included in U .
This is why, for each i ∈ ω, the set {ι−1

Ξ (v′) | v′ ∈ Nodes(Tree(τ)) and v·i �pred v
′} is

exactly Ui, and it can be defined in MSO as the i-th least piece of Cu·0 included in U :

ϕτ,v·idef

(
(Cu)u∈Nodes(τ), x

)
:= ϕτ,v·idef

(
(Cu)u∈Nodes(τ), x

)
∧ ∃U0 ⊆ U, . . . , Ui ⊆ U.

∧
0≤j≤i

ϕpiece(Cu·0, Ui)

∧
∧

0≤j<i

Uj < Uj+1

∧ ∀V ⊆ U. ϕpiece(Cu·0, V ) =⇒
( ∨

0≤j≤i

V = Uj ∨ Ui < V
)

∧ x ∈ Ui.

Now that our formulae ϕτ,vdef are defined for all v ∈ Nodes(Tree(τ)), it suffices, for each
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x ∈ λ, to define ϕλ,xdef (y) as the formula:

∃(Cu)u∈Nodes(τ). ϕ
τ
decomp

(
(Cu)u∈Nodes(τ)

)
∧ ϕpiece(Cε, U)

∧ ϕτ,vdef

(
(Cu)u∈Nodes(τ), y

)
,

with v being the leaf ιΞ(x) of Tree(τ).

4.6 Conclusion and further work

In this chapter, we were able to show that in the case of finitary linear orders, the only
obstacle for uniformisations to be definable in MSO[<] are non-trivial automorphisms. This
provides a very clean picture: given a linear order λ, either λ admits a convex subset of
the shape µ× Z, which does not allow to define even a choice function, or it does not, and
in that case all regular relations over λ have regular uniformisations. Moreover, we gave
a procedure to construct these regular uniformisations.

The techniques involved in the proof are based mainly on the tools developed in [CCP18]
to study the algebraic structure of regular languages of countable words. Yet, our approach
slightly differs, in the sense that we focus on a particular linear order, while said article
mostly studies languages defined over countable words in general. This highlights that this
method of using trees and relying over condensations to find one’s way around in the linear
orders is rather promising: with only this procedure we were able, in MSO[<], to construct
uniformisations, choice functions, well orders, and also to define every position. One might
be able to come with the possibility to define new interesting properties of finitary linear
orders via these tools.

In our aim to better understand uniformisability over finitary linear orders, one may also
wonder which are the regular binary relations that actually admit a regular uniformisation:

Problem 4.32. Given a finitary linear oder λ and R ⊆
(
A
B
)λ a regular binary relation,

with A and B two alphabets, does R admit a regular uniformisation?

To achieve this, one should understand how to merge the techniques of [FST20], which
analyses the case λ = Z, with the above results clarifying the situation under the assumption
of “no convex subset of the shape µ× Z”.

Another question would be about the possibility to define the different objects involved
in this chapter in First-Order Logic. An immediate corollary of Proposition 2.1 is that,
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if λ is an infinite linear order, not all relations R ⊆
(
A
B
)λ definable in FO[

(
A
B
)
, <] admit

uniformisations also in FO[
(
A
B
)
, <].

Yet, the author is inclined to believe that, in the context of finitary linear orders, the
possibility to define regular choice functions is equivalent to define them in First-Order
Logic:

Conjecture 4.33. Let λ be a finitary linear order. Then the following are equivalent:
− λ is rigid,
− λ admits a regular choice function,
− λ admits an FO[<] choice function.

Remember that a choice function f : P(λ) \ {∅} → λ is first order (or is an FO[<] choice
function) if it is definable by a formula ϕλchoice(X, x) that does not contain any second-order
quantifier.

So far, the author was only able to prove the conjecture when λ is obtained from singleton
sets only and the two operations (×ω) and (×ω?), meaning when it is of the shape ξ0 × ξ1 ×
· · · × ξn−1, with each ξi being either ω or ω?. In this case, λ cannot admit any non-trivial
automorphism.

Proposition 4.34. Let λ be a finitary linear order, whose construction does not involve
the concatenation operation +, nor the η-operation. Then it admits a first-order choice
function.

The proof of this preliminary result is given Appendix C.
Finally, one could ask which of the implications of Theorem 4.1 are preserved when we

do not assume the assumption of finitariness: does a countable rigid linear order necessarily
admit the regular-uniformisation property? Or maybe it admits a regular choice function?
We study these questions in the next chapter.
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Chapter 5

The non-finitary case

In the previous chapter, we showed the equivalence between these six different propositions,
in the context of finitary linear orders:

− identity is the unique automorphism,
− there is no convex subset isomorphic to µ× Z, µ being some non-empty linear order,
− regular-uniformisation property holds,
− regular choice function exists,
− regular well order exists,
− all elements are regularly definable.

Moreover, we proposed algorithms constructing formulae that define those properties, in
the case when the first condition holds.

A legitimate question would be whether these equivalences remain true when considering
less restricted orders, like countable linear orders not necessarily finitary, or even orders not
necessarily linear.

In this chapter, we study these implications in the former case (countable linear orders,
not necessarily finitary). The reason we want to keep the assumption of countability is that,
with uncountable linear orders, MSO[<] does not behave as easily as it does with countable
ones. For instance, the MSO[<] theory of R, the set of real numbers, is not decidable,
in the sense that there does not exist an algorithm that inputs an MSO[<] sentence and
outputs YES if R � ϕ, and NO if R 2 ϕ [She75, Theorem 7]—while the MSO[<] theory
of Q, the set of rational numbers, is (once again, see Theorem 6.2. of the same article).
Moreover, since every countable linear order is isomorphic to a suborder of Q (Theorem 1.1),
we can deduce from it is decidable whether there exists some countable linear order satisfying
a given formula. But this is not the case for non-countable orders.

In Section 5.1, we discuss which of the implications are preserved, while in Section 5.2,
we provide counterexamples for some other implications. Figure 5.1 sums up the results of
these two sections: the green arrows naturally representing the preserved implications, and
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the crossed red arrows standing for the unpreserved ones. The latter are labelled by their
respective counterexamples.

rigidity

regular-uniformisations
property

regular choice
function

regular well
order

ωω

ωω ωω

λ0

λ0

Figure 5.1: The implications and non-implications proven in this chapter, for countable
linear orders. The labels ωω and λ0 denote the countable linear orders defined in Section 5.2.

It can be noticed that this figure makes no mention of two of the six conditions we
introduced: the non-existence of convex subsets isomorphic to µ×Z, and the possibility to
define each element regularly. Indeed, it happens that the former condition is equivalent
to the non-existence of non-trivial automorphisms, hence there is no need to include it
in our graph. Concerning the latter condition, it seemed to the author that, without the
assumption of finitariness, this question is not easily related to the other properties, and no
sufficiently interesting results were provided.

5.1 Preserved implications

In this short section, we focus on the implications of Theorem 4.1 that remain true with-
out the assumption of λ being finitary. We mostly state anew the implications proven in
Section 4.2, since the implications proven there do not require the key assumption of fini-
tariness of a given countable linear order. In fact, they do not require the assumption of
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countability either, but for the reason we explained at the beginning of this chapter, we do
focus on linear orders that are countable.

First, the existence of convex subsets of the shape µ×Z is always equivalent to non-rigid-
ity:

Proposition 5.1. A countable linear order is non-rigid if and only if it admits a convex
subset isomorphic to µ× Z, with µ being a non-empty linear order.

This proposition has already been stated and proven in the previous chapter, as Claim 4.7
(see page 109): a non-trivial automorphism α induces such a convex subset [x0, α(x0)[×Z,
with x0 being any element such that x0 < α(x0) (the case α(x0) < x0 being symmetric),
and, reciprocally, a convex subset isomorphic to µ×Z induces a non-trivial automorphism,
that maps each copy of µ to its successor.

Concerning the expressive power of MSO[<], we proved also in Section 4.2 that choice
was an instance of uniformisation: a linear order λ admits a regular choice function ϕλchoice

if and only if the λ-language of the formula ϕbelongs := ∀x. ¬
(

0
1

)
(x) ∧ ∃!x.

(
1
1

)
(x) admits

a regular uniformisation. Hence, we could conclude the following implication:

Proposition 5.2. If a countable linear order satisfies the regular-uniformisation property,
then it admits a regular choice function.

Also, by the very definition of a well order, if λ admits a well order definable in MSO[<],
then the choice function that maps each non-empty subset of λ to its least element by this
well order is regular. Notice that this is true not only for linear orders, but for any models
of any signature, in general:

Fact 5.3. Let Σ be a signature. If some MSO[Σ] formula ϕMwo(x, y) defines a well order over
a modelM of Σ, then the formula ϕMchoice(X, x) defined as x ∈ X ∧∀y∈X. ϕMwo(x, y) defines
a choice function overM.

Finally, we recall that the possibility to define all these objects in MSO[<] requires the
rigidity assumption:

Proposition 5.4. If a countable linear order it is non-rigid, then:
− it does not admit a regular choice function,
− it does not admit a regular well order,
− it does not admit the regular-uniformisation property.
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The fact that non-rigidity implies the first two items was already stated in Claim 4.8.
The proof uses the fact that satisfiability of formulae is preserved by automorphisms (see
Fact 1.5 on page 32). Naturally, we deduce the last implication from Proposition 5.2.

All these preserved implications are depicted in Figure 5.2, which we are willing to
complete in the next section.

rigidity

regular-uniformisations
property

regular choice
function

regular well
order

Figure 5.2: A graph of implications between properties of countable linear orders.

5.2 Failing implications

In this second subsection, we highlight some of the implications of Theorem 4.1 which are
not preserved without the assumption of finitariness. The first non-implications we state
are nothing more than an application of a result of [LS98], which proves that the ordinal ωω,
among other, does not admit the regular-uniformisation property. Then, we prove a last
non-implication by constructing a linear order that is rigid, and yet admits no regular choice
function.

5.2.1 The counterexample ωω

As stated in this introducing paragraph, the ordinal ωω is an example of a countable linear
order on which not all regular relations admit regular uniformisations:

Proposition 5.5 ([LS98]). The linear order ωω does not admit the regular-uniformisation
property.
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As mentioned on page 28, (·)ω shall be understood here as the ordinal-theoretic opera-
tion, and this order ωω shall not be confused with ω × ω (which does satisfy the regular-
uniformisation property, as it is implied by Theorem 4.1 on page 105). Once again, we refer
to [Sie58] for a survey of ordinals and that particular operation: ωω is defined as the limit
of the linear orders ω, ω2 = ω×ω, ω3 = ω×ω×ω . . . A graphical representation of ωω is
pictured on Figure 5.3.

)

ω

• • • • • • • • • • • )

ω2

)• • • • )• • • • )• • • • )

ω3

) ) ) )

ω4

) ) )

Figure 5.3: A graphical representation of the linear order ωω.

Ordinals have the very important property that every well order is isomorphic to a unique
ordinal. Hence, ωω trivially admits a regular well order, and therefore also a regular choice
function, but no non-trivial automorphism (by the implications proven in the previous
section). Thus, ωω helps up in concluding no less than three non-implications ωω:

Proposition 5.6. The ordinal ωω is an example of a countable linear order that:
− is rigid,
− admits a regular well order,
− admits a regular choice function,
− and yet does not satisfy the regular-uniformisation property.
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We can complete the previous figure of implications with these negative results, and
obtain Figure 5.4.

rigidity

regular-uniformisations
property

regular choice
function

regular well
order

ωω

ωω ωω

Figure 5.4: Among linear orders, three of these implications fail because of ωω.

5.2.2 Rigid, but yet without regular choice function

In this second subsection, we prove that, without the assumption of finitariness, rigidity does
not imply any more the existence of regular choice function (and thus nor the existence of
regular well order). We prove this negative result by constructing a concrete counterexample.

In order to construct such a linear order, we make use of the fact that the two countable
ordinals ν1 := ωω and ν2 := ωω×2 satisfy exactly the same MSO[<] sentences (i.e. for every
sentence ϕ, we have the equivalence ν1 � ϕ if and only if ν2 � ϕ):

Proposition 5.7. The ordinals ωω and ωω × 2 satisfy the same MSO[<] sentences.

This result is a corollary of Theorem 2 of [Büc65], which proves that two ordinals satisfy
the same MSO[<] sentences if and only if they share the same ω-tail (a notion which we do
not define here).

Notice that, if we did not care about the two ordinals ν1 and ν2 to be countable, then
we could simply ensure their existence by a simple application of the pigeon-hole principle
(“if there are less holes than pigeons, then at least two pigeons must enter the same hole”).
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Indeed, let ν be some ordinal. We denote by T (ν) the set {ϕ ∈ MSO[<] | ν � ϕ} of the
formulae satisfied by it, and we call it its MSO[<] theory. The argument is that, considering
that formulae in MSO[<] are objects obtained from a finite signature and using a finite
amount of finite constructors, there are countably many MSO[<] sentences. This means
that the set of sets of sentences has cardinality continuum, i.e. the cardinality of P(N), the
set of subsets of N (see [Can74]). It is also a very classic set-theoretical result that the class
of ordinals is not a set: it is “too big” to be given any cardinality (see for instance [Jec03,
Chapter 2, Section “Ordinal Numbers”]). In particular, there are more ordinals than there
are sets of MSO[<] sentences. Thus, by the pigeon-hole principle, there necessarily exist
two distinct ordinals ν1 and ν2 sharing the same MSO[<] theory: T (ν1) = T (ν2), and ν1 � ϕ

if and only if ν2 � ϕ for all MSO[<] sentences ϕ.
But since we require the assumption of countability, as we stated at the beginning of

the chapter, we consider ν1 and ν2 to be ωω and ωω × 2 for the following of the section: in
addition to satisfy exactly the same MSO[<] sentences, we need to remember that they are
not isomorphic to each other (as distinct ordinals), and infinite.

Now, we define ξ as the linear order ω? × ω: it consists of an infinite number of copies
of ω? (see a graphical representation of it on Figure 5.5).

Unlike ν1 and ν2, ξ is not a well order, but, very importantly, it is rigid:

Lemma 5.8. The linear order ξ is rigid.

The argument is not of any theoretical interest, but requires some redacting, which we
give for the sake of completeness.

Proof. We recall that ξ is, formally, the set of elements of the shape 〈k, n〉, with n being
a natural number, and k being a negative (in the strict sense) integer, and it is ordered
by 〈k1, n1〉 ≤ 〈k2, n2〉 if either n1 < n2, or n1 = n2 and k1 ≤ k2.

Let α be any automorphism of ξ, in order to prove that it is necessarily the identity.
First, notice that if α

(
〈k1, n1〉

)
= 〈k2, n2〉, then we have α

(
〈k1−1, n1〉

)
= 〈k2−1, n2〉.

Indeed, α conserving the order, we must have α
(
〈k1−1, n1〉

)
< 〈k2, n2〉, and, if we had

α
(
〈k1−1, n1〉

)
< 〈k2−1, n2〉, then α−1

(
〈k2−1, n2〉

)
would have to be some element x satis-

fying 〈k1−1, n1〉 < x < 〈k1, n1〉, which is impossible.
Hence, to prove that α is the identity, it is sufficient to show that α

(
〈−1, n〉

)
= 〈−1, n〉 for

all natural numbers n. Indeed, if we prove it, then, for any n, applying the previous remark,
we also have α

(
〈−2, n〉

)
= 〈−2, n〉, and then α

(
〈−3, n〉

)
= 〈−3, n〉. . . , and α

(
〈k, n〉

)
=

〈k, n〉 for any negative integer k, by induction.
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Figure 5.5: A graphical representation of the linear order ξ = ω? × ω.

Now, by a similar argument as previously, we notice that for any natural number n,
the element α

(
〈−1, n〉

)
cannot have any successor in ξ, meaning that it is necessarily the

element 〈−1,m〉, for some m ∈ N. Indeed, if α
(
〈−1, n〉

)
was of the shape 〈k1,m〉, for

some k1 < −1 and somem ∈ N, then α−1
(
〈k1+1,m〉

)
would have to be some element 〈k2, p〉,

with n < p. But then the element 〈k2−1, p〉, which is between 〈−1, n〉 and 〈k2, p〉, would be
mapped to some element x with 〈k1,m〉 < x < 〈k1+1,m〉, which is impossible.

Now that we know that each element of the shape 〈−1, n〉 has to be mapped to some
element 〈−1,m〉, it remains to be proven that this m is necessarily n itself.

The argument is similar to the one provided to the proof of Example 4.2: let us suppose
that there exist some natural numbers n such that α

(
〈−1, n〉

)
6= 〈−1, n〉, and let n be the

least of them: it is mapped to 〈−1,m〉, for some m 6= n. We cannot have m < n, since we
would also have α

(
〈−1,m〉

)
= 〈−1,m〉, which would contradict the injectivity of α. But we

cannot have n < m either, because if we did, then 〈−1,m〉 could not be the image under
any element in ω? × ω, which would contradict the surjectivity of α. Hence, such natural
numbers cannot exist, which means that α is the identity function.

We can conclude: ω? × ω is rigid.
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In our next step, we can define µ0 as the linear order (ν1 + ξ) × Z: it is basically
a bi-infinite number of copies of ν1, with a copy of ξ between every two consecutive copies
of ν1. Finally, we define λ0 as the linear order (ν1+ξ)×ω? + ν2 + (ξ+ν1)×ω: we can see it
as µ0, with one of the copies of ν1 being replaced by a copy of ν2.

ξ ν1 ξ ν2 ξ ν1 ξ

· · · · · ·

Figure 5.6: A graphical representation of the linear order λ0.

The idea is that this very copy of ν2 prevents λ0 of having any non-trivial automorphisms,
but on the other hand, the fact that ν1 and ν2 have the same MSO[<] theory implies that λ0,
as µ0, cannot admit any regular choice function.

Indeed, λ0 and µ0 have the same MSO[<] theory:

Claim 5.9. λ0 and µ0 satisfy the same MSO[<] sentences.

Proof. Recall from Subsection 1.2.3 that, ifM andN are two models over Σ,M∼= N means
that Duplicator has a winning strategy for the game GMSO[Σ]

d (M,N ), for every d ∈ N, and
Theorem 1.7 states that this is equivalent toM and N satisfying the exact same MSO[Σ]

sentences.
The linear order µ0 is isomorphic to (ν1+ξ)×ω? + ν1 + (ξ+ν1)×ω, and we naturally

have (ν1+ξ)×ω? ∼= (ν1+ξ)×ω?. Hence, we deduce (ν1+ξ)×ω? + ν1
∼= (ν1+ξ)×ω? + ν2

by Proposition 1.8 on page 36, since ν1
∼= ν2. Applying once again Proposition 1.8, we

obtain (ν1+ξ)×ω?+ν1+(ξ+ν1)×ω ∼= (ν1+ξ)×ω?+ν2+(ξ+ν1)×ω, and therefore µ0
∼= λ0.

One can deduce from it that one cannot define in MSO[<] a choice function over λ0.

Proposition 5.10. The linear order λ0 does not admit any regular choice function.

Proof. Let ϕ(X, x) be any MSO[<] formula with two free variables: one second-order, the
other first-order. We show that it cannot define a choice function over λ0.

For this, we consider the formula ψϕ, without free variables, defined as

∀X. X 6= ∅ =⇒ ∃x∈X. ϕ(X, x) ∧ ∀y. ϕ(X, y) =⇒ x = y.
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This formula ψϕ states exactly that ϕ(X, x) defines a choice function: for any linear
order λ, λ � ψϕ if and only if the binary relation

{
〈X, x〉 ∈ P(λ) × λ | λ � ϕ(X, x)

}
is

a choice function over λ.
Since µ0 is non-rigid, it does not admit any regular choice function, and we have µ0 2 ψϕ.

Thus, λ0 2 ψϕ, since λ0
∼= µ0 (by Claim 5.9), and ϕ(X, x) does not define a choice function

over λ0, which concludes the proof.

We spend the rest of the section making sure that λ0 is rigid. Again, this proof is not of
any theoretical interest, yet we provide a full proof of it for the sake of completeness. For
convenience, we rewrite λ0 as the set ξ×{0}×Ztν1×{1}×

(
Z\{0}

)
tν2×{1}×{0}, naturally

linearly ordered by:
− 〈_,_, k〉 < 〈_,_, k′〉 for all integers k < k′;
− 〈_, 0, k〉 < 〈_, 1, k〉 for every integer k;
− 〈x, 0, k〉 < 〈y, 0, k〉 for every integer k and all x < y in ξ;
− 〈x, 1, k〉 < 〈y, 1, k〉 for every integer k 6= 0 and all x < y in ν1;
− 〈x, 1, 0〉 < 〈y, 1, 0〉 for all x < y in ν2.
For every k ∈ Z, we denote by Yk the subset ξ×{0}×{k} of λ0. We call it the k-th ξ-seg-

ment. Similarly, if k 6= 0, then the subset ν1×{1}×{k} of λ0, denoted by Xk, is called
the k-th ν1-segment, and, finally the subset ν2×{1}×{0}, denoted byX0, is called the ν2-seg-
ment.

Finally, before going into the details of the proof, we need a notion of cuts and anti-cuts.
We already define cuts on page 28: a cut of a linear order λ is a non-empty subset C of
it that is closed downward, meaning that for all x < y ∈ λ, if y belongs to C then x

also does. Symmetrically, an anti-cut of λ is a non-empty subset C of it that is closed
upward, meaning that for all x < y ∈ λ, if x belongs to C then y also does. Only λ is both
a cut and an anti-cut of itself. If λ is ν1, ν2, or ξ, we say that a subset Ck of λ0 is a cut
(resp. an anti-cut) of the λ-segment λ×{i}×{k} if Ck is C×{i}×{k}, with C being a cut
(resp. an anti-cut) of λ.

Remark 5.11. No cut, nor anti-cut of any ξ-segment of λ0 is well ordered.

Proof. It is immediate to see that all cuts and anti-cuts of ξ admit a subset isomorphic
to ω?, which does not admit any least element.

Corollary 5.12. The only convex subsets of λ0 that are well ordered are finite subsets
of ξ-segments, and subsets of ν1- and ν2-segments.
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Proof. By the definition of convexity, a convex subset that would intersect both with
some ξ-segment and some ν1- or ν2-segment would necessarily contain a cut or an anti-cut
of this ξ-segment, and would not be well ordered, according to Remark 5.11. Hence, if
a convex subset of ξ is a well order, then it is necessarily contained in one of the segments.

If it is contained in some ν1- or ν2-segment, then it is indeed well ordered, since ν1 and ν2

are. Finally, we easily notice that convex infinite subsets of ξ necessarily contain a subset
isomorphic to ω?, and therefore cannot be well ordered, which concludes the proof.

In order to prove that λ0 is rigid, we prove a first lemma:

Lemma 5.13. The image of all ν1- and ν2-segments under any automorphism of λ0 are
ν1- and ν2-segments respectively.

Proof. We show the claim for a ν1-segment Xk = ν1×{1}×{k}. The proof is similar for
the ν2-segment. The image of Xk under α must be a well order, since isomorphisms preserve
well orders. Hence, by Claim 5.12, α(Xk) is necessarily either a finite subset of a ξ-segment,
or a subset of a ν1- or ν2-segment.

Since Xk is infinite, α(Xk) cannot be finite, and therefore it is necessarily a subset Y of
a ν1- or ν2-segment Z. We show that we have necessarily Y = Z, meaning that it is both
a cut and an anti-cut of Z.

Let us show that Y is an anti-cut of Z, by considering the subset Y ′ = {y′ ∈ Z |
y < y′ for all y ∈ Y }. If it is non-empty, then α−1(Y ′), its inverse image under α, necessarily
contains a cut of the ξ-segment ξ×{0}×{k+1}, and hence is not well ordered. Thus, since Y ′

is itself a well order, as a subset of a well order, it is necessarily empty, and Y is an anti-cut
of Z.

The same way, we prove that Y is a cut of Z, and hence it is Z itself, and we have proven
the claim.

Finally, we can deduce that the identity is the unique automorphism of λ0, which will
conclude our section.

Proposition 5.14. The linear order λ0 is rigid.

Proof. Since ν1, ν2, and ξ are all rigid (ν1 and ν2 because they are well orders, and ξ because
of Claim 5.8), it suffices to prove that for each segmentX of λ0 (ν1-, ν2-, or ξ-segment), α(X)

is X itself. Indeed, if we prove this, then, for each such segment X, α�X is an automorphism
of X, and hence the identity of X, since X is isomorphic to ν1, ν2, or ξ, which do not admit
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non-trivial automorphisms. Hence, for each x ∈ λ0, by consideringX the segment containing
x, we have α(x) = α�X(x) = idX(x) = x: α is the identity.

First, we make sure that α
(
ν2×{1}×{0}

)
, the image under α of the ν2-segment X0, is

the ν2-segment X0 itself. Indeed, Lemma 5.13 tells us that it is either a ν1-segment or the
ν2-segment. But since ν1 and ν2 are not isomorphic to each other, it is necessarily X0.

Now, we know that for all k ∈ N, the ν1-segment Xk = ν1×{1}×{k} is mapped to
some ν1-segment Xk′ , with k′ > 0, by Lemma 5.13 and because α preserves the order. To
show that it is necessarily mapped to itself (meaning k = k′), we make use of the same
argument as in the proofs of Example 4.2 and Lemma 5.8: if there are such ν1-segments,
we consider the least one, which enters into contradiction with the bijectivity of α.

By symmetry, the same arguments apply for the ν1-segments Xk, with k < 0, and we
conclude that α maps each ν1 segment to itself.

Finally, for each k ∈ Z, the image under α of the ξ-segment Yk = ξ×{0}×{k}, is the
set of elements which are between α(Xk−1) and α(Xk), meaning between Xk−1 and Xk,
meaning exactly Yk, and we have shown that the image of each segment of λ0 is itself. By
our remark at the beginning of the proof, we deduce that α is the identity function, and we
conclude.

We have everything to conclude our subsection:

Claim 5.15. The linear order λ0 which we constructed is an example of linear order that:
− is rigid, and yet
− admits no regular choice function,
− admits no regular well order.

Figure 5.1, which we put on page 147, summarises all our results of this chapter.

5.3 Conjectured implications and conclusion

In this chapter, we studied to which extend the equivalences of Theorem 4.1 remain true
without the assumption of finitariness, and we were able to give an interesting survey, yet
not completed.

Indeed, on summarising Figure 5.1, two (non-)implications are not mentioned: the impli-
cation from the regular-uniformisation property to the existence of a regular well order, and
the implication from the existence of a regular choice function to the existence of a regular
well order.
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For now, these two questions have not been answered by the author. Yet, we are tempted
to answer them positively. The two of them being a consequence of a stronger conjecture,
involving not only linear orders, but general models:

Conjecture 5.16. Let Σ be a signature. For each MSO[Σ] formula ϕchoice(X, x), there exists
a formula ϕwo(x, y), also in MSO[Σ], such that for every model M of Σ, if ϕchoice(X, x)

defines a choice function overM, then ϕwo(x, y) defines a well order overM.

Hence, would any linear order λ admit a regular choice function, defined by an MSO[<]

formula ϕλchoice(X, x), it would also admit a regular well order, defined by a formula ϕλwo(x, y),
depending only on ϕλchoice (and not on λ).

Even though Conjecture 5.16 is unproved so far, it is worth stating a related lemma,
which could help us on the matter. Let Σ be a signature, and ψ(x, y) be an MSO[Σ] formula
over Σ, with two free first-order variables. We say that ψ defines a choice function over
a modelM of Σ ifM � ∀X 6=∅. ∃!x∈X. ∀y∈X. ψ(x, y), meaning that for each non-empty
subset X of M, there exists a unique x ∈ X such that M � ψ(x, y) for all y ∈ X. The
following lemma tells that such a formula defines a well order as well:

Lemma 5.17. Let Σ be a signature, letM be a model of Σ, and let ψ(x, y) be an MSO[Σ]

formula, with two free first-order variables x and y. Then, if ψ(x, y) defines a choice function
overM, then it also defines a well order overM.

Proof. Let RM be the binary relation overM defined by ψ: RM :=
{
〈x, y〉 | M � ψ(x, y)

}
,

and let us suppose that ψ(x, y) defines a choice function over M: for every non-empty
subset X ofM, there exists a unique x ∈ X such that xRMy for all y ∈ X.

It is sufficient for us to prove that RM is an order. Indeed, if it is, then the assumption
of ψ ensures the existence of a least element with respect to RM for every non-empty subset,
which is exactly the definition of a well order.
− First, reflexivity. Let x ∈ M: the unique element x′ ∈ {x} such that x′RMy for

all y ∈ {x} is necessarily x, and therefore xRMx.
− Second, antisymmetricity. Let x, y ∈ M, and let us suppose that xRMy and yRMx.

By reflexivity, we also have xRMx and yRMy. Therefore, x and y are two elements x′

of {x, y} such that x′RMy′ for all y′ ∈ {x, y}. By unicity of this element x′, we
necessarily have x = y.

− Finally, transitivity. Let x, y, z ∈ M, and let us suppose that xRMy and yRMz.
If x = y or y = z, then we clearly have xRMz by assumption. If x = z, then we have it
by reflexivity. Hence, let us assume that these three elements are pairwise distinct. By
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antisymmetricity, this means that we do not have yRMx, nor zRMy. Hence, neither y
nor z can be elements x′ ∈ {x, y, z} such that x′RMy′ for every y′ ∈ {x, y, z}. This
means that this x′ is necessarily x, and therefore xRMz.

We showed that RM is an order overM, and this concludes our proof.

Hence, if for every MSO[Σ] formula ϕchoice(X, x), we managed to show that there exists
an MSO[Σ] formula ϕwo(x, y) such that the formula:

∀X 6=∅. ∃x∈X. ϕchoice(X, x) ∧ ∀x′∈X ′. ϕchoice(X, x
′) =⇒ x = x′

is logically equivalent to the formula:

∀X 6=∅. ∃x∈X. ∀y∈X. ϕwo(x, y) ∧ ∀x′∈X.
(
∀y∈X. ϕwo(x′, y)

)
=⇒ x = x′,

then, under the condition that ϕchoice defines a choice function over a model, said ϕwo would
define a well order over it, and we would be able to conclude Conjecture 5.16.

We shall put as a remark that there is a priori no reason to deduce such an eventual
formula ϕwo(x, y) from the semantics of ϕchoice(X, x), since said semantics are often difficult
to comprehend. For instance, a regular choice over ω would be (among other) the function
that maps every non-empty subset to either its greatest element if it has one (meaning it is
finite), or its least element if not. It is indeed definable by a formula ϕωchoice(X, x). The well
order we would like to obtain from it is the order of ω, i.e. ϕwo(x, y) should be equivalent
to x ≤ y, but, in a sense, ϕωchoice does exactly the opposite: for every two elements x and y,
we have ω � ϕωchoice({x, y}, x) if and only if y ≤ x. This highlights that, in the general case,
the obtention of ϕwo(x, y) should be syntactical: it should rely on the formula ϕchoice(X, x)

itself, rather than on its semantic interpretation.
So far, the author was not able to come with an algorithm that inputs an MSO[Σ]

formula ϕchoice(X, x) and outputs such a formula ϕwo(x, y), but yet believes that this is
a good direction to consider, in order to solve Conjecture 5.16.

Naturally, since the regular-uniformisation property implies the existence of a regular
choice function, proving Conjecture 5.16 would also prove the last missing implication of
Figure 5.1.

Conjecture 5.18. If a (countable) linear order satisfies the regular-uniformisation property,
then it admits a regular well order.

Concerning these conjectures, it is worth citing the case of trees. It was indeed shown
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in [GS83, CLNW10] that the infinite binary tree does not admit any well order, nor choice
functions that can be defined in Monadic Second-Order Logic.
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Conclusions

The main motivating question of this thesis is: under which assumption is it possible to
uniformise relations in a given formalism? We focused on this question in the realm of
formal languages, both of finite words and of words of countable domains.

Overall, the thesis can be seen as a search for generalisations of Theorems 1.48 and 1.49,
stating that the formalism of Monadic Second-Order Logic does allow the construction
of uniformisations for regular languages, of respectively finite and ω-words. Many of the
provided arguments and constructions rely on an interplay between the semantic assumption
of uniformisability and algebraic tools used to describe the expressive power of the considered
formalisms.

In Chapter 2, we pointed out that, already over finite words, most of natural fragments of
First-Order Logic are too weak to uniformise not only their own relations, but also relations
of even weaker fragments. In order to better understand the reasons for uniformisability
in these formalisms, we provided an algorithm that inputs a regular relation and outputs
(if there exists any) a uniformisation of it in FO[ ], the fragment of First-Order Logic that
can only test letters. It would be interesting to see if the algorithm could be adapted to
stronger fragments, like FO2[<], FO[s], FO[<]. . .

In Chapter 3, we were able to show that, among non-empty varieties of languages,
onlyMSO is actually able to uniformise all its relations. The author believes that this result
is rather theoretically important, as it reveals strong connections between the question of
uniformisation and the expressive power of Monadic Second-Order Logic.

Finally, in Chapters 4 and 5, we go beyond the domain of finite words and study the
question of uniformisation for countable words. The main theorem of Chapter 4, Theo-
rem 4.1, which can be seen as a generalisation of Theorem 1.49, highlights that, in the
case of finitary linear orders, the only obstacle to the possibility to define uniformisations
in MSO is the existence of non-trivial automorphisms, that “shift” the linear order. The
theorem also highlights the equivalence between rigidity (the fact of not admitting such
non-trivial automorphisms), regular uniformisations, regular choice functions, regular well
orders, and regular definitions of the positions. In Chapter 5, we provided some coun-
terexamples showing that not all these questions remain equivalent without the finitariness
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assumption. In particular, the assumption of rigidity remains crucial, but not sufficient in
itself.

To summarise, the author hopes that this thesis provides a rather complete landscape on
uniformisations and choice functions in the field of formal languages. It features a coherent
and homogeneous study over a fundamental question, declined in many different ways, and
brings its stone to the already long-existing and rich building that makes the connection
between expressive powers of formalisms and algebraic structures. Furthermore, it raises
new interesting questions in various domains such as model theory or theory of linear orders.
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Appendices

A Fragments of First-Order Logic being varieties of lan-

guages

In this appendix, we give a proof of Proposition 1.25, on page 47, stating that the formalisms
pictured on Figure 1.1, on page 40, are varieties of languages. Recall that a class of languages
of finite words is a variety of languages if it is closed under Boolean combinations, quotients,
and preimages under homomorphisms (see the definition on page 45).

Proposition 1.25. The classes of languages of finite words pictured on Figure 1.1, on
page 40, are all varieties of languages.

Proposition 1.23 on page 46, tells us that the class MSO[<] of regular languages is
a variety of languages. In Subsection A.1, we deduce the fact that FO[<] is a variety,
as well as a few of its fragments, from Reiterman’s theorem. Finally, we take care of
fragments FOk[ ] and FOk[s] in the next two subsections. An intersection of varieties
naturally being a variety, we will be able to deduce that also the class FO2[<]∩ FO2[s] is
one.

A.1 Using Reiterman’s theorem

To show that FO[<], First-Order Logic over finite words, is a variety of languages, we rely
on Reiterman’s theorem [Rei82], which proves that classes of finite languages that can be
described via algebraic equations over finite semigroups are varieties of languages. As it
happens that languages definable in FO[<] are the ones whose syntactic finite semigroup is
aperiodic, i.e. satisfies the equation s] ∗ s = s], as we stated it in Theorem 1.19 on page 44,
we can deduce the result.

Similarly, the classes FO[s] and FO2[<, s] are varieties of languages, as Theorems 1.20
and 1.22 describe them via algebraic equations. We can also cite [TW98, Theorem 6], which
provides an algebraic characterisation for FO2[<], and conclude that this class is a variety
of languages. Finally, on page 75, we proved in Theorem 2.22 that FO[ ] corresponds to
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aperiodic and commutative finite semigroups, i.e. finite semigroups that satisfy the algebraic
equations s] ∗ s = s] and s ∗ t = t ∗ s:

Proposition A.1. The classes FO[<], FO[s], FO2[<, s], FO2[<], and FO[ ] are varieties
of languages.

A.2 Classes FOk[ ] are varieties of languages

In this subsection, we show that for each natural number k, the class FOk[ ] of languages
that can be defined with at most k variables and only letter tests is a variety of languages.
For this purpose, we will mostly rely on the semantic characterisation of FOk[ ], which
we proved in Section 2.2. In order to keep the notations consistent with said section, we
will rather say that N is the number of allowed variables, and we will denote the class
by FOk=N [ ].

First, it is immediate that FOk=N [ ] is closed under Boolean combinations, since the
constructors ¬ and ∨ are part of the grammar. It remains to be proven that it is also closed
under quotients and preimages under homomorphisms.

Theorem 2.17, which we proved on page 71, states that a language L over an alpha-
bet A is in FOk=N [A] if and only if it is in MN [A], meaning that it can be written as
a union

⊔
m∈Λ Lm, with Λ being a set of 〈A, N〉-maps. We refer to page 70 for a definition

of an 〈A, N〉-map m and of its corresponding language Lm.
We can define Lm as the intersection of the languages Lm,a, where, for each letter a

in A, Lm,a is the language of words over A whose number of occurrences of a match
with m(a), in the sense that:
− if m(a) ∈ N , then Lm,a is the language L=m(a)

a := {w ∈ A+ | |w|a = m(a)};
− if m(a) is DN , then Lm,a is the language L≥Na := {w ∈ A+ | |w|a ≥ N}.
We take a brief moment to notice that, if (Li)i∈I is any family of languages over A, and if u

is a finite word over A, then u−1 ·
(⋂

i∈I Li
)
and

(⋂
i∈I Li

)
·u−1, the quotient languages of the

intersection
⋂
i∈I Li, are equal to the intersections of the quotient languages

⋂
i∈I
(
u−1 · Li

)
and

⋂
i∈I(Li · u−1) respectively. Hence, since MN [A] is closed under Boolean combina-

tions, it is enough to prove, in order to conclude that it is also closed under quotients,
that the languages u−1·Lm,a and Lm,a·u−1 can be obtained as unions of 〈A, N〉-maps, for
every 〈A, N〉-map m and every letter a ∈ A. Thus, we consider an 〈A, N〉-map m, a let-
ter a ∈ A, and a word u ∈ A+, and we write down the argument for u−1·Lm,a (the argument
for Lm,a·u−1 being identical).
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If m(a) ∈ N , then Lm,a is the language L=m(a)
a of words over A that admit exactly m(a)

occurrences of a, and therefore u−1·Lm,a is either the empty language ∅ if m(a) < |u|a, or
the language L=m(a)−|u|a

a if m(a) ≥ |u|a. In both cases, it is expressible via 〈A, N〉-maps.
If m(a) is DN , then Lm,a is the language L≥Na of words over A that admit at least N

occurrences of a, and hence u−1·Lm,a is either the full language A+ if N ≤ |u|a, or the
language L≥N−|u|aa if N > |u|a. In the first case, it is naturally expressible via 〈A, N〉-maps
(it is the union of all these maps). In the second case, it is also: indeed, it can be written
as the union of the maps m′ that satisfy m′(a) ∈

{
N−|u|a, N−|u|a+1, . . . , N−1,DN

}
. We

can conclude:

Lemma A.2. For every natural number N , the class FOk=N [ ] is closed under quotients.

Now, it remains to be proven that FOk=N [ ] is closed under preimages under homomor-
phisms. Here, again, we notice that, if (Li)i∈I is a family of languages over an alphabet B,
and h a homomorphism from A+ to B+, then the languages h−1

(⋂
i∈I Li

)
and h−1

(⋃
i∈I Li

)
are equal to the languages

⋂
i∈I h

−1(Li) and
⋃
i∈I h

−1(Li) respectively. Hence, in the same
way, in order to show this closure of FOk=N [ ], it is enough to prove that if N is a natural
number, m is an 〈B, N〉-map, and b is a letter of B, then the language h−1(Lm,b) is inMN [A].
Let us prove it.

In a first step, let us assume that m(b) is a natural number smaller than N . Then Lm,b
is L=m(b)

b , the language of words over B that admit exactlym(b) occurrences of b. A first thing
to notice it that if w is a word in h−1(Lm,b), then all the letters a that have an occurrence
in w necessarily satisfy |h(a)|b ≤ |h(w)|b = m(b) ≤ N−1. Furthermore, such a letter a
satisfies either |h(a)|b = 0, or |w|a ≤ N−1, because |w|a×|h(a)|b ≤ |h(w)|b = m(b) ≤ N−1.

Knowing this, for each a ∈ A, the natural number |h(a)|b appears like a key number, and
we can part A into three subsets: the subset Ab0(h) of letters a that satisfy |h(a)|b = 0, the
subset Abbtwn(h) of letters a that satisfy 1 ≤ |h(a)|b < N , and the subset AbDN (h) of letters a
that satisfy N ≤ |h(a)|b.

From the commentaries above, we can characterise the words w ∈ A+ that belong to
the language h−1(Lm,b). Such a word w can be described via a function fw : Abbtwn(h) →
{0, . . . , N−1} that satisfies Σa∈Abbtwn(h)fw(a) × |h(a)|b = m(b): w admits any number of
occurrences of letters in Ab0(h), no occurrences of letters in AbDN (h), and, for each letter a
in Abbtwn(h), it admits exactly fw(a) occurrences of a. This characterisation is expressible
via a Boolean combination of 〈A, N〉-maps, and we have our result.

The case when m(a) is the symbol DN is similar. Here, fw : Abbtwn(h) → {0, . . . , N−1}
is a function that satisfies the inequality Σa∈Abbtwn(h)fw(a) × |h(a)|b ≥ N , and any word w
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in h−1(Lm,b) can admit either any positive number of occurrences of any letter a ∈ AbDN (h),
or at least N occurrences of any letter in Abbtwn(h), or finally exactly fw(a) occurrences of
each letter a in AbDN (h). Naturally, in addition, it can admit any number of occurrences of
letters in Ab0(h). These conditions are also expressible via Boolean combinations of 〈A, N〉-
maps, and we can conclude:

Lemma A.3. For every natural number N , the class FOk=N [ ] is closed under preimages
under homomorphisms.

Finally:

Proposition A.4. For every natural number N , the class FOk=N [ ] is a variety of lan-
guages.

A.3 Classes FOk[s] are varieties of languages

In the last subsection of this appendix, we prove that for each natural number k ≥ 2,
the class FOk[s] of languages that are definable with the successor relation and with only k
variables is a variety of languages. The reason why we do not consider the cases where k < 1

is that the successor relation is relevant when at least two variables are allowed in the
formulae (s(x, x) being never satisfied).

Once again, FOk[s] is naturally closed under Boolean combinations. Hence, it remains
to prove that it is closed under quotients and preimages under homomorphisms. In con-
trast with the previous subsection, our proof of these closure properties does not rely on a
semantic characterisation of FOk[s], but on a study of the equivalence relation ≡kd. In this
subsection, if v, w are two finite words over an alphabet A, v ≡kd w denotes the fact that
Duplicator has a winning strategy for the game GFOk[A,s]

d 〈v, w〉 defined on page 36: it is the
Ehrenfeucht-Fraïssé game over v and w in d turns and with k tokens. In this game, v and
w are seen as models of the signature A t {s}.

As we stated it in Subsection 1.2.3, the relation ≡kd is an equivalence relation over A+.
In order to prove that FOk[s] satisfies the wanted closure properties, a key result is that the
number of equivalence classes of ≡kd is finite and that each class is definable in FOk

d[A, s],
the set of FOk[A, s] formulae of quantifier-depth at most d. To prove this, our first step is
to show that the number of FOk

d[A, s] formulae is finite, up to equivalence, as stated in the
next lemma.

In this lemma, the k variables that are allowed in the formulae are, as usual, x0, x1,. . . ,
xk−1. By x̄ we denote any (possibly empty) subset of {x0, . . . , xk−1}, and by ϕ(x̄) we denote
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a formula whose set FreeV ar(ϕ) of free variables is the said subset x̄. Hence, ϕ is a sentence
if x̄ is empty. Finally, we say that two such formulae ϕ(x̄) and ψ(x̄) are equivalent if for every
word w in A+ and every valuation ρ : x̄→ Dom(w), w, ρ � ϕ(x̄) if and only if w, ρ � ψ(x̄).

Lemma A.5. Let A be an alphabet, let k and d be two natural numbers, with k ≥ 2,
and let x̄ be a tuple of variables in {x0, . . . , xk−1}. Then there exists a finite number
of FOk

d[A, s] formulae ϕk,d,x̄0 (x̄), ϕk,d,x̄1 (x̄),. . . , ϕk,d,x̄n−1 (x̄), all having x̄ as free variables, such
that every FOk

d[A, s] formula ϕ(x̄), also having x̄ as free variables, is equivalent to one of
the ϕk,d,x̄` (x̄)’s.

This classic lemma can be generalised to model theory, when the involved signature
is both finite and does not contain functional symbols of positive arity. Notice that the
number n of such formulae depends on k, d, and x̄, so we should technically write it nk,d,x̄.
Yet the notation ϕk,d,x̄nk,d,x̄−1(x̄) would become too heavy. In the end, denoting this natural
number simply by n will not be problematic, since we are not interested in its actual value.

Proof. The proof goes by induction on the natural number d.
In the case when d = 0, the only atomic FOk[A, s] formulae are the formulae of the

shape a(xi), with a ∈ A and i ∈ k, of the shape s(xi, xj), or of the shape xi = xj, with i, j ∈ k.
Since A is finite, there are only a finite number of them. A formula of depth 0 is a Boolean
combination of these, and, since, up to equivalence, there is a finite number of Boolean
combinations, there are, up to equivalence, a finite number of such formulae.

Now, let us suppose that the assertion is true for d: for every x̄′ ⊆ {x0, . . . , xk−1}, there
exists a finite number of FOk

d[A, s] formulae ϕk,d,x̄
′

0 (x̄), ϕk,d,x̄
′

1 (x̄),. . . , ϕk,d,x̄
′

n−1 (x̄) such that
every FOk

d[A, s] formula ϕ(x̄′) is equivalent to one of these.
We prove the assertion for d+1. Let x̄ ⊆ {x0, . . . , xk−1}. Every FOk

d+1[A, s] formula ϕ(x̄)

is a Boolean combination of formulae of the shape Qixi. ψ(x̄′), where: i ∈ k, Qi is one of
the two quantifiers ∀ and ∃, x̄′ ⊆ x̄ ∪ {xi}, and ψ(x̄′) ∈ FOk

d[A, s]. By assumption, ψ(x̄′) is
equivalent to one of the formulae ϕk,d,x̄

′

` ’s, and, since there are only two distinct quantifiers,
and, here again, since, up to equivalence, there is a finite number of Boolean combinations,
there are, up to equivalence, a finite number of such formulae.

Notice that Lemma A.5 and our proof of it are not constructible: we do not give an actual
value of n, and we do not provide a list of the formulae ϕk,d,x̄0 (x̄), ϕk,d,x̄1 (x̄),. . . , ϕk,d,x̄n−1 (x̄),
nor we propose an algorithm that decides which of these a given FOk

d[A, s] formula ϕ(x̄) is
equivalent to. We are only interested in the actual existence of these objects, which will be
useful to prove the very next assertion.
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We defined on page 22 the notion of equivalence classes. Here, in the context of ≡kd, the
equivalence class of a finite word w ∈ A+ is the set [w]kd := {v ∈ A+ | v ≡kd w}. It is defined
by a formula ϕwdef if [w]kd = L(ϕwdef).

Corollary A.6. Let k and d two natural numbers, with k ≥ 2. Then the equivalence
relation ≡kd admits a finite number of equivalence classes, each of them being definable by
an FOk

d[A, s] formula.

Proof. By Theorem 1.9 on page 37, each class [w]kd can be characterised by the FOk
d[A, s]

sentences satisfied by w: let ϕk,d0 , ϕk,d1 ,. . . , ϕk,dn−1 be the sentences obtained from Lemma A.5,
meaning that every FOk

d[A, s] sentence is equivalent to one of these. Then, for each word w
in A+, we define Iw as the finite set

{
` ∈ n | w � ϕk,d`

}
.

By Theorem 1.9, [w]kd is defined by the formula
∧
`∈Iw ϕ

k,d
` ∧

∧
`∈n\Iw ¬ϕ

k,d
` . Since there

exists a finite number of subsets of {0, . . . , n−1}, there exists a finite number of these
formulae, and we have our result.

We can now deduce that FOk
d[A, s] is exactly the class of languages that are equal to

the union of the equivalence classes of their words:

Corollary A.7. Let L ⊆ A+ be a language of finite words over an alphabet A, and let k,
d be two natural numbers, with k ≥ 2. Then L is definable in FOk

d[A, s] if and only if
L =

⋃
w∈L[w]kd.

Proof. The first implication comes directly from Theorem 1.9 on page 37. Indeed, let us
suppose that L is defined by some FOk

d[A, s] formula ϕ, and let us show that the equality
holds.

The inclusion L ⊆
⋃
w∈L[w]kd is immediate: each word w in L belongs to its own class [w]kd.

Now, let w ∈ L, and v ∈ [w]kd. Since v ≡kd w, Theorem 1.9 tells us that v and w satisfy the
same FOk

d[A, s] sentences. In particular v � ϕ, and therefore v ∈ L.
It is the other implication that actually makes use of Corollary A.6. Let us suppose

that L =
⋃
w∈L[w]kd. We know from Corollary A.6 that for each w ∈ A+, the particular

class [w]kd is definable by a formula ϕwdef . We define CL as the set of these formulae ϕwdef ,
with w ∈ L. The same corollary tells us that CL is finite, and therefore L is defined by the
formula

∨
ϕwdef∈CL

ϕwdef : L is in FOk
d[A, s], and we can conclude.

Now that we have proven this important proposition, we show that ≡kd admits convenient
closure properties, which we will relate to the closure properties of FOk[A]:
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Proposition A.8. Let v, w ∈ A+, and k, d be two natural numbers, with k ≥ 2. Let
u ∈ A+, and let h be a homomorphism from A+ to B+. If v ≡kd w, then the three equivalences
u · v ≡kd u · w, v · u ≡kd w · u, and h(v) ≡kd h(w) also hold.

Proof. We shortly recall how the game GFOk[A,s]
d 〈v, w〉 is played. There are 2k tokens: two

with the number 0 on them, two with the number 1 on them, and so on up to the num-
ber k−1. On each turn, Spoiler places one token on a position of one of the two words, and
Duplicator answers by placing the corresponding token on a position of the other word. At
the end of each of the d turns, the two players have defined a tuple (xi)i of positions of v and
another tuple (yi)i of positions of w, both indexed by the numbers on the placed tokens.
Duplicator wins the game if at each turn, the following holds for all i, j: v(xi) = w(yi),
xi = xj if and only if yi = yj, and xi = xj+1 if and only if yi = yj+1.

So, let us suppose that v ≡kd w, meaning that Duplicator has a strategy to win this game
no matter the choices of Spoiler. We set m = |v| and n = |w|.

We begin to show the second equivalence v · u ≡kd w · u. By symmetry, we will be able
to deduce the first equivalence u · v ≡kd u · w.

To prove this, it is enough to show that v · a ≡kd w · a for any letter a ∈ A: by repeating
the procedure |u| times, we obtain a proof of v · u ≡kd w · u.

First, let us notice that, during any turn but the last one of the game GFOk[A,s]
d 〈v, w〉, if

Spoiler places a token i on the last position of v (resp. the last position of w), then, in order
to win, Duplicator has no choice but to place the other token i on the last position of w
(resp. the last position of v). Indeed, if he does not, and places its token i on any other
position yi < n−1 of w, then on the next turn, Spoiler can place any other token j on the
position yj = yi+1 of w, and Duplicator will have no place on v for his token j.

So, considering it, the winning strategy of Duplicator for the game GFOk[A,s]
d 〈v · a, w · a〉

is rather simple to describe. Whenever Spoiler places a token i on a position xi < m

of v · a, meaning on a position of the original word v, Duplicator ignores the tokens placed
on the last labelled-by-a positions, and follows its winning strategy in GFOk[A,s]

d 〈v, w〉. And
symmetrically if Spoiler places a token i on a position yi < n of w · a. Finally, Duplicator
answers with position n to tokens on position m and reciprocally.

Let
(
〈xi, yi〉

)
i
be the pairs obtained at the end of one of the turns, meaning (xi)i is

a family of positions of v · a, and (yi)i is the corresponding family of positions of w · a.
Considering the winning strategy of GFOk[A,s]

d 〈v, w〉, the labels are preserved in the new
pairs, and so is the successor relation for positions xi, xj < m, and yi, yj < m. It remains
to make sure that if xi = m−1, xj = m, and yj = n, then yi = n−1, and, reciprocally, if
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yi = n−1, yj = n, and xj = m, then xi = m−1. Notice that if any of the tokens during the
game was placed on one of the additional labelled-by-a positions, then the respective token
was placed on the other labelled-by-a, and this took one turn of the game. Therefore, the
corresponding play in GFOk[A,s]

d 〈v, w〉 is at most d−1 turns long and therefore we can apply
the remark we wrote in the previous paragraph, about the choices of the last positions in
the strategy of GFOk[A,s]

d 〈v, w〉.
Figure 7 depicts this current situation over an example.

v :
0 1 2 3 4

b c a b a · · ·
m−1

c
2 6 5 3

w :
0 1 2 3 4

b c a b a · · ·
n−1

c
2 6 5 3

⇓
v·a :

0 1 2 3 4

b c a b a · · ·
m−1

c
m

a
2 6 5 3 8

⇓
w·a :

0 1 2 3 4

b c a b a · · ·
n−1

c
n

a
2 6 5 3 8

Figure 7: Duplicator’s strategy on GFOk[A,s]
d 〈v ·a, w ·a〉 is naturally induced from his strategy

on GFOk[A,s]
d 〈v, w〉.

Now, it remains to prove that h(v) ≡kd h(w). Let us recall that, h being a homomorphism,
we have the equality h(v) = h

(
v(0)

)
·h
(
v(1)

)
· · ·h

(
v(|v|−1)

)
. This highlights a natural cor-

respondence between positions of h(v) and positions of v: for each position x ∈ Dom(h(v)),
we define fv(x) as the least position z of v such that x ≤ Σz′≤z|h

(
v(z′)

)
|.

The function f is increasing (if x ≤ x′ then fv(x) ≤ fv(x
′)), but it is a priori not

injective, since some letters of v might be mapped by h to words that are not single letters.
In fact, for each position z of Dom(v), there are exactly |h

(
v(z)

)
| positions x of h(v) such

that fv(x) = z. We define gv as the function that maps the first of them to 0, the second of
them to 1, and so on up to |h

(
v(z)

)
|−1. The position mapped to 0 is called minimal, while

the position mapped to |h
(
v(z)

)
|−1 is called maximal.

Figure 8 depicts an example and make these definitions more visual. Here, A is the
alphabet {a0, a1, a2}, B is the alphabet {b0, b1, b2}, h is the homomorphism that maps a0

to the word b0·b1·b1, a1 to the single-letter word b2, and a2 to the word b0·b0, and, finally,
v is the word a0·a1·a2. With these settings, fv maps the positions 0, 1, and 2 of h(v) to
the position 0 of v, the position 3 to the position 1, and the positions 4 and 5 to 2. The
function gv maps 0 to 1, 1 to 1, 2 to 2, 3 to 0, 4 to 0, and 5 to 1. The positions 0, 3, and 4

are minimal, while the positions 2, 3, and 5 are maximal.
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v :

h(v) :

fv fv fv

0 1 2

a0 a1 a2

0 1 2 3 4 5

b0 b1 b1 b2 b0 b0

0 1 2 0 0 1

gv

Figure 8: The definition of the functions fv and gv, over an example.

We define similar functions fw and gw for the word w.
Before finally describing Duplicator’s strategy for GFOk[B,s]

d 〈h(v), h(w)〉, we remark the
following important equivalence: for all positions xi, xj of h(v), we have xj = xi+1 if and
only if:
− either fv(xi) = fv(xj) and gv(xj) = gv(xi) + 1,
− or fv(xj) = fv(xi) + 1, xi is maximal, and xj is minimal.

We have naturally a similar equivalence for positions of h(w).
Now, we explain how Duplicator wins GFOk[B,s]

d 〈h(v), h(w)〉. During the game, he places
in parallel tokens on words v and w, in order to make use of his winning strategy for the
game GFOk[A,s]

d 〈v, w〉. When Spoiler places some token i on a position xi of h(v), Duplicator
places a token i on the position zi = fv(xi) of v. From this, his strategy for GFOk[A,s]

d 〈v, w〉
tells him to place a token on some position z′i of w. He places this token on z′i, and comes
back to GFOk[B,s]

d 〈h(v), h(w)〉 by placing his second token i on the unique position yi of h(w)

that satisfies fw(yi) = z′i and gw(yi) = gv(xi). Duplicator plays symmetrically if Spoiler
places a token on a position yi of h(w).

First, by the definitions of the functions fv, fw, gv, and gw, the strategy naturally pre-
serves the labels and the equalities, since the strategy GFOk[A,s]

d 〈v, w〉 does. Now, considering
the equivalence written above, the strategy also preserves the successor relation.

Indeed, let us suppose that, after some number of turns, two positions xi and xj of h(v)

have been defined with tokens, and that they satisfy xj = xi+1. This equality translates into
one of the two conditions over v above. Let us suppose for instance that fv(xj) = fv(xi)+1, xi
is maximal, and xj is minimal. Since Duplicator’s strategy for GFOk[A,s]

d 〈v, w〉 is winning, we
also have fw(yj) = fw(yi) + 1. Also, by the definition of gv and gw, yi is maximal, and yj is
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minimal. Hence, yj = yi + 1. In the case when fw(yi) = fw(yj) and gv(xj) = gv(xi) + 1, we
would have come to the same conclusion.

Therefore, the strategy which we proposed for Duplicator is winning, and we obtain the
relation h(v) ≡kd h(w). We can conclude the proof.

From this proposition, we deduce that FOk[s] is closed under quotients, as well as under
preimages under homomorphisms, and we finally conclude this appendix:

Proposition A.9. For every natural number k ≥ 2, the class FOk[s] is a variety of lan-
guages.

Proof. Let k ≥ 2, let L ∈ FOk[A, s], defined by some FOk[s] formula ϕ, and let d be its
quantifier-depth. Let u ∈ A+. We show that u−1·L =

⋃
w∈u−1·L[w]kd. Once again, the

inclusion u−1·L ⊆
⋃
w∈u−1·L[w]kd is immediate.

Let v ∈ [w]kd, where w is some word in u−1·L. We have v ≡kd w by definition and
therefore u · v ≡kd u · w by Proposition A.8. Since u · w � ϕ, and ϕ is in FOk

d[A, s],
we know from Theorem 1.9 that u · v � ϕ. Thus, v ∈ u−1·L and we can deduce the
equality u−1·L =

⋃
w∈u−1·L[w]kd.

Now, Corollary A.7 tells us that u−1·L is definable in FOk
d[A, s]. Symmetrically, the

second quotient language L·u−1 is also in FOk
d[A, s], and we deduce that FOk[A, s] is closed

under quotients.
The same way, we use Proposition A.8 to prove that, if h is a homomorphism from A+

to B+, and if L ∈ FOk
d[B, s], then h−1(L) =

⋃
w∈h−1(L)[w]kd, and we deduce with Corollary A.7

that h−1(L) ∈ FOk[A, s]. Thus, we conclude: FOk[s] is closed under preimages under
homomorphisms, and it is a variety of languages.

As explained previously, our proof of Proposition A.9 is not constructive: we do not
provide an algorithm that inputs a word u ∈ A+, a formula defining a language L ⊆ A+,
and returns formulae defining the quotient languages u−1·L and L·u−1. Nor do we provide an
algorithm that, given a homomorphism h : A+ → B+ and a formula defining a language L ⊆
B+, returns a formula defining its preimage h1(L).
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B On projection of functional relations in FO2[<]

In this appendix, we provide a proof of Proposition 2.34, stating, in the conclusion of
Chapter 2, that the projection of a functional relation in FO2[<] is also in FO2[<]:

Proposition 2.34. Let A and B be two alphabets, and let F ∈ FO2[
(
A
B
)
, <]. If F is

functional, then its projection ΠA+(F ) is in FO2[A, <].

To prove this proposition, we write down one among many semantic characterisations
of FO2[<].

An unambiguous monomial over an alphabet A is a language L ⊆ A+ that can be written
as A∗0·a0·A∗1 · · ·A∗n−1·an−1·A∗n \ {ε}, where:
− each ai is a letter of A;
− each Ai is a subset of A;
− any word w in L admits a unique decomposition w = w0 · a0 · w1 · · ·wn−1 · an−1 · wn,

with each wi being in A∗i .
It is important to notice that this notion of unambiguous monomials does not exactly

coincide with the notion of monomials which we defined in Section 3.4.
A language of finite words over A is called unambiguous if it is a finite union of disjoint

unambiguous monomials over A. The article [PW97] proves that the class of formulae
FO2[<] is capable of defining exactly these unambiguous languages:

Theorem B.1. Let L ⊆ A+ be a language of finite words, over an alphabet A. Then L is
definable in FO2[<] if and only if it is unambiguous.

In order to prove Proposition 2.34, we prove the following lemma:

Lemma B.2. Let F ⊆
(
A
B
)+ be a binary relation between words over A and B. We suppose

moreover that it is functional and that it is an unambiguous monomial over
(
A
B
)
. Then the

projection of F onto A+ is an unambiguous monomial over A.

Proof. We write F as C∗0·
( a0
b0

)
·C∗1 · · ·C∗n−1·

( an−1

bn−1

)
·C∗n \ {ε}, where each ai is a letter of A,

each bi is a letter of B, and each Ci is a subset of the product alphabet
(
A
B
)
.

First, it is clear that, if, for all i ∈ n+1, we write Ai for ΠA(Ci), meaning the sub-
set {a ∈ A | there exists some b ∈ B such that

(
a
b

)
∈ Ci} ⊆ A, then ΠA+(F ) is exactly the

language L = A∗0·a0·A∗1 · · ·A∗n−1·an−1·A∗n \ {ε}. It remains to show that this monomial is
unambiguous.
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This is what we do now. Let w ∈ L, and let us decompose it in two different ways, in order
to prove that these decompositions are in fact the same: w = w0 · a0 ·w1 · · ·wn−1 · an−1 ·wn,
and w = w′0 · a0 · w′1 · · ·w′n−1 · an−1 · w′n, with wi and w′i being words in A∗i .

Let i ∈ n+1. For each position x ∈ Dom(wi), there exists a letter b ∈ B such
that

(
wi(x)
b

)
∈ Ci. By naming σi(x) this letter, we obtain a word σi ∈ BDom(wi) satisfy-

ing
(
wi
σi

)
∈ C∗i , and by defining σ as the word σ0·b0·σ1 · · ·σn−1·bn−1·σn, we get

(
w
σ

)
∈ F .

The same way, we define words σ′i such that for all i ∈ n+1,
( w′i
σ′i

)
is in Ci, and we

define σ′ as the word σ′0·b0·σ′1 · · ·σ′n−1·bn−1·σ′n, which also satisfies
(
w
σ′
)
∈ F .

Since F is functional, σ and σ′ are necessarily the same words, and the same for the
words

(
w
σ

)
and

(
w
σ′
)
:

(
w0

σ0

)
·
(
a0

b0

)
·
(
w1

σ1

)
· · ·
(
wn−1

σn−1

)
·
(
an−1

bn−1

)
·
(
wn

σn

)

=

(
w′0

σ′0

)
·
(
a0

b0

)
·
(
w′1

σ′1

)
· · ·
(
w′n−1

σ′n−1

)
·
(
an−1

bn−1

)
·
(
w′n

σ′n

)
.

By the unambiguity of F , this equality implies that for every i ∈ n+1,
(
wi
σi

)
and

( w′i
σ′i

)
are the same words, and, in particular, wi = w′i. Hence, we have proven the unicity of the
decomposition of w: ΠA+(F ) is an unambiguous monomial.

Now, we can use Theorem B.1 and Lemma B.2 to finally prove Proposition 2.34:

Proof of Proposition 2.34. By Theorem B.1, we can write F as a disjoint union
⊔
j∈p Fj,

where each Fj is a functional unambiguous monomial over
(
A
B
)
.

By definition, we have the equality ΠA+(F ) =
⋃
j∈p ΠA+(Fj). Hence, by Lemma B.2, F

is a union of unambiguous monomials. It remains to prove that this union is disjoint.
We can conclude that via the remark which we wrote on page 79: the fact that F is

functional and that the Fj’s are pairwise disjoint ensures that their projections are pairwise
disjoint too.

By Theorem B.1, we conclude that ΠA+(F ) is definable in FO2[<].
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C First-order choice functions for finitary linear orders

This appendix is devoted to the proof of the following proposition, given at the end of
Section 4.6:

Proposition 4.34. Let λ be a finitary linear order, whose construction does not involve
the concatenation operation +, nor the η-operation. Then it admits a first-order choice
function.

We call addition-free such a finitary linear order, whose construction does not involve
the operation +, nor the η-operation. It is isomorphic to a linear order of the form ξ0× ξ1×
· · ·× ξm−1, for some natural number m, where each ξi is either ω or ω?. Also, we recall that
a choice function over λ is called first order if it is defined by a formula ϕλchoice(X, x) that
does not contain second-order quantifiers, see the definition on page 53.

Proposition 4.34 is unsatisfactory in itself, since very few finitary linear orders are
addition-free. Yet, the tools used to construct the formula ϕλchoice(X, x) might be a good
thing to start with, in order to prove Conjecture 4.33, stating on page 145, that any rigid
finitary linear order admits a first-order choice function.

In this appendix, we prove in fact a stronger result, stating that all addition-free linear
orders admit a first-order well order. Recall that a binary relation R over a linear order λ is
defined by a formula ϕ(x, y), with two first-order free variables, if R is the set of pairs 〈x, y〉
in λ2 such that λ � ϕ(x, y). If said formula ϕ does not quantify over second-order variables,
then R is called first order.

Proposition C.1. Any addition-free linear order admits a first-order well order.

Indeed, recall that if a first-order formula ϕλwo(x, y) defines a well order over λ, then the
first-order formula ϕλchoice(X, x) := x ∈ X∧∀y∈X. ϕλwo(x, y) defines a choice function over λ.

The rest of this section is devoted to Proposition C.1. We begin by making sure that
addition-free linear orders are necessarily rigid, meaning that they do not admit non-trivial
automorphisms.

For convenience, we reason up to isomophism, meaning that we assume that each
addition-free linear order λ is of the form ξ0×ξ1×· · ·×ξm−1 above, the natural numberm be-
ing called the depth of λ. Hence, each position of λ is anm-tuple of integers 〈i0, i1, . . . , im−1〉,
where, for each k ∈ m, the ik’s range over ξk.

For convenience, in this appendix, and only in this appendix, we choose to write them-tu-
ples in the reverse order, and to see ω? as the set N = {0, 1, 2, . . .}, but having its order
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reversed: . . . < 2 < 1 < 0. This way, λ can be seen as Nm, the set of words over the infinite
alphabet N and of length m, whose lexicographic order corresponds to vλlex, the alternative
lexicographic order of λ, defined on page 139. This alternative lexicographic order is a well
order (see Proposition 4.29), and our point is to define it in FO[<].

Thus, in the order ω × ω, the elements in the least copy of ω are 0·0 < 0·1 < 0·2 < . . .;
in the order ω? × ω?, the elements in the greatest copy of ω? are . . . < 0·2 < 0·1 < 0·0.

As stated above, addition-free linear orders do not admit non-trivial automorphisms:

Fact C.1.1. Any addition-free linear order is rigid.

Proof. We only give a scheme of the proof, which can be seen as a generalisation of the
proofs from Example 4.2 and Proposition 5.8, which state that the orders ω and ω?×ω are
rigid. The proof has the following structure:

We consider any addition-free linear order λ = ξ0 × ξ1 × · · · × ξm−1, and any automor-
phism α of it.

First, we show by induction that for every m ≥ n ≥ 0, the elements of λ that are of the
form im−1· · ·in·0· · ·0 are necessarily mapped by α to elements of the same shape.

Then, in a second step, we prove, this time by a reverse induction, that those elements
of the form im−1· · ·in·0· · ·0 are necessarily mapped to themself. This assertion, in the
case n = 0, concludes the proposition.

Now that we know that addition-free linear orders are rigid, our next step, before defining
our alternative lexicographic order in FO[<], is to define every position. For instance, we
saw in Example 4.3, on page 107, a way of defining in FO[<] each position of ω: the position
n being “the position that has exactly n elements before itself”. In a similar way, in the
linear order ω× ω, positions of the form i·0, for some i ∈ ω, can be defined as the elements
that do not have predecessors (by defining here that x is a predecessor of y if y is a successor
of x, in the sense that there is no third element between them).

To define these properties in the general case, we introduce a notion of ϕ-predecessors
and ϕ-successors. Let ϕ(x) be a first-order formula, that has exactly one free variable. We
define s[ϕ](x, y) as the formula x < y ∧ ϕ(y) ∧ ∀z>x. ϕ(z) ⇒ y ≤ z. If x and y are two
elements of a linear order λ such that λ � s[ϕ](x, y), then we say that y is the ϕ-successor
of x. Notice that it does not involve x satisfying ϕ (in the sense that this does not imply
λ � ϕ(x)). Symmetrically, we define p[ϕ](x, y) as the formula x < y ∧ϕ(x)∧ ∀z<y. ϕ(z)⇒
z ≤ x. If λ � p[ϕ](x, y), we say that x is the ϕ-predecessor of y. Once again, this does not
say anything about the satisfaction of ϕ by y.
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Now, let ` be a natural number, we define the first-order predicateMin`[ϕ](x) inductively:
Min0[ϕ](x0) is the formula ϕ(x0) ∧ ¬∃x. p[ϕ](x, x0), and, if ` ≥ 1, then Min`[ϕ](x`) is the
formula ∃x`−1.Min`−1[ϕ](x`−1)∧ s[ϕ](x`−1, x`). We define the first-order formula Max`[ϕ](x)

symmetrically.

Finally, we inductively define a family of first-order formulae, which we call the min-
max-predicates : the formula x = x (that we write >(x)) is a min-max-predicate of depth 0,
and, if ϕ(x) is a min-max-predicate of depth n, and ` is any natural number, then the
formulae Min`[ϕ](x) and Max`[ϕ](x) are min-max-predicates of depth n+1.

As the following lemma states it, this notion of min-max-predicates is convenient to
define the positions of addition-free linear orders.

Lemma C.2. Let λ be an addition-free linear order of depth m ∈ N, and let n ∈ N such
that m ≥ n. Then, for all in−1, . . . , i0 ∈ N, there exists a formula ϕλ,n↑in−1,...,i0

which is
a min-max-predicate of depth n and that is such that for all jm−1, . . . , j0 ∈ N, we have
the equivalence λ � ϕλ,n↑in−1,...,i0

(jm−1· · ·jn·jn−1· · ·j0) if and only if jk = ik for every k such
that n > k.

Proof. We prove this lemma by induction on n.

If n = 0, then the wanted condition becomes trivial, and therefore >(x), the min-max-
predicate of depth 0, naturally fulfils it.

Let us suppose now that m ≥ n ≥ 1 and that the claim is true for n−1, meaning that,
for all in−2, . . . , i0 ∈ N, we have constructed the min-max-predicate ϕλ,n−1

↑in−2,...,i0
of depth n−1

that satisfies our wanted property. Our present goal is to construct the formula ϕλ,n↑in−1,...,i0
,

for some in−1, . . . , i0 ∈ N.
For the rest of the proof, we simply write ψ for ϕλ,n−1

↑in−2,...,i0
, and ξ0× ξ1×· · ·× ξm−1 for λ.

Let us suppose for a moment that ξn−1 is ω: the case when it is ω? will be considered at the
end of the proof.

By the assumption about ψ, and the definition of the min-max-predicates, we notice
that, for all natural numbers jm−1, . . . , j0, we have ik = jk for all n−1 ≥ k if and only if the
element x = jm−1· · ·j0 satisfies Minin−1 [ψ]. The argument goes by induction on in−1. For
the sake of readability, we denote this inductive parameter by `. Yet, the argument for the
heredity is very similar to the one for the initiation, therefore we only fully redact the case
when ` = 0.

First, let us suppose that the equality ik = jk indeed holds for every n−1 ≥ k. Then, in
particular, ik = jk for every n−2 ≥ k, which means that x satisfies ψ, by the assumption
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about this formula. In order to prove that x also satisfies Min0[ψ], let y < x also satisfying ψ,
meaning of the form km−1· · ·kn·kn−1·in−2· · ·i0, with km−1, . . . , kn−1 ∈ N.

Because y < x = jm−1· · ·jn·0·in−2· · ·i0, we necessarily have km−1· · ·kn < jm−1· · ·jn, in
the linear order ξn× · · ·× ξm−1. Therefore, the element z = km−1· · ·kn·(kn−1+1)·in−2· · ·i0 is
such that y < z < x, and moreover it also satisfies ψ. We have proven that x cannot have
any ψ-predecessor, and therefore it satisfies Min0[ψ].

Reciprocally, let us suppose that x satisfies Min0[ψ]. In particular it satisfies ψ, and
therefore we have ik = jk for all n−1 > k. It remains to prove that jk = 0, which is almost
immediate. Indeed, if 0 < jn−1, then we can verity that jm−1· · ·jn·(jn−1−1)·in−2· · ·i0 is
the ψ-predecessor of x, which no longer can satisfy Min0[ψ].

As stated above, we prove by induction on ` the equivalence in the general case. This
justifies the definition of ϕλ,n↑in−1,...,i0

(x) as the min-max-predicate Minin−1 [ϕλ,n−1
↑in−2,...,i0

](x), of
depth n. Remember that, for a sake of simplification, we supposed that ξn−1 is ω. If ξn−1 is
in fact ω?, then a similar reasoning would conclude that the formula Maxin−1 [ϕλ,n−1

↑in−2,...,i0
](x)

fulfils our need. We conclude the proof.

The formulae in Lemma C.2 talk about the equality of the last coordinates of the elements
of addition-free linear orders. Using them, we can define a formula that talks about the
equality of the first coordinates:

Lemma C.3. Let λ be an addition-free linear order of depth m ∈ N, and let m ≥ n.
Then there exists a first-order formula ϕλ,n↓ (x, y), with two free variables, such that, for all
natural numbers im−1, . . . , i0, jm−1, . . . , j0, we have λ � ϕλ,n↓

(
im−1· · ·i0, jm−1· · ·j0

)
if and only

if ik = jk for every m > k ≥ n.

Proof. To prove this lemma, we first construct, for each m ≥ n ≥ 0, an intermediate
first-order formula ϕλ,nzeros(x0, x), that has the property that for all elements x0 and x of λ,
we have λ � ϕλ,nzeros(x0, x) if and only if we have the following implication: if x0 is of the
shape im−1· · ·in·0· · ·0, with im−1, . . . , in being natural numbers, then x is necessarily of the
shape im−1· · ·in·jn−1· · ·j0, with jn−1, . . . , j0 being any natural numbers.

Indeed, if such a formula exists, then ϕλ,n↓ (x, y) defined as

∃x0. ϕ
λ,n
↑0,...,0(x0) ∧ ϕλ,nzeros(x0, x) ∧ ϕλ,nzeros(x0, y)

fulfils our need. We construct ϕλ,nzeros(x0, x) by induction on n.
For n = 0, the formula ϕλ,nzeros simply becomes x0 = x, which is itself a first-order formula.
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Suppose now that n ≥ 1, and that we have constructed ϕλ,n−1
zeros fulfilling our need. We

write λ as ξ0× ξ1× · · ·× ξm−1, and we suppose for a moment that ξn−1 is ω. The case when
it is ω? will be symmetrically covered later. Then, we define ϕλ,nzeros(x0, x) as the formula

ϕλ,n↑0,...,0(x0) =⇒
[
ϕλ,n−1

zeros (x0, x) ∨
(
p[ϕλ,n↑0,...,0](x0, x) ∧ ∀y0. ¬

(
ϕλ,n↑0,...,0(y0) ∧ ϕλ,n−1

zeros (y0, x)
))]

.

Let us show that if fulfils our need.

In a first step, let x0 and x be some elements of λ, such that λ � ϕλ,nzeros(x0, x).

Let us suppose that x0 is of the shape im−1· · ·in·0· · ·0, with im−1, . . . , in being natural
numbers. This means that it satisfies ϕλ,n↑0,...,0. Hence, we must have λ � ϕλ,n−1

zeros (x0, x),
or λ � p[ϕλ,n↑0,...,0](x0, x) ∧ ∀y0. ¬

(
ϕλ,n↑0,...,0(y0) ∧ ϕλ,n−1

zeros (y0, x)
)
.

If λ � ϕλ,n−1
zeros (x0, x), then it means that x is of the shape im−1· · ·in·0·jn−2· · ·j0, so, in

particular, it is of the shape im−1· · ·in·jn−1· · ·j0, with jn−1, . . . , j0 being natural numbers.

Let us assume now that we are in the second case: we have both λ � p[ϕλ,n↑0,...,0](x0, x)

and λ � ∀y0. ¬
(
ϕλ,n↑0,...,0(y0) ∧ ϕλ,n−1

zeros (y0, x)
)
. We write x as jm−1· · ·j0, and we want to

show that we have the equality ik = jk for every m > k ≥ n. A first thing to notice
is that the second condition implies that jn−1 cannot be equal to 0. Indeed, if it was,
then jm−1· · ·jn·0·0· · ·0 would be an element y0 such that λ � ϕλ,n↑0,...,0(y0) ∧ ϕλ,n−1

zeros (y0, x).
Now, suppose, in order to get to a contradiction, that there exists some m > k ≥ n

such that ik 6= jk, and let us define y0 as the element jm−1· · ·jn·0· · ·0. Since there exists
some k ≥ n such that ik 6= jk, and since x0 < x = jm−1· · ·j0 (because λ � p[ϕλ,n↑0,...,0](x0, x)),
we have necessarily x0 < y0. Also, because 0 < jn−1, by the remark above, we have y0 < x.
Hence, y0 is an element that satisfies both x0 < y0 < x and ϕλ,n↑0,...,0, which contradicts λ �
p[ϕλ,n↑0,...,0](x0, x). Therefore, we necessarily have ik = jk for every m > k ≥ n, and we have
proven our implication.

Now, we prove the other implication of the equivalence. Let x0 and x be two elements
of λ, such if x0 is of form im−1· · ·in·0· · ·0, then x is necessarily of the form im−1· · ·in·jn−1· · ·j0,
and let us show that we have λ � ϕλ,nzeros(x0, x).

Let us suppose that λ � ϕλ,n↑0,...,0(x0). Then it means that x0 is indeed of the form
im−1· · ·in·0· · ·0, and, therefore, by our assumption, x = im−1· · ·in·jn−1· · ·j0. Then, there
are two possible cases. Either jn−1 = 0, and in that case we have λ � ϕλ,n−1

zeros (x0, x),
or jn−1 > 0. In the latter case, there cannot be any y0 such that λ � ϕλ,n↑0,...,0(y0)∧ϕλ,n−1

zeros (y0, x).
Also, x0 < x and there cannot either be any element y0 that satisfies both x0 < y0 < x

and λ � ϕλ,n↑0,...,0(y0, x), which concludes the implication.

Hence, we have proven the equivalence: our formula ϕλ,nzeros(x0, x) defines what we need.
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Remember that we assumed that ξn−1 is the linear order ω. If ξn−1 is the linear order ω?,
then ϕλ,nzeros(x0, x) is defined as the formula

ϕλ,n↑0,...,0(x0) =⇒
[
ϕλ,n−1

zeros (x0, x) ∨
(
s[ϕλ,n↑0,...,0](x, x0) ∧ ∀y0. ¬

(
ϕλ,n↑0,...,0(y0) ∧ ϕλ,n−1

zeros (y0, x)
))]

.

We conclude the proof.

Now that we have constructed our formulae ϕλ,n↓ , we can define the alternative lexico-
graphic order of λ:

Proposition C.4. Let λ be an addition-free linear order, then there exists an FO[<] for-
mula ϕλlex(x, y) that defines the alternative lexicographic order of λ.

Proof. This proof is also produced by induction. More precisely, if m is the depth of λ, we
prove that for each natural number n such that m ≥ n, there exists a formula ϕλ,nlex (x, y)

such that for all elements x = im−1· · ·i0, y = jm−1· · ·j0 in λ, we have λ � ϕλ,nlex (x, y) if and
only if for all m > k ≥ n, ik = jk, and moreover x vλlex y.

In the case n = 0, the condition becomes x = y, which is itself a first-order formula.
Now, let us suppose that the result is true for n−1, meaning that we have constructed

a satisfactory first-order formula ϕλ,n−1
lex (x, y). We write ξ0×· · ·×ξm−1 for λ. We suppose ξn−1

to be ω, the case when it is ω? being symmetrically covered later. Then, we define ϕλ,nlex (x, y)

as the formula

ϕλ,n↓ (x, y) ∧
(
ϕλ,n−1
↓ (x, y) =⇒ ϕλ,n−1

lex (x, y)
)

∧
(
¬ϕλ,n−1
↓ (x, y) =⇒ x < y

)
.

It can verified easily that this formula defines the right condition.
Indeed, let x = im−1· · ·i0 and y = jm−1· · ·j0 be two elements of λ. By the definition

of ϕλ,n↓ (x, y) in Lemma C.3, λ � ϕλ,n↓ (x, y) is equivalent to ik = jk for every m > k ≥ n.
Under that condition, λ � ϕλ,n−1

↓ (x, y) is equivalent to in−1 = jn−1. When it is not fulfilled,
meaning if in−1 6= jn−1, then x vλlex y is equivalent to x < y.

In the case when ξn−1 is ω?, then ϕλ,nlex (x, y) is defined similarly, except x < y in the last
implication is substituted by y < x.

Now that we constructed ϕλ,nlex for all n ≤ m, we can simply define ϕλlex(x, y) as ϕλ,mlex (x, y),
and the property is proven.

From Proposition C.4 we deduce Propositions C.1 and 4.34 and we can conclude this
appendix.
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