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Abstract

Centrality measures are one of the fundamental tools of network science [43].
Their role is to assign to every node of a network a value that reflects the
importance of this node. Centrality analysis finds numerous applications
in the wide variety of fields: from social studies [32] and economics [7],
through biology [42] and physics [80], to transportation [34] and computer
science [49].

However, what it means for a node to be important heavily depends on
the context of a particular application. This, along with the ever growing
number of proposed measures, makes the choice of a centrality to use a dif-
ficult task. Since different centrality measures return very different results,
this problem is of utmost importance. Hence, there is a need for research
that will provide a better understanding of centrality measures and will help
decide upon a centrality measure to use in a specific application.

A method that allows for achieving this goal is axiomatization. In this
approach, we introduce a set of simple properties, called axioms, that char-
acterize a given centrality measure. Then we formally prove that only this
particular measure satisfies all of the axioms at the same time. In this way,
we obtain an intuitive characterization of the centrality measure in question
and its theoretical foundation. Moreover, by analyzing whether the axioms
are desired, we can decide if this measure is well-suited for a particular ap-
plication at hand.

In recent years, the axiomatic approach to centrality measures has been
gaining popularity in the literature [10, 11, 12]. Axiomatic characterizations
have been created for many centrality measures, such as closeness [77], beta
measure [21], or attachment [76]. However, for many centrality measures
such characterizations are still missing. Until recently, PageRank—one of
the most popular centrality measures—was also lacking its axiomatization.

Against this background, the main contributions of this thesis are as fol-
lows: First, we introduce the first in the literature axiomatic characterization
of PageRank. Next, we create a coherent axiomatization of three centrality
measures: decay centrality, PageRank, and a novel measure—random walk
decay centrality. Our analysis shows that while random walk decay cen-
trality retains a majority of PageRank’s properties, it may be more desirable
than PageRank in some settings. Finally, we generalize our axiomatization
of PageRank to create a consistent axiom system for four classic feedback
centralities: eigenvector and Katz centralities, Seeley index, and PageRank.

Keywords: Network Science, Centrality Measures, Axiomatic Characteriza-
tion, PageRank, Random Walks on Graphs
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Streszczenie

Miary centralnosci sa jednym z podstawowych narzedzi analizy sieci [43].
Nadaja one kazdemu wierzchotkowi wartos¢, okreslajaca jak jest on istotny.
Analiza centralnosci znajduje wiele zastosowan w szerokiej gamie dziedzin:
od nauk spotecznych [32]i ekonomii [7], przez biologie [42] i fizyke [80], po
komunikacje [34] i informatyke [49].

Jednak to, co rozumiemy przez istotno$¢ wierzchotka, zalezy od kontek-
stu konkretnego zastosowania. W zwiazku z tym oraz stale rosnaca liczba
zaproponowanych miar, wyb6r odpowiedniej z nich do danej sytuacji jest
niezwykle trudny. Roézne miary centralnodci potrafia da¢ znaczaco rézne
wyniki, problem ten ma wiec zasadnicze znaczenie. Niezbedne jest zatem
opracowanie teorii, ktora pozwoli lepiej zrozumie¢ te miary i pomoze wska-
za¢ wlasciwa z nich do zastosowania w konkretnej sytuacji.

Metoda, ktora mozemy sie w tym celu postuzy¢, jest aksjomatyzacja.
Polega ona na opracowaniu zbioru kilku prostych i intuicyjnych wtasnosci,
aksjomatow, charakterystycznych dla danej miary centralnodci. Nastepnie
formalnie udowadniamy, ze tylko ta konkretna miara spetnia wszystkie te
aksjomaty jednoczesnie. W ten sposéb otrzymujemy jej intuicyjna charak-
terystyke i teoretyczne podstawy do jej stosowania. Mozemy bowiem stwier-
dzi¢ czy powinniSmy zastosowa¢ miare centralnosci w danej sytuacji, decy-
dujac czy charakteryzujace ja aksjomaty sa pozadane.

Aksjomatyczne podejscie do analizy miar centralnosci zyskuje popular-
no$¢ w literaturze ostatnich lat [10, 11, 12]. Charakteryzacje zostaty opra-
cowane dla takich centralnosci, jak centralnos¢ bliskosci (ang. closeness cen-
trality) [77], miara beta (ang. beta measure) [21], czy centralno$¢ taczenia
(ang. attachment centrality) [76]. Jednak wiele znanych miar nadal nie ma
swoich charakteryzacji. Do niedawna centralnosScia bez aksjomatyzacji byt
réwniez PageRank - jedna z najpopularniejszych miar centralnosci.

Niniejsza rozprawa wpisuje sie w ten nurt i oferuje nastepujacy wkiad:
Po pierwsze, prezentujemy pierwsza w literaturze aksjomatyczna charak-
teryzacje PageRanka. Po drugie, tworzymy spdjne aksjomatyzacje trzech
miar centralno$ci: centralnosci zanikania (ang. decay centrality), PageRanka
oraz nowej miary — centralnosci zanikania bladzenia losowego (ang. random
walk decay centrality). Z naszej analizy wynika, ze wlasnosci centralnosci
zanikania bladzenia losowego w znacznej mierze pokrywaja sie z wlasnos-
ciami PageRanka, lecz jednocze$nie moze si¢ ona lepiej sprawdza¢ w niek-
torych zastosowaniach. Po trzecie, uogélniamy aksjomatyzacje PageRanka,
aby stworzy¢ pierwszy spojny system aksjomatyczny dla czterech podsta-
wowych centralno$ci zwrotnych (ang. feedback centralities).

Stowa kluczowe: analiza sieci, miary centralnodci, charakterystyka aksjo-
matyczna, PageRank, btadzenie losowe po grafie
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Chapter 1

Introduction

In ever more interconnected world it is important, as never before, to understand
the networks that surround us: transportation and communication networks, the
network of webpages which we browse on the Internet, or the social networks that
we are part of (both those in real life and those on virtual platforms), to name just
a few examples. One of the key aspects in the analysis of these networks, is to
understand how important are their particular elements.

Centrality measures were developed to answer these questions by formalizing
our various intuitions on what it means to be important in a network. Each such
measure is a function that assigns to each node in a network a real value that re-
flects its importance. Centrality analysis finds numerous applications in the wide
variety of fields: from social studies [32] and economics [7], through biology [42]
and physics [80], up to transportation [34] and computer science [49].

To date, more than three hundreds different centrality measures have been
proposed in the literature [44]. However, three of them, degree centrality, close-
ness centrality, and betweenness centrality, are considered the most classic [30], and
can be found in all standard tools for network analysis [24, 73]. Degree central-
ity simply counts the number of connections a node has in a network. Closeness
centrality looks at the sum of distances to a node from all of the other nodes—the
smaller this sum, the more central the node is. Finally, betweenness centrality aims
to identify nodes that control the communication flow in a network by measuring
how often a node lays on the shortest path between two other nodes.

A common feature of these three centrality measures is their reliance on the
shortest paths in a network. This is a well-founded approach when the processes
that occur in a network follow the shortest paths as well, which is the case in
transportation or communication networks [17]. However, for many processes in
real-life networks this assumption is clearly not adequate. Imagine surfers brows-
ing through the Internet—they usually do not know how to reach another site in
the optimal number of links [40]. Similarly, the news traveling through a social
network move in a complex, seemingly random, way [55].

As a consequence, in this work, we mainly focus on walk-based centrality mea-
sures. This large class includes all centrality measures that assess the importance
of nodes based not only on shortest paths, but on all paths, with possibly repeating
nodes, called walks. In this way, they are able to capture the importance of a node
in networks with complex flows and processes [17].

Feedback centralities form an especially appealing subclass of walk-based cen-
trality measures. They stem from the assumption that a node is as important as
important are its neighbours. Therefore, these measures are usually defined by
recursive equations that bind centrality of a node with centralities of nodes it is
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connected to. One of the most famous feedback centrality is PageRank. Origi-
nally invented by Page et al. [62] to determine the importance of webpages for
then newly created web search engine Google, it had a significant impact on the
development of the Internet.

The success of PageRank inspired researchers from a variety of fields to use
it in their own network problems. PageRank has been applied to indicate the
most influential users in social media networks [86], to assess prestige of scien-
tific journals in the citation network [15], to find the key proteins in metabolic
networks [42], or even to determine the best tennis players in the history based on
the network of their matches [67].

However, what it means to be important in a network depends heavily on the
context of a particular application. Thus, it is not clear if it is PageRank that should
be used in all of these settings, or more general, if a centrality measure that solves
one problem should be applied to another. Since different measures lead to very
different results, the problem of choosing the appropriate measure is of utmost
importance. Therefore, there is a need for a research that will allow for better
understanding of centrality measures and will help in choosing a right measure
for a specific application.

For this purpose, axiomatic analysis of centrality measures has been devel-
oped [10, 13, 69]. In this approach, we consider a set of simple and intuitive
properties, called axioms, that characterize a given centrality measure. Then, we
formally prove that only this centrality measure can satisfy all of the proposed
axioms at the same time. In this way, we obtain a unique characterisation of the
measure and its theoretical foundation. Moreover, by analyzing whether the ax-
ioms are desired, we can decide if this measure is well-suited for a particular ap-
plication at hand.

In this work, we follow axiomatic approach and create the first axiomatic char-
acterization of PageRank in the literature. More in detail, we introduce six axioms
that characterize it: Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap,
Node Redirect, and Baseline. Each of them is satisfied by many centrality measures,
however, what is important, PageRank is the only centrality measure that satisfies
all of them.

In this way, we obtain a clear and intuitive characterization of PageRank. More-
over, our axiomatization can help to decide whether PageRank should be used in
a particular application. As an example, consider a network of tennis players ana-
lyzed by Radicchi [67]: for every tennis match in which player A won with player
B, there is a directed edge from node B to node A. In such network PageRank
indicates some node, v, as the most important one. Now, one of the axioms with
which we characterized PageRank is Edge Multiplication. It states that creating
additional copies of outgoing edges of a node does not affect the centrality of any
node in the network. In the tennis player network example, it implies for instance
that creating 9000 additional copies of outgoing edges of v does change the impor-
tance of any tennis player. Thus, v is still the most important. However, now v has
9000 times more lost matches—more than any other player. Therefore, a direct
consequence of our characterization is the fact that PageRank should not be used
in such applications.

An axiomatic characterization can also be a vital tool to compare the similar-
ities and differences of several measures. Especially, if a coherent axiom system
is proposed for multiple centrality measures. Following this approach, we create
a consistent axiomatizations of three measures: decay centrality, PageRank, and
a novel measure—random walk decay centrality. Specifically, we propose six ax-
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ioms that uniquely characterize random walk decay centrality. Then, we show that
if from this characterization we remove one axiom, called Random Walk Property,
and instead add a new, similar axiom, Shortest Paths Property, then we obtain a
unique characterization of standard decay centrality. Similarly, if in axiomatiza-
tion of random walk decay centrality we exchange axiom Lack of Self-Impact for
new axiom, Edge Swap, we get a unique characterization of PageRank. From our
analysis we see that random walk decay centrality retains the majority of Page-
Rank properties. However, because of their differences random walk decay cen-
trality may be more desirable in certain settings. In particular, we show that it is
less prone to manipulation and can positively account for diversity in a network.

In a similar manner, by extending our axiomatization of PageRank, we create a
coherent axiom system for four classic feedback centralities: eigenvector central-
ity, Katz centrality, Seeley index, and PageRank. More in detail, we propose a set
of seven axioms. Three general ones: Locality, Edge Deletion, and Node Combina-
tion, are satisfied by all four centralities. Two axioms: Edge Multiplication and Edge
Compensation, consider manipulation of edges incident to a node. Finally, two ax-
ioms: Baseline and Cycle, specify centrality of a node in simple, borderline cases.
We prove that each of the four centralities is uniquely characterized by a subset of
five of our axioms: three general ones, one one-node-modification axiom, and one
borderline axiom.

The rest of this work is structured as follows: In Section 1.1, we discuss the
works related to axiomatization of centrality measures. The basic graph defini-
tions and considered centrality measures are introduced in Chapter 2. Chapter 3
is devoted to PageRank and its axiomatic characterization. In Chapter 4, we intro-
duce random walk decay centrality and provide its axiomatization that is consis-
tent with axiomatization of standard decay centrality and PageRank. We conclude
in Chapter 5, where we build upon our axiomatization of PageRank and create a
coherent axiom system for four main feedback centralities.

1.1 Related Work

In this section, we present the existing literature devoted to characterization and
classification of centrality measures. We begin with the works that, like us, follow
an axiomatic approach.

Axiomatic approach to centrality measures

Axiomatic approach is one of the foundations on which mathematical theories are
build. Many times it played a pivotal role in the development of mathematics.
Euclid’s five axioms of geometry [38], Peano’s axioms of natural numbers [65],
Zermelo-Fraenkel axiomatic set theory [45], or Kolmogorov’s axiomatic theory of
probability [51] are just a few notable examples. Today, it is often used in social
choice theory [2], coalitional game theory [26], or strategic network analysis [85].
An axiomatic approach as a mean of studying centrality measures was first
proposed by Sabidussi [69]. He introduced several axioms and argued that any
reasonable centrality measure should satisfy all of them. Building upon this, he
rejected some of the measures proposed in the contemporary literature, as not fit
to be used as measures of centrality. Nieminen [58] followed a similar approach
but considering directed, rather than undirected, graphs. More recently, a simi-
lar technique was employed by Landherr, Friedl, and Heidemann [54]. They pro-
posed three properties that capture how adding a new edge to a graph should affect
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the centrality or relative ranking of certain nodes. Then, they checked which of
these properties are satisfied by degree, closeness, betweenness, eigenvector, and
Katz centralities. In a similar way, Boldi and Vigna [13] proposed three other gen-
eral axioms and tested whether they are satisfied by ten of the popular centrality
measures including degree, closeness, betweenness, and PageRank. Furthermore,
Boldi, Luongo, and Vigna [11] extended the list of considered axioms by Rank
Monotonicity: an axiom stating that adding an edge incident to a node cannot de-
crease its ranking. Finally, Riveros and Salas [68] considered five general axioms
in the context of the class of centrality measures based on the subgraph counts.

Another approach, which is followed in this thesis, is to construct axiomatic
characterizations of particular centrality measures. Many centrality measures have
been axiomatized in such a way: beta measure was characterized by Brink [21],
harmonic and decay centralities by Garg [31], and Skibski et al. [76] character-
ized attachment centrality. In all of these papers, also degree centrality has been
characterized as a baseline to which other measures can be compared.

Probably due to their complexity, feedback centralities received especially sig-
nificant attention when it comes to axiomatic characterizations. Eigenvector cen-
trality has been characterized by Kitti [48]. Both Dequiedt and Zenou [25] and
Was and Skibski [83] characterized eigenvector and Katz centralities in a joint ax-
iomatic characterization. Seeley index, sometimes called simplified PageRank, has
been axiomatized independently by Altman and Tennenholtz [1] and Palacios-
Huerta and Volij [63] (to be precise, Palacios-Huerta and Volij axiomatized in-
variance method, which is a measure of importance of scientific journals that is
equivalent to Seeley index). However, until recently, PageRank has not been yet
characterized. In Section 3.3, we discuss in details the differences between axiom-
atizations of Seeley index by Altman and Tennenholtz [1] and Palacios-Huerta and
Volij [63] and our axiomatization of PageRank.

A more challenging task is to create a coherent axiomatization for a whole
class of centrality measures. In this way, Skibski and Sosnowska [77] characterized
distance based centralities. They proposed a set of axioms that are satisfied by
all centrality measures in this class together with axioms specific for particular
measures, such as degree centrality, closeness centrality, or decay centrality. As
a result, they obtained a unique characterizations for all of these measures and
a framework that highlights their key similarities and differences. Until now, a
similar construction for feedback centralities has not been developed.

A similar, yet fundamentally different, approach was taken by Bloch, Jackson,
and Tebaldi [10]. They introduced a notion of nodal statistic—sequences of simple
data regarding a node, e.g., numbers of nodes at a given distance. Then, they pro-
posed several axioms that specify a relation between a centrality measure and an
arbitrary nodal statistic. As they proved, the only centrality measures satisfying
all of their axioms are the sums of discounted elements of a given nodal statis-
tic. Thus, they showed that specifying a nodal statistic and a discounting scheme,
characterizes different measures such as degree centrality, decay centrality, Katz
centrality, or PageRank.

Other characterization approaches

Apart from axiomatic approach, other attempts to characterize and classify cen-
trality measures were also made. One of the first influential papers devoted to that
matter is that of Freeman [30]. He identified three premises for centrality, based
on communication in a network, and presented a centrality measure to fit each
premise. These were: direct communication activity (degree centrality), control
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over communication (betweenness centrality), and effectiveness of communication
(closeness centrality).

A different and, in a sense, orthogonal approach was taken by Borgatti [17].
He considered structurally different types of flows that occur in networks. For
instance, one can argue that a package delivery in a transportation network is
characterized by intrinsically different flows than gossip propagation in a social
network. Then, a centrality measure can be regarded as an assessment of a role
that a node has in network communication given a certain type of flows. For ex-
ample, if each node sends one message to each of its neighbours, degree centrality
is the number of messages received by a node. In general, we can now classify
centrality measures based on a type of flows for which they are suitable.

Borgatti and Everett [18] added to this picture the distinction inspired by Free-
man: Are we more interested in the control over flows in a network, i.e., medial
centralities, (e.g., betweenness centrality) or the flows’ efficiency, i.e., radial cen-
tralities (e.g., closeness centrality)? Moreover, they distinguished between the cen-
tralities oriented towards the total volume of received flows and the ones oriented
towards the length of these flows. In this way, they obtained multidimensional
classification of centrality measures based on both flow types and specific aspects
of flow propagation that we want to capture. However, it is worth noting that
there can be multiple centrality measures in a single grid of this classification.
Also, there are many centrality concepts that do not fit in this framework at all.

Another way of organizing the space of centrality measures was considered
by Schoch and Brandes [70]. They expressed many of the known centrality mea-
sures in the unified framework based on the path algebras. Next, they showed that
each centrality measure defined in such a way preserves neighbourhood-inclusion
pre-order and argued that such property is a good indicator whether a node index
can be regarded as a centrality measure.

A different approach is to distinguish certain classes of centrality measures
based on their common characteristics. In this manner, Koschutzki et al. [52] es-
tablished several such classes, including feedback centralities or vitality indices—a
class in which the centrality of a node is equal to the loss in the value of some
graph function that would result from the removal of this node. Everett and Bor-
gatti [28] further studied the class of vitality indices, specifically its subclass in
which a graph function is the total centrality of all nodes in a graph for a certain
centrality measure. In turn, Skibski, Michalak, and Rahwan [75] characterized
the class of game theoretic centralities and its subclasses of separable, induced,
and edge-induced game theoretic centralities. Moreover, Baeza-Yates, Boldi, and
Castillo [5] established the class of centrality measures based on dumping factors,
Brandes and Fleischer [19] focused on centrality measures based on current flows,
and Vigna [79] studied the class of centrality measures based on spectral graph
theory (which is roughly the same as the class of feedback centralities) and its
complicated history.

We end this section by noting the existence of a plethora of papers that consider
which centrality measures and on what conditions are fit to particular settings,
e.g., psychological networks [20, 36], urban networks [41], protein interaction net-
works [3], or online social media networks [33, 39]. Another line of research, with
similar, or even greater, number of papers, studies the similarities and the differ-
ences between centrality measures in general, based on empirical evaluations on
various real-life and synthetic networks [6, 14, 47, 56, 60, 71, 74, 78].
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Chapter 2

Preliminaries

In this section, we introduce our notation and the basic notions used throughout
this work: graphs and centrality measures. To explain the intuition behind this
concepts we will often refer to the World Wide Web network example, however
the obtained results apply to an arbitrary setting.

2.1 Graphs

We consider directed multigraphs with possible self-loops. Each such multigraph
(hereinafter called simply a graph) is a pair, (V, E), where V is a set of nodes and
E is a multiset of edges. In the World Wide Web network, nodes would represent
pages and the edges hyperlinks between them (note that there can be multiple
hyperlinks from one page to another). To emphasize the fact that E is a multiset,
we will use double brackets when we list its elements (with possible duplicates),
e.g., {(u,u),(u,v),(u,v)}. Also, by U (and —) we denote the sum (and the difference)
of multisets. Finally, for any multiset E by k - E we will understand the sum of k
copies of multiset E.

Each edge is an ordered pair of nodes in V. Edge (u,v) starts in node u, for
which it is an outgoing edge, and ends in node v, for which it is an incoming edge.
The multiset of all outgoing edges (or incoming edges) of node v is denoted by
LF(G) (or I (G)), i.e.,

LJ(G)={(s,t)eE:s=v} and L, (G)={(s,t)€E:t=1}.

Also, a set of all edges incident to v is a set of all outgoing and incoming edges of
v,i.e., TF(G) ={(s,t) e E:s=v Vt=v]. If for two nodes, u,v, it holds that [} (G) =
{(u,w): (v,w) € [; (G)], i.e, they share exactly the same outgoing edges, such nodes
are called out-twins. The number of outgoing (incoming) edges of node v is its
out-degree (in-degree) and it is denoted by deg; (G) = [I,'(G)| (deg, (G) = I, (G)]). If
v does not have any outgoing edges, i.e., deg, (G) = 0, then v is called a sink. If v
does not have any incoming edges, it is a source. Finally, a node is isolated if it is a
sink and a source at the same time.

The multiplicity of edge (u,v), denoted by pg(u,v), is the number of times
edge (u,v) appears in E. The adjacency matrix of a graph is a |V|x |V| matrix,
A =(ay,,)uvev, in which entries are equal to the number of edges between nodes,
ie., a,, =pc(v,u). Areal value r is an eigenvalue of matrix A if there exists a non-
zero vector x € RV such that Ax = rx; such vector x is called an eigenvector. The
principal eigenvalue, denoted by A, is the largest eigenvalue.

A walk is a sequence of nodes, w = (w(0),...,w(k)), such that each consecutive
nodes are connected by an edge, i.e., (w(i),w(i + 1)) € E, for every i € {0,...,k— 1}.

7
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The walk starts at node w(0) and ends at w(k) and the length of the walk is k. The
set of all possible walks of length k on graph G is denoted by Q(G). If the nodes
in the walk are pairwise distinct, i.e., w(i) # w(j), for every i,j € {0,..., k} such that
i # j, then the walk is a path. If w(0) = w(k) and all other nodes in the walk are
pairwise distinct, then such walk is a cycle.

If for two nodes, u and v, there exist a walk from u to v, i.e., the walk of positive
length that starts at u and ends at v, then v is a successor of u and u is a predecessor
of v. For u # v such that u is a predecessor of v, the length of the shortest walk
from u to v is called a distance from u to v and it is denoted by dist(u,v). If u is
not a predecessor of v we say that dist(u,v) = co and we set dist(u,u) =0 for every
node u. If this distance is equal to 1, i.e., (u,v) € E, then v is a direct successor of
u and u is a direct predecessor of v. The set of all successors (or predecessors) of
node v is denoted by S,(G) (or P,(G)) and the set of all of its direct successors (or
predecessors) is denoted by S!(G) (or P}(G)).

A subset of nodes, U C V, forms a connected component if each successor and
each predecessor of every node in U also belongs to U, i.e., P,(G),S,(G) € U, for
every v € U, and U is minimal (it is impossible to subtract one or more nodes from
U, while preserving this property). A subset of nodes, U C V, forms a strongly
connected component if for every two nodes in U one is a predecessor and a suc-
cessor of the other, i.e., u € P,(G) N S,(G), for every u,v € U, and U is maximal
(it is impossible to add one or more nodes to U from V \ U, while preserving this
property). We say that graph G = (V,E) is (strongly) connected if V is a (strongly)
connected component.

We also consider node weights that can be used to include additional informa-
tion about nodes in a graph. For example, in a context of World Wide Web net-
work, node weights can model personal preferences of a user [62], how well a page
fits into a given topic [37], or the fact that a page is trusted [35]. If no such infor-
mation is available, one can assume uniform weights for all nodes. Formally, we
define a weighted graph as a pair (G, b) where G = (V,E) is a graph and b is a node
weights function b : V — R that assigns non-negative weight to each node. Also,
to denote small weighted graphs, we will use the following simplified notation:

(G, b) = (({v1,... v lers o el b1, bl

which means G = ({vy,...,v,}, {e1,...,e,l) and b(v;) = b; for i € {1,...,n}. The set of
all possible weighted graphs will be denoted by G.

Let us introduce some additional shorthand notation. For a subset of nodes
U C V by by we will understand node weights b with the domain restricted to
nodes in U and by b_y; restricted to the set of nodes V \ U. If U contains one
element, i.e., U = {u}, we will skip parenthesis and simply write b, and b_,. Also,
for a constant x € R, we define x - b as follows: (x-b)(v) = x - b(v), for every
v € V. Furthermore, for every two node weights with possibly different domains,
b:V >Ry, b : V' - Ry, wedefine b+b": VUV’ - Rygas (b+b')(v) = b(v)+b'(v),
ifveVnV, (b+b')(v)=bv),ifveV\V’, and (b+')(v)=b'(v),if ve V'\V,
for every v € VU V’. For example, (b_, + 2b,) are node weights obtained from b by
doubling weight of node v. Finally, for every graph G and node weights b, by b(G)
we denote the sum of all node weights in a graph.

Three particular types of node weights are used throughout this work: uniform
node weights, 1, zero node weights, 0, and unit node weights centered on v, i.e., 1,,.
Uniform node weights, 1, give each node weight equal to one, i.e., 1(v) = 1, for
every v € V. Similarly, in zero node weights, 0, each node has zero weight, i.e.,
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0(v) =0, for every v € V. Finally, for every v € V, unit node weights centered on v,
1,, are such node weights that 1,(v) =1 and 1,(u) =0, for every u € V' \ {v}.

For two graphs, G = (V,E) and G’ = (V/,E’), and node weights b, b’ graph
(G, 1) is isomorphic to (G, b) with isomorphism f : V — V', if f is a bijection and
it holds that E’ = {(f(u), f(v)) : (u,v) € E} and b’(f(v)) = b(v), for every v € V.
Two graphs, G = (V,E) and G’ = (V/,E’), are called disjoint if their sets of nodes
are disjoint, i.e., VNV’ = 0. For such graphs their sum is defined as G+ G’ =
(VUV’,EUE’). For out-twins u and v the operation of redirecting node u into
node v results in a graph with node 1 removed and its incoming edges along with
its weight transferred to node v. For example, in the setting of World Wide Web
network this can be obtained by setting an URL redirection on page u to page v,
which results in automatic transfer of all internet traffic to page v. Formally,

Ry—(G,b) = ((V \ {u}, E-TE(G)U{(v,w): (v,u) T (G) Av = ul), by +b(u)-1,)

2.2 Centrality Measures

A centrality measure is a function, F, that for a given graph, G = (V,E), node
weights b, and node v € V returns a real non-negative value F,(G,b) that repre-
sents the importance of node v in weighted graph (G, b).

For directed graphs, most centralities can be defined in two ways: by focusing
on predecessors or, more generally, paths ending at a given node, or by focusing on
successors and paths starting at a given node. In this work we assume the former
version. However, we note that via symmetry, all results can be directly translated
to the latter one.

2.2.1 Classic Centrality Measures

Classic centrality measures are based on distances between nodes. Most of them
were proposed for graphs without node weights. However, they can usually be
easily adapted to this richer setting [53]. In such a case, we can talk about person-
alized [87] or weighted [61] centrality measures.

The simplest, yet one of the most popular centrality measures, is degree central-
ity [59]. It assesses a node simply by looking at the number of its incoming edges.
Formally, degree centrality is defined as

D,(G) = (G = ) pgluv).

ueP!(G)

In personalized degree centrality instead of taking simply a number of incoming
edges, we sum the weights of their starts. Formally,

Dy(G.b)= ) b(u)- pg(u,v).

ueP!(G)

Closeness centrality [8] aims to find nodes which are at the center of a graph.
To this end, for each node it sums the distances from all other nodes in the graph.
Now, nodes with a small total sum, i.e., nodes which are close to all other nodes,
are considered most central. Formally, closeness centrality is defined for strongly
connected graphs as
1

"~ Luen\p dist(u,v)’

G (G)
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In personalized closeness centrality distance from each node is multiplied by the
weight of this node. In this way, the distances from nodes with large weights are
more significant. Formally,

1
ZMGV\{V} b(u) . diSt(l/l,”l/).
Decay centrality [43] is a modification of closeness centrality that works for
arbitrary graphs, not necessarily strongly connected. Here, instead of looking at

the sum of distances, each node at distance k contributes a* for some a € (0,1).
Formally, for a decay factor a € (0,1), decay centrality is defined as

Y,(G) = Z adist(u,v).

ueV\{v}

C,(G,b) =

Here, we assume that if dist(i,v) = oo, then a?*"“¥) = 0. Decay centrality can

also be considered an extension of degree centrality that counts not only direct
predecessors, but also further predecessors with decreasing weights. Personalized
decay centrality is defined as

Y,(G,B) = Zb(u)-adi“(”'”). (2.1)

ueV

Personalized decay centrality introduces two modifications to the original defi-
nition. Firstly, the contribution of node u to the centrality of v (i.e., a®s"(*?)) is
now multiplied by the weight of u. Secondly, we now sum over all nodes (}_,cy),
rather than over all nodes other than v (}_,cy\())- To understand the rationale be-
hind the latter modification, consider an extreme scenario in which only a single
node, say v, has a positive weight. Here, if we sum over all nodes other than v,
then any node with a connection to v would have a positive centrality, whereas
v itself would have a centrality equal to zero, as all nodes not connected to v—a
rather unintuitive outcome in most interpretations of node weights. Note that if
all nodes have unit weights, then Y,(G,1) = Y, (G) + 1.

Finally, betweenness centrality [29] is also based on the notion of shortest paths.
However, its goal is to measure how often a specific node is an intermediary be-
tween other nodes. To this end, for every pair of nodes, s, t, it takes the fraction of
shortest paths between them that goes through a node in question, and then sums
it for all such pairs. Formally, betweenness centrality is defined as

B,(G) = Z O'st(v))
Ost
s,teV\{v}:o,20

where o, is the number of shortest paths from s to t and oy (v) is the number of
such shortest paths that goes through v. The condition that o, # 0 is necessary in
order to make the definition correct for graphs which are not strongly connected.
Personalized betweenness centrality is defined as

BAGH= Y blopln ZL,

0
s,teV 0,20 st

Firstly, the fractions of shortest paths between from s to t that pass through v are
multiplied by the weights of nodes s and t. In this way, being an intermediary on
the path between two nodes with large weights is more significant. Secondly, sim-
ilarly to personalized decay centrality, we also include paths starting and ending
at v, so that the weight of v can positively affect the centrality of v.
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2.2.2 Feedback Centralities

Feedback centralities is the class of centrality measures on which we put the main
focus in this work. These centrality measures assess the importance of a node by
looking at its direct predecessors and their importance.

Arguably, the most classic feedback centrality is Eigenvector centrality [16].
Here, the importance of a node is proportional to the total importance of its direct
predecessors. Formally, eigenvector centrality is defined through the recursive

equation:
1
EV,(G,b) = 1 > pug(u,v)-EV,(G,Db). (2.2)

uePl(G)

Observe that the system of these recursive equations does not have a unique solu-
tion, as each valid solution multiplied by a scalar is still a valid solution. Hence,
some additional normalization condition is usually added to make the centrality
measure well defined. For example, it is often assumed that the sum of central-
ities of all nodes is equal to 1 or |V|. In this paper, we use a normalization that
stems from the walk interpretation of eigenvector centrality, which is more con-
sistent with other feedback centralities. It is discussed in detail in Section 2.2.3.
Eigenvector centrality is usually defined only for strongly connected graphs, be-
cause otherwise the solution to the system of recursive equations is not unique
even with the condition on the sum of all centralities. Our normalization condi-
tion allows us to relax this constraint by allowing also sums of disjoint strongly
connected graphs with the same principal eigenvalue. We denote the class of all
such graphs by GEV.

Another centrality based on a similar principle is Katz centrality [46]. Here, the
importance of a node is mostly determined by the total importance of its direct
predecessors. However, an additional small basic importance is added to every
node. In this work, the node weights represent such a basic importance, but if
weights are not provided, a fixed positive constant is used. Formally, for a decay
factor a € R, Katz centrality is defined as a unique function that satisfies the
following recursive equation:

KiGb)=a-| Y pgu,v)-Ki(G,b)|+b(v). (2.3)
ueP}(G)

Adding a basic importance shifts the emphasis from the total importance of the di-
rect predecessors back to their number. This is because each edge (u,v) contributes
to the centrality of v an additional value a- b(u) which is independent of the posi-
tion or the importance of a predecessor. That is why Katz centrality is sometimes
seen as a middle-ground between degree and eigenvector centralities. For a fixed
a, Katz centrality is uniquely defined for all graphs with A < 1/a. We denote the
class of such graphs by GK(@).

In both eigenvector and Katz centralities, the whole importance of a node is
“copied” to all of its direct successors. In turn, in Seeley index [72], which is also
known as Katz prestige [43] or simplified PageRank [62], a node splits its importance
equally among its successors. Hence, the importance of predecessors is divided
by their out-degree. Formally, Seeley index is defined by the following recursive
equation:

SIV(G,Z?): ]/lG(M,V)

deg(G) -SI,(G,b). (2.4)
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Similarly to eigenvector centrality, this system of equations does not have a unique
solution. We will discuss our normalization condition in Section 2.2.3. Seeley
index is also usually defined only for strongly connected graphs. In this work, we
relax this assumption and consider sums of disjoint strongly connected graphs; we
denote the class of all such graphs by G'.
Finally, PageRank [62] was proposed as a modification of Seeley index, with
the addition of a basic importance to each node. In this way, for a decay factor
€[0,1), PageRank is defined for all graphs as a unique solution to the system of
the following recursive equations:

pG(u,v)

PRY(G,b)=a-
oG b)=a deg,(G)

ueP}(G)

-PR%(G,b) |+ b(v). (2.5)

2.2.3 Walk Interpretations of Feedback Centrality Measures

In this section we show, how feedback centralities can be alternatively defined
using walks on a graph.

To illustrate the way PageRank works, Page et al. [62] proposed the random
surfer model in which PageRank of a node is identified with the average time spent
in this node in the infinite random walk on the entire network. Here, building on
the work of Bianchini, Gori, and Scarselli [9] we consider slightly different walk
interpretation of PageRank that we name busy random surfer model, which we then
extend to other feedback centralities.

Imagine a surfer that browses the pages on the World Wide Web network. At
step 0, she starts from the randomly chosen page with the probability of choosing
each page proportional to its basic importance (node weight). Then, in each step,
with probability a she chooses, uniformly at random, one hyperlink on the page
she currently sees and follows it to the next page. At the same time, with proba-
bility 1 —a (or if she arrives at a sink) the surfer gets bored and stop browsing all
together. In such a walk, the PageRank of a page is equal to the expected number
of times the surfer visits the page, multiplied by the total basic importance of all
pages (sum of all node weights in a graph).

To formalize this model, for a graph G = (V,E) and decay factor a € [0,1], let
us define the probability that node v € V is visited at step t € N as

t—1 1
py(v,t) = Z b(wo Ha @li+1) if b(G)>0, (2.6)

we)(G)w(t)=v i= deg )

and p¢, ,(v,t) = 0, otherwise. Let us analyze the right hand side of this equation.
Flrstly, b(w(0))/b(G) is the probability that the walk starts at node w(0). The frac-
tion yG( (1), w(i+ 1))/degz)(l-)(G) is the probability of choosing an edge going from
node w(i) to w(i+1) out of all outgoing edges of node w(i) assuming we pick them
uniformly at random. If we multiply this fraction by a, the probability that the
walk does not end at step i, we obtain the probability that the walk in node w(i)
at step i moves to a node w(i + 1) in the next step. Now, taking the product of
these fractions over all steps from 0 to t — 1 and multiplying it by the probability
that the random walk starts at w(0), i.e., b(w(0))/b(G), gives us the probability that
the random walk follows w up to step t. Thus, summing over all possible walks
of length t that end at v we indeed obtain the probability that node v is visited at
step t.
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i

Figure 2.1: An example graph. Grey nodes have weights equal to 1 and the weight
of white nodes is 0.

Example 1. Consider graph (G, b) from Fig. 2.1. Let us calculate the value of p ,(v1,3),
i.e., the probability that node vy is visited at step 3. To this end, let us consider
all walks of length 3 that end at v,. There are five such walks: wy = (vq,vg,v7,71),
wy = (v4,v8,v7,71), w3 = (V5,06,V7,V1), wg = (V6,V5,V6, V1), and ws = (v, v5,v7,v1).
Observe that walks w,, wy, and ws start at a node with zero weight, i.e., we have
b(w,(0)) = b(w4(0)) = b(ws(0)) = 0, hence their input in the sum on the right hand side
of Eq. (2.6) will be also zero.

The probability that the random walk starts at vy is equal to b(vy)/b(G) = 1/2. Node
vy has only one outgoing edge, to vg, hence conditional on the random walk continuing,
for which there is a probability a, the random walk goes to vg with probability 1. Two
out of three outgoing edges of vg go to vy, thus the probability that the random walk
moves next to vy is a- 2/3. Finally, v; again has only one outgoing edge, to vy, thus the
random walk moves from vy to vy with probability a. Therefore, the probability that the
random walk starts with sequence w, is equal to 1/2-a-2a/3-a = a%/3.

1/2 a 2a/3 a
sequence (w1): o v Vg vy V1.

Now, the probability that the random walk starts at vs is equal to b(vs)/b(G) = 1/2.
From there, it goes to v with probability a/3 (node vs has three outgoing edges and one
goes to vg). Then it moves to v; with probability a/2. And again goes from vy to vy
with probability a. Thus, we get that the probability that the random walk starts with
sequence ws is equal to 1/2-a/3-a/2-a=a’/12.

1/2 a/3 a/2 a
sequence (w3): o vs Vg vy V1.

Summing up, we get that p¢ (v, 3) = a’/3+a%/12 =5a%/12.

Using this walk interpretation we can alternatively define PageRank of a node
as the expected number of visits at the node multiplied by the total weight of all
the nodes, i.e.,

PR%(G,b) = b(G) - Zpg,b(v, f). (2.7)
t=0
In the following theorem, we prove that the PageRank defined by Eq. (2.7) indeed

satisfies Eq. (2.5). Since PageRank is a unique solution to Eq. (2.5) it means that
both definitions are equivalent.

Theorem 1. For every decay factor a € [0,1), PageRank defined by Eq. (2.7) satisfies
PageRank recursive equation (Eq. (2.5)).

Proof. Let us denote F,(G,b) = b(G)- Y ;2 pé’b(v, t) and prove that centrality F in-
deed satisfies Eq. (2.5), for every graph G = (V, E), node weights b, and node v € V.
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If b(G) = 0, then F,(G,b) = 0 and Eq. (2.5) is trivially satisfied. Thus, let us assume
that b(G) >0

Observe that for each walk w € Q;(G) that ends at v, i.e., w(t) = v, if t > 0, then
w(t—1) must be one of the direct predecessors of v, say u. The probability that the
random walk does not end at step t—1 and moves from u to v is a-yc(u, v)/deg;r(G).
Thus, for the value p¢ (v, t) we get

pc(u,v)
a
deg, (G)

p‘élb(v, t) = p”G,b(u, t—1).

ueP}(G)

Taking the sum over all t > 1 we get

Zpr v,1) ”G F.(G,b)/b(G).

uePH(G

Observe that pé'b(v, 0) = b(v)/b(G), thus adding both equations sidewise we obtain

u,v)
ZPGb v,t) = b(v)/b(G) + agG(+ F,(G,b)/b(G)
7 eg,(G)
uel, (G)
and by multiplying both sides by b(G) we obtain the thesis. 0

Now, the sum in Eq. (2.7) converges for every a € [0,1). However, for a = 1 the
sum does not have to converge. In such a case, one can consider a partial sum up
to step T, i.e., b(G)- ZtT:o pG,p(v,1), and observe that dividing it by T would only
scale the sum for all nodes, not affecting the relations between them. Now, taking
the limit of such “partial averages” instead of partial sums results in a value that
converges for every node of every weighted graph. As a result, instead of looking
at the expected number of visits at a node, we look at the average time spent at
that node, which is the stationary distribution of the random walk. In this way, we
obtain the walk-based definition of Seeley index, i.e.,

T 1
— V}t
S1,(G,0) = H(G)- im =020

2.8
T—oo T ( )

In the following theorem, we prove that the definition given by Eq. (2.8) is coher-
ent with Seeley index recursive equation. Moreover, we show that Eq. (2.8) implies
that the sum of Seeley indices of all the nodes is equal to the sum of node weights
in a graph. Hence, for strongly connected graphs the definition by Seeley index re-
cursive equation and normalization condition ) . SI,(G,b) = b(G) is equivalent
to the walk-based definition of Seeley index.

Theorem 2. Seeley index defined on G5! by Eq. (2.8) satisfies Seeley index recursive
equation (Eq. (2.4)) and for every graph G = (V, E) and node weights b such that (G, b) €
G1, it holds that Y,y SI,(G,b) = b(G).

Proof. Let us denote F,(G,b) = b(G) - limp_,, Zthopé’b(v,t)/T and prove that for
every graph G = (V,E), node weights b such that (G,b) € G5! and node v € V, it
satisfies Seeley index recursive equation (Eq. (2.4)) and that ) . F,(G,b) = b(G).
If b(G) = 0, then F,,(G,b) = 0 and Eq. (2.4) is trivially satisfied. Also, ) .y F,(G,b) =
0 = b(G). Thus, let us assume that b(G) > 0.

First, let us focus on the second part of the thesis, i.e., that the sum of central-
ities of all nodes is equal to the sum of weights of all nodes. To this end, observe
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that for every t > 0, every walk w € ();(G) that ends at v, i.e., w(t) = v, must have
visited one of the direct predecessors of v, say u, at step t — 1 and then move to v
through edge (u,v). Thus, if we look at the value pé. »(v,t) we obtain that

pe(u,v)
deg,(G)

pGy(vit) = Py t=1). (2.9)

ueP!(G)

Let us sum both sides of Eq. (2.9) for all nodes v € V. As a result, on the right hand
side, for every u € V, the term pg(u,v)/deg; (G) -plc’b(u, t—1) appears exactly once,
for every v € S}(G). Hence, these terms sum to pé’b(u, t—1). In this way, we obtain

Zplc,b(v,t) = Zplc,b(u,t— 1). (2.10)

veV ueV

This means that for each step t € N the sum of terms pé’b(v,t) for all nodes is
constant. Since pélbs(v,O) = b(v)/b(G) for every v € V, this sum is always equal to

one,i.e., ) ,cy pé’h(v, t) = 1. Thus, when we sum it for all t € {0,..., T}, multiply by
b(G)/T, and take a limit in the infinity we still obtain that

T ,1 T 1
pr Zvevpc,b(v’t) B
E F,(G,b) = hmb E )Yh—wog #—b((}).

veV t=0 t=0

Now, let us move to the first part of the thesis, i.e., that centrality F satisfies See-
ley index recursive equation (Eq. (2.4)), for every graph G = (V,E), node weights
b,and nodev e V.

Let us sum both sides of Eq. (2.9) for all t € {1,..., T}, to get

T
Zpélb(v,t) =
t=1

Tl
1
prut

ueP}(G) t:0

Now, if we add pIG,b(V’O) = b(v)/b(G) to both sides of the equation and multiply
each side by b(G)/T, we obtain

T-1

T 1
PGVt bv) PGy
(G)~Z = degu ;

t=0 uePl}(G)

When T approaches infinity, b(v)/T approaches zero. Hence,

F,(G,b) =
ueP!(G)

b(G)- li _— 2.11
deg’(G) (G)- im_ T (2.11)

Thus, it remains to show that plG,b(u, T)/T approaches zero as well, for every u € V.
To this end, observe that, by Eq. (2.10), the sum of pé’b(u, t) for all u € V is constant
for all t € N. Thus, plG’b(u,t) is bounded by this sum. Hence, term plc’b(u,T)/T
indeed approaches zero as T approaches infinity. Therefore, by Eq. (2.11), we
get that F,(G) = )_,ep!(q) #g(u,v)/deg) (G) - F,(G,b) which is exactly Seeley index
recursive equation (Eq. (2.4)). O
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Now, let us move to Katz and eigenvector centralities. Again let us start with
the intuition behind their walk interpretations. To this end, let us modify the busy
random surfer model and propose the parallel busy random surfer model.

Like before, imagine the surfer that starts browsing the World Wide Web net-
work from a random page (with the probability of choosing each page proportional
toits basic importance). Then, the surfer reads the whole current page and for each
hyperlink on that page there is a probability a that she clicks on it and opens it in
a new tab of her browser. Next, when she finishes reading the current page, she
closes the tab with that page and moves to the first tab that is opened, where she
repeats the process. If there are no opened tabs when she closes the current tab,
she ends browsing all together. In such a process, Katz centrality of a page is the
expected number of times the surfer reads this page, multiplied by the sum of the
basic importance of all pages.

To formalize this model, for every graph G = (V,E) and decay factor a € R,
let us define the weighted sum of walks that visit node v € V at step t € N as

B b(w(0))
we (v, t) = Z (bcz)((})

weQ4(G):w(t)=v i=0

t—1
a-pg(w(i)w(i+1)), ifb(G)>0, (2.12)

and wé »(v,t) = 0, otherwise. The only difference between Eq. (2.12) and Eq. (2.6)
is that here, we do not divide pg(w(i), w(i + 1)) by deg (i) since we do not choose
one of the outgoing edges, but decide upon each of them independently. In other
words, w“G’b(v, t)is a' - b(w(0))/b(G) multiplied by the number of walks of length ¢
that ends at v if we differentiate between the walks that not only moves through
different nodes, but also use different edges. Note that although the probabilistic
interpretation is well-founded only for a € [0, 1], Eq. (2.12) is valid for any a € R.

Example 2. In a similar way to Example 1, let us consider graph (G, b) from Fig. 2.1
and calculate the value ofw‘é’b(vl, 3), i.e., the weighted sum of walks that visit node v,
at step 3. Again we have five walks of length 3 that end at vy, i.e., w1 = (v1,vg,V7,71),
wy = (vg,v8,v7,v1), w3 = (V5,6,V7,V1), Wy = (V6, Vs, V6, V1), and ws = (ve, vs5,v7,71).
As before, since w;, wy, and ws start at a node with zero weight, they will have zero
input in the sum on the right hand side of Eq. (2.12).

We start at node v with b(v,)/b(G) = 1/2. Node vy has one outgoing edge to vg.
Then, there are two edges from vg to v;. Finally, v; again has one outgoing edge to v;.

Therefore, the weighted sum of walks that follow sequence w is equal to 1/2-a-2a-a = a>.

1/2 a 2a a
sequence (wy): o v Vg vy V1.

In sequence w3 all consecutive nodes are connected by exactly one edge. Again, at
vs5 we have b(vs)/b(G) = 1/2, thus we get that the weighted sum of walks that follow
sequence ws is equal to a3/2.

1/2
sequence (w3): o vs Vg vy V1.

)
)
AN

Summing up, we get that w. ,(vy,3) = a’+a3/2 = 3a/2.

For every a < 1/A, this walk interpretation allows us to alternatively define
Katz centrality as the expected number of visits at a node multiplied by the total
weights of all nodes, i.e.,

K%(G,b) = Zw 2, (2.13)
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In the following theorem we prove that Katz centrality defined in such a way in-
deed satisfies Katz centrality recursive equation (Eq. (2.3)) which implies that both
definitions are equivalent.

Theorem 3. For every decay factor a € Ry, Katz centrality measure defined on GK(@)
by Eq. (2.13) satisfies Katz centrality recursive equation (Eq. (2.3)).

Proof. We prove that centrality measure defined as F,(G,b) = b(G) - ZtT:o w‘élb(v, f)
satisfies Eq. (2.3), for every graph G = (V, E), node weights b such that (G, b) € GK@,
and node v € V. If b(G) = 0, then F,(G,b) = 0 and Eq. (2.3) is trivially satisfied.
Thus, let us assume that b(G) > 0.

Observe that for every walk w € (34(G) such that w(t) = v in order to arrive at
v at step ¢t > 1, it must visit a direct predecessor of v, say u, at step t —1 and then
follow edge (u,v). Thus, for w“G,b(v, t) we obtain that

wly ) =a- ) pgluv) wly(ut-1).
ueP}(G)
Summing both sides for all t € {1,2,...} we get

iw%’b(v,t):ao Z yG(u,v)-iw‘é’b(u,t)
t=1

=0

2
M

&
Q

Finally, let us add w“G,b(v, 0) = b(v)/b(G) to both sides of the equation and multiply
both sides by b(G) to obtain that F,(G,b) = a- (X4 v)er; () He(1,v) - Fu(G)) + b(v)
which is Katz centrality recursive equation (Eq. (2.3)). O

The sum in Eq. (2.13) converges if a < 1/A. In the case of a = 1/A, the sum
does not converge. However, in a way similar to the way we defined Seeley in-
dex, instead of looking at the expected number of visits at a node, we can look
at the average time spent at it. Thus, if we take the limit of “partial averages”
of the weighted sum of walks that visit a node, we obtain the walk definition of
eigenvector centrality, i.e.,

T wl//\(v,t)

EV,(G) = b(G)- lim b

T—oo

t=0

(2.14)

In the following theorem, we prove that eigenvector centrality defined in such
a way indeed satisfies Eigenvector centrality recursive equation (Eq. (2.2)).

Theorem 4. Eigenvector centrality defined on GEV by Eq. (2.14) satisfies Eigenvector
centrality recursive equation (Eq. (2.2)).

Proof. We prove that the centrality F,(G,b) = b(G) - limp_,, ZtT:o ng}(v, t)/T satis-

fies eigenvector centrality recursive equation (Eq. (2.2)), for every graph G = (V,E),
node weights b such that (G, b) € GEV, and node v € V. If b(G) = 0, then F,(G,b) = 0
and Eq. (2.2) is trivially satisfied. Thus, let us assume that b(G) > 0.

Then, observe that for every walk w € QO;(G) such that w(t) = v, the walk must
have visited a direct predecessor of v, say u, at step ¢t — 1 and then move through

edge (u,v). Hence, for value le/;J‘(t) we get

1

A A

wg,b(%t)=x E ,”G(”'v)'le/,b(”'t_l)-
ueP!(G)
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If we sum both sides for all t € {1,..., T} we obtain
1
Zwlc/;‘ v, t _x Z pe(u,v) ng;]\ u,t).
uePl}(G)

Adding w¢/;(v,0) = b(v)/b(G) and multiplying both sides by b(G)/T yields

T . 1/A T-1 /
wG’b(v t) ,MG u,v) we
b(G)- E T > (2.15)
t=0 MEP t=0

As T approaches infinity, b(v)/T approaches zero. In order to show that value
wg/b\(u, T)/T approaches zero as well, observe that for each step t € N, the vector

of values wc/z(u t) for all nodes u € V is a vector of values wgb(u O)forallu eV

multiplied f times by adjacency matrix of G and divided ¢ times by A. The norm
of such vector is bounded [57], thus its coordinates are also bounded. Hence, the
value wé/;\(u, )/T indeed approaches zero as T approaches infinity. Thus, taking
limit in Eq. (2.15) we obtain F,(G,b) = 1/A-}_,cpi (g He(u,v) - Fy(G,b) which is

exactly eigenvector centrality recursive equation (Eq. (2.2)). O]

In the following chapters, if not stated otherwise, we use Eqs. (2.7)—(2.14) as
the definition of all four feedback centralities.



Chapter 3

Axiomatization of PageRank

We begin with the axiomatic characterization of arguably the most important walk-
based centrality measure in computer science—PageRank. More in detail, in this
chapter, we propose six simple properties: Node Deletion, Edge Deletion, Edge Mul-
tiplication, Edge Swap, Node Redirect, and Baseline, and prove that PageRank is the
only centrality measure that satisfies all of them.

We begin by introducing and explaining our axioms in Section 3.1. Then, in
Section 3.2, we prove that they uniquely characterize PageRank and that they are
independent. Finally, in Section 3.3, we compare our characterization with two
axiomatizations of Seeley Index from the literature.

The content of this chapter is an extended version of the paper published in
the proceedings of the IJCAI-18 conference [84].

3.1 Axioms

Let us present our main result of this chapter: the axiomatic characterization of
PageRank. Specifically, we introduce six simple properties, or axioms, that Page-
Rank satisfies. Some of these axioms are satisfied also by other known centrality
measures. However, what is important, PageRank is the unique centrality measure
that satisfies all of them, which is stated in Theorem 5. The axioms are:

* Node Deletion (removing an isolated node does not affect centralities of other
nodes in the graph): For every graph G = (V,E), node weights b, and isolated
node u € V, it holds that

F,(G,b)=F,(V\{u}, E), b_,), foreveryve V\{u}.

* Edge Deletion (removing an edge does not affect centralities of nodes which are
not successors of the start of this edge): For every graph G = (V,E), node weights
b, and edge (u,w) € E, it holds that

F,(G,b)=F,((V, E-{(u,w)}), b), foreveryveV\S,(G).

* Edge Multiplication (creating additional copies of the outgoing edges of a node
does not affect the centrality of any node in the graph): For every graph G = (V,E),
node weights b, node u € V, and k € N, it holds that

F,(G,b)=F,((V, EUk-T,(G)), b), foreveryveV.

19
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* Edge Swap (swapping ends of two outgoing edges of nodes with equal centrali-
ties and out-degrees does not affect the centrality of any node in the graph): For
every graph G = (V,E), node weights b, and edges (u,u’),(w,w’) € E such that
F,(G,b) = F,(G,b) and deg] (G) = deg. (G), it holds that

F,(G,b)=F,(V, E—{(u,u’), (w,w")} U{(u,w’), (w,u’)}), b), foreveryveV.

* Node Redirect (redirecting a node into its out-twin sums up their centralities
and does not affect the centrality of other nodes in the graph): For every graph
G =(V,E), node weights b, and out-twins u,w € V, it holds that

F,(G,b)=F,(R,,(G,Db)), foreveryveV\{uw}
and F,(G,b)+ F,(G,b) = F,(R,_(G,b)).

* Baseline (the centrality of an isolated node is equal to its weight): For every graph
G = (V,E), node weights b, and isolated node v € V, it holds that F,(G,b) = b(v).

The first five axioms are invariance axioms. Each invariance axiom is character-
ized by a graph operation, additional conditions on a graph, and a set of nodes.
Given this, the axiom states that if the conditions are satisfied, then the graph op-
eration does not affect the centrality of nodes in question. Each axiom is named
after the graph operation it considers. Node Deletion and Edge Deletion concerns
removing an isolated node or an edge. Edge Multiplication and Edge Swap focus
on edge modifications: the former axiom considers replacing each outgoing edge
of one node by multiple copies; the later one concerns swapping the ends of out-
going edges of two nodes with the same centrality and out-degree. Finally, Node
Redirect considers redirecting a node into its out-twin.

The invariance axioms characterize PageRank up to a scalar multiplication,
i.e., they are satisfied not only by PageRank, but also by PageRank multiplied by
some constant. In order to uniquely characterize PageRank, the last, sixth axiom,
called Baseline, specifies the centrality of an isolated node. The following theorem
presents our main result of this chapter.

Theorem 5. A centrality measure satisfies Node Deletion, Edge Deletion, Edge Multi-
plication, Edge Swap, Node Redirect, and Baseline if and only if it is PageRank.

The proof of Theorem 5 is presented in Section 3.2. Before, we provide the
interpretation of the axioms with respect to the hyperlink network.

The first two axioms—Node Deletion and Edge Deletion—identify elements
(pages and links) which are irrelevant for the importance of a page in question.
Node Deletion considers a page with no links or backlinks (e.g., a resource hidden
on the server). The axiom states that such a page does not have any impact on
the rest of the network and its removal does not affect the importance of all the
remaining pages.

For the Edge Deletion, imagine that there is a page A from which it is not
possible to reach page B through a sequence of links (the studies show that such
pairs of pages are very common [22]). For example, imagine that page A has only
links to its subpages that do not have external links themselves. The axiom states
that the links on A do not have an impact on the importance of B. Hence, if we
remove one of them, it will not affect the importance of B. In particular, if A cannot
be reached from A, i.e., if it is not possible to enter page A again after leaving
through one of its links, then links of A does not affect also its own importance. We
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note that Edge Deletion combined with Node Deletion implies that the importance
of a page depends solely on the part of the WWW network from which this page
can be reached.

Our next axiom, Edge Multiplication, concerns multiplying the whole content
of the page several times. This operation naturally increases the number of back-
links for many pages. The axiom states that the importance of these pages, as well
as all other pages in the network, do not change. This means that the absolute
number of links on a page does not matter as long as the proportion of links to
other pages remains the same. Looking from a different perspective, Edge Mul-
tiplication can be interpreted as robustness to manipulations by creating a large
number of backlinks. Regardless of the number of links, the impact of a page is
fixed to some extent. As there is no cost of creating a link on the World Wide Web,
avoiding such a manipulation lays at the foundation of PageRank.

For the next axiom, Edge Swap, consider a case where there are two equally
important pages with an equal number of links. The axiom states that the links
from these pages have equal impact. It does not matter for the importance of any
page from which of these two pages it has a backlink. Hence, ends of edges can
be swapped without affecting the importance of pages they link to and any other
pages in the network.

For Node Redirect, imagine that there are two copies of the same page, i.e.,
two pages with identical content and links. Their backlinks, however, can differ.
Node Redirect states that URL redirecting, i.e., removing one of the copies and
redirecting its incoming traffic to the other one, does not change the importance of
other pages. Moreover, the total importance of both pages will also remain intact.
At a high level, this axiom concerns a simple manipulation technique through
creating several copies of the same page: the axiom states that merging them into
one page does not change importance of any other page in the network.

Edge Multiplication and Node Redirect identify two manipulation techniques
that do not affect PageRank of a page. However, we note that PageRank is not re-
silient to other types of manipulations. In particular, by modifying links a page
may increase its PageRank (in Chapter 4, we discuss an alternative centrality mea-
sure that is resistant to such manipulation).

Our last axiom, Baseline, concerns a page without any links nor backlinks.
Such a page does not profit from the network structure, as it is not connected to
any other page. Hence, the axiom states that its centrality is equal to its basic
importance.

Example 3. As an illustration of our axioms consider graphs in Fig. 3.1. Assume that
centrality measure F satisfies our five invariance axioms. Then, the centrality of node
vy is not affected by the operations that transform graph G, into G, and equals the sum
of centralities of v\ and vy in graph Gy, i.e., F, (G, b) = F, (Gf,b) + F, (Gf,b). More
in detail:

* F, (G, 1) = F, (Gy, 1) from Node Deletion. Node v3 is isolated in graph Gy,
hence its deletion does not affect the centralities of the remaining nodes.

* Fy,(Gp, 1) = F, (G, 1) from Edge Deletion. The only successor of node vy is node
v, thus deleting edge (v4,v3) does not affect centralities of nodes other than vj.

* F, (G, 1) = Fy, (Gy, 1) from Edge Multiplication, since G is obtained from G
by doubling the edges of node vg.

* F, (G4,1) = Fy (G, 1) from Edge Swap. Nodes vs and vg have both 4 outgoing
edges. If they have the same centrality (note that they have incoming edges only
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Figure 3.1: An illustration of invariance axioms. We set by(v;) = 1 fori € {1,...,6}
and bg(vy) = 0.

from themselves), then exchanging edges (vs,v;), (ve, vs) for edges (vg,v2), (vs, vs)
does not affect the centrality of any node.

* F, (G, 1) =F, (Gf,by)+ F, (Gy,by) from Node Redirect. Nodes vy and v; both
have only one edge to node v,, hence they are out-twins. Therefore, redirecting v;
into vy does not affect the centrality of other nodes and the centrality of node v,
becomes the sum of the centralities of v and v;.

3.2 Proof of Uniqueness

In this section, we present the proof of Theorem 5. It consists of two parts. In the
first part (Section 3.2.1), we prove that for every decay factor a € [0, 1), PageRank
satisfies all the six axioms. In the second part (Section 3.2.2), we prove that if a cen-
trality measure satisfies all the six axioms, then it must be equal to PageRank for
some decay factor a € [0,1). Both parts combined imply Theorem 5. Additionally,
in Section 3.2.3, we show that all the six axioms are independent and necessary in
our characterization.

3.2.1 Part 1: PageRank Satisfies Axioms

In this part, we show that PageRank, for every decay factor a € [0,1), indeed sat-
isfies Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap, Node Redi-
rect, and Baseline.

All axioms, except for Baseline, are invariance axioms, so we need to show that
a specific graph operation does not affect PageRank of the node in question. To
this end, we will either look at the walk interpretation of PageRank or PageRank
recursive equation (Eq. (2.5)). In the former case, based on Theorem 1, it is enough
to show that a specific operation does not affect the expected number of visits in
the busy random surfer model (or, if the sum of node weights decreases, then the
expected number of visits increases accordingly); we will do this for four axioms:
Node Deletion, Edge Deletion, Edge Multiplication, and Node Redirect. In the
later case, we show that the system of recursive equations after the graph mod-
ification has the same solution; we will do this for Edge Swap. Finally, Baseline
easily follows from PageRank recursive equation.
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Fix an arbitrary graph G = (V,E) and node weights b. We consider each axiom
separately.

Node Deletion

Let u be an isolated node and v be an arbitrary node other than u. Consider a
graph obtained from (G,b) by removing node u: (G,b’) = ((V \ {u},E),b_,). We
have to prove that PR}(G,b) = PR{(G’,b’). To this end, based on Theorem 1, it is
enough to prove that the probability of visit at node v at time ¢ > 0 multiplied by
the sum of node weights is the same for both graphs, i.e.,

Pey(0,6)-b(G) = py (v, 1) b'(G). (3.1)

Observe that if b(G) = 0, then b’(G’) = 0 as well. Thus, pg ,(v,t)-b(G) =0 =
PGy (v,t) - b'(G'), for every t € N. Hence, let us assume that b(G) > 0. Then, each
walk w € ((G) that ends at v, i.e., w(t) = v, belongs also to (2;(G’) and vice versa.
Let us take an arbitrary such walk, w. Since u is isolated, we know that it is not
possible for w to visit u at any step. Moreover, for every pair of nodes s,t € V' \ {u},
we have that both ug(s,t) = ug (s, t) and deg! (G) = deg (G’). Thus,

tl&l]/l 1+1 tla z+1))

degw )(G )

":l

degw Lo

Multiplying both sides by b(w(0)) we obtain that

b @) t‘la-ﬂc(w(i),w(iﬂ))_bG, b(w(0) £ @ po(w(i),w(i+1))
(G)- b(G) 11 deg} (G =b(G)- b(G') 'i:O degl;(G)

Now, according to Eq. (2.6) by summing both sides for all walks in ();(G) such that
w(t) =v, we get the Eq. (3.1).

Edge Deletion

Fix edge (u,u’) € E and let v be an arbitrary node which is not a successor of u,
i.e., v S,(G). Consider a graph obtained from (G, b) by removing edge (u,u’), i.e
(G,b) = ((V,E = {(u,u’)}),b). We have to prove that PR}(G,b) = PR%(G’,b). Note
that the sum of weights is the same in both graphs. Hence, based on Theorem 1, to
prove that PR%(G,b) = PR%(G’,b) it is enough to show that the probability of visit
at node v at step t > 0 is also the same in both graphs, i.e.,

PGp(vst) = pg (v, ). (3.2)

Consider an arbitrary walk w € QQ;(G) such that w(t) =v. Since v ¢ S,,(G), there
is no path from u to v. Hence, we know that if a walk visits v at step ¢, then it
could not have visited u before. Thus, each such walk belongs also to QQ;(G’) and
each walk in Q;(G’) that ends at v belongs to QQ;(G). Moreover, for all s,t € V' \ {u}
we have that both (s, t) = pg (s, t) and deg! (G) = deg/ (G’). Hence,

=lg.op 1+1 =lg.op z+1))

deg i ]_[ degw G’)

i=

“:l

Thus, from Eq. (2.6) we get that Eq. (3.2) holds.
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Edge Multiplication

Let u,v € V be two arbitrary nodes and k € N a natural number. Also, let us
denote the graph obtained from (G, b) by adding k copies of outgoing edges of u,
ie., (G,b)=((V,Euk-T;(G)),b). Observe that for every t € N, the sets of walks
of length t in both graphs are identical, i.e., QQ;(G) = Q;(G’). Moreover, for every
nodes s,t € V, we have that

po(st) _ po(st)
deg!(G) deg!(G)

(if s = u, then both the numerator and the denominator are multiplied by k). Thus,
from Eq. (2.6) we get that pé,b(v, )= p‘é,’h(v, t), for every t € N. Hence, from Theo-
rem 1 we get that PR%(G,b) = PRS(G, D).

Edge Swap

Consider two edges (u,u’),(w,w’) € E such that PR%(G,b) = PR%(G,b) and also
deg) (G) = deg; (G) and the graph obtained from (G, b) by swapping the ends of
these edges, i.e., (G',b) = (V, E —{(u, u’),(w, w")} U {(u, w’), (w,u’)}), b). We have
to prove that PR%(G,b) = PR*(G’,b). To this end, for every v € V, let us define
x, = PRY(G, b) and prove that (x,),cy satisfies the system of PageRank recursive
equations (Eq. (2.5)) for graph (G’,b), i.e., that

. a_[ pols)
v + S
SER}(G') degs (G)

holds for every v € V. Since this system of equations has exactly one solution
which is PR*(G’, b), this will prove that PR(G’,b) = x, = PR%(G,b), for every v e V.

Take an arbitrary node v € V. From PageRank recursive equation (Eq. (2.5)) for
graph (G, b) we have

+b(v), (3.3)

#G(s,v)

= deg! (G)

+b(v). (3.4)

seP}(G)

From the definition of graph (G’,b) we know that the out-degree of every node is
the same in (G, b) as in (G’,b). Moreover, if v € {u’,w’}, then it has the same set of
incoming edges in both graphs. Hence, replacing in Eq. (3.4) deg/ (G), pg(s,v), and
P}(G) with deg!(G’), ug/(s,v), and P}(G’), respectively, proves Eq. (3.3).

Assume v = u’ (for v = w’ the proof is analogous). Consider the sum on the
right-hand side of the Eq. (3.4) for node v = u’. In graph (G’,b) node u” has an edge
(u,u’) replaced with (w,u”). Thus,

po(uu') + po(w,u’) = (pg(u,u’) = 1) + (pg(w,u’) + 1) = pg(u,u’) + pg(w,u’).

Moreover, from the initial assumption we know that x,, = x,, and deg] (G) = deg (G).
Hence, we get that

Z pols,u’) - pluu’) +pc(w,u’)
+ S + u -
cer i) 98 (©) deg, (G)
po (s, ) po (w, ') + pgr(w, ')
¥ .xs T “ Xy,
deg (G') deg, (G’)

seP”l,(G/)\{u,w}



3.2. PROOF OF UNIQUENESS 25

where we also used the fact that the rest of incoming edges of u” and the out-degree
of all nodes are the same in (G, ) as in (G’, b). This combined with Eq. (3.4) proves

Eq. (3.3).

Node Redirect

Let u,w be out-twins. Consider a graph obtained from (G, b) by redirecting u into
w, i.e., (G,b) = R,_,,(G,b). We have to prove that PR%(G’,b’) = PR4(G,b), for
every v € V \{u, w}, and that PR (G’,b’) = PR%(G, b)+ PR% (G, b). Note that the sum
of weights is the same in both graphs. Hence, based on Theorem 1, it is enough to
show that the probability of visit at node v at step t € N is the same in both graphs
for every v € V'\ {u, w} and that this probability for node w in graph (G’,b’) is the
sum of probabilities of visits for u and w in graph (G, b), i.e.,

pe (v,1) = p:G'b(v, t), ) for every v e V \ {u, w}, (3.5)

pGp(u,t) + pG,b(w, t), forv=w.

If b(G) = 0, then from Eq. (2.6) we get that p¢,, , (w, 1) = 0 =pg , (u,t) + pg , (w, )
and p‘é,’b,(v,t) =0= p“G’b(v,t), for every v € V' \ {u,w}. Hence, let us assume that
b(G) > 0.

Then, we will prove Eq. (3.5) by induction on t. From Eq. (2.6) for t = 0 we
have that pG, p(v,0) = b'(v)/b'(G) = b(v)/b(G) = pG'b(v 0), for every v € V' \ {u,w},
and p,, (w,0) = b (w)/b'(G) = (b(u) + b(w))/b(G) = p& ,(1,0) + pL- ,(w, 0).

Now, let us assume that Eq. (3.5) holds for some t > 0 and fix v € V. Observe
that for every walk w € QQ;,1(G’) that ends at v, i.e., w(t+1) = v, the walk must have

visited a direct predecessor of v, say s, at step t — 1 and then move through edge

)
)
(u

(s,v). From this we get the equation p‘é,}b,(v,t +1) = a) sepl(c) ;efg(( V) pr(s,t),
which we write as
I’lG’(w! ) IAG’(Srv)
paG',b/(vl t+ 1) = W pg, b’(w t) Z T -pg,’b,(s, t). (3.6)

+ )
sePJ<G’>\{w} deg; (C”)

Analogously, for graph (G, b) we get

,’lG( ) a ,MG(w’v) a VG(S’V) a
pG (v, t+1) = pept)ta————p¢ ,(wt)+a Z ——PGu(S:1)
degu(G) deg, (G) <P} (O] g:(G)

Since u and w are out-twins we have ug(u,v) = ug(w,v) and deg/ (G) = deg (G).
Moreover, from the inductive assumption we get p(; , (1, 1) + p; , (w, t) = p§, , (w, £)
as well as p“G’b(s,t) = p‘(’;,lb,(s, t), for every s € V \ {u, w}. Also, the redirection does
not affect the out-degree of any node. Thus, equivalently

I/lG(w,v) a I/lG(S,'V) a
paG,b(vyt"' ]-) = a—+ ; 'pG;’b/(w; t)+a Z TPGI,b/(S,t)- (3.7)
de8u(@) sePul(G)\{u,w}degs (&)

If v € V\ {u,w}, then for every node s € V \ {u}, the edges going from s to v
are not affected by the redirection, i.e., ug(s,v) = pg/(s,v) and P1(G) \ {u} = P}(G).
Thus, from Eq. (3.6) and Eq. (3.7) we have that p“G,’b,(v,t+ 1)= p‘é’b(v, t+1).

It remains to prove that p¢, , (w, t+1) = p¢; (1, +1) + p§  (w, £ +1). To this end,
let us add Eq. (3.7) for v = u and v = w sidewise. We get

(s,u)+ pg(s,w)
Py t+1)+pl(wt+1)=a Z A deg+(’éG’) PG p(sit). (3.8)
sl (G)UP, (G)\{u} s
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Recall that the redirection transfers all incoming edges of u into w. Thus, for every
s € V\{u}, we have that pg (s, w) = ug(s, u)+pug(s,w) and PL(G’) = PH(G)UPL(G)\{u}.
Therefore, combining Eq. (3.6) and Eq. (3.8) we get that p¢, ;. (v,t + 1) = p¢ , (u, 1 +
1)+ pg (w,t +1). Hence, the induction hypothesis holds.

Baseline

Assume v is an isolated node in (G, b). Since node v has no incoming edges, from
PageRank recursive equation (Eq. (2.5)) we get that PR}(G,b) = b(v). This proves
that PageRank satisfies Baseline.

3.2.2 Part 2: Axioms Imply PageRank

In the main part of the proof, we show that if a centrality measure, F, satisfies first
five axioms, i.e., Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap,
and Node Redirect, then it is equal to PageRank for some decay factor up to a
scalar multiplication. Formally, we show that there exist two constants ¢y € Ry
and ap € [0,1), such that for every graph G = (V,E), node weights b, and node
v € V, it holds that F,(G,b) = cg - PRy (G,b). If F satisfies Baseline as well, then
cg =1and F,(G,b) = PR} (G, b).

We start by introducing a class of k-arrow graphs that will be used in the proof.
Each graph in this class consists of k + 1 nodes—one source and k sinks—and k
edges connecting the source to all the sinks. Moreover, only the source has a posi-
tive weight, i.e., the weight of each sink is zero.

Definition 1. Graph G = (V,E) with weights b is a k-arrow graph if V. ={u,vy,..., v},
E={(u,vy),...,(u,vg)} and b(v;) = 0, for every i € {1,...,k}.

In particular, every 1-arrow graph is of the form (({u, v}, {u,v}),[x,0]), for some
nodes u,v and x € Ry.
Our proof has the following structure:

* First, we show that the centrality measure F satisfies two basic properties:
Locality—the centrality of a node depends only on the part of the graph con-
nected to it (Lemma 6) and Source Node—the centrality of a source is equal
to its weight multiplied by some non-negative constant (Lemma 7). More-
over, this constant is the same for every source in every graph: it will be our
constant cr.

* Then, we show that the centrality of a sink in a 1-arrow graph is equal to the
centrality of a source multiplied by some non-negative constant (Lemma 8).
Moreover, this constant is the same for every 1-arrow graph and lies in the
interval [0,1) (Lemma 9): it will be our constant ar.

* Having defined ar and cp, we turn our attention to proving that in every
graph the centrality of any node is equal to PageRank with decay factor ar
multiplied by cr. We do it by considering increasingly complex graphs.
Specifically, we start with 1-arrow graphs (Lemma 10) and then k-arrow
graphs (Lemma 11). Furthermore, we consider arbitrary graphs with no cy-
cles (Lemma 12) and, ultimately, all possible graphs (Lemma 13).

Finally, if F additionally satisfies Baseline, then cx =1 and F(G, b) = PR% (G, b), for
every graph (G,b) (Lemma 14).
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First, let us focus on a basic property of Locality, which is implied by our first
two axioms: Node Deletion and Edge Deletion. Locality states that if a graph con-
sists of several disjoint parts (also called connected components), then the centrality
of a node can be calculated by looking only at the part it is in [76].

Lemma 6. (Locality) If a centrality measure, F, satisfies Node Deletion and Edge Dele-
tion, then for every two disjoint graphs, G = (V,E) and G’ = (V',E’), node weights, b
and b’, and node v € V, it holds that

F,((G+G,b+b") = F,(G,b).

Proof. Fix v € V and consider an arbitrary edge (14, w) € E’. Since graphs G and
G’ are disjoint, there is no path from u to v. In particular, u is not a successor
of v. Hence, by Edge Deletion, if we remove edge (1, w), the centrality of node v
will remain unchanged. Using this argument for all the edges from E’ we get that
removing them does not affect the centrality of node v, i.e.,

F,((G+G,b+b)=F,(VUV,ELE),b+b)=E,(VUV,E),b+b).  (3.9)

Now, in graph (VU V’,E) all nodes from V"’ are isolated. Hence, by Node Deletion,
removing these nodes does not affect the centrality of node v as well, i.e.,

F,(VUV’E),b+b")=F,((V,E),b) = F,(G,b). (3.10)
Combining Eq. (3.9) and Eq. (3.10) yields the thesis. ]

In the second lemma, we prove that if a centrality measure satisfies Node Dele-
tion, Edge Deletion, and Node Redirect, then it also satisfies the property of Source
Node: the centrality of a source, i.e., a node without incoming edges, is propor-
tional to its weight. This property is similar to Baseline, but there are two differ-
ences: First, Baseline applies only to isolated nodes and Source Node applies to all
sources. Second, Baseline implies that the centrality of a node is equal, not merely
proportional, to its weight.

Lemma 7. (Source Node) If a centrality measure, F, satisfies Node Deletion, Edge Dele-
tion, and Node Redirect, then there exists a constant cp € Ry such that for every graph
G = (V,E), weights b, and every source v € V, it holds that

F,(G,b) =cp-b(v).
Specifically, cp = F,,(({w},0),[1]) for an arbitrary node w.

Proof. We begin by considering graphs with one node and zero edges, i.e., graphs
of the following form: (({v},0), [x]) for some node v and x € R,(. We will later show
the relation between such graphs and sources in arbitrary graphs.

Consider two graphs (({u},0),[x]) and (({v},0),[y]) for arbitrary u # v and x,p €
Rso. Let (G, b) be their sum, i.e., (G,b) = (({#,v},0),[x,v]). Since both u and v are
isolated in (G, b), from Node Deletion we know that their centralities are the same
as in the original graphs. In particular,

Fy(G,b) + Fy(G,b) = Fy,(({u},0), [x]) + Fo (({v}, 0), [y]). (3.11)

Nodes u and v are out-twins in (G, b) (both have the same empty set of outgoing
edges). Thus, by Node Redirect, redirecting node v into u increases the centrality
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of u by the centrality of v. Such a redirecting results in graph (({u},0),[x + v]), s
we get
Fy(({u},0), [x +9]) = Fu(Ry—u(G, b)) = Fu(G, b) + Fy (G, b). (3.12)

Combining Eq. (3.11) and Eq. (3.12) we get

Fy(({u}, 0), [x +9]) = Fu(({u}, 0), [x]) + Fo ({2}, 0), [3])- (3.13)

We make the following observations:
(a) Fy(({v},0),[0]) =0, for every v (from Eq. (3.13) with y = 0);

(b) Fy(({v},0),[y]) =
with x =0 and (a

2

F,(({u},0),[v]), for every u # v and y € Ry (from Eq. (3.13)
);

(©) Fu(({v},0),[x +p]) = Fo({v},0), [x]) + Fy (({v},0), [y]), for every v and x,p € Ry
(from Eq. (3.13) and (b)).

Note that (b) implies that the centrality of v in the weighted graph (({v},0),[x])
depends solely on weight x. In other words, there exists a function f : R,y — R
such that F,(({v},0),[x]) = f(x). Since centralities are non-negative, we know that
f is also non-negative, i.e., f(x) > 0, for every x € R53. On the other hand, from
(c) we know that f is additive, i.e., f(x+v) = f(x)+ f(v), for every x,y € R5(. Non-
negativity and additivity combined imply that f is linear [23], i.e., f(x) = cg - x, for
some cp € Ry( and for every x € R(. In effect, we know that there exists cp € Ry
such that for every node v we have

Fy(({v},0), [x]) = c - x. (3.14)

Now, let G = (V, E) be an arbitrary graph with node weights b and v be a source
in G. Since v has no incoming edges, we know that it is not its own successor.
Hence, by Edge Deletion, removing its outgoing edges does not affect its centrality,
ie., F,(G,b) = F,((V,E =L,J(G)),b). In the resulting graph, v is isolated. Thus,
from Lemma 6 (Locality) we have that F,((V,E-L,(G)),b) = F,(({v},0),[b(v)]). This
combined with Eq. (3.14) yields the thesis.

Finally, by taking Eq. (3.14) for v = w and x = 1 we get that cp = F,(({w},0),[1]),
which concludes the proof. O]

Consider an arbitrary graph (G,b) in which node v is a source. Since the set
of incoming edges of v is empty, i.e., I,/ (G) = 0, from PageRank recursive equa-
tion (Eq. (2.5)) we know that PRy (G,b) = b(v), for every decay factor ar € [0,1).
This implies that—regardless of the decay factor ap—centrality of v is equal to
PageRank of v multiplied by c, i.e., F,(G,b) = cg - PRy (G, b).

Now, let us focus on 1-arrow graphs. Recall that in a 1-arrow graph there is
one sink and one source connected by an edge and the sink has zero weight. In the
next lemma, we prove that the centrality of the sink is proportional to the weight
of the source.

Lemma 8. If a centrality measure, F, satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then there exists a constant dp € Ry
such that for every 1-arrow graph (G,b) = (({u, v}, {(u,v)}), [x,0]), it holds that

F,(G,b) = dg - x.
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Figure 3.2: Graphs illustrating the proof of Lemma 8.

Proof. Our proof has a similar structure as the proof of Lemma 7, but instead of
graphs with a single node we consider 1-arrow graphs.

First, let us consider two arbitrary 1-arrow graphs (({u, v}, {(u,v)}),[x,0]) and
(({u”, v, {(u’,v")}), [v,0]) such that node u,v,u’,v" are distinct. Let G be their sum,
ie., (Gb) = (({u,v,u’,v'},{(u,v),(u",v)}),[x,0,9,0]) (see Fig. 3.2 for an illustration).
From Lemma 6 (Locality) we know that centralities of all nodes in (G, b) are the
same as in the original graphs. In particular,

Fv(Gfb) + Fv’(Gib) = F,,(({u,‘l/}, {l(l/l,V)I}), [X,O]) + F,,/(({u’,‘l//}, ﬂ(u’,v’)l}), [}1;0]) (3-15)

Moreover, nodes v and v’ are out-twins in (G, b) (both have the same empty set
of outgoing edges). Hence, by Node Redirect, redirecting v’ into v increases the
centrality of v by the centrality of v’. Formally, let us denote the resulting graph
by (G',b’) = (({u, v, '}, {(w,v), (u’, v)}), [x, 0,9]). Then,

F’U(G"b/) = F,(Ry (G, 1)) = F,(G,b) + F, (G, D). (3.16)

Furthermore, nodes u and u’ are out-twins in (G’,b’) (both have only one edge
to node v). Hence, again by Node Redirect, redirecting u” into u does not affect the
centrality of node v. Such a redirecting results in graph (({u, v}, {(u,v)}), [x + »,0])
which is a 1-arrow graph (see Fig. 3.2), and we get

Fy(({u, v} A, v)}), [x +9,0]) = Fy (Ry (G, 1) = Fy (G, D). (3.17)
Combining Egs. (3.15)~(3.17) we have
Fy((fu, v} A, v)}), [x + ,0]) =
Fy({u, v} A(u, )b, [x,0]) + Fu ({0} 4w, 0))), [, 0]). (3.18)
From Eq. (3.18) we make the following observations:
(@) Fp(({u’, "} A/, v")}),[0,0]) = 0 (from Eq. (3.18) with y = 0);

(b) F,(({u,v},{(u,v)}),[0,0]) = O (from (a) and the fact that u’,v” were chosen ar-
bitrarily);

(©) Ful({, v} 401, 0)1), [,0]) = Fy (', 07} 4’0", [3,0)), for every p € Rog (from
Eq. (3.18) with x = 0 and (b));

(d) Fo((fu, v} A, v)D), [x+2,0]) = Fo (({u, v}, (10, )), [%,0])+Fo ({w, v}, (e, 0)}), [,0]),
for every x,y € Ry (from Eq. (3.18) and (c)).

From the fact that nodes were chosen arbitrarily, we know that (c) holds for every
four pairwise distinct nodes u, v, u’,v’. Assume they are not distinct, i.e., # # v and
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u’ = v, but {u,v}N{u’,v’} # 0. Then, let us take two new nodes u”,v”, different
than u,v,u’,v’. Using (c) two times we get that

Fy(({u, v} 4w, v)}), [, 0]) = Fpr(({u”, 0"} A (", 07)}), [, 0])
= F,,f(({u’,v'}, {I(”/i v,)l})l [y' 0])r

for every y € R, which implies (c) also for not pairwise distinct nodes. Further-
more, this means that the centrality of a sink in a 1-arrow graph depends only
on the weight of the source, i.e., there exists a function f : R,y — R such that
F,({u,v},{u, v}, [x,0]) = f(x). Since centralities are non-negative, we know that f is
also non-negative, i.e., f(x) > 0, for every x € R5y. On the other hand, from (d) we
know that f is additive, i.e., f(x+v) = f(x) + f (), for every x,y € R5(. Now, non-
negativity combined with additivity implies that f is linear [23], i.e., f(x) = df - x.
This concludes the proof. O

In the next lemma, building upon Lemma 8, we show that there exists a con-
stant ap € [0,1) such that the centrality of a sink in 1-arrow graph equals arp - cf - x
where x is the weight of the source (see Lemma 7 for the definition of cf).

Lemma 9. If a centrality measure, F, satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then there exists a constant ap € [0,1)
such that for every 1-arrow graph (G, b) = (({u, v}, {(1,v)}), [x, 0]) it holds that F (G, b) =
ag - cg - x. Specifically, ap = F,(({w’,w}, {(w’,w)}),[1,0])/cE for arbitrary nodes w,w’ if
cg > 0and ap = 0, otherwise.

Proof. So far, we have proved that there exist constants cg,dr € R5( such that for
every l-arrow graph the centrality of the source equals cr - x (Lemma 7) and the
centrality of the sink equals dr - x (Lemma 8), where x is the weight of the source.
Hence, to show that the centrality of the sink equals af - cg - x for some ar € [0, 1) it
is enough to prove that if cp =0, then dp = 0, and if ¢y # 0, then dp < cp.

Assume cp = 0. Consider graph (G,b) = ({u,v,u’,v"}, {(u,v),(u’,v")}),[1,0,0,0])
which is a sum of two 1-arrow graphs. Since ¢ = 0, from Lemma 7 (Source Node)
we know that F,(G,b) =0 = F,/(G,b) and from Lemma 8 and Lemma 6 (Locality),
F,(G,b) = dp. Nodes u and u” each have one outgoing edge. Thus, from Edge Swap
we know that swapping the ends of these edges does not affect the centralities in
the graph. Formally, for graph (G',b’) = (({u, v, u’,v'},{(u,v")(v,u")}),[1,0,0,0]) we
know that F,(G’,b’) = F,(G,b). However, from Lemma 8 and Lemma 6 (Locality)
we get that F,(G’,b") = 0. Hence, dr = 0.

Assume now that cp # 0. To show that dr < cp, we will show that in one partic-
ular 1-arrow graph the centrality of the sink is strictly smaller than the centrality
of the source which building upon the above general results will imply the thesis.
Let u,v be two arbitrary distinct nodes and let y be the centrality of v in graph
(({vh (v, v)}),[1]) divided by cg, ie., vy = F,(({v}, {(v,v)}), [1])/cp. We will show that
in 1-arrow graph (({u, v}, {(u,v)}),[y,0]) the centrality of the sink is smaller than
the centrality of the source, i.e.,

Fy((u, v} A, 0))), [9, 01) > Fo (s, v}, {(w, v)}), [, 0. (3.19)

To this end, we begin by proving that the centralities of the source and the sink in
graph (G,b) = (({u, v}, {(u,v)}), [v, 1]) are equal, i.e.,

Fy((u, v} G, v))), [9,1]) = Fo (({w, v}, {(, 0)0), [9, 1]). (3.20)
To prove Eq. (3.20), first let us consider graph

(G,, b,) = (({u,v,w}, {I(u, w), (v, V)l}); [}/; L, 0])’
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Figure 3.3: Graphs illustrating the proof of Lemma 9. The weights of nodes are
shown.

which is the sum of two graphs: 1-arrow graph (({u, w}, {(u, w)}),[y,0]) and already
mentioned one-node graph (({v},{(v,v)}),[1]) (see Fig. 3.3 for an illustration). From
Lemma 6 (Locality) and the definition of y we know that the centrality of node v
equals cg -y. On the other hand, u is a source in (G’,b’). Thus, from Lemma 7
(Source Node) we know that its centrality also equals cf - y. Hence, centralities of
both nodes are equal, i.e.,

F, (G, b")=F,(G,b").

Since u and v have the same centralities in (G’,b’) and both have one outgoing
edge, from Edge Swap we know that exchanging the ends of these edges does
not affect the centralities in the graph. Let (G”,b”) be the resulting graph, i.e.,
(G, 0") = (({uw, v, w} (1, v), (v,w)}), [v,1,0]) (see Fig. 3.3). We get that

Fu(G”, b/l) — FV(G”, b”).

Furthermore, since v is not its own successor and is not a successor of u, i.e., v ¢
S.(G”,b”), v ¢ S,(G”,b”), from Edge Deletion we can remove edge (v,w) from
(G”,b”) without affecting centralities of nodes u,v. Moreover, after deleting edge
(v, w) node w is isolated. Thus, from Node Deletion we know that w can also be
deleted without affecting these centralities. Observe that in this way we obtain
graph (G, b) = (({u,v}, {(u,v)}), [y, 1]) which proves Eq. (3.20).

Now, let us go back to proving Eq. (3.19). To this end, observe that graph
(({er, v}, {(u,v)}), [y, 0]) is obtained from (G, b) by changing the weight of v to zero.
Since u is a source also in this graph and its weight did not change, from Lemma 7
(Source Node) we know that its centrality is the same as in (G, b), i.e.,

Fy(({u, v} A, 0)D), [, 0]) = Fu ({1, v} A, v)}), [, 1) (3.21)

Now, let us turn our attention to the centrality of node v. Let us consider graph
(G b%) = (({u,v, v}, {(u,v)},[v,0,1]) (see Fig. 3.3). Since v’ is a source in this graph,
we know that F,/(G*, b*) = cp. Moreover, both v and v’ do not have any outgoing
edges in (G*,b*). Thus, by Node Redirect, redirecting v’ into v increases the cen-
trality of v by the centrality of v/, i.e., by cp. Such redirecting results in graph
(({we, v}, {(u, v)}), [v, 1]). Hence, we get

Fy (({u, v} f(w, 0)}), [, 01) = Fo ({u, v} {(w, ))), [9, 1]) - cp. (3.22)

Since we assumed that cg > 0, Eq. (3.22) combined with Eq. (3.20) and Eq. (3.21)
implies Eq. (3.19).

Our proof implies that F,(({w’, w), {(w’,w)}),[1,0]) = af - c¢ for arbitrary nodes
w,w’. Hence, if cp > 0, we get that ap = F,(({w’,w), {(w’,w)}),[1,0])/cg, and if cp = 0,
ar can be defined arbitrarily: we will assume ap = 0. O
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Figure 3.4: Example graphs illustrating the proof of Lemma 11 for k = 3.

A direct corollary from Lemma 7 (Source Node) and Lemma 9 is the fact that in
1-arrow graphs centralities are equal to PageRank with decay factor ap multiplied
by cr (see these lemmas for the definitions of ar and cp).

Lemma 10. If a centrality measure, F, satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then for every 1-arrow graph (G,b) =
(({ee, v}, {(u, v)}), [x,0]), it holds F(G,b) = cg - PR* (G, b). Specifically, F,(G,b) = cg-x
and F,(G,b) =ag-cg-x.

Proof. From Lemma 7 (Source Node) we know that F,(G,b) = cf - x and from
Lemma 9 we know that F,(G,b) = ap - cp - x. On the other hand, from PageRank
recursive equation (Eq. (2.5)) we have that PR}/ (G, b) = x (node u has weight x and
no incoming edges) and PR;"(G,b) = ap - PR;f(G,b) = ag - cp - x (node v has a zero
weight and only one incoming edge from node u with deg/(G) = 1). This concludes
the proof. O

In the next lemma, we extend the result from Lemma 10 concerning 1-arrow
graphs to k-arrow graphs. More in detail, we show that the centrality of every sink
in k-arrow graph equals ar - cg - x/k, where x is the weight of the source. Hence, the
centrality ar - cp - x of the sink in a 1-arrow graph is split equally among all k sinks.

Lemma 11. If centrality measure F satisfies Node Deletion, Edge Deletion, Edge Multi-
plication, Edge Swap, and Node Redirect axioms, then for every k-arrow graph (G, b) =
({u,v1,...,vib A(u,vq), ..., (u,v)}), [x,0,...,0]), it holds that F(G,b) = cg - PR* (G, b).
Specifically, F,(G,b) = cp-x and F, (G, b) = ap - cp - x/k, for every i € {1,...,k}.

Proof. First, let us consider an arbitrary k-arrow graph and denote it by (G,b) =
({ur, v, v (u,ve), -0 (U, v, [%,0,...,0]) (note that for the notational con-
venience we will denote the source node by u;, not u). See Fig. 3.4 for an illustra-
tion. We need to prove that F, (G, b) = ap-cg-x/k, for every i € {1,..., k}. To this end,
through a series of invariance operations, we will show that splitting the source of
a k-arrow graph into k separate sources, each with 1 edge and 1/k of the original
weight does not affect the centralities of sinks. In so doing, we obtain k separate
1-arrow graphs and Lemma 10 will imply the thesis.

First, take k — 1 distinct nodes, u5,...,u, that do not appear in (G, b) and con-
sider a graph obtained from (G, b) by splitting u; into k nodes, uy,..., 1y, each with
the same edges as u; in (G, b) and 1/k of the original weight (see Fig. 3.4), i.e., let

k

(G, b)) = [[{ul,...,uk,vl,‘..,vk},|_|ﬂ(ui,v1),...,(ui,vk)ﬂ],[x/k,...,x/k, O,...,O]].

i=1

More formally, we have b’(u;) = x/k and b’(v;) = 0, for every i € {1,...,k}. Graph
(G’,b’) contains k identical sources (uy,...,u;) and k identical sinks (vq,...,vg). All
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sources are out-twins, so, by Node Redirect, redirecting one of the nodes u5,..., 1y
into u; does not affect the centralities of the sinks. This operation does not change
edges of u; and the remaining sources, hence they are still out-twins. By per-
forming all such redirections one by one, i.e., redirecting u, into uy, uz into uy,
and so on, we will eventually obtain the original graph (G,b). Hence, we have
F,,(G,b") = F,,(G,b), for every i € {1,..., k}.

Next, fix arbitrary 7,7 € {1,...,k} and consider replacing in (G’,b’) edges (u;,v;)
and (uj,v;) with (u;,v;) and (u;,v;), i.e., an edge swap. Both sources u; and u; have
exactly k outgoing edges and, by Lemma 7 (Source Node), they have the same
centrality equal to x/k. Hence, by Edge Swap, this operation does not affect cen-
tralities in the graph. Moreover, it does not affect the number of outgoing edges of
any node. Hence, by sequentially replacing edges (u;,v;), (u;,v;) with (u;,v;), (u;,v;)
for all (unordered) pairs i,j € {1,...,k} we obtain graph

(G”, ") = (({u1,..., w1, v} k- {(ug,v1)s .o (up, vib), [x/K, ..., x/K,0,...,0]),

(see Fig. 3.4) and we know that centralities of sinks did not change, i.e., we get that
F,,(G",b")=F, (G, b’), for every i € {1,..., k}.

In graph (G”,b”) each source u; has k edges, all to the same node v;. From Edge
Multiplication we know that replacing these k edges with only one edge does not
affect centralities in the graph. Hence, for a graph

(G b%) = (({ur,..., u, v, - v {(u, ve)s - - (g viOb), [X/K, ..., x/K, 0,..., 0]),

we get F,, (G*,b*) = F, (G”,b"), for every i € {1,..., k}.
Finally, observe that graph G is a sum of k separate 1-arrow graphs. Hence,
from Lemma 6 (Locality) and Lemma 10 we get that

Fy (G 07) = Fy,(({ui, vil (i, vi)b), [x/k, O]) = a - cp - x/k,

for every i € {1,...,k}. As a result, we showed that the centrality of every sink v,
in (G*,b*) is the same as in (G”,b”), (G’,b’) and eventually in (G,b), so we have
F, (G, b)=af-cp-x/k.

Now, equality F, (G,b) = cp - x comes directly from Lemma 7 (Source Node).
Moreover, from PageRank recursive equation (Eq. (2.5)) we have PR, (G, b) = x (u;
is a node with no incoming edges and weight x) and

PR, (G,b) =af PR, (G,b)/k =af-x/k, foreveryie{l,... k}

(v; has a zero weight and one incoming edge from node u which has deg;r1 (G) =k).
This shows that F(G,b) = cg - PR(G, b) and concludes the proof. O

Now, let us turn our attention to more complex graphs. In the following lemma
we consider an arbitrary graph with no cycles and prove that the centralities are
equal to PageRank with decay factor ar multiplied by cp (recall that these con-
stants where defined in Lemmas 7 and 9).

Lemma 12. If a centrality measure, F, satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then for every graph with no cycles
(G, b), it holds that F(G,b) = cg - PR (G, ).

Proof. We will use induction on the number of predecessors of a node in a graph.
If P,(G) =0, then node v is a source in G. Hence, from Lemma 7 (Source Node) we
have F,(G,b) = cp - b(v) = cg - PRy (G, b).
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Figure 3.5: Example graphs illustrating the first part of the proof of Lemma 12 for
k=3.

Take a graph, (G,b), and a node, v, with non-empty set of predecessors, i.e.,
P,(G) # 0. Let u be an arbitrary predecessor of v. Clearly, P,(G) C P,(G), but since
graph has no cycles also u ¢ P,(G). This implies that u has less predecessors than
v, so from the inductive assumption, we get that F,,(G,b) = cg- PRy (G, b), for every
u € P,(G). Thus, to show that F, (G, b) = cg-PR;f (G, b), based on PageRank recursive
equation (2.5) it is enough to prove that

Z F,(G,b)
deg (G)

(u,v)ely (G)

Fy(G,b) = ap -

+cg-b(v). (3.23)

Note that from Edge Deletion and the fact that v is not a predecessor of itself nor
its direct predecessors, we know that the outgoing edges of node v do not affect
neither F,(G,b), I, (G), F,(G,b), nor deg} (G), for every (u,v) € I, (G). Hence, they
do not affect Eq. (3.23). Consequently, in what follows, we will assume that v has
no outgoing edges, i.e., it is a sink.

First, let us assume that v has a zero weight, i.e., b(v) = 0, and only one incom-
ing edge, (u,v) (see Fig. 3.5 for an illustration). Let us denote the number of outgo-
ing edges of u by k and its PageRank by x, i.e., k = deg/ (G) and x = PR;f(G,b). From
the inductive assumption we know that F, (G, b) = c¢-x. Hence, to prove Eq. (3.23),
we need to show that F,(G,b) = af - cg - x/k. This, combined with Lemma 11 is
equivalent to proving that the centrality of v is equal to the centrality of a sink in
a k-arrow graph in which the source has weight x. To prove this, consider adding
such a graph to (G, b), i.e., let

(G, 0)Y=((V",E'),b') = (G+({u/,wy,...,w}, {(u",wy),..., (u/,we)}), b+ x-1,,).

From Lemma 6 (Locality), we know that the centrality of v did not change, i.e.,
F,(G,b) =F,(G’,b’). Let us turn our attention to node u and the source of a k-arrow
graph, u’. For u, from Lemma 6 (Locality) we know that F,(G’,b") = F,(G, b) = cg-x.
For u’, from Lemma 7 (Source Node) we have that F,,,(G’,b’) = cg - x. Hence, u and
u’ have equal centralities and equal numbers of outgoing edges. In effect, from
Edge Swap we know that we can replace edges (1, v) and (u’, w;) with edges (u,w)
and (u’,v) and centralities in the graph will not change. Such a swap results in a
graph (G”,b”) = (V/,E' = {(u,v), (", wy)} L {(u, wq), (1, v)}),b’) in which v is a sink
in a part of the graph which is a k-arrow graph (see Fig. 3.5). In this k-arrow graph
the source has weight x, hence node v has the centrality af - cg - x/k. Formally, we
proved that

F.(G,b)
deg,(G)’

u

F,(G,b) = F,(G,b') = E,(G",b") = ap - cp - x/k = ap - (3.24)

where the consecutive equalities come from Lemma 6 (Locality), Edge Swap, Lemma 11
combined with Locality, and the definition of constants x and k.
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Figure 3.6: Example graphs illustrating the second part of the proof of Lemma 12
for m = 3.

Now, assume that v has m (m > 1) incoming edges and possibly non-zero
weight. In such a case let us split node v into m + 1 separate nodes, one with
the original weight of v and no incoming edges and m nodes, each with zero
weight and one incoming edge (see Fig. 3.6 for an illustration). Formally, as-
sume [ (G) = {(u1,v),..., (4, v)} (note that u; may not be pairwise different) and
consider adding nodes wy,...,w,, to the graph and replacing edges I, (G) with
(uy,wr),..., (4, w,,). Let us denote the resulting graph by

(G,b)=((VU{wy,...,w, L, E-T,(G)u{(uy,w1),..., (thy, wy)}), b+ 0).

Clearly, we have (G,b) = R,, _,, (...(Rwl_,,,(G’,b’))). Moreover, node v and nodes
wy,..., W, are out-twins in (G’,b’) (they are all sinks). Hence, from Node Redirect
we get that the centrality of v is the sum of centralities of v and wy,...,w,, in (G’,b’),
ie.,

Fy(G,b) = F, (G, b') + Fyy (G, b) + -+ Fy, (G, D). (3.25)

Furthermore, from Node Redirect we know that centralities of nodes other than v
did not change, i.e., F,(G,b) = F,(G’,b’). Since the out-degrees of these nodes did
not change either, from our analysis of nodes with a single edge and Eq. (3.24), in
particular, we get that

F,. (G V)= FulGhb)_ FulGY) (3.26)
i) T A gt (G) T T degl (G) ‘

Finally, Lemma 7 (Source Node) implies that F,(G’,b’) = cg - b(v) (recall that v
has no incoming edges in (G’,b’)). This combined with Eq. (3.25) and Eq. (3.26)
concludes the proof. O

We are now ready to prove that in every graph centrality measure satisfying
the axioms is equal to PageRank with the decay factor ap multiplied by cg.

Lemma 13. If a centrality measure, F, satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then for every graph (G, b), it holds that
F(G,b) = cp - PR (G, b).

Proof. Take an arbitrary graph G = (V,E) and weights b. We will prove the thesis
by induction on the number of cycles in G. If there are no cycles in graph G, then
the thesis follows from Lemma 12.

Assume otherwise. Fix node w that belongs to at least one cycle and let x,, be
its PageRank in (G, b), i.e., x,, = PRy (G, b). Consider graph (G’,b’) obtained from
(G, b) by adding two-node graph consisted of node s with weight x,, , node ¢ with
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Figure 3.7: Example graphs illustrating the proof of Lemma 13.

weight 0, and edges from s to f in the number equal to deg; (G) (see Fig. 3.7 for an
illustration). Formally,

(G,b") = (G+({s,t},deg) (G) - {(s, t)}), b+ x,, - Lg).

We know that PageRank satisfies our axioms (Section 3.2.1), hence it also sat-
isfies Lemma 6 (Locality). Thus,

PRI (G,b)=x, and PRI (G,b')=x,, (3.27)

where the first equation holds from Locality and the second one from PageRank
recursive equation (Eq. (2.5)). Moreover, nodes w and s have the same number
of outgoing edges in graph (G’,b’) equal to deg, (G). Therefore, if we swap the
ends of all of their outgoing edges, then, by Edge Swap, this operation will not
affect PageRank of any node. Let us define graph (G”,b’) as a result of such an
operation (see Fig. 3.7 for an illustration). Formally, let G” = (V U{s,t},E-I;/(G) U
{(w,t),(s,w’) : (w,w’) € [;(G)}). From the fact that PageRank satisfies Edge Swap
we get that

PR (G”,b') = PRy (G',b"), foreveryveV. (3.28)

Observe that in graph (G”, b’) all of the outgoing edges of w go to node t. Hence,
graph (G”,b’) has less cycles than graph (G, b) (every cycle in the former graph is
also a cycle in the later one, but the former graph does not contain cycles with w).
Hence, from the inductive assumption we know that

F,(G”,b')=cp-PRy(G”,b’), foreveryveV. (3.29)
Thus, combining Eqgs. (3.27)—(3.29) we obtain that
F (G”,b')=cp-PRF(G”,b') = cp-x, = cp - PRIF(G”,b') = F(G”, ).

Thus, nodes w and s have equal centralities and equal number of outgoing edges
in graph (G”,b’). Therefore, again from Edge Swap, this time for centrality F, we
get that

F,(G,b')=F,(G",b"), foreveryvelV.

Combining this with Eq. (3.28) and Eq. (3.29) yields F,(G’,b’) = ¢g - PR,(G’,V’).
Hence, the thesis follows from Lemma 6 (Locality). O

So far, we have proved that if F satisfies Node Deletion, Edge Deletion, Edge
Multiplication, Edge Swap, and Node Redirect, then F(G,b) = cg - PR*(G, ), for
every graph (G, b). In the last lemma of this section, we show that if F also satisfies
Baseline, then ¢ = 1; hence, F(G,b) = PR (G, b).
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Lemma 14. If centrality measure F satisfies Node Deletion, Edge Deletion, Edge Multi-
plication, Edge Swap, Node Redirect, and Baseline, then for every graph (G, b), it holds
that F(G,b) = PR (G, ).

Proof. If centrality measure F satisfies Node Deletion, Edge Deletion, Edge Mul-
tiplication, Edge Swap, and Node Redirect, then from Lemma 13 we know that
F,(G,b) = cp - PRY (G, b) for cp and ap defined as follows: cp = F(({w},0),[1]) and
arp = Fu,(({w’, w}, {(w’,w)}),[1,0])/cE if cg > 0 and ar = 0, otherwise, for arbitrary
nodes w,w’. Now, from Baseline we have that F,(({w},0),[1]) = 1, which implies
cp = 1 and concludes the proof. O]

3.2.3 Independence of Axioms

In this section, we show that all six axioms used in our characterization of Page-
Rank are necessary, i.e., if we remove any one of them, then the remaining axioms
will be satisfied also by some centrality measure other than PageRank. In other
words, we will show that axioms are independent and no axiom is implied by the
others. To this end, in the following theorem for each axiom we show that there
exists a centrality, other than PageRank, that satisfies all other axioms.

Theorem 15. (Independence of Axioms) From six axioms: Node Deletion, Edge Dele-
tion, Edge Multiplication, Edge Swap, Node Redirect, and Baseline, none is implied by
a combination of five others. Specifically:

* A centrality measure F defined for every graph (G, b) and node v as
F,(G,b) = PRA“YN(G,b),  where a(G,b) = 1/(2+b(G))

satisfies Edge Deletion, Edge Multiplication, Edge Swap, Node Redirect, and Base-
line, but does not satisfy Node Deletion.

* A centrality measure F defined for every graph (G, b) and node v and an arbitrary
ae(0,1)as
FA( ):{2‘PR$(G,b)—b(v), if v is a sink,
o PRY(G,b), otherwise

satisfies Node Deletion, Edge Multiplication, Edge Swap, Node Redirect, and
Baseline, but does not satisfy Edge Deletion.

* A centrality measure F defined for every graph (G, b) and node v and an arbitrary
ae(0,1)as

p(u,v)
FYG,b)=a- —— " _.FYG,b b
HGh=ar| ) LS FGH b
ueb; (G)

satisfies Node Deletion, Edge Deletion, Edge Swap, Node Redirect, and Baseline,
but does not satisfy Edge Multiplication.

* A centrality measure F defined for every graph (G, b) and node v as

VG(“!V)

Fy(G,b) = -
) deg, (G)

uep}

-b(u)+b(v)

satisfies Node Deletion, Edge Deletion, Edge Multiplication, Node Redirect, and
Baseline, but does not satisfy Edge Swap.
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* A centrality measure F defined for every graph (G, b) and node v as

pe(u,v)
deg, (G)

F,(G,b) =
uePl(G)

+b(v)

satisfies Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap, and
Baseline, but does not satisfy Node Redirect.

* A centrality measure F defined for every graph (G, b) and node v and an arbitrary
ae(0,1)as
Fj(G,b)=2-PRy(G,b)

satisfies Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap, and
Node Redirect, but does not satisfy Baseline.

We divide the proof of Theorem 15 into six lemmas, Lemmas 16-21, each char-
acterizing a centrality different than PageRank that satisfies five out of six of our
axioms.

Lemma 16. A centrality measure F defined for every graph (G, b) and node v as

F,(G,b)= PRY“Y(G,b),  where a(G,b) = 1/(2 + b(G))

satisfies Edge Deletion, Edge Multiplication, Edge Swap, Node Redirect, and Baseline,
but does not satisfy Node Deletion.

Proof. Observe that for any two graphs (G, b), (G’,b’), and a node v, if b(G) = b’(G’)
and PR%(G,b) = PR}(G', 1), for every a € [0,1), then a(G,b) = a(G’,b’) and

F,(G,b) = PRYCY) (G, b) = PRA“Y)(G", b') = F, (G, ). (3.30)

We consider each axiom separately. Fix an arbitrary graph G = (V,E) and node
weights b.

* For Edge Deletion, consider an arbitrary edge (#,w) € E and take graph
(G,0") = ((V,E = {(u,w)}),b). Clearly, b(G) = b’(G’). Since PageRank satis-
fies Edge Deletion, for every v € V' \ S, (G), we have PR%(G,b) = PR(G’,b’)
for a € [0,1) and Eq. (3.30) implies F,(G,b) = F,(G’,b’).

* For Edge Multiplication, consider node u € V, constant k € N, and graph
(G, 0)=(V,Euk-T;;(G)),b). Clearly, b(G) = b’(G’). Since PageRank satisfies
Edge Multiplication, Eq. (3.30) implies F,(G, b) = F,(G’,1’), for every v € V.

* For Edge Swap, consider (u,u’), (w,w’) € E such that deg) (G) = deg/ (G) and
F,(G,b) = F,(G,b). The latter implies that PR%“"(G,b) = PRA“Y (G, b) as
well. Let (G,b") = (V, E - {(u,u’),(w,w)} U {(u,w’),(w,u)}), b). Clearly,
b(G) = b’(G’). Since PageRank satisfies Edge Swap, Eq. (3.30) implies that
F,(G,b)=F,(G,b’), foreveryve V.

* For Node Redirect, assume u,w € V are out-twins. Let (G,b") = R,,_,,,(G, D).
Clearly, b(G) = b’(G’). Since PageRank satisfies Node Redirect, for every
node v € V \ {u, w}, we have PRY(G,b) = PR%(G’,1’), for every a € [0,1), and
Eq. (3.30) implies F,(G,b) = F,(G’,b’). Analogously, we get that

Fu(G,b)+F,(G,b) = PRY (G, b)+ PRATY(G, b) = PRACYNG, 1) = Fo (G, 1),
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 For Baseline, assume v is isolated. Since PageRank satisfies Baseline we get
that F,(G,b) = b(v).

Finally, consider Node Deletion. Let (G,b) = (({u,v,w},{(u,v)}),[1,0,1]). We
have a(G,b) = 1/4, so F,(G,b) = PR,I,M(G,b) = 1/4. Note that w is isolated in (G, b).
Now, if we delete node w we will obtain (G’,b’) = (({u, v}, {(u,v)}),[1,0]). Here, we
have a(G’,b’) = 1/3, so F,(G,b) = PRY*(G,b) = 1/3. Thus, Node Deletion is not
satisfied. O

Lemma 17. A centrality measure F defined for every graph (G, b) and node v and an
arbitrary a € (0,1) as

Fo(G,p) = > PRUG D) =bv), ifvis asink,
PR%(G; b); Otherwise,

satisfies Node Deletion, Edge Multiplication, Edge Swap, Node Redirect, and Baseline,
but does not satisfy Edge Deletion.

Proof. Fix a € (0,1). Observe that for any two graphs (G,b),(G’,b’), and node v, if
it holds that node v is a sink in (G, b) if and only if v is also a sink in (G’,b’) and
PR%(G,b) = PRE(G',b’), then

Fi(G,b) =2-PR4(G,b)-b(v) =2-PR{(G,b')-b'(v) = F4(G',b"), if visasink,
Fi(G,b) = PR}(G,b) = PR4(G’,b") = F&{(G', 1), otherwise.
(3.31)
We consider each axiom separately. Fix an arbitrary graph G = (V,E) and node
weights b.

» For Node Deletion, assume u is an isolated node. Let (G’,b’) = ((V \{u}, E), b).
Fix v € V \ {u}. Note that v is a sink in (G, b) if and only if it is a sink in
(G’,b’). Since PageRank satisfies Node Deletion, from Eq. (3.31) we have that
F4(G,b)=F3(G",b’).

* For Edge Multiplication, consider node u € V, constant k € N, and graph
(G,b')=(V,Euk-LJ(G)),b). Fix v € V. Note that v is a sink in (G, b) if and
only if it is a sink in (G’,b’). Since PageRank satisfies Edge Multiplication,
Eq. (3.31) implies F4(G,b) = F5(G",b’).

 For Edge Swap, consider edges (u,u’), (w,w’) € E such that F,(G,b) = F,(G, b)
and deg!(G) = deg, (G). Since u and w are not sinks, by the definition of
F, this means that also PR} (G,b) = PR%/(G,b). Next, let us consider graph
(G,b)=((V,E—{(u,u),(w,w" )} u{(u,w),(w,u’)}),b). Fix v € V. Note that v
is a sink in (G, b) if and only if it is a sink in (G’,b’). Since PageRank satisfies
Edge Swap, Eq. (3.31) implies Fi(G,b) = F5(G’,b’).

* For Node Redirect, assume u,w € V are out-twins. Let (G’,b’) = R,_,,(G, b).
Fix v € V \ {u,w}. Note that v is a sink in (G,b) if and only if it is a sink
in (G',b’). Since PageRank satisfies Node Redirect, Eq. (3.31) implies that
F,(G,b) =F,(G’,b’). Analogously, we get that

F}(G,b)+F;(G,b)=2-PR}(G,b)—b(u) +-PR%(G,b) - b(w) =
2-PRI(G,b')-b'(w)=Fi(G,b)
if u and w are sinks and if not, then

F4(G,b) + F%(G,b) = PR%(G,b) + PR%(G,b) = PR (G, b') = F* (G, 1').
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 For Baseline, assume v is isolated. Since v is as sink and PageRank satisfies
Baseline, we get that FJ(G,b) =2-PR4(G,b)-b(v) =2-b(v) - b(v) = b(v).

Finally, consider Edge Deletion. Let (G,b) = (({u,v, w}, {(u,v),(v,w)}),[1,0,0]).
In (G,b) node v is not a sink, hence F;(G,b) = PR%(G,b) = a. Note that v is not
its own successor in G. Now, if we delete edge (v,w), then we obtain a graph
(G, b") = (({u,v,w}, {(u,v)}),[1,0,0]). Since v is a sink, F,(G’,b") =2-PR4(G,b) = 2-a.
Thus, Edge Deletion is not satisfied. ]

Lemma 18. A centrality measure F defined for every graph (G, b) and node v and an
arbitrary a € (0,1) as

P:j(c,b)a-[ Z _fulGh) +b(v) (3.32)

W) deg, (G)+1

satisfies Node Deletion, Edge Deletion, Edge Swap, Node Redirect, and Baseline, but
does not satisfy Edge Multiplication.

Proof. Fix a € (0,1). Let us start by showing that the centrality F” is well defined,
i.e., that the Eq. (3.32) has a unique solution. To this end, consider a graph opera-
tion f that for every graph G = (V, E) with node weights b adds a new node t with
a zero weight and adds one edge from every node in V to ¢, i.e.,

F(G,b)=((VU{thEL{(v,t):v € V}),b+0).

Observe that for every weighted graph (G, b) and node v, the PageRank recursive
equation (Eq. (2.5)) for graph f(G,b) and node v is the same as Eq. (3.32). Hence,
we get that centrality F“ in graph (G, b) is equal to PageRank in graph f(G,b), i.e.,
F*(G,b) = PR*(f (G, b)).

Consider a second graph operation h. Observe that if for some graph (G, b) and
node v we have f(h(G,b)) = h(f(G,b)) and PR4(f(G,b)) = PR (h(f(G,D))), then

Fj(G,b) = PR(f(G,b)) = PRy (h(f (G, b))) = PRy(f (h(G, ) = F(h(G,b)).  (3.33)

Now, we are ready for the axiomatic analysis of centrality F?. We will consider
each axiom separately. Fix an arbitrary graph G = (V, E) and node weights b.

* For Node Deletion, assume u is an isolated node. Let us define a graph
operation h that for an arbitrary graph (G’,b’) = ((V’,E’),b’) deletes node u
and all its edges, i.e., let (G, b’) = (V' \{u},E’' - TI;;(G') - I,;(G’)),b”) where
b”(v')=b'(v'), for every v’ € V. Fix v € V \ {u}.

— Clearly, operations f and h are commutative, so f(h(G,b)) = h(f(G,)).

— Consider PageRank of v in graph f(G,b). Note that in f(G,b) node u is
no longer isolated, but has one outgoing edge to node t. Nevertheless,
since PageRank satisfies Edge Deletion, we know that removing this
edge does not affect PageRank of v. If edge (u,t) is removed, then u
is isolated, so since PageRank satisfies Node Deletion, this node can
also be removed without affecting PageRank of v. Hence, we get that

PRI(f(G, b)) = PRy(h(f (G, D))).

As aresult, by Eq. (3.33), F3(G,b) = Fi(h(G,b)).
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* For Edge Deletion, consider an arbitrary edge (#,w) € E. Let us define a
graph operation h that for an arbitrary graph (G’,b’) = ((V',E’),b’) deletes
edge (u,w) from the graph, i.e., let i(G’,b") = (V’,E’ - {(u,w)}), b’). Also, fix
veS,(G).

— Clearly, operations f and h are commutative, so f(h(G,b)) = h(f(G,)).

— Note that v ¢ S§,,(G) implies v ¢ S,,(f(G)). Hence, since PageRank satis-
fies Edge Deletion, we get that PR} (f(G, b)) = PR4(h(f(G,D))).

As a result, by Eq. (3.33), Fi(G,b) = Fi(h(G, b)).

» For Edge Swap, let us assume that (#,u’), (w,w’) € E are two edges such that
F&(G,b) = F3(G,b) and deg} (G) = deg! (G). Let us define a graph operation
h such that for an arbitrary graph (G’,b’) = ((V',E’),b’) operation h deletes
edges (u,u’),(w,w’) and adds edges (u,w’),(w,u’). Formally, we have that
h(G,b")= (V" E' = {(u,u’), (w,w)} U {(u,w),(w,u’)}),b’). Fixve V.

— Clearly, operations f and h are commutative, so f(h(G,b)) = h(f(G,D)).

- PRA(f(G,b)) = PR%(f(G,b)) from the definition of F? and the fact that
F&(G,b) = F&(G,b). Also, deg; (f(G)) = deg,(f(G)) = deg/ (G) + 1. Page-
Rank satisfies Edge Swap, hence PR4(f(G,b)) = PR4(h(f (G, D))).

As aresult, by Eq. (3.33), Fi(G,b) = Fi(h(G,b)).

* For Node Redirect, assume u, w € V are out-twins. Let us define an operation
h as redirecting u into w, i.e., h = R,,_,,,. Take an arbitrary v € V' \ {u, w}.

— Clearly, operations f and h are commutative, so f(h(G,b)) = h(f(G,D)).

— Note that the fact that u,w are out-twins in (G, b) implies that they are
also out-twins in f (G, b). Hence, since PageRank satisfies Node Redirect,
we have PRY(f (G, b)) = PR%(h(f(G,D))).

As aresult, by Eq. (3.33), F3(G,b) = F4(h(G, b)). Analogously, we get that

FA(G,b) + F,(G,b) = PRA(f (G, b)) + PR (f(G, b)) =
PRY,((f (G, b)) = PR (h(G, b))) = F&(h(G, b)).

* For Baseline, assume that node v is isolated. From PageRank recursive equa-
tion (Eq. (2.5)) we get that F3(G, b) = b(v).

Finally, consider Edge Multiplication. Let (G,b) = (({u,v},{(u,v)}),[1,0]). We
have that F}(G,b) = 1 and Fi(G,b) = a/2. Now, if we add an additional copy of
outgoing edges of node u we obtain (G,b’) = (({u, v}, {(u,v),(u,v)}),[1,0]). Here,
we have that F(G,b) = 1 and F}(G,b) = 2/3 - a. Thus, Edge Multiplication is not
satisfied. O

Lemma 19. A centrality measure F defined for every graph (G, b) and node v as

- b(u) + b(v) (3.34)

satisfies Node Deletion, Edge Deletion, Edge Multiplication, Node Redirect, and Base-
line, but does not satisfy Edge Swap.
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Proof. We will consider each axiom separately. Fix an arbitrary graph G = (V,E)
and node weights b.

e For Node Deletion, assume u is an isolated node. Since u is isolated, it is not
a direct predecessor of any node and we get that F,(G,b) = F,((V \{u},E),b),
for every v € V \ {u}.

» For Edge Deletion, consider an arbitrary edge, (1, w) € E. For every v ¢ S,,(G),
node u is not a direct predecessor and we get F,(G,b) = F,((V,E—{(u,w)}), b).

» For Edge Multiplication, consider node u# € V and constant k € N. Also, let
(G",b") = ((V,EUk-TI;; (G),b). Note that ug(u,v)/deg, (G) = pc/(u,v)/deg!(G’),
for every u,v € V. Also, for every v € V, the weight and the set of direct
predecessors in both graphs is the same, i.e.,b(v) = b’(v) and P}(G) = P}(G’).
Hence, from Eq. (3.34) we get that F,(G,b) = F,(G’,b’), for everyv e V.

* For Node Redirect, assume u, w € V are out-twins. Let (G’,b’) = R,_,,(G, b).
Note that deg/(G) = deg; (G) and pg(u,v) = pg(w,v), for every v € V. More-
over, the out-degrees of all nodes in (G, b) are the same as in (G’,b’). Hence,
for every v € V '\ {u,w}, we have

_ ”G(S’v) . I’lG(w 1/) _ ’ 17
F,(G,b) = EPI(GZ)\‘{ }deg:(G) b(s)+ —/—————= deg" (G) <(b(u)+b(w))+b(v) = F,(G,b").

For node w, we have that ug(u, u)+ pug(u, w) = pg(w, u)+ pg(w,w) = pg (w, w).
So we get that

F,(G,b)+F,(G,b) =

pg(s,u +yG(s w) ) pe(u,u)+pc(u,w)
deg! (G deg (G)

+(b(u)+b(w)) = Fy(G',b').

seV\{u,w}

 For Baseline, assume v is isolated. Since v has no direct predecessors, we
have F,(G,b) = b(v).

Finally, consider Edge Swap. Let (G,b) = (({u, v, w},{(u,v), (v,w)}),[1,0,0]). We
have that F,(G,b) =1, F,(G,b) =1, and F,(G,b) = 0. Observe that nodes u and v
both have exactly one outgoing edge and equal centralities. Now, observe that if
we replace edges (#,v) and (v, w) with edges (4, w) and (v, v), then we obtain graph
(G, b)) = (({u,v,w}, {(u,w), (v,v)}),[1,0,0]). Here, we have that F,,(G’,b") = 1. Thus,
Edge Swap is not satisfied. O

Lemma 20. A centrality measure F defined for every graph (G, b) and node v as

(u,v)
F,(G,b) = g‘g TR (3.35)
ueP)(G) Su

satisfies Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap, and Baseline,
but does not satisfy Node Redirect.

Proof. We will consider each axiom separately. Fix an arbitrary graph G = (V,E)
and node weights b.
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¢ For Node Deletion, assume u is an isolated node. Since u is isolated, it is not
a direct predecessor of any node and we get that F,(G,b) = F,((V \ {u},E), b),
for every v € V' \ {u}.

* For Edge Deletion, consider an arbitrary edge, (u,w) € E. For every v ¢ S, (G),
node u is not a direct predecessor, thus F,(G,b) = F,((V,E — {(u, w)}), b).

* For Edge Multiplication, consider node u € V, constant k € N, and graph
(G, b")=((V,Euk-I,; (G),b). Observe that for every pair of nodes u,v € V, we
have pg (u,v)/deg) (G') = pug(u,v)/deg) (G). Also, for every v € V, the weight
and the set of direct predecessors in both graphs is the same, i.e.,b(v) = b’(v)
and P}(G) = P}(G’). Hence, from Eq. (3.35) we get that F,(G,b) = F,(G’,b’),
for everyve V.

» For Edge Swap, take (u,u’),(w,w’) € E such that F,(G,b) = F,,(G,b) and also
deg/ (G) = deg, (G). Let (G’,V’) = (V, E—{(u, u'), (w, w")} L {(ur, w’), (w, u")}), D).
Note that the out-degree and the weight of every node in (G, b) is the same
asin (G, 1’), i.e.,deg; (G) = deg/ (G’) and b(v) = b’(v), for every v € V. Hence,
for every node v € V' \ {u/,w’}, we get that F,(G,b) = F,(G’,b’). Observe that
deg! (G’) =deg! (G'). Also, pg(w,u’)+pc(u,u’) = pe(w,u’)+pc (u,u’). Hence,

'(5;14,) '(w:u/)"‘ ’(u;ul) ’ ’ 1
FlGhl= ) et gyt =RulED)
sePL,(G))\{u,w} 8s Sw

For w’ we get analogously F,/(G,b) = F,,(G’,b’).

* For Baseline, assume v is isolated. Since v has no direct predecessors, we
have F,(G,b) = b(v).

Finally, consider Node Redirect. Let (G,b) = (({u,v, w}, {(u,v),(w,v)}),[0,0,0]).
We have F,(G,b) = 2. Note that u and w are out-twins. Now, if we redirect node
u into w we will get graph (G,b’) = (({v,w},{(w,v)}),[0,0]). Here, we have that
F,(G’,b’) = 1. Thus, Node Redirect is not satisfied. O

Lemma 21. A centrality measure F defined for every graph (G, b) and node v and an
arbitrary a € (0,1) as

F%(G,b) = 2- PR%(G, b)
satisfies Node Deletion, Edge Deletion, Edge Multiplication, Edge Swap, and Node Redi-

rect, but does not satisfy Baseline.

Proof. Fix a € (0,1). Observe that for any two graphs (G, b), (G,b’) and a node v, if
PRY(G,b) = PR%(G,b’), then

F%G,b)=2-PRYG,b) = 2- PRY(G’,b’) = EX(G’, V). (3.36)

We will consider each axiom separately. Fix an arbitrary graph G = (V,E) and
node weights b.

* For Node Deletion, assume u € V is an isolated node. Let us consider graph
(G, b") = (V\ {u},E),b). Since PageRank satisfies Node Deletion, Eq. (3.36)
implies F3(G,b) = F}(G',b’), for every v € V \ {u}.

 For Edge Deletion, consider edge, (u,w) € E. Let (G',b") = ((V, E—{(u, w)}), b).
Since PageRank satisfies Edge Deletion, Eq. (3.36) implies Fi(G, b) = F3(G',b’),
for every v e V'\ 5,(G).
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» For Edge Multiplication, consider node u € V, constant k € N and graph
(G,0")=((V,Euk-T;;(G)),b). Since PageRank satisfies Edge Multiplication,
Eq. (3.36) implies F3(G,b) = F(G’,b’), for every v € V.

» For Edge Swap, take (u,u’),(w,w’) € E such as Fi(G,b) = F}(G,b) and also
deg/ (G) = deg; (G). From the definition of F* we have PR%(G,b) = PR% (G, b)
as well. Let (G,b") = (V, E—{(u,u’),(w,w")} U {(u,w’),(w,u’)}), b). Since
PageRank satisfies Edge Swap, Eq. (3.36) implies Fi(G,b) = Fi(G’,b’), for ev-
eryveV.

» For Node Redirect, assume u, w € V are out-twins. Let (G’,b’) = R,_,,(G, b).
Since PageRank satisfies Node Redirect, by Eq. (3.36), F4(G,b) = FA(G', V),
for every v € V' \ {u, w}. Analogously, we get that

F%(G,b)+ F%(G,b) = 2-(PR%(G, b) + PR%.(G, b)) =
2 PRZ/(Ru—W/(Gr b)) = Ffu(Ru—m/(Gf b)).

Finally, consider Baseline. Observe that Fi(({v},0),[1]) = 2. Hence, the axiom is
not satisfied. O

3.3 Related Axiomatizations

In their seminal paper, Page et al. [62] introduced PageRank as an extension of a
centrality measure that they called simplified PageRank, which is equivalent to See-
ley index. Indeed, both centrality measures are closely connected, which manifests
itself, inter alia, through their walk interpretations (see Section 2.2.3 for details).
Therefore, in this section we present a detailed comparison of our axiomatic char-
acterization of PageRank to existing axiomatizations of Seeley index. There are
two such axiomatizations in the literature: one by Palacios-Huerta and Volij [63]
and one by Altman and Tennenholtz [1].

Axiomatizing The Invariant Method

Palacios-Huerta and Volij [63] considered the problem of measuring the impor-
tance of scientific journals based on the journal citation network. In a citation net-
work, nodes represent journals and an edge (A, B) represents a reference of journal
A to journal B. The authors presented an axiomatization of the invariant method
[66] which is equal to Seeley index of a journal in a citation network divided by
the number of articles it has published. To this end, they proposed the following
four axioms:

Invariance with Respect to Reference Intensity: Multiplying the references in ev-
ery journal by arbitrary constants, specific for each journal, does not affect the
importance of any journal.

This axiom, satisfied by both the invariant method and Seeley index, is also
satisfied by PageRank. It is equivalent to Edge Multiplication with the only
difference that it is formulated as an operation on all nodes at once.

Weak Homogeneity: Imagine that there are only two journals, A and B, and both
have the same number of articles and references (some to themselves, some to the
other journal). If journal A has x times more references from B than B from A,
then A is x times more important.
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This axiom is satisfied by both the invariant method and Seeley index. How-
ever, it is not satisfied by PageRank: PageRank is not proportional to the
impact of predecessors as it takes into consideration also the weight of a
node.

Weak Consistency: Assume that every journal has the same number of articles and
references. Consider deleting one of the journals, A, and for every journal B citing
A, redirecting all references of B to A to journals that were originally cited by A,
preserving the proportions in the numbers of citations (e.g., if B had six references
to A and A had two references to C and one to D, then four references are added
from B to C and two from B to D). Now, the importance of any journal in the
resulting network is the same as in the original network.

This axiom, satisfied by both the invariant method and Seeley index, is based
on the fact that in both of these measures intermediaries transfer further the
whole importance they got from their predecessors. In particular, if a node is
added in the middle of an edge, then the importance of all nodes remain the
same. PageRank does not satisfy this axiom, since the decay factor decreases
the importance transferred by intermediaries.

Invariance to Splitting of Journals: Consider an operation of splitting a journal into
k identical copies in a way that each copy has exactly 1/k of the original edges to
each cited journal. Now, if every journal is split into an arbitrary number of
copies, then every copy will have the same importance as the original journal in
the original network.

This axiom is satisfied by the invariant method, but it is not satisfied by See-
ley index: according to Seeley index, the total importance of all copies equals
the original importance of a journal. The same is true also for PageRank.
Node Redirect is based on the same idea, but instead of splitting all nodes
into several copies, it considers merging two copies with possible different
incoming edges into one node.

Axiomatizing The Ranking

Altman and Tennenholtz [1] proposed an axiomatization of the ranking of nodes
that result from Seeley index. As a result, axioms are of the different nature, as they
concern the relation between centralities of different nodes, but not the specific
values. The authors proposed five such axioms:

Isomorphism: In two isomorphic graphs the ranking is the same with respect to the
isomorphism.

This axiom, proposed originally by Sabidussi [69], is satisfied by all reason-
able centrality measures, including all measures introduced in this paper.

Self Edge: Adding a self-loop to a node can only increase its position in the ranking
and does not affect the ranking of other nodes.

This axiom is not satisfied by PageRank, because adding a self-loop to a node
can significantly decrease the centrality of its direct successors and change
their ranking with respect to other nodes.

Vote by Committee: Splitting a node into k + 1 parts in a way that one node has the
original incoming edges and k outgoing edges to other parts and k nodes have one
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incoming edge each and the original outgoing edges of the node does not affect the
ranking of nodes in the graph.

This axiom is based on a similar principle as Weak Consistency from the
axiomatization of the invariant method. Similarly, it is not satisfied by Page-
Rank since the decay factor decreases the importance transferred by the in-
termediaries. Hence, the direct predecessors of the split node may end up
with a lower ranking.

Collapsing: Redirecting a node into its out-twin does not affect the ranking of other

nodes.

This axiom, very similar to Node Redirect, is satisfied also by PageRank.

Proxy: Assume that there is a node v with k incoming and k outgoing edges such that

all direct predecessors are different and have equal centralities. Removing node v
and adding k edges from direct predecessors to direct successors, one edge to each
node, does not affect the ranking of any node in a graph.

This axiom, similar to Vote by Committee, is not satisfied by PageRank be-
cause of the same reason: the decay factor decreases the importance trans-
ferred by the intermediaries.

As we can see, in both axiomatization there is an axiom that concerns splitting

or merging out-twin nodes, as in Node Redirect. Also, in the axiomatization of the
invariant method, there is an axiom equivalent to Edge Multiplication. However,
most axioms in both axiomatizations are not satisfied by PageRank. That is why
the axiomatic characterizations described in this section cannot be easily extended
for the characterization of PageRank.



Chapter 4

Random Walk Decay Centrality

In the previous chapter, we focused on the axiomatic characterization of PageRank.
As we have argued in the Introduction, various properties of PageRank make it
suitable for particular applications, but at the same time, the same properties may
be undesirable in other settings. In particular, PageRank of a node can be increased
by changing the outgoing edges of the node. In the social media network, where
users can decide who they want to follow, this allows for strategic manipulation of
one’s connections in order to increase their importance score.

In this chapter, we introduce an alternative for PageRank, named random walk
decay centrality (RWD), which is robust to changes in the outgoing edges of the
assessed node. We prove that it can be uniquely characterized by six axioms: Ran-
dom Walk Property, Locality, Sink Merging, Lack of Self-Impact, Directed Leaf Pro-
portionality, and One-Node Graph. Moreover, we show that exchanging one of the
axioms, Random Walk Property, for a new axiom, Shortest Paths Property, results
in a unique characterization of standard personalized decay centrality from Sec-
tion 2.2.1. Similarly, if in the axiomatization of RWD we exchange axiom Lack
of Self-Impact for Edge Swap from Section 3.1, then we obtain another axiomatic
characterization of PageRank. Based on the analysis of our axioms, we argue that
RWD has properties, violated by PageRank, that can be desirable in various set-
ting.

This chapter is organized as follows. First, we introduce an additional notation
as well as the definition of random walk decay centrality in Section 4.1. Then, in
Section 4.2, we introduce axiomatic characterizations of RWD, personalized decay
centrality, and PageRank. Section 4.3 is devoted to the proofs that our axiomati-
zations indeed uniquely characterize respective measures. Finally, in Section 4.4,
we take a closer look at the differences in axioms satisfied by PageRank and RWD
and discuss the implications.

The content of this chapter is an extended version of the paper published in
the proceedings of the AAAI-19 conference [81].

4.1 Definitions

In this section we introduce additional notation and the definition of random walk
decay centrality.

As the name suggest, random walk decay centrality is primarily based on walks.
Recall that by p¢; , (v, 1) we denote that probability that node v is visited at step ¢
of the random walk on graph (G, b), assuming that in each step of the walk there
is probability a € [0, 1] that it does not stop (Eq. (2.6)). Now, we are interested not
only in the fact that node v is visited at step t, but also we want to know how many
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&

(G,

Figure 4.1: An example graph. Grey nodes have weights equal to 1 and the weight
of white nodes is 0.

times v was visited before. Thus, let us denote the probability that the random
walk visits node v for the k-th time at step t by p”G b(v, t, k). Formally, let

g uclw(i),w(i+1)
Pyt = ) b(bwéo))~ ”GGE e ) ifb(G)>0, (4.1)
w0eQ,(Gaw(t)=v, (G) i €g,(1(G)
{s<t:w(s)=v}|=k

and p¢, (v, 1,k) = 0, otherwise. Note that the only difference between Eq. (4.1) and
Eq. (2.6) is that we restrict the sum to the walks that visited v exactly k times,
i.e, we take w € Q(G) such that |{s < t: w(s) = v}| = k. Clearly, it holds that

Y1 PG (vt k) = pg (v, 1)

Example 4. Consider once again graph (G,b) from Fig. 2.1 (for readers convenience,
presented also in Fig. 4.1). Let us calculate the value of pg ,(v1,3,1), i.e., the proba-
bility that node vy is visited for the first time at step 3. To this end, let us consider
all walks of length 3 that end at vy. There are five such walks: wy = (vq,v8,v7,71),
wy = (v4,v8,V7,71), w3 = (Vs5,6,V7,V1), Wy = (Vg,V5,V,v1), and ws = (ve,v5,V7,1).
In walks w,—ws, node vy is indeed visited for the first time at step 3. However, in wy, at
step 3, it is visited for the second time (first time being at step 0), thus we do not count
this walk to calculate p“G,b(vl,?), 1). Also, walks w,, wy, and ws start at a node with
zero weight, i.e., we have that b(w,(0)) = b(w4(0)) = b(ws(0)) = 0, hence their input is
also equal to zero. Therefore, the probability that the random walk visits node vy for the
first time at step 3 is equal to the probability that the random walk starts with sequence
ws3, which (as established in Example 1) is equal to 1/2-a/3-a/2-a = a/12. Thus,
PG, (v1,3,1) = a3/12.

As stated in Section 2.2.3, PageRank is defined as the expected number of visits
at a node, regardless of the number of times it has been visited, i.e.,

PR%(G,b) = b(G)- Zp‘é’b(v, t) = b(G)- Znglb(v, t,k). (4.2)

t>0 20 k>1

In contrast, random walk decay centrality is defined as the expected number of
the first time visits at a node or, equivalently, as the probability that a node will be
visited at all, i.e.,

RWD(G,b) = b(G)- Zpgb(v, t1). (4.3)
£>0

From random walk definitions of PageRank and RWD we obtain the following
relation between these measures: for every node, v € V, its RWD is equal to Page-
Rank of v in the graph obtained from the original graph by removing all outgoing
edges of v.
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Proposition 22. For every decay factor a € [0,1), graph G = (V,E), node weights b,
and node v € V, it holds that

RWD?A(G,b) = PRA((V,E ~T; (G)), b).

Proof. Denote G’ = (V,E-TI,/(G)). Observe that walks that end at v and do not visit
v before are unaffected by removal of outgoing edges of v. Hence, from Eq. (4.1) we
have p“G,’b(v, t,1)= p“G’b(v, t,1), for every t € N. On the other hand, v in graph G’ is
a sink, thus it cannot be visited by a walk more than once. Hence, p“G,,b(v, t,k) =0,
for every t e Nand k > 1. Summing over all k > 1 we get

Zpé/,b(v' t,k)=pgp(v,t,1).
k>1

Hence, the thesis follows from Eq. (4.2) and Eq. (4.3). O]

4.2 Axioms

In this section, we introduce our axioms and use them to characterize random walk
decay centrality, personalized decay centrality, and PageRank.
First, let us introduce the following six axioms.

* Random Walk Property (centrality of a node depends only on its visit probabil-
ities and the sum of node weights in the graph): For every two graphs G = (V,E),
G’ =(V',E’), node weights b, b’, and node v € VNV such that b(G) = b’(G’) and
plG’b(v, t, k)= pé,’b,(v, t,k), for every t,k € N, it holds that

F,(G,b) = F,(G,b).

* Locality (centrality of a node depends only on the connected component of this
node): For every two disjoint graphs G = (V,E), G’ = (V',E’) and node weights
b, b’, it holds that

F,(G,b)=F,(G+G,b+1’), foreveryveV.

» Sink Merging (redirecting a sink into another sink without a common predecessor
sums up their centralities and does not affect the centrality of other nodes): For
every graph G = (V,E), node weights b, and sinks u,w € V such that P,(G) N
P,(G) =0, it holds that

F,(G,b)=F,(R,-,(G,b)), foreveryveV\{uw}
and F,(G,b)+ F,(G,b) = F,(R,_(G,D)).

* Lack of Self-Impact (centrality of a node does not depend on the outgoing edges
of this node): For every graph G = (V,E), node weights b, and edge (v,u) € E, it
holds that

Fy(Gb) =F,((V,E—{(v,u)}), b).

* Directed Leaf Proportionality (adding an edge from a sink to an isolated node
increases the centrality of this node by the centrality of the sink times a constant):
There exists a constant, a € Ry, such that for every graph G = (V,E), node
weights b, sink u € V, and isolated node v € V, it holds that

Fy(V,EL{(u,v)}), b) - Fy (G, b) = a- F,, (G, b).
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* One-Node Graph (a node with unit weight in a graph without any edges nor
other nodes has centrality equal to one): For every node v, it holds that

Fv(({v}l 0)1 [1]) =1.

The first axiom, Random Walk Property, allows us to restrict our attention to
only those centrality measures that are based solely on the visit probabilities and
the sum of node weights in the graph.

The next three axioms are invariance axioms. The first one of them, Locality,
initially proposed by Skibski et al. [76], can be seen as a stronger version of Node
Deletion from Section 3.1. Node Deletion states that removing an isolated node
does not affect the centrality of other nodes. In turn, Locality allows for remov-
ing a whole part of a graph without affecting the centrality of other nodes as long
as there is no connection, even disregarding the direction of edges, between these
nodes and the removed part. Note that Node Deletion and Edge Deletion imply
Locality (Lemma 6). However, Locality implies only Node Deletion and not Edge
Deletion. Sink Merging, i.e., our next axiom, is a weaker version of Node Redi-
rect from Section 3.1. Node Redirect states that redirection of arbitrary out-twins
results in summing their centralities and does not affect the other nodes. In Sink
Merging, both nodes have to be sinks and they cannot share any predecessors as
well. The last invariance axiom is Lack of Self-Impact. It states that the centrality
of a node does not depend on its outgoing edges. In the setting in which nodes can
decide upon their outgoing edges this axiom translates to unmanipulability (or
strategy-proofness) property of centrality measures (see Section 4.4 for details).

The fifth axiom, Directed Leaf Proportionality, is inspired by Leaf Propor-
tionality axiom proposed by Skibski and Sosnowska [77] for undirected and un-
weighted graphs. The axiom binds the centrality of a leaf, i.e., a sink with one
incoming edge, with the centrality of its direct predecessor, when this direct pre-
decessor has only one outgoing edge.

The first five axioms uniquely characterize RWD up to a scalar multiplication
(see Lemma 38). Our last axiom, One-Node Graph, plays a similar role as Baseline
axiom in characterization of PageRank from Chapter 3, i.e, it specifies the cen-
trality in a simple borderline case: a graph with one node, unit weight, and no
edges. As a result, RWD is uniquely characterized, a proof of which is presented
in Section 4.3.1.

Theorem 23. A centrality measure satisfies Random Walk Property, Locality, Sink
Merging, Lack of Self-Impact, Directed Leaf Proportionality, and One-Node Graph if
and only if it is random walk decay centrality.

Personalized decay centrality, as defined in Section 2.2.1, satisfies five out of
six of our axioms, i.e., Locality, Sink Merging, Directed Leaf Property, Lack of
Self-Impact, and One-Node Graph. However, unsurprisingly, it does not satisfy
Random Walk Property since it is based on distances in a graph rather than visit
probabilities. In order to obtain a unique characterization, let us introduce Short-
est Paths Property axiom that is analogous to Random Walk Property, but takes
distances into account instead of probabilities of visits. Our axiom is a direct
translation of the definition of the class of distance based centralities by Skibski
and Sosnowska [77] to weighted and directed graphs.

Shortest Paths Property (centrality of a node depends only on the dis-
tances to it from other nodes and the sum of node weights in the graph): For
every two graphs, G = (V,E), G’ = (V’,E’), node weights b, b’, and node
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v e VNV’ such that b(G) = b'(G’) and [{u € V : distg(u,v) =k Ab(u) =
x| = lfu € V' : distg(u,v) = k Ab'(u) = x}|, for every k € N and x € R, it
holds that

F,(G,b) = F,(G,b).

The following theorem states that if in the axiomatic characterization of RWD
we exchange Random Walk Property for Shortest Path Property, then we obtain the
unique characterization of personalized decay centrality. Observe that Shortest
Paths Property implies Lack of Self-Impact: the distance from other nodes to a
node does not depend on its outgoing edges. Hence, the latter axiom is omitted
from the theorem.

Theorem 24. A centrality measure satisfies Shortest Paths Property, Locality, Sink
Merging, Directed Leaf Proportionality, and One-Node Graph if and only if it is per-
sonalized decay centrality.

The proof of the theorem is presented in Section 4.3.2.

Finally, let us consider PageRank. Observe that it also satisfies five out of six
axioms from the characterization of RWD, namely: Random Walk Property, Local-
ity, Sink Merging, Directed Leaf Proportionality, and One-Node Graph. However,
observe that adding a loop to a sink increases its PageRank. Therefore, PageRank
violates Lack of Self-Impact.

In order to extend these five axioms to a unique characterization of PageRank
we incorporate Edge Swap axiom from Section 3.1.

Theorem 25. A centrality measure satisfies Random Walk Property, Locality, Sink
Merging, Edge Swap, Directed Leaf Proportionality, and One-Node Graph if and only
if it is PageRank.

The proof of the theorem is given in Section 4.3.3. The consequences of the
differences in axioms characterizing RWD and PageRank are discussed in detail in
Section 4.4.

4.3 Proofs of Uniqueness

In this section, we present the proofs of Theorems 23-25. We start with the unique
characterization of RWD (Theorem 23), then we move to personalized decay cen-
trality (Theorem 24), and finally we address the unique characterization of Page-
Rank (Theorem 25).

4.3.1 Random Walk Decay Centrality (Theorem 23)
Let us begin by proving that RWD satisfies all six of our axioms.

Lemma 26. For every decay factor a € [0,1), random walk decay centrality satisfies
Random Walk Property, Locality, Sink Merging, Lack of Self-Impact, Directed Leaf Pro-
portionality, and One-Node Graph.

Proof. Let us consider an arbitrary graph G = (V, E) and node weights b, and con-
sider the axioms one by one.

* For Random Walk Property, consider graph G’ = (V’,E’), node weights b’,
and node v € VNV’ such that b(G) = b’(G’) and pé’b(v, t,k)= pé,’b,(v, t, k), for
every t,k € N. Observe that from Eq. (4.1) we get that

paG,b(V; tlk) = at : pé‘,b(vl tlk) = at : pé"b'(vl £, k) = paG/,b/(v; t, k);
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for every t, k € N. Hence, the axiom follows from Eq. (4.3).

* For Locality, take graph G’ = (V’,E’) such that VNV’ = 0, weights b’, and
node v € V. Observe that in graph (G + G’,b + b’) any walk that starts at one
of the nodes in V’ cannot visit nodes in V and vice versa. Thus, for every
t € N, we have that {w € Q;(G+G'): w(t) = v Al{s <t: w(t) =v}| =1} =
{weQG): w(t)=vAl{s <t:w(t) =v}| = 1}. Since proportions of numbers
of the outgoing edges and the out-degrees of nodes in V are the same in both
(G,b)and (G+G’,b+b’), by Eq. (4.1), this implies that pé+G,’b+b,(v, t,1)/(b(G)+
b'(G')) = p‘é’b(v, t,1)/b(G). Hence, Locality follows from Eq. (4.3).

* For Sink Merging, consider two sinks u, w € V such that P,(G)NP,(G) = 0. Fix
v € V\{u,w}. Since u and w are sinks, it holds that every walk of length ¢ that
visits v for the first time at step t, it does not visit u nor w before that. Hence,
the same walk is also present in graph R,,_,,,(G,b). Furthermore, since the
probability of moving between any two nodes in V' \ {u, w} is also unaffected,
from Eq. (4.1) we have p?{ww(c’b)(v, t,1)= p“G’b(v, t,1). Thus, from Eq. (4.3) we
get that RWD4(R,, (G, b)) = RWD{(G, b).

It remains to show that RWD (R, ., (G,b)) = RWD;(G,b) + RWD(G,b). To
this end, observe that from Proposition 22 we get RWD}(G,b) = PR} (G,b),
RWD(G,b) = PR%(G,b), and also RWD{ (R, (G,b)) = PR%(R, (G, D)).
Thus, the axiom follows from the fact that PageRank satisfies Sink Merging
(Lemma 44).

* For Lack of Self-Impact, consider edge (v,u) € E and let G’ = (V,E —{(v, u)}).
Observe that for every t € N, walks of length t that visit v for the first time
at step t are unaffected by removal of edge (v,u). Hence, from Eq. (4.1) we
have p“G,,b(v, t1)= pé’b(v, t,1), for every t € N. Thus, the axiom follows from
Eq. (4.3).

* For Directed Leaf Proportionality, consider sink # € V and an isolated node
v € V. Also, denote G’ = (V,E U {(u,v)}). Now, from Proposition 22 we get
RWD{(G,b)=PR}(G,b),RWDS(G,b)=PRS(G,b),and RWD;(G’,b)=PR}(G’, ).
Thus, since PageRank satisfies Directed Leaf Proportionality (Lemma 44), we
get that RWD satisfies it as well.

* Finally, for One-Node Graph assume that (G, b) = (({v},0),[1]). Observe that
in such a case, from Eq. (4.1) we have p“G’b(v, 0,1) = 1. Also, since there are
no walks of positive length in G, we have that p‘élb(v, t,1)=0, for every t > 0.

Hence, the axioms follows from Eq. (4.3). -

Next, we move to the main part of the proof in which we show that if centrality
measure F satisfies Random Walk Property, Locality, Sink Merging, Lack of Self-
Impact, and Directed Leaf Proportionality, then it is equal to RWD up to a scalar
multiplication. Observe that in contrast to the proof of unique characterization of
PageRank in Section 3.2, here the decay factor of a centrality measure is directly
given by constant a in Directed Leaf Proportionality. Thus, formally, we prove
that there exists a constant, ¢y € Ry, such that for every graph G = (V,E), node
weights b, and node v € V, it holds that F,(G, b) = cp-RWDJ(G, b). Then, by adding
One-Node Graph axiom, we obtain that ¢y =1 and F,(G,b) = RWD{(G, b).

First, we prove that for every graph in which all nodes have zero weight it holds
that each node has zero centrality.
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N
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Figure 4.2: An example cactus, G, and a broken cactus, G’. Observe that by adding
edge (v, u) to G’ we obtain graph G.

Lemma 27. If a centrality measure, F, satisfies Random Walk Property, Locality, and
Sink Merging, then for every graph G = (V, E), node weights b such that b(G) = 0, node
veV,anda€[0,1), it holds that

F,(G,b) = 0= RWD(G, b).

Proof. For the second equation, observe that from Eq. (4.3) we get RWDJ(G,b) =0,
for every graph G = (V,E), node weights b such that b(G) = 0, node v € V, and
ael0,1).

For the first equation, let us observe that for every two graphs G = (V,E) and
G’ = (V’,E’), node weights b,b’ such that b(G) = b’(G’) = 0, and nodes v € V and
v’ e V’, by Eq. (4.1), it holds that pé’b(v, tk)=0= pé,jb,(v’, t, k), for every t, k € N.
Hence, by Random Walk Property, F,(G,b) = F,,(G’,b’). Thus, it suffices to show
that there exists a node with a zero centrality in a graph in which all nodes have
zero weights.

To this end, let us consider graph (G, b) = (({¢,v},0),[0,0]). Also, let us denote
the graph obtained by redirecting u into v by (G’,b’) = R,_,,(G, b) = (({»},0),[0]).
Since we have that both u and v are sinks in graph G, from Sink Merging we obtain
that F,(G’,b’) = F,(G,b) + F,,(G,b). On the other hand, observe that from Locality
we have that F,(G’,b’) = F,(G,b). Hence, F,(G,b) = 0. O

Therefore, in the remainder of the proof we will focus on graphs with at least
one node with a positive weight.

Let us introduce three additional concepts that we will use in the proof: cactus
graphs, broken cactus graphs, and visit probability generating functions. We begin
with the definition of (directed) cactus graphs [64].

Definition 2. Graph G = (V,E) is a cactus if for every two distinct nodes u,v € V
there exists exactly one path from u to v.

Intuitively, cacti resemble undirected trees: If we look at all significantly dif-
ferent cycles (by significantly different we mean that one cannot be obtain by the
other by a different choice of the first node) in a cactus, then every two such cy-
cles can share at most one common node. Moreover, if we consider an undirected
graph in which nodes represent cycles and edges the fact that corresponding cycles
share a common node, then such graph is a tree. See Fig. 4.2 for an illustration.

Next, let us define related class of broken cactus graphs.
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Definition 3. Graph G = (V,E) is a broken cactus with start u and end v ifu,v eV,
v is a sink, and graph (V,E U {(v,u)}) is a cactus.

Consider an arbitrary broken cactus G = (V, E) with start # and end v. Since
(V,EU{(v,u)}) is a cactus, there is exactly one path from w to v, for every w € V' \{v}.
It does not use edge (v, u), thus in graph G there is also exactly one path from w to
v. In particular there is a path from the start, u, to the end, v. We call it the main
path of broken cactus G.

Observe that for a given broken cactus G, its end and start, and hence also its
main path, is uniquely determined. Specifically, the end of a broken cactus is the
only sink in a graph. In turn, the start is a node with maximal distance to the start
such that it has an outgoing edge to a node that is not its predecessor (in general,
a node is on the main path if and only if it is the end or it has an outgoing edge to
a node that is not its predecessor).

Alternatively, we can think of a broken cactus as of its main path with possible
cacti attached to every node of the main path excluding its end. See Fig 4.2 for an
illustration.

Apart from cacti and broken cacti, another important concept that is used in
the proof is the visit probability generating function.

Definition 4. For every graph G = (V,E), node weights b, and node v € V, the visit
probability generating function is defined as a formal power series of the form

th pGy(t). (4.4)

t=0

Visit probability generating functions allow us to describe in an efficient yet
formal way how often and at which steps a given node is visited by the random
walk. Moreover, we will be able to express how visit probabilities of nodes are
affected by certain graph operations.

With these concepts in hand, we can move to the proof itself. In short, we
show that for every graph G and its node v that is a sink, there exists a collection
of broken cacti such that the average of the visit probability generating functions
of their ends is equal to the visit probability generating function of v (Proposi-
tion 33). Next, we prove that if centrality measure F satisfies our axioms, then it
is equal to RWD (up to a scalar multiplication) for every end of a broken cactus
(Lemma 36). Combining both facts with Random Walk Property, we obtain that
F is equal to RWD for every sink in every graph. Thus, we obtain the thesis from
Lack of Self-Impact.

More in detail, the proof is structured as follows:

* First, we introduce the notion of limiting nodes, i.e., nodes for which the visit
probability decreases to zero over time, and prove that all of the predecessors
of such nodes are also limiting (Propositions 28).

* Next, we prove several useful properties of visit probability generating func-
tions (Proposition 29).

* Then, we focus on visit probability generating functions of the ends of bro-
ken cacti and prove several results for them:

— We show that appending two broken cacti results in multiplying gener-
ating functions of their ends (Proposition 30).



4.3. PROOFS OF UNIQUENESS 55

— Next, we prove that we can obtain an average of generating functions
of the ends of broken cacti, if we add them together and redirect all of
their ends into one (Proposition 31).

— Then, we show how we can reduce the level of complexity of a broken
cactus, by relating the generating function of its end to the generating
function of the ends of broken cacti with fewer cycles (Proposition 32).

- Finally, building upon these result, we show that for every graph and
its node that is limiting, its generating function is an average of the
generating functions of the ends of some broken cacti (Proposition 33).

 After establishing all needed properties of visit probability generating func-
tion, we consider an arbitrary centrality measure F that satisfies our axioms.
In a series of lemmas we show that it is equal to RWD:

— First, we consider properties that can be regarded as stronger version of
Random Walk Property for sinks (Lemmas 34 and 35).

— Next, we show that for every broken cactus the centrality of its end is
equal to RWD up to a scalar multiplication (Lemma 36).

- Finally, combining Lemma 36 and Proposition 33 we prove that for ev-
ery graph the centrality is equal to RWD (up to a scalar multiplication)
for an arbitrary sink (Lemma 37) and node (Lemma 38). Thus, from
One-Node Graph we get the thesis (Lemma 39).

Visit Probability Generating Functions and Broken Cacti
Let us begin with the definition of limiting nodes.

Definition 5. For every graph G = (V,E) and node weights b, we say that node v e V
is limiting if

(o]

1
ZPG,b(V' t) < oo.
t=0

The concept of limiting nodes corresponds to the concept of transient states in
Markov Chains [27]. Observe that alternatively we can say that node v in graph
(G, D) is limiting if there exists r € Ry such that P; (1) = r. One important prop-
erty of limiting nodes is that all of their predecessors are also limiting.

Proposition 28. For every graph G = (V,E), node weights b such that b(G) > 0, and
node v € V, if v is limiting, then also u is limiting, for every u € P,(G).

Proof. Let us assume that the thesis is false, i.e., there exists graph G = (V,E), node
weights b such that b(G) > 0, and nodes v, # such that v is limiting and u € P,(G),
but u is not limiting. Since u is a predecessor of v, there exists a walk w of length
s that starts at ¥ and ends at v and does not visit u in between. Hence, there exists
some positive probability, p* > 0, that when the random walk visits node u at step
t, then the random walk follows walk w and visit node v at step t +s. Thus, for
every t € N, we have pé’b(v, t+s)>p” -p};’b(u, t). Summing for all t > 0, we get

Zplc’b(v,t) >p* Zplc,b(”r t).
t=s t=0

However, since u is not limiting, the right hand side of this inequality is infinite.
We have that ) 72 plG’b(v, t) > 12, plG’b(v, t), hence we arrive at a contradiction. [J
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Now, let us move to visit probability generating functions and their properties.
The most basic ones are listed in the following proposition.

Proposition 29. For every graph G = (V,E), node weights b such that b(G) > 0, and
node v € V, it holds that:

7

(a) (Isomorphism) Pg ,(x) = Pé’,,'b,(x), for every graph G’ = (V’,E’) and weights b’
such that graph (G’,b’) is isomorphic to (G, b) with isomorphism f : V. — V' and
flw) =2,

(b) (Recursive Equation) P (x) = % + 2 yepl(G) X gecg(u(g)) Pg (),

(c) (Sink Redirection) P = Pg’b(x)+Pé’,b(x), for everyu € V, if u and v are

sinks,

Run (G (X) =

(d) (Weight Multiplication) P, G . b( X) = PC’;’ b(x), for every r € Ry,
(e) (Graph Addition) PS. . ,.,/(%) = srorsreri Py (X), for every graph G’ = (V',E))
such that V. NV’ =0 and node weights b’.

(f) (Edge Multiplication) P¢, (x) = P ,(x), for every u € V and k € N and graph
G =(V,Euk-T,;(G)),

(g) (Cycle Decomposition) P  (x) = Pé’,rb( )/(1—Pg*lﬂv,(x))where G' = (V,E-T}(G))

and G*=(VU'LE-THG)U{(v,u): (v,u) e ,;(G)}) in whichv’ ¢ V, and

(h) (Sink Bound) P§ (1) <1 ifv is a sink and P (1) = 1 if v is the end of a broken
cactus.

Proof. Let us take an arbitrary graph G = (V,E), node weights b, and node v € V.

(a) (Isomorphism) Let (G’,b’) be a graph isomorphic to (G, b) with isomorphism
f. Let us consider an arbitrary walk w € ;(G) that ends at v, i.e., w(t) = v.
Then, by wy let us denote the walk of length t on graph (G’,b’) such that
wy(i) = f(w(i)), for every i € {1,...,t}. Observe that in such a way we obtain
a one-to-one correspondence between walks in ();(G) and walks in Q;(G’).
Moreover, since the two graphs are isomorphic,

b(w(0)) pelw(i ] 1)
b(G) r[ degw

Thus, from Eq. (2.6) we have that pé’b(v, t) = plc,’b,(v’,t), for every t € N, and
the thesis follows from Eq. (4.4).

b(@5(0) [ ol (i) wp(i+1)

degwf (G)

“:l

(b) (Recursive Equation) For t > 0 consider a walk w € Q4(G) that ends at v, i.e.,
w(t) = v. Observe that node w(t —1) is one of the direct predecessors of v, let
say u. Then, in the last step, it follows one of the outgoing edges of u that
goes to v, for which the probability is pg(u,v)/deg) (G). Thus, for the value

pé,b(v,t) we get
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Multiplying by x’ and taking the sum over all t > 1 we obtain

. 1 pe(U,v) N~ g
Z‘xt.pG’b(v't): Z x'deg+(G) th Pop(t=1).
t=1 ueP}(G) “ t=1

Since pG »(v,0) = b(v)/b(G), by adding this to both sides of the equation, we
obtain the thesis from Eq. (4.4).

(Sink Redirection) Let us assume that nodes u,v € V are sinks and let us de-
note graph (G’,b") = R,_,,(G,b). Consider node w € V' \ {u,v} and take an
arbitrary walk w € 4(G) that ends at w. Since u and v are sinks, the walk
that visits w at step t cannot visit u or v earlier. Hence, the probability asso-
ciated with this walk is not affected by the redirection, i.e.,

b(w(0) [T Holwli)wi+ b(w(0) [T Ko (@ 1+1))
b(G) 1:0[ degZ)(i)(G) ]—[ degw '

i=

Thus, from Eq. (2.6) we have that pé’b(w,t) = pé,’b,(w,t), for every t € N,
which, by Eq. (4.4), means that P5, (x) = Pg, ,,(x), for every w € V'\ {u, v}.

Now, let us move to nodes u and v. From (b) we can sum the recursive
equations for P4, (x) and P% , (x) to obtain

W0 b) |y et rgwy)

Fop0)+F640) == deg ()

- PY¥, (x).
Gb
weP} (G)UP/ (G)

We know already that Pé"’b(x) = Pg,,b/(x), for every node w € V' \ {u,v}. Also,
since u and v are sinks it holds that P} (G) UP}(G) C V \ {u,v}. As for node
weights, observe that redirection sums the weights of u# in v and does not af-
fect other weights. Thus, we have b’(v) = b(u)+b(v) and b’(G) = b(G). Finally,
the out-degrees of all the nodes does not change and the incoming edges of v
in G’ are the sum of the incoming edges of # and v, i.e., P}(G’) = P} (G)UP}(G)
and pg (w,u) = pg(w, u) + pug(w,v), for every w € P(G’). Therefore, we get

b'(v) po(w,u)

+ _— .
b’ G’ + ) G,V
(&) wePH(G’) deg,,(G")

Pg'b(x) + Pé’,b(x) =

(x).

Hence, the thesis follows from (b) for node v in graph (G’,0’).

(Weight Multiplication) Fix r € Ryo. Observe that for every t > 0 and every
walk w € Q0;(G) that ends at v, it holds that

b(w(0)) ﬁﬂc 1)) _ e b(o ]f—llyc / '1))
b(G) | degw r-b(G L] degw '

Hence, the thesis follows from Eq. (2.6) and Eq. (4.4).

(Graph Addition) Let G’ = (V’,E’) be an arbitrary graph such that VNV’ =0

and b’ be arbitrary node weights. Let us denote b” = b + b’. Consider an

arbitrary walk w € Q;(G + G’) that ends at v. Since b”(u) = b(u), for every

u € V, and edges of graph G are unaffected by adding graph G’, we get

b (w ]—1[ Koo (@(i) wli+1) _b(G) b(w(0))
degw

b’(G G+G) ~b(G) b(G+G)

—_

t—

pg(w(i), w(i+1))
deg.(G) '

I
o

i= i
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(G,b) (G, b)

Figure 4.3: Example graphs illustrating Cycle Decomposition (Proposition 29g).

Observe that b(b“()éo))) [z })% is equal to the probability of walk w

in graph G. Also, observe that every walk on G + G’ that ends at v is a walk

on G that ends at v and vice versa. Thus, summing the above equation for all
b(G

such walks, from Eq. (2.6) we get that pé;+G',b+b'(v' t)= Wplab(v, t), for

every t € N. Thus, the thesis follows from Eq. (4.4).

(Edge Multiplication) Fix u € V and k e Nand let G’ = (V,E Uk - I/ (G)). Con-
sider an arbitrary walk w € Q;(G + G’) that ends at v. Observe that

t-1 N b(

Bw(0) = no(w +1)) ) T Hor (@ 1+1))
b(G) I_[ degw H degw ’

i=

because each time w(i) = u, both the numerator and the denominator are
multiplied by k + 1. Thus, the thesis follows from Eq. (2.6) and Eq. (4.4).

(Cycle Decomposition) Let G = (V,E T, (G)) be a graph with outgoing edges
of v removed and G* = (VU{v'}, E-L(G)U{(v',u) : (v,u) € [ (G)}) be a graph
where node v is “uncycled”, i.e., we change the start of each outgoing edge
of v to an additional node v’. In this way, node v does not belong to any cycle
in G*. See Fig. 4.3 for an illustration.

Consider an arbitrary walk w € );(G) that ends at v and visits it k times
altogether. Observe that in such a walk there exists a step, s < ¢, in which v
is visited for the first time. Then, it holds that 1,(w(s))/1,(G) =1, thus

b(w(0)) T Holw! 1))_

b(G) I:OI degw B
(@(0)) 7 Holw > w(s)) 17 pelw(i)wli+1))
b(G) l_l deg ' ];[ deg:)(i)(G) '

Observe that there is actually a one-to-one correspondence between walks in
)4(G) that ends at v and visits it k times altogether and pairs: a walk that
visits v for the first time in some step s € {0,...,t} and a walk that starts at v
and visits it for the k-th time at step ¢ —s. Thus, summing the above equation
for all such walks, from Eq. (4.1) we get that

t
prv’tk ZP bvysy G,1 (v,t_s,k).
s=0
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Multiplying by x’ and summing for all t € N we get that

(e (e t
th 'pé‘,b(v' t, k)= szs 'plG,b(v’S’ 1)- xts 'pé,lv(v' t—s,k)
=0

t=0 t s=0
= sz pEp(vss, 1) th‘s -p};’ﬂv(v, t—s,k)
s=0 t=s
= [th 'plG,b(v’ t, 1)] . (th . pé,]l,,(v’ t,k)]. (4.5)
t=0 t=0

Similarly, for every walk w € ;(G) that starts and ends at v and visits it
exactly k times, there exists a step, s < t, in which w returns to v for the first
time, i.e., visits it for the second time (since the first time is at start). Hence,
there is a one-to-one correspondence between such walks and pairs: a walk
that starts at v and returns to v for the first time in some step s € {0,...,t} and
a walk that starts at v and visits it for the k —1-st time at step t —s. Thus, we

get
t

pé,ﬂv(v, tk)= Zplc’ﬂy(v,s, 2)- p};’ﬂv(v, t—s,k—1).
s=0

Multiplying by x’ and summing for all t € N we get that

Zx pcﬂ(vtk) sz'pé,l (v,s,2)- ths v,t—sk-1)
t=0 s=0 =s
= [th ~pélﬂv(v, t, 2)] . [th ~pélnv(v, t,k— 1)).
t=0 t=0
Applying this reasoning k — 1 number of times yields
00 0o k-1
th 'Pé,ﬂv(v’ t, k)= [th ‘Pé,ﬂv(”’ t, 2)] . (4.6)
=0 t=0
Now, let us combine Eq. (4.5) and Eq. (4.6) to obtain
o) ) o k-1
th PGV, LK) = th PGt 1) [th‘Pé,nv(V,t,z)] :
t=0 t=0 t=0

By summing for all k > 1, we get that

o o o { oo k
th PGp(v:t) th'Pé;,b(V: t’l)'Z[th'Pé;,nv(V: t,2)] : (4.7)
t=

t=0 k=0 \'t=0
Thus, by geometric series transformation, we obtain

Y2 -pIG’b(v, t,1)
=Y Zox pLy (04,2)

PG’b(x) =

Therefore, it remains to prove that (I) P’

o (%) = L2 X! -pg,,(v,1,1) and that
(IT) P&,y (%) = L20x" - piq (v,1,2).
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(I) Let us start with the former equality. Let us consider an arbitrary walk
w € 4(G) that visits v for the first time at step t. Since w does not visit
v before step t, outgoing edges of this node does not affect the probability
associated with walk w, i.e.,

b(w(0) T Holw(i)w(i+1)) per(@(i), w(i + 1))
b(G) !:)[ deg.(G) I_[ degw GhH

Hence, from Eq. (4.1) we have pr(v, t,1) = pGJr (v, 1,1), for every t € N. In

graph G* node v is a sink, thus it cannot be visited more than once. Thus,
P (0,1) = pL (0,1, 1) and, by Eq. (4.4), Pl ,(x) = T20x' - ph (0,1, 1)

(IT) Now, let us show that Pg*,ﬂv/( x) =Y 2ox! 'pG,ﬂv(v’ t,2). To this end, con-
sider an arbitrary walk w € (Q(G); that starts at v, ends at v, and does not
visit v in between. By w’ let us denote the walk on G* that starts at v’ and
then follows the same nodes as walk w, i.e., w’(i) = w(i), for every i € {1,...,t}.
Since outgoing edges of v’ in G* are the same as outgoing edges of v in G and
the outgoing edges of other nodes are not changed, we get that

0) 11 He(@(i)wli+1) _Ty(@(0) 17 He (@l z+1>>
I:)[ deg? (G) I:)[ degw Gy

Moreover, observe that in this way we obtain a one-to-one correspondence
between walks in QO(G); that start at v, end at v, and do not visit v in between
and walks in QQ(G*); that start at v/, end at v, and do not visit v in between.
Thus,

pe, (vt 1)=piy (v,1,2), foreveryteN. (4.8)

Observe that since v is a sink in G* we have that péw (v, t) = pé;*,n (v, t,1).
Therefore, from Eq. (4.4) we obtain that PS. ; (x) =}.12 x! -pé’ﬂ (v,t,2).

(Sink Bound) Assume that v is a sink. Then, observe that v cannot be visited
more than once. Hence, pé’b(v,t) = pélb(v, t,1), for every t € N. Thus, we
get PG (1) =212 plGlb(v, t,1). Observe that } ;2 p};'b(v, t,1) is the probability
that node v is visited by the random walk at least once. Hence, it cannot be
greater than one.

Now, assume that G is a broken cactus and v is its end. Since the end is a sink,
Pg (1) <1 from the first part of the proof. Hence, it is limiting. In a broken
cactus, all nodes are predecessors of its end. Thus, by Proposition 28, all the
nodes in G are limiting, i.e., Zfiopé;,b(“: t) < oo, for every u € V. Observe that
this implies that also lim;_,, p%;,b(”' t) =0, for every u € V. Thus, summing
for all nodes in a graph, we get lim;_,, Zuevplc’b(u,t) = 0. Observe that
Y ey plG’b(u, t) is the probability that the random walk does not stop before
step t. If it goes to zero, then with probability 1 the random walk ends at
some step. On the other hand, a = 1, hence the random walk can stop only
if it arrives at a sink. The only sink in a broken cactus is its end, thus v is
visited with probability 1, i.e., ) 2, plc'b(v, t,1)=1. Hence, P (1) = 1. ]

In the next four propositions (Propositions 30-33), we consider visit proba-
bility generating functions of the ends of broken cacti. Let us begin however, by
defining an operation of appending broken cacti. Intuitively, appending broken
cactus G’ to broken cactus G is adding them together and “merging” the end of G
with the start of G’ (see Fig. 4.4 for an illustration).
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. ot Bg 8.

Go G

Figure 4.4: Example broken cacti, G,G’, and the broken cactus obtained by ap-
pending G’ to G, i.e., graph G G’.

Definition 6. For two disjoint broken cacti G = (V,E) and G’ = (V’,E’) with starts
u,u’ and ends v,v’, respectively, appending G’ to G results in a graph

GoG =(VUV'\{u', ELE' -T;(G)UE"),

where EV = {(v,w) : (v, w) e [J(G) Aw = u' ) U{(w,v): (w,u’) e T (G) Aw = u’)} U
pe (' u') (v, v)h

In the following proposition we show that appending broken cacti results in
multiplying generating functions of their ends.

Proposition 30. For every two disjoint broken cacti G = (V,E) and G’ = (V’,E’) with
starts u,u’ and ends v,v’, respectively, it holds that
P, ()= Py, (1) Py ().

Proof. Consider an arbitrary walk, w € Q;(G & G’), that starts at u, i.e., w(0) = u,
and ends at v/, i.e., w(t) = v’. Since node v lies on the main path between node u
and v’ in graph G & G/, there exists a step s € {0,...,t} such that at this step walk
w arrives at node v for the first time, i.e., w(s) = v and w(s’) # v, for every s’ <s.
In G® G/, outgoing edges of nodes from V \ {v} are the same as in G, outgoing
edges of nodes from V'’ are the same as in G’, and outgoing edges of v are the
same as outgoing edges of u” in G’. Also, 1,(w(0))/1,(G®G’) =1,(w(0))/1,(G) =
1, (w(s))/1,,(G") = 1. Thus, we have

L,(@(0) [ Foec(@(i)w(i+1)) _

1,(GeG) L1 deg)(GoG)
L,(@(0)) [T He(@(i)@(i+1) Ly(w(s) ]—1[ pelw(i), w(i +1)
1,6 11 degl(G) LG LI degd G)

Moreover, observe that there exists a one-to-one correspondence between walks of
length ¢ from u to v’ in G® G’ and the pairs: walk of length s from u to v in G and
walk of length t —s from u’ to v’ in G’. Hence, by Eq. (2.6), summing the above
equation for all walks yields

Péac1, | ZP 61, ) Péia L@t =s).

Multiplying by x we get x' ~pé®G,,1 W, )=y x° -plG’nu (v,s)-x57" -plG,’nu,(v’, t—s).
Thus, by Eq. (4.4), summing for all ¢ yields the thesis. O
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G/

Figure 4.5: An illustration to Proposition 31 for n = 3 and example broken cacti:
G!,G? and G3.

We have just considered adding two broken cacti together and “merging” start
of one of them with the end of the other. In the next proposition, we consider
adding broken cacti and “merging” their ends (see Fig. 4.5).

Proposition 31. For every collection of pairwise disjoint broken cacti G',...,G" with
starts uy,...,u, and ends vy,...,v,, respectively, and constants ay,...,a, > 0 it holds

that
n n
Vi Uy
)i Py, (9 )_ai =Pyl
i=1 ! i=1

where (G',b’) = va_,vn(...(Rv”_l_)vﬂ(Gl +o+ Glhayp -1y, +tay, - 1y,).).

Proof. Consider adding together graphs (G!,a; - 1,,),...,(G" a,, - 1,,). Formally,
let G’ =G'+---+G" and b” = a4 1, +--+a,-1, . Observe that from Propo-
sition 29e (Graph Addition) we get that Pvi,’b,,(x) = aiPéjilui(x)/Z;lzl ;. Then, the

thesis follows from Proposition 29¢ (Sink Redirection). O

In the next proposition, we show how we can reduce the level of complexity
of a broken cactus by expressing the generating function of its end in terms of the
generating functions of the ends of broken cacti with fewer cycles. More in detail,
we consider broken cactus, G, such that its start, u, has n + 1 direct successors:
nodes wy,...,w, and the end of G, node v (this means that the main path of G has
length 1). Then, we obtain a set of simpler broken cacti in five steps:

1. We remove node v (graph GH).

2. We follow Proposition 29g (Cycle Decomposition) and “uncycle” node u, i.e.,
we change the start of each outgoing edge of u to an additional node, u’
(graph G*).

3. We split node u” into n nodes, w},..., w;, such that each has outgoing edges
to only one direct successor, wy,...,w,, respectively (graph G’).

4. We split node u into n nodes, uy,...,u,, in such a way that each of them is
now successor of only one, respective node from wy,...,w;, (graph G”).

5. Asaresult, we obtain graph with n disjoint connected components—we treat
each of them as a separate graph (graphs G',...,G"). As we prove, they are
also broken cacti.
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Figure 4.6: An illustration to Proposition 32 for an example broken cactus, G.

See Fig. 4.6 for an illustration. We prove that the generating function of the end of
the original broken cactus G, can be expressed in terms of generating function of
the ends of the obtained graphs.

Proposition 32. For every broken cactus G = (V,E) with start u and end v such that
S;(G) ={v,wy,...,w,}, nodes wi,...,w,’l,ul,...,un ¢ V, and graphs

Gt=(VLEH) = (V\(v}LE-T, (G))
G*= (V5 E*)= (VU '}, E¥ =T (GH U/, 1) : (u,t) e TF (G,

G’ =(V',E')= (V*\{u"}Ufwy,...,w,}, EX - TH(G*) U I_I,”G(“’wi) Awiwib),
i=1

(V’\{u}u{ul,...,un},E’—FJ(G’)I_lI_I{I(s, u;):(s,u) €I, (G'), s €Sy, (G)Ufwilh),
i=1

G =(V,E') = ({w}}US,(G"){(s,t): (s,t) €E",t € Sy (G)))  for everyi €fl,...,n},

G// — (V//, E//)

it holds that G',..., G" are disjoint broken cacti with less edges than G and

_ pel(u,v) -x/ ) = ug(u,w;)

= m P (x)]. (4.9)

PY . (x) - — P
G1, + Gi,1,,
i=1 degu(G) 1
Proof. Let us consider an arbitrary broken cactus G with start u and end v such
that Sbll(G) ={v,wy,...,w,}. First, we prove that graphs‘Gl,..‘., G" are disjoint, i.e.,
for every i,j € {1,...,n} such that i # j, it holds that V' N V/ = (. To this end, we
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first show that any pair of distinct nodes from wj,...,w;, have exactly one shared
successor in graph G’ and it is node u, i.e.,

Sw/(G')N Sw]f,(G’) ={u}, foreveryi,je{l,...,n}suchthati=j. (4.10)
Assume otherwise, i.e., there exist 7,j € {1,...,n} such that i # j and node s # u such
that s € 5,,(G")N Sw]{(G’). This means that in G’ there are paths (7(0),...,7(l)) and
(p(0),...,p(k)) such that 77(0) = w;, p(0) = w]’-, and 7nt(I) = p(k) = s. Without loss of
generality let us assume that k > I. Since the only direct successors of w; and w]’. are
w; and w;j, respectively, we know that 7(1) = w; and p(1) = w;. Thus, in G* there
are paths (u’,m(1),...,m(l)) and (u’,p(1),...,p(k)) and they are disjoint. Hence, in
G* we have disjoint paths (u,7(1),...,7(l)) and (u,p(1),...,p(k)) and they are also
disjoint paths in G. Thus, they are also disjoint in graph (V, E U {(v, u)}). However,
since G is a broken cactus, that graph is a cactus and we arrive at a contradiction,
which means that Claim (4.10) holds. Observe that for every i € {1,...,n} it holds
that S,,/(G”) = S/(G’) \ {u} U {u;}. Thus, from Claim (4.10) we get that sets of
successors Swi(G”I),...,Sw;I(G”) are pairwise disjoint. Moreover, nodes wy,..., w;,
are sources, thus w; ¢ Sw]c (G'), foreveryi,j € {1,...,n}. Hence, we get that vi ... y"
are pairwise disjoint as well.

Now, let us fix i € {1,...,n} and prove that G’ is a broken cactus. Assume other-
wise. Then, in graph (V/,E' LI {(u;, w))}), there are two distinct paths (7(0),...,7(I))
and (p(0),...,p(k)) such that 7(0) = p(0) and m(I) = p(k). In what follows, we
will show that this implies that in cactus (V,E U {(v,u)}) there are two distinct
paths between the same pair of nodes as well, which is a contradiction. To this
end, first observe that (7(0),...,7(I)) and (p(0),...,p(k)) are also paths in graph
(V”,E” LU {(u;,w))}). Now, for every i € {0,...,k}, let us define 7c'(i) = (i), if 7(i) =
u;, and 7’(i) = u, otherwise, and in the same way p’(i) = p(i), if p(i) # u;, and
p’(i) = u, otherwise. Then, (7/(0),...,7’(l)) and (p’(0),...,p’(k)) are two distinct
paths in graph (V’,E’ U {(u,w])}). Next, analogously, for every i € {0,...,k}, let
us denote 77*(i) = 7’(i), if 7(i) = w}, and 7*(i) = u’, otherwise, and p*(i) = p’(i),
if p’(i) # w/, and p*(i) = u’, otherwise. Then, sequences (77*(0),...,77*(I)) and
(p*(0),...,p*(k)) are two distinct paths in graph (V*, E*Li{(u, u’)}). Finally, for every
i€{0,...,k}, define 7t°(i) = 7* (i) if 77*(i) # u’, and 7°(i) = u, otherwise, and p°(i) =
p*(i), if p*(i) # u’, and p°(i) = u, otherwise. Then, sequences (c°(0),...,7°(!)) and
(p°(0),...,p°(k)) are two distinct paths in G*. Hence, they are also two distinct
paths in (V,E U {(v,u)}). Observe that still 7°(0) = p°(0) and 7°(I) = p°(k). Thus,
we arrive at a contradiction.

Next, let us show that for every i € {1,...,n}, graph G' has less edges than G, i.e.,
|E?| < |E|. To this end, observe that in the first step of the construction we remove
all incoming edges of node v, thus |E¥| < |E|. Then, in each next step, the total
number of edges stays the same. Hence, ) ! ; |E?| = |E¥|. Thus, indeed, |E’| < |E|.

Finally, in the remainder of the proof, we will prove Eq. (4.9). From Proposi-
tion 29b (Recursive Equation) we have that Pg’ﬂ“ (x) = x-pg(u,v)/deg!(G)- Pg’ﬂu (x).
Hence, it suffices to show that

-1
Pé‘,]lu(x) =[1-

To this end, we follow Proposition 29g (Cycle Decomposition) and define graph
G', which is graph G with outgoing edges of u removed, and graph G*, which is
obtained from G by “uncycling” node u (the difference between G* and G* is that
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we do not remove node v in the former). Formally, let G = (V,E —T;(G)) and let
G*=(VU{u'}, E-T;(G)u{(u’,t) : (u,t) € ,; (G)}). Then, from Proposition 29g (Cycle

Decomposition) we have P;; (x) = P%, ; (x)/(1 - Pg. ; (x)). Since we consider unit

node weights centered on u, we get that p1G+ 1, (u,0) = 1. Moreover, in graph G*
node u is a sink. Thus, by Proposition 29h (Smk Bound), P G,r 1 (x) = 1. Hence, in
order to prove Eq. (4.9), it remains to prove that

n
pelu,w;) "
—————P% . (x)=P5 ¢ (x).
-1 deg!(G) ~ ¢ 1y &L

To this end, we will prove two equations that combined yield the above equa-

tion. These will be the following: (I) Y, ’éif;’(w")) -P“. (x) =Pg, ,(x)- 1 %

and (1) By (1) = P&, (1) L1, S0, where b= T, B,

(I) First, let us follow Proposition 31 and consider graph G that is obtained
from broken cacti G,...,G" by adding them together and redirecting their ends to
u,. Also, let us take a; = ug(u, w;)/ deg (G) for every i € {1,...,n}. Formally, let

(Gw b///)_ u1—>un( (R _)Run(G1+,..+G"’a1,]lwi+...+an~]lw;l))._.).

Up_1

Then, observe that the only difference between graph G’ and graph G’ is the fact

that node u,, in G” is labeled as u in G’. Observe also that b =) ! , ’éigf’(“g; L, =b.

Thus, by Proposition 31 and Proposition 29a (Isomorphism), indeed

n
1, (x) =P, (x)-

(IT) Next, let us prove that Pg*’ﬂu,(x) =Pg, ,(x)- " pc(u,w;)/degl(G). To this
end, let us consider an arbitrary walk of length ¢ in graph G that starts at " and
ends at u, i.e., w € Q;(G*) such that w(0) = u” and w(t) = u. Since v is a sink in
G*, walk w cannot visit v, because it would not be possible to end at u later on.
Thus, as direct successors of node u” in G* are {v,wy,...,w,}, it holds that there
exists k € {1,...,n} such that w(1) = wy. Now, let us define sequence w’ such that
@’(0) = w;, and w'(i) = w(i), for every i € {1,...,t}. Then, observe that v’ is a walk
on G’. In what follows, we will show that probability that the random walk follows

”G u,w J
zld*()

w’ in G’. Observe that since outgoing edges of nodes other than u” do not change
between graph G* and G’, for steps from 1 to t we get that

-1 .
e w(i+1)) po(@'(i), (i +1))
H degw & ]_[ degt(G) (4.11)

i=

win G*isequal to ) 7

times the probability that the random walk follows

On the other hand, we have that
pelw)/degi(G) _ b(w/(0)
Yl ne(u,wi)/deg (G)  b(G)

Also, observe that 1,,/(w(0))/1,,(G*) =1 and since wy is the only direct successor of
wy in G/, yGf(w’(O))/degz) )(G ) =1 as well. Thus,

Ly (@(0) pe(u,wy) _ pe(@'(0)  b(w'(0)) = g (u,w;)
1,(G*) deg!(G) deg;,(o)(G’) b(G’) — deg’(G) "
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Finally, observe that pug(u, wy) = pg-(u’,wy) and deg; (G) = deg}.(G). Hence, com-
bining the above equation with Eq. (4.11) we get that

]t_llP‘G w(i+1)) _\~ Hel,w;) l—[VG +1))
degw G*) — deg (G) degw )

i=

Observe that the relation between w and w’ can be extended to a one-to-one cor-
respondence between walks on G* that starts at #” and ends at u and walks on G’
that starts at a node from w{,...,w;, and ends at u. Therefore, from Eq. (4.1) and
Eq. (4.4) we get that

n
Pcl;l*,llu, (x) = ng,b(x) :

which concludes the proof. O

In the final proposition of this part of the proof, we show that for every graph
and its limiting node, its visit probability generating function is an average of the
visit probability generating functions of the ends of some broken cacti.

Proposition 33. For every graph G = (V,E), node weights b such that b(G) > 0, and
limiting node v € V, there exist constants ay,ay,...,a, > 0 and a collection of broken
cacti, G1,...,G", with starts u,...,u, and ends vy,...,v,, respectively, such that

Zal .

Proof. Let us prove the thesis by induction on the number of incoming edges of v
and its predecessors, i.e., }_,cp (Guw) Iw (G). To this end, we will strengthen the
induction hypothesis with three additional implications:

(a) If all nodes in G have rational weights, i.e., b(u) € Q, for every node u € V,
then there exist such a collection of broken cacti G!,...,G" and constants
ay,...,a, that satisfy the thesis and ay,..., @, are rational as well.

(b) If, in graph G, every node with positive weight, i.e., u € V such that b(u) >0
is a source, then there exists such a collection of broken cacti, G, ..., G", with
starts uy,...,u, and ends vy,...,v,, respectively, that satisfies the thesis and
nodes uy,...,u, in graphs Gl,...,G" are sources as well.

(c) If b(v) = 0, then there exists such a collection of broken cacti, G',..., G", with
starts uy,...,u, and ends vy,...,v,, respectively, that satisfies the thesis and
for each i € {1,...,n} we have that u; # v;, i.e., the main path of each broken
cacti has length of at least 1.

Let us begin with the induction basis. If there are no edges incoming to v and it
predecessors, it means that v is a source. If b(v) = 0, then let us take broken cactus
Gy = ({s,t},{(s, t)}) for distinct s,t ¢ V and constant a; = 0. Observe that indeed
Pg’b(x) =0=m -Péljﬂs(x). Moreover, a; is rational (thus additional implication
(a) holds), s is a source (thus (b) holds), and s # t (thus (c) holds). Hence, let us
assume that b(v) > 0. Then, observe that pélb(v,O) = b(v)/b(G) and pé’b(v,t) =0,
for every t > 0. Hence, taking constant a; = b(v)/b(G), and one one-node broken
cactus G!' = ({v1},0) we get that indeed

Pg,b(x) Pcl;l]l ( )
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Figure 4.7: An illustration to the case (I) of the proof of Proposition 33 for an
example graph, G.

Moreover, if all weights of nodes are rational, then constant a; = b(v)/b(G) is ra-
tional as well, hence additional implication (a) is satisfied. Also, in graph G! node
vy is a source, thus additional implication (b) is satisfied as well. Finally, since
b(v) > 0, additional implication (c) is also satisfied.

Therefore, let us focus on a case in which }_,cp (6w Ta (G)| > 1, i.e., there is
at least one incoming edge of v. First, observe that if the probability of visiting v
is zero, i.e., Zﬁopé’b(v,t) = 0, then we can take broken cactus Gy = ({s,t},{(s, t)})
for distinct s,t ¢ V and constant @y = 0. Again, Pg,b(x) =0=m -Pél’ﬂs(x) and
ay is rational (thus (a) holds), s is a source (thus (b) holds), and s = t (thus (c)
holds). Thus, in the remainder of the proof, let us assume that there is non-zero
probability of visiting node v in the random walk. Then, we will consider two
cases: the first one (I) in which node v is a sink, and the second one (II) in which v
has outgoing edges.

(I) Let us begin with the case in which v is a sink. Then, let us denote the
direct predecessors of v by {uy,...,u,,} = P}(G) and fix arbitrary i € {1,...,m)}.
Observe that u; has less incoming edges to it and its predecessors then v, i.e,,
2 wep,(G)up} Tw (Gl > Xwep, (Gyufu;) Tw (G)I. This is because each predecessor of u;
is a predecessor of v, but on the right hand side of the inequality we do not count
incoming edges of v. Also, since v is limiting, from Proposition 28 we know
that node u; is limiting as well. Hence, from the inductive assumption we ob-
tain that there exist constants a;,...,a;,, > 0 and such a collection of broken
cacti G¥! = (V¥ EPL, ., GP™ = (Vi EbMi) with starts Ui, Uip,..., Ui, and ends
Vi 1,Vi 2., Vin, respectively, that

i
'l/l']'

Poiy(x) = Zai,j 'PGi:j,]lul_]_(x)' (4.12)
= '

Now, for every i € {1,...,m} and every j € {1,...,n;} let us modify graph G"/ by
adding a new node 7; ; and edge (v; ,79; ;). In other words, we append a .si.mple
broken cactus ({s,?; ;},{(s,?; j)}), for a new node s, to each broken cactus G/. See
Fig. 4.7 for an illustration. Formally, let G/ = G"/ @ ({s,9; ;},{(s,9; ;)}). In what
follows, we will prove that graphs G with constants (yG(ui,v)/degZi(G))ai’j, for
every i € {1,...,m} and every j € {1,...,n;}, and, if b(v) > 0, also graph G° = ({v},0)
with constant b(v)/b(G), constitute a collection such that

(V) VG Ui, v Vi
v =7 . i
PG’b(x) b(G GO ]l ; JZ’ degu 1, PGAi,j’]l”i,j (x)' (4‘ 1 3)

To this end, observe that for every i € {1,...,m} and j € {1,...,nj}, from Propo-
sition 30 we know that generating function of the end of broken cactus G/ is a
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Figure 4.8: An illustration to the first part of case (II) of the proof of Proposition 33
for an example graph, G.

product of generating functions of the ends in broken cactus G/ and broken cac-
tus ({s,9;;},{(s,9; j)}). Generating function of the latter is simply x, therefore we

. 79,',‘ Vi, . o .
obtain that PGA'F;,IL (x)=x- PGi';lﬂui]‘ (x). Inserting it into Eq. (4.13) we can transform

i j

it into

b(v) o o) o
P(I;l’b(x) - TG)PGS,]L}O (x) + 1:1 " m ;az’] . PGi’;'Illli,j (x).

Furthermore, observe that ng’ﬂvo (x) = 1. From this and Eq. (4.12) we get

b - o)
pg’b(x) = % + > X - %chb(x).
i=1 U

Hence, Eq. (4.13) follows from Proposition 29b (Recursive Equation).

It remains to prove additional implications. For (a), observe that if all node
weights are rational, then from the inductive assumption we know that constants
a;;, forevery i €{l,...,m}and j € {1,...,n;}, are rational as well. Hence, constants
pe(u;,v)/ deg;ri (G)-a; ; are rational too. Also, b(v)/b(G) is rational, thus implication
(a) follows. For (b), observe that if all nodes with positive weights in (G,b) are
sources, then from the inductive assumption the start of every broken cactus G*/
is a source. As a result, the start of every broken cactus G*/ is a source as well.
Since G also starts with a source, implication (b) follows. Finally, for (c), observe
that if b(v) > 0, then we do not include graph G in the collection. Moreover, to all
other graphs we have appended a broken cactus with the main path of length 1.
Thus, the main path of each broken cactus in the collection has length at least 1.

(IT) Now, let us assume that v is not a sink. Then, from Proposition 29g (Cycle
Decomposition) we know that the generating function of v is equal to the fraction

PE,(x) = Pgtb(x)/(l - Pg*,ﬂv' (x)) (4.14)
where Gt = (V,E -T(G)) and G* = (VU (v'},E =T}(G) LU {(v',u) : (v,u) € T} (G)})
(see Fig. 4.8). Building upon this, we will construct two collections of broken cacti
with constants: one in which the averaged generating function of the ends is equal
to Pgtb(x)' and one in which it is equal to Pé’;r’b(x) : Pg*’]lv, (x)/(1 - Pg;ﬁ’]lv, (x)). From
Eq. (4.14) we get that added together they will yield averaged generating function
equal to P§  (x).

To this end, observe that in graph G' node v is a sink and the number of edges
incoming to v and its predecessors in G' is at most the same as in graph G, i.e.,
Y web,(GHulv) IC;(GT)| < Y wep,(G)upw} ITw (G)l. Hence, from case (I) of the proof we
know that there exists a collection of broken cacti Gy,...,G,, with starts sq,...,5,,



4.3. PROOFS OF UNIQUENESS 69

and ends wy,...,w,, and constants B1,---»Pm such that the averaged generating
function of the1r ends is equal to P, G+ ,(X) e,

Pl ylx Zﬁ] (4.15)

We will come back to this collection at the end of the proof. Now, let us turn our
attention to graph G*.

Again, v in graph G" is a sink and there are at most as many edges incoming
to v and its predecessors as in G, i.e., Y yep (Gup) Tw (G < Lyep,Gufe) ILw (G-
Thus, from case (I) of a proof there exist constants al, ., &, > 0and a collection of
broken cacti G! = (V1 EY),...,G" = (V",E") with starts uy,...,u, and ends vy,..., v,

respectively, such that
n

Yy (%)= Zai Pl (). (4.16)

i=1 Z
Observe that since graphs G!,...,G" are broken cacti, from Proposition 29h
(Sink Bound) we get that Pgﬁ 1 (1)=1.Thus, by Eq. (4.16), P& ; (1) =a;+--+ay.
Now, let us show that the fact that v is limiting implies that Pg. ; (1) < 1. As-

sume otherwise. Then, since v is a sink in G*, from Proposition 29h (Sink Bound)
we have that Pg*’l (1) = 1. Thus, } 2, pét 1,(v,t) = 1. Since from the fact that

v is a sink we have plct,lv/(v,t) = pét’ﬂv,(v, t,1), by Eq. (4.8), this means that also
Y20 plclv(v, t,2) = 1. However, by Eq. (4.7) for x = 1, this implies that

ipé;,nv(vr t)= ipg;’b(v, t,1)- il,
=0 P -

k=0

Thus, either pé’b(v, t,1) =0, for every t € N, or v is not limiting. Since we assumed
that there is non-zero probability of visiting v, we arrive at a contradiction.

Thus, we know that oy +---+ @, <1 and we can denote g =1 —(ay + -+ ;).
Also, by additional implication (a), since weight 1, is rational for every node, con-
stants aq,...,a, are rational as well. Hence, ay is also rational. Thus, there exists
constant g € N such that q- a,...,q - a, € N. Next, observe that from additional
implication (b) and the fact that v’ in graph G* is a source we know that nodes
uy,...,u, in graphs Gl,...,G" are sources themselves. Also, from additional im-
plication (c) we know that in broken cacti G',...,G" the starts are distinct from
the ends. Observe that if the start of a broken cactus is a source and it is not the
end, then it has exactly one direct successor—the next node on the main path. For
every i € {1,...,n} let us denote this direct successor of u; by u;. Hence, by Proposi-
tion 29f (Edge Multiplication), without loss of generality, we can also assume that
there is exactly q-a; edges from u; to u; in graph G'. Moreover, by Proposition 29a
(Isomorphism), without loss of generality, we can assume that graphs G!,...,G"
are pairwise disjoint. In what follows, using Proposition 32, we will construct
broken cactus G° such that the generating function of its end can be expressed in
terms of the generating functions of the ends of graphs G!,...,G".

To this end, we follow the same five steps of graph operations as in Proposi-
tion 32, but in the reversed order. Specifically,

1. we add graphs G!,..., G" together (graph G”),

2. we redirect ends vy,...,v, into one node, v* (graph G’),
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AT 4§

G* G!,G*G? J G* G°

Figure 4.9: An illustration to the second part of case (II) of the proof of Proposi-
tion 33 for graph G from Fig. 4.8.

3. we combine starts uy,...,u, into one node, u* (graph G¥),
4. we merge node u* with node v* (graph G%), and
5. we add node v° along with ga edges from v* to v° (graph G°).

See Fig. 4.9 for an illustration.

Formally, let us take (G”,b”) = (G! +---+ G", o Ay, +--+a,-1, ) and also
(G,b") = Ry, e (- (Ry, 0 (G + G¥, b” + b”)) .), where (G¥,b") = (({v},0),[0]). Let
us denote G’ = (V/, E’) Then, we remove nodes uy,...,u, from graph G” and in-
stead add node u* and g - @; edges from node u* to node u/, for every i € {1,...,n}.
Formally, let G* = (V*,E*), where V* = V' \ {uy,...,u,} U {u*} and

n n
E*=E'- |_|I‘,;:(G') L |_| qa; - J(u*, u))}.
i=1 i=1
Next, we merge node u* with node v*. Formally, let
GH= (VEEH) = (V*\ (u}, B TG L")+ (1) € (G,
Finally, let us add node v° and g« edges from v* to v°, i.e., let
G° =(V°,E°) = (VIu{v°}, Et LU qag -{(@*,v°)h).

Observe that in this way graph G° is indeed a broken cactus graph, with start
v* and end v°. Moreover, observe that broken cacti G!,...,G" are the result of
the graph operations in the construction from Proposition 32 for graph G° (the
operation in each step of the construction here is the opposite to the operation
taken in the corresponding step of the construction from Proposition 32 and they
are in the reversed order). Thus, from Proposition 32 we get that

Heo (Vv )
Pv° (X) — deg,. (GO) — apX
GOl 1 n oo (viu)) . pYi 1-¥Y" q..P% (x)
T i=1 deg’.(G°) Gilﬂui(x) =17 06,

Combining this with Eq. (4.16) we get that PV:,]l L (x) =apx/(1-PZ. ; (x)). Finally,
let us take graph G* isomorphic to G° and disjoint with graphs G!,...,G" and
Gy,...,G,, with node u® as its start and node v*® as its end. Then, from Proposi-
tion 29a (Isomorphism) we get

doX

S (4.17)
]. - Pé}*,]lvf (X)

Pg:,nu. (x) =
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e O O RO N

Gl, G2 GB G, G2 G* %

Figure 4.10: An illustration to the third part of case (II) of the proof of Proposi-
tion 33 for graph G from Fig. 4.8.

So far, we have obtained a broken cactus with generating function of its end
agx/(1 —Pé’*’ﬂv, (x)) (Eq. (4.17)), a collection of broken cacti with averaged generating
function of their ends Pé’*’ﬂv,(x) (Eq. (4.16)), and another collection with averaged
generating function of their ends Pgtb(x) (Eq. (4.15)). Now, we will combine them
together to obtain a collection of broken cacti with averaged generating function
Png,b(x) : P(’;’g]lv, (x)/(1 - Pg*,]lv, (x))-

To this end, recall that for every i € {1,...,1}, node u; in graph G' is a source
with ga; outgoing edges to node u. Now, let us construct graph G' which is G
with node u; removed (see Fig. 4.10). Formally, Gl = (VI\{u;},E' - F,Z,(Gi)) for
every i € {1,...,n}. Observe that graph G’ can be seen as a broken cactus that is
broken cactus G' appended to a simple broken cactus ({1, t},qa; - {(u;,1)}), for a
new node t. Since the generating function of the end of the latter is simply x, from
Proposition 30 we get that

. 1 :
PYL ()= Py () (4.18)
Thus, when we append broken cactus G* to broken cactus G, then from Proposi-
tion 30, Eq. (4.17), and Eq. (4.18) we get
@0

Py. (X)_Pvi (X)m
1,

Gi®G.;ﬂu{ - Gir]lui
Therefore, when we take a collection of broken cacti G! & G®*,...,G" ® G* with
constants aq/ay,...,a,/ay, then from Eq. (4.16) we get that

v
n Qi e PG*,L/(x)

— pY% =—rv 4.19
ag Gl@G.']l“{(X) 1-Pg 1 (x) (4.19)

i=1

It remains, to multiply obtained generating function by Pé*,b(x)‘ To this end,

we take a collection of broken cacti Gy,...,G,, and to each one of them append

each graph from G' ®G®,...,G" ® G* and for graph Gi& G' @ G* we take constant

Bj - ai/ag (by Proposition 29a (Isomorphism), without loss of generality, we can

assume that graphs Gy,..., G, are pairwise disjoint and also disjoint from graphs
GleGe,.. G'e G®). As a result, we obtain that

m n ﬁj'aipv. i ij " ai Pw]-
ZZ o GjaG'aG* 1, (x) = Zﬁ] ' G]":H'Sj(x)‘ a Gi@G‘rﬂzlf(x)
j=ri=1 0 i j=1 i=1 0 i
m P . (x
=Y B REy (0 3( !
]':] Jr5sj 1- PG,,’]lv/(x)
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where the consecutive equalities come from Proposition 30, Eq. (4.19), and Eq. (4.15).
Finally, to this collection of graphs we add a collection of broken cacti Gy, ..., Gy,
with constants f,..., f,,. Then, from Eq. (4.14) we obtain that

Z P, ZZIS} l (x) = P& (%)
/51161, GeBG ®G* 1, Gb\ )
]‘:1

j=

It remains to prove the additional implications. For (a), observe that if all node
weights are rational in (G, b), then it holds also in graph (G, b). Hence, from the
proof of case (I) we get that constants fy,..., 8, are rational. Thus, also constants
Bj - @i/ag are rational, for every i € {1,...,n} and j € {1,...,m}. For (b), observe that
if every node with positive weight is a source, then it holds also in graph (G%,b).
Hence, from the proof of case (I) we get that starts of broken cacti Gy,...,G,, are
sources as well. Since } ,cp Gupw} /i (G)I > 1, we know that v has at least one

incoming edge. Thus, its welght must be zero, which means that pGJr (v, 0) = 0.
Therefore, in each graph Gj,...,G,, the start must be a distinct node from the end
(otherwise in this graph the probablhty of visiting the end at step 0 would be 1).
Thus, in graph G; ® G' @ G®, for every i € {1,...,n} and j € {1,...,m}, the start is
also a source. Finally, for (c), observe that if b(v) = 0, then from the inductive
assumption, we get that broken cactus G; has main path of length at least 1 for
every j € {1,...,m}. Since in our collection each graph is a broken cactus from
Gi,..., Gy, or a broken cactus obtained from appending a broken cactus to a graph
from Gy,...,G,, all of them have main paths of length at least 1. This concludes
the proof. O

Centrality Measure

Now, let us move to the main part of the proof, in which we consider an arbitrary
centrality measure F that satisfies our axioms.

In the first two lemmas, we show that if we restrict ourselves to sinks, we can
strengthen Random Walk Property axiom. The original axiom states that for every
two graphs with equal sum of node weights, if there is the same node in both
graphs and it has the same visit probabilities, then it has the same centrality as
well. First, we relax the assumption that the considered nodes have to be the
same node. Specifically, we say that for every two graphs with equal sum of node
weights, if there are two sinks in them that have the same visit probabilities, then
their centrality is the same as well.

Lemma 34. If a centrality measure, F, satisfies Random Walk Property, Locality, and
Sink Merging, then for every two graphs G = (V,E), G’ = (V’,E’), node weights b, b’
such that b(G) = b'(G’) > 0, and sinks v € V, v" € V’ such that Pg (x) = Pg:}b,(x), it
holds that

F,(G,b) = F,(G,b").

Proof. Let us consider an isolated node, u ¢ V U V’, with zero weight, i.e., let
(G*,b"*) = (({u},0),[0]). Next, we add it to both (G,b) and (G’,b’) and redirect v
into u in (G, b) and v’ into u in (G’,b’). Formally, (G,b) = R,_,,(G + G*,b+ b*) and
(G, b’) = Ry, (G’ + G*, b’ + b*). From Locality and Lemma 27 we have that in
both (G + G*,b + b*) and (G’ + G*,b’ + b*) node u has zero centrality. Therefore,
from Locality and Sink Merging we obtain that F,(G, Z;) = F,(G,b) and F,(G/, E’) =
F,(G’,b’). Thus, it suffices if we prove that F,,(G,b) = F,(G’,1’)

To this end, observe that graphs (G,b) and (G’,b’) are isomorphic to graphs
(G,b) and (G',b’), respectively. As a result, from Proposition 29a (Isomorphism) we
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obtain that P (x) = P¢ ,(x) = P, (x) = PY .
we know that it can be visited at most once by the random walk. Thus, ps ;(u, ) =
pep(u,t,1) and pe o (u,t) = pa p(u,t, 1), for every t € N. Hence, for every t,k €
N, it holds that pg ;(u,t,k) = pe (1,1, k). Since we also have that b(G) = b(G) =
V'(G’) = b’'(G’), from Random Walk Property we get that F,(G,b) = F, (G, V). This
concludes the proof. O

(x). Since u is a sink in both graphs,

Next, we strengthen Random Walk Property even further. More in detail,
we relax two assumptions: First, we remove the condition that the sum of node
weights in both graphs has to be equal. Second, we say that the visit probabilities
of both nodes do not have to be equal, it suffices if their are proportional, i.e., there
exists a constant, a € R;(, such that multiplying visit probabilities of one node by
a results in visit probabilities of the other node. As a result, the centralities of
both nodes do not have to be equal, but their ratio depends on a and the ratio of
the sum of node weights in both graphs.

Lemma 35. If a centrality measure, F, satisfies Random Walk Property, Locality, and
Sink Merging, then for every two graphs G = (V,E), G’ = (V’,E’), node weights b, b’
such that b(G),b’(G’) > 0, sinks v € V, v/ € V' and constant a € (0,1] such that
PE,(x)=a -Pg:}b,(x), it holds that

F,(G,b) F,(G,b)

5G) TG

Proof. First, we will show that for every graph G = (V,E), node weights b, node
v € V, and constant a € R, it holds that

F,(G,a-b)=a-F,(G,b).

To this end, we will consider function f : Ry — R defined as f(a) = F,(G,a - b).
Observe that it is non-negative as a centrality is always non-negative. In what
follows, we will prove that it is also additive. Both properties will imply that it is
linear [23].

Let us take arbitrary a,a’ € Ryo and prove that f(a +a’) = f(a)+ f(a’). Con-
sider graph G’ = (V/,E’) and node weights b’ such that V"NV =0 and (G',b’) is
isomorphic to (G,b) with isomorphism g : V — V' in which g(v) = v’. Observe
that from Proposition 29a (Isomorphism) we have Pc’;”a,_b(x) = Pg:,a,_b,(x). Since also
a’-b(G)=a’-b'(G’), from Lemma 34 we get that F,(G,a’-b) = F,,(G',a’-b’).

Next, let us add together graphs (G,«a - b) and (G’,a’ - b’) and then redirect v’
into v. Formally, let (G”,b”) =R, _,,(G+G’,a-b+a’-b’). From Locality and Sink
Merging we get that

F,(G”,b”)=F,(G,a-b)+F,(G,a -b) = F,(G,a-b)+F,(G,a’-b). (4.20)

On the other hand, from Proposition 29e (Graph Addition) we get that

a-b(G)-P% . (x) , a’-b'(G)-PY . (x)
Péscrabrarty(¥) = e nd PG g aprary(¥) = et
t&haora a-b(G)+a’-b'(G) tehabra a-b(G)+a’-b(G)
Thus, when we redirect v’ into v, then, by Proposition 29¢ (Sink Redirection),
et b(G)- P, ,(x)+a’-b'(G)-PY (%)

v
F a-b(G)+a’-b(G)

G//’b//

(4.21)
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Moreover, from Proposition 29a (Isomorphism) and Proposition 29d (Weight Mul-
tiplication) we get P”:’a,,b,(x) = P¢ ,,(x). Hence, from Eq. (4.21) we obtain that
Pg",b”(x) = Pg’a.b(x). Furthermore, observe that, by Proposition 29d (Weight Mul-
tiplication), this is equivalent to P, . (x) = Pg,(am,)'b(x). Since we also have that
b”(G”) = a-b(G)+a’-b'(G') = (a + a’) - b(G), from Lemma 34 we obtain that
F,(G”,b”) = F,(G,(a + a’) - b). Now, combined with Eq. (4.20) this implies that
F,(G,(a+a’)-b)=F,(G,a-b)+F,(G,a’-b). As a result, function f is additive. Since
itis also non-negative, we get that it is linear. Hence, indeed, F, (G, a-b) = a-F,(G, )
for every a € Ry,

Now, let us move to the main part of the proof. Let us consider arbitrary graphs
G = (V,E), G’ = (V',E’), node weights b, b’, sinks v € V, v’ € V’, and constant
a € (0,1] such that P§,(x) = a - Pg:}b,(x). We will prove that F”b((%)b) = aF”;;,((GC;j)b,).
To this end, let us first add a new node, u ¢ V’, to graph G and let us assign it
such a weight that the total weight of resulting graph would be b'(G’)/a, i.e., a
weight equal to b’(G)/a — b’(G). Formally, let (G*,b") = (({u},0),[b'(G)/a — b'(G)])
and (G”,b”) = (G’ + G*,b’ + b*). From Locality we have that

F,(G”,b")=F,(G,b). (4.22)
On the other hand, from Proposition 29e (Graph Addition) we get that
b'(G)
b(G') + b(G) b(G)

a

PG y(x) = PGy (x) = @Pg, 1 (x) = PG (x).

Hence, if it holds that b(G) = b”(G”), which means that b(G) = b’(G’)/a, then
from Lemma 34 we get F,(G,b) = F,(G”,b”). Thus, from Eq. (4.22) we obtain that
F,(G,b) =F,(G’,b’) and the thesis follows by sidewise division by b(G) = b’(G’)/a.

If, however, b(G) # b”(G”), then let us accordingly scale the node weights of

1 * b’ (G”
graph (G,b), i.e., let b* = bEG)>

-b. From the first part of the proof, we have

b//(G//)
b(G)

F,(G,b") = -F,(G,b). (4.23)
Now, by Proposition 29d (Weight Multiplication), Pg,.(x) = Pj(x) = Pg, . (x).
Moreover, observe that b*(G) = b”(G”)/b(G) - b(G) = b”(G”). Thus, from Lemma 34
we obtain that F,(G,b*) = F,(G”,b”). In turn, by Eq. (4.23), this implies that
F,(G,b)/b(G) = F,(G”,b”)/b”(G"”). Finally, observe that from Eq. (4.22) and the fact
that b”(G”) = b’(G’)/a we obtain that F,(G, b)/b(G) = aF,(G’,b’)/b’(G’), which con-
cludes the proof. O

In the central lemma of this part of the proof, we show that the centrality of
the end of every broken cactus is equal to its RWD (up to a scalar multiplication).

Lemma 36. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, and Directed Leaf Proportionality, then there exists a constant, cp € Ry, such
that for every broken cactus G = (V, E) with the start u and the end v, it holds that

F,(G,1,) = cp- RWDYG,1,).

Proof. By cp let us denote the centrality of a node with unit weight in a graph
without any other nodes nor edges. Formally, let cp = F,(({v},0),[1]).

We will follow the proof by induction. To this end, we strengthen the induction
hypothesis by considering not only the centrality of the end of the broken cactus,
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6o, 880, . 0.

GM'LU Gw‘l/

Figure 4.11: An illustration to the first part of the proof of Lemma 36 for an exam-
ple broken cactus, G’

but also the effect that broken cacti appending has on the centrality of the end.
Specifically, we will show that for every two disjoint broken cacti G = (V,E) and
G’ = (V’,E’) with starts u,u” and ends v, v’, respectively, it holds that

F,(G®G',1,) = F,(G,1,)-RWD%(G’,1,) and F,(G’,1,/)=cp-RWD2(G’,1,).

Since G’ is an arbitrary broken cactus, this will imply the original thesis.

The induction is on the number of edges in graph G’. If |[E’| = 0, then broken
cactus G’ consists of a single isolated node, i.e., for an arbitrary node, v/, we have
G’ = (({v'},0)). From Lemma 34 we have that F, (G’,1,/) = cp. Also, observe that
RWD;,(G’,1,) = 1, therefore F,/(G’,1,/) = cp- RWD},(G’,1,/). Moreover, observe
that the graph obtained by appending G’ to G, i.e., G® G/, is just graph G. Thus,
F,(G®#G’,1,)=F,(G,1,), which concludes the proof of the induction basis.

Thus, let us assume that |E’| > 0. Since the end of a broken cactus is a sink,
this means that u” # v’. First, let us assume that u’ is not a direct predecessor of
v/, i.e., (u’,v’) ¢ E’. Then, there exists another node on the main path of graph G’
that is a direct predecessor of v’. Let us denote it by w’. Observe that this means
that G’ can itself be viewed as the result of the appending of two broken cacti: the
first one, G*% = (V¥¥ E"¥), that starts at u” and ends at w’, and the second one,
GYY = (V¥?,E""), that starts at w’ and ends at v’. See Fig. 4.11 for an illustration.
Formally, take w” ¢ VUV’ and let V¥’ =S, (G")\ {w’} U{w”} and V*¥ = V' \ V¥7?,
Also, let E"Y = | |scyun\y I5(G') and E¥? = E'—~E"V ~T;,UE,, UE_, UE,,, where
El, ={w"t): (w,t) e L) (G),t = w), E,, = {(s,w”): (s,w') € [ (G),s € V¥}
and E},, = pue/(w’,w’) - {(w”,w”)}. Observe that indeed G** ® G¥ = G’. Moreover,
both G"" and G"" have less edges than G’, thus by the inductive assumption,
F,(G"",1,)=cp-RWD; (G"%,1,) and

Fv/(G,, ]lu/) = wa(Guw, ]].u/) . RWDZ;(GWV, ]lw//)
= cp-RWD?,(G*¥,1,,,)- RWDZ,(GYY, 1),

Since RWD also satisfies our axioms (Lemma 26) and cgryp = 1, from this equation
for F = RWD* we get

RWD?(G',1,/) = RWD?,(G*¥,1,,)- RWD% (G, 1,,»). (4.24)

Therefore, we get also that F,,(G’,1,,/) = cg-RWD,,(G’,1,,/). Now, consider append-
ing G’ to G. Again from the inductive assumption, used two times, we have

F,(G®G',1,)=F,(GoG"",1,)-RWD,,(G*",1,)
=F,(G,1,)-RWD: (G*",1,/)- RWD3,(G", 1L,»).

Thus, we get the thesis from Eq. (4.24).
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Figure 4.12: An illustration to the first part of case (II) of the proof of Lemma 36
for an example broken cactus, G.

Hence, let us assume that (1’,v’) € E’, i.e., the main path of G’ is of length 1.
Now, we consider two cases: the first one (I) in which there is no cycle in G’, and
the second one (II) in which there is at least one cycle in G’. Let us begin with the
former case.

(I) If there are no cycles in broken cactus G” and its end is a direct successor of
its start, it means that edges in G’ can go only from node u” to v’. Hence, it is of
the form G" = ({u’,v’},k - {(u’,v")}) for some k > 1. If k > 1, then let us reduce the
number of edges (1’,v’) to one, i.e, let G” = ({u’,v’}, {(u’, v)}). From Proposition 29f
(Edge Multiplication) we get that PV:,IL,/(X) = Pé’:,’]l“,(x). Thus, from Lemma 34 we
have F,(G’,1,/) = F,(G”,1,/). In the same way, F,(G® G',1,) = F,(G®&G”,1,).
Since G” has less edges than G’, we get the thesis from the inductive assumption.

Thus, let us assume that k = 1, i.e., G" = ({u/,v’},{(u’,v")}). In such a case,
let us remove all edges from the graph, i.e., let G” = ({t/,v’},0). Since now node
v’ is isolated, from Locality and Lemma 27 we have F,(G”,1,/) = 0. Moreover,
from Locality and the induction basis, we have F,,(G”,1,/) = cp. Therefore, by
Directed Leaf Proportionality, F,(G’,1,,) = F,(G”,1,)+a-F,(G",1,/) = a-cE.
Since RWD also satisfies our axioms (Lemma 26) and cgyp = 1, we obtain that
indeed FV/(G,,]lu/) =Cf- RWDV/(G,,]].M/).

It remains to prove that F,,(G® G',1,) = F,(G,1,)- RWD;,(G',1,,). To this
end, let G* = (V U {v’},E) be graph G with node v’ added. Observe that if we add
edge (v,v’) to this graph, we obtain broken cactus G @® G’. Hence, Directed Leaf
Proportionality yields

Fy(G®G'1,)=Fy (G, 1,)+a-F,(G",1,).

In G*, node v’ is isolated. Hence, F,/(G* 1,) = 0. By Locality, F,(G*,1,) = F,(G,1,).
Thus, we get that F,,(G®G’,1,) =F,(G,1,)-a=F,(G,1,)-RWD, (G, 1,).

(II) Let us move to the case in which there is at least one cycle in G’. This
means that the successors of node u’ consists of v’ and n > 1 other nodes. In what
follows, using Proposition 32, we “uncycle” graph G’ into a collection of broken
cacti G1,...,G" (see Fig. 4.12). Each of these broken cacti will have less edges
than G’, thus with a series of graph operations and by the inductive assumption,
we will prove the induction hypothesis. To this end, let us denote the set of di-
rect successors of u’ by S;,(G’) = v, wy,...,w,}. Also, for convenience, let a; =
po (u',w;)/ deg! (G'), for every i € {1,...,n}, and ag = pg/(u’,v’)/deg, (G’). Finally,
take wi, vy W, V..., v, € VUV’ and let us denote the broken cacti obtained by the
construction from Proposition 32 applied to graph G’ by G! = (V1 E!),...,G" =
(V" E™) with starts wi,...,w; and ends vy,...,v, respectively in such a way that
w; € V' for every i € {1,...,n}. Then, from Proposition 32 we get that

’ CY()X

Pt (x)= .
G, 1, i
L-YiaiPgy (x)

(4.25)

1
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% OC‘/O@T@E&DO
e e

Figure 4.13: An illustration to the second part of case (II) of the proof of Lemma 36
for broken cactus G’ from Fig. 4.12.

Next, let us consider pairwise disjoint broken cacti G ...,G" that are iso-
morphic to G’ and disjoint from Gl,...,G" and G. Also, let us denote their starts
by uD,...,u™ and ends by v(1),...,v(", respectively. Then, consider appending
graph G’ to G%, i.e., GV @ G'. From Proposition 29a (Isomorphism) we obtain

v
G, (%)

Let us multiply both sides by a; and sum for all i € {1,...,n}. Then, from Eq. (41.25)
we get

(0) , . ; , :
Pg“)'ﬂum (x) = Pg,’nu,(x). Thus, by Proposition 30, P&i)eaGi,nu(l-) (x) = chnu, (x)-P

n n
v; apx u’
Y @iPligeiy ()= —— ) @Y (%)
L GeG1 ;) 1-y7, aiPé‘,-lﬂw{(x) = -
1

For any two formal series P and Q, it holds that Q-P/(1-P)+Q = Q/(1-P). Hence,
by adding a(x to both sides of the above equation, we obtain that

n
’ aox
QX + ZaiP“(i) i ()= ’
im1 GIeG1 (i) 1-yr, aipui,ﬂwf(x)
1

=Py (%), (4.26)

where the second equality comes from Eq. (4.25).

Building upon this, we will now follow Proposition 31 to obtain graph G* with
generating function P”:’ﬂu,(x) but constructed from graphs G @ G!,...,G" @ G"
by adding them together and redirecting their ends (see Fig. 4.13). To obtain a
graph with generating function a(x, from the left hand side of Eq. (4.26), let us
take new nodes u*,v* and denote G0 = ({u*,v*}, {(u*,v*)}). Now, let

n n
(G b%) = Ry, ( N [RW)W [G<0) +) GeG, al, + Z“i]l““’])' N ]
i=1 i=1

. * oy . * Vi
Since P(’;’(O)’]lw (x) = x, Proposition 31 yields Pg, ,.(x) = apx + Y, OciPG<f>®Gi,1 (i) ()
Hence, from Eq. (4.26) we obtain that Pg:’b*(x) = Pg:,]lu/ (x). Moreover, observe that

b*(G')=ap+---+a,=1=1,(G’). Thus, from Lemma 34 we get
F,(G", b") = F.(G',1,,). (4.27)

On the other hand, from case (I) we have F,.(({u*,v*},{(u*,v*)}), 1,+) = cp - a.
Thus, by Locality and Sink Merging, F,-(G*,b*) = agcp-a+)_ ;| aiFyi(G(i@Gi, 1,0).
By Proposition 32, for every i € {1,...,n}, broken cactus G’ has less edges than G’.
Thus, F,-(G",b*) = agcp-a+ )1, a,'FVm(G(i),]lu(;)) . RWDf}[(Gi,ILw;) from the induc-
tive assumption. Also, for every i € {1,...,n}, we get Pv(i)(G(i),]lu(i)) = F, (G, 1,)
from Lemma 34. Hence, F,.(G",b*) = agcp-a+F, (G, 1,)- Y1, a,'RWDSi(Gi, L)
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Combining this with Eq. (4.27) yields

Fy(G 1) = agcp-a+Fp(G,1,)- ) a;RWDS (G, 1yy).

n

i=1

Since ]lwlg(Gi) =1, by Eq. (4.3), for every i € {1,...,n}, RWDf,’i(Gi,]lwtz) is the prob-

ability of visiting node v; in the random walk with decay factor a starting from

node w’. Thus, RWDﬁi(G’,]lw;) < 1. Hence, ) !, al-RWD,‘}i(Gl,]lw;) < 1, because
?,a;=1-ay < 1. Therefore, we can transform the above equation into

ap-a
1= Y1, a;RWD§ (G, 1)’

Fy (G 1,)=cF (4.28)

Since RWD also satisfies our axioms (Lemma 26) and cgyp = 1, we get that

dp-a

RWD%(G',1,,) = : .
v(G L) 1-Y 1 ajRWD§ (G, 1)

Hence, F,/(G,1,/) = cp- RWDJ,(G', 1,,).

Thus, it remains to prove that F,,(G®G',1,) = F,(G,1,)-RWD;,(G,1,,). To this
end, we will use a similar reasoning, but instead of graphs GV & G!,...,G" @ G"
we will consider graphs G&@ GV @ G!,...,G® G™ @ G". Observe that multiplying
both sides of Eq. (4.26) by Pg,ﬂu (x) we get

n
aox-PYy (x)+ Z“ipg,n,, (X) - Plini g, (%)= Py, (¥)- PE g, (x).
i=1 !
Thus, from Proposition 30 we obtain that
n
Vi ’
apXx - Pg’ﬂu(x) + ZaiPGeaG(“e;Gi,]l,,(x) = PgeaG’,ILu(x)' (4.29)

i=1

Therefore, we will follow Proposition 31 and construct graph (G*,b*) based
on graphs G® GM @ Gl,...,G® G @ G", and G such that Pl o (x) = PgéBG,’ﬂu(x).
To this end, let us define pairwise disjoint broken cacti Gh,...,Gm isomorphic to
graphs GaGM @ G,...,GoG" ®G", respectively, and let us denote their starts as
2M,..., 20" and ends as ?1),..., 5", respectively. From Proposition 29a (Isomor-
phism) we obtain

i1 (x) = P&BG(”@G{J” (x), foreveryiel{l,...,n} (4.30)

Also, by G we denote the graph resulting from appending a simple broken cactus
GO = ({u*,v*}, {(u*,v*)}), for new nodes u*,v*, to graph G, i.e., let G = G G¥
(see Fig. 4.14). From Proposition 30 we get that PC’;A’*IL (x)=x- Pg’]l (x). Combining
this with Eq. (4.29) and Eq. (4.30) we obtain '

1

n
* 5(0)
aOPG'Z’lu(x) + Zaipé(i),ﬂ 00 (x) = Péggr1. (%) (4.31)
l':l u
Building upon this, let us define

(G*, b*) - R'U(l)—ﬂ/* [ .o {Rv(”)—w*
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Figure 4.14: An illustration to the third part of case (II) of the proof of Lemma 36
for broken cactus G’ from Fig. 4.12 and an example broken cactus, G.

From Proposition 31 and Eq. (4.31) we get that indeed

Pg*b*( ) G]Lu Za P‘Vj @ x PgéBG’ ( )
Since b*(G*) =) ,a; = 1, from Lemma 34 we get that
F,(G5b*)=F,(G® G, 1,). (4.32)

On the other hand, observe that from case (I) of the proof we can obtain that
F(G,1,) =F,(G,1,)-RWD%G9,1,+) = a-F,(G,1,). Thus, from Locality and Sink
Merging we get

F,(G*,b*) = apa-F,(G,1,) ZaF 0). (4.33)

From Lemma 34 we get F 1 (G A am) = (GGBG NeG',1,), forevery i e (1,...,n).
Since graph G' has less edges than G/, from the inductive assumption we get
that Fji 2 (GO A a0) =F,n(Ge® GH,1,)- RWDy, (G, w;). As G is isomorphic to G/,
Lemma 34 yields Fy) ( ( D, 1,0)=F, (G®G, ]l ME RWD,‘ji(GZ,wl). Inserting this into
Eq. (4.33), we get F,(G*,b*) = aga-F,(G,1,)+ Y1, a;F, (G®G',1,,)- RWDS (G, w;).
Thus, from Eq. (4.32) we obtain

F, (G®G,1,)=apa-F,(G,1,)+F, (G&G, 1 Za RWDS (G',w;),

which can be transformed into
OKOLZF,,(G, 1, )

F ’ G@G,,]l = B .
v 2 1-Y 1 a;-RWD§ (G, 1)

Therefore, the thesis follows from Eq. (4.28) O

Now, let us move to arbitrary graphs. In the next lemma, we show that cen-
trality F is equal to RWD (up to a scalar multiplication) for every sink in every
graph.

Lemma 37. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, and Directed Leaf Proportionality, then there exists cp € Ry such that for
every graph G = (V,E), node weights b, and sink v € V, it holds that

F,(G,b) = cg - RWDZ(G, b).
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Proof. Consider an arbitrary graph G = (V,E), node weights b, and sink v € V. If
b(G) = 0, then the thesis follows from Lemma 27. Otherwise, since v is a sink, it is
also a limiting node. Thus, from Proposition 33 we get that there exist constants
a1,...,a, > 0 and a collection of broken cacti G!,..., G" with starts uy,...,u, and
ends vy,...,v,, respectively, such that

n

PY,(x) = Zai -Pgﬁl]lui (x).

i=1

By Proposition 29a (Isomorphism), without loss of generality, we can assume
that graphs G!,...,G" are pairwise disjoint. Next, we construct graph (G’,b’) by
adding together graphs G!,...,G" and then merging their ends. Formally, let us
denote (G',b’) = Ry, y (-..(Ry, -y (G' +++-+ G, a1 - 1, + -+ a,1, ))...). Then,
from Proposition 31 we have that Pg’b(x) = Pg’,“lb,(x) - Y., a;. Observe that b’'(G’) =

i1 a;. Hence, from Lemma 35 we get that

F,(G,b) = b(G)-F,(G,b). (4.34)

On the other hand, observe that from Locality and Sink Merging we obtain
F, (G V)=cp- Y1 a; -Fv‘_(Gi,]lui). Since graphs G!,...,G" are broken cacti, from
Lemma 36 we get that Pvi(Gix]lui) = CF-RWDﬁi(Gi,]lui ), for every i € {1,...,n}. Thus,
F (G V)=cp- Y1 a; -RWDT‘}i(Gi,]lui). Combining this with Eq. (4.34) we obtain
that

n
F,(G,b)=cp-b(G)- Zai -RWD2(G',1,,).
i=1

Since RWD also satisfies our axioms (Lemma 26) and cgryyp = 1, we obtain that
indeed F,(G,b) = cp - RWD4(G, D). O

Finally, we show that centrality of every node in every graph is equal to RWD.
First, up to a scalar multiplication, and then, in the exact values.

Lemma 38. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, Lack of Self-Impact, and Directed Leaf Proportionality, then there exists a
constant, cp € Ry, such that for every graph G = (V,E) and node weights b, it holds
that

F,(G,b)=cg-RWDJ(G,b), foreveryvelV.

Proof. Consider an arbitrary graph G = (V, E), node weights b, and fix v € V. Then,
let us remove outgoing edges of v from graph G. Formally, let G’ = (V,E —T,J (G)).
From Lack of Self-Impact we have that F,(G,b) = F,(G’,b). Observe that in graph
G’ node v is a sink. Thus, from Lemma 37 we get that F,(G’,b) = cp - RWD}(G’, b).
Since we know that RWD also satisfies Lack of Self-Impact (Lemma 26), we obtain
that RWD3(G’,b) = RWD4(G, b), from which the thesis follows. g

Lemma 39. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, Lack of Self-Impact, Directed Leaf Proportionality, and One-Node Graph, then
for every graph G = (V,E) and node weights b, it holds that

F,(G,b) =RWDj(G,b), foreveryveV.

Proof. Observe that RWDj(({v},0),[1]) = 1. Therefore, the thesis follows from One-
Node Graph and Lemma 38. O
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4.3.2 Personalized Decay Centrality (Theorem 24)

Let us move to the proof of Theorem 24, i.e., that personalized decay centrality
is the only centrality measure that satisfies Shortest Paths Property, Locality, Sink
Merging, Directed Leaf Proportionality, and One-Node Graph. We begin by show-
ing that personalized decay indeed satisfies all five axioms.

Lemma 40. For every decay factor a € [0,1), personalized decay centrality satisfies
Shortest Paths Property, Locality, Sink Merging, Directed Leaf Proportionality, and
One-Node Graph.

Proof. Let us take an arbitrary graph G = (V, E), node weights b, and consider the
axioms one by one.

* For Shortest Paths Property, take graph G’ = (V’,E’), weights b’, and node
v € VNV’ such that b(G) = b(G’) and [{u € V : distg(u,v) = k Ab(u) = x}| =
{u € V' :distg(u,v) =k Ab'(u) = x}|, for every k € N and x € R. Then, from
the definition of personalized decay centrality (Eq. (2.1)) we get that also

Ua(G,b) — Zb( dzstG u,v) Z b dzstG u,v) Yﬁ(G’,b).

ueV ueV’

* For Locality let us consider graph G’ = (V’,E’) such that VNV’ = 0, weights
b’, and node v € V. Observe that in graph (G+G’,b+1b’) there is no path from
nodes in V’ to v. Thus, for every u € V’, we have dist(u,v) = oco. Therefore,
from Eq. (2.1), we get that

YHG+G b+b)= ) b(u)-a®S0 = ) p(u) a0 = YS(G,b).
ueVuv’ ueV

 For Sink Merging, consider two sinks u,w € V such that P,(G) N P,(G) = 0.
Since u and w are sinks, for every v € V \ {u, w}, there is no path from u or
w to v in graph G. Likewise, there is no such path in a graph obtained by
redirection of u into w. Also, the distances to v from other nodes do not
change, hence from Eq. (2.1) we get

YGh)= ) b(s)-a ) = VIR, Lu(G,b)).
seV\{u,w}

It remains to consider node w. Since # and w do not have common prede-
cessors, we get that each predecessor of w in graph R, _,,(G,b) is either a
predecessor of 1 in G or a predecessor of w in G, but not both. The distances
from predecessors are not affected, therefore

Y2(Ry_w(G,b)) = Z b(s) - adists0) =
s€P,(G)UP,(G)

Z b(s) - a9istsv) 4 Z b(s) - a®$15Y) = YA(G, b) + YA(G, b).

seP,(G) s€P,(G)

* For Directed Leaf Proportionality, consider sink # € V and an isolated node
veV. Also, let G' = (V,EU{(u,v)}). Observe that in graph G’, for every node
s € V\ {v}, each walk from s to v must visit node u in its last but one step.
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Hence, distg/(s,v) = distg/(s,u)+ 1. Also, no path to u can go through node
v, thus distg (s, u) = distg(s,u). Therefore, from Eq. (2.1) we get

Y4(G',b) :a-[ Z b(s)-adm(s'”)]+b(v)-ao =a-YXG,b)+b(v).
seV\{v}

Since personalized decay of an isolated node is equal to its weight, the axiom
follows.

* Finally, for One-Node Graph assume that (G, b) = (({v},0),[1]). Observe that

in such a case, from Eq. (2.1) we get Y}(G,b) =b(v) = 1. .

Now we move to the second part of the proof, in which we show that an ar-
bitrary centrality measure F that satisfies Shortest Paths Property, Locality, Sink
Merging, and Directed Leaf Proportionality is equal to personalized decay cen-
trality up to a scalar multiplication. Similarly to Section 4.3.1, the decay factor of
personalized decay centrality, which centrality measure F is equal to, is given by
constant a in Directed Leaf Proportionality. Thus, formally, we show that there
exists a constant, cg € Ry, such that for every graph G = (V,E), node weights b,
and node v € V, it holds that F,(G,b) = cg - Y/(G, b). Then, from One-Node Graph
we obtain that cp =1 and F,(G, b) = Y}(G,b).

We prove that F is equal to personalized decay (up to a scalar multiplication)
by considering nodes in arbitrary graphs that are: first, isolated (Lemma 41), and
then, arbitrary (Lemma 42).

Lemma 41. If a centrality measure, F, satisfies Locality and Sink Merging, then there
exists a constant, cp € Ry, such that for every graph G = (V,E), node weights b, and
isolated node v € V, it holds that

F,(G,b) = cg - b(v) = cp - YA(G, b).

Proof. It is easy to check that from the definition of personalized decay centrality
indeed YJ(G,b) = b(v). Hence, let us focus on proving that there exists cp € Ry
such that F,(G,b) = cg - b(v), for every graph (G, b) and isolated node v.

To this end, let us first consider one-node graphs without any edges, i.e., graphs
of the form: (({v},0),[x]) for some node v and x € Ry. Consider two such graphs,
(({u},0),[x]) and (({v},0),[v]), for arbitrary u = v and x,y € R5(. Let (G,b) be their
sum: (G,b) = (({u,v},0),[x,v]). From Locality we know that their centralities are
the same as in the original graphs. In particular,

Fy(G,b) + Fy(G,b) = Fy,({u}, 0), [x]) + Fo ({v}, 0), [y]). (4.35)

Nodes u and v are sinks and do not have any predecessors. Thus, by Sink Merging,
redirecting node v into u increases the centrality of u by the centrality of v. Such
a redirection results in graph (({u},0), [x + v]), so we get:

Fy(({u}, 0), [x +9]) = Fu(Ryu (G, b)) = Fy,(G, b) + Fy (G, b). (4.36)
Combining Eq. (4.35) and Eq. (4.36) we have

Fy(({u}, 0), [x +3]) = Fu(({u}, 0), [x]) + Fy ({2}, 0), [9])- (4.37)

We make the following observations:
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(a) F,(({v},0),[0]) =0, for every v (from Eq. (4.37) with y = 0);

(b) F,(({v},0),[v]) = F,(({u},0),[v]), for every u # v and y € R (from Eq. (4.37)
with x = 0 and (a));

(c) Fo(({v},0), [x +v]) = Fo(({v},0), [x]) + Fo ({v},0), [y]), for every v and x,y € Ry
(from Eq. (4.37) and (b)).

Note that (b) implies that the centrality of v in the weighted graph (({v},0),[x])
depends solely on weight x. In other words, there exists a function f : Ryyp —» R
such that F,(({v},0),[x]) = f(x). Since centralities are non-negative, we know that
f is also non-negative, i.e., f(x) > 0, for every x € R5(. On the other hand, from (c)
we know that f is additive, i.e., f(x+v) = f(x) + f(v), for every x,v € R5o. Thus,
from non-negativity and additivity we obtain that f is linear [23], i.e., f(x) =cp-x
for some cr € R, for every x € R,(. As a result, we know that that there exists
cr € Ry such that for every node v we have F,(({v},0), [x]) = cg - x. Then, the thesis
follows from Locality. O

Next, let us move to arbitrary nodes in arbitrary graphs and show that their
centrality is equal to personalized decay (up to a scalar multiplication).

Lemma 42. If a centrality measure, F, satisfies Shortest Paths Property, Locality, Sink
Merging, and Directed Leaf Proportionality, then there exists a constant, cp € Rsq, such
that for every graph G = (V,E) and node weights b, it holds that

F,(G,b)=cg-Y)(G,b), foreveryvelV.

Proof. The proof is by induction on the number of edges. If there are no edges in
the graph, then the thesis is implied by Lemma 41. Hence, let us focus on the case
in which there is at least one edge in a graph.

Fix v € V. Let us denote the maximal distance from any nodein V tov by d, i.e.,
let d = max,cy dist;(u,v). Then, denote the sets of nodes from which the distance
to node v is equal 0,1,...,d by V, Vy,..., V,, respectively. Formally, V, = {v} and
Vi ={u € P,(G) : dist(u,v) = i}, for every i € {1,...,d}. Observe that for every node
u € V;, there is an outgoing edge from u to a node in V;_;. Let us denote it by e,,.

Now, consider the case in which u has also another outgoing edge, namely
e #e,. Let G’ be a graph with edge e removed, i.e., G’ = (V,E — {e}). Since in G/,
for everyi e ({1,...,d}, every node from V; still has an outgoing edge to one node in
Vi_1, the dlstances to v from all of its predecessors does not change, i.e., for every
s € P,(G) we have distg(s,v) = distg/(s,v). Thus, from Shortest Paths Property we
have that F,(G,b) = F,(G’, b). Graph G has one edge less than G, therefore from the
inductive assumption we get the that F,(G,b) = cg - Y;/(G’,b). Since personalized
decay centrality also satisfies our axioms (Lemma 40) and cy = 1, we obtain the
thesis.

Hence, let us assume that for every i € {1,...,d} every node u € V; has exactly
one outgoing edge and it goes to a node in Vl_l Now, consider the case in which
v has an outgoing edge, e € I,/ (G). Let G’ be a graph with edge e removed, i.e.,
G’ = (V,E — {e}). Again, the distances to v from all of its predecessors does not
change, i.e., distg(s,v) = distg(s,v). Thus, from Shortest Paths Property we have
that F,(G,b) = F,(G’,b). Graph G’ has one edge less than G, therefore from the
inductive assumption, the fact that personalized decay centrality also satisfies our
axioms (Lemma 40), and cy = 1, we get the thesis.

Thus, let us assume that v is a sink. Now, consider the case in which v has more
than one incoming edge, i.e., I, (G)| > 1. Observe that all of the direct predecessors
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Figure 4.15: An illustration to the proof of Lemma 42 for an example graph, G.

of v are in set V;. Therefore, each of them has exactly one edge and it goes to
node v. Hence, also |P}(G)| > 1. Let us denote one of the direct predecessors of
v by u € P}(G). Next, let us split node v into two nodes: node v’, with only one
incoming edge (#,v’) and zero weight, and node v, with all of the other original
incoming edges of v and the original weight of v (see Fig. 4.15 for an illustration).
Formally, let G" = (V U {v'},E = {(u,v)} L {(1,v")}), b}, = b, and b’(v’) = 0. Observe
that indeed (G,b) = R, _,, (G, b’).

Moreover, let us show that v and v’ do not have a common predecessor. Assume
otherwise and take a common predecessor, s € P,(G')NP,/(G’), such that its distance
to node v is minimal. Node s has exactly one outgoing edge. Let us denote it
by (s,s’). Observe that s’ has to also be a common predecessor of v and v’, but
diste(s’,v) < distg/(s,v). Thus, we arrive at a contradiction. Since v and v’ are
sinks without commons predecessors, from Sink Merging we get that

F,(G,b) = F,(G',b') + E, (G, b). (4.38)

Observe that v’ and its predecessors and their outgoing edges constitute a con-
nected component in G’. Thus, let us denote the graph with this connected com-
ponent removed, i.e., let G” = (V \ P,,(G’)\ {v'},E —{ey, : w € P,,(G')}). Also, let us
denote the graph in which we keep this connected component and remove all other
nodes and their edges, i.e., let G* = ({v'} U P,,(G’),{ey, : w € P, (G") \ {u}} U {(u,v')}).
Observe that indeed G” and G* are disjoint and G” + G* = G’. From Locality we
obtain that F,(G’,b’) = FV(G”,b;/\Pv,(G,)) and F, (G, V') = Pv’(G*’b{’v'}qu,(G'))' Since
both G” and G* has less edges than G, from the inductive assumption and the fact
that personalized decay centrality also satisfies our axioms (Lemma 40) we get
F, (G, b’) = cp- Y} (G, V) and F,(G’,b’) = cg - Y, (G',b’). Hence, the thesis follows
from Eq. (4.38).

Thus, let us assume that v has at most one incoming edge. Now, consider the
case in which v has exactly one such edge, namely (#,v). Consider graph with (u,v)
removed, i.e., let G’ = (V,E —{(u,v)}). From the inductive assumption we get that
F, (G, b) = cp- Y}(G',b) and F,(G’,b) = cp - Y}(G’,b). Observe that from Directed
Leaf Proportionality we have that

F,(G,b)=a-F,(G,b) + F,(G/,b) = cp - (a- Y(G,b) + Y(G', b))

Since personalized decay centrality also satisfies Directed Leaf Proportionality
(Lemma 40), we obtain the thesis.

Finally, let us assume that v does not have any incoming edges. In such a case,
v is isolated and the thesis follows from Lemma 41. O

Finally, we add One-Node Graph and show that personalized decay centrality
is uniquely characterized.
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Lemma 43. If a centrality measure, F, satisfies Shortest Paths Property, Locality, Sink
Merging, Directed Leaf Proportionality, and One-Node Graph, then for every graph
G = (V,E) and node weights b, it holds that

F,(G,b)=Y](G,b), foreveryvelV.

Proof. Observe that Y}(({v},0),[1]) = 1. Therefore, the thesis follows from One-
Node Graph and Lemma 42. O]

4.3.3 PageRank (Theorem 25)

Finally, let us prove that Random Walk Property, Locality, Sink Merging, Edge
Swap, Directed Leaf Proportionality, and One-Node Graph uniquely characterize
PageRank. Let us start by showing that PageRank indeed satisfies all six axioms.

Lemma 44. For every decay factor a € [0,1) PageRank satisfies Random Walk Prop-
erty, Locality, Sink Merging, Edge Swap, Directed Leaf Proportionality, and One-Node
Graph.

Proof. Let us take an arbitrary graph G = (V, E), node weights b, and consider the
axioms one by one.

* For Random Walk Property, consider graph G’ = (V’,E’), node weights b’,
and node v € V NV’ such that b(G) = b(G’) and pé’b(v, t, k)= pé,’b,(v, t, k), for
every t,k € N. Observe that from Eq. (4.1) we get

pépv k) =a'pe (v, k) =a' - pg, (v, t,k) = pg, (v, 1K),
for every t, k € N. Hence, the axiom follows from Eq. (4.2).
* Locality follows from Lemma 6.

 For Sink Merging, consider two sinks u,w € V such that P,(G) N P,(G) = 0.
Observe that nodes u and w are out-twins, hence from Node Redirect we
obtain that PR%(R,_,,,(G, b)) = PR%(G,b), for every v € V \ {u,w}, and also that
PRZ (R, (G, b)) = PR}(G,b)+ PR%(G,b). Thus, Sink Merging is satisfied.

* The fact that PageRank satisfies Edge Swap is proven in Section 3.2.1.

* For Directed Leaf Proportionality, consider a sink, # € V, and an isolated
node, v € V. Also, denote G" = (V,E LI {(u,v)}). Observe that from the Page-
Rank recursive equation (Eq. (2.5)) for node v and graph (G’,b) we obtain
that PR%(G’,b) = a-PR%(G’,b)+b(v). Since u is a sink in G, it is not a successor
of itself in G’. Thus, from Edge Deletion we get that PR%(G’,b) = PR%(G, D).
In turn, from Baseline we get that b(v) = PR,(G,b). Combining all three
equations we get that PageRank satisfies Directed Leaf Proportionality.

* Finally, for One-Node Graph assume that (G,b) = (({v},0),[1]). Since Page-
Rank satisfies Baseline, we have PR}(G,b) = b(v) = 1. 0

Now, let us move to the second part of the proof, in which we show that if
a centrality measure F satisfies Random Walk Property, Locality, Sink Merging,
Edge Swap, and Directed Leaf Proportionality, then F is equal to PageRank up
to a scalar multiplication. Formally, we show that there exists constant cp € Ry
such that for every graph G = (V, E), node weights b, and node v € V, it holds that
F,(G,b) =cp-PR(G,b), where a is a constant from Directed Leaf Proportionality.
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Consider Lemma 37, in which we proved that centrality measure satisfying
Random Walk Property, Locality, Sink Merging, and Directed Leaf Proportional-
ity is equal to RWD (up to a scalar multiplication) for every sink. Observe that
since it does not require Lack-of Self-Impact, it applies to F as well. On the other
hand, from Proposition 22 we know that for every sink RWD is equal to PageRank.
Thus, we already know that F is equal to PageRank (up to a scalar multiplication)
for all sinks. As we will show, if a graph does not have any cycles, then the cen-
trality of every node is not affected by the removal of outgoing edges of this node.
Hence, the remainder of the proof is very similar to the end of the proof in Sec-
tion 3.2.2 where we considered all possible graphs knowing that the thesis holds
for all graphs with no cycles (Lemma 13).

Lemma 45. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, Edge Swap, and Directed Leaf Proportionality, then there exists a constant,
cr € Ry, such that for every graph G = (V,E) and node weights b, it holds that

F,(G,b) =cg-PR}(G,b) foreveryveV.

Proof. The proof is similar to the proof of Lemma 13 in Section 3.2.2. In the same
manner, we use induction on the number of cycles in G. The induction basis is
proven differently than in Lemma 13, but the induction step is analogous.

First, assume that there are no cycles in G. Fix v € V and observe that since
there is no cycle, v can be visited at most once by the random walk, i.e., we
have pé’b(v, t,k) = 0, for every t € N and k > 1. Thus, removing outgoing edges
of v does not affect the probabilities with which it is visited. Formally, let us
denote G’ = (V,E =T, (G)). In this way, we obtain pé’b(v, t,k) = pé,}b(v, t, k), for
every t,k € N. Hence, from Random Walk Property we get F,(G,b) = F,(G',b).
Since v is a sink in G’, from Lemma 37 we get F,(G’,b) = cp - RWD4(G’,b). More-
over, from Proposition 22 we get that for sinks both RWD and PageRank are
equal. Therefore, RWDJ(G’,b) = PR%(G’,b). Combining the equations we get that
F,(G,b) =cg-PR%(G’,b). Since PageRank also satisfies our axioms (Lemma 44) and
cpr = 1, the induction basis follows.

Now, let us assume that G has at least one cycle. In such a case, fix node w
that belongs to at least one cycle and let x,, be its PageRank, i.e., x,, = PR%(G, D).
Consider graph (G’,b’) obtained from (G, b) by adding two-node graph consisted
of node s with weight x,,, node t with weight 0, and edges from s to t in the num-
ber equal to deg? (G). Formally, let (G*,b%') = (({s, t},deg? (G) - {(s, t)}), [y, 0]) and
(G, V') =(G+G*,b+Db"). Then,

PR:(G',b")=x, and PRIG’,b)=x,, (4.39)

where the first equation holds from Locality (which we know that PageRank satis-
fies from Lemma 44) and the second from PageRank recursive equation (Eq. (2.5)).
Moreover, nodes w and s have the same number of outgoing edges in graph (G’,b’),
i.e., deg; (G). Therefore, if we swap the ends of all of their outgoing edges, then
from Edge Swap this operation will not affect PageRank of any node. Formally,
let G” = (VU{s,t},E-THG)U{(w,t),(s,w) : (w,w’) € I[(G)}). From the fact that
PageRank satisfies Edge Swap we get that

PR4(G”,b') = PR}(G',b’), foreveryveV. (4.40)

Observe that in graph (G”,b’) all of the outgoing edges of w go to node t. Hence,
graph (G”,b’) has less cycles than graph (G,b) (every cycle in the former graph is
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also a cycle in the later one, but the former graph does not contain cycles with w).
Hence, from the inductive assumption we know that

F,(G”,b")=cp-PRi(G”,b"), foreveryveV. (4.41)
Thus, combining Eqs. (4.39)—(4.41) we obtain that
F,(G",b') =cp-PRL(G",b") = cp-xy = cp - PRYG”,b") = F{(G”, b").

Thus, nodes w and s have equal centralities and equal number of outgoing edges
in graph (G”,b’). Therefore, again from Edge Swap, this time for centrality F, we
get that

F, (G, V') =F,(G",b"), foreveryvelV.

Combining this with Eq. (4.40) and Eq. (4.41) yields F,(G’,b’) = c¢g - PR,(G’,V’).
Hence, the thesis follows from Locality. O

Finally, let us assume that F satisfies One-Node Graph as well and prove that
in such a case PageRank is uniquely characterized.

Lemma 46. If a centrality measure, F, satisfies Random Walk Property, Locality, Sink
Merging, Edge Swap, Directed Leaf Proportionality, and One-Node Graph, then for
every graph G = (V,E) and node weights b, it holds that

F,(G,b) =PR;(G,b), foreveryveV.

Proof. Observe that PRS(({v},0),[1]) = 1. Therefore, the thesis follows from One-
Node Graph and Lemma 45. O]

4.4 Comparison of PageRank and RWD

Our axiomatic characterizations highlight two differences between random walk
decay centrality and PageRank. In this section, we focus on these two differences
and show how they affect the behaviour of these centrality measures.

4.4.1 Strategy-Proofness (with Respect to Outgoing Edges)

In many settings, outgoing edges are subject to node’s decision or manipulations.
Examples include the Twitter social network (where outgoing edges represent the
accounts that are followed by a user) and the World Wide Web (where outgoing
edges represent the links to other websites). Consequently, in such settings, Lack
of Self-Impact implies a property of strategy-proofness of centrality measures—if
outgoing edges do not affect the centrality of a node, then the node has no incentive
to manipulate its outgoing connections.

Interestingly, PageRank does not satisfy Lack of Self-Impact. In the following
example we show how, by adding outgoing edges, a node can increase its centrality
and position in the ranking according to PageRank, but not according to random
walk decay centrality.

Example 5. Let us consider graph G from Fig. 4.16. Graph G consists of two 4-cycles,
(uy,up, usz, ug,uy), (v1,v2,v3,v4,v1). The two cycles are connected via 3 edges: (v4,uy),
(u3,v3), and (uy,vy). Due to the edges connecting both cycles, the nodes v, v3, and vy
are visited more often by the random walk, and are thus ranked first by both PageRank
and random walk decay centrality. Node uy, that will be of our interest, is ranked 5th
according to both measures.
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(G')1)

Figure 4.16: Two graphs considered in Example 5, G = (V,E) and G’ = (V,E’), with
unit weights. Graph G’ is obtained from graph G by adding (uy, uy).

Fig. 4.16 also depicts G’, which is obtained from G by adding edge (uy,14). Since
this is an outgoing edge for uy, adding it does not affect random walk decay centrality
of uy. In contrast, this edge has a significant impact on PageRank of uy. The reason
lies in the fact that the random walk will now visit uy much more often—uwhenever the
random walk reaches node uy, with probability 1/2 it will go back to ug, from which the
only outgoing edge goes to uy. As a result, both uy and uy top the ranking according to
PageRank. The centralities of all nodes for a = 0.9 are as follows:

nodev | PRY(G,1) PRY%(G’, 1) | RWD?%(G,1) RWDY°(G’,1)
vs | 13.89 (1st) 11.88(3rd) | 6.02 (1st) 5.67 (1st)
vy | 13.50 (2nd) 11.69 (4th) | 5.85 (2nd) 5.58 (2nd)
v, | 11.67 (3rd) 9.93 (5th) | 5.5 (3rd) 5.07 (4th)
u, | 9.57 (4th)  7.33 5.16 (4th) 4.50
uy | 9.52(5th)  14.08 (2nd) | 5.13 (5th) 5.13 (5th)
uy | 9.46 14.53 (1st) | 5.10 5.30 (3rd)
v, | 7.08 6.26 4.03 3.71
us | 5.30 2.45 4.3 3.16

This concludes Example 5.

In Example 5, a node improved its PageRank by adding an edge to its direct
predecessor. In the next section, we will discuss how incoming edges affect both
centrality measures.

4.4.2 Diversity (of Incoming Edges)

PageRank is a feedback centrality and as such the centrality it assigns to nodes de-
pends solely on the centrality of their direct predecessors. This means that it does
not look on any the other aspects like the relative placement of its predecessors
in the topology of the network. In our axiomatic characterization, this property is
captured by Edge Swap, which implies that an incoming edge from a node with
the lowest centrality in a densely connected part of the graph could be as prof-
itable as an incoming edge from a node with the highest centrality in a different,
less densely connected part.

Random walk decay centrality does not satisfy Edge Swap. In fact, it is more
profitable to have an incoming edge from a diverse set of nodes. We demonstrate
this point with the following example.

Example 6. Let us consider graph G from Fig. 4.17. Observe that this graph consists
of three more densely connected parts, so called communities: {uy,uy,us}, {vy,vy,v3},
and {wy,wy, w3, wy}. These communities are connected through nodes uy,v,, w; which
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AN, ASN

Figure 4.17: Two graphs considered in Example 6, G = (V,E) and G’ = (V, E’), with
unit node weights. Graph G’ is obtained from graph G by replacing edges (u,,17)
and (v,,vy) with edges (u,,v1) and (v, uy).

form a 3-clique. Since wy belongs to the biggest community, both its random walk decay
centrality and its PageRank are the highest. The nodes u, and vy have the second highest
values, with symmetrical positions in the graph.

Fig. 4.17 also depicts the graph G’, which is obtained from G by rewiring the two
highlighted (red) edges. Specifically, the edges (up,uy) and (vy,vy) are replaced by
(up,v1) and (vy,uy); as a result, the two new edges connect two communities. Since
u, and v, both have two edges and clearly the same centralities in graph G, from Edge
Swap we know that PageRank of every node in G’ is the same as in G. In contrast, the
centralities of both nodes uy and vy increase according to random walk decay centrality.
This is because, according to this centrality, an edge from a different community is more
profitable than an edge from your own community. In our example, the random walk
that starts from nodes v, and v reaches node u faster in graph G’. As a result, in G,
random walk decay centralities of u; and also vy are higher than random walk decay
centrality of node wy. The centralities of all nodes for a = 0.9 are:

nodev | PRY(G,1) PRY%(G’,1) | RWD?°(G,1) RWDY°(G’,1)
wy | 14.87 (1st)  14.87 (1st) | 6.11 (1st) 6.11 (3rd)
uy, | 14.71 (2nd) 14.71 (2nd) | 5.75 (2nd) 6.17 (1st)
v, | 14.71 (2nd) 14.71 (2nd) | 5.75 (2nd) 6.17 (1st)
ws | 8.26 (4th)  8.26 (4th) | 3.68 3.68
w, | 8.06 (5th)  8.06 (5th) | 3.96 (4th) 3.96
wy | 8.06 (5th)  8.06 (5th) | 3.96 (4th) 3.96
u, |7.83 7.83 3.71 4.21 (4th)
v, |7.83 7.83 3.71 4.21 (4th)
us | 7.83 7.83 3.71 3.98
vy | 7.83 7.83 3.71 3.98

This concludes Example 6.

Example 6 shows that random walk decay centrality increases when incoming
edges become more diverse. As such, it avoids putting at the top of the ranking
several nodes from the same community, which often happens in PageRank [4, 88].

4.4.3 Real-World Example

Let us conclude this section with an example on a real-world network.
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Gavroche

Myriel

henardier

Marius

Figure 4.18: The graph of character co-occurrence in Les Misérables novel [50]. The
size of nodes corresponds to their PageRank and their lightness to RWD.

Example 7. Fig. 4.18 depicts the graph of character co-occurrence in Les Misérables
novel by Victor Hugo [50]. Each node represents a character from the novel and an
edge between two nodes means that corresponding characters have met at least once.
Since the graph is undirected, we treat each undirected edge as a pair of edges in both
directions. The values of random walk decay centrality and PageRank as well as the
rankings based on them for five nodes with the highest PageRank are presented in the
following table:

Character PageRank (a=0.9) | RWD (a=10.9)
Jean Valjean 1. 58.28 1. 30.89
Bishop Myriel 2. 30.53 16.  10.43
Gavroche 3. 28.79 2. 18.36
Marius Pontmercy | 4. 24.94 3. 17.20
Inspector Javert | 5. 24.14 4. 16.94

Jean Valjean, the main protagonist of the novel, is indicated as the most important node
by both PageRank and RWD. Now, for PageRank, the second most important node is
Bishop Myriel. He is a side character, important in the first out of five volumes of the
book, but not appearing later on. However, when we look closely at the graph we notice
two things:

e First, most of the characters that interact with Myriel interact only with him.
Thus, he has a lot of outgoing edges to nodes that themselves have edges only to
him, which greatly increase PageRank as we discussed in Example 5.

* Second, the three remaining characters interacting with Myriel is Valjean and two
of his neighbours. Hence, incoming edges of Myriel are not diversified as discussed
in Example 6.

For these reasons, random walk decay centrality gives Bishop Myriel much less impor-
tance than PageRank. In fact, according to random walk decay centrality, he is ranked
as 16th, giving place to other characters like the iconic child of the street Gavroche, one
of the main protagonists Marius Pontmercy, or Inspector Javert—the main antagonist
of the novel. This concludes Example 7.



Chapter 5

An Axiom System for
Feedback Centralities

The aim of this chapter is to propose a coherent axiomatization of all four con-
sidered feedback centralities: eigenvector centrality, Katz centrality, Seeley index,
and PageRank. We approach this goal by building upon our axiomatization of
PageRank from Chapter 3. Specificaly, we propose a consistent characterization of
these four feedback centralities in the form of a system of seven axioms. Locality,
Edge Deletion, Node Combination are general axioms satisfied by all four centrali-
ties. Edge Compensation and Edge Multiplication concern modification of one node
and its incident edges. Finally, Cycle and Baseline specify centralities in simple
borderline graphs. We show that each of four feedback centralities in question
is uniquely characterized by a subset of 5 axioms: 3 general ones, one one-node-
modification axiom, and one borderline axiom. Our axiomatic characterizations
are summarized in Tab. 5.1.

The chapter is structured as follows. We begin by introducing some additional
notation in Section 5.1. Next, in Section 5.2, we present the axioms which con-
stitute our axiom system. Finally, in Section 5.3, we prove that particular sets of
axioms uniquely characterize respective centrality measures.

The content of this chapter is an extended version of the paper published in
the proceedings of the IJCAI-21 conference [82].

5.1 Additional Notation

In this section, we build on the notation introduced in Section 2 to introduce basic
concepts used in this chapter.

In previous chapters we have considered multigraphs with node weights. A
multigraph with node weights, G, can alternatively be viewed as a simple graph

Centrality H General axioms ‘ Node-modification axiom | Borderline axiom

Eigenvector | LOC, ED, NC Edge Compensation Cycle
Katz LOC, ED, NC Edge Compensation Baseline

Seeley index | LOC, ED, NC Edge Multiplication Cycle
PageRank LOC, ED, NC Edge Multiplication Baseline

Table 5.1: Our axiomatic characterizations of eigenvector centrality, Katz central-
ity, Seeley index, and PageRank. General axioms are Locality (LOC), Edge Dele-
tion (ED), and Node Combination (NC).

91
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with a set of non-repeating edges, each of which is assigned a weight, s, that can
take only positive natural values. In this chapter, we generalize this notion and
allow for arbitrary positive real weights on edges. Formally, a graph is now a pair,
G = (V,E), where V is a set of nodes and E C V x V is a set of edges. Additionally,
the weights of a graph are given by 0 = (b, u), where b: V — R, are node weights
and p: E — R, are edge weights. A weighted graph is then a pair (G,0) and by G
we denote the set of all possible such weighted graphs. Also, like before, to denote
small weighted graphs, we will use the following simplified notation:

(G,Q) = (({1}1,. : .,Vn},{61,---,€m}),([b1,..., bn]f [I/llff’/lm]))

which means G = ({vy,...,v,},{e1,...,e,}) and 6 = (b, u) such that b(v;) = b;, for
everyi€({l,...,n},and p(e;) = p;, for every j € {1,...,m}.

Moreover, let ji: V x V — R, be the extension of edge weights y such that
p(u,v) = p(u,v), if (u,v) € E, and fi(u,v) = 0, otherwise. Furthermore, we extend
our abbreviate notation, which was introduced in Section 2 for node weights, so
that it applies also to edge weights. More in detail, for a subset of edges M C E,
by pp; we will understand edge weights y with the domain restricted to M and by
p_p the domain restricted to E\ M. If M contains one element, i.e., M = {e}, we
will skip parentheses and simply write p, and p_,. Also, for a constant, x € R,
we define x - y as follows: (x - p)(e) = x - u(e), for every e € E. Moreover for every
two edge weights with possibly different domains, y: E — R.g and p’: E’ — Ry,
we define p+p": EUE" — Ry as (u+ p’)(e) = ji(e) + ji’(e), for every e € EUE’. For
example, (y_, + 2p,) are edge weights obtained from p by doubling the weight of
edge e. Finally, for two weights 6 = (b, u) and 0’ = (b’, ") their sum is defined as
O+0 =(b+b,u+p).

If not stated otherwise, all definition from Section 2 still hold. Those that were
based on yg, e.g., definitions of centrality measures, now use ji instead of yg. The
only definition that has to be changed is the definition of out-degree. Previously,
it counted the number of outgoing edges. Since, the number of outgoing edges
is no longer directly connected to the total weight of these edges, we define the
out-degree as the total weight of outgoing edges, i.e., deg, (G,0) = ¥ ,cr(G) H(e)-

For any x € R., graph (G,0) is x-out-regular if the out-degree of every node
in the graph equals x, i.e., deg)(G,0) = x, for every v € V. Note that in an x-
out-regular graph, the principle eigenvalue is always A = x. A weighted graph is
out-regular if it is x-out-regular for some x € R,.

Next, let us define proportional combining, i.e., a generalization of node redirec-
tion that allows for combining any two nodes, not only out-twins. For centrality
measure, F, weighted graph, (G,0) = ((V,E),(b, 4)), and two nodes, u,w € V, pro-
portional combining of node u into w results in a graph C/_, (G, ) that is obtained
in two steps:

* scaling weights of outgoing edges of u and w proportionally to the cen-
tralities of their starts, i.e., multiplying weights of outgoing edges of u by
F,(G,0)/(F,(G,0)+ F,(G,0)) and by F,(G,0)/(F,(G,0) + F,(G,0)) outgoing
edges of w (if, in the result of this scaling, an edge would have zero weight,
then it is removed); and

* merging node u into node w, i.e., deleting node u, transferring its incoming
and outgoing edges to node w and adding the weight of node u to node w.

See Fig. 5.1 for an illustration. Observe that for every centrality measure F, if nodes
u and w are out-twins, then proportional combining indeed reduces to redirection
as defined in Section 2.
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Figure 5.1: An example of a weighted graph, (G, 0), and the corresponding graph
obtained through proportional combining of node u into w, i.e., Ci_,,,(G), assum-

ing that F,,(G) =1 and F,(G) = 2. The weight of each edge is shown.

To give an intuition behind proportional combining, consider a network in
which each node represents an Internet domain and for two domains, A and B, the
weight of an edge from A to B is equal to the average number of links on page in
domain A that point to a page in domain B. If there are no such links at all, then
there is no edge. In such a network, if the centrality of two domains, A and B, is
equal (or proportional) to the number of pages in these domains, then transferring
all pages from domain A to domain B (preserving their links and backlinks), would
result in proportional combining of node A into B.

Finally, let us introduce a class of cycle graphs. We will call a graph a cycle
graph if it consists of exactly one directed cycle and there are no edges outside of
the cycle. Formally, it is of the form G = ({vy,..., vk}, {(v1,v2), ..., (Vk_1, Vi), (Vk, v1)})-

5.2 Axioms

In this section, we present seven axioms used in our axiomatic characterization.

All centrality measures considered in this chapter, except for PageRank, are de-
fined only for a subclass of all graphs. Specifically, eigenvector centrality is defined
on GFV, sums of disjoint strongly connected graphs with the same principal eigen-
values, Seeley index is defined on G/, sums of disjoint strongly connected graphs,
and for any decay factor a € Ry, Katz centrality is defined on GK(®), graphs for
which A > 1/a (for details see Section 2.2.2). Therefore, we will consider restricted
versions of our axioms for them. Specifically, an axiom restricted to class G* is ob-
tained by adding an assumption that all graphs appearing in the axiom statement
belong to G*. In this way, we obtain a weaker version of the axiom.

Again, most of our axioms are invariance axioms. They identify simple graph
operations that do not affect centralities of all or most nodes in a graph. The last
two axioms serve as a borderline: they specify centralities in elementary graphs.

We begin with three axioms that are satisfied by all four feedback centralities
in question. The first two of them are Locality from Section 4.2 and Edge Deletion
from Section 3.1. We recall them below for reader’s convenience.

Locality (centrality of a node depends only on the connected component
of this node): For every two disjoint graphs G = (V,E), G’ = (V',E’) and
weights 0,0, it holds that

F,(G,0)=F,((G+G’,0+80"), foreveryvelV.

Edge Deletion (removing an edge from a graph does not affect centralities
of nodes which are not successors of the start of this edge): For every graph
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G =(V,E), weights 6 = (b, u), and edge (u,w) € E, it holds that

FU(G,Q) = Fv((V’E \ {(u,w)}),(b, l’l—(u,w)))’ fOT’ every v € |4 \ Su(G)

The final axiom satisfied by all four considered feedback centralities is inspired
by Node Redirect axiom from Section 3.1. However, it allows for combination of
nodes that are not necessarily out-twins.

Node Combination (proportional combining of nodes with equal out-degrees
and equal out-degrees of successors sums up their centralities and does not
affect the centrality of other nodes): For every graph G = (V,E), weights 0,
and nodes u,w € V such that deg, (G,0) = deg, (G,0) = deg!(G,0) for
every s € S,(G) U S,,(G), it holds that

F,(G,0)= Fv(Cfﬁw(G,Q)), for every v e V \ {u, w}
and F,(G,0)+F,(G,0) = F,,(CF_,_(G,0)).

Assume two nodes u, w € V and their successors have the same out-degree, but
possibly different centralities. Node Combination states that in a graph obtained
from proportional combining of u into w, the centrality of w is the sum of central-
ities of both nodes and centralities of other nodes do not change. This property is
characteristic to feedback centralities which associate a benefit from an incoming
edge with the importance of a node this edge comes from. We note that Page-
Rank, Seeley index, and Katz centrality also satisfy a relaxed version of the axiom
without the assumption about equal out-degrees of successors. The assumption,
however, is necessary for eigenvector centrality.

In our next two axioms we consider a modification of one node: its weight and
weights of its incident edges. See Fig. 5.2 for an illustration. The first of these
axioms is Edge Multiplication from Section 3.1 adapted to the weighted graphs
setting

Edge Multiplication (multiplying the weights of the outgoing edges of a
node by a constant does not affect the centrality of any node): For every
graph G = (V,E), weights 6 = (b, u), node u € V, and constant x € R, it
holds that

F,(G,0)=Fy(G, (b, p_ry(G) + X pry (), foreveryveV.
Edge Multiplication is satisfied by both PageRank and Seeley index. However,

it is not satisfied by eigenvector and Katz centralities, as it increase the importance
of modified edges x times. For them, we propose a similar axiom.

O 0 O
a / b x-a < e b xX-a £c b
oy YL
f\o/o/g f%g f\o/o/
(G; 6) (G/,H/) (G//l 6//)

Figure 5.2: An example weighted graph, (G, 0), and the graph obtained from (G, 6)
considered in Edge Multiplication, (G’,0’), and Edge Compensation, (G”,0”).
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Edge Compensation (multiplying the weights of the outgoing edges of a
node by x and dividing its weight and the weights of its incoming edges by
x divides the centrality of this node by x and does not affect the centrality
of other nodes): For every graph G = (V,E), weights 0 = (b, p), node u € V,
and constant x € Ry it holds that

F,(G,0)=F,(G, (b, i), foreveryveV\{u}

and also F,(G,0)/x = F,(G, (b, i’)), where we have that b’ = b_,,+b,/x and
= PTG + H Gl X + PG ()« X-

To provide an intuition for both axioms let us consider a webpage A, on which
we can find links to other webpages, e.g., B, but to each such webpage there are
exactly two links on A. Now, Edge Multiplication states that if from each such pair
of links on A we would remove exactly one, then it does not affect the importance
of B (or any other webpage), because each webpage still receives the same share
of links from A. For Edge Compensation the situation is different. Such removal
of the half of the links on A does not affect the importance of B as long as A itself
receives twice as many links from webpages that already have links to A (and the
weight, or basic importance, of A also doubles). We can say that the loss of links
going from A to B is compensated for B by the increase in links going to A.

Finally, the last two axioms concern simple borderline cases. See Fig. 5.3 for an
illustration. The first of them is Baseline introduced in Section 3.1.

Baseline (the centrality of an isolated node is equal to its weight): For every
graph G = (V,E), weights 6 = (b, u), and isolated node v € V, it holds that

F,(G,0) = b(v).

Baseline is satisfied by PageRank and Katz centrality. However, since there are
no isolated nodes in strongly connected graphs, it does not make sense when we
restrict the class of graphs to sums of disjoint strongly connected graphs. In such
a case we propose the following borderline axiom.

Cycle (the centrality of a node in an out-regular cycle graph is an average
weight of all nodes): For every graph G = (V,E) and weights 0 = (b, u) such
that (G, 0) is an out-regular cycle graph, it holds that

F,(G,0)=b(G)/|V|, foreveryveV.

The axiom concerns the simplest strongly connected graph: a cycle. Specif-
ically, if weights of all edges in a cycle graph are equal, then centralities of all

Qf‘@\
o > 9]

GQ

Figure 5.3: Graphs considered in Baseline, (G, 6), and Cycle, (G’,0’), axioms.
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nodes are also equal. Moreover, Cycle normalizes the sum of centralities to be
equal to the sum of node weights. It is satisfied by both eigenvector centrality and
Seeley index.

As we will show, these seven axioms are enough to obtain the axiomatizations
of all four feedback centralities.

Theorem 47. A centrality measure defined on G! satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Cycle if and only if it is Seeley index.

Theorem 48. A centrality measure defined on GEV satisfies Locality, Edge Deletion,
Node Combination, Edge Compensation, and Cycle if and only if it is eigenvector cen-
trality.

Theorem 49. A centrality measure defined on G satisfies Locality, Edge Deletion, Node
Combination, Edge Multiplication, and Baseline if and only if it is PageRank.

Theorem 50. For every a € Ry, a centrality measure defined on GK\*) satisfies Locality,
Edge Deletion, Node Combination, Edge Compensation, and Baseline if and only if it is
Katz centrality.

5.3 Proofs of Uniqueness

In this section, we provide formal proofs of Theorems 47-50, i.e., we show that
each of the four feedback centralities: eigenvector centrality, Katz centrality, See-
ley index, and PageRank, is uniquely characterized by the respective subset of
axioms. Since the proofs for Seeley index and eigenvector centrality have similar
structure, much the same as the proofs for PageRank and Katz centrality, first we
focus on the two former centralities, i.e., Theorems 47 and 48, and then on the
latter two centralities, i.e., Theorems 49 and 50.

5.3.1 Seeley Index and Eigenvector Centrality (Theorems 47 and 48)

In this section, we prove that Seeley index is uniquely characterized by Locality,
Edge Deletion, Node Combination, Edge Multiplication, and Cycle and eigenvec-
tor centrality by Locality, Edge Deletion, Node Combination, Edge Compensation,
and Cycle. More in detail, we begin with Lemmas 51-53 devoted to showing that
both centrality measures satisfy respective axioms. Then, we move to the proof
that our axioms imply Seeley index and eigenvector centralities in Lemmas 54-58.

First, in the following lemma we prove that for every out-regular graph both
centrality measures assign the same value to every node.

Lemma 51. For every graph G = (V,E) and weights 6 = (b, u) such that (G, 0) is out-
reqular and (G,0) € G5! it holds that

EV,(G,0)=SI,(G,0), foreveryveV.

Proof. Consider an arbitrary graph G = (V,E) and weights 6 = (b, u) such that
graph (G, 0) is x-out-regular and (G,0) € G5!. Observe that (G,0) is a sum of dis-
joint x-out-regular strongly connected parts. Thus, the principal eigenvalue of
each part is x. Hence, (G,0) is a sum of disjoint strongly connected graphs with
principal eigenvalue x, i.e., (G,0) € GEV. If b(G) = 0, then SI,(G,0) = 0 = EV, (G, 0),
for every v € V. Thus, assume that b(G) > 0.
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Now, since principal eigenvalue of (G,0) is A = x, from Eq. (2.6) and Eq. (2.12)
we get that

b(w(0)) plw(i), w(i+1))

1/A _ _ 1

= T U A
we)(G):w(t)=v 1=0

for every v € V. Thus, Eq. (2.8) and Eq. (2.14) yield EV,(G,0) = SI,(G, 0). O

In the next two lemmas, we show that Seeley index and eigenvector centrality
satisfy the corresponding sets of axioms. We begin with Seeley index.

Lemma 52. Seeley index defined on G by Eq. (2.8) satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Cycle.

Proof. Let us take an arbitrary graph G = (V,E) and weights 6 = (b, u) such that
(G,0) € G%1, and consider the axioms one by one.

* For Locality, let us consider graph G” = (V’,E’) such that V NV’ =0, weights
0’ = (b','), and an arbitrary node v € V. Observe that if we have b(G) = 0,
then SI,(G,0) =0 =SI,(G+ G’,0 + 0’). Hence, assume that b(G) > 0. Then,
observe that in graph (G + G’,0 + 0’) any walk that starts at one of the nodes
in V’ cannot visit nodes in V and vice versa. Thus, for every t € N, we have
that {w € Q;(G+ G') : w(t) = v} = {w € Q4(G) : w(t) = v}. Moreover, weights of
edges in E and weights and out-degrees of nodes in V are the same in both
graphs (G,0) and (G + G’,0 + 0’). Therefore, from Eq. (2.6) we obtain that
p1G+G,,9+6,(v, t)/(b(G) + b’ (G')) = pé’e(v,t)/b(G). Hence, Locality follows from
Eq. (2.8).

 For Edge Deletion, consider edge (1, w) € E, graph G’ = (V,E \ {(4,w)}), and
weights 0’ = (b, pi_(;,,»))- Fix an arbitrary node v € V'\ 5,(G). Observe that
for G € G°! such a node exists only if nodes u and v belong to different con-
nected components, i.e., there exist graphs (G,,0,) = ((V,, E,), (by,, pg,)) and
(Gu,04) = (Vi Ey), (by,, pg,)) such that V, NV, =0 and G, + G, = G. Since
Seeley index satisfies Locality, we get that SI,(G,0) = SI,(G,,0,). Now, let
us take graph Gy, = (V,, E, \ {(u,w)}) and weights 0}, = (by,, g, \{(u,w)})- Ob-
serve that (G, + G,,,0, +0;) = (G’,0’). Thus, again from Locality we get that
SI,(G,,0,)=SI,(G’,0’) and Edge Deletion follows.

¢ For Node Combination, take u,w € V such that deg; (G) = deg! (G) = deg/ (G),
for every s € S,,(G)US,(G). Let (G',0’) = (V',E’), (b', ') = C3L, (G, 0). Since
Seeley index satisfies Locality, without loss of generality let us assume that G
is strongly connected. Then, from Theorem 2 we know that Seeley index can
be equivalently defined as the solution to Seeley index recursive equation
(Eq. (2.4)) and normalization condition } ,.y SI,(G) = b(G). Observe that
proportional combining does not affect the sum of node weights in a graph,
i.e., b(G) = b’(G’). Therefore, it suffices to show that (x,),ev\(4) defined as
x, = SI,(G,0), for every v € V \ {u,w}, and x,, = SI,,(G,0) + SI,,(G, 0) satisfies
Seeley index recursive equation (Eq. (2.4)), for every v € V \ {u} and graph
(G,0).

To this end, fix v € V and observe that from Seeley index recursive equation
(Eq. (2.4)) for graph (G, 0) we have

(1,1)S1,(G,0) _ fi(w,)SL,(G,0) (s, )S1(G, )
TGO T deg(6o) T L deg(G,0)

(5.1)

SI,(G,0) =

seP}H(G)\{u,w)
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Recall that deg; (G,0) =deg/ (G,6). Also, proportional combining does not
affect out-degrees, so deg!(G,0) = deg/(G’,0’), for every s € V \ {u}. Now,
assume that v € V'\ {u, w}. Then, by the definition of proportional combining,
W(w,v) = (SL,(G,0)fi(u,v) + SI,(G, 0)ji(w,v))/(SL,,(G,0) + SI,(G,0)). Thus,
Eq. (5.1) can be transformed into

SI(G,0) =

i (w,v)xy, . Z u(s,v)SI(G,0) (5.2)

aY; + -
deg! (G, 0) = deg; (G, 0’)

The incoming edges of v that come from nodes other then # and w are unaf-
fected by proportional combining. Thus, P}(G)\ {u,w} = P}(G’) \ {u,w} and
u(s,v) = p/(s,v), for every s € P}(G) \ {u, w}. Hence, from Eq. (5.2) we obtain

#(sv)
Xv = Z Teat(C 00 %
SEP,}(G') degs (G ’6 )

which is exactly the Seeley index recursive equation for graph (G’,0’) and
node v.
Therefore, it remains to consider node w. To this end, let us add sidewise
Eq. (5.1) for v = u and v = w. From the definition of proportional combining
S1(G, 0) (i1, 1) + i1, w)) + S (G, O) filw, u) + fi(w, w))

SI,(G,0)+SI,(G,0) '

W(w,w) =

Observe that the other incoming edges to u and w are simply combined, i.e.,
PL(G)\ {w} = PX(G) U PL(G) \ {u,w} and p'(s,w) = fi(s, u) + fi(s,w), for every
s € PY(G')\ {w}). Again, deg(G,0) = deg} (G,0) and deg!(G,0) = deg! (G’,0’),
for every s € V' \ {u}. Thus, from Eq. (5.1) we obtain

(w,w)xy, y (s v)
Xw:SIu(G,Q)-l—SIw(G,Q): %~ an Tt o Xs
degw(G ’6 ) SEP,},(G’)\{M,W} degs (G ’6 )

which is the Seeley index recursive equation for graph (G’,0’) and node w.

For Edge Multiplication, take arbitrary nodes u,v € V, constant x € R, and
weights 0’ = (b, pu_; () + X - piry(G))- If b(G) = 0, then SI,(G,0) = 0 = SI,(G,0’).
Thus, assume that b(G) > 0. Observe that for every t € N and walk w € 04(G)
such that w(t) = v, we have

-1 t—1 ,

(i), w(i+1))  b(w(0)) Wwl(i z+1))
deg .(G6 ~ b(G) ]_[ deg

+
w(i)

i=0 )

It holds because for every i € {0,...,t — 1}, if w(i) = u, then both the nu-
merator and the denominator are multiplied by x, and if w(i) # u, both
the numerator and the denominator are unaffected. Thus, Eq. (2.6) yields
pé}e(v, t) = péye,(v, t). Summing for all t € N, we get that SI,,(G,0) = SI,(G, 0’)
from Eq. (2.8). Hence, Edge Multiplication is satisfied.

Finally, for Cycle, observe that if graph (G,0) is a cycle graph, then every
node v € V has exactly one direct predecessor, say u, i.e., P} (G) = {u}. Hence,
from Eq. (2.4) we get that SI,,(G,0) = SI,,(G,0). Thus, all nodes have equal
centralities. From Theorem 2 we get that b(G) =) .y SI,(G,0) = |V|-SI,(G).
Hence, SI,(G,0) = b(G)/|V]|.
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Now, let us focus on eigenvector centrality and prove that it satisfies the corre-
sponding axioms.

Lemma 53. Eigenvector centrality defined on GEV by Eq. (2.14) satisfies Locality, Edge
Deletion, Node Combination, Edge Compensation, and Cycle.

Proof. Let us take an arbitrary graph, G = (V,E), and weights, 6 = (b, u) such that
(G,0)€ GEV  and consider the axioms one by one.

* For Locality, let us consider graph G’ = (V’,E’) and weights 6’ = (b’, 4") such
that VNV’ =0 and (G,0’),(G+G,0+6’) e GEV. Fix v e V. If b(G) = 0, then
trivially EV,(G,0) =0 =EV,(G+ G’,0 + 0’). Thus, assume b(G) > 0. Observe
that in graph (G + G’,0 + 0’) any walk that starts at one of the nodes in V’
cannot visit nodes in V and vice versa. Thus, for every t € N, we have that
{we QG+ G): w(t) =v} ={w e QHG) : w(t) = v}. Moreover, weights of
edges in E and weights and out-degrees of nodes in V are the same in both
graphs (G,0) and (G + G’,0 + 0’). Therefore, from Eq. (2.6) we obtain that
Wil 0000/ (B(G)+/(G') = w3 (v, 1)/b(G). Since (G+G',0+0") € GEV, we
know that principal eigenvalue A is the same in both (G, 0) and (G+G’,6+6").
Hence, Locality follows from Eq. (2.8).

* For Edge Deletion, consider edge (#,w) € E, graph G’ = (V,E \ {(4,w)}), and
weights 0" = (b, pi_(,w))- Fix an arbitrary node v € V'\ 5,(G). Observe that
for G € GEV such a node exists only if u and v belong to different strongly
connected components, i.e., there exist graphs (G,,0,) = ((V,,E,), (by,, ug,))
and (G,,0,) = (Vy,Ey), (by, , ug,)) such that V,NV,, =0 and G,+G, = G. Since
eigenvector centrality satisfies Locality, we get that EV,(G,0) = EV,(G,,0,).
Now, take graph G = (V,,E, \ {(4,w)}) and weights 0, = (by , U \((u,w)})-
Observe that (G, + G;,,0, + 0,,) = (G’,0’). Thus, again from Locality we get
that EV,(G,,0,) = EV,(G’,0’) and Edge Deletion follows.

¢ For Node Combination, take u,w € V such that deg; (G) = deg! (G) = deg/ (G),
for every s € S,(G) U S,,(G). Let (G,0’) = CEY, (G, 0).

First, assume each node in G is a successor of u or w, i.e., V = S5,(G)U S, (G).
This means that (G, 0) is out-regular. Thus, from Lemma 51 we obtain that
Vu(G,0) = SI,(G,0), for every v € V. Since proportional combining pre-
serves out-regularity, (G’,0’) is also out-regular. Thus, by Lemma 51, also
V,(G,0")=SI,(G’,0’). Seeley index satisfies Node Combination (Lemma 52),
hence EV,(G’,0’) =SI,(G,0’) =SI,(G,0) = EV,(G,0), for every v € V \ {u, w},
and EV,(G,0’)=SI,(G,0")=SI1,(G,0)+ SI,(G,0) =EV,(G,0)+ EV,(G,0).

Now, assume that there is at least one node in V that is not a successor of u
and not a successor of w. Since (G,0) € GEV it is a sum of disjoint strongly
connected graphs. Hence, it can be expressed as a sum of two disjoint graphs,
ie, (G,0)=((V,E),(by, pg)) and (G,0) = (V,E), (by, ug)), such that we have
V =5,(G)USy(G), VNV =0,and G+G = G. Also, let (G’,0") = C[_,,(G,0).
Now, in graph (G, 0) all nodes are successors of either u or w. Thus, from the
previous case we get that EV, (G,0)=EV,(G,6), for every v € V \ {u,w}, and
also, for node w, we have EVW(G,é) = EVM(G’,é’) +EV,(G’,0’). Moreover,
observe that G’ + G = G’. Hence, Node Combination follows from Locality.

* For Edge Compensation, take arbitrary u € V and x e R, and let 0’ = (V’, '),
where b’ = b, +by/x and p" = prz(G\jwu) + HEHGNM(wu)) X I (GN (1) X-



100 CHAPTER 5. AN AXIOM SYSTEM FOR FEEDBACK CENTRALITIES

Fix v € V \ {u}. If b(G) = 0, then trivially EV(G,0) = 0 = EV(G,6’). Thus,
assume that b(G) > 0. We will show that for every t € N and walk w € (0;(G)
that ends at v, i.e., w(t) = v, it holds that

:lw

w(i—1),w(i))
:1 :1

w(i-1),w0(i).  (5.3)

:]“

To this end, observe that since w(t) # u, for every step i € {0,...,t—1} in which
the walk arrives at node u, i.e., w(i — 1) # u and w(i) = u (if the walk starts
in u, we treat step 0 as arrival as well), there exist exactly one step j > i
in which the walk departs from u, i.e., w(k) = u, for every k € {i,...,j — 1},
and w(j) # u. Now, in (G,0’), the factor for step i (arrival) decreases by x,
ie, W(w(i-1),w(i) = plw(i-1),w(i))/x (or b’(i) = b(i)/x if i =0), but at the
same time it holds that the factor for step j (departure) increases by x, i.e.,
wW(w(j—1),w(j)) = p(w(j—1),w(j))- x. Since there is equal number of arrivals
and departures from u, Eq. (5.3) holds. Thus, from Eq. (2.12) and Eq. (5.3)
we have that wl/’\(v t)/b(G) = wgg,(v,t)/b’(G) and from Eq. (2.14) we get
V,(G,0) = EV,(G,0).

By similar reasoning as in Eq. (5.3), for node u we can obtain that for every
t € Nand w € (04(G) that ends at u, i.e., w(t) = u, it holds that

-1 -1
]_[ w(i—1),w(i))/x = b'( l_[i w(i=1),w(i)).
i=1 i=1

Here, there is a departure step for every but last arrival at u. However, since
w(t) = u, for the last arrival, there is no departure. Hence, for weights 6’
the product is divided by x one more time than it is multiplied by x. Thus,
from Eq. (2.12) we get that wy, (v, £)/b(G) = w3 (v,1)/b(G)/x. Hence, from
Eq. (2.14) we get that EV,,(G,0’) = EV, (G, 0)/x.

* Finally, for Cycle, assume that (G, 0) is out-regular cycle graph. Then, from
Lemmas 51 and 52, for every v € V, we have EV,(G,0) = SI,(G,0) = b(G)/|V|.

O

Now, let us move to the second part of the proof in which we show that the cor-
responding sets of axioms imply Seeley index and eigenvector centrality. To this
end, we first prove a simple property of Seeley index and eigenvector centrality
that multiplying the node weights by a constant results in the multiplication of
centrality of every node by the same constant (Lemma 54). Next, we consider an
arbitrary centrality measure, F, that satisfies Locality, Edge Deletion, Node Combi-
nation, and Cycle, i.e., common axioms for Seeley index and eigenvector centrality.
We prove that F gives the same values as Seeley index and eigenvector centrality
for every node in strongly connected out-regular graphs in which proportion of
weights of any two edges is rational (Lemma 55), and then, in any strongly con-
nected out-regular graphs (Lemma 56). Next, we show that if we assume that F
satisfies also Edge Multiplication, we obtain that F is equal to Seeley index for all
graphs in G°' (Lemma 57). Similarly, if F satisfies also Edge Compensation, then
F is equal to eigenvector centrality for all graphs in GEV (Lemma 58).

We begin with a simple lemma that captures a useful property of Seeley index
and eigenvector centrality: multiplying node weights by a constant, multiplies
centralities by the same constant.
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Lemma 54. For every graph G = (V,E) and weights 0 = (b, p) such that (G,0) € GST it
holds that
SI,(G,(x-b,u)) = x-SI,(G,0), foreveryveV

and EV,(G,(x-b,u)) = x- EV,(G,0), for every v € V, if additionally (G,0) € GEV.

Proof. Consider an arbitrary graph G = (V,E) and weights 6 = (b, u) such that
(G,0) € GI. Let @’ = (x-b,p). Fix node v € V. If b(G) = 0, then observe that
SI,(G,0) = 0 = SI,(G,0’) and the same is true for eigenvector centrality. Thus, let

us assume that b(G) > 0. Then, observe that for every walk w € Q;(G) such that
w(t) = v, we have that

t—

H

t—

b(w(0))
b(G)

ww(i),w(i+1))  x-b(w(0))
deg;,;)(G,0) ~ x-b(G)

1y (wl(i), z-+1»
1 deg (G, 0)

Il
o

i i
Thus, from Eq. (2.6) we have that plG,Q(v,t) = pé}e,(v,t). Hence, from Eq. (2.8) we
obtain that SI(G,0)-x = SI(G,0’). The same result can be obtained for eigenvector
centrality from Eq. (2.12) and Eq. (2.14). O

In the following lemma we focus on strongly connected out-regular graph with
positive sum of node weights, i.e, b(G) > 0, in which the proportions of weights of
any two edges is rational. We prove that if a centrality measure satisfies four of our
axioms, then it is equal to Seeley index and eigenvector centrality for each node in
each such graph.

Lemma 55. If a centrality measure, F, defined on GS' (or GEV) satisfies Locality, Edge
Deletion, Node Combination, and Cycle, then for every A > 0 and every strongly con-
nected graph G = (V,E) and weights 0 = (b, u) such that (G,0) € G°1, (G,0) is A-out
regular, b(G) # 0, and p(e)/u(e’) € Q, for every e, e’ € E, it holds that

F,(G,0)=SI1,(G,0) =EV,(G,0), foreveryveV. (5.4)

Proof. First, let us assume that b(G) = 1. We will relax this assumption at the end
of the proof.

The second equality of Eq. (5.4), i.e., that SI,(G,0) = EV,(G,0), follows from
Lemma 51. Thus, let us focus on proving that F,(G,0) = SI,(G,0), for every ve V.
To this end, let us first define impact of an edge. For every strongly connected
weighted graph (G,0) = ((V,E), (b, u)) and edge (u,v) € E let the impact of (u,v) be
equal to I g(u,v) = SI,,(G,0)- u(u,v)/ deg, (G, 0) (see Fig. 5.4 for illustration). Intu-
itively, impact measures the amount of centrality that node u transfers to node v.
Indeed, from Seeley index recursive equation (Eq. (2.4)) we see that the centrality
of a node is equal to both the sum of impacts of its outgoing edges and the sum of
impacts of its incoming edges, i.e.,

Z Ioo(e)=SL(G,0)= ) Igele) (5.5)

eel; ( e€l; (G)

Another property that we will use in the proof is that proportional combining
preserves the impact of edges. More in detail, for any (u,v),(u’,v’) € E such that
v’ ¢ {u,u’} and graph (G’,0’) = CSL. (G,0) we have

u'—u

Igo(u,v), ifv=v, (5.6)
Igo(u,v)+I1ge(u’,v’), otherwise. '

IG’,G’(“}”) = {
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(G,0)

Figure 5.4: An illustration to the proof of Lemma 55. The leftmost graph, (G,0),
is a A-out-regular graph with the weight of each edge shown. The middle graph
is graph (G, 0) as well, but with impact of each edge shown instead of its weight.
The rightmost graph, G, is an unweighted multigraph obtained from (G, 6).

This comes from the fact, that the node resulting from the combination has the
weight of its outgoing edges decreased by SI,,(G,0)/(S1,(G,0)+ SI,/(G,0)), but at
the same time its centrality increases by the inverse value. Hence, the impact of
its outgoing edges is unaffected.

From Theorem 2 we know that Seeley index of nodes in V can be equivalently
defined as the solution to the system of Seeley index recursive equations (Eq. (2.4))
and normalization equation } .y SI,,(G,0) = b(G). Observe that since proportions
of the weights of edges are rational, i.e., p(e)/u(e’) € Q, for every e, e’ € E, then also
the coefficients in the system of equations, i.e., p(u,v)/deg, (G), are rational (they
are reciprocal of deg (G)/u(u,v), which are the sums of proportions p(e)/u(u,v) for
all e € I, (G)). If also b(G) = 1, then all coefficients are rational and the solution,
i.e., SI,(G,0), for every v € V, is rational. Moreover, since both SI, (G, 0), for every
v € V, and p(u,v)/deg/ (G), for every (u,v) € E, are rational, the impact of every
edge is rational as well, i.e., I g(e) € Q, for every e € E. Building upon this, we
will consider a walk on graph G that follows each edge the number of times that is
proportional to its impact. Next, we will construct a cycle graph based on this walk
and by proportional combining of its nodes transform it into the original graph G.
Hence, based on Cycle and Node Combination, we will establish centrality F of
each node.

To this end, observe that since the impact of each edge is rational, there exist
N € N such that for every e € E, the product N -I; g(e) is an integer. Building upon
this, let us define an auxiliary unweighted multigraph, G = (V, E). Its nodes are
the nodes of graph G and its multiset of edges, E = (E,m), consists of edges in E
with the multiplicity of each edge e € E equal to m(e) = N - I g(e) (see Fig. 5.4 for
illustration). Observe that

IE| = Zm(e) =N- ZIG,E)(e) =N- ZSL,(G,@) =N-b(G)=N.

ecE ecE veV

Now, from Eq. (5.5) we get that in G every node has equal number of incoming
and outgoing edges (when accounted for their multiplicity). Hence, from Euler
theorem for directed graphs G is an Euler multigraph. This means that there exists
an Euler walk ¢ = (¢(0),&(1),...,&(N)) of length N in which £(0) = ¢(N) and each
edge is followed exactly once, i.e,

|{i re(i)=u A e(i+1)= v}| =m(u,v), forevery (u,v)€eE.
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@~@~
@ ®
N\

0

(G",0')

Figure 5.5: Cycle graph, (G’,0’), corresponding to an example Euler cycle on multi-
graph G from Fig. 5.4. By proportional combining of nodes that are labeled with
the same letter, we can obtain graph (G, 0) from Fig. 5.4.

For each node v € V we denote the set of indices on which walk ¢ visits node v, i.e.,
let E, ={i €{1,...,N}: ¢(i) = v}. Observe that the number of visits at v, is equal to
the in-degree (or the out-degree as it is equal) of v in multigraph G. This, in turn,
is equal to N times the sum of impacts of its incoming edges in (G, 6), which, by
Eq. (5.5), is its centrality, i.e.,

IE,| = Z m(e) =N - Z Igo(e) =N -SL,(G,6). (5.7)

el (G) eel; (G)

Next, based on Euler walk ¢, let us construct a A-out-regular cycle graph. To
this end, let us consider a set of N pairwise-distinct nodes V' = {vy,...,vy} that
will correspond to consecutive steps of €. For later convenience, let us take them
in such a way that some of them are equal to particular nodes from V. More in
detail, for every v € V let node with the index of the first step in which walk ¢ visits
node v, i.e., min(E, ), be equal to node v, i.e., Vin(g,) = v. Now, the graph is given
by G’ = (V’,E’) with weights 6 = (b’, y’), where E’ = {(v{,v3),..., (vN_1,VNn), (VN, V1)),
node weights are weights of a particular node visited by ¢ divided by the total
number of its visits, i.e., b’(v;) = b(e(i))/|Eg(;)l, for every i € {1,...,N}, and p'(e) = A,
for every e € E’. See Fig. 5.5 for illustration. Since (G’,0’) is indeed a A-out-regular
cycle graph, from Cycle axiom we get that F,(G’,0’) = b’(G’)/N, for every v € V.
Observe that b'(G’) =) ey b'(v) = Y ,ev |Eo| - b(v)/|E,| = b(G) = 1, for every v € V.
Therefore,

F,(G,0")=1/N, foreveryvelV. (5.8)

Now, we sequentially combine nodes in G’ that correspond to the same node
in walk ¢ to obtain a graph isomorphic to G. More in detail, for every v € V,
let us sequentially combine every node in {v; : i € E,} \ {v} into v (recall that v is
also v; with 7 being the minimal index in E,). By G” = (V”,E”) and 8” = (b”, p”)
let us denote the graph and weights resulting from conducting this sequential
combining for all nodes v € V. As a result, we obtain

F,(G”,0") = vai(c',e') =|E,|-1/N = SI,(G,0), foreveryveV,  (5.9)

i€eE,

where the consecutive equalities come from Node Combination, Eq. (5.7), and
Eq. (5.8). Hence, to prove that F,(G,0) = SI,(G, 0) it remains to prove that (G,0) =
(GII’ 9//)'

To this end, observe that indeed V” = V, because all other nodes in V’ have
been combined into one of the nodes in V. As for edges, observe that for any edge
(u,v) € E” there exists i € {1,..., N} such that in the construction of graph G” node
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v;_1 was combined into u (or u = v;_;) and node v; was combined into v (or v = v;).
As aresult, (e(i—1),&(i)) = (u,v), hence (u,v) € E. Converse reasoning is analogous.
For node weights, we have b”(v) = }_, .icpy, b'(v;) = b(v), for every v € V. Finally,
for edge weights, fix (#,v) € E” and recall that proportional combining preserves
the impact of edges (Eq. (5.6)). Thus, the impact of edge (u,v) € E” is the sum of
impacts of edges (v;_1,v;) € E’ such that v;_; has been combined into u (or v;_; = u)
and v; into v (or v; = v). There are exactly m(u,v) of such edges and the impact of
every edge in graph (G’,0’) is equal to 1/N, thus

Igrg(u,v) = m(u,v)/N = Ig(u,v).

Since (u#,v) in both (G”,0”) and (G, 0) has the same impact, u has the same Seeley
index in both graphs (Eq. (5.9)), and both graphs are A-out-regular (combining
nodes preserves out-regularity), we get that p”(u,v) = p(u,v), for every (u,v) € E.
Thus, indeed, (G”,0”) = (G, 0) and from Eq. (5.9) we get F,(G,0) = SI,(G,0).

It remains to relax our first assumption that b(G) = 1. To this end, we will
show that for any x > 0 it holds that F,(G,(x- b, u)) = x- F,(G,0). Combined with
Lemma 54 this will prove the thesis. Consider graph (G’,0;) = (V,E’),(x -V, ),
i.e., graph (G’,0’) with node weights scaled by x. Then, from Cycle axiom we get
that F,(G’,0;) = x/N, for every v € V’. Next, we consider sequential proportional
combining of nodes that we used to obtain graph (G, 0) from (G’,0’) but starting
from graph (G’,0;) instead of (G’,0’). Observe that after each step of the process,
we obtain the graph from the corresponding step of the original process but with
node weights and centralities scaled by x. At the end of the process, we obtain
graph (G, (x - b, u)) and Node Combination we obtain that indeed F,(G,(x-b,u) =
x-F,(G,0), for everyve V. d

Now, let us move to arbitrary strongly connected out-regular graphs.

Lemma 56. If a centrality measure, F, defined on G5! (or GEV) satisfies Locality, Edge
Deletion, Node Combination, and Cycle, then for every A > 0 and every strongly con-
nected graph G = (V,E) and weights 0 = (b, u) such that (G,0) € G°! and (G, 0) is
A-out-regular, it holds that

F,(G,0)=SI,(G,0)=EV,(G,0), foreveryveV.

Proof. First, let us restrict attention to graphs with unit node weights multiplied
by a constant. Formally, we prove the following claim:

For every ¢, A > 0, strongly connected graph G = (V,E), node v € V, and
weights 0 = (c- 1, u) such that (G,0) € G%! and (G, 0) is A-out-regular,  (*)
it holds that F,(G,0) = SI,(G,0) = EV,(G,0), for every v e V.

To this end, for every such graph, let us distinguish one outgoing edge of each
node u € V, denoted by e,, so that: (1) there exist a walk w that begins with
edge ¢,, ends at ¥ and does not visit u again before reaching v, (2) among edges
satisfying condition (1) the number of other outgoing edges of u with weights that
are not a rational multiple of the weight of e, i.e., |{e € I, (G) : u(e)/u(e,) ¢ Q}, is
minimal (since graph is strongly connected, such edge ¢, always exists). By kg g
let us denote the sum of the numbers of not-rationally-proportional edges for all
nodes, i.e., let
koo =) le €T (G): ple)/ple,) € Q.

ueV
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4
(G,,Q,) (G”,Q”)

Figure 5.6: An illustration to the proof of Lemma 56. The proportion of weights
of edges (u,1) and e, = (14, w) in 4-out-regular graph (G, 0) is not rational. Graph
(G’,0’) is graph (G, 0) with edge (u, 1) removed along with a part of a graph that
is then disconnected from v. Graph (G”,0”) is graph (G, 0) with edge weights
adjusted so that the proportion of weights of (1, 1) and (u,w) is now rational. In-
tuitively, since 3 > 24/2, it is possible to take graphs (G’,0’) and (G”,0”) and “com-
bine” them (with their node weights properly scaled) to obtain graph (G, 0).

We will prove the thesis for every strongly connected A-out-regular graph with
unit node weights multiplied by a constant using induction on kg.

To this end, observe that if k5 g = 0, then for every node u € V, the weight of
each of its outgoing edge, e € I;/(G), can be written as u(e,) - g, for some g, € Q.

Thus,
A=degi(G,0)= ) ﬂ(e)=;4(eu)-[ > qe]-

el (G) eclif (G)

Hence, A/u(e,) € Q which implies that also A/u(e) € Q, for every u € V and every
e €I,/ (G). Thus, for every edges e,e’ € E, we have p(e)/pu(e’) = (u(e)/A)- (M u(e’) € Q.
As a result, the thesis follows from Lemma 55.

Therefore, let us focus on the case in which kg g > 0. Then, there exists a node
u € V and its outgoing edge, (u,11) € E, such that p(u,1)/u(e,) ¢ Q. In what follows,
we will construct two additional graphs: (G’,60’), in which edge (u,11) is removed
(possibly along with a number of nodes), and (G”,0”), in which the weights of
outgoing edges of u are adjusted so that the weight of (u,1) is a rational multiple
of the weight of e,,. See Fig. 5.6 for an illustration. Next, we will construct graph
(G, 0) from the combination of (G’,0’) and (G”,0"”) and since both k¢ ¢ and kg» g~
are smaller than kg g, this, together with the inductive assumption, will lead us to
the induction hypothesis.

Let us begin with graph (G’,0’). Since removing just (u,11) can result in a graph
that is not strongly connected, we remove (u,1) and all the nodes that would not
be in the same strongly connected component of the graph as node ¥. Formally,
let G_(,4) = (V,E\{(u,1)}) be a graph with just (u, 1) removed. Observe that since
in G there exists a walk that begins with ¢,, ends at ¥, and does not pass through
u before it reaches v, then after removal of (u, 1) = e,, it is still possible to reach
v from any other node, i.e., ng(u,m(ﬁ) = P;(9) = V. Thus, we remove exactly these
nodes that cannot be reached from ¥ without edge (u, 11). Hence, let V' = SG,(M)(??)
Since we remove outgoing edge of u, then for sure u € V’. Moreover, for every node
w € V' \ {u}, its successors in G_(, ;) are also successors of 9. Thus, we preserve all
of the outgoing edges of all nodes in V' \{u}, i.e.,let E’ ={(s,t) € E:s € V'}\{(u, 0)}.
Building upon this, let us define graph G’ = (V’,E’) and weights 68" = (c- 1, 1)
such that weights of outgoing edges of u are scaled, so that the graph is still A-out-
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regular, i.e., p'(e) = p(e) - A/(A— pu(u, 1)), for every e € I,/ (G’), and the weights of the
remaining edges remain unchanged, i.e, y’(e) = p(e), for every e € E’\I,f (G’). Since
(u,11) is not an edge in G’ and the proportions of weights between the remaining
outgoing edges of u are unchanged, we obtain that k5 o < kgg. Hence, by the
inductive assumption,

F,(G',0")=SI,(G",0")=EV,(G,0"), foreveryvelV. (5.10)

Now, let us construct graph (G”,0”) = ((V,E),(c- 1y, 4”)) in which weight of
edge (u,1) is scaled by x > 1 and the weights of the remaining outgoing edges of u
are scaled by y < 1 in such a way that: (1) proportion (x - u(u,1))/(y - u(e,)) is now
rational, and (2) the sum of the weights of the outgoing edges of u is still equal
to A so that (G”,0”) is still A-out-regular. To this end, take any q € Q such that
q > u(u,1)/u(e,). The new edge weights are given by:

o He) G
A= p(u, 1)+ qu(ey)’ A= p(u, 1) + qpley)’

for every e € I,; (G) \ {(u,11)}, and u”(e) = p(e), for every e € E \ I/ (G). Observe

that indeed p”(u,1)/p” (e,) = q € Q and that the sum of the weights of the outgoing

edges of u is equal to A. Thus, (G”,0"”) is still A-our-regular. Since g > p(u,11)/u(e,),
it can be calculated that x = p”(u, d)/p(u,11) > 1, i.e., that p”(u, 1) > p(u, 0):

o (u, ) 1 (e)

As p”(u,1)/p” (e,) € Q and the proportions of other edge weights do not change, it
means that kg g» < kg 9. Hence, by the inductive assumption,

F,(G”,0”)=SI1,(G",0”)=EV,(G",08”), foreveryveV. (5.11)

In what follows, we will show that through a combination of graphs (G’,0’)
and (G”,0”) one can obtain graph (G, 0). To this end, we will follow four steps:

1. we scale the node weights of graphs (G’,0’) and (G”,8"”),

2. we construct graph (G',6%) that is isomorphic to (G’,0’), but has disjoint set
of nodes to (G”,0”),

3. we sum graphs (G',6%) and (G”,0”),

4. in this sum we proportionally combine corresponding nodes from (G?,6%)
into (G”,0”).
First, for an arbitrary p € R, let us denote (G',0,) = (V’, E'), (pc-14, '), which
is graph (G’,0’) with node weights scaled by p. Next, let us consider graph (G?, 6;;)
that is isomorphic to (G’,0,). Formally, take graph (GY, 6;) = (VY EY), (pc- 141, uT)),
where V1 = (vt : v € V') such that VTNV =0, ET = {(s,t7) : (s,1) € E’}, and also
ut(st,t1) = w'(s, t), for every (s,t) € E’. It is clear that SI,+(G", 6;;) = S1,(G',0,), for
every v € V', and that kgt = kg. Therefore, from the inductive assumption we
obtain that F+(G*, 6;;) =S1,(G’,6,). Hence, from Lemma 54 and Eq. (5.10) we get

F,+(GY, 9;) =p-F,(G,0’), foreveryveV’ (5.12)
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Since 0 = ji'(u, 1) < p(u, 1) < p”(u,1), we will combine graphs (G, 9;) and
(G”,0”) in order to obtain our original graph (G, 8). To this end, consider graph
(G +G”, 9; +0”). Let us sequentially proportionally combine each node v* into v
and denote the obtained graph by (G*,0%) = ((V,E),((1 + p)c- 1, 4*)). Since graph
(GT+G”, 6;; +0”) is out-regular, from Locality, Node Combination, and Eq. (5.12)
we get that

E,(G"0°) = {p -F,(G",0")+ F,(G”,0”), foreveryveV’, (5.13)

F,(G”,8”), foreveryve V\ V"

In what follows, we prove that if we take the value of p = FF”((GC;’ST)) (’; ((uuuu)) - 1)

then the edge weights in the obtained graph are equal to the edge weights of the
original graph (G, 0), i.e., y* = . For every (s,t) € E\ I,] (G*) observe that we have
u(s,t) = p”(s,t) and also p’(s,t) = p(s,t) if (s,t) € E’. Thus, when we combine both
nodes st into s and t into t in graph (G' + G”, 9; +0”), the weight of edge (s, t)
will be preserved. Hence, u*(s,t) = (s, t). Since (u, 1) ¢ E’, it does not have a corre-
sponding edge in graph G. Hence, from the definition of proportional combining
we get

FM(G”,Q”)']/[”(M,ﬁ) _
p-Fu(G’,G’) +F,(G”,0”)
(Gu 9//) -y”(u ﬁ)

A

pi(u, 1) =

Fu(G7,07) (4] 1)+ Fu(G",07)

uu)

= p(u, 7).

For the other outgoing edges of u, e,e’ € I,/ (G*) \ {(u, 11)}, the proportlons of their
weights are equal in all the three graphs, i.e., u(e)/u(e’) = u’(e)/u’(e’) = u”(e)/u”(e’).
Thus, in (G* 60%), this proportion is also preserved, i.e., u*(e)/p*(e’) = u(e)/u(e’).
Moreover, observe that (GT+G”, 9;; +60”)is A-out-regular. Since proportional com-
bining preserves out-regularity, graph (G*,6%) is A-out-regular as well. Hence, the
sum of weights of edges in I,] (G*) \ {(u, 1)} is equal to A — u(u, ). Since the sum
and the proportions of the weights of these edges are the same in both (G, 6) and
(G*,07%), the weights are equal as well. As a result, we obtain that y = y*, which
means that graph (G*,0%) = ((V,E), ((1+p)c-1;, u)) is graph (G, 0) with node weights
scaled by (1 +p).

Observe that we have chosen ¢ € R, arbitrarily. Thus, let us consider the
same operation, but with constant ¢/(1 + p) instead of constant ¢, i.e., take graphs
(G071, p0) = (V' E), (pe/(1=p)-Lg, ') and (G”,07 ) = ((V, E),c/(1+p)- L, ")
Then, the obtained graph will be exactly the original graph (G, 6). Hence, analo-
gously to Eq. (5.13) we get that

FU(G,G)—{ (G, 6p/(1+p) (G 61/1+p) for every v e V’,

F,(G”, 8{’/ 1er)) for everyve V\ V.

By the inductive assumption and Lemma 54, F,(G’,0’ ) =p/(1+p)-F,(G,0")

p/(1+p)
and F,(G”, 6;’/(1+p )=1/(1+p)-F,(G”,0”). Therefore,

F,(G,0) = p/(1+p)-F,(G,0")+1/(1+p)-F,(G”,0”), foreveryveV’,
1/(1+p)-F,(G”,0”), for everyve V\ V.
(5.14)
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F, (G,0) \ p(u,n)
does not depend on the choice of centrality measure F. Thus, since Seeley index
and eigenvector centrality satisfy our axioms (Lemmas 52 and 53) we know that
they also satisfy Eq. (5.14) with the same value of p. Combining Eq. (5.14) with
Eq. (5.10) and Eq. (5.11), we get that F,(G,0) = SI,(G,0) = EV,(G,0), for every
v € V, from which (x) follows.

It remains to relax the initial assumption that node weights have to be unit
node weights multiplied by a constant. To this end, let us consider an arbitrary
strongly connected A-out-regular graph (G,0) = ((V,E), (b, #)) and two cases: the
first one (I) in which b(G) > 0, and the second one (II) in which b(G) = 0.

(I) If b(G)) > 0, then let us denote the set of nodes that have positive weights by
V*={v eV :b(v)>0}. For every v € V" let us construct weights 6, = (b(v) - 1,, p).
Observe that each graph (G, 0,) is strongly connected and A-out-regular with unit
node weights multiplied by a constant. Thus, from (x), for every u € V, we have
Fy(G,0,) =SI,(G,0,) =EV,(G,6,).

In order to combine all graphs (G, 6,) into one graph (G,0), for each graph
(G, 0,) let us define graph (G’, 0;) isomorphic to it. More in detail, let G’ = (V’,E’)
such that VNV’ =0 and that V' ={u’ : u € V} and E’ = {(u,w’) : (u,w) € E}.
Next, let 6, = (b(v)-1,, '), where p’(u’,w’) = p(u, w), for every (u,w) € E. Graph
(G,0,) is also A-out-regular with unit node weights multiplied by a constant.
Thus, from (+), we have F,,(G’,0,) = SI,,(G’,0,) = SI,(G,0,) = F,(G,0,), for ev-
eryueV.

Building upon this, let us consider the following operation: Let us choose one
node v € V* and take graph G, and say that at the beginning it is our current
graph. Next, for node u € V*\ {v} let us take graph G,,, add it to the current graph,
sequentially combine node w’ into w, for all w € V, and say that the resulting graph
is now the current graph. Let us perform this operation for all u € V*\ {v} exactly
once. Observe that after each such addition of graph G,, the nodes, the edges, and
the edge weights of the current graph remain unchanged. Only the node weights of
the current graph are summed with node weights of just added graph G,,. Hence,
the graph that we obtain after such an operation for all u € V*\ {v} is the original
graph G. Now, from Locality and Node Combination we obtain that for every
u €V, we have

Observe that, by Eq. (5.10) and Eq. (5.11), the value of p = Fu(G7.07) (M - 1)

F,(G,0)= ZPM(G,G,,).

veV*

Since Seeley index and eigenvector centrality satisfy our axioms (Lemmas 52-53),
this equation holds also for them. Thus, F,(G,0) = S1,(G,0) = EV,(G,0), for every
ueV.

(II) Consider a strongly connected A-out-regular graph (G,0) = ((V,E), (b, p))
such that b(G) = 0. From Eq. (2.8) and Eq. (2.14) we see that for such a graph
Seeley index and eigenvector centrality are equal to zero for every node. We prove
that the same is true for centrality F. Assume otherwise, i.e., there exists strongly
connected A-out-regular graph (G,0) = ((V,E),(b,p)) and node v € V such that
b(G) = 0 and F,(G,0) > 0. Then, for node v’ ¢ V consider a small A-out-regular
graph with only v” and a loop, i.e., (G%,07) = (({v},{(v,v)}),([1],[A])). Next, let us
add it to graph G, i.e., let (G',0’) = (G+ G",0 + 6"). From Cycle axiom we have
that F,,(G",0") = 1. Thus, by Locality, F,,(G’,0’) = 1. Now, let us combine node
v’ into node v in graph G/, i.e., let us take (G”,0”) = Cf,_w(G’,G’). From Node
Combination and Locality we have that

F,(G”,0")=F,(G,0')+F,(G,0’) =1 +F,(G,0).
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= C<©T/@
(G,0) :

Figure 5.7: An illustration to the proof of Lemma 57. The graph on the left hand
side, (G, 0), is a strongly connected graph that is not out-regular. The graph on
the right hand side, (G, 0’), is a graph obtained from (G, 0) by dividing the weights
of outgoing edges of v by deg/(G,0) for every node v. Note that (G,6’) is now
1-out-regular.

N —

Since G” is a strongly connected A-out-regular graph with unit node weights,
from () we get that F,(G”,0”) = SI,(G”,0”). However, we know that the sum
of Seeley indices in a graph is the sum of weights in that graph (Theorem 2). Thus,
Y uev SI,(G”) =1+ b(G) =1 and we arrive at a contradiction, because we get that
SI,(G”,0”)=F,(G”,0”)=1+F,(G,0)> 1. O

We have shown that any centrality measure, F, that satisfies Locality, Edge
Deletion, Node Combination, and Cycle for every strongly connected out-regular
graph assigns the same centrality to each node as Seeley index and eigenvector
centrality. Now, we will move to arbitrary graphs that are not necessarily out-
regular. For such graphs Seeley index and eigenvector centrality are not always
equal. Therefore, at this point, the proofs for both centrality measures split.

We begin with Seeley index and the following lemma in which we show that if
F additionally satisfies Edge Multiplication, then for every node of every graph in
G5! centrality measure F is equal to Seeley index.

Lemma 57. If a centrality measure, F, defined on G5! satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Cycle, then for every graph G = (V,E)
and weights 6 = (b, p) such that (G,0) € G5 it holds that

F,(G,0)=SI,(G,0), foreveryvelV.

Proof. Fix an arbitrary graph (G,0) = ((V,E),(b,n)) € ¢3!, Prom Locality, without
loss of generality, we can assume that (G, 6) is connected. Since (G,6) € G5/, this
means that G is strongly connected. Let us then, consider a modification of (G, 0)
in which the weight of each edge is divided by the out-degree of its start. Formally,
let (G,0’) = ((V,E),(b, '), where y'(u,v) = p(u,v)/deg) (G,0), for every (u,v) € E
(see Fig. 5.7 for an illustration). Observe that graph (G, 0’) is 1-out-regular. Hence,
from Lemma 56 we get that F,(G,0’) = SI,(G,6’), for every v € V. Now, graph
(G,0) can be obtained from (G, 0’) by multiplying outgoing edges of every node
v € V by deg)(G,0). Since both F and Seeley index satisfy Edge Multiplication
(Lemma 52), we get that

F,(G,0)=F,(G,0")=SI,(G,0") = SI,(G,0), foreveryveV.
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Figure 5.8: An illustration to the proof of Lemma 58. The leftmost graph, (G, 0), is
a strongly connected graph that is not out-regular. The middle graph, (G, 9), is an
opposite graph to (G, 0), i.e., the direction of every edge is inverted. Underlined
values at each node are equal to eigenvector centrality of this node (note that we
only need the relative values). The rightmost graph, (G,6’), is a graph obtained
from (G, 0) by dividing the weights of outgoing edges of v by EV, (G, 0) and mul-
tiplying the incoming edges of v by the same value for every node v. Note that
graph (G, 0’) is now 2-out-regular.

Now, let us move to the analogous lemma for eigenvector centrality, i.e., let us
prove that if a centrality measure satisfies Locality, Edge Deletion, Node Combi-
nation, Edge Compensation, and Cycle, then it is equal to eigenvector centrality
for every node of every graph in GEV.

Lemma 58. If a centrality measure, F, defined on GEV satisfies Locality, Edge Deletion,
Node Combination, Edge Compensation, and Cycle, then for every graph G = (V, E) and
weights 0 = (b, u) such that (G,0) € GEV, it holds that

F,(G,0)=EV,(G,0), foreveryvelV.

Proof. Fix an arbitrary graph (G,0) = ((V,E),(b,u)) € GEV. From Locality, with-
out loss of generality, we can assume that (G, 6) is connected. Since (G,0) € GFV,
this means that (G, 0) is strongly connected. In what follows, we modify its edge
weights using Edge Compensation in such a way that the obtained graph is out-
regular.

To this end, let us first consider a graph opposite to (G, 0), i.e., a graph in which
each edge is in the opposite direction. Formally, let (G,é) = ((V,E),(b, 1)), where
E ={(u,v): (v,u) € E} and ji(u,v) = u(v,u), for every (u,v) € E (see Fig. 5.8). Now,
in graph (G,0) let us multiply the weights of outgoing edges of node v € V by
EV,(G,0) and divide the weights of its incoming edges as well as the weight of
v also by EV,(G,0). Because eigenvector centrality satisfies Edge Compensation,
we know that this operation does not affect the centralities of nodes other than
v and divides the centrality of v by EV,(G,0), making it equal to 1. Proceed-

ing with this operation for each node v € V, we obtain graph (G,8’) in which
all nodes have eigenvector centrality equal to 1. Formally, 8’ = (b, i), where
b’ (v) = b(v)/EV,(G,0), for every v € V, and ji’(u,v) = ji(u,v) - EV,(G,0)/EV,(G,0),

for every (u,v) € E.

If all nodes in a graph have equal centralities, then from eigenvector central-
ity recursive equation (Eq. (2.2)) we get that the in-degree of each node is equal
to principal eigenvalue A, i.e, deg,(G,0’) = A, for every v € V. Hence, (G,0’) is
A-in-regular and the graph opposite to it would be A-out-regular. Let us define
graph (G,0’) as opposite to (G,0’) but with slightly modified node weights. For-
mally, let us denote 6" = (b”, ') where b”(v) = b(v) - EV, (G, 0), for every v € V, and
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also p/(u,v) = u(u,v) - EV,(G,0)/EV,(G,0), for every (u,v) € E. See Fig. 5.8 for an
illustration. Graph (G, 8’) is A-out-regular. Hence, from Lemma 56 we get that

F,(G,0')=EV,(G,0’), foreveryvelV. (5.15)

Graph (G, 0) can be obtained from (G, 6’) by multiplying the weights of outgo-
ing edges of v by EV,(G,0) and dividing the weights of its incoming edges as well
as its own weight also by EV,(G,0). Thus, from Edge Compensation for both F
and eigenvector centrality and Eq. (5.15), we get that

F,(G,0)=F,(G,0")/EV,(G,0) = EV,(G,0")/EV,(G,0) = EV,(G,0), foreveryveV.

O]

5.3.2 PageRank and Katz Centrality (Theorems 49 and 50)

Finally, we move to the proofs for PageRank and Katz centrality. First, we show
that both centrality measures satisfy their respective sets of axioms (Lemma 59
and 60). Then, we prove that PageRank and Katz centrality are also implied by
these sets of axioms (Lemmas 61-74).

We begin with the following lemma, in which we show that PageRank satisfies
our axioms. Although Locality, Edge Deletion, Edge Multiplication, and Baseline
have been considered in the previous chapters, the model have slightly changed
(through addition of edge weights). Therefore, we consider these axioms again.

Lemma 59. For every decay factor a € [0,1), PageRank defined by Eq. (2.7) satisfies
Locality, Edge Deletion, Node Combination, Edge Multiplication, and Baseline.

Proof. Let us take an arbitrary graph G = (V,E) and weights 6 = (b, u), and con-
sider axioms one by one.

* For Locality, let us consider graph G’ = (V’,E’) such that VNV’ =0, weights
0’ = (b’, '), and an arbitrary node v € V. If b(G) = 0, then it trivially follows
that PR%(G,0) = 0 = PR%(G + G’,0 + 0’). Thus, let us assume that b(G) > 0.
Observe that in graph (G + G’,0 + 0’) walks that start at nodes in V’ cannot
visit nodes in V and vice versa. Therefore, for every t € N, we have that
{weQy(G+G): w(t) =v} ={w e QG) : w(t) =v}. By Eq. (2.6), this implies
that also pg. 5 0.0V, 1)/(b(G) + b'(G') = p§ (v, 1)/b(G), because weights of
edges in E and the out-degrees of nodes in V are the same in both graph
(G,0) and graph (G + G’,0 + 0’). Hence, Locality follows from Eq. (2.7).

 For Edge Deletion, consider edge (1, w) € E and an arbitrary node that is not
a successor of u, i.e, ve V\S,(G). Let G' = (V,E\ {(u,w)}) be graph G with
edge (4, w) removed and 0’ = (b, p_(y,.)) its weights. If b(G) = 0, then observe
that PR}(G,0) = 0 = PR%(G’,0’). Thus, let us assume that b(G) > 0. Observe
that since v is not a successor of u in graph G, then a walk on G that has
visited node u# may not visit v later on. Therefore, the removal of edge (u, w)
does not affect the walks of length t that end at node v, i.e., we have that
{w e Q4G) : w(t) = v} = {w € QG : w(t) = v}. Moreover, for each walk
w € ()4(G) that does not visit u, i.e., w(i) # u, for every i € {0,...,t}, we have
that

b(w(0) [ p@(i),w(i+1)) _ bw(0)) P w(i+1))

g ﬂ

degw b “ degw GG) ’

i=0
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i.e., it is equal for graphs (G,0) and (G’,0’). Thus, since b(G) = b’(G), by
Eq. (2.6), also p¢; 4(v,t) = p (v, 1). Hence, from Eq. (2.7) we obtain that
PRY(G,0) =PR4(G’,0).

For Node Combination, take u,w € V such that deg/ (G) = deg (G) = deg (G),
for every s € S,,(G)US,(G). Let (G',0’) = ((V',E’), (b', ') = CFR' (G, 0). Since
PageRank is equivalently defined as the solution to system of PageRank re-
cursive equations (Theorem 1), it suffices to show that (x,),cy\(,) defined as
x, = PRY(G,0) for every v € V \ {u,w} and x,, = PR%(G, 0) + PR (G, 0) satis-
fies PageRank recursive equation (Eq. (2.5)) for every v € V' \ {u} and graph
(G, 0).

To this end, fix v € V and observe that from PageRank recursive equation
(Eq. (2.5)) for graph (G, 0) we have

Y HsVPRAG.O

e Go | b(v). (5.16)

PR{(G,0) = a[

seP}(G)

Recall that deg] (G,0) =deg; (G,0). Also, proportional combining does not
affect out-degrees, so deg;(G,0) = deg;(G’,0’), for every s € V \ {u}. First,
assume v € V \ {u, w}. Then, by the definition of the proportional combining,
' (w,v) = (PRE(G,0)ji(u,v)+PRE(G,0)fi(w,v))/(PR}(G,0)+PR%(G,0)). Thus,
Eq. (5.16) can be transformed into

Fwv)xy, Z }(s,v)PRS(G, 0)

_ b(v). 517
deg (G0 degi(Gre) | G

PR(G,0) = a[

sePH(G)\{u,w)

The incoming edges of v that come from nodes other then u and w are unaf-
fected by proportional combining. Thus, P}(G)\ {u,w} = P}(G’) \ {u,w} and
W(s,v) = y'(s,v), for every s € P}(G) \ {u,w}. Also, since v & {u, w} we have
b(v) = b’(v). Hence, from Eq. (5.17) we get that

#(sv) ] )
X, =a Z X [+ (v),
[SGP;}(G') degs (67.67)
which is the PageRank recursive equation for graph (G’,0’) and node v.
Therefore, it remains to consider node w. To this end, let us sidewise add
Eq. (5.16) for v = u and v = w. By the definition of proportional combining,
) = PRAAG O) (s, )+ i, )+ PRA(G, O) fitw, ) + iw, w)
P PR%(G,0) + PR%,(G, 0) '

Other incoming edges to u and w are simply combined, i.e., we have that
PL(G)\ {w} = PX(G) U PL(G) \ {u,w} and p'(s,w) = fi(s, u) + i(s,w), for every
s € PY(G")\ {w}. Again, deg!(G,0) = deg! (G,0) and deg (G,0) = deg!(G’,0’)
for every s € V'\ {u}. Also, b’(w) = b(u) + b(w). Thus, from Eq. (5.16) we get

ﬁ,(w; w)xw " Z l‘/(slv)xs +b'(w),

=PR}(G,0)+PR},(G,0)=a| —F———+
Xy (G, 0) w(G,0)=a deg’ (G',0) deg; (G’,6’)

sePL(G)\{u,w)

which is the PageRank recursive equation for graph (G’,0’) and node w.
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* For Edge Multiplication, consider arbitrary nodes u,v € V, constant x €
R.o, and weights 0’ = (b, p_rr(G) + x - prr())- If b(G) = 0, then observe that
PR%(G,0) =0 = PR%(G,0’). Thus, let us assume that b(G) > 0. Then, observe
that for every t € N and walk w € QQ4(G) such that w(t) = v, we have

tly’a) z+1))
deg

0’)

i=0

It holds because for every i € {0,...,t—1}, if w(i) = u, then both the numerator
and the denominator are multiplied by x, and if w(i) # u, both the numerator
and the denominator are unaffected. Thus, from Eq. (2.6) we obtain that
PGov,t) = pG e (v t). Summing for all ¢ € N, we get PRy(G,0) = PR4(G,0)
from Eq. (2.7). Hence, Edge Multiplication is satisfied.

* Finally, for Baseline, observe that it follows directly from PageRank recursive

equation (Eq. (2.5)). -

Now, let us move to the analogous lemma for Katz centrality.

Lemma 60. For every decay factor a € Rs Katz centrality defined on GK@ by Eq. (2.13)
satisfies Locality, Edge Deletion, Node Combination, Edge Compensation, and Baseline.

Proof. Let us take an arbitrary graph G = (V,E) and weights 6 = (b, u) such that
(G,0)¢e GK@  and consider the axioms one by one.

* For Locality, let us consider graph G’ = (V’,E’) such that VNV’ =0, weights
0’ = (b’,4’), and an arbitrary node v € V. If b(G) = 0, then it trivially follows
that KJ(G,0) = 0 = K4(G + G’,0 + 0’). Thus, let us assume that b(G) > 0.
Observe that in graph (G + G’,0 + 0’) walks that start at nodes in V’ cannot
visit nodes in V and vice versa. Therefore, for every t € N, we have that
{we QG+ G): w(t)=v}={w e Q(G): w(t) =v}. By Eq. (2.12), this implies
that also w§, 6 g,0/(v,1)/(D(G) + b'(G')) = w§, 4(v,1)/b(G), because weights of
edges in E and the out-degrees of nodes in V are the same in graphs (G, 0)
and (G + G’,0 + 0’). Hence, Locality follows from Eq. (2.13).

 For Edge Deletion, consider edge (1, w) € E and an arbitrary node that is not
a successor of u, i.e, ve V\S,(G). Let G' = (V,E\ {(u,w)}) be graph G with
edge (4, w) removed and 0’ = (b, pi_(y,.)) its weights. If b(G) = 0, then observe
that KJ(G,0) = 0 = Ki(G’,0’). Thus, let us assume that b(G) > 0. Observe
that since v is not a successor of u in graph G, then a walk on G that has
visited node u# may not visit v later on. Therefore, the removal of edge (u, w)
does not affect the walks of length t that end at node v, i.e., we have that
{w e Q4G) : w(t) = v} = {w € QG : w(t) = v}. Moreover, for each walk
w € (4(G) that does not visit u, i.e., w(i) # u, for every i € {0,...,t}, we have
that

b(w(0)) _ b(w(0))
b(G) I_[ w(i+1)) b(G) ]_[ w(i+1)),

i.e., it is equal for graphs (G,0) and (G’,0’). Thus, since b(G) = b’(G), by
Eq. (2.12), also w§ 4(v, t) = wg, o.(v, t). Hence, from Eq. (2.13) we obtain that
Ki(G,0) = K4G’,0").
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¢ For Node Combination, take u,w € V such that deg; (G) = deg! (G) = deg/ (G),

for every s € S,,(G)US,(G). Let (G',0’) = (V',E’), (b', ') = CKL, (G, 0). Since
Katz centrality is equivalently defined as the solution to the system of Katz
centrality recursive equations (Theorem 3), it suffices to show that (x; )yev\(u)
defined as x, = K{(G, 0), for every v € V \ {u,w}, and x,, = K{(G,0) + K/ (G, 0)
satisfies Katz centrality recursive equation (Eq. (2.3)), for every v € V' \ {u}
and graph (G, 60").

To this end, fix v € V and observe that from Katz centrality recursive equa-
tion (Eq. (2.3)) for graph (G, 0) we have

Kg(c,e)—a[ Z u(s, v)K4(G,0) |+ b(v). (5.18)
seP}(G)

First, assume that v € V \ {u,w}. Then, by the definition of proportional
combining, y’'(w,v) = (KJ(G,0)ji(u,v)+ K5 (G, 0)ji(w,v))/(Ki(G,0)+ K (G, 0)).
Thus, Eq. (5.18) can be transformed into

K5(G,0) = a[ﬁ'(w,v)xw + Z u(s,v)KE(G,0) [+ b(v). (5.19)

sePH(G)\{u,w)

Incoming edges of v that come from nodes other then u and w are unaffected
by proportional combining. Thus, P}(G) \ {u,w} = P}(G’) \ {u,w} and also
u(s,v) = p'(s,v), for every s € P}(G) \ {u,w}. Also, since v ¢ {u,w}, we have
b(v) = b’(v). Hence, from Eq. (5.19) we get that

S

seP}H(G)

+b'(v),

which is exactly the Katz centrality recursive equation for graph (G’,0’) and
node v.

Therefore, it remains to consider node w. To this end, let us sidewise add

Eq. (5.18) for v = u and v = w. By the definition of proportional combining,

Ki(G,0)(fa(u, u) + fi(u, w)) + K5 (G, 0)(fi(w, u) + fi(w, w))
Ki(G,0)+Ky(G,0) '

W (w,w) =

Observe that the other incoming edges to # and w are simply combined to-
gether, i.e., PL(G’)\ {w} = PL(G) UPL(G)\ {u,w} and p'(s,w) = fi(s, u) + ji(s, w),
for every s € PL(G’)\ {w}. Also, b’(w) = b(u) + b(w). Thus, from Eq. (5.18) we
obtain

xy =K{(G,0)+KL(G,0) =a| f(ww)x,+ ) plsv)x|+b'(w),
sePL(G)\{u,w)

which is the Katz centrality recursive equation for graph (G’,0’) and node w.

For Edge Compensation, take arbitrary u € V and x € R., and let 8" = (b', p’)
such that b =b_, +b,/x and p’" = p_rz(G)\((w,uw) + I (GG} X+ HI GG/
Fix v € V\{u}. If b(G) = 0, then it holds that KJ(G,08’) = 0 = K4(G, 0), for every
v € V. Thus, let us assume that b(G) > 0.



5.3. PROOFS OF UNIQUENESS 115

We will show that for every t € N and walk w € ();(G) that ends at v, i.e.,
w(t) = v, it holds that

t
ap(w(i=1),w(i) = b'(@(0)- | [ap(@(i-1),0().  (5.20

=1

-

b(w(0))-

=1

To this end, observe that since w(t) # u, for every step i € {0,...,t—1} in which
the walk arrives at node u, i.e., w(i — 1) # u and w(i) = u (if the walk starts
in u, we treat step 0 as arrival as well), there exist exactly one step j > i
in which the walk departs from u, i.e., w(k) = u, for every k € {i,...,j — 1},
and w(j) # u. Now, in (G,0’), the factor for step i (arrival) decreases by x,
ie, W(w(i-1),w(i)) = plw(i-1),w(i))/x (or b’(i) = b(i)/x if i =0), but at the
same time it holds that the factor for step j (departure) increases by x, i.e.,
wW(w(j—-1),w(j)) = p(w(j—1),w(j)) x. Since there is equal number of arrivals
and departures from u, Eq. (5.20) holds. Thus, from Eq. (2.12) and Eq. (5.20)
we have that w(, 4(v,1)/b(G) = w, 5,(v,1)/b'(G) and from Eq. (2.13) we get
K%(G,0)=K4G,0’).

By similar reasoning as in Eq. (5.20), for node # we can obtain that for every
t € Nand w € Q,(G) that ends at u, i.e., w(t) = u, it holds that

]_1[ w(i—1),w(i))/x = b'( I_l[
i=1 i=1

Here, there is a departure step for every but last arrival at u. However, since
w(t) = u, for the last arrival, there is no departure. Hence, for weights 6’
the product is divided by x one more time than it is multiplied by x. Thus,
from Eq. (2.12) we get that wg, (v, 1)/b'(G) = wg »(v,1)/b(G)/x. Hence, from
Eq. (2.13) we get that K}(G,0’) = K{(G, 0)/x.

w(i 1), w(i)).

p” I

Finally, for Baseline observe that it follows directly from Katz centrality re-

cursive equation (Eq. (2.3)). 0

Now, let us move to the proof that our axioms imply PageRank and Katz cen-
trality. In its main part, we will focus on semi-out-regular graphs which generalize
out-regular graphs: all nodes except for sinks have equal out-degree. Most of the
following lemmas will consider such graphs only.

Definition 7. Graph (G,0) = ((V,E), (b, p)) is semi-out-regular if there exists constant
r € Ry such that for every v € V it holds that deg(G,0) =r or deg/ (G, 0) =

Let F be a centrality measure that satisfies Locality, Edge Deletion, Node Com-
bination, Edge Multiplication or Edge Compensation, and Baseline. First we show
several simple properties stemming from our axioms that are useful in later proofs:

proportional combining of any two nodes in semi-out-regular graphs pre-
serves centralities in a graph (Lemmas 61 and 62),

centrality of a node is equal to its weight if it is a source (Lemma 63) and
greater or equal to its weight in any other case (Lemma 64),

centrality is linear with respect to node weights (Lemma 65), and

there exists constant ar such that F,(({u,v},{(4,v)},([x,0],[1])) = aF - x, for
every x € Ry.



116 CHAPTER 5. AN AXIOM SYSTEM FOR FEEDBACK CENTRALITIES

Then, we define a profit function pg(x,y,z) as the centrality profit a node obtains
from an incoming edge with weight y that starts at a node with centrality x and
out-degree z in the smallest graph with such situation possible: a graph that con-
sists of three nodes and two edges. We show that if F satisfies Edge Multiplication,
then pp(x,v,2) = ap-x-y/z, as in PageRank (Lemma 67), and if F satisfies Edge Com-
pensation, pp(x,v,z) = ag - x-p, as in Katz centrality (Lemma 68). Furthermore, we
show that in every semi-out-regular graph (G, 0) the profit of every node v from
every edge (u,v) is always equal to pp(F,(G,0), u(u,v),deg) (G,0)). In other words,
F satisfies recursive equation

F)(G,0)=b@)+ )  pr(F(G,0),u(u,v),deg}(G,0)).
ueP}(G)

First, we prove it only for nodes without loops (Lemma 69) and then for arbitrary
nodes (Lemma 70). This allows us to show that if centrality F satisfies Edge Mul-
tiplication, then it is equal to PageRank for semi-out-regular graphs (Lemma 71)
and all graphs (Lemma 72) and, similarly, if F satisfies Edge Compensation, it is
equal to Katz centrality for all semi-out-regular graphs (Lemma 73) and arbitrary
graphs (Lemma 74).

In the following two lemmas we show that Locality, Edge Deletion, and Node
Combination imply that proportional combining of nodes in graphs that are semi-
out-regular preserves centralities of nodes. We start by showing that, with Locality
and Edge Deletion, Node Combination can be strengthened: We relax the condi-
tion that the out-degrees of the combined nodes must be equal to the out-degrees
of all of their successors and require only that they are equal to the out-degrees of
these of their successors that are not sinks.

Lemma 61. If a centrality measure, F, defined on G (or GK9)) satisfies Locality, Edge
Deletion, and Node Combination, then for every graph G = (V,E), weights 0 = (b, p),
and nodes u,w € V such that (G,0) € G (or (G,0) € GK@), deg)(G,0) = deg/ (G,0),
and for every s € S,(G) U S,,(G) we have deg!(G,0) = deg, (G,0) or deg!(G,0) =0, it
holds that

F,(CL_,(G,0)=F,(G,0), foreveryveV\{uw)

and E(CE_ (G, 0)) = F,(G,0)+F,(G,0).

Proof. Consider arbitrary nodes u,w € V such that deg/(G,6) = deg, (G,0) and
for every s € S,(G) U S, (G), either deg/ (G, 0) = deg, (G,0) or deg!(G,0) = 0. Let
(G',0") = Cyyru(G, 6).

Observe that if deg)(G,0) = deg! (G,0) = 0, then there are no successors of
u and w and the thesis follows directly from Node Combination. Thus, assume
otherwise. Let us denote r = deg}/ (G, 0) = deg/ (G, 0).

We will construct an out-regular graph based on (G, 6). To this end, consider
the set of all sinks in V, i.e., let V; ={v € V : I, (G) = 0}. Let us add a new node,
t ¢ V, to the original graph with a loop and an edge from each node in V. Formally,
let G=(VU({t},EUE), where E = {(v,t) : v € V,U{t}}. Furthermore, let us define the
weights of additional node and edges by 6 = (b, i), where b(t) = 0 and ji(e) = r, for
every e € E. In this way, graph (G, 0 +0) is indeed r-out-regular. Observe that since
nodes in V; do not have outgoing edges in graph G, they do not have successors in
V,ie., S,(G)NV =0, for every v € V. Thus, from Edge Deletion and Locality we
have that

F,(G,06+0)=F,(G,0), foreveryvelV. (5.21)
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Now, let us perform the same operation on graph (G’,0’). To this end, let us
denote G’ = (V’,E’). Since u and w are not sinks, V; is still the set of all sinks in
a graph, i.e., V; = {v € V' : I,J(G’) = 0}. Thus, consider G’ = (V' U {t},E’ UE). Since
(G’,0’) is still semi-out-regular (proportional combining preserves out-degrees),
we again get that (G’,0’ + 0) is r-out-regular graph. Moreover, as before, from
Edge Deletion and Locality we have that

F,(G,0'+0)=F,(G,0’), foreveryveV’ (5.22)

Finally, observe that since u,w & V;, graph (G’,0’+0) is also the graph resulting
from combining u into w in graph (G,0 + 0), i.e., (G0’ +0) = CL_,(G,0 + 0).
Graph (G, 0 + 0) is out-regular, thus all successors of nodes u and w have equal
out-degrees. Hence, from Node Combination we have

0), for every v e V \ {u, w}

F,(G, 0+
0+0)+F,(G,0+0), forv=uw.

F,(G,0'+0)= _
o ) {FM(G,

Combining this with Eq. (5.21) and Eq. (5.22) yields the thesis. O

From this we easily get that proportional combining of nodes in semi-out-
regular graphs preserves centrality.

Lemma 62. If a centrality measure, F, defined on G (or gK@) satisfies Locality, Edge
Deletion, and Node Combination, then for every graph G = (V,E), weights 6 = (b, p),
and nodes u,w € V such that (G,0) € G (or (G,0) € GK@) and (G,0) is semi-out-
regular, it holds that

FV(CE_W(G,Q)) =F,(G,0), foreveryveV\{uw}
and F,,(CE_ (G,0)) =F,(G,0)+F,(G,0).

Proof. Observe that in semi-out-regular graph all successors of either 1 or w that
are not sinks have out-degrees equal to the out-degree of 1. Thus, the thesis follows
from Lemma 61. O

In the next three lemmas we will focus on node weights and their relation to
centrality. First, we prove a simple property that the centrality of a source node is
equal to its weight.

Lemma 63. If a centrality measure, F, defined on G (or GK9) satisfies Edge Deletion
and Baseline, then for every graph G = (V,E), weights 6 = (b, u), and node v € V such
that (G,0) € G (or (G,0) € GK@) and I, (G) = 0 we have

F,(G,0) = b(v).

Proof. Take an arbitrary graph G = (V,E), weights 6 = (b, 4), and node v € V such
that (G,0) € G (or (G,0) € GK@) and T; (G) = 0. Observe that in graph G node v
is not a successor of any node, i.e., for every u € V, it holds that v ¢ S,,(G). Thus,
in graph G’ = (V,0), i.e., graph G with all edges removed, from Edge Deletion we
have F,(G’, (b, pp)) = F,(G,0). In graph G’ node v is isolated, thus the thesis follows
from Baseline. O

Now, let us take an arbitrary node, not necessarily a source, and prove that its
centrality in semi-out-regular graph is greater or equal to its node weight.
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Lemma 64. If a centrality measure, F, defined on G (or gK@) satisfies Edge Deletion,
Node Combination, and Baseline, then for every graph G = (V,E), weights 6 = (b, p),
and node v € V such that (G,0) € G (or (G,0) € GXK@) and (G, 0) is semi-out-regular, it
holds that

F,(G,0) > b(v).

Proof. Take an arbitrary graph G = (V,E), weights 6 = (b,u), and node v € V
such that (G,0) € G (or (G,0) € GK®) and (G,0) is semi-out-regular. Let us con-
sider graph G’ with an additional node v’ with exactly the same set of outgoing
edges as v in G, but without any incoming edges. Also, let us transfer the whole
weight of node v into v’. Formally, let G’ = (V U{v’},E’), where E’ = EU{(v’,u) :
(v,u) e 7 (G)}. Also, let 0’ = (b’, "), where b" = b_, + b(v) - 1,, while p = pg and
W (v, u) = p(v,u), for every (v,u) € I} (G). Since v’ and v are out-twins, we have
that Cf,_ (G’,0’) = (G,0). Observe that (G’,0’) is also semi-out-regular. Thus,
from Lemma 62 we have F,(G,0) = F,(G’,0’) + F,,(G’,0’). Now, from Lemma 63
we get that F,,(G’,0’) = b(v). Hence, from the fact that centrality is always non-
negative we obtain F,(G,0) > b(v). O

In the following lemma we show that centrality of each node of semi-out-
regular graph is linear with respect to the function of node weights.

Lemma 65. If a centrality measure, F, defined on G (or GK9) satisfies Locality, Edge
Deletion, Node Combination, and Baseline, then for every graph G = (V,E), weights
O = (b,p), and node v € V such that (G,0) € G (or (G,0) € GK@) and (G, 0) is semi-
out-regular, it holds that

(a) F,(G,(b+V’,n)) =F,(G,0)+F,(G, (b, n)), for every node weights b’ : V. — Ry,
(b) F,(G,(x-b,p)) =x-F,(G,0), for every x € Rs.

Proof. For (a), take four semi-out-regular graphs: (G,0), (G, (V’, n)), (G,(b+ V', p)),
and the fourth one, isomorphic to them, but with disjoint set of nodes and uniform
node weights, i.e., let (G,é) = ((V,E),(l,ﬁ)), where V = {0 :veV}and VNV =0,
E={(4i,7): (u,v) € E}, and (1, ) = u(u,v), for every (u,v) € E.

Now, using graph (G, 8) we will combine together graphs (G, 8) and (G, (', u)).
To this end, consider the sum (G + G, 6 + 6). From Locality we know that the cen-
trality of each v € V UV is the same as in the original graphs. Then, let us sequen-
tially combine node v into node v, for every v € V. Observe that, by Lemma 64,
all nodes in (G, ) have positive centrality. Moreover, graphs (G,0) and (G,0) are
isomorphic (when not accounting for node weights). Thus, in result of such oper-
ation we obtain graph that has the same nodes, edges, and edge weights as (G, ),
but with node weights that are the sum of node weights in both graphs, i.e., we
obtain graph (G,6") = (V,E), (b, fi)), where W)= b(v)+ 1, for every v € V. From
Locality and Lemma 62 we get

Fy(G',0') = F,(G,0) + F4(G,0), foreveryvelV. (5.23)

Next, let us consider sum of graphs (G,0’) and (G, (b’, 4)) and this time let
us sequentially combine node ¢ into node v, for every v € V. Observe that, by
Eq. (5.23), centralities of all nodes in G’ are still positive. Moreover, again, both
graphs are isomorphic (when not accounting for node weights). Thus, as be-
fore, we obtain a graph with the same nodes, edges, and edge weights, but with
node weights summed, i.e., (G”,0”) = ((V,E),(b+ b’ +1,p)). Thus, from Locality,
Lemma 62, and Eq. (5.23), for every v € V, we have

E,(G”,0”) = F,(G,(b', u)) + Fy(G',8") = Fo (G, (b, 4)) + Fy (G, 0) + F4(G,0).  (5.24)
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On the other hand, as we will demonstrate, graph (G”,0”) can be also obtained
when combining graphs (G, (b + b’, 1)) and (G,6). To this end, consider the sum
(G+G,(b+b’,u)+6) and in this graph let us sequentially combine node ? into v,
for every v € V. Observe that in this way we also obtain graph (G”,0”). Thus,
from Locality and Lemma 62 we get F,(G”,0”) = F,(G,(b+ V', ) + Fy(G,6), for
every v € V. Combining this with Eq. (5.24) yields

F (G, (b+V', ) =F,(G,(b',p))+ Fy(G,0), foreveryvelV.

For (b), consider function f(x) = F,(G, (x-b, p)). From (a) we know that function
f is additive, i.e., f(x+v) = f(x)+ f(v), for every x,y € R5(. From the definition of
centrality measure we know that it is also non-negative, i.e., we have f(x) > 0, for
every x € Ryo. This implies that the function is of the form f(x) = x - r, for some
r € Ry [23]. Since, f(1) = F,(G,0), we get that F,(G, (x-b, u)) = x-F,(G, 0), for every
veV. O

PageRank and Katz centrality are both parameterized by a decay factor a. In
the next lemma, we pinpoint this value. Specifically, for every centrality measure F
that satisfies Locality, Edge Deletion, Node Combination, and Baseline, we define
its decay factor, af, as the centrality of node v in graph (({u, v}, {(u,v)}), ([1,0],[1])).

Lemma 66. If a centrality measure, F, defined on G (or gK@) satisfies Locality, Edge
Deletion, Node Combination, and Baseline, then there exists a constant ap € Ry such
that for every x € Ry and nodes u,v, it holds that

Fv(({u,v},{(u,v)}),([x,O], [1])) =df-X.

Proof. Let (G,0) = (({u, v}, {(u,v)}),([1,0],[1])) and ar = F,(G,0). Since (G,0) is
semi-out-regular, the thesis follows directly from Lemma 65b. O

Having established basic properties that follow from our axioms, we are now
ready to move to the part of the proof devoted to the notion of node’s profit from
an edge, i.e., the part of the centrality of a node that it gets from the particular
incoming edge. First, let us formally define the profit function as a centrality of a
node in a simple graph with three nodes and one or two edges.

Definition 8. The profit function of centrality F is a function such that for every
x € Ryg and v,z € Ry such that y < z returns the value pp(x,v,z) = F,(G, 0), where

(G 9) — (({u, v,w}l{(u,v)’(urw)}); ([X, 0,0]’ [y]z_y])), lfy <z
, (({w, v, w, {(u,))), ([x,0,0], [v])), herwice.

In the following two lemmas, we will take F that satisfies Locality, Edge Dele-
tion, Node Combination, and Baseline and prove that its profit function is equal
to that of PageRank if it satisfies also Edge Multiplication or to this of Katz cen-
trality if it satisfies Edge Compensation. Let us start with Edge Multiplication and
PageRank.

Lemma 67. If a centrality measure, F, defined on G satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Baseline, then for every x,v,z € Ry such
that z >y, it holds that

Pr(x,v,2) = pprer (X, 9,2) = ap-x-y/z.



120 CHAPTER 5. AN AXIOM SYSTEM FOR FEEDBACK CENTRALITIES
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Figure 5.9: Graphs considered in the proof of Lemmas 67 and 68. The weight of
each node and edge is shown.

Proof. It is easy to check that from PageRank recursive equation (Eq. (2.5)) we get
pprer(X,v,2) = ap - x-y/z. Thus, let us focus on proving that pp(x,v,z) = ap-x-y/z as
well. To this end, we will consider two cases: the first one (I) in which y =z, i.e., a
graph with only one edge, and the second one (II) in which y < z, i.e., a graph with
two edges. We illustrate consecutive graphs in Fig. 5.9.

(I) In the case where y = z, let us consider graph from Definition 8 of the
form (G, 0) = (({u,v, w}, {(u,v)}),([x,0,0],[y])). If we remove node w and change the
weight of (1, v) to 1, we obtain (G’,0’) = (({u, v}, {(u,v)}), ([x,0],[1])). From Lemma 66
we have F,(G’,0’) = ap-x. Hence, from Locality and Edge Multiplication we obtain

F,(G,0)=F,(G,0)=ag-x = PRy (G,6). (5.25)

(IT) In the case of y < z, we begin with two pairs of nodes connected by an edge,
ie., let (G,0) = (({u,u’,v,w},{(u,v),(u', w)}),([x-v/z,x-(z—v)/z2,0,0],[z,2z])). Observe
that from Locality and Eq. (5.25) we have that F,(G,0) =ag-x-y/z.

Now, from Lemma 63 we get that F,(G,0) = x-y/z and F/(G,0) =x-(z-v)/z.
Therefore, if we now proportionally combine node #” into u in G we obtain graph
(G0 = le,_)u(G,G) = (({u,v,wh {(u,v), (u,w)}), ([x,0,0], [y, z—p])), which is a graph
from Definition 8. Since (G, 0) is semi-out-regular, from Lemma 62 we get that
pr(x,v,2) =F,(G’,0") = F,(G,0) = ap - x - y/z. This concludes the proof. O

Now, let us move to Edge Compensation and Katz centrality.

Lemma 68. If a centrality measure, F, defined on GK@ satisfies Locality, Edge Deletion,
Node Combination, Edge Compensation, and Baseline, then for every x,vy,z > 0 such
that z >y, it holds that

Pr(x,9,2) = pxer(X,9,2) = ap - x- .

Proof. The proof follows in a similar fashion to the proof of Lemma 67. The fact
that pger (x,9,2) = ap - x - v comes directly from Katz centrality recursive equation
(Eq. (2.3)). Thus, let us prove that pr(x,v,z) = ap - x-y as well. To this end, we
consider two cases: the first one (I) in which y = z , and the second one (II) in
which y < z. As before, the graphs used in the proof are depicted in Fig. 5.9.

(I) For y = z, a graph from Definition 8 is (G, 0) = (({u, v, w}, {(u,v)}), ([x,0,0], [v])).
By removing node w and changing the weight of edge (u,v) to 1, we obtain graph
(G,0') = (({u,v},{(u,v)}),([x,0],[1])). Lemma 66 yields F,(G’,0’) = ap - x. Since F
satisfies Locality and Edge Compensation, we get

Fy(G,0)=v-F,(G,0")=ar-x-v=K,"(G,0). (5.26)
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(II) When y < z, we consider a graph with two pairs of nodes connected by
an edge, i.e., let (G,0) = (({u, v, v, w}, {(u,v), (u",w)}), ([x-v/z,x- (z—v)/2,0,0],[z,z])).
From Eq. (5.26) and Locality we have that F,(G,0) =ag-x-y.

From Lemma 63 we get F,(G,0) = x-y/z and F,/(G,0) = x- (z—y)/z. Thus, by
combining u” into u we obtain (G’,0’) = (({u, v, w}, {(u,v), (v, w)}), ([x,0,0], [v,2—])),
which is a graph from Definition 8. Since (G, 0) is semi-out-regular graph, from
Lemma 62 we obtain that pg(x,y,z) = F,(G’,0’) =F,(G,0) =ap-x-y. O

In the next two lemmas, we will prove that if a centrality measure F satisfies
Locality, Edge Deletion, Node Combination, Edge Multiplication or Edge Com-
pensation, and Baseline, then the centrality of a node in a semi-out-regular graph
is equal to the weight of this node plus the sum of profits its receives from its
incoming edges. In other words, we will show that F satisfies recursive equation

Fy(G,0)=b(v)+ ) pr(Fu(G,0), u(u,v),deg}(G,0)).
ueP}(G)

First, we assume that the node in question does not have a loop.

Lemma 69. If a centrality measure, F, defined on G (or GK\9) satisfies Locality, Edge
Deletion, Node Combination, Edge Compensation or Edge Multiplication, and Baseline,
then for every graph G = (V,E), weights 6 = (b, u), and node v € V such that (G, 0) is
semi-out-regular, (G,0) € G (or (G,0) € GK@), and (v,v) ¢ E, it holds that

F,(G,0)=b)+ ) pr(Fy(G,0),u(u,v),deg(G,0)).
ueP(G)

Proof. We will prove the thesis by induction on the number of incoming edges of
node in question. Consider an arbitrary graph G = (V,E), weights 6 = (b, u), and
node v € V such that (G, 0) is semi-out-regular, (G,0) € G (or (G,0) € GK@), and
(v,v) ¢ E. If node v does not have any incoming edges, then the thesis follows from
Lemma 63. Therefore, we will focus on the case in which it has at least one incom-
ing edge. Let us denote one of them as (#,v), where u # v. In what follows, through
a series of graph operation we will show that the centrality of node v can be ex-
pressed as a sum of its profit from edge (u,v), i.e., pr(F,(G,0), u(u,v), degZ(G,G)),
and the rest that is known due to the inductive assumption.

If F,(G,0) =0, then the profit of node v from edge (u,v) is equal to zero, i.e.,
pe(Fu(G,0), u(u,v),deg; (G,0)) = 0. Thus, we will show that the centrality of node
v is equal to the sum of its profits from other edges plus its weight. To this end, let
(G101 = (({w’, v}, {(w',v")}), ([1,0], [deg! (G, 0)])) be a small two-node graph, which
we add to our original graph (G, 6). Then, observe that from Locality we have that
F,(G+G',0+0") =F,(G,0) = 0 and from Lemma 63 we have F, (G+G',0+07) = 1.
Thus, when in this summed graph we combine node u into u’, we get that the
original outgoing edges of node u, including edge (u,v), are removed. Formally, let
us denote the obtained graph as (G’,0’) = C5_>u,(G+GT, 9+9T). Since, (G+GT, 6+6T)
is semi-out-regular, from Lemma 62 we have F,(G’,0’) = F,(G + G1,0 +6") and
by Locality, F,(G + G',8 + 87) = F,(G,6). Since in graph (G’,0’) node v has one
incoming edge less, the thesis follows from the inductive assumption.

Hence, let us focus on the case in which F,(G,0) > 0. Consider graph (G’,0’)
in which we split node u into two nodes: u’, with all of its original outgoing edges
and no incoming edges, and u, with all of its original incoming edges and only
one new outgoing edge (u,v’). See Fig. 5.10 for an illustration. Additionally, let
us give node u” weight equal to F,(G,0). Formally, let G" = (V',E’) be a graph
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Figure 5.10: An illustration to the first part of the proof of Lemma 69 for an exam-
ple graph, (G, 0). The weights of the outgoing edges of u and u” are shown.

in which V' = VU {u/,v’} and E’ = E\[[J(G) U{(u",w) : (u,w) € I;J(G)} U {(u,v")},
while 8 = (V’, '), where b}, = by, b'(v') =0, b’(u’) = F,,(G,0) and :”,—r;(c) = H_T}(G)
#(u,v’') = deg(G,0), and p'(u',w) = p(u,w), for every (u,w) € I} (G).

Now, let us combine node u#” into node u. The graph that we obtain is not
exactly our original graph G. More in detail, it is graph G” = (VU {v'}, EU{(u,v’)})
with weights 6” = (b”, u”), where b”(v’) =0, b”(u) = b(u) + F,(G) and b”(w) = b(w),
for every w € V' \ {u}. From Lemma 63 we have that F,,,(G’,0’) = F,(G, 0), hence we
know that also

_ deg’(G,0)-F,(G,0))

7, pt(u,w)~Fu(G,9)
W)= G L (G0)

F.(G,0)+F,(G,0)

wiu,w) = for every (u,w)€l}(G),
and u”(e) = p(e), for every e € E\ I[,;(G) (if F,(G’,0’) = 0, the edge (u,v’) that is
supposed to have zero weight is removed). Fig. 5.10 illustrates the case in which
F,(G,0)=F,(G’,0’). We will prove that it is always the case.

To this end, consider adding to our original graph, (G, 0), a simple graph con-
sisting of nodes u’ and v’ and edge between them, and then combining node u’
into node u. Furthermore, let " have a weight equal to centrality F,(G’,0’). For-
mally, let (G1,07) = (({u’,v'}, {(",v")}), ([F, (G, 07),0],[deg} (G, 0)])). Consequently,
let us combine node u” into u in graph (G + G',0 +87). As a result, we also obtain
graph G” with possibly different weights, i.e., let (G”,0*) = CE, | (G+GT,0+0").
Let 6" = (b*, u*). Observe that b*(v’) = 0, b*(u) = b(u) + F,,(G',0’), and b*(w) = b(w),
for every w € V \ {u}. As for edge weights, observe that from Lemma 63 we get
F(G+G',0+60") = F,(G’,6’) and from Locality F,(G+G',0+6") = F,(G,8). Thus,

degZ(G,Q)-Fu(G/,Q’) ]/t(u,w)-Fu(G,G)

F,GOE,G.0) M"Y E Go+E.G.0)

W, v') = for every (u,w) €I, (G),

and p*(e) = u(e), for every e € E\I[,](G) (if F,(G’,0’) = 0, the edge (u,v’) that is
supposed to have zero weight is removed). Therefore, y* = u”.

This means that the only possible difference between 6* and 0" is the weight of
node u, i.e., b*(u) = b(u)+ F,(G’,0’) and b”(u) = b(u) + F,(G, 0). However, the cen-
trality of node u in graph G” with both weights is the same: by Lemma 62, from
combining u” into u in (G + G1,0+67), we get F,(G”,0")=F,(G’,0")+F,(G,0) and,
from combining u” into u in (G’,0’), we have that F,(G”,0”) = F,(G,0)+F,(G’,0’).
Let us prove that this implies that also b*(u) = b”(u). For assume otherwise. With-
out loss of generality, let us assume that b*(1) > b”(u). Then, consider weights
0"—-0" =(b*-b", "), i.e., the same edge weights as in 6" and 6", but with the node
weight of each node being a difference between its node weight in 6" and 6”. Since



5.3. PROOFS OF UNIQUENESS 123

a a

b+c b+c

@) ©® @

(G}, 6%) (G°,6°)

Figure 5.11: An illustration to the second part of the proof of Lemma 69 for graph
(G,0) from Fig. 5.10.

b*(u)—b"(u) > 0, we know that the weight of u under this new weights is positive,
ie., (b*=0")(u) > 0. Thus, from Lemma 64 we have that F,,(G”,0* - 6") > 0. How-
ever, from Lemma 65a we have that F,(G”,0”)+F,(G”,0*-0") = F,(G”,0"). Since
F,(G”,0”) = F,(G”,0%) we arrive at a contradiction. Thus, indeed, b*(1) = b”(u)
which implies that (G”,0%) = (G”,0”). Therefore, from Lemma 62 we have that

F,(G,0)=F,(G",0")=F,(G",0”)=F,(G,0’), foreveryweV. (5.27)

In the remainder of the proof, we will split node v into two nodes with the
same set of outgoing edges as v: node v’ with one incoming edge, (u’,v%), and
zero weight, and node v with the original weight of node v and all of its incom-
ing edges except for (u’,v) (see Fig. 5.11 for an illustration). As we will show, in
this new graph, centrality of v' is equal to profit of node v from edge (u,v), i.e
P:(F,(G,0), u(u,v),deg/ (G, 0)), and, by the inductive assumption, centrality of v is
equal to the sum of profits of all other incoming edges of v and its weight. Then,
by Node Combination, this will prove the induction hypothesis.

Formally, let us consider graph G™ = (V1,Et), where we have V' = V'U{vT} and
Et = E'\ {(w,v)} U{w, v U{(v,w): (v,w) e T} (G’)). Moreover, let 67 = (b', u"),
where b;r,, = b}, and b'(v") = 0, while u' (v, v") = p' (v, v), pt(v', w) = p'(v,w), for
every (v,w) € I/ (G), and also /f(e)E'\{(uf,v} = p'(e)pr\((w,v)- Clearly, if we com-
bine node v’ into node v in graph (G',0") we obtain graph (G’,0’). Thus, from
Lemma 62 we have F,(G’,0’) = F,(G",0")+ F+(G',0") and from Eq. (5.27) we have
F,(G,0) = F,(G',0%) + F,+(G',0%). Observe that node v has less incoming edges in
graph G' than it had in graph G. Hence, by the inductive assumption,

F)(G,0)=F(Gho")+b' @)+ ) pr(Fy(Gh0"), u(w,v) deg (G, 0M).
weP} (G)\(u}

Now, from Lemma 62 and Eq. (5.27) we obtain F,(G',0%) = F,(G,0), for every
w € V \ {u,v}. Also, we have that pf(w,v) = p(w,v) and deg; (G',0") = deg} (G, 0),
for every w € P}(G) \ {u}, and b(v) = b(v) as well. Therefore, it remains to prove
that F,+(G',0%) = pp(F,(G,0), u(u,v),deg’ (G, 0)).

To this end, observe that the only predecessor of node v in graph G' is node
u’. Thus, let us remove all edges that are not outgoing edges of u’. From Edge

Deletion we know that the centrality of node v’ is unchanged by this operation,
ie., Fyt(GT,07) = Fur (VTG (07, pl 1))

If u” has one outgoing edge, i.e., I’J,(G’L) ={(u’,v")}, then, indeed, from Locality
and Definition 8 we get that F,+(G,0%) = pp(F ( 0), u(u,v),deg/ (G, 0)). Thus, let
us assume otherwise. Then, observe that in graph (V ,I‘+,(G+)) every node except
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for node 1’ does not have any outgoing edges. Therefore, let us add a new isolated
node with weight 1 to this graph, namely, w ¢ V, and then sequentially combine
all the nodes that are not u’ nor v+ into node w. Formally, let us denote graph
(GH0%) = (({u, 0!, wh (1, v"), (1, W), ([Fu (G, 0),0, 1+x], [(u, v), deg (G, 0)— p(u,v))
where x =) eyt }bl( w’). Then from Locality axiom and Lemma 62 we ob-

tain that F,+((VF, T (Gh), (4%, VE; ch) = F,+(GY,0%).

Finally, the only difference between graph (G*,0%) and the graph from Defini-
tion 8 is the weight of node w. Therefore, let us split node w into two nodes, w
and w’, such that w has incoming edge (1, w) and zero weight whereas w’ has the
weight of original node w and no incoming edges. Formally, let us define graph
(G°0°) = ({u' v ww’), {(u'vl) W([Fu(G,0),0,0,1+x],[u(u,v), degy (G,0) - p(w,v)])).
Clearly, if we combine w’ into w in this graph, then we obtain graph (G%, 6%). Thus,
from Lemma 62 we obtain that F,+(G¥,0%) = F,+(G°,6°). On the other hand, with-
out node w’ graph (G°,0°) is a graph from Definition 8. Therefore, from Local-
ity we obtain that F,+(G°,6°) = pp(F,(G,0), u(u,v),deg; (G, 6)). This concludes the
proof. O

In the next lemma we relax the assumption that node v does not have a loop.

Lemma 70. If a centrality measure, F, defined on G (or GK9) satisfies Locality, Edge
Deletion, Node Combination, Edge Compensation or Edge Multiplication, and Baseline,
then for every graph G = (V,E), weights 0 = (b, u), and node v € V such that (G, 0) is
semi-out-regular and (G,0) € G (or (G,0) € GK@) it holds that

Fy(G,0) =b(v)+ Z pr(Fu(G,0), u(u,v),deg, (G, 0)).
uePl(G)

Proof. First, we focus on a graph with only two nodes and (at most) two edges: one
connecting the nodes and a loop around the start (see Fig. 5.12 for an illustration).
Formally, let (G, 0) = (({v,w}, {(v,v), (v,w)}), ([by, 0], [v,2—v])), for some b, € R5( and
v,z € R, such that z > p (in the case of z = y, we consider a graph with only one
edge, (v,v), but the proof is the same). Also, let us denote x = F,(G,0). We want
to prove that x = b, + pp(x,v,z). Observe that if b, = 0, then from Lemma 65b we
know that x = F,(G,0) = 0. Also, for both Katz centrality and PageRank profit
function for x = 0 is equal to 0. Hence, the thesis follows from Lemma 67 or 68
(depending on the satisfied axiom).

Thus, let us assume otherwise, i.e., that b, > 0. By Lemma 64, this means
that also x = F,(G,0) > 0. Let us consider graph such as in Definition 8 with the
weight of the source equal to p - x, for an arbitrary constant p € R (see Fig. 5.12).
Formally, take (G, 9,’,) =(({v,, u,wh{(v",u), (v, w)}),([p-x0,0],{y,z—p])). Now, let
us add both graphs together to obtain (G + G’,0 + 6,). From Lemma 63 we have
that F,,(G+G’,0 +0,) = p-x and from Locality Fy(G+G’,0+0,) =x. Thus, when
we proportionally comblne v’ into v and then w’ into w we obtam graph (G”,6,) =
({0, 14,0}, [(8, ), (v, ), (v, w)), ([, + p - x,0,0],[p/(1 + p),y - p/(1 + p), 2 — y]. Observe
that graph (G + G’,6 + 6,) is semi-out-regular. Thus, from Lemma 62 we get that

E,(G",6}) = F,/(G',0,)+F,(G,0) = (1+p)-x. (5.28)

In what follows, we will show that there exists p € R, such that graph (G”,6,))
can be obtained also in another way. To this end, let us consider yet another graph
(G1,6") = (0. v, 1w} {(v,2)), (v, w)(V, 1), (@ w))), ([%,0,0,01,[3, 2 - ,9,2 = y])). See
Fig. 5.12 for an illustration. Observe that v’ is not a successor of itself in G*. Hence,
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Figure 5.12: Graphs considered in the first part of the proof of Lemma 67.

if we remove node u and edges (v’, u), (v, w) from graph G*, then, by Edge Deletion
and Locality, the centrality of v’ will not change. What remains is a graph from
Definition 8. Thus, F,/(G*,0%) = pr(x,v,2). To get a particular value of pr(x,y,2), let
us consider two cases depending on an axiom that centrality F satisfies: (I) Edge
Multiplication or (II) Edge Compensation.

(I) If centrality F satisfies Edge Multiplication, then from Lemma 67 we obtain
that F, (G*,0%) = ap - x - y/z. Let us denote the constant ar - y/z as p (then we have
that simply F,(G*,0%) = p-x). From Lemma 63 we get F,(G",0") = x = F,(G,0).
Therefore, when in graph (G*,0%) we proportionally combine node v’ into node
v, we obtain graph G” once again, but now with possibly different weights, i.e,
(G7,0”) = ((fv, 1, w), {(v,v), (v, 1), (v, w)}), ([x,0, 0], [v/(1+ ), y-p/(1+p), 2=])). More-
over, from Lemma 62 we get that

F,(G”,0”)=F,(G",0")+ F,,(G",6") = (1+p) - x.

Thus, by Eq. (5.28), if we take p = p, we get F,(G”,0”) = F,(G”,05). Observe also
that edge weights in both 6” and 6 are the same. This means that (G”,6”) and
(G”,05) are two graphs with the same nodes, edges, and edge weights, and in both
graphs only v has a positive node weight. By Lemma 65b, this means that the
proportion of the weights of v is equal to the proportion of its centralities in both
graphs. However, as we noted above the centrality of v is equal in (G”,0”) and
(G,05). Hence, the weight of v is also equal in both graphs and we get 6” = 6.
Now, looking at the weight of node v as defined in 6” and 6; we get x =b, +p - x.

Since we took p = ar - y/z = pp(x,v,2)/x, we get that
F,(G,0)=x=b,+pp(x,v,2),

which concludes this part of the proof. Observe that we also obtain that the cen-
trality of v is a linear function of its weight, i.e., F,(G,0) = b,/(1 —ag - y/z).

(IT) If F satisfies Edge Compensation instead of Edge Multiplication, then from
Lemma 68 we get that F,,(G”,0”) = ap -y - x. Also, if instead of p = ar - y/z we take
p = ar -y, then the proof follows analogously to the proof of case (I). Furthermore,
as in case (I), we obtain that the centrality of node v is a linear function of its
weight, i.e., F,(G,0) =b,/(1 —ag-p).

As aresult, from both cases (I) and (II) we can conclude that for every y,z € R,
such that z > y, there exists a constant cr , , such that for every b, € Rs, it holds
that

(5.29)

Fv(({vrw}; {(‘U,'V), (v,w)}), ([bw 0]’ [y,Z _y])) = bv : CF,y,z: if z> v
F,,(({v,w}, {(v,v)}), ([bw 0], [}1])) = bv “CEy,20 otherwise
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Figure 5.13: An illustration to the second part of the proof of Lemma 70 for an
example graph, (G, 0). The weights of outgoing edges of nodes v and v’ are shown.

(as noted at the beginning of the proof, if z = y, we consider a graph with only one
edge, (v,v), but the proof is the same).

In the remainder of the proof, let us consider an arbitrary semi-out-regular
graph (G,0) = ((V,E),(b,n)) and its arbitrary node v € V. If v does not have a
loop, then the thesis follows from Lemma 69. Hence, let assume otherwise, i.e.,
(v,v) € E. Let us denote y = u(v,v) and z = deg, (G,0). Now, let us consider graph
(G,0")=((V',E’),(b’, ') that is a modification of (G, 0) in which node v does not
have a loop but it has a new outgoing edge to a new node, w ¢ V, and the weight of
node v is increased by pr(F,(G,0),,z) (see Fig. 5.13 for an illustration). Formally,
let V' = VU{w}, E'! = E\{(v,v)}U{v,w}, and b’ = b + pp(F,(G,0),v,2) - 1, while
also y:(v,w) = p_(vp) and p'(v,w) = p(v,v). In this way, deg;(G’,0’) = deg; (G, 0) and
graph (G’,0’) is still semi-out-regular. Moreover, since (v,v) ¢ E’, from Lemma 69
we obtain that F,(G",0") = b'(v) + ¥ ,.cpi G\ PE(Fu(G", 0'), i (u,v), deg (G, 6)).

Observe that we have y'(u,v) = p(u,v) and deg/ (G’,0’) = deg! (G, 0), for every
u € P1(G)\ {v}. Also, b’(v) = b(v) + pr(F,(G,0),y,z). Hence, we get that

FU(G,JQ/):b(v)+pF(Fv(G16)fy'z)+ Z pF(Fu(G,!9,)'ﬂ(ulv)ldegZ(G16))-
ueP/} (G)\{v}
(5.30)
Thus, in what follows, through a series of graph operations, we will show that
F,(G,0)=F,(G,0’), for every u € V. Combined with the above equation this will
yield the thesis.

To this end, we parametrize both graphs (G, 0) and (G’,0’) by adding arbitrary
weights 7,5 € R, to node v in both of them, respectively. Formally, let us denote
(G,0,)=(G,(b+r-1,,pu))and (G’,0)) = (G, (b'+s-1,, u’)). To both of them we will add
a small two-node graph with which we will proportionally combine their nodes
in order to obtain the same graph (G*,6%) in both cases. We will start with graph
(G,0,). Let v’ ¢ V' and denote graph (GT,QrT) = (({v/, wh{(v/,w)}), ([F,(G,6,),0],[z])).
In the sum, (G+G',0, + QI), let us proportionally combine node v’ into v, i.e., let
(G*,07) = Cf,_w(G +Gl,0, + QI). Let us denote 0; = (b™, u"*). Observe that from
Locality we obtain that F,(G+ G0, + GI) =F,(G,6,) and from Lemma 63 we have
that F /(G + Glo, + G,T) =F,(G,0,) as well. This has two implications: first, since

(G+Gl0,+ 9;) is semi-out-regular, from Lemma 62 we get that

F,(G,6,), for every u e V\ {v},

(5.31)
2-F,(G,0,), foru=v;

Fu(G*: 6:) = {

second, this means that the weights of outgoing edges of v and v’ are divided by
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twoin graph (G, 6;), i.e, Iu;}(c) = pry(c)/2 and " (v, w) = z/2, and the weights of the
remaining edges are unchanged, yi};(c) = p_ty(G)- See Fig. 5.13 for an illustration.

Now, let us move to graph (G’,0;). Here, take node w’ ¢ V' U {v’} and con-
sider adding graph (G°,09) = (({v/,w’},{(v’,v'), (v, w")}),([b3,0],[v,z — v])), where
bs = F,(G,0;)/cE,y .- By Eq. (5.29), this gives us

F,(G°,0°) = E,(G,0)). (5.32)

In the sum of both graphs let us combine w’ into w and also v’ into v. Observe
that as a result we will again obtain graph G*, possibly with different weights.
Thus, let us denote (G*,01) = ij,_w(Ci,_)w(G'nL G°,0.+0?)). Denote 6F = (b°F, ut).
From Locality we have that F,(G"+ G°,0, + 67) = F,(G’,0)) and from Locality and
Eq. (5.32) we get that also F,,(G"+ G°,0] + 67) = F,(G',0;). Again, this has two
implications: first, from Lemma 62 we get that

F,(G',00) = {Fu(G', 0.), for every u € V'\ {v},

,05) = (5.33)
2-F,(G,0)), foru=uv;

second, as before, the weights of outgoing edges of v and v’ are divided by two,
ie, st}(c) = pry(6)/2 and pt(v,w) = z/2, and the weights of the remaining edges

are unchanged, ]/ls_)rp(G) = p_r}(c)- Hence, pst = ™, for every r,s € Ryg. Therefore,

the only possible difference between graphs (G*,0;) and (G',0/), for any r,s € Ry,
may be in the node weights. However, observe that for every r,s € R(, we have
b™(u) = b(u) = b*"(u), for every u € V' \ {v}, and also b™(w) = 0 = b*"(w). Thus, the
only difference can be in the weight of node v. In what follows, we will show that
in fact, for s = 0 and r = 0, it holds that b%(v) = b°T(v). To this end, let us assume
otherwise, i.e., that either (I) b%(v) > bt (v), or (II) b%(v) < bt (v).

(I) Assume that b%(v) > b7 (v). The weight b*T(v) is the sum of weights of v in
(G,0!) and v’ in (G°,02). Thus, bT(v) = b’(v)+s+b2 = b'(v)+s+F, (G, 0;)/cE,y,.- Also,
from Lemma 65 (a and b) we know that F,(G’,0)) = F,(G’,0’) +s- F,(G’,(1,, i')).
Both facts imply that b*'(v) is a linear function of s. Hence, there exists s > 0
such that b*"(v) = b%(v). Thus, for such an s it holds that (G*, 0;) = (G5, 0f). This
implies that F,(G", 0) = F, (G, 07). Hence, from Eq. (5.31) and Eq. (5.33) we get
that F,(G,0) = F,(G’,0)). Thus, looking again at node weights, we get that

b(v) + Fo(G, 0) = b%(v) = b (v) = b(v) + pp(Fy(G, 0),p,2) +5 + b°. (5.34)

From the first part of the proof we know that F, (G°,67) = pp(F,(G°,67),v,2) + bg.
From Eq. (5.32) we have that F,/(G°,607) = F,(G’,0;) = F,(G, 0). Therefore, we get
F,(G,0) =pp(F,(G,0),y,2)+bg. Subtracting this from Eq. (5.34) yields b(v) = b(v)+s,
which means that s = 0—a contradiction.

(II) Now, assume that b%(v) < b%*(v). Observe that b™*(v) = b(v) + r + F,(G, 6,).
Also, from Lemma 65 (a and b) we get that F,(G,0,) = F,(G,0) + - F,(G,(1,, p)).
Combining both facts, we get that b"*(v) is a linear function of r. Hence, there exists
r > 0 such that b (v) = b™(v). Thus, for such an r it holds that (G*,0?) = (G*, 63).
This implies that F,(G", 0;) = F,(G", 68) and, by Eq. (5.31) and Eq. (5.33), also that
F,(G,0,)=F,(G’,0)). Thus, looking again at the node weights, we get

b(v)+r+F,(G,0,)=b"w)=b""v)=b(v) +pr(Fy(G,0),9,2) + by. (5.35)

From the first part of the proof we know that F,(G°,0;) = pr(F,/(G®,0;),v,2) + bg.
From Eq. (5.32) we have that F,(G°,03) = F,(G’,0)) = F,(G,0,). Therefore, we
obtain F, (G, 0,) = pr(F,(G, 0,),v,z) + by. Subtracting this from Eq. (5.35) yields

r:pF(Fv(G;Q)fny)_pP(Pv(Gfer)’ny)~ (5-36)
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Recall that from Lemma 65 (a and b) we have F,(G,0,) = F,(G,0)+1-F,(G,(1,, p)).
Since r > 0, by Lemma 64, this means that F,,(G, 0,) > F,(G, 0). Hence, by Lemma 67
or 68 (depending on satisfied axiom), also pr(F,(G,6,),v,z) > pp(F,(G,0),v,z). Thus,
pr(Fy(G,0),v,2) - pr(F,(G,0,),v,2) <0, which contradicts Eq. (5.36)

Therefore, indeed, it holds that bo*(v) = b0+(v). As a result, it also holds that
(G*,05) = (G*,0}). This implies that F,(G*,0;) = F,(G*,0}) for every u € V. Thus,
by Eq. (5.31) and Eq. (5.33), we obtain that F,(G,0) = F,(G’,0’), for every u € V,
which yields the thesis by Eq. (5.30). O]

Now we are ready to move to the final part of the proof. Having established
that centrality measure F satisfies recursive equation, we will prove that it is equal
to PageRank or Katz centrality, depending on the axiom satisfied. Let us first focus
on PageRank. We begin by considering semi-out-regular graphs only.

Lemma 71. If a centrality measure, F, defined on G satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Baseline then for every graph G = (V,E)
and weights 6 = (b, p) such that (G, 0) is semi-out-regular, it holds that

F,(G,0) = PRy (G,0), foreveryveV.

Proof. From Lemma 67 and Lemma 70 we get that for every semi-out-regular
graph (G,0) = ((V,E),(b,u)) € G and node v € V, we have

p(u,v)

RGO)=bW)+ ) ap s

ueP}(G)

-F,(G,0).

Hence, centrality F satisfies PageRank recursive equation (Eq. (2.5)) with decay
parameter ap. The system of such equations has a unique solution, therefore
F,(G,0) = PRy (G, 0), for every semi-out-regular graph (G,0) and nodeve V. [

Now, let us relax the assumption that the graph has to be semi-out-regular.

Lemma 72. If a centrality measure, F, defined on G satisfies Locality, Edge Deletion,
Node Combination, Edge Multiplication, and Baseline then for every graph G = (V,E)
and weights 0 = (b, p), it holds that

F,(G,0) = PRy (G,0), foreveryveV.

Proof. Take an arbitrary (G,0) = ((V,E), (b, u)) and divide the weight of each edge
by the out-degree of its start, i.e., let 6" = (b, '), where p/(u,v) = u(u,v)/deg; (G, 0),
for every (u,v) € E. From Edge Multiplication we have that F,(G’,0) = F,(G, 0), for
every v € V. Observe that (G,0)’ is semi-out-regular. Thus, from Lemma 71 we
know that F,(G,8’) = PR} (G,0’), for every v € V. Since PageRank also satisfies
Edge Multiplication (Lemma 59), we get that F,(G,0) = PR, (G, 6). O

Now, let us prove analogous results for Katz centrality. As before, we begin
with the assumption that the graph is semi-out-regular.

Lemma 73. If a centrality measure, F, defined on GK\*) satisfies Locality, Edge Deletion,
Node Combination, Edge Compensation, and Baseline then for every graph G = (V,E)
and weight 6 = (b, p) such that graph (G, 0) is semi-out-regular and (G,0) € gK@ it
holds that

F,(G,0)=K,"(G,0), foreveryveV.
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Proof. From Lemma 68 and Lemma 70 we obtain that for every semi-out-regular
graph (G,0) = ((V,E), (b, u)) € K@ and every v € V, we have

F,(G,0)=b(v)+ Z ar - u(u,v) - F, (G, 0).
ueP}(G)

This means that centrality F satisfies Katz recursive equation (Eq. (2.3)) with decay
parameter ar. Since the system of Katz recursive equations has a unique solution,
we obtain that F,(G,0) = K,7(G,8), for every semi-out-regular graph (G,0) and
nodeveV. O

Now, once again, let us relax the assumption that the graph has to be semi-out-
regular.

Lemma 74. If a centrality measure, F, defined on GK¥ satisfies Locality, Edge Deletion,
Node Combination, Edge Compensation, and Baseline, then for every graph G = (V,E)
and weights 6 = (b, p) such that (G,0) € GK@) it holds that

F,(G,0) =K, (G,0), foreveryveV.

Proof. We will say that node v € V that does not have any outgoing edges and has
exactly one incoming edge is a leaf. Let VI(G) = {v € V : T (G) = O AL, (G)| = 1}
be the set of all leafs in graph G. The parent of leaf v is a node, p(v), that has an
outgoing edge to v, i.e., (p(v),v) € E. We will denote the set of all parents of leafs
by VP(G) = {p(v) : v € VL(G)}. For every parent, u € V"(G), let us arbitrarily choose
one of its leafs and denote it by /(1) and also let us denote the set of these chosen
leafs by VL(G) = {I(u) : u € VP(G)). Moreover, let us denote the set of all sinks in G
as V5(G). Note that VL(G) € V5(G).

Our goal is to transform an arbitrary graph into a semi-out-regular one. Intu-
itively, the out-degree of nodes that are parents of leafs can be arbitrarily increased
by multiplying the weight of the incoming edge of the corresponding leaf. By Edge
Compensation, such an operation changes only the centrality of the leaf, but does
not change the centrality of other nodes. Hence, if all the nodes are either sinks or
parents of leafs, we are able to easily transform the graph into a semi-out-regular
one. Therefore, the main obstacle are the nodes that are neither sinks nor parents
of leafs. We will call such nodes ordinary and denote the set of all ordinary nodes
in G by VO(G) = V \ (V5(G) U VP(G)). We will prove the thesis by induction on
their number, i.e., |VO(G)|.

If [VO(G)| = 0, then each node is either a sink or a parent of a leaf, i.e., we have
VS(G)U VP(G) = V. If VP(G) = 0, then the graph consists only of isolated nodes,
which means it is semi-out-regular. Thus, the thesis follows from Lemma 73. As-
sume otherwise, i.e., that VP(G) # (. Let us denote the maximal out-degree of all
nodes by x = max,cy deg}(G,0) (since V/(G) = 0, we know that x > 0). In order to
transform graph (G, 0) into a semi-out-regular graph, we will scale the weights of
edges from parents to leafs in such a way that all parents have out-degree x. More
in detail, for every v € V(G) such that deg/(G,0) < x, let us consider one of its
leafs, I(v), and multiply the weights of I(v) and edge (v,/(v)) by a constant such
that the new weight of (v,1(v)) is equal to x—(deg} (G, 0) — u(v,1(v))). In this way, in
the new graph, (G,0’), node v will have out-degree equal to x. See Fig. 5.14 for an
illustration. Formally, let 8" = (b’, y’) where

x —(deg,,(,)(G,0) - p(p(v),v))
pp(v),v)

b'(v) =b(v)- , for every v e VL(G)
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(G,0) (G,0)

Figure 5.14: An illustration to the basis of the induction in the proof of Lemma 74.
In an example graph, (G, 0), all nodes are either leafs, like u’,v’, and w’, or parents
of leafs, like u,v, and w. Multiplying the weights of edges between leafs and their
parents we can obtain a semi-out-regular graph, (G, 8’).

and b’(v) = b(v), for every v € V \ VI(G), while for every edge (u,v) € E, we set
#(u,v) =x—(deg(G,0)—p(u,v)),if v =1(u), and p'(u,v) = p(u,v), otherwise. From
Edge Compensation we know that

. x—deg;m(G,Q) ~L
F,(G,0)= F(G,0) (1+ wpway ) foreveryv e VH(G),

(5.37)
F,(G,90), for every v € V' \ VL(G).

Observe that in graph (G, 0’) every node is either a sink and does not have any out-

going edges, or its out-degree is equal to x. Thus, graph (G, 8’) is semi-out-regular.

Hence, from Lemma 73 we know that F,(G,0’) = K," (G, 6’). Since Katz centrality

satisfies Edge Compensation (Lemma 60), we get the thesis from Eq. (5.37).

Let us move to the case in which |[V?(G)| > 0. Then, let us take node v € VO(G)
such that the number of its successors that are ordinary and different from v, i.e.,
1S,(G) N VO(G) \ {v}|, is minimal. Observe that for every successor of v, i.e., node
u € S,(G), we have that S,,(G) € S,(G). We can prove that this implies that if u is
ordinary, then S,(G) = S,(G). For assume otherwise, i.e., that u is ordinary and
$,.(G) € S,(G). This means that |S,(G)NVO(G)\{u}| <|S,(G)NVO(G)\ {v}], because
on the right hand side we count each node that we count on the left hand side
and also node u. However, we assumed that for v the number of its successors
that are ordinary and different from v is minimal—a contradiction. As a result,
we obtain two cases: the first one (I) in which v ¢ S,(G) and there are no ordinary
successors of v, i.e., S,(G)N VO = 0; and the second one (II) in which v € S,(G) and
all ordinary successors of v belong to the same strongly connected component as
v, i.e., for every u,w € S,(G) N VO we have u € S,,(G) N P,(G).

(I) Let us begin with the case in which v ¢ S,(G) and all successors of v are
either sinks or parents of some leafs, i.e., S,(G) € V°(G) U VP(G). In what follows,
we prove that F,(G,0) = K,"(G,0), for every u € V, by transforming (G,6) to a
graph with smaller |VO(G)| and using the inductive assumption. To this end, we
follow two steps. First, we increase the out-degrees of v and some successors of
v so that all successors of v are sinks or have equal out-degree to v (if v does not
have successors that are not sinks we omit this step). Second, using Lemma 61 we
add a leaf to node v to decrease |V °(G)|. See Fig. 5.15 for an illustration.

Denote the maximal out-degree of a successor of v by x = max,cs (g deg/ (G).
If x > 0, then in the same way as in case of |[VO(G)| = 0, we increase the weight of
each edge from a parent to a leaf in S,(G) so that all successors of v that are not
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Figure 5.15: An illustration to the case (I) in the proof of Lemma 74. In an example
graph, (G, 0), all of the successors of node v are either leafs or parents of leafs.
Graph (G, 0”) is obtained from (G, 0) by multiplying the weights of edges from
parents to leafs in such a way that the out-degree of each parent is equal to x = 3.
Also, the weights of the incoming and outgoing edges of v are scaled. In graph
(G*,0%) a leaf is added to node v.

sinks have out-degree x. Formally, let 8" = (b’, 4’), where

+
) = bl - B OV P ) L vins )
p(p(u), u))
and b’(u) = b(u), otherwise. As for edge weights, for every edge (u,w) € E, we set
1 (u,w) = x—deg’(G,0)+p(u,w), if w e VENS,(G), and p'(u,v) = p(u,v), otherwise.
From Edge Compensation we know that

~deg’ /(G0 .
FM(G,G)-(lJr%), for every u € VENS,(G),

F,(G0') = N
! F,(G,0), for every u € V\ (VN S,(G)).

(5.38)

Next, let us multiply the weights of the outgoing edges of v by x/deg (G, 6’)
and divide its weight and the weights of its incoming edges by x/deg (G, 6’). For-
mally, let 6” = (b”, ") where b”(v) = b’(v)-deg? (G,0’)/x and b”(u) = b’(u), for every
u € V\{v}, while u”(e) = y'(e)-deg, (G, 0")/x, if e € T; (G), u”(e) = p(e)-x/deg} (G, 0’),
if e e I/ (G), and p”(e) = p'(e), otherwise. Again, from Edge Compensation we get
that

F.(G,0”) = F,(G,0), for every u e V\ {v}, (5.39)
e PV(G,Q’)-w foru=v. .
Observe that incoming edges of v does not come from successors of v, because

v ¢ S,(G).

So far, we considered a case in which x > 0. If x = 0, this means that all of the
successors of v are sinks. In such a case we can simply set 0" = 6.

Now, observe that in (G,0”) all successors of v that are not sinks have the
same out-degree, which is also equal the out-degree of v, i.e., deg}(G,0”) = x =
deg’(G,0”), for every u € §,(G) N VP, We will use this fact to add a leaf to node v
using Lemma 61.

To this end, let us consider nodes u’,v’ ¢ V and add to graph G” a simple
graph that consists of nodes #” and v’ connected by an edge. Formally, consider
graph (G +G'1,0” + "), where (G1,07) = ({/,v')}, {(v/, )}), ([1,1],[x])). Now, let us
combine node v’ into v, i.e., let (G*,0%) = Cf,_w(G +G1,0” +6"). From Lemma 63

we get that F,(G1,07)=1. Hence, from Lemma 61 and Locality we get that

F,(G,0”), for every u € V \ {v},

(5.40)
F,(G,0”7)+1, foru=v.

F,(G",0%) = {
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Figure 5.16: An illustration to the first part of the case (II) in the proof of
Lemma 74. All edges have weights equal to 1. In an example graph, (G, 6), nodes
v, u, and w constitute a strongly connected component, U. Nodes [,p, and s are
the successors of v that do not belong to this component and all of them are either
sinks or parents of leafs. Graph (G°,0°) is a strongly connected graph constructed
from the nodes in U and their direct successors. The maximal out-degree of a suc-
cessor of v that is not in U, i.e., x, is equal to 1. Thus, loops around nodes p and s
have weight 1. Graph (G, 0) is an opposite graph to (G°,0°). Eigenvector centrality
of every node in this graph is shown next to the node. Note that A = 2.

On the other hand, in graph (G*, 6%) node v is not ordinary anymore and no ordi-
nary node was added. Thus, by the inductive assumption, F,(G*,6*) = K,/ (G*,0"),
for every u € V. Since Katz centrality also satisfies our axioms (Lemma 60), from
Egs. (5.38)—(5.40) we obtain that F,,(G,0) = K;* (G, 0), for every u € V.

(IT) Now, let us move to the second case in which v € S,(G) and all ordinary
successors of v belong to the same strongly connected component, i.e., for every
u,we S,(G)N VO(G) we have u € S,,(G) N P,(G). Let us denote the set of all the
nodes in this strongly connected components by U = S,(G) N P,(G). Also, let us
denote the set of their outgoing edges by EV = {(u,w) € E : u € U} and by U*
the ends of edges from EY that are not in U, i.e., let U* = {w : (u,w) € EY}\ U.
Finally, let us denote the maximal out-degree of a successor of v that is not in U
by x = max,es (G)\v deg, (G) (if S,(G) \ U =0, let x = 0). In what follows, we prove
that F,,(G,0) = K;(G,0), for every u € V, by transforming (G, 6) to a graph with
smaller |V9(G)| and using the inductive assumption. To this end, we follow three
steps. First, we modify the weights of edges EV to make out-degrees of nodes in
U equal A. Second, we increase the out-degrees of some successors of v so that all
successors of v are sinks or have their out-degrees equal to A (if v does not have
successors that are not sinks and are not in U we omit this step). Finally, using
Lemma 61 we add a leaf to node v to decrease |V°(G)|.

First, let us consider an auxiliary graph in which all the nodes except for those
in U and U™ are removed. Formally, let G* = (U U U*,EY) and 0" = (byyy-, pgv).
Observe that since all outgoing edges of U remains, nodes in U in graph G* still
constitute a strongly connected component. In order to make the whole graph
strongly connected, let us add outgoing edges to the nodes in U*. More in detail,
for each s € U™ let us add edge (s,s) with weight max(x,1) and edge (s,v) with
weight 1. See Fig. 5.16 for an illustration. Formally, let E* = {(s,s),(s,v) : s € U*}
and let G° = (V°,E®), where V° = UU U™, E° = EV UE*, and 0° = (b°, u°), where
b° = byyy+, p°(s,s) = max(x, 1), and p°(s,v) = 1, for every s € U", and p}, = ppu.
Observe that G° is indeed strongly connected.

Since G° is strongly connected, we can make it out-regular using the same tech-
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Figure 5.17: An illustration to the second part of the case (II) in the proof of
Lemma 74. Graph (G,0’) is obtained from graph (G, 0) from Fig. 5.16 by taking
eigenvector centrality of each node in graph (G, 0) and dividing by it the weight of
its outgoing edges and multiplying by it its weight and the weights of its incoming
edges. Graph (G,0”) is obtained from (G, 68’) by multiplying the weights of edges
from parents to leafs so that the out-degrees of parents are equal to 2. In graph
(G*,0%) a leaf is added to node v.

nique that we used in Lemma 58. Formally, let us consider the opposite graph to
(G°,0°), i.e., graph (G,0) = (V°,E), (b°, i) such that E = {(u,w) : (w,u) € E°} and
ji(u,w) = p(w,u), for every (w,u) € E°. Now, in graph (G,0) let us multiply the
weights of the outgoing edges of node u € V° by EV,,(G, 0) and divide the weights
of its incoming edges as well as its own weight by EV, (G, 0). Because eigenvec-
tor centrality satisfies Edge Compensation, we know that in this way eigenvector
centralities of the remaining nodes in V° do not change and eigenvector centrality
of u becomes 1. If we proceed with this operation for all nodes in V° we obtain
graph (G’,0’) in which all nodes have eigenvector centralities equal to 1. For-
mally, let (G,6") = (V°,E),(V’, ii’)) where b’(u) = b°(u)/EV,,(G, 0), for every u € V°,
and ji’(u,w) = fi(u,w) - EV,(G,0)/EV,(G,0). Observe that if all the nodes in graph
(G’,0’) have equal eigenvector centrality, then, from eigenvector centrality recur-
sive equation (Eq. (2.2)), we get that the in-degrees of all the nodes are equal, i.e.,
there exist A such that deg (G’,0’) = A, for every u € V. Moreover, observe that for
every s € U" we have that ji'(s,s) = ji(s,s)-EV,(G,0)/EV,(G,0) = u°(s,s) = max(x, 1).
Thus, A > max(x, 1).

Now, let us perform this operation on the original graph G, instead of G°, to
obtain equal out-degrees of nodes in U (see Fig. 5.17). At the same time, we want
to make sure that we will not increase out-degrees of the nodes in U™ too much (as
we cannot decrease their out-degree using leafs, only increase). To this end, let us
take an arbitrary constant, y € R.(, by which we will multiply the incoming edges
and divide outgoing edges of all the nodes in V°. Formally, let us define weights
0’ = (b, i) in which b’(u) = b(u)- EV,(G,0) -, for every u € V°, and b’(u) = b(u),
foreveryu e V\ V°, and

u(u,w)-EV,(G,0)/EV,(G,0), forevery u,we Ve,
(1t w) = y(u,w)/(EVu((:},Q:) ‘), foreveryue Ve, we Ve,

u(u,w)-EV,(G,0)-v, foreveryu g Ve, we Ve,

ulu,w), for every u,w ¢ V°.

Observe that for every (u,w) € EY, we have W (u,w) = fi’(w,u). Thus, indeed,
deg’(G’,0’) =deg(G’,0’) = A > x, for every u € U. Furthermore, from Edge Com-
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pensation we have that

F,(G,0)- EVM(G,é)-y, for every u e V°,

(5.41)
F,(G,0), foreveryu e V\ V°.

F,(G,0) :{

Observe that since for every node u € U™, the outgoing edges of u go to nodes
outside of V°, we have that deg’(G,0’) = deg!(G,60)/(EV,(G,6)-y). Thus, let us
take such p that the maximal out-degree of node in U™ is equal to max(x,1), i.e.,
let y = max(x, 1) - max,cy-(deg’(G,0)/EV,(G,0)). Then, all the successors of v in
graph (G, 0’) have out-degrees equal to at most max(x, 1). Moreover, those that are
in a strongly connected component, i.e., nodes in U, have the out-degrees equal to
A > max(x,1), and those that are not, i.e., nodes in S,(G) \ U, are either sinks or
parents of leafs and have the out-degrees equal to at most x. If x > 0, i.e., there
are nodes in S,(G) \ U that are not sinks, then let us increase the out-degrees of
parents of leafs in S,(G) \ U to A by changing the weights of their edges going to a
leaf. Formally, let 8” = (b”, "), where

A- (deg;(u)(G, 0') - ' (p(u),u))
w(p(u),u)

b’ (u)=b"(u)- , ifueVins,(G),
and b”(u) = b’(u), otherwise. For every (u,w) € E, let p”(u,w) = A —deg!(G,0’) +
w(u,w), if we VENS,(G), and u”(u,v) = ' (u,v), otherwise. From Edge Compen-
sation we know that
A—deg? (G0 N
E,(G,0") = F,(G,0)- (1 + H,é+)(’u))), for every u € VEN S, (G), (5.42)
F,(G,0), for every u € V \ (VLN S,(G)).

If x =0, i.e., all successors of v that are not in U are sinks, then let simply 6” = 6’.
Observe that in (G,0”) all successors of v are either sinks or have out-degree A.
Hence, we will use Lemma 61 to add a leaf to v in a similar way to how we did
it in case (I). Let us consider nodes u’,v’ ¢ V and add a simple two-node graph to
(G,0”),i.e., consider (G+G1,0”7+01), where (GT,07) = ({/, v}, {(v", u’)}), ([1,1], [x])).
Now, let us combine node v’ into v, i.e., let (G*,0%) = Cf,_W(G + GT,Q + QT). From
Lemma 63 we get that F,,(G',87) = 1. Hence, from Lemma 61 and Locality we get
that
F,(G,0”), for every u € V'\ {v},

(5.43)
F,(G,0”)+1, foru=v.

F,(G",0%) = {
On the other hand, in graph G* node v is not ordinary anymore and no ordinary
node was added. Thus, by the inductive assumption, F,(G*,0%) = K, (G*,0%),
for every u € V. Since Katz centrality satisfies our axioms (Lemma 60), from
Egs. (5.41)—(5.43) we get that F,,(G,0) = K;; (G, 0), for every u € V. O
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