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Abstract

The main object of study of this thesis is a class of multigraded Hilbert schemes. Given a
smooth projective toric variety X with the Cox ring S[X] we consider the Hilbert function of r
points on X in general position, i.e. hr,X : Pic(X)→ N given by

hr,X([D]) = min{dimC Γ(X,OX(D)), r}.

The multigraded Hilbert scheme Hilb
hr,X
S[X] associated with S[X] and hr,X has a distinguished

irreducible component Slipr,X which is the closure of the locus of points corresponding to radical
ideals that are saturated. The aim of this dissertation is to find necessary or sufficient conditions
for a point of Hilb

hr,X
S[X] to belong to Slipr,X . This problem is motivated by the border apolarity

lemma established by Buczyńska and Buczyński.
Our main focus is on the case X = Pn. We present three necessary conditions for [I] ∈

Hilb
hr,Pn

S[Pn] to be in Slipr,Pn . The first of them is obtained by bounding the degrees of minimal

generators of saturated ideals J ⊆ S[Pn] such that [J ] ∈ Hilb
hr,Pn

S[Pn]. The second criterion is
based on the computation of the Hilbert polynomial of a power of a radical ideal J such that
[J ] ∈ Hilb

hr,Pn

S[Pn] and establishing the bound on the degree from which it agrees with the Hilbert
function. The proof of the third necessary condition uses deformation theory and flag multigraded
Hilbert schemes. We also present a sufficient condition for [I] ∈ Hilb

hr,P2

S[P2]
to be in Slipr,P2 .

We consider a morphism with connected fibers f : X → Y between smooth projective toric
varieties. We obtain a necessary condition for [I] ∈ Hilb

hr,X
S[X] to be in Slipr,X . Namely, we show

that there is a natural morphism Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] and that it maps Slipr,X onto Slipr,Y .

We also prove another necessary condition in the cases that X is a product of k ≥ 2 projective
spaces.

We illustrate the criteria with examples. In particular, we describe all ideals which correspond
to points of Slipr,P2 for r ≤ 6. Furthermore, we apply our techniques to obtain some results on
wild polynomials.

Keywords: multigraded Hilbert schemes, saturated ideals of points, smooth projective toric
varieties, secant varieties, border rank.

AMS MSC 2020 classification: 14C05, 14M25, 14N07.



Streszczenie

Głównym obiektem badań niniejszej rozprawy jest klasa schematów Hilberta z wielogradacją.
Dla gładkiej rzutowej rozmaitości torycznej X z pierścieniem Coxa S[X], rozważamy funkcję
Hilberta r punktów w położeniu ogólnym na X, tzn. hr,X : Pic(X)→ N zadaną przez

hr,X([D]) = min{dimC Γ(X,OX(D)), r}.

Schemat Hilberta z wielogradacją Hilb
hr,X
S[X] stowarzyszony z S[X] i hr,X ma wyróżnioną skła-

dową nieprzywiedlną Slipr,X , która jest domknięciem zbioru punktów odpowiadających ideałom
radykalnym i nasyconym. Celem tej rozprawy jest znalezienie kryteriów koniecznych lub wystar-
czających do tego by punkt Hilb

hr,X
S[X] należał do Slipr,X . Motywacja do badania tego problemu

pochodzi z lematu o brzegowej abiegunowości udowodnionego przez Buczyńską i Buczyńskiego.
Główny nacisk kładziemy na przypadek X = Pn. Prezentujemy trzy warunki wystarczające

do tego by punkt [I] ∈ Hilb
hr,Pn

S[Pn] należał do Slipr,Pn . Pierwszy z nich jest uzyskany poprzez
ograniczenie stopni minimalnych generatorów ideałów nasyconych J ⊆ S[Pn] takich, że [J ] ∈
Hilb

hr,Pn

S[Pn]. Drugie kryterium bazuje na obliczeniu wielomianu Hilberta potęgi ideału radykalnego

J takiego, że [J ] ∈ Hilb
hr,Pn

S[Pn] oraz uzyskaniu ograniczenia na stopień od którego zgadza się
on z funkcją Hilberta. Dowód trzeciego kryterium wykorzystuje teorię deformacji i flagowe
schematy Hilberta z wielogradacją. Prezentujemy również warunek wystarczający do tego aby
[I] ∈ Hilb

hr,P2

S[P2]
należał do Slipr,P2 .

Rozważamy morfizm o spójnych włóknach f : X → Y pomiędzy gładkimi rzutowymi ro-
zmaitościami torycznymi. Uzyskujemy warunek konieczny do tego aby [I] ∈ Hilb

hr,X
S[X] należał

do Slipr,X . Mianowicie pokazujemy, że istnieje naturalny morfizm Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ], który

odzworowuje Slipr,X na Slipr,Y . Dowodzimy również innego warunku koniecznego w przypadku
gdy X jest produktem k ≥ 2 przestrzeni rzutowych.

Kryteria ilustrujemy przykładami. W szczególności, opisujemy wszystkie ideały, które odpo-
wiadają punktom Slipr,P2 dla r ≤ 6. Co więcej, wykorzystujemy nasze metody do uzyskania
pewnych wyników o dzikich wielomianach.

Słowa kluczowe: schematy Hilberta z wielogradacją, nasycone ideały punktów, gładkie
rzutowe rozmaitości toryczne, rozmaitości siecznych, ranga brzegowa.
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Chapter 1

Introduction

In real life, it is often the case, that certain objects naturally appear together but from human
perspective one of them is more interesting than other ones. Typical examples include fruits and
their peels and seeds (people care less about the peel and the seeds than the rest of the fruit).
In such situations, a need arises to separate the part that we care about from the part that is
redundant or less attractive from our point of view. In many cases the distinction is pretty clear.
However, there are also more subtle examples. One of them is the farmland. Here the crops
and the weeds grow together and distinguishing between them requires both more attention and
certain knowledge.

The main topic of this thesis is about

identifying the "good" inside the set of "all"

in the setting that will be described below.
Problems of similar nature appear commonly in mathematics. For a basic example, consider

a finite dimensional real vector space V , the set EndR(V ) of all linear endomorphisms of V and
its subset AutR(V ) consisting of invertible maps. Given an element ϕ ∈ EndR(V ) we can check
whether it belongs to AutR(V ) by computing its determinant.

Another easy to state problem is provided by univariate polynomials with real coefficients. We
might be interested in understanding which of them have a real root. There is an easy sufficient
condition. Namely, if the degree of the polynomial is odd, then it has a real root. However, there
are also more subtle criteria like Sturm’s theorem [57, §5.2] which gives the number of distinct
real roots of a given polynomial in a given interval.

The main motivational example for this thesis in the realm of algebraic geometry is the Hilbert
scheme of r points in the projective n-space over the complex numbers C. Before explaining this
example in more detail, we outline the main results about the Hilbert schemes concentrating on
Hilbert schemes of points. The Hilbert scheme Hilb(Pn) is a scheme parametrizing all closed
subschemes of Pn. It was constructed by Grothendieck [43]. It has a decomposition into the
disjoint unionHilb(Pn) =

∐
P HilbP (Pn) where P is the Hilbert polynomial of a closed subscheme

of Pn and HilbP (Pn) parametrizes all closed subschemes of Pn with Hilbert polynomial P . More
generally, one may consider Hilb(X) or HilbP (X) for a projective scheme X ⊆ PN over C. In
1966 Hartshorne [46] proved that HilbP (Pn) is connected for every Hilbert polynomial P . If the
Hilbert polynomial P is constant and equal to r for some positive integer r, we write Hilbr(Pn)

instead of HilbP (Pn). In 1968 Fogarty [35] showed that Hilbr(X) is smooth and irreducible if X
is an irreducible smooth surface. On the other hand, Hilbr(Pn) is reducible for n ≥ 3 and r � 0.
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This was established by Iarrobino [53] in 1972. The question, whether Hilb(X) is reduced was
also addressed. Mumford [68] showed in 1962 that HilbP (P3) is not reduced for P a polynomial
of degree 1. Jelisiejew [60] showed in 2020 that Hilbr(Pn) is in general non-reduced.

We return to the description of our main motivational example of identifying "good" from
"all". For fixed positive integers r, n, the closure of the locus of points ofHilbr(Pn) corresponding
to r-tuples of points in Pn is an irreducible component of Hilbr(Pn). We call this component
the smoothable component and we denote it by Hilbsmr (Pn). By the above-mentioned result
of Iarrobino, in general, Hilbr(Pn) 6= Hilbsmr (Pn). Thus, if we care only about the set of r-
tuples of points of the projective space Pn together with their limits, we need to have methods
of identifying whether a given point of the Hilbert scheme Hilbr(Pn) belongs to Hilbsmr (Pn).
This problem was studied by Cartwright, Erman, Velasco and Viray [20]. Similar problem for
Gorenstein subschemes was considered by Casnati, Jelisiejew and Notari [21] and Jelisiejew [58].

In this thesis we concentrate on an analogous problem in the setting of multigraded Hilbert
schemes "of points in general position". Multigraded Hilbert schemes were introduced by Haiman
and Sturmfels [45] in 2004. Let S be a polynomial ring over C, graded by an abelian group A.
Given a numerical function h : A → N, there is a corresponding multigraded Hilbert scheme
HilbhS parametrizing homogeneous ideals I of S such that S/I has Hilbert function h.

It is important to emphasize, that even when S is a standard Z-graded polynomial ring and
h is the Hilbert function of a closed subscheme of a projective space, this leads to an object
different than the classical Hilbert scheme, which is specified by Hilbert polynomial. In the case
of multigraded Hilbert schemes we care about the Hilbert function in all degrees, while in the
case of the usual Hilbert scheme we are interested only in the Hilbert function in large degrees.

The concept of a multigraded Hilbert scheme is a common generalization of various notions
of Hilbert schemes:

1. Hilbr(An) - the Hilbert scheme of r-points in affine n-space;

2. HilbP (Pn) - the Hilbert scheme parametrizing closed subschemes of Pn with Hilbert poly-
nomial P ;

3. the so-called toric Hilbert schemes whose special cases where studied by Peeva and Still-
man [70].

We present some known results about general multigraded Hilbert schemes HilbhS . Maclagan
and Smith [64] showed in 2010 that if S is a polynomial ring in two variables, then HilbhS
is smooth and irreducible (for any grading of S in any abelian group A and for any Hilbert
function h : A → N). Beside this, little is known about general multigraded Hilbert scheme.
People usually study one of the three particular cases described above. It turns out that there
exists a non-connected toric Hilbert scheme. In 2005 Santos [75] gave such an example for a
polynomial ring in 26 variables graded by Z6. This is in sharp contrast with the Hartshorne’s
result [46] concerning HilbP (Pn).

It is worth comparing the above-mentioned facts about the Hilbert scheme Hilbr(Pn) with
the results on the multigraded Hilbert schemes. The Hilbert scheme Hilbr(Pn) is nicely-behaved,
i.e. smooth and irreducible, for n = 2 [35]. On the other hand, the multigraded Hilbert scheme
HilbhS is smooth and irreducible when the polynomial ring S has two variables which in some
sense corresponds to the case of the projective line. Similarly, Hilbr(P3) is in general reducible
[53], while HilbhS can already be reducible for a polynomial ring in three variables. In fact, the
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class of multigraded Hilbert schemes discussed in this thesis provides natural examples of such
behavior.

We introduce our main object of study in the case of projective space. Let n be a positive
integer and S = C[α0, . . . , αn] be the homogeneous coordinate ring of Pn. Let r be a positive
integer and hr,n : Z→ N be the Hilbert function of r-points in general position in Pn:

hr,n(a) = min{dimC Sa, r}.

Let Sipr,n denote the locus of points of Hilb
hr,n
S corresponding to radical ideals. Let Slipr,n be

the closure of Sipr,n in Hilb
hr,n
S . The subset Slipr,n is an irreducible component [13, Prop. 3.13].

Points of Hilb
hr,n
S that belong to Slipr,n are the "good" points inside the set of "all" points from

the scheme Hilb
hr,n
S . This is a consequence of the border apolarity lemma which we discuss below.

The main goal of this thesis is to establish sufficient and necessary conditions for a
closed point in Hilb

hr,n
S to be in the irreducible component Slipr,n.

We also consider analogous problem for a smooth projective toric variety X. We study the
multigraded Hilbert scheme associated with the Cox ring S[X] of X and the Hilbert function
hr,X : Pic(X)→ N of r-points in general position in X, i.e.

hr,X([D]) = min{dimC S[X][D], r}.

See Section 4.1 for relevant definitions. Again, there is a distinguished irreducible component
Slipr,X of Hilb

hr,X
S[X] that is the closure of the locus of radical ideals that are saturated with respect

to the irrelevant ideal of X. We want to find criteria that identify points in Hilb
hr,X
S[X] that belong

to Slipr,X .

Significance of the considered problem

It is necessary to explain how does the irreducible component Slipr,n fit into the above philosophy
of identifying "good" from "all". This is based on the border apolarity lemma introduced by
Buczyńska and Buczyński [13]. This result shows that there is a connection between border rank
of a homogeneous polynomial and the multigraded Hilbert scheme Hilb

hr,n
S . Our discussion here

is informal. The precise statement of the border apolarity, as well as the formal definitions of
the border rank and secant varieties appear in Chapter 2. Suppose that F is a homogeneous
polynomial of degree d in the polynomial ring S∗ = C[x0, . . . , xn]. We say that F has rank r if
r is the smallest integer such that F =

∑r
i=1 `

d
i for some linear forms `i ∈ S∗1 . We also consider

the border rank of F which is the smallest integer r such that [F ] ∈ PS∗d is in the closure of the
set of polynomials with rank at most r. Calculating the border rank of a given polynomial is a
classical problem in algebraic geometry and is strongly related to studies of secant varieties of
the Veronese variety. The border apolarity lemma says that F has border rank at most r for a
positive integer r if and only if there exists a point [I] ∈ Slipr,n such that I is apolar to F . Thus,

points from Slipr,n are the "good" points among "all" points of Hilb
hr,n
S

since they serve as witnesses of small border rank.

As a result, the more conditions (both sufficient and necessary) for a point in Hilb
hr,n
S to be in

the irreducible component Slipr,n we have at our disposal, the greater the scope of applicability
of the border apolarity lemma.
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One potential application of border apolarity is in studying homogeneous polynomials, called
wild polynomials, whose border rank is smaller than the smoothable rank (see Section 2.4 for
definitions of these ranks). These polynomials are known to exist (see [12] and [52]). They appear
naturally in the context of the border apolarity lemma. Indeed, by definition, it is precisely
for these polynomials that the apolarity for smoothable rank (depending on the smoothable
component Hilbsmr (Pn) of the Hilbert scheme Hilbr(Pn)) fails to compute the border rank. For
them, it is necessary to consider the multigraded Hilbert scheme Hilb

hr,n
S and its irreducible

component Slipr,n.
A crucial motivation for studying Slipr,X for more general toric varieties than Pn is the prob-

lem of computing the border rank of matrix multiplication tensors. This is a vitally important
problem for complexity theory, however it is very complicated. For instance the border rank of
matrix multiplication tensor for 3× 3 matrices is unknown. See [23] for recent progress on that
problem.

Structure of the thesis and main results

In Chapter 2 we present the relevant background from commutative algebra and scheme theory.
In particular, we formally define the multigraded Hilbert schemes by their functors of points.
We also study the flag multigraded Hilbert schemes and basic notions of deformation theory.

Chapter 3 contains the main results of the thesis in the case of projective space. We present
three necessary conditions for a point [I] ∈ Hilb

hr,n
S to be in the irreducible component Slipr,n.

Moreover, we prove a sufficient condition for a point [I] ∈ Hilb
hr,2
S to be in Slipr,2. We illustrate

these criteria with simple examples. Furthermore, we end the chapter with the complete descrip-
tion of points from Slipr,2 for r ≤ 6. The complexity of these examples is perhaps surprising,
especially in view of the fact that the usual Hilbert scheme Hilbr(P2) is smooth and irreducible.

We now summarize the main results presented in Chapter 3. We simplify the statements
of some of the more technical theorems by considering their special cases, or omitting some
parts of the conclusions. Given a polynomial ring S = C[α0, . . . , αn], we denote by m the ideal
(α0, . . . , αn).

Proposition 3.1 provides a necessary condition for [I] ∈ Hilb
hr,n
S to be in Slipr,n. It is based

on bounding from the above, the degree in which all saturated ideals corresponding to points of
Hilb

hr,n
S are generated.

Proposition 1.1 (Proposition 3.1). Let r, n be positive integers and I ⊆ S = C[α0, . . . , αn] be
a homogeneous ideal such that S/I has Hilbert function hr,n. Let e = min{a ∈ Z | hr,n(a) = r}
and d ≥ e+ 2. If dimC HomS

(
I + md, S/(I + md)

)
0
< rn, then [I] /∈ Slipr,n.

Theorem 3.5 shows that if [I] ∈ Slipr,n, then the Hilbert function of S/Ik for any positive
integer k is bounded from below by r ·dimC Sk−1 for large enough degrees (depending on k). This
result is obtained by calculating the Hilbert polynomials of powers of a radical ideal corresponding
to a point of Hilb

hr,n
S and establishing a bound from which they agree with the Hilbert functions.

Theorem 1.2 (Theorem 3.5). Let n, r ≥ 1 be integers and I ⊆ S = C[α0, . . . , αn] be a homo-
geneous ideal such that S/I has Hilbert function hr,n. Let e = min{a ∈ Z | hr,n(a) = r}. If
[I] ∈ Slipr,n, then HS/Ik(d) ≥ r ·dimC Sk−1 for every positive integer k and for every d ≥ ke+k.

Theorem 3.12 presents a sufficient condition for [I] ∈ Hilb
hr,2
S to be in the irreducible com-

ponent Slipr,2. We show that if the Hilbert function of S/(I : m∞) differs from hr,2 only in one
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degree, then [I] ∈ Slipr,2. The proof is obtained by showing that [I] belongs to an irreducible
subset of Hilb

hr,2
S which intersects Slipr,2 at a smooth point of Hilb

hr,2
S . Furthermore, we comment

why natural generalizations of this criterion for Pn with n > 2 fail.

Theorem 1.3 (Theorem 3.12). Let r be a positive integer and S = C[α0, α1, α2] be a polynomial
ring. Consider a closed point [I] of the multigraded Hilbert scheme Hilb

hr,2
S . If (I : m∞)d 6= Id

for a unique integer d, then [I] ∈ Slipr,2.

Theorem 3.40 is the most technically involved result in this thesis. It is stated in a general
setup in which the proof follows by a short argument using deformation theory. Then we discuss
some conditions which imply the assumptions of Theorem 3.40. Finally, we present two appli-
cations of this theorem, Theorems 3.65 and 3.74. These are the versions of the theorem that we
use in the rest of the thesis.

Theorem 1.4 (Theorem 3.40). Let r, n ≥ 1 be integers, S = C[α0, . . . , αn] be a polynomial
ring and [I] ∈ Hilb

hr,n
S be a closed point. Assume that I 6= (I : m∞) and let d be such that

Id 6= (I : m∞)d. Let J = md ∩ (I : m∞) and K = md ∩ I. Assume that the following conditions
hold:

1. the natural map HomS(J, S/J)0 → HomS(K,S/J)0 is surjective;

2. [J ] ∈ HilbhS is a smooth point where h is the Hilbert function of S/J ;

3. the natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective.

Then there is no [I ′] ∈ Slipr,n such that I ′≥d = I≥d. In particular, [I] /∈ Slipr,n.

As an application of Theorem 1.4 we obtain the following result.

Theorem 1.5 (Theorem 3.65). Let [I] ∈ Hilb
hr,n
S be a closed point corresponding to an ideal I

such that S/I has Hilbert function hr,1. Then there exists [I ′] ∈ Slipr,n such that I≥r−2 = I ′≥r−2

if and only if (I
2
)r−2 ⊆ Ir−2.

We end Chapter 3 with the complete set-theoretic description of Slipr,2 for r ≤ 6. To give some
insight into the complexity of this problem we present here a short discussion. For r ≤ 3, scheme
Hilb

hr,2
S is irreducible (see Propositions 3.36, 3.37 and 3.38). However, Corollary 3.78 shows that

Hilb
h4,2

S is reducible. In fact, it has two irreducible components. Here, the description of Slip4,2

follows easily from Theorem 3.65. In the next case, r = 5, the scheme Hilb
h5,2

S still has only two
irreducible components but the description of Slip5,2 obtained in Proposition 3.89 requires some
further observations. Finally, Hilb

h6,2

S has four irreducible components. We use all four criteria
mentioned above, to obtain the description of Slip6,2 (see Proposition 3.105). Still, the proof is
of significant complexity. Since there was no prior systematic study of the component Slipr,X , it
was not clear what to expect. By analogy to Fogarty’s result [35] on smoothness of Hilbr(P2),
we expected that Hilb

hr,P2

S[P2]
should not be too complicated. However, it seems that the proper

analogue is rather Hilbr(P3), where little is known about the smoothable component.
Chapter 4 is concerned with the case of a smooth, projective toric variety X. Here again, one

may consider the multigraded Hilbert scheme Hilb
hr,X
S[X] where S[X] is the Cox ring ofX and hr,X is

the Hilbert function of r points in general position onX. Again, there is an irreducible component
Slipr,X which is defined analogously to Slipr,n considered above. Theorem 4.15 describes a
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relation between Slipr,X and Slipr,Y where f : X → Y is a map of smooth projective toric varieties
such that f∗OX ∼= OY . The proof is based on the possibility of lifting f to a homomorphism of
Cox rings of X and Y . This is discussed in Subsection 4.1.3.

Theorem 1.6 (Theorem 4.15). Let f : X → Y be a morphism between smooth projective toric
varieties such that f∗OX ∼= OY . Let r be a positive integer and [I] ∈ Hilb

hr,X
S[X] be a closed point.

Let f#
: S[Y ]→ S[X] be a lift of f as in Definition 4.2. If [I] ∈ Slipr,X then

[(f
#

)−1(I)] ∈ Slipr,Y .

Theorem 4.25 presents another necessary condition for [I] ∈ Hilb
hr,X
S[X] to be in the irreducible

component Slipr,X , when X is a product of k ≥ 2 projective spaces. The proof of the theorem is
based on simple properties of Hilbert functions of saturated ideals of points in X.

Theorem 1.7 (Theorem 4.25). Let k ≥ 2 and n1, . . . , nk be positive integers. Let X = Pn1 ×
. . .× Pnk and for i ∈ {1, . . . , k} let B(Σi) ⊆ S[X] be the extension of the irrelevant ideal of Pni
under the natural inclusion S[Pni ]→ S[X]. If [I] ∈ Slipr,X for some positive integer r, then

dimC HomS[X]

(
I +B(Σi)

2, S[X]/
(
I +B(Σi)

2
))

0
≥ r(n1 + . . .+ nk)

for i ∈ {1, . . . , k}.

In Chapter 5 we present some applications of border apolarity lemma to secant varieties.
In Section 5.1 we study polynomials whose border rank is smaller than the smoothable rank
(see Section 2.4 for relevant definitions). This is in accordance with the initial motivation for
developing criteria for points of Hilb

hr,n
S to belong to the irreducible component Slipr,n.

Results from Sections 5.2, 5.3 and 5.4 are contained in [39]. They are about identifying (in
special cases) points in the cactus variety that are not in the secant variety. Here, we use the
border apolarity lemma without actually needing any insight into the irreducible component
Slipr,n. The problem of distinguishing the secant variety from the cactus variety is another
illustration of identifying "good" inside the set of "all". Secant varieties are classical objects of
study but their equations are in general unknown. Moreover, various classes of known equations
have been shown to actually vanish on a larger variety - the cactus variety. See [11], [38] and
[61, §10.2].

Open problems

We end this chapter with a short list of natural directions of further investigation.
Given a smooth projective toric varietyX and a positive integer r, we may divide closed points

of Hilb
hr,X
S[X] into four sets depending on whether [I] is in the closure of the locus of saturated ideals

and whether the subscheme of X defined by I is smoothable. Then, Slipr,X consists of points
that are in the closure of the locus of saturated ideals and that define smoothable subschemes.
However, the following natural problem remains open.

Problem 1.8. Is there a projective toric variety X and a positive integer r such that there exists
[I] ∈ Hilb

hr,X
S[X] \ Slipr,X which satisfies conditions:

1. [I] is in the closure of the locus of saturated ideals;
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2. the subscheme of X defined by I is smoothable?

If the answer to the above question is negative, this could allow us to split the problem
of describing Slipr,X into two. One of them, which has been studied longer, is describing the
smoothable component of the usual Hilbert scheme. The other problem would be studying the
closure of the locus of saturated ideals inside Hilb

hr,X
S[X].

Another problem is related to the geometry of Hilb
hr,Pn

S[Pn].

Problem 1.9. Is Hilb
hr,Pn

S[Pn] ever non-reduced?

We also want to discuss the criterion based on the flag condition for secant varieties [24,
Prop. 2.3]. It seems that a natural analogue for Slipr,X should hold. Namely, we expect that if
[I] ∈ Slipr,X then there is a flag of ideals Ir = I ⊆ Ir−1 ⊆ . . . ⊆ I0 = S such that [Ik] ∈ Slipk,X
for every k.

One natural question, especially in view of Problem 1.8 is the following.

Problem 1.10. Let X be a smooth projective toric variety and r be a positive integer. Assume
that [I] ∈ Hilb

hr,X
S[X] is in the closure of the locus of saturated ideals. Is there a flag of ideals

Ir = I ⊆ Ir−1 ⊆ . . . ⊆ I0 = S such that [Ik] ∈ Hilb
hr,X
S[X] is in the closure of the locus of saturated

ideals?

A final general problem that is worth studying is as follows.

Problem 1.11. Is there a homogeneous ideal in three variables whose border rank is strictly
smaller than the smoothable rank?

It is known that if F is such a polynomial then br(F ) > deg(F ) + 1 (see [11, Prop. 2.5]). We
show in Proposition 5.5 that br(F ) > deg(F ) + 2.

There are also some natural problems related more closely to our methods. They are less
general and thus, not as important. However, we would like to discuss them shortly.

Criterion from Theorem 1.4 is stated in a general version and we describe two situations
where its assumptions are fulfilled: Theorems 3.65 and 3.74. It seems that there might be more
general setups where Theorem 1.4 could be applied. We intend to investigate this in the future.

In a similar spirit, the description of Slip6,2 is quite lengthy and involved. It is a natural
question, whether the methods used there could be abstracted to work in more general situations.
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Chapter 2

Background material

In this chapter we collect some definitions and results that will be used in the rest of the thesis.
Section 2.1 deals with commutative algebra. Material from Subsections 2.1.1 and 2.1.2 is standard
but it was hard to find a reference for some of the results discussed there. We present the proofs
for the sake of completeness. Subsections 2.1.3, 2.1.4 and 2.1.5 contain some results that will
be used in Chapter 3. These subsections are based on [66]. In Subsection 2.2.1 we present
some general results related to scheme theory. Subsections 2.2.2 and 2.2.3 are concerned with
multigraded Hilbert schemes and Subsection 2.2.4 recalls the notion of a flag multigraded Hilbert
scheme. Section 2.3 deals with deformation theory. We present basic definitions and results that
will be used in the subsequent chapters. Section 2.4 is devoted to various notions of ranks and
related apolarity lemmas.

Notation

Throughout this chapter k is a fixed algebraically closed field. Unless stated otherwise, all
polynomial rings over k that we shall consider will have standard Z-grading. Therefore, Z-graded
modules over these rings will be simply called graded modules.

2.1 Commutative algebra

In this section we present some results from commutative algebra that will be needed for the
proofs of the main results.

In Subsection 2.1.1 we study locally free modules of finite rank since these appear in the
definition of the functor of points of a multigraded Hilbert scheme. Since these schemes are the
main object of our investigation we feel that it is appropriate to recall the notion explicitly.

Subsection 2.1.2 deals with saturated ideals. We present a few results that will be mainly
used in Chapter 3.

In Subsection 2.1.3 we study the Hilbert function of a power of a radical ideal defining
zero dimensional subscheme of a projective space. The obtained results are key in the proof of
Theorem 3.5.

Subsection 2.1.4 is concerned with the computation of the dimension of the vector space
HomT (I, T/I)>0 for a monomial ideal I 6= T in the homogeneous coordinate ring T of projec-
tive line such that dimk T/I is finite. This is related to the tangent space to an appropriate
multigraded Hilbert scheme. This observation will be used in the proof of Theorem 3.12.
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In Subsection 2.1.5 we study the Ext groups ExtiS(k,M) and ExtiS(M,k) where S is a polyno-
mial ring andM is a finitely generated graded S-module. These results will be used in Chapter 3.

For the sake of completeness, we give detailed proofs even though some of the results might
be well known. On the other hand, we only refer to the basic properties of Gröbner bases and
local cohomology as we need them. We believe that the theory of Gröbner bases is already well
established, and in any case there are many excellent introductions to the topic, e.g. [27], [30].
The theory of local cohomology is only used as a tool in one of the proofs so it seems to be more
natural to just cite the relevant result from [56].

Subsections 2.1.3, 2.1.4 and 2.1.5 are based on [66].

2.1.1 Locally free modules

We recall the definition of a locally free module and study some simple properties of such modules.

Definition 2.1. Given a ring R, we say that a module M is locally free of finite rank if, for
every prime ideal p of R, there is an element f ∈ R \ p such that Mf is a finite free Rf -module.

Observe that an R-module M is locally free of finite rank if and only if the corresponding
quasicoherent sheaf M̃ on SpecR is locally free of finite rank. We shall prove algebraically some
properties of locally free modules of finite rank. These results are intuitively clear from the
interpretation in terms of sheaves of OSpecR-modules.

Lemma 2.2. Let M be an R-module and let p be a prime ideal of R. If f ∈ R\p is such that Mf

is a free Rf -module of rank r, then Mp is a free Rp-module of rank r. In particular, if f ′ ∈ R \ p
is such that Mf ′ is a free Rf ′-module of rank r′, then r = r′.

Proof. We may rewrite Mp as

Mp
∼= M ⊗R Rp

∼= M ⊗R (Rf )pRf

where the latter isomorphism comes from [6, Prop. 11 §1.2]. This can be further transformed as

M ⊗R (Rf )pRf
∼= M ⊗R (Rf ⊗Rf (Rf )pRf ) ∼= Mf ⊗Rf (Rf )pRf

∼= (Mf )pRf
∼= (Rrf )pRf

∼= Rrp

where the last isomorphism follows from [6, Prop. 11 §1.2] since localization commutes with
direct sums.

Definition 2.3. We say that an R-module M is locally free of rank r if, given any prime ideal
p of R, there is an element f ∈ R \ p such that Mf is a free Rf -module of rank r.

It follows from Lemma 2.2 that an R-module M can be locally free of rank r for a unique
integer r. Moreover, if R is a Noetherian ring, SpecR is connected (equivalently, if R has no
non-trivial idempotents) and M is locally free of finite rank, then M is locally free of rank r for
some integer r by [47, Ex. II.5.8].

We study how the locally free condition behaves in short exact sequences.

Lemma 2.4. Let R be a Noetherian ring and let M ⊆ N ⊆ Rd be R-submodules. Assume that
Rd/N is a locally free R-module of rank a for a positive integer a. Then, for a positive integer
b, the following conditions are equivalent:

(i) Rd/M is a locally free R-module of rank b;
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(ii) N/M is a locally free R-module of rank b− a.

Proof. Localization is exact, so it is enough to show that Rd/M is a locally free R-module of
finite rank if and only if N/M is a locally free R-module of finite rank. An R-module U is a
locally free R-module of finite rank if and only if U is a flat R-module of finite presentation (see
[6, Prop. 3 §4.4]). Moreover, since R is a Noetherian ring, it is also equivalent to U being a flat
R-module of finite type.

We have an exact sequence of R-modules

0→ N/M → Rd/M → Rd/N → 0. (2.5)

Since Rd/M is an R-module of finite type, it is a Noetherian module. Thus, N/M is an R-module
of finite type.

The R-module Rd/N is flat by assumption. Hence, using the Tor exact sequence coming
from short exact sequence (2.5), we obtain that N/M is R-flat if and only if Rd/M is R-flat.

2.1.2 Saturation and homogeneous saturated ideals in polynomial ring

Let S = k[α] := k[α0, α1, . . . , αn] be a polynomial ring. By m we shall denote the irrelevant ideal
(α0, α1, . . . , αn). Given an ideal I in S, we write I for the saturation of I with respect to m.

In the proof of Lemma 2.6 we will use the notion of local cohomology. See [56, Ch. 7] for its
basic properties. Recall that H i

m(−) are the right derived functors of the functor

Γm(−) : Mod(S)→Mod(S)

defined by
Γm(M) = {m ∈M | mdm = 0 for some d ∈ Z>0}.

There is a close connection between the zeroth local cohomology group H0
m(S/I) and the satu-

ration I of I. Namely, I is the kernel of the natural map S → (S/I)/H0
m(S/I). Therefore, we

are able to use the general results about local cohomology to prove the following lemma. Note
that we are interested only in the zeroth local cohomology group.

Lemma 2.6. Let R → T be a flat homomorphism of k-algebras. Let I ⊆ R[α] =
⊕

d(Sd ⊗k R)

be a homogeneous ideal saturated with respect to m ⊗k R. Then I ⊗R T ⊆ S ⊗k T is saturated
with respect to m⊗k T .

Proof. The saturation of I is the kernel of the natural map

S ⊗k R→
(
(S ⊗k R)/I

)
/H0

m⊗kR

(
(S ⊗k R)/I

)
.

The ideal I is assumed to be saturated. Thus, H0
m⊗kR

(
(S ⊗k R)/I

)
= 0. Since T is a flat

R-algebra, we have

H0
m⊗kT

(
(S ⊗k T )/(I ⊗R T )

) ∼= (H0
m⊗kR

(
(S ⊗k R)/I

))
⊗R T = 0

by [56, Prop. 7.15]. It follows that I ⊗R T is saturated with respect to m⊗k T .

Lemma 2.7 states, that if an initial ideal in<(I) of a homogeneous ideal I is saturated, then
I is saturated. This is a typical situation. The process of taking the initial ideal usually worsens
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the properties of the corresponding quotient algebra. As a key example, for a homogeneous ideal
I ⊆ S we have an inequality of Betti numbers

βij(S/I) ≤ βij
(
S/ in<(I)

)
for all i, j ∈ Z≥0, see [49, Cor. 3.3.3]. Therefore, if S/ in<(I) has some nice property, then often
S/I has the same property. Compare the following lemma to [49, Cor. 3.3.5].

Lemma 2.7. Let I be an ideal in S and let < be a monomial order. Then in<(I) ⊆ in<(I). In
particular, if I is a homogeneous ideal and in<(I) is a saturated ideal, then I is a saturated ideal.

Proof. Let f ∈ I. There is an integer l such that αlif ∈ I for i = 0, 1, . . . , n. Therefore,
αli · in<(f) ∈ in<(I) for i = 0, 1, . . . , n. Consequently, in<(f) ∈ in<(I).

Now assume that I is a homogeneous ideal such that in<(I) is a saturated ideal. We have

in<(I) ⊆ in<(I) ⊆ in<(I) = in<(I).

It follows that in<(I) = in<(I). Thus, I and I have the same Hilbert function. As a result,
I = I.

We will frequently use the following observation.

Lemma 2.8. Let M be a graded S-module and let I be a homogeneous ideal of S such that
I = I ∩ md for a positive integer d. Assume that M<d = 0 and that there is a positive integer r
such that mr ·M = 0. Then HomS(M,S/I)0 = 0.

Proof. Let ϕ ∈ HomS(M,S/I)0 and x ∈ Me for some e ≥ d. Then mr · ϕ(x) = 0. Therefore, in
the quotient algebra S/I, the element ϕ(x) is represented by an element from Ie = Ie. Thus, it
is zero.

Next we study some properties of Hilbert functions of saturated ideals.

Lemma 2.9. Let I 6= S be a homogeneous saturated ideal of S. Then:

(i) There exists a linear form f ∈ S1 that is a non-zero divisor on S/I;

(ii) HS/I(d+ 1)−HS/I(d) ≥ 0 for all integers d;

(iii) If HS/I(d) = HS/I(d− 1) for a positive integer d, then HS/I(d+ 1) = HS/I(d).

Proof. (i) Let p1, . . . , pk be the associated primes of S/I. It is enough to show that
⋃k
i=1(pi)1 6=

S1. Suppose that it does not hold. Since k is infinite we have (pi)1 = S1 for some i and
therefore, m is an associated prime of S/I. This gives a contradiction with the assumption
that I is saturated.

(ii) Let f ∈ S1 be a non-zero divisor on S/I. Then, the map (S/I)d
·f−→ (S/I)d+1 is injective

for every d.

(iii) Let f ∈ S1 be a non-zero divisor on S/I. Suppose that HS/I(d) = HS/I(d − 1). Then

(S/I)d−1
·f−→ (S/I)d is an isomorphism of k-vector spaces. We claim that also (S/I)d

·f−→
(S/I)d+1 is an isomorphism. It is injective since f is a non-zero divisor on S/I. Let
g ∈ (S/I)d+1. Then g =

∑n
i=0 αihi for some hi ∈ (S/I)d. By assumptions, there
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are k0, . . . , kn ∈ (S/I)d−1 such that hi = fki for i = 0, 1, . . . , n. It follows that g =

f(
∑n

i=0 αiki).

The following corollary of a theorem by Bayer and Stillman enables us to deform a saturated
ideal to a saturated ideal with special properties - a Borel-fixed ideal. Recall the notion of a
generic initial ideal from [30, §15.9].

Corollary 2.10. Suppose that I 6= S is a homogeneous saturated ideal of S. Then the generic
initial ideal I ′ of I with respect to the grevlex order with α0 > . . . > αn is a saturated ideal.

Proof. Since I is a saturated ideal, depth(S/I) ≥ 1 by Lemma 2.9(i). Thus, depthS/I ′ ≥ 1 by
[49, Cor. 4.3.18]. It follows that I ′ is saturated.

The following lemma gives a useful property of saturated Borel-fixed ideals.

Lemma 2.11. Let T = k[α0, . . . , αn−1]. If I ⊆ S is a saturated Borel-fixed ideal then there exists
an ideal a ⊆ T such that a · S = I.

Proof. Let G be the set of minimal monomial generators of I. It is enough to show that there is
no element

∏n
i=0 α

ai
i ∈ G with an > 0. Assume that

∏n
i=0 α

ai
i ∈ G with an > 0.

Then we claim that

(

j−1∏
i=0

αaii ) · α
∑n
k=j ak

j ∈ I for every 0 ≤ j ≤ n.

This follows from [67, Prop. 2.3] if char k = 0 and from [50, Prop. 1.2] if char k > 0. Therefore,∏n−1
i=0 α

ai
i ∈ I = I since

α
∑n
k=j ak

j ·
( n−1∏
i=0

αaii
)
∈ I

for j ∈ {0, . . . , n}. This shows that g is not a minimal monomial generator and gives a contra-
diction.

We will use the following observation which is a special case of Macaulay’s theorem [10,
Thm. 4.2.10].

Lemma 2.12. Let T = k[α0, α1] and a ⊆ T be a homogeneous ideal. Then

HT/a(d)−HT/a(d+ 1) ≥ 0

for every d such that ad 6= 0.

Proof. If ad 6= 0, then HT/a(d) ≤ dimk Td − 1 = d. It follows from [10, Thm. 4.2.10] that
HT/a(d+ 1) ≤ HT/a(d).

As a consequence of the above observation we obtain some bounds on the number of minimal
homogeneous generators of a homogeneous saturated ideal I ⊆ S = k[α0, α1, α2].

Lemma 2.13. Let I ⊆ S = k[α0, α1, α2] be a homogeneous saturated ideal. Let m be a positive
integer such that Im 6= 0 and let f be the Hilbert function of S/I. For every d ≥ m we have

β1,d+1(S/I) ≤ 2f(d)− f(d+ 1)− f(d− 1).
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Proof. Let I ′ be the generic initial ideal (see [30, §15.9]) of I with respect to the grevlex order
with α0 > α1 > α2. By Corollary 2.10 the ideal I ′ is saturated. Moreover, β1,a(S/I

′) ≥ β1,a(S/I)

for every a by [49, Cor. 3.3.3]. Therefore, it is enough to prove the lemma for a saturated Borel-
fixed ideal I ′. Let a = I ′ ∩ k[α0, α1] and let g be the Hilbert function of k[α0, α1]/a. Then
I ′ = a · S by Lemma 2.11, so f(a)− f(a− 1) = g(a) for every a ∈ Z.

Let d ≥ m be such that β1,d+1(S/I ′) = β1,d+1(k[α0, α1]/a) > 2f(d) − f(d + 1) − f(d − 1).
Since ad 6= 0, it follows from Lemma 2.12 that 2f(d)− f(d+ 1)− f(d− 1) = g(d)− g(d+ 1) ≥ 0.
Let G be a set of minimal monomial generators of a and let G′ be obtained from G by deleting
s = g(d) − g(d + 1) + 1 minimal monomial generators of degree d + 1. Let a′ be the ideal of
k[α0, α1] generated by monomials from G′ and let R = k[α0, α1]/a′. Then a′d = ad 6= 0, but

HR(d+ 1)−HR(d) = g(d+ 1) + s− g(d) = 1.

This contradicts Lemma 2.12.

2.1.3 Hilbert function of a power of an ideal of points

We keep the notation of Subsection 2.1.2. In particular, S = k[α0, . . . , αn] is a polynomial ring.
The main result of this subsection is Proposition 2.19. Let I be a radical homogeneous ideal in
S such that S/I has constant Hilbert polynomial. In the proposition we compute the Hilbert
polynomial of S/Ik (for a positive integer k) and bound the degree from which it agrees with
the Hilbert function of S/Ik. This result is crucial in the proof of Theorem 3.5.

We begin with studying the following condition on homogeneous ideals J of S:

there exists a positive integer d such that Sd ⊆ J. (∗)

This algebraic condition can be restated geometrically. Namely, a homogeneous ideal J in the
polynomial ring S satisfies condition (∗) if and only if the corresponding closed subset of the
projective space ProjS is the empty set. See [76, Lem. 1.1] for a proof of this equivalence.

We collect some useful properties of condition (∗) in the following lemma. They are probably
all well-known. Nevertheless, we could not find a reference for all of them so we present a simple
proof.

We stress that in the following lemma, the lower index of Is does not indicate the degree s
part of the homogeneous ideal I, as it usually does in the rest of the thesis.

Lemma 2.14. Let m ≥ 2 be an integer and J,K, I1, . . . , Im be homogeneous ideals of S. Then:

(i) J ∩K = J ∩K;

(ii) J +K satisfies condition (∗) if and only if
√
J +
√
K satisfies condition (∗);

(iii) If Ii + Im satisfies condition (∗) for i = 1, 2, . . . ,m − 1, then I1 · I2 · . . . · Im−1 + Im and
I1 ∩ I2 ∩ . . . ∩ Im−1 + Im satisfy condition (∗);

(iv) If I1, I2, . . . , Im are homogeneous ideals such that Ii + Ij satisfies condition (∗) for 1 ≤ i <
j ≤ m, then I1 · I2 · . . . · Im = I1 ∩ I2 ∩ . . . ∩ Im.

Proof. (i) Let f ∈ J ∩K. Then, by definition of saturation, there are integers k1, k2 such that
αk1
i f ∈ J and αk2

i f ∈ K for i = 0, 1, . . . , n. Therefore, we get αmax{k1,k2}
i f ∈ J ∩ K for

13



i = 0, 1, . . . , n. Since f was arbitrary, we obtain J ∩K ⊆ J ∩K. On the other hand, we
have J ∩K ⊆ J ∩K since J ∩K is contained in both J and K.

(ii) An ideal of S satisfies condition (∗) if and only if its radical satisfies condition (∗). There-
fore, it is enough to observe that

√
J +K =

√√
J +
√
K.

This follows from the definition of a radical of an ideal, and is well-known [2, Ex. 1.13 v)].

(iii) By [2, Ex. 1.13 iii)] and induction we have√
I1 · I2 · . . . · Im−1 =

√
I1 ∩ I2 ∩ . . . ∩ Im−1 =

√
I1 ∩

√
I2 ∩ . . . ∩

√
Im−1.

Thus, by part (ii) it is enough to show that
√
I1 ∩

√
I2 ∩ . . . ∩

√
Im−1 +

√
Im satisfies

condition (∗). By assumptions there is an integer d such that αdi ∈ Ij+Im for i = 0, 1, . . . , n

and for j = 1, 2, . . . ,m − 1. It follows that there are elements sij ∈
√
Ij and tij ∈

√
Im

satisfying αdi = sij + tij for i = 0, 1, . . . , n and for j = 1, 2, . . . ,m − 1. Multiplying these
identities for j ∈ {1, 2, . . . ,m− 1} and fixed i, we obtain

α
d(m−1)
i =

m−1∏
j=1

(sij + tij) =

m−1∏
j=1

sij +

(
m−1∏
j=1

(sij + tij)−
m−1∏
j=1

sij

)
. (2.15)

We have
m−1∏
j=1

sij ∈
√
I1 ·

√
I2 · . . . ·

√
Im−1 ⊆

√
I1 ∩

√
I2 ∩ . . . ∩

√
Im−1

and
∏m−1
j=1 (sij + tij)−

∏m−1
j=1 sij ∈

√
Im. Hence, by Equation (2.15)

αi ∈
√√

I1 ∩
√
I2 ∩ . . . ∩

√
Im−1 +

√
Im

for i = 0, 1, . . . , n. It follows that
√
I1 ∩
√
I2 ∩ . . . ∩

√
Im−1 +

√
Im satisfies condition (∗).

(iv) We prove it by induction on m starting with m = 2. The inclusion I1 · I2 ⊆ I1 ∩ I2 is a
consequence of I1 · I2 ⊆ I1 ∩ I2. In order to establish the opposite inclusion, observe that
for some positive integer d

Sd · (I1 ∩ I2) ⊆ (I1 + I2)(I1 ∩ I2) ⊆ I1 · I2

by the assumption that I1 + I2 satisfies condition (∗). It follows that I1 ∩ I2 ⊆ I1 · I2 and
thus, I1 ∩ I2 ⊆ I1 · I2.

Let k ≥ 3 and assume that part (iv) holds for all integers m smaller than k. From part (i)
we get I1 ∩ I2 ∩ . . . ∩ Ik = I1 ∩ I2 ∩ . . . ∩ Ik−1 ∩ Ik.

Applying the inductive hypothesis for m = k − 1 we conclude that

I1 ∩ I2 ∩ . . . ∩ Ik = I1 ∩ I2 ∩ . . . ∩ Ik−1 ∩ Ik = I1 · I2 · . . . · Ik−1 ∩ Ik.

The ideal I1 · I2 · . . . · Ik−1 + Ik satisfies condition (∗) by part (iii). Therefore, from part (i)
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and inductive hypothesis for m = 2, we obtain

I1 ∩ I2 ∩ . . . ∩ Ik = I1 · I2 · . . . · Ik−1 ∩ Ik = (I1 · I2 · . . . · Ik−1) ∩ Ik = I1 · I2 · . . . · Ik,

as claimed.

The following lemma shows that if two ideals have the same saturation, then their k-th powers
for any positive integer k also have the same saturation.

Lemma 2.16. Let I, J be homogeneous ideals of S and k be a positive integer. Then:

(i) There is an integer d0 such that for all integers d1, . . . , dk ≥ d0 the map
⊗k

i=1 Idi →
Ikd1+...+dk

induced by multiplication is surjective;

(ii) If I = J , then Ik = Jk.

Proof. (i) Consider a minimal set of homogeneous generators of I. We can take d0 to be
the maximum of degrees of elements of this set. This can be expressed in terms of Betti
numbers as d0 = max{j | β1,j(S/I) 6= 0}.

(ii) Let d0 = max{j | β1,j(S/I) 6= 0} and e0 = max{j | β1,j(S/J) 6= 0}. Let r0 be an
integer such that I≥r0 = I≥r0 and J≥r0 = J≥r0 . Let s0 = max{d0, e0, r0}. Then for all
d1, . . . , dk ≥ s0 we have

Ikd1+...+dk
= I

k
d1+...+dk

= J
k
d1+...+dk

= Jkd1+...+dk

where the first and last equality follow from part (i). As a result, Ik = Jk.

Using the above algebraic results we will compute the Hilbert polynomial of a power of a
homogeneous radical ideal which defines a closed, zero dimensional subscheme of projective space.

Lemma 2.17. Let I ⊆ S be a homogeneous radical ideal such that the Hilbert polynomial of the
quotient algebra S/I is constant, equal r for some positive integer r. Then for a positive integer
k, the Hilbert polynomial of S/Ik is constant equal to r · dimk Sk−1.

Proof. Let P1, . . . , Pr be the (distinct) points of the support of ProjS/I ⊆ Pn. Define pi to be
the homogeneous prime ideal of S defining Pi. Then I = p1 ∩ . . . ∩ pr. We have pi + pj = m

for all 1 ≤ i < j ≤ m. Therefore, by Lemma 2.14(iv), I = J , where J = p1 · . . . · pr. Hence
Ik = Jk by Lemma 2.16(ii). As a result, it suffices to show that the Hilbert polynomial of S/Jk

is r · dimk Sk−1. Let K = pk1 ∩ . . . ∩ pkr . Observe that pki + pkj satisfies condition (∗) for every
1 ≤ i < j ≤ m by Lemma 2.14(ii). Therefore, K = Jk by Lemma 2.14(iv). Thus, it is enough
to consider the Hilbert polynomial of S/K. As a set, ProjS/K is the disjoint union of r-points
P1, . . . , Pr. Consequently, it is enough to show that the degree of ProjS/pki is dimk Sk−1 for
every i = 1, . . . , r. This is clear, since up to a linear change of variables pi = (α1, . . . , αn).

The following example shows that the assumption in Lemma 2.17 that I is reduced cannot
be weakened to the assumption that I is saturated.
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Example 2.18. Let I = (α2
0, α0α1, α

2
1) ⊆ S = k[α0, α1, α2]. It is a saturated ideal and the

corresponding subscheme ProjS/I ⊆ P2 is zero-dimensional of degree 3. However, ProjS/I2 has
degree 10.

In Lemma 2.17 we have calculated the Hilbert polynomial of S/Ik for a homogeneous radical
ideal I defining a zero dimensional closed subscheme of a projective space and a positive integer
k. Now we provide an upper bound on the least degree, from which the Hilbert function of S/Ik

agrees with the Hilbert polynomial of S/Ik. The proof uses the notion of regularity. We recall its
definition in terms of Betti numbers. For a finitely generated graded S-module M , its regularity
regM is defined to be regM = max{j − i | βi,j(M) 6= 0}.

Proposition 2.19. Let r, k be positive integers and I ⊆ S be a homogeneous radical ideal with the
Hilbert polynomial of the quotient algebra S/I equal to r. Define e = min{a ∈ Z | HS/I(a) = r}.
Then HS/Ik(d) = r · dimk Sk−1 for d ≥ ke+ k.

Proof. The Hilbert polynomial of S/Ik is r · dimk Sk−1 by Lemma 2.17. Therefore, we are left
with establishing the bound on the degree from which the Hilbert function agrees with the Hilbert
polynomial. This is related to the regularity. By [31, Thm. 4.2], it is enough to show that

ke+ k − 1 ≥ regS/Ik. (2.20)

We have regS/I = e by [31, Thm. 4.2]. Hence, from the definition of regularity in terms of
Betti numbers, we get reg I = e + 1. Thus, reg Ik ≤ ke + k by [22, Thm. 6]. Inequality (2.20)
follows.

Unlike in Lemma 2.17, to obtain the bound on the degree from which the Hilbert function
agrees with the Hilbert polynomial, the assumption in Proposition 2.19 that I is radical could
be replaced by the weaker assumption that I is saturated. However, we need to control both the
value of the Hilbert polynomial and the degree from which the Hilbert function has this value.
Therefore, we need to restrict our attention to radical ideals.

2.1.4 Tangent space at extended ideal

In this subsection we consider polynomial ring T = k[α0, α1]. The main result is Proposition 2.22
which computes

dimk HomT (I, T/I)>0

for a monomial ideal I 6= T of T such that dimk T/I is finite. This will be later used to compute
the dimension of the tangent space to the multigraded Hilbert scheme at the point corresponding
to the extended ideal Iex ⊆ k[α0, α1, α2].

If M,N are graded T -modules and M is finitely generated then the Ext groups ExtiT (M,N)

are graded T -modules in a natural way (see [10, §1.5]). For a graded T -moduleM and an integer
d, by M(d) we denote the graded T -module given by M(d)e = Me+d for all e ∈ Z.

Let I be a monomial ideal in T such that dimk T/I = r for a positive integer r. We can
consider the associated staircase diagram (see [67, §3.1]). We recall its construction. For each
pair of non-negative integers (s, t) such that αs0αt1 /∈ I put a 1 × 1 box with sides parallel to
coordinate axis and (s, t) as lower left corner of the box. The diagram corresponding to I will be
denoted by DI . The set of boxes of the diagram DI (or, the set of monomials outside I) will be
denoted by ΛI . There is a canonical minimal free resolution of T/I (see [67, Prop. 3.1]). The set
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of minimal monomial generators of I will be denoted by MI and the generating set of relations
(or more precisely the set of their degrees when T is considered with the natural Z2-grading)
used in that resolution will be denoted by RI .

∗
∗

Figure 2.1: Staircase diagram of the ideal I = (α3
0, α

2
0α1, α

2
1).

Example 2.21. Figure 2.1 presents the staircase diagram of I = (α3
0, α

2
0α1, α

2
1). Filled boxes

correspond to monomials outside I (i.e. elements of ΛI), dots correspond to elements of MI (i.e.
minimal monomial generators of I) and asterisks correspond to elements of RI (i.e. minimal
relations between those generators).

Note that we have #ΛI = dimk T/I = r and #RI = #MI − 1. We will identify monomials
of T with lattice points in Z2. Given a point u = (s, t) in Z2 we will write |u| for s + t. We
define three functions from integers to integers:

λI(a) =HT/I(a) = #{u ∈ ΛI | |u| = a},
µI(a) =β1,a(T/I) = #{u ∈MI | |u| = a},
ρI(a) =β2,a(T/I) = #{u ∈ RI | |u| = a}.

The goal of this subsection is the proof of the following proposition.

Proposition 2.22. Let r be a positive integer. Given a monomial ideal I in T with dimk T/I = r

we have
dimk HomT (I, T/I)>0 =

∑
u∈MI

∑
a>|u|

λI(a)−
∑
u∈RI

∑
a>|u|

λI(a). (2.23)

Observe that [33, Lem. 3.2] presents a more general formula for dimk HomT (I, T/I)u where
u ∈ Z2 and we consider T with the natural Z2-grading.

The proof of Proposition 2.22 is based on the following observation.

Lemma 2.24. Let I be a monomial ideal in T such that T/I is a finite k-vector space. Then:

(i) The natural map T → HomT (I, T ) given by f 7→ (g 7→ fg) is an isomorphism of graded
T -modules.

(ii) Ext1
T (I, T/I)>0 = 0.

Proof. Since dimk T/I is finite, I = (αa0
0 , α

a1
0 α

b1
1 , . . . , α

as−1

0 α
bs−1

1 , αbs1 ) for some positive integers
a0 > a1 > . . . > as−1 and b1 < b2 < . . . < bs. Set as = b0 = 0.

(i) Let ϕ : I → T be a homomorphism of T -modules. It is enough to show that there exists an
element f ∈ T such that ϕ(g) = fg for every g ∈ I. Define fi = ϕ(αai0 α

bi
1 ) for i = 0, . . . , s.

Then for each i ∈ {1, . . . , s} we have relations of the form

α
bi−bi−1

1 fi−1 = ϕ(α
ai−1

0 αbi1 ) = α
ai−1−ai
0 fi. (2.25)
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From Equation (2.25) for i = s we deduce that αas−1

0 divides fs−1. It follows by induction
that αai0 divides fi for all i. Thus, f0 = αa0

0 f for some f ∈ T . From Equation (2.25) we
conclude that fi = αai0 α

bi
1 f for each i.

(ii) We start with showing that Ext1
T (I, T )>0 = 0. Consider the canonical minimal graded free

resolution
s⊕
i=1

T (−ai−1 − bi)→
s⊕
i=0

T (−ai − bi)→ I → 0

of I (see [67, Prop. 3.1]). Applying the functor HomT (−, T ) to the above resolution, we
obtain for every integer c a k-linear map

ψc :
s⊕
i=0

T (ai + bi)c →
s⊕
i=1

T (ai−1 + bi)c.

We claim that ψc is surjective for every c > 0. Observe that kerψc ∼= HomT (I, T )c ∼= Tc
by part (i). Therefore, the claim is a consequence of the calculation

dimk

s⊕
i=0

Tai+bi+c = (s+ 1)(c+ 1) +
s∑
i=1

(ai−1 + bi) = dimk

s⊕
i=1

Tai−1+bi+c + dimk Tc.

Since ψc is surjective for positive c, it follows that Ext1
T (I, T )>0 = 0.

Now we prove that Ext1
T (I, T/I)>0 = 0. Consider the following part of the long exact

sequence of Ext groups obtained from the short exact sequence 0→ I → T → T/I → 0 by
applying the functor HomT (I,−):

. . .→ Ext1
T (I, T )>0 → Ext1

T (I, T/I)>0 → Ext2
T (I, I)>0 → . . . .

We have shown that Ext1
T (I, T )>0 = 0. Moreover, Ext2

T (I, I)>0 since I has projective
dimension 1. It follows that Ext1

T (I, T/I)>0 = 0.

Proof of Proposition 2.22. Consider the canonical minimal free resolution of I

0→
⊕
a∈Z

T (−a)ρI(a) →
⊕
b∈Z

T (−b)µI(b) → I → 0.

Applying the functor HomT (−, T/I)>0 and using Lemma 2.24(ii) we get an exact sequence

0→ HomT (I, T/I)>0 →
⊕
b∈Z

HomT (T (−b)µI(b), T/I)>0 →
⊕
a∈Z

HomT (T (−a)ρI(a), T/I)>0 → 0.

This can be rewritten as

0→ HomT (I, T/I)>0 →
⊕
b∈Z

(T/I)
µI (b)

>b →
⊕
a∈Z

(T/I)
ρI (a)

>a → 0.

Thus,
dimk HomT (I, T/I)>0 =

∑
u∈MI

∑
c>|u|

dimk(T/I)c −
∑
u∈RI

∑
c>|u|

dimk(T/I)c.
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This is equivalent to Equation (2.23).

We end this subsection with an example.

Example 2.26. Let I = (α3
0, α

2
0α1, α

6
1). Its staircase diagram is presented in Figure 2.2. For

this ideal Equation (2.23) takes the form

dimk HomT (I, T/I)>0 =
(
2·
∑
a>3

λI(a)+
∑
a>6

λI(a)
)
−
(∑
a>4

λI(a)+
∑
a>8

λI(a)
)

= (2·5+0)−(3+0) = 7.

∗

∗

Figure 2.2: Staircase diagram of the ideal I = (α3
0, α

2
0α1, α

6
1)

2.1.5 Dimensions of Ext groups

In Lemmas 2.27 and 2.28 we present general results about finitely generated modules over poly-
nomial rings. They will be used in Chapter 3.

Lemma 2.27. Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Let M be
a finitely generated graded S-module. Then

n+1∑
i=0

(−1)i dimk ExtiS(k,M)e =
n+1∑
i=0

(−1)i
(
n+ 1

i

)
dimkMe+i

for every e ∈ Z.

Proof. Let P• be the Koszul resolution of k. Applying the functor HomS(−,M)e we obtain a
complex

HomS(P•,M)e,

whose cohomology groups are ExtiS(k,M)e for i = 0, . . . , n+ 1. Therefore, by a standard argu-
ment (see [80, Ex. 1.6.B]) by splitting the above complex into short exact sequences we get

n+1∑
i=0

(−1)i dimk ExtiS(k,M)e =

n+1∑
i=0

(−1)i dimk HomS(Pi,M)e.

Since Pi ∼= S(−i)(
n+1
i ), it follows that

dimk HomS(Pi,M)e =

(
n+ 1

i

)
dimkMe+i.

Lemma 2.28. Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Given
a finitely generated graded S-module M and an integer e ∈ Z we have dimk ExtiS(M, k)e =

βi,−e(M).
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Proof. Apply the functor HomS(−,k) to a minimal graded free resolution P• of M . The Ext
groups ExtiS(M, k) can be computed as cohomology groups of the obtained complex. Since the
i-th differential in P• maps Pi into mPi−1, the differentials in the complex HomS(P•, k) are zero.
Therefore, dimk ExtiS(M,k)e = dimk HomS(Pi,k)e = βi,−e(M).

2.2 Scheme theory and multigraded Hilbert schemes

In this section we give the definition of multigraded Hilbert schemes and study the basic prop-
erties of these schemes.

In Subsection 2.2.1 we present general results from scheme theory that will be used in the
proofs of the main results.

In Subsection 2.2.2 we give a formal definition of the functor of points of a multigraded
Hilbert scheme and study its basic properties.

In Subsection 2.2.3 we introduce multigraded Hilbert schemes "of points in general position".
This is the main object of investigation in this thesis.

In Subsection 2.2.4 we define the flag multigraded Hilbert scheme by its functor of points
and we prove existence of this parameter space using existence of multigraded Hilbert schemes.

2.2.1 Scheme theory

The following lemma gives some conditions under which a morphism of k schemes that is bijective
on k-valued points is a homeomorphism.

Lemma 2.29. Let f : X → Y be a closed morphism of schemes locally of finite type over k.
Assume that f induces a bijection of k-valued points X(k)→ Y (k). Then f is a homeomorphism.

Proof. In both X and Y , closed points are very dense by [40, Prop. 3.35]. Since f induces a
bijection of closed points, it is dominant and hence surjective. Moreover, if f(p) = f(q), then
f({p}) = {f(p)} = {f(q)} = f({q}). As a result, the sets of closed points of X that are
contained in {p} and {q} are equal. It follows that {p} = {q} and therefore, p = q. This shows
that f : X → Y is a bijective, closed, continuous map and thus, a homeomorphism.

In describing the intersection of irreducible components of some multigraded Hilbert schemes
we shall use the following lemma.

Lemma 2.30. Let X be a scheme locally of finite type over k. Let Z1, Z2 be irreducible closed
subsets of X of dimensions d1, d2, respectively. Let P ∈ Z1 ∩Z2 be a closed point of the intersec-
tion and let d = dimkTPX. Then every irreducible component W of Z1 ∩ Z2 such that P ∈ W
satisfies dimW ≥ d1 + d2 − d.

Proof. By [79, Tag 0C2G], there exists an open neighborhood U of P inX and a closed immersion
i : U → Y where Y is a smooth d-dimensional variety over k. Let W1 = i(|Z1| ∩ |U |) and
W2 = i(|Z2| ∩ |U |), where | · | denotes the underlying topological space. These are d1 and d2-
dimensional irreducible closed subsets of Y , respectively. Therefore, every irreducible component
of W1 ∩W2 has dimension at least d1 + d2 − d (see [36, §8.2]).
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2.2.2 Multigraded Hilbert schemes

In this subsection we introduce multigraded Hilbert schemes following [45]. We give the definition
in terms of the functor of points HilbhS : k−Alg→ Set and then verify that the scheme represents
the natural extension to the functor HilbhS : Schopk → Set.

Let n be a positive integer and let S = k[α] := k[α0, ..., αn] be the polynomial ring over k.
We identify monomials of S with Nn+1. Let A be an abelian group and let deg : Nn+1 → A be
a homomorphism of semigroups. We assume that A is generated by deg(αi) for i = 0, ..., n. We
consider S with the A-grading induced by deg

S =
⊕
a∈A

Sa satisfying Sa · Sb ⊆ Sa+b,

where Sa is the k-vector space spanned by monomials xu with deg(u) = a. Given a k-algebra
R, we write R[α] for S ⊗k R together with the A-grading given by R[α]a = Sa ⊗k R.

Definition 2.31. Given a k-algebra R and a function h : A → N, we say that a homogeneous
ideal I ⊆ R[α] is admissible for Hilbert function h if R[α]a/Ia is a locally free R-module of rank
h(a) for every a ∈ A.

We define the functor HilbhS : k-Alg→ Set by

R 7→ {I ⊆ R[α] | I is an admissible ideal for Hilbert function h}

and given ϕ : R→ R′ we define
HilbhS(ϕ) : I 7→ I ⊗R R′.

The following lemma confirms that the above data define a functor.

Lemma 2.32. Let R be a k-algebra and I ⊆ R[α] be an admissible ideal for Hilbert function h.
If ϕ : R→ R′ is a homomorphism of k-algebras, then I ⊗RR′ is an ideal of R′[α], admissible for
Hilbert function h.

Proof. Consider the exact sequence of R-modules

0→ I → R[α]→ R[α]/I → 0.

Since R[α]a/Ia is a locally free R-module of finite rank it is flat (see [6, Prop. 3 §4.4]). Therefore,
by tensoring the above sequence with R′ over R we obtain an exact sequence of R′ modules

0→ I ⊗R R′ → R′[α]→ R′[α]/(I ⊗R R′)→ 0.

Since I ⊗R R′ is an R′-submodule of R′[α] stable under multiplication by any monomial, it
is an ideal. We shall show that R′[α]a/(Ia ⊗R R′) is a locally free R′ module of rank h(a) for
every a ∈ A. Let q ∈ SpecR′ and let p = ϕ−1(q). Given a ∈ A, there is an element f ∈ R \ p
such that (R[α]a/Ia)f ∼= R

h(a)
f . Let g = ϕ(f). We have g ∈ R′ \ q and we shall show that(

R′[α]a/(Ia ⊗R R′)
)
g
∼= (R′g)

h(a). Indeed,(
R′[α]a/(Ia ⊗R R′)

)
g
∼=
(
(R[α]a/Ia)⊗R R′

)
g
∼= (R[α]a/Ia)⊗R R′g ∼=

∼= (R[α]a/Ia)f ⊗Rf R
′
g
∼= R

h(a)
f ⊗Rf R

′
g
∼= (R′g)

h(a).
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The following existence statement is the foundation of the theory of multigraded Hilbert
schemes.

Theorem 2.33 ([45, Thm. 1.1]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. Let h : A → N be a numerical function. Then there exists a quasiprojective k-scheme
HilbhS representing the functor HilbhS : k− Alg→ Set.

Moreover, under additional assumptions on the grading deg : Nn+1 → A, the scheme HilbhS
is projective.

Definition 2.34. Let S = k[α0, . . . , αn] be a polynomial ring and A be an abelian group. The
grading of S given by a semigroup homomorphism deg : Nn+1 → A is called positive if S0 = k.

In the cases that are studied in this thesis, the grading is positive.

Example 2.35. (a) The homogeneous coordinate ring S[Pn] = k[α0, . . . , αn] of projective
space Pn is Z-graded by deg(αi) = 1. This grading is positive.

(b) More generally, letX be a smooth projective toric variety over the field of complex numbers.
Then its Cox ring S[X] is a Pic(X)-graded polynomial ring and S[X]0 = Γ(X,OX) = C.
See Chapter 4 for more about smooth projective toric varieties and their Cox rings.

The main consequence of the assumption that S is positively graded, is the following result.

Theorem 2.36 ([45, Cor. 1.2.]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. If the grading is positive then for every function h : A → N, the multigraded Hilbert
scheme HilbhS is projective over k.

Moreover, there is also an algebraic consequence of this restriction on the grading.

Theorem 2.37 ([67, Thm. 8.6]). Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian
group A. Then the following conditions are equivalent:

1. S0 = k;

2. Sa is a finite dimensional k-vector space for every a ∈ A.

Now we discuss the extension of the functor HilbhS to the category Schopk . The definition
comes from [67, §18.5]. Then we check that the extended functor is indeed the functor of points
of HilbhS .

Definition 2.38. Let X be a k-scheme and h : A → N be a function. We say that a closed
subscheme Z ⊆ An+1

X is an admissible family for the function h if for every affine open subscheme
SpecR ⊆ X, the pullback of the ideal sheaf of Z to An+1

R corresponds to an ideal of R[α] that is
admissible for the function h.

As is often the case, this condition can be checked on any affine open covering.

Lemma 2.39. Let h : A → N be a function. Let X be a k-scheme with an affine open covering
X =

⋃
j∈J Uj where Uj = SpecRj. Let Z ⊆ An+1

X be a closed subscheme such that the pullback
of its ideal sheaf to An+1

Rj
is an admissible ideal of Rj [α] for the function h for every j ∈ J . Then

Z is an admissible family over X for the function h.
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Proof. Let V = SpecR be an affine open subscheme of X and let I be the ideal in R[α] corre-
sponding to the pullback of the ideal sheaf of Z. Then I is an admissible ideal for the function h
if and only if for each a in A, the degree a part of R̃[α]/I is a locally free sheaf of rank h(a). This
can be checked on any affine open covering of An+1

R . Given a point P ∈ An+1
R there is an affine

open subscheme U = SpecT ⊆ V ∩ Uj for some j ∈ J that is a distinguished open subscheme
of Uj and such that P ∈ An+1

T . It is enough to show that the pullback of the ideal sheaf of Z to
An+1
T corresponds to an admissible ideal. Since this is true for the pullback to An+1

Rj
, the claim

follows from Lemma 2.32.

We define the natural extension of the multigraded Hilbert scheme functor to the category

Schopk , opposite of the category of k-schemes. For now we will denote this functor by H̃ilbhS .
Given a k-scheme X, let

H̃ilbhS(X) = {admissible families Z ⊆ An+1
X for the function h}

and for a morphism f : X → Y of k-schemes let

H̃ilbhS(f) : Z 7→ (f × idAn+1)−1(Z).

The following lemma checks that this functor is well-defined.

Lemma 2.40. Let f : X → Y be a morphism of k-schemes. If Z ⊆ An+1
Y is an admissible family

over Y , then the scheme theoretic inverse image

(f × idAn+1)−1(Z) ⊆ An+1
X

is an admissible family over X.

Proof. To simplify notation, let Z ′ = (f × idAn+1)−1(Z). We may choose affine open subschemes
SpecT ⊆ X and SpecR ⊆ Y such that f(SpecT ) ⊆ SpecR. By Lemma 2.39, it is enough to
show that the pullback of Z ′ to An+1

T , denoted by Z ′T , corresponds to an admissible ideal of T [α].
Let ZR denote the pullback of Z to An+1

R . We have the following diagrams with all inner squares
pullback diagrams:

An+1
T ×An+1

R
ZR ZR Z

An+1
T An+1

R An+1
Y

SpecT SpecR Y

Z ′T Z ′ Z

An+1
T An+1

X An+1
Y

SpecT X Y.

Since Z is an admissible ideal over Y , ZR corresponds to an admissible ideal of R[α]. Thus,
An+1
T ×An+1

R
ZR corresponds to an admissible ideal of T [α] by Lemma 2.32. Since the bottom

arrows from SpecT to Y in both diagrams are the same, so are the middle arrows An+1
T → An+1

Y .
Therefore, Z ′T = An+1

T ×An+1
R

ZR as a closed subscheme of An+1
T which finishes the proof.

As expected, the multigraded Hilbert scheme represents this extended functor.
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Lemma 2.41. Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian group A. Let

h : A → N be a function. Then the functor H̃ilbhS : Schopk → Set defined above is the functor of
points of the multigraded Hilbert scheme HilbhS.

Proof. Let hHilbhS
be the functor of points of HilbhS . Let Y be a k-scheme and cover it by affine

open subschemes {Vis}is∈I . Moreover, cover each intersection Vis ∩Vit by affine open subschemes
Visitk for k ∈ Iisit . Since data of an admissible family over Y is affine local on Y , we have an
equalizer diagram of sets

H̃ilbhS(Y )→
∏
is∈I

H̃ilbhS(Vis)⇒
∏
is∈I

∏
it∈I

∏
k∈Iisit

H̃ilbhS(Visitk).

See [74, page 225] for the definition and universal property of equalizer. Since hHilbhS
is repre-

sentable, we also have an equalizer diagram of sets

hHilbhS
(Y )→

∏
is∈I

hHilbhS
(Vis)⇒

∏
is∈I

∏
it∈I

∏
k∈Iisit

hHilbhS
(Visitk).

Since H̃ilbhS and hHilbhS
are isomorphic when restricted to the category of affine k-schemes, the

middle and right terms of the above sequences are naturally isomorphic. Thus, we have an

isomorphism H̃ilbhS(Y )→ hHilbhS
(Y ) by the universal property of equalizer.

We claim that this isomorphism is natural with respect to f : X → Y so that it defines a

natural isomorphism of functors between H̃ilbhS and hHilbhS
. Indeed, we may choose an affine

open covering {Uja}ja∈J of X refining the open covering of X by preimages of Vis ’s for is ∈ I.
Let γ : J → I be the corresponding map of indexing sets, such that Uja ⊆ f−1(Vγ(ja)) for every
ja ∈ J . Furthermore, we can cover each Uja ∩ Ujb with ja, jb ∈ J by affine open subsets Ujajbl
for l ∈ Jjajb refining the open covering of Uja ∩Ujb by preimages of Vγ(ja)γ(jb)k for k ∈ Iγ(ja)γ(jb).
Then we have a commutative diagram

H̃ilbhS(Y )
∏
is∈I H̃ilbhS(Vis)

∏
is∈I

∏
it∈I

∏
k∈Iisit

H̃ilbhS(Visitk)

H̃ilbhS(X)
∏
ja∈J H̃ilbhS(Uja)

∏
ja∈J

∏
jb∈J

∏
l∈Jjajb

H̃ilbhS(Ujajbl)

H̃ilbhS(f)

and a similar one for hHilbhS
. Since the isomorphisms

α : H̃ilbhS(Y )→ hHilbhS
(Y ) and β : H̃ilbhS(X)→ hHilbhS

(X)

are induced from the universal property of equalizer and isomorphism of restricted functors, it

follows from the universal property of equalizer that β ◦ H̃ilbhS(f) = hHilbhS
(f) ◦ α which finishes

the proof of naturality.

We end this subsection with two technical results. The first of them is concerned with the
fact that smoothness of [I] ∈ HilbhS "does not depend" on I1. The following lemma makes it
precise.

Lemma 2.42. Let m ≤ n be positive integers and let I ⊆ S[Pm] = k[α0, . . . , αm] be a homoge-
neous ideal. Denote the Hilbert function of S[Pm]/I by h. Let I ′ = I+(αm+1, . . . , αn) ⊆ S[Pn] =
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k[α0, . . . , αm, . . . , αn]. Then [I] ∈ HilbhS[Pm] is a smooth point if and only if [I ′] ∈ HilbhS[Pn] is a
smooth point.

Proof. Let d = h(1). Then d ≤ m+1 and we can consider S[Pd−1] = k[α0, . . . , αd−1] as a subring
of S[Pm]. Up to a linear change of variables in S[Pm] we may assume that I = I ′′+ (αd, . . . , αm)

for an ideal I ′′ ⊆ S[Pd−1] such that S[Pd−1]/I ′′ has Hilbert function h.
The scheme HilbhS[Pn] is a HilbhS[Pd−1]-bundle over Gr(n + 1 − d, S[Pn]1) and HilbhS[Pm] is a

HilbhS[Pd−1]-bundle over Gr(m+ 1− d, S[Pm]1) by [20, Prop. 3.1]. Therefore,

[I] is a smooth point ⇔ [I ′′] is a smooth point ⇔ [I ′] is a smooth point.

We compute the fiber of a natural map of multigraded Hilbert schemes, associated with the
homogeneous coordinate ring of a projective space, given by restricting ideals to high degree.

Lemma 2.43. Let n be a positive integer and I be a homogeneous ideal of S = S[Pn]. Let
m = min{a ∈ Z | Ia 6= 0} and g be the Hilbert function of S/I. Let d > m be a positive integer
and define h : Z→ Z by

h(a) =

{
dimk Sa for a < d

g(a) for a ≥ d.

Then there is a natural map π : HilbgS → HilbhS given on closed points by [J ] 7→ [J ∩ md]. Let
[K] be a closed point of HilbhS such that HS/K(a) = g(a) for every a ≥ m+ 1. Then the fiber of
π over [K] is the Grassmannian

Gr(dimk Sm − g(m),Km).

Proof. The point [K] ∈ HilbhS gives a natural morphism

Speck = Spec k([K])→ HilbhS .

Its functor of points k− Alg→ Set is given by

R 7→ {K ⊗k R}.

The scheme theoretic fiber over [K] is the fiber product

HilbgS ×HilbhS
Spec k([K]).

Therefore, its functor of points k−Alg→ Set is the fiber product of the corresponding functors,
i.e. it is given by

R 7→ {J ∈ HilbgS(R) | J ∩ (m⊗k R)d = K ⊗k R}.

Since all schemes considered in this proof are of finite type over Speck, they can be recovered from
their functors of points restricted to the subcategory k− f.g.Alg of finitely generated k-algebras.
In what follows we restrict to this subcategory.

The ideal K⊗kR is saturated with respect to m⊗kR by Lemma 2.6. Therefore, by definition
of m and the assumption that HS/K(a) = g(a) for every a ≥ m+ 1, the functor of points of the
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fiber is naturally isomorphic to the functor k− f.g.Alg→ Set defined by

R 7→ {Jm ⊆ Km ⊗k R ⊆ Sm ⊗k R |Jm is an R-submodule of Km ⊗k R and

(Sm ⊗k R)/Jm is a locally free R-module of rank g(m)}.

By Lemma 2.4, this functor coincides with the following functor k− f.g.Alg→ Set:

R 7→ {Jm ⊆ Km ⊗k R |Jm is an R-submodule of Km ⊗k R and (Km ⊗k R)/Jm is a locally

free R-module of rank g(m) + dimkKm − dimk Sm}.

This is the functor of points of Gr(dimk Sm − g(m),Km).

2.2.3 Multigraded Hilbert schemes of points in general position and Slip

In this subsection we introduce the main object of study of this thesis in the case of projective
space. We will define the multigraded Hilbert scheme Hilb

hr,n
S[Pn] of r points in general position on

projective n-space. The more general definition for a smooth projective toric variety appears in
Subsection 4.1.5. For positive integers r, n, the scheme Hilb

hr,n
S[Pn] has a distinguished irreducible

component called Slipr,n which plays a key role in the border apolarity lemma - Proposition 2.91.
Fix a positive integer n and let S = S[Pn] := k[α] = k[α0, . . . , αn] be the homogeneous

coordinate ring of Pn with its standard Z-grading given by deg(αi) = 1 for i = 0, . . . , n. Let r
be a positive integer and let hr,n = hr,Pn : Z→ N be given by

hr,n(a) = min{r, dimk Sa}.

This is the Hilbert function of r points in Pn in general position. We shall study the multigraded
Hilbert scheme Hilb

hr,n
S .

This scheme has a natural morphism into the Hilbert scheme Hilbr(Pn) parametrizing zero-
dimensional, length r subschemes of the projective n-space. We will describe this in some details.
We start with the following observation.

Lemma 2.44 ([45, Lem. 4.1]). Let fr,n : Z→ N be defined by

fr,n(a) =

{
dimk Sa for a < r,

r for a ≥ r.

Then Hilbr(Pn) is isomorphic to Hilb
fr,n
S where on closed points, the isomorphism identifies

[I] ∈ Hilb
fr,n
S with [Proj(S/I)] ∈ Hilbr(Pn).

Consider a morphism of functors Hilb
hr,n
S → Hilb

fr,n
S defined for a k-algebra R by

S ⊗k R ⊇ I 7→ I ∩ (m⊗k R)r,

where m = (α0, . . . , αn) is the irrelevant ideal of S. Using the identification from Lemma 2.44
this gives a morphism of schemes ϕr,n : Hilb

hr,n
S → Hilbr(Pn) that on closed points sends an ideal

to the subscheme defined by this ideal. Unless stated otherwise, we shall identify Hilbr(Pn) with
Hilb

fr,n
S .
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Following [13] we define Sipr,n to be the set of closed points of Hilb
hr,n
S[Pn] corresponding to

saturated ideals of r distinct points. The next result is fundamental. Its proof for k = C appears
in [13, Prop. 3.13] for an arbitrary smooth projective toric variety.

Proposition 2.45. Let r, n be positive integers. Then the closure of Sipr,n in Hilb
hr,n
S[Pn] is an

irreducible component.

Proof. Let U ⊆ Hilbr(Pn)×Pn be the universal family overHilbr(Pn) and let π : U → Hilbr(Pn)

denote the natural morphism.
Let U be the locus of points in Hilbr(Pn) corresponding to smooth subschemes of Pn and let

V be the locus of points in Hilbr(Pn) corresponding to subschemes with Hilbert function hr,n.
We claim that U, V are open. For a non-negative integer d, let Vd ⊆ Hilbr(Pn) be the locus of
points corresponding to subschemes R ⊆ Pn such that dimkH

0(Pn, IR(d)) ≤ dimk Sd − hr,n(d)

where IR is the ideal sheaf of R. The subset Vd is open by [47, Thm. III.12.8]. Furthermore,
Vd = Hilbr(Pn) for d ≥ r by Gotzmann’s regularity theorem [10, Thm. 4.3.2] and [31, Thm. 4.2].
Therefore, V =

⋂r−1
d=0 Vd is open.

Let W ⊆ U be the locus of points x such that the fiber of π over π(x) is smooth. This is an
open subset of U by [44, Thm. 12.1.6]. Therefore, its image U under π is open since π is flat
and locally of finite presentation and thus, open by [40, Thm. 14.33].

It follows that Sipr,n = ϕ−1
r,n(U ∩ V ) is open. Furthermore, it is homeomorphic to U ∩ V

by Lemma 2.29. In particular, it is irreducible since U ∩ V is a non-empty open subset of
the smoothable component of Hilbr(Pn). It follows that the closure of Sipr,n is an irreducible
component of Hilb

hr,n
S[Pn].

The irreducible component Sipr,n will be denoted by Slipr,n.
We end this subsection with a remark about a relation between the irreducible component

Slipr,n and the smoothable component Hilbsmr (Pn) of the Hilbert scheme Hilbr(Pn).

Remark 2.46. Let ϕr,Pn = ϕr,n : Hilb
hr,n
S[Pn] → Hilbr(P

n) be the map considered above. Namely,
on closed points it is given by

[I] 7→ [ProjS/I].

Since both schemes are projective, it is a closed map. It sends Sipr,n onto an open subset of
the locus of reduced subschemes. It follows that ϕr,n(Slipr,n) = Hilbsmr (Pn) set-theoretically.
In particular, if Hilbr(Pn) is irreducible then for every closed point [I] ∈ Hilb

hr,n
S[Pn] there is a

point [I ′] ∈ Slipr,n with I = I ′. As a special case, if I is saturated, Hilbr(Pn) is irreducible and
[I] ∈ Hilb

hr,n
S[Pn] then [I] ∈ Slipr,n.

2.2.4 Flag multigraded Hilbert schemes

Let S = k[α0, . . . , αn] be a polynomial ring. Assume that S is graded by an abelian group A.
Let f1, f2 : A → N be numerical functions. Then there are multigraded Hilbert schemes Hilbf1

S

and Hilbf2

S . The goal of this subsection is the construction of the scheme Hilbf1,f2

S parametrizing
pairs K,J of homogeneous ideals such that K ⊆ J and S/K, S/J have Hilbert functions f1 and
f2, respectively. The idea is to show that the condition that K ⊆ J defines a closed subscheme
of the product Hilbf1

S ×Hilbf2

S . The rest of this subsection makes this intuition precise.
Let Hilbf1

S and Hilbf2

S be the functors of points of Hilbf1

S and Hilbf2

S , respectively. We start

with defining the functor Hilbf1,f2

S : k − Alg → Set that Hilbf1,f2

S should represent. It will be a
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subfunctor of the product functor Hilbf1

S ×Hilbf2

S . Given R ∈ k− Alg, let

Hilbf1,f2

S (R) = {(K,J) ∈ Hilbf1

S (R)×Hilbf2

S (R) | K ⊆ J}.

We can now state the main result of this subsection.

Proposition 2.47. Let S = k[α0, . . . , αn] be a polynomial ring graded by an abelian group A. Let
f1, f2 : A→ N be numerical functions. Then the functor Hilbf1,f2

S : k− Alg→ Set is represented

by a closed subscheme of Hilbf1

S ×Hilbf2

S . In particular, it is a projective scheme if the grading
of S is positive.

Before proving Proposition 2.47, we recall some results related to representable functors. See
[32, Cha. VI] or [40, Cha. 8] for good introductions to this topic.

Definition 2.48. A functor F : k − Alg → Set is a sheaf in the Zariski topology if for every
k-algebra R and for every open covering SpecR =

⋃
Ui by distinguished open subschemes

Ui = SpecRfi we have an equalizer sequence

F (R)→
∏
i

F (Rfi)⇒
∏
i,j

F (Rfifj ).

If a functor F : k−Alg→ Set is represented by a k-scheme, then F is a sheaf in the Zariski
topology [32, Thm. VI-14].

Following [45] we introduce the following notion.

Definition 2.49. Let R be a k-algebra and let C be a condition on R-algebras. We say that the
condition C is closed if there exists an ideal a ⊆ R such that an R-algebra φ : R → T satisfies
condition C if and only if φ(a) = 0.

Let F : k− Alg→ Set be a sheaf in the Zariski topology and assume that it is a subfunctor
of the functor of points hX of a k-scheme X. Given a k-algebra R and an element λ ∈ hX(R)

we say that an R-algebra φ : R→ T satisfies condition VR,λ if hX(φ)(λ) ∈ F (T ) ⊆ hX(T ).

In the following remark we show that the ideal a from the definition of a closed condition is
uniquely determined by the condition.

Remark 2.50. Let R be a k-algebra and let C be a closed condition on R-algebras. Then the
ideal a ⊆ R such that R-algebra φ : R→ T satisfies condition C if and only if φ(a) = 0 is uniquely
determined by C. Indeed, if b has analogous property then considering R-algebras R→ R/a and
R→ R/b we conclude that a = b.

In order to show that Hilbf1,f2

S is represented by a closed subscheme of Hilbf1

S ×Hilbf2

S we
will use the following result.

Proposition 2.51 ([45, Prop. 2.9]). Let F : k − Alg → Set be a sheaf in the Zariski topology
and assume that it is a subfunctor of the functor of points hX of a k-scheme X. Assume that
for every k-algebra R and for every λ ∈ hX(R) the condition VR,λ on R-algebras is closed. Then
F is represented by a closed subscheme of X.

Being a closed condition can be checked affine locally. Lemma 2.52 makes this precise.
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Lemma 2.52. Let F : k− Alg→ Set be a sheaf in the Zariski topology and assume that it is a
subfunctor of the functor of points hX of a k-scheme X.

Let R be a k-algebra and λ ∈ hX(R). Suppose that there is a covering SpecR =
⋃
i∈I SpecRgi

of SpecR by distinguished affine open subsets. Let λi = hX(τi)(λ) where τi : R → Rgi is the
localization map. If the condition VRgi ,λi on Rgi-algebras is closed for every i ∈ I, then the
condition VR,λ on R-algebras is closed.

Proof. Let τii′ : Rgi → Rgigi′ be the localization map for every i, i′ ∈ I. For i ∈ I, let ai ⊆ Rgi be
the ideal such that an Rgi-algebra ψ : Rgi → U satisfies condition VRgi ,λi if and only if ψ(ai) = 0.
Then by Remark 2.50 we have aiRgigi′ = ai′Rgigi′ since both ideals show that the condition
VRgigi′ ,hX(τii′ )(λi)

is closed.
It follows that there is an ideal a ⊆ R such that aRgi = ai for i ∈ I. We claim that an

R-algebra φ : R→ T satisfies condition VR,λ if and only if φ(a) = 0.
Let hi = φ(gi) for i ∈ I and σi : T → Thi , σii′ : Thi → Thihi′ be the localization maps. Since

F is a sheaf in the Zariski topology, hX(φ)(λ) ∈ F (T ) if and only if

hX(σi ◦ φ)(λ) ∈ F (Thi) (2.53)

for every i ∈ I and

F (σii′)
(
hX(σi ◦ φ)(λ)

)
= F (σi′i)

(
hX(σi′ ◦ φ)(λ)

)
(2.54)

for every i, i′ ∈ I.
First we show that Equation (2.54) always holds. Indeed, F is a subfunctor of hX . As a

result, we can replace F (σii′) by hX(σii′) and F (σi′i) by hX(σi′i). Since σii′ ◦σi ◦φ = σi′i ◦σi′ ◦φ
the claimed equality follows from the fact that hX is a functor.

Therefore, we need to show that Equation (2.53) is satisfied if and only if φ(a) = 0. For
every i ∈ I, there is an induced map φi : Rgi → Thi such that φi ◦ τi = σi ◦ φ. Thus, hX(σi ◦
φ)(λ) = hX(φi) ◦ hX(τi)(λ) = hX(φi)(λi). It follows that Equation (2.53) is satisfied if and only
if φi(ai) = 0 for every i ∈ I.

We have

φ(a) = 0⇔ σi ◦ φ(a) = 0 for all i ∈ I ⇔ φi ◦ τi(a) = 0 for all i ∈ I ⇔ φi(ai) = 0 for all i ∈ I.

This implies that Equation (2.53) is satisfied if and only if φ(a) = 0 and thus, finishes the
proof.

We start with checking that the functor Hilbf1,f2

S is a sheaf in the Zariski topology. In fact,
it will be convenient to prove this in slightly greater generality. Let D ⊆ A and define the
subfunctor Hilbf1,f2

S,D of the product functor Hilbf1

S ×Hilbf2

S by

Hilbf1,f2

S,D (R) = {(K,J) ∈ Hilbf1

S (R)×Hilbf2

S (R) | Ka ⊆ Ja for every a ∈ D}.

Lemma 2.55. In the above notation, Hilbf1,f2

S,D is a sheaf in the Zariski topology. In particular,

Hilbf1,f2

S is a sheaf in the Zariski topology.

Proof. Let R be a k-algebra. Consider a covering of SpecR with distinguished affine open
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subschemes {SpecRgi}i∈I . We need to show that we have an equalizer sequence

Hilbf1,f2

S,D (R)→
∏
i∈I

Hilbf1,f2

S,D (Rgi)⇒
∏
i,i′∈I

Hilbf1,f2

S,D (Rgigi′ ).

For i, i′ ∈ I, let τii′ : Rgi → Rgigi′ and τi : R → Rgi be the localization maps. Let (Ki, Ji) ∈
Hilbf1,f2

S,D (Rgi) for i ∈ I be such that

Hilbf1,f2

S,D (τii′)(Ki, Ji) = Hilbf1,f2

S,D (τi′i)(Ki′ , Ji′)

for all i, i′ ∈ I. We need to show that there exists a unique element (K,J) ∈ Hilbf1,f2

S,D (R) such

that Hilbf1,f2

S,D (τi)(K,J) = (Ki, Ji) for every i ∈ I.

Since Hilbf1,f2

S,D is a subfunctor of the representable functor Hilbf1

S × Hilbf2

S , it follows that

there is a unique element (K,J) ∈ Hilbf1

S (R) × Hilbf2

S (R) such that Hilbf1

S (τi)(K) = Ki and

Hilbf2

S (τi)(J) = Ji for i ∈ I. We are left with showing that Ka ⊆ Ja for every a ∈ D.
Let π be the natural map

⊕
a∈DKa →

⊕
a∈D(R[α]/J)a and denote kerπ →

⊕
a∈DKa by θ.

We claim that θ is an isomorphism. Indeed, θgi is an isomorphism for all i ∈ I since (Ki)a ⊆ (Ji)a
for every a ∈ D. Subschemes SpecRgi cover SpecR. It follows that θp is an isomorphism for all
p ∈ SpecR and thus, θ is an isomorphism.

Now we can give a proof of the existence of flag multigraded Hilbert schemes.

Proof of Proposition 2.47. The functor Hilbf1,f2

S is a sheaf in the Zariski topology by Lemma 2.55.
Therefore, by Proposition 2.51, it is enough to show that the following holds. Let R be a k-algebra
and (K,J) ∈ Hilbf1

S (R) × Hilbf2

S (R). There exists an ideal a ⊆ R such that K ⊗R T ⊆ J ⊗R T
for an R-algebra φ : R→ T if and only if φ(a) = 0.

We start with the following reduction. Given a ∈ A consider the functor Hilbf1,f2

S,{a}. We will
show that there exists an ideal ba ⊆ R such that Ka⊗R T ⊆ Ja⊗R T for an R-algebra φ : R→ T

if and only if φ(ba) = 0. Then we take a =
∑

a∈A ba.
Moreover, by Lemma 2.52 by replacing R by its localization, we may assume that (R[α]/J)a

is a free R-module. Let (R[α]/J)a = ⊕f2(a)
k=1 R · ea,k. Let π : Ka → (R[α]/J)a be the natural

map. Let C be the condition on R-algebras such that φ : R → T satisfies condition C if and
only if π ⊗R idT is the zero map. We need to show that condition C is closed. Let (ba,i)i∈Ia
be a set of generators of Ka as an R-module. Let π(ba,i) =

∑f2(a)
k=1 ca,i,kea,k. Then π ⊗R idT

is the zero map if and only if φ(ca,i,k) = 0 for every i ∈ Ia and k ∈ {1, . . . , f2(a)}. The ideal
ba = (ca,i,k)i∈Ia,k∈{1,...,f2(a)} shows that condition C is closed.

2.3 Deformation theory

In this section we recall some definitions and results from deformation theory. Subsection 2.3.1
introduces a small amount of general theory that we will need. Our main reference is [34].

In Subsection 2.3.2 we study the tangent-obstruction theory of multigraded Hilbert schemes
and flag multigraded Hilbert schemes.
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2.3.1 Definitions and basic results

Let Art/k be the category of local Artin k-algebras with residue field k. Observe that every
morphism of k-algebras from Art/k is a local morphism of local rings.

The main objects of study of deformation theory are deformation functors. We will consider
the class of deformation functors coming from k-points of k-schemes.

Definition 2.56. Let X be a k-scheme and hX : Schopk → Set be its functor of points. Let
x ∈ hX(Speck). Then we have the corresponding deformation functor

DX,x : Art/k→ Set

defined by DX,x(A) = {λ ∈ hX(SpecA) | hX(π#
A )(λ) = x}, where πA : A→ A/mA is the natural

map to the residue field of A and π#
A is the corresponding map of affine schemes. A morphism

of deformation functors DX,x → DY,y is a natural transformation of functors.

A morphism of k-schemes determines morphisms of deformation functors.

Example 2.57. Let f : X → Y be a morphism of k-schemes and let x ∈ X, y = f(x) be
k-points. Then the natural transformation hX → hY of functors of points corresponding to f ,
induces a morphism of deformation functors DX,x → DY,y.

Suppose we have a k-scheme X and a k-point x ∈ X. A key question is whether given a
surjection π : B → A of algebras in Art/k and an element of λ ∈ DX,x(A) we can lift it to an
element of DX,x(B). The simplest situation is when the kernel of π is killed by the maximal
ideal of B.

Definition 2.58. A small extension is a short exact sequence

0→M → B → A→ 0

where A,B are in Art/k and mB ·M = 0. Here mB is the maximal ideal of B.

Definition 2.59. A deformation functor DX,x has a tangent-obstruction theory if there are finite
dimensional k-vector spaces TX,x (called the tangent space) and ObX,x (called the obstruction
space) such that:

1. For all small extensions 0→M → B → A→ 0 there exists an exact sequence of sets

TX,x ⊗k M → DX,x(B)→ DX,x(A)
obB→A−−−−→ ObX,x⊗kM ;

(Exactness at DX,x(A) means that an element of DX,x(A) lifts to DX,x(B) if and only if
its image in ObX,x⊗kM is zero. Exactness at DX,x(B) means that there is a transitive
action of TX,x ⊗k M on each fiber of DX,x(B)→ DX,x(A)).

2. If A = k then the sequence becomes

0→ TX,x ⊗k M → DX,x(B)→ DX,x(k)
obB→k−−−−→ ObX,x⊗kM ;

3. Suppose we have a commutative diagram whose rows are small extensions
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0 M B A 0

0 M ′ B′ A′ 0.

ϕM ϕB ϕA

Then, there is a commutative diagram

TX,x ⊗k M DX,x(B) DX,x(A) ObX,x⊗kM

TX,x ⊗k M
′ DX,x(B′) DX,x(A′) ObX,x⊗kM

′.

idTX,x
⊗kϕM DX,x(ϕB)

obB→A

DX,x(ϕA) idObX,x
⊗kϕM

obB′→A′

The tangent spaceTX,x is uniquely determined and agrees with the usual definition of tangent
space to scheme X at point x.

Proposition 2.60 ([34, Prop. 6.1.23]). Let DX,x be a deformation functor with tangent ob-
struction theory (TX,x,ObX,x). Then TX,x = DX,x(k[ε]/(ε2)) is the tangent space to X at x.

On the other hand, the obstruction space ObX,x is not uniquely determined by the deforma-
tion functor DX,x. In fact, given a tangent-obstruction theory (TX,x,ObX,x) and an injective
k-linear map ι : ObX,x → Ob′X,x to a k-vector space Ob′X,x, there is a tangent-obstruction theory
for DX,x with obstruction space Ob′X,x and obstruction maps ob′B→A = (ι ⊗k idM ) ◦ obB→A for
a small extension 0→M → B → A→ 0.

We will need the following notion of a map of tangent-obstruction theories.

Definition 2.61. Let η : DX,x → DY,y be a morphism of deformation functors with tangent-
obstruction theories TX,x,ObX,x and TY,y,ObY,y, respectively. A map of tangent-obstruction
theories is a pair of linear maps Tη : TX,x → TY,y and Obη : ObX,x → ObY,y such that for every
small extension 0→M → B → A→ 0 there is a commutative diagram

TX,x ⊗k M DX,x(B) DX,x(A) ObX,x⊗kM

TY,y ⊗k M DY,y(B) DY,y(A) ObY,y ⊗kM.

Tη⊗kidM η(B)

obB→A

η(A) Obη ⊗k idM

obB→A

(2.62)

The commutativity of the left square means that η(B) is equivariant with respect to the natural
actions of TX,x ⊗M and TY,y ⊗M .

Proposition 2.60 showed that the tangent space of a deformation functor is uniquely defined.
Similarly, for a natural transformation of deformation functors η : DX,x → DY,y, if we set Tη =

η
(
k[ε]/(ε)2

)
, then the left square of diagram (2.62) commutes.

The main result from deformation theory that we will use is the smoothness criterion [34,
Rmk. 6.3.2]. In order to state it, we recall the definition of a smooth morphism of deformation
functors.

Definition 2.63. Let f : X → Y be a morphism of k-schemes locally of finite type. Let x, y =

f(x) be k-points. A morphism of deformation functors DX,x → DY,y is called smooth if for every
small extension 0→M → B → A→ 0, the natural map DX,x(B)→ DY,y(B)×DY,y(A) DX,x(A)

is surjective.
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Theorem 2.64 ([34, Rmk. 6.3.2]). Let f : X → Y be a morphism of k-schemes locally of finite
type. Let x, y = f(x) be k-points. Then f is smooth at x if and only if the morphism of
deformation functors DX,x → DY,y is smooth.

We will use the following special cases of Theorem 2.64.

Corollary 2.65. Let f : X → Y be a morphism of k-schemes locally of finite type. Let x, y =

f(x) be k-points. Then:

(i) The point x is a smooth point of X if and only if DX,x(B) → DX,x(A) is surjective for
every small extension 0→M → B → A→ 0.

(ii) Assume that deformation functors DX,x and DY,y have tangent-obstruction theories. Let
η : DX,x → DY,y be the morphism of deformation functors defined by f . Suppose that there
is a map of tangent-obstruction theories (Tη,Obη) which is surjective on tangent spaces
and injective on obstruction spaces. Then f is smooth at x.

Proof. (i) This follows from the fact that if Y = Speck then DY,y(A) is a singleton for every
A ∈ Art/k.

(ii) This follows from chasing the diagram (2.62).

We end this subsection with two lemmas from deformation theory that will be used in Chapter 3.

Lemma 2.66. Assume that f : X → Y is a morphism of k-schemes locally of finite type. Let
x, y = f(x) be closed points. Assume that functors DX,x, DY,y have tangent-obstruction theories
with obstruction spaces ObX,x and ObY,y, respectively. If y is a smooth point and f induces a
map of obstruction theories which is injective on obstruction spaces then x is a smooth point.

Proof. By Corollary 2.65(i) it is enough to show that for every small extension 0→ M → B →
A→ 0, the map DX,x(B)→ DX,x(A) is surjective. Consider the commutative diagram of sets

DX,x(B) DX,x(A) ObX,x⊗M

DY,y(B) DY,y(A) ObY,y ⊗M

whose rows are the exact sequences from Definition 2.59. Since y is a smooth point, the lower
left map is surjective and thus, the lower right map takes every element of DY,y(A) to 0. By
assumption the map on obstruction spaces is injective. It follows that every element of DX,x(A)

is mapped to 0 by the upper right map. Hence the upper left map is surjective, as claimed.

Before presenting the final lemma of this subsection, we introduce some notation. Let
g′ : X → X ′ and g′′ : X → X ′′ be morphisms of k-schemes locally of finite type. Let x ∈ X

and x′ = g′(x), x′′ = g′′(x) be k-points.
Assume that there are tangent-obstruction theories for DX′,x′ with obstruction space ObX′,x′

and for DX′′,x′′ with obstruction space ObX′′,x′′ . Assume that there is a k-vector space L and
k-linear maps α′ : ObX′,x′ → L and α′′ : ObX′′,x′′ → L such that there is a tangent-obstruction
theory for DX,x with obstruction space ObX,x given by the pullback
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ObX,x ObX′′,x′′

ObX′,x′ L.

β′′

β′ α′′

α′

Moreover, assume that β′, β′′ determine maps of tangent-obstruction theories.

Lemma 2.67. In the above notation, assume additionally that x′ is a smooth point of X ′. Then
there is a tangent-obstruction theory for DX,x with obstruction space kerα′′. Moreover, the
canonical injection

ι : kerα′′ → ObX′′,x′′ .

induces a map of tangent-obstruction theories.

Proof. By the universal property of fiber product, there is a map γ : kerα′′ → ObX,x such that

β′′ ◦ γ = ι (2.68)

and
β′ ◦ γ = 0. (2.69)

Let η′ : DX,x → DX′,x′ and η′′ : DX,x → DX′′,x′′ be the natural transformations induced by
g′, g′′, respectively. Given a small extension 0 → M → B → A → 0, we denote the obstruction
maps DX,x(A)→ ObX,x⊗M by obX,x;B→A. We do similarly with DX′,x′ and DX′′,x′′ .
Step 1: Definition of obstruction maps

Fix a small extension 0 → M → B → A → 0. We will construct a map DX,x(A) →
kerα′′ ⊗M . Consider the commutative diagram:

DX,x(A) ObX,x⊗M ObX′,x′ ⊗M

kerα′′ ⊗M ObX′′,x′′ ⊗M L⊗M.

obX,x;B→A

β′′⊗idM

β′⊗idM

α′⊗idM

ι⊗idM α′′⊗idM

We have
(β′ ⊗ idM ) ◦ obX,x;B→A = obX′,x′;B→A ◦ η′(A) = 0, (2.70)

where the first equality follows from the fact that β′ defines a map of tangent-obstruction theories
and the second is a consequence of smoothness of x′ (see Corollary 2.65(i)).

It follows that the image of (β′′ ⊗ idM ) ◦ obX,x;B→A is contained in kerα′′ ⊗M . Thus, there
is a map obB→A : DX,x(A)→ kerα′′ ⊗M such that

(ι⊗ idM ) ◦ obB→A = (β′′ ⊗ idM ) ◦ obX,x;B→A. (2.71)

Step 2: Factorization of obstruction maps
We claim that

(γ ⊗ idM ) ◦ obB→A = obX,x;B→A (2.72)

for every small extension 0→M → B → A→ 0. By assumptions we have a pullback diagram
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ObX,x⊗M ObX′x′ ⊗M

ObX′′,x′′ ⊗M L⊗M.

β′⊗idM

β′′⊗idM α′⊗idM

α′′⊗idM

It remains a pullback in the category Set of sets. Therefore, in order to show Equation (2.72) it
is enough to observe that

(β′′ ⊗ idM ) ◦ (γ ⊗ idM ) ◦ obB→A
(2.68)

= (ι⊗ idM ) ◦ obB→A
(2.71)

= (β′′ ⊗ idM ) ◦ obX,x;B→A

and
(β′ ⊗ idM ) ◦ (γ ⊗ idM ) ◦ obB→A

(2.69)
= 0

(2.70)
= (β′ ⊗ idM ) ◦ obX,x;B→A.

Step 3: Verification of axiom 1 of tangent-obstruction theory
We verify that for every small extension 0 → M → B → A → 0 an element λ ∈ DX,x(A)

lifts to DX,x(B) if and only if obB→A(λ) = 0.
The map γ⊗ idM is injective. Therefore, by Equation (2.72) we get obB→A(λ) = 0 if and only

if obX,x;B→A(λ) = 0. This is equivalent to the existence of a lift of λ since the map obX,x;B→A is
a part of the data of tangent-obstruction theory of DX,x.
Step 4: Verification of axiom 3 of tangent-obstruction theory

Let

0 M B A 0

0 M ′ B′ A′ 0

ϕM ϕB ϕA

be a commutative diagram whose rows are small extensions. We need to verify that

(idkerα′′ ⊗ϕM ) ◦ obB→A = obB′→A′ ◦DX,x(ϕA).

Since (γ ⊗ idM ′) is injective it is enough to observe that

(γ ⊗ idM ′) ◦ (idkerα′′ ⊗ϕM ) ◦ obB→A = (idObX,x ⊗ϕM ) ◦ (γ ⊗ idM ) ◦ obB→A
(2.72)

= (idObX,x ⊗ϕM ) ◦ obX,x;B→A = obX,x;B′→A′ ◦DX,x(ϕA)

(2.72)
= (γ ⊗ idM ′) ◦ obB′→A′ ◦DX,x(ϕA).

The third equality follows from the fact that the maps obX,x;B→A and obX,x;B′→A′ are part of
the data of a tangent-obstruction theory.
Step 5: Map of tangent-obstruction theories

Finally, we verify that ι : kerα′′ → ObX′′,x′′ defines a map of tangent-obstruction theories.
Let 0→M → B → A→ 0 be a small extension. Then

(ι⊗ idM ) ◦ obB→A
(2.71)

= (β′′ ⊗ idM ) ◦ obX,x;B→A = obX′′,x′′;B→A ◦ η′′(A)

where the second equality follows from the fact that β′′ induces a map of tangent-obstruction
theories.
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2.3.2 Tangent-obstruction theory of multigraded Hilbert schemes

Let S = k[α0, α1, . . . , αn] be a polynomial ring graded by an abelian group A. Note that in
this subsection we denote the grading group by A instead of A to avoid confusion with small
extensions that will be used in the proofs. Let h : A → N be a numerical function. In this
subsection we study a tangent-obstruction theory of HilbhS .

Remark 2.73. Suppose that 0→M → B → A→ 0 is a small extension and J̃ ∈ DHilbhS ,[J ](A).

Then a homogeneous ideal J̃ ′ ⊆ S ⊗k B is a lift of J̃ if and only if:

1. (S ⊗k B)/J̃ ′ is B-flat;

2. J̃ ′ ⊗B A ∼= J̃ .

Indeed, since B is an Artin local ring, it follows from [79, Lemma 051G] that condition 1. implies
that (Sa⊗kB)/J̃ ′a is a free B-module for every a ∈ A. Thus, it is locally free of rank h(a) since
((Sa ⊗k B)/J̃ ′a)⊗B A is a locally free A-module of rank h(a).

Theorem 2.74. In the above notation, let [J ] be a closed point of HilbhS. Then the deformation
functor DHilbhS ,[J ] has a tangent-obstruction theory with tangent space THilbhS ,[J ] = HomS(J, S/J)0

and obstruction space ObHilbhS ,[J ] = Ext1
S(J, S/J)0.

Proof. For tangent space, see [45, Prop. 1.6]. We only sketch the construction of obstruction
maps. For details, we refer to [34, Thm. 6.4.5] where the ungraded case is considered.

Let 0 → M → B → A → 0 be a small extension. Let J̃ ∈ DHilbhS ,[J ](A). We study the lifts

of J̃ to J̃ ′ ∈ DHilbhS ,[J ](B).
Consider the following commutative diagram with exact row and columns:

0 0

J̃ ⊗AM J̃

0 S ⊗k M S ⊗k B S ⊗k A 0

(
(S ⊗k A)/J̃

)
⊗AM (S ⊗k A)/J̃

0 0 .

α

β

By a diagram chase, we have a short exact sequence of S ⊗k B-modules

0→
(
(S ⊗k A)/J̃

)
⊗AM → kerβ/ imα→ J̃ → 0.

Furthermore, M · (kerβ) ⊆ imα. Thus, the above short exact sequence is a sequence of S ⊗k A-
modules. Finally, since mAM = 0, we have(

(S ⊗k A)/J̃
)
⊗AM ∼=

(
(S ⊗k A)/J̃

)
⊗A k)⊗k M ∼= S/J ⊗k M.

36

https://stacks.math.columbia.edu/tag/051G


Therefore, we have associated with J̃ ∈ DHilbhS ,[J ](A) a short exact sequence of S ⊗k A-modules

0→ S/J ⊗k M → kerβ/ imα→ J̃ → 0. (2.75)

We can consider the corresponding class ob ∈ Ext1
S⊗kA

(J̃ , S/J ⊗kM). Since all morphisms were
of degree 0, in fact ob ∈ Ext1

S⊗kA
(J̃ , S/J ⊗k M)0.

Lifts of J̃ ∈ DHilbhS ,[J ](A) to J̃ ′ ∈ DHilbhS ,[J ](B) are in 1-1 correspondence with splittings

ξ : J̃ → kerβ/ imα of the short exact sequence (2.75) which are homogeneous of degree 0.
Finally, we have natural isomorphisms:

Ext1
S⊗kA(J̃ , S/J ⊗k M)0

∼= Ext1
S(J̃ ⊗A k, S/J ⊗k M)0

∼= Ext1
S(J, S/J)0 ⊗k M. (2.76)

We will also use the following description of tangent-obstruction theory for flag multigraded
Hilbert schemes.

Theorem 2.77. In the above notation, let k : A→ N be another numerical function. Let [K ⊆ J ]

be a closed point of Hilbk,hS and assume that the natural map

HomS(K,S/K)0 → HomS(K,S/J)0

is surjective. Then there is a tangent-obstruction theory for the deformation functor D
Hilbk,hS ,[K⊆J ]

with tangent and obstruction spaces given by pullbacks

T
Hilbk,hS ,[K⊆J ]

HomS(K,S/K)0

HomS(J, S/J)0 HomS(K,S/J)0

Tπ2

Tπ1 Ob
Hilbk,hS ,[K⊆J ]

Ext1
S(K,S/K)0

Ext1
S(J, S/J)0 Ext1

S(K,S/J)0.

Obπ2

Obπ1

Moreover, the maps Tπ1 ,Obπ1 and Tπ2 ,Obπ2 induce maps of tangent-obstruction theories.

Proof. Proof is analogous to the proof of [59, Thm 4.10]. Therefore, we only sketch the proof.
For tangent space, observe that the bijection from [45, Prop. 1.6]

THilbhS ,[J ] = DHilbhS ,[J ](k[ε]/(ε2))↔ HomS(J, S/J)0

is given explicitly by

HomS(J, S/J)0 3 ϕ 7→ J̃ = {x+εy | x ∈ J, y ∈ S such that y+J = ϕ(x)} ∈ DHilbhS ,[J ](k[ε]/(ε2))}.

See also [48, Prop. 2.3] for the proof of the analogous result in the ungraded case.
Therefore, an element of D

Hilbk,hS ,[K⊆J ]
(k[ε]/(ε2)) is a pair of homomorphisms

ϕ ∈ HomS(J, S/J)0 and ψ ∈ HomS(K,S/K)0

corresponding to ideals J̃ , K̃ ⊆ k[ε]/(ε2) ⊗k S. However, we need to consider only those pairs
ϕ,ψ for which K̃ ⊆ J̃ . Therefore, given x ∈ K and y ∈ S such that y + K = ψ(x) we want
ϕ(x) = y + J . This means precisely, that the images of ϕ and ψ in HomS(K,S/J)0 agree.
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Now we proceed to the construction of obstruction maps. Let 0 → M → B → A →
0 be a small extension and let {K̃, J̃} ∈ D

Hilbk,hS
(A). Then there are obstructions obJ ∈

Ext1
S(J, S/J)0⊗kM for lifting J̃ to an element J̃ ′ ∈ DHilbhS

(B) and obK ∈ Ext1
S(K,S/K)0⊗kM

for lifting K̃ to K̃ ′ ∈ DHilbkS
(B).

Let
0→ S/K ⊗k M

ιK−→ kerβK/ imβK → K̃ → 0 (2.78)

and
0→ S/J ⊗k M → kerβJ/ imβJ → J̃ → 0

be the extensions defining obK and obJ , respectively (see the proof of Theorem 2.74). Then,
the images of obK and obJ in Ext1

S(K,S/J)0 ⊗k M ∼= Ext1
S⊗kA

(K̃, S/J ⊗k M)0 agree since they
coincide with the class of the extension

0→ S/J ⊗k M → kerβK/ imαJ → K̃ → 0.

Therefore, we have a well defined map obB→A : D
Hilbk,hS

(A) → Ob
Hilbk,hS ,[K⊆J ]

⊗kM where

Ob
Hilbk,hS ,[K⊆J ]

is given by the pullback as in the statement. If {K̃, J̃} ∈ D
Hilbk,hS

(A) extends to

{K̃ ′, J̃ ′} ∈ D
Hilbk,hS

(B) then in particular J̃ and K̃ lift to J̃ ′ and K̃ ′. Thus, obJ = 0 and obK = 0.

Conversely, assume that obJ = 0 and obK = 0. Then there are J̃ ′ ∈ DHilbhS
(B), K̃ ′ ∈

DHilbkS
(B) lifting J̃ and K̃, respectively. However, there is no reason to expect that K̃ ′ ⊆ J̃ ′.

Let f : K̃ ′ → (S ⊗k B)/J̃ ′ be the natural map. We will modify K̃ ′ if necessary so that f
becomes zero. Consider the following commutative diagram:

K ⊗k M S ⊗k M S/K ⊗k M

J ⊗k M S ⊗k M S/J ⊗k M

K̃ ′ S ⊗k B (S ⊗k B)/K̃ ′

J̃ ′ S ⊗k B (S ⊗k B)/J̃ ′

K̃ S ⊗k A (S ⊗k A)/K̃

J̃ S ⊗k A (S ⊗k A)/J̃ .

a

b

By a diagram chase, we have f ◦ a = 0 = b ◦ f . Therefore, f is induced by a map f ′ : K̃ →
S/J ⊗k M .

We have a commutative diagram:
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HomS⊗kA(K̃, S/K ⊗k M)0 HomS⊗kA(K̃, S/J ⊗k M)0

HomS(K,S/K)0 ⊗k M HomS(K,S/J)0 ⊗k M.

∼= ∼=

By assumptions, the lower horizontal map is surjective. Therefore, so is the upper horizontal
map. Thus, there is a map g : K̃ → S/K ⊗kM homogeneous of degree 0 such that it maps to f ′

under the upper horizontal map.
The ideal K̃ ′ is defined by a splitting ξK : K̃ → kerβK/ imαK of the short exact sequence

(2.78). Then ξK − ιK ◦ g : K̃ → kerβK/ imαK is another splitting of the short exact sequence
(2.78) so it defines a lift K̃ ′′ ∈ DHilbkS ,[K](B) of K̃. Then it can be checked by a diagram chase

that the natural map K̃ ′′ → (S ⊗k B)/J̃ ′ is zero. Thus K̃ ′′ ⊆ J̃ ′ is a lift of K̃ ⊆ J̃ .

Let S have standard Z-grading. Let f be the Hilbert function of S/I where I is a homogeneous
ideal of S. Let d be a positive integer and g : Z→ Z be defined by

g(a) =

{
f(a) for a ≥ d
dimk Sa otherwise.

Lemma 2.79. In the above notation, let π : HilbfS → HilbgS be the natural map given on closed
points by [I] 7→ [I ∩ md]. Let [I] ∈ HilbfS be a closed point. Let η : D

HilbfS ,[I]
→ DHilbgS ,[I∩md] be

the morphism of deformation functors determined by π. Then the natural maps

HomS(I, S/I)0 → HomS(I ∩md, S/I)0
∼=−→ HomS(I ∩md, S/I ∩md)0

and
Ext1

S(I, S/I)0 → Ext1
S(I ∩md, S/I)0

∼=−→ Ext1
S(I ∩md, S/I ∩md)0

from exact sequence of Ext groups, define a morphism of tangent-obstruction theories as defined
in Theorem 2.74.

Proof. Observe that both isomorphisms in the statement follow from the fact that I ∩ md has
minimal generators of degree at least d, so the degree 0 parts of the Ext groups do not depend
on (S/I)<d. The claimed description of the map on tangent spaces follows from the bijection

T[I] HilbfS ↔ D
HilbfS

(k[ε]/(ε2))

from [45, Prop. 1.6] which has been recalled at the beginning of the proof of Theorem 2.77.
Now we concentrate on obstruction spaces. Let 0→M → B → A→ 0 be a small extension,

Ĩ ∈ D
HilbfS ,[I]

(A) and Ĩ≥d ∈ DHilbgS ,[I∩md](A) be its image under η(A).
Let

0→ S/I ⊗k M → kerβ/ imα→ Ĩ → 0

and
0→ S/I≥d ⊗k M → kerβ′/ imα′ → Ĩ≥d → 0

be as in Equation (2.75).
Let obI ∈ Ext1

S(I, S/I)0⊗kM and obI∩md ∈ Ext1
S(I ∩md, S/(I ∩md))0⊗kM be obstructions

corresponding to Ĩ and Ĩ≥d, respectively.
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Then, as in the proof of Theorem 2.77 we consider the extension

0→ S/I ⊗k M → kerβ′/ imα→ Ĩ≥d → 0. (2.80)

We see, that the images of obI and obI∩md in Ext1
S(I ∩ md, S/I)0 ⊗k M agree since they

coincide with the class of the extension given by Equation (2.80). Therefore, if we consider
DHilbgS ,[I∩md] with obstruction space Ext1

S(I∩md, S/I)0 via the isomorphism Ext1
S(I∩md, S/I)0

∼=
Ext1

S(I ∩md, S/I ∩md)0, then the natural map of Ext groups as in the statement induces a map
of obstruction theories.

2.4 Ranks and apolarity lemmas

In this section we recall various notions of rank and corresponding versions of apolarity lemma.
Moreover, we define secant and cactus varieties. The apolarity lemma for border rank from [13]
reflects a connection between ideals in Slipr,n and the condition that a homogeneous polynomial
in n+1 variables has border rank at most r. This is the main motivation to study the irreducible
component Slipr,n. Observe that the connection from [13] works for more general toric varieties.

We present the theory of ranks of homogeneous subspaces instead of the more standard
version of ranks of homogeneous polynomials. This is due to the fact that we shall need the
general version in Chapter 5.

2.4.1 Apolarity action

Let n be a positive integer and S = k[α0, . . . , αn] be a polynomial ring. Let S∗ = kdp[x0, . . . , xn]

be the graded dual ring. That is, as a Z-graded k-vector space

S∗ =
⊕
a∈Z

Homk(Sa, k)

and the ring structure is the divided power structure. See [55, Appendix A] for basic properties
of divided power ring S∗. For u = (u0, . . . , un) ∈ Nn+1 we define

αu =
n∏
i=0

αuii .

For an integer a ∈ Z, the vector space Sa has a monomial basis, i.e.

Sa =
⊕

u∈Nn+1,|u|=a

kαu

where |u| =
∑n

i=0 ui. Let {x[u] | u ∈ Nn+1, |u| = a} be the dual basis of S∗a. We define the
multiplication in S∗ on divided power monomials by

x[u] · x[v] =
(u + v)!

u!v!
x[u+v],

where w! = w0! · . . . · wn! for w ∈ Nn+1. Then we extend it by linearity to define a k-algebra
structure on S∗.
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There is a natural action of S on S∗ denoted by y given on homogeneous elements θ ∈ Sa
and F ∈ S∗b by

(θyF )(ξ) = F (θξ) for every ξ ∈ Sb−a.

Using the monomial bases, the action of S on S∗ can be written in the form

αuyx[v] =

{
x[v−u] if vk ≥ uk for k = 0, . . . , n

0 otherwise.

If k has characteristic zero then x[v] = xv

v! and S∗ is a polynomial ring.
Let d be a positive integer and W ⊆ S∗≤d be a vector subspace. Using the action of S on S∗,

we can associate with W a k-algebra Apolar(W ).

Definition 2.81. Let d be a positive integer and W ⊆ S∗≤d be a non-zero linear subspace. The
annihilator of W is the ideal

Ann(W ) = {θ ∈ S | θyf = 0 for every f ∈W}.

The apolar algebra of W is Apolar(W ) = S/Ann(W ). If W = 〈f〉 for some f ∈ S∗≤d, we write
Ann(f) and Apolar(f) instead of Ann(〈f〉) and Apolar(〈f〉).

Annihilator Ann(W ) of W ⊆ S∗≤d plays a key role in apolarity lemmas which connect the
properties of Ann(W ) and various notions of ranks of W .

2.4.2 (Border) rank, smoothable rank and (border) cactus rank

We keep the notation of Subsection 2.4.1. Let d be a positive integer. We recall various notions
of rank of a subspace V of S∗d . It is important to realize that the process of generalizing the
definition of rank was not as straight-forward as it may seem from the short presentation that
we give.

We start with introducing the rank of V . If V = 〈F 〉 is one-dimensional, this is a classical
notion that goes back to works of Sylvester. The general case was studied among others by
Terracini [78] and Bronowski [8].

Definition 2.82. Let d be a positive integer and V ⊆ S∗d be a non-zero linear subspace. We
define rank of V to be

r(V ) = min{r ∈ Z | PV ⊆ 〈L[d]
1 , . . . , L[d]

r 〉 for some Li ∈ S∗1},

where 〈−〉 denotes the projective linear span.

It is interesting to describe, for a positive integer k, the locus of points [V ] ∈ Gr(k, S∗d) with
rank at most r. However, a more natural geometric object is the Zariski closure of this locus.
Recall that νd : PS∗1 → PS∗d given by [L] 7→ [L[d]] is the Veronese embedding.

Definition 2.83. Let d, k be positive integers. The r-th Grassmann secant variety is

σr,k
(
νd(PS∗1)

)
= {[V ] ∈ Gr(k, S∗d) | r(V ) ≤ r}.

If k = 1, we write σr
(
νd(PS∗1)

)
instead of σr,1

(
νd(PS∗1)

)
and call it the r-th secant variety.
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With Grassmann secant varieties already defined, it is natural to introduce another variant
of rank.

Definition 2.84. Let d, k be positive integers and V ⊆ S∗d be a k-dimensional linear subspace.
Then the border rank of V is defined to be

br(V ) = min{r ∈ Z | [V ] ∈ σr,k
(
νd(PS∗1)

)
}.

The ranks and borders ranks of monomials have been studied in [63]. See also [62], [11] and
[38] for some results concerning equations of secant varieties.

The definition of rank of [V ] ∈ Gr(k, S∗d) can be restated as follows

r(V ) = min{r ∈ Z | there exists a smooth zero-dimensional subscheme

R ⊆ PS∗1 of length r such that PV ⊆ 〈νd(R)〉}.

One can consider different variants of this definition. The condition that R is smooth could
be replaced by the condition that it is a limit of smooth schemes or it can be even skipped
completely. These lead to the notions of smoothable rank and cactus rank. Let Hilbsmr (PS∗1) be
the smoothable component, i.e. the closure of the locus of points of Hilbr(PS∗1) corresponding
to smooth subschemes.

Definition 2.85. Let d, k be positive integers and [V ] ∈ Gr(k, S∗d). The smoothable rank of V
is defined to be

sr(V ) = min{r ∈ Z | PV ⊆ 〈νd(R)〉 for some [R] ∈ Hilbsmr (PS∗1)}.

We will be interested only in the smoothable rank of a non-zero homogeneous polynomial
F ∈ S∗d . We have br(F ) ≤ sr(F ). Following [12] we make a definition capturing the cases where
the inequality is strict.

Definition 2.86. Let d be a positive integer and F ∈ S∗d be a non-zero polynomial. Then F is
wild if br(F ) < sr(F ).

Considering the whole Hilbert scheme Hilbr(PS∗1) instead of its smoothable component leads
to the definition of cactus rank.

Definition 2.87. Let d, k be a positive integers and [V ] ∈ Gr(k, S∗d). The cactus rank of V is
defined to be

cr(V ) = min{r ∈ Z | PV ⊆ 〈νd(R)〉 for some [R] ∈ Hilbr(PS∗1)}.

Similarly, as in the case of rank, we can consider the Zariski closure in Gr(k, S∗d) of those [V ]

which have cactus rank at most r.

Definition 2.88. Let d, k be positive integers. The r-th Grassmann cactus variety is

κr,k
(
νd(PS∗1)

)
= {[V ] ∈ Gr(k, S∗d) | cr(V ) ≤ r}.

If k = 1, we write κr
(
νd(PS∗1)

)
instead of κr,1

(
νd(PS∗1)

)
and call it the r-th cactus variety.
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Cactus varieties have been introduced in [11]. The name might be slightly confusing since in
general cactus varieties are not irreducible. An example when the cactus variety is reducible is
presented in [39, Thm. 1.4, 1.5]. The cactus rank has been studied for instance in [73] and [4].

Finally, we define the border cactus rank in a way analogous to the definition of border rank.

Definition 2.89. Let d, k be positive integers and V ⊆ S∗d be a k-dimensional linear subspace.
Then the border cactus rank of V is defined to be

bcr(V ) = min{r ∈ Z | [V ] ∈ κr,k
(
νd(PS∗1)

)
}.

2.4.3 Apolarity lemmas

The ranks of a subspace V ⊆ S∗d can be computed by apolarity lemmas. We state only the
versions of apolarity lemma that we shall use. We start with the one related to the cactus rank.

Proposition 2.90 (Cactus apolarity lemma). Let d be a positive integer and V ⊆ S∗d be a
non-zero subspace. Then cr(V ) ≤ r for a positive integer r if and only if there is a saturated,
homogeneous ideal I ⊆ Ann(V ) such that S/I has Hilbert polynomial r.

For a proof, see [77, Thm. 4.7].
Next, we deal with the border rank. The version for a polynomial F ∈ S∗d is a special case

of a recent result by Buczyńska and Buczyński [13]. It is the main motivation for studying the
irreducible component Slipr,n of the multigraded Hilbert scheme Hilb

hr,n
S . The following version

for subspaces is presented in [39, Prop. 2.3] and follows from the proof of [14, Thm. 1.3].

Proposition 2.91 (Border apolarity lemma). Let d be a positive integer and V ⊆ S∗d be a non-
zero subspace. Then br(V ) ≤ r for a positive integer r, if and only if there exists a homogeneous
ideal I ⊆ Ann(V ) such that [I] ∈ Slipr,n ⊆ Hilb

hr,n
S .

Finally, we present a weak version of apolarity lemma for border cactus rank. Following [39]
we introduce the following definition.

Definition 2.92. For positive integers r, n, a function h : Z→ Z is called an (r, n+ 1)-standard
Hilbert function if it satisfies the following conditions:

(i) h(d) ≤ h(d+ 1) for all d ∈ Z;

(ii) if h(d) = h(d+ 1) for some d ≥ 0, then h(e) = r for all e ≥ d;

(iii) 0 ≤ h(d) ≤ hr,n(d) for all d ∈ Z.

Proposition 2.93 (Weak border cactus apolarity lemma). Let d be a positive integer and V ⊆ S∗d
be a non-zero subspace. If bcr(V ) ≤ r for some positive integer r, then there exists a homogeneous
ideal I ⊆ Ann(V ) such that S/I has an (r, n+ 1)-standard Hilbert function.

See [14, Thm. 1.1] for a proof.
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Chapter 3

Criteria for projective space

In this chapter we present conditions for a point [I] in the multigraded Hilbert scheme Hilb
hr,n
S[Pn]

to be in the irreducible component Slipr,n.
Section 3.1 contains a necessary condition based on bounding the degrees of minimal gener-

ators of saturated ideals with Hilbert function hr,n.
The criterion from Section 3.2 is based on the properties of the Hilbert function of a power

of a radical ideal with Hilbert function hr,n that were established in Proposition 2.19.
In Section 3.3 we show that the locus of points of HilbfS corresponding to saturated ideals is

smooth and irreducible when n = 2 and f is the Hilbert function of a zero dimensional subscheme
of P2. We also show that in Hilbr(P2) the locus of points corresponding to subschemes with fixed
Hilbert function is irreducible. In characteristic 0 this has been shown by Gotzmann [41].

In Section 3.4 we present a sufficient condition for [I] as above to be in Slipr,n for n = 2.
Sections 3.5 and 3.7 contain some examples. In particular, in Section 3.7 we present the full

set-theoretic description of Slipr,2 for r = 4, 5, 6.
Section 3.6 presents a necessary condition (Theorem 3.40). This criterion has three technical

assumptions, one is based on smoothness of the Hilbert scheme at a prescribed point while two
are about surjectivity of some maps of spaces of homomorphisms. In Subsections 3.6.1, 3.6.2,
3.6.3 we study some cases in which the assumptions of Theorem 3.40 are fulfilled. In Subsections
3.6.4 and 3.6.5 we present some nice applications of Theorem 3.40.

The main results of this chapter are criteria for [I] ∈ Hilb
hr,n
S[Pn] to be in Slipr,n:

• Proposition 3.1 which is an example of a small tangent space argument;

• Theorem 3.5 which shows that if [I] ∈ Slipr,n then HS/Ik is large enough in large degrees;

• Theorem 3.12 which is a necessary condition in the case n = 2. It states that if the Hilbert
function of S/I differ from hr,2 in exactly one degree then [I] ∈ Slipr,n;

• Theorem 3.40 and its applications Theorems 3.65 and 3.74.

Notation

Throughout this chapter, r and n are positive integers and S = S[Pn] = k[α0, . . . , αn] is a
polynomial ring over a fixed algebraically closed field k. Recall that hr,n : Z→ Z is defined by

hr,n(a) = min{dimk Sa, r}.
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3.1 Criterion based on degrees of minimal generators

Our first criterion is obtained by bounding the degrees of minimal generators of saturated ideals
of points. The proof is an illustration of a small tangent space method: if the dimension of the
tangent space to a k-scheme X at a point x is smaller than the dimension of an irreducible closed
subset Y , then x /∈ Y . See [54] for a classical application of this argument.

Proposition 3.1. Let I ⊆ S be a homogeneous ideal such that S/I has Hilbert function hr,n.
Let e = min{a ∈ Z | hr,n(a) = r} and d ≥ e+ 2. If dimk HomS

(
I +md, S/(I +md)

)
0
< rn, then

[I] /∈ Slipr,n.

Proof. Define g : Z→ Z by

g(a) =

{
hr,n(a) if a < d

0 otherwise.

Let π : Hilb
hr,n
S → HilbgS be the morphism defined on closed points by [J ] 7→ [J + md]. We shall

show that
if J, J ′ are saturated ideals and π([J ]) = π([J ′]), then J = J ′. (3.2)

It is enough to show that every saturated ideal J of S such that S/J has Hilbert function hr,n is
generated in degrees at most d− 1. Since J is saturated, depthS/J ≥ 1 by Lemma 2.9(i). The
quotient algebra S/J has Krull dimension 1. It follows that S/J is Cohen-Macaulay. Further-
more, by the Auslander-Buchsbaum Theorem [69, Thm. 15.3] the projective dimension of S/J is
n. Therefore, reg(S/J) = e by [31, Thm. 4.2]. Consequently, β1,a(S/J) = 0 for a ≥ e+ 2. Thus,
J is generated in degrees at most e+ 1 ≤ d− 1.

The irreducible component Slipr,n has dimension rn. Therefore, by (3.2) the irreducible
closed subset π(Slipr,n) is also of dimension rn. Consequently, if [I] ∈ Slipr,n then

rn ≤ dimkT[I+md] HilbgS = dimk HomS

(
I + md, S/(I + md)

)
0
,

where the equality follows from Theorem 2.74.

Example 3.3. Let S = k[α0, α1, α2] and consider I = (α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1). Then

[I] ∈ Hilb
h6,2

S . We claim that [I] /∈ Slip6,2. Let J = I + (α0, α1, α2)5. Then

dimk HomS(J, S/J)0 = 8 < 12.

The claim follows from Proposition 3.1.

3.2 Criterion based on a power of ideal

The criterion presented in this section is based on Proposition 2.19. There we computed the
Hilbert polynomial of a power of a homogeneous radical ideal defining a zero dimensional sub-
scheme of projective space. Moreover, we bounded the degree from which this Hilbert polynomial
agrees with Hilbert function. Now, using semicontinuity, we obtain a criterion for [I] ∈ Hilb

hr,n
S

to be in Slipr,n.
In Subsection 2.2.3 we introduced subsets Sipr,n and Slipr,n of the multigraded Hilbert scheme

Hilb
hr,n
S . Here we generalize this for functions h : Z→ Z more general than hr,n.
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Definition 3.4. Assume that h : Z → Z is the Hilbert function of a zero-dimensional closed
subscheme of Pn. We denote by Siph,n the locus of closed points of HilbhS corresponding to
radical ideals. Moreover, let Sliph,n be the closure of Siph,n in HilbhS .

The following theorem provides a necessary condition for a closed point of HilbhS to be in
Sliph,n, where h : Z→ Z is as in Definition 3.4.

Theorem 3.5. Let h : Z → Z be the Hilbert function of a zero-dimensional length r closed
subscheme of Pn. Define e = min{a ∈ Z | h(a) = r} and let [I] ∈ HilbhS be a closed point. If
[I] ∈ Sliph,n, then HS/Ik(d) ≥ r ·dimk Sk−1 for every positive integer k and for every d ≥ ke+ k.

Proof. Let J be the universal ideal sheaf on HilbhS ×An+1. Consider the quotient P of

OHilbhS ×An+1
∼= OHilbhS

[α0, . . . , αn]

by J k and let Q be the pushforward of P under the projection morphism π : HilbhS ×An+1 →
HilbhS . Then Q =

⊕
d Qd is a quasi-coherent sheaf on HilbhS with Qd a coherent sheaf for

every d ∈ Z. Therefore, for every d ∈ Z, the rank function ϕd : HilbhS → Z given by ϕd(x) =

dimκ(x)(Qd)x ⊗O
Hilbh

S
,x
κ(x) is upper semicontinuous (see [47, Ex. II.5.8]). We claim that for a

closed point P = [K] ∈ HilbhS we have ϕd(P ) = HS/Kk(d).
This can be checked affine locally, so we can replace HilbhS by an affine open subset U = SpecA

containing [K]. Let J be the ideal in A[α0, . . . , αn] defining the restriction of J to π−1(U). Let
[K] in U correspond to the maximal ideal n of A. In what follows, we will consider k with
A-module structure given by A → An/nAn

∼= k. By the definition of universal ideal sheaf we
have (A[α0, . . . , αn]/J) ⊗A k ∼= S/K. Therefore, from the universal property of kernel, there is
an induced map J ⊗A k→ K fitting into the commutative diagram

J ⊗A k S S/(J ⊗A k) 0

0 K S S/K 0

whose rows are exact. It follows from snake lemma that the map J ⊗A k → K is surjective.
Hence also the map Jk ⊗A k→ Kk is surjective. The snake lemma applied to the diagram

Jk ⊗A k S S/(Jk ⊗A k) 0

0 Kk S S/Kk 0

implies that the dotted arrow induced by the universal property of cokernel is injective. Since it
is clearly surjective, it is an isomorphism. Thus

ϕd([K]) = dimk
(
S/(Jk ⊗A k)

)
d

= dimk(S/Kk)d = HS/Kk(d)

and the claim of the theorem follows from Proposition 2.19.

Example 3.6. Let S = k[α0, α1, α2] and consider the ideal

I ′ = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2).
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Then [I ′] ∈ Hilb
h6,2

S and we claim that [I ′] /∈ Slip6,2. We have HS/(I′)2(9) = 17 < 18. Thus, the
claim follows from Theorem 3.5.

Observe that dimk HomS(I ′ + md, S/(I ′ + md)) ≥ 12 for d ≥ 4, so the criterion from Propo-
sition 3.1 cannot be applied to deduce that [I ′] /∈ Slip6,2.

Consider again the ideal I = (α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) from Example 3.3. Observe

that HS/I2(d) ≥ 18 for d ≥ 6. Hence we cannot use the criterion from Theorem 3.5 (with k = 2)
to deduce that [I] /∈ Slip6,2. We summarize this in the following table which will be extended
after we discuss more criteria.

Ideal Proposition 3.1 Theorem 3.5

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) ⊆ k[α0, α1, α2] X ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ⊆ k[α0, α1, α2] ? X

Here, for both ideals, the corresponding point of Hilb
h6,2

S is outside the irreducible component
Slip6,2. The check mark sign indicates that a given criterion shows that a given point is not in
Slip6,2. The question mark shows that a given criterion is inconclusive.

3.3 Smoothness and irreducibility of the locus of saturated ideals
of points in projective plane

Let f : Z → Z be the Hilbert function of a zero-dimensional subscheme of P2 of length r. Let
Vf be the locally closed subset of Hilbr(P2) whose points correspond to the subschemes of P2

with Hilbert function f . If the field k has characteristic 0 then Vf with the reduced structure is
smooth and irreducible [41].

In this section we show that in fact Vf is irreducible for any characteristic of k. Furthermore,
let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. We show that
Ef is irreducible and smooth.

In this section S = k[α0, α1, . . . , αn] and T = k[α0, α1, . . . , αn−1] for a positive integer n. We
will eventually restrict our attention to the case n = 2, but we do not make this assumption
when the proofs work more generally.

We shall need the following result on the behavior of Ext groups under flat base change.

Lemma 3.7. Let R→ S be a flat ring homomorphism with R a Noetherian ring. Then for every
finitely generated R-module M and any R-module N , the natural map

ExtiR(M,N)⊗R S → ExtiS(M ⊗R S,N ⊗R S)

is an isomorphism for all integers i.

Proof. Since R is Noetherian and M is a finitely generated R-module, there exists a projective
resolution P• of M by finitely generated free R-modules. The R-module S is flat. Hence we
obtain a projective resolution P• ⊗R S of M ⊗R S.

Finally, since M is finitely presented and S is a flat R-module, the natural map

HomR(P•, N)⊗R S → HomS(P• ⊗R S,N ⊗R S)
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is an isomorphism of chain complexes of S-modules by [30, Prop. 2.10]. Therefore, we have
natural isomorphisms of S-modules

ExtiR(M,N)⊗R S = H i
(

HomR(P•, N)
)
⊗R S = H i

(
HomR(P•, N)⊗R S

)
= H i

(
HomS(P• ⊗R S,N ⊗R S)

)
= ExtiS(M ⊗R S,N ⊗R S).

The following lemma gives a condition under which Ef ⊆ HilbfS is smooth. Observe that this
condition is satisfied for n = 2 since Hilbr(P2) is smooth.

Lemma 3.8. Let f be the Hilbert function of a zero-dimensional subscheme of Pn of length r.
Let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. Assume that
[ProjS/I] is a smooth point of Hilbr(Pn) for every point [I] ∈ Ef such that I is a saturated
Borel-fixed ideal. Then Ef is smooth.

Proof. Let [J ] ∈ HilbfS be a closed point such that J is a saturated ideal. Let J ′ be the generic
initial ideal (see [30, §15.9]) of J ′ with respect to the grevlex order with α0 > α1 > . . . > αn. It
is enough to show that [J ′] ∈ HilbfS is a smooth point.

The ideal J ′ is saturated by Corollary 2.10. Moreover, it is Borel-fixed by [30, Thm. 15.20].
Thus, [ProjS/J ′] is a smooth point of Hilbr(Pn) by assumptions.

Therefore, by Lemma 2.66, it is enough to show that the natural map of deformation func-
tors D

HilbfS ,[J
′]
→ DHilbr(Pn),[ProjS/J ′] induced by the map HilbfS → Hilbr(Pn) admits a map of

tangent-obstruction theories that is injective on obstruction spaces. By Lemmas 2.44 and 2.79
there is a map of tangent-obstruction theories which on obstruction spaces is the natural map

Ext1
S(J ′, S/J ′)0 → Ext1

S(J ′ ∩mr, S/J ′)0

from the exact sequence of Ext groups. It suffices to show that

Ext1
S(J ′/J ′ ∩mr, S/J ′)0 → Ext1

S(J ′, S/J ′)0 (3.9)

is the zero map. Since J ′ is a saturated and Borel-fixed ideal, it is an extended ideal from
the polynomial ring T = k[α0, . . . , αn−1] by Lemma 2.11. Therefore, by Lemma 3.7 we get
Ext1

S(J ′, S/J ′) ∼= Ext1
T (a, T/a) ⊗T S where a = T ∩ J ′. In particular, multiplication by αn is

injective on Ext1
S(J ′, S/J ′). On the other hand, since multiplication by αrn is zero on J ′/J ′ ∩mr,

it is zero on Ext1
S(J ′/J ′ ∩ mr, S/J ′) as well. It follows that the map from Equation (3.9) is the

zero map.

Finally we present the main results of this section.

Proposition 3.10. Let n = 2 so that S = k[α0, α1, α2] and T = k[α0, α1]. Let f be the Hilbert
function of a zero-dimensional length r subscheme of P2. Let Ef be the open subset of HilbfS
whose points correspond to saturated ideals. Then Ef is smooth and irreducible.

Proof. Smoothness of Ef follows from Lemma 3.8 since the Hilbert scheme Hilbr(P2) is smooth
for every positive integer r.

Now we show that Ef is connected. Since it is also smooth this would finish the proof. Given
a point [I] ∈ Ef we may connect it to the point [I ′] corresponding to the generic initial ideal I ′

of I with respect to the grevlex order with α0 > α1 > α2. Then I ′ is saturated by Corollary 2.10
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and it is Borel-fixed by [30, Thm. 15.20]. Therefore, it is enough to find a connected subset of
Ef that contains all points corresponding to Borel-fixed saturated ideals.

Let g : Z → Z be given by g(a) = f(a) − f(a − 1) for every a ∈ Z. We have a natural
map HilbgT → HilbfS . The scheme HilbgT is irreducible by [64]. Therefore, its image Z in HilbfS
is irreducible. By construction, Z is contained in Ef . Furthermore, it contains all saturated
Borel-fixed ideals by Lemma 2.11.

Proposition 3.11. Let n = 2 so that S = k[α0, α1, α2]. Let f be the Hilbert function of a
zero-dimensional length r subscheme of P2. Let Vf be the locally closed subset of Hilbr(P2) whose
points correspond to the subschemes with Hilbert function f . Then Vf is irreducible.

Proof. As before, let Ef be the open subset of HilbfS whose points correspond to the saturated
ideals. The natural map HilbfS → Hilbr(Pn) induces a map Ef → Vf which is bijective on k-
points. Therefore, Vf is homeomorphic with Ef by Lemma 2.29. It follows from Proposition 3.10
that Vf is irreducible.

3.4 Sufficient condition for projective plane

In this section we assume that n = 2 so S = S[P2] = k[α0, α1, α2] is the homogeneous coordinate
ring of projective plane. We show that a closed points [I] ∈ Hilb

hr,2
S for which S/I has Hilbert

function differing from hr,2 in only one degree is in Slipr,2.
For ease of reference we write this condition more precisely. We will consider functions

f : Z→ Z that satisfy the following condition:

there exist e, d ∈ Z>0 such that f(a) =

{
hr,2(a) if a 6= e

d if a = e.
(?)

The main result of this section is the following theorem which gives a sufficient condition for a
closed point [I] ∈ Hilb

hr,2
S to be in Slipr,2.

Theorem 3.12. Let [I] be a closed point of the multigraded Hilbert scheme Hilb
hr,2
S . If the Hilbert

function of S/I satisfies condition (?), then [I] ∈ Slipr,2.

Before proving Theorem 3.12 we need a few lemmas. The first one will enable us to consider
a more restrictive condition (??) instead of condition (?).

Lemma 3.13. Let [I] ∈ Hilb
hr,2
S . If the Hilbert function f of S/I satisfies condition (?) for some

integers d, e then [I] ∈ Slipr,2 unless the following holds:

f satisfies condition (?) and dimk Se−1 < d < r < dimk Se. (??)

Proof. Assume that [I] ∈ Hilb
hr,2
S \ Slipr,2 and the Hilbert function of S/I satisfies condition (?)

for some integers d, e.
Suppose that d = r. Then f = hr,2, so [I] ∈ Slipr,2 by Remark 2.46 since Hilbr(P2) is

irreducible. Thus, by Lemma 2.9(ii), we may assume that d < r. Moreover, if dimk Se ≤ r, then
[I] ∈ Slipr,2 since in that case [I] = [I∩me+1] is the unique closed point of the fiber over ϕr,P2([I])

of the natural map ϕr,P2 : Hilb
hr,2
S → Hilbr(P2) from Remark 2.46. Therefore, we may assume

that r < dimk Se. We claim that it is enough to consider the case that f(e− 1) = hr,2(e− 1) =
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dimk Se−1. Indeed, otherwise f(e − 1) = hr,2(e − 1) = r and this contradicts Lemma 2.9(ii)
since f(e) = d < r = f(e − 1). Using Lemma 2.9(ii) we obtain dimk Se−1 ≤ d and moreover by
Lemma 2.9(iii) this inequality is strict, since r = f(e+ 1) > d.

For a fixed positive integer r, let

Ωr = {f : Z→ Z |f satisfies condition (??) and there exists [I] ∈ Hilb
hr,2
S such that

S/I has Hilbert function f}.

By virtue of the following lemma, in order to obtain a proof of Theorem 3.12, it is enough to
find a point [If ] ∈ Slipr,2, for every f ∈ Ωr that satisfies the properties:

1. HS/If
= f ;

2. [If ] is a smooth point of Hilb
hr,2
S .

Lemma 3.14. Let f ∈ Ωr for some positive integer r. Then the locus of closed points [I] of
Hilb

hr,2
S such that S/I has Hilbert function f is irreducible.

Proof. Denote this locus by Uf . Let Vf ⊆ Hilbr(P2) be the locally closed subset whose closed
points correspond to the closed subschemes of P2 with Hilbert function f . By definition, Uf is
the set of closed points of the preimage of Vf under the map

ϕr,P2 : Hilb
hr,2
S → Hilbr(P2).

The locus Vf is irreducible by Proposition 3.11. Furthermore, hr,2(a) = f(a) = dimk Sa for
every a < e and hr,n(a) = f(a) for every a > e. Therefore, Uf is irreducible by [80, 11.4.C] and
Lemmas 2.43 and 2.44.

Fix a positive integer r and a function f ∈ Ωr, or equivalently, a pair of integers d, e cor-
responding to f . To simplify the notation let s := dimk Se−1 and we define Ai = αi0α

e−i
1 for

0 ≤ i ≤ e, Bi = αi0α
e+1−i
1 for 0 ≤ i ≤ e+ 1 and Ci = αi0α

e+2−i
1 for 0 ≤ i ≤ e+ 2 to make it easier

to distinguish between the generators of different degrees. We define the ideals

Jf = (Ae, Ae−1, . . . , Ad−s, Bd−s−1, Bd−s−2, . . . , Br−d, Cr−d−1, Cr−d−2, . . . , C0) (3.15)

and

If =(Ae, . . . , Ar−s, Ar−s−1α1, Ar−s−1α2, . . . , Ad−sα1, Ad−sα2,

Bd−s−1, . . . , Br−d, Cr−d−1, . . . , C0).
(3.16)

Note that Aiα1 = Bi but we have written If in the form as above since it will be more
convenient in the proof of the following lemma.

Lemma 3.17. In the above notation, the Hilbert function of S/If is hr,2 and the Hilbert function
of S/If is f . Moreover, Jf is the saturation of If .

Proof. Let T = k[α0, α1]. We start with showing that Jf is a saturated ideal and that the Hilbert
function of S/Jf is f . Indeed, Jf is an extension of the ideal af = Jf ∩ T in T so it is saturated
with respect to α2 and thus, is saturated with respect to m. Moreover, HS/Jf (a) =

∑a
b=0HT/af (b)

and the latter sum can be computed from the staircase diagram of af .
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It follows from the generators of If and Jf displayed above, that the saturation of If contains
Jf . Therefore, If = Jf since Jf is saturated. The quotient algebra S/Jf has Hilbert function
f . Furthermore, (Jf )>e = (If )>e and (Jf )<e = (If )<e = 0. Therefore, it follows from Equations
(3.15) and (3.16) that the Hilbert function of S/If is hr,2.

We will now find a saturated ideal Kf such that the initial ideal of Kf with respect to an
appropriate monomial order is If . Let

Kf = (Ae, . . . , Ar−s, Ar−s−1α1, Ar−s−1α2 +Br−d−1, . . . , Ad−sα1, Ad−sα2 +B0,

Bd−s−1, . . . , Br−d, Cr−d−1, . . . , C0).
(3.18)

Lemma 3.19. In the above notation, the initial ideal of Kf with respect to the lex order > with
α2 > α1 > α0 is If . In particular, S/Kf has Hilbert function hr,2.

Proof. All S-polynomials of the generators displayed in Equation (3.18) belong to the ideal b :=

(Ce+2, . . . , C0). Let c := (Ae, . . . Ar−s, Br−s−1, . . . , Br−d, Cr−d−1, . . . C0). We have b ⊆ c ⊆ Kf .
It follows that the set of generators from Equation (3.18) satisfies the Büchberger criterion (see
[27, Thm. 6 in Ch. 2 §6]). Hence it is a Gröbner basis. In particular, the initial ideal in<(Kf ) is
If so S/Kf has Hilbert function hr,2 by Lemma 3.17.

Next, we verify that Kf is a saturated ideal.

Lemma 3.20. In the above notation, Kf is a saturated ideal. In particular, [If ] ∈ Slipr,2.

Proof. Let > be the lex order with α2 > α1 > α0. From Lemmas 2.7, 3.17 and 3.19 we obtain

in<(Kf ) ⊆ in<(Kf ) = If = Jf . (3.21)

Suppose that Kf 6= Kf . Then If = in<(Kf ) ( in<(Kf ) ⊆ Jf . Since If , Jf differ only in degree
e, it follows that there is an element g ∈ Se ∩Kf such that in<(g) does not belong to the set of
monomial generators of If of degree e. However, in<(g) ∈ (Jf )e by Equation (3.21). Therefore,
by the choice of the monomial order and Equation (3.15) we get that g =

∑e
i=d−s aiAi for some

ai ∈ k. We assumed that in<(g) /∈ If . Thus, by Equation (3.16), we have ai 6= 0 for some
i ∈ {d − s, . . . , r − s − 1}. Furthermore, we may assume that ai = 0 for i = r − s, . . . , e by
Equation (3.18). Multiplying g by α2

2 and using the generators of Kf given in Equation (3.18)
we obtain

g′ := −α2
2g +

r−s−1∑
i=d−s

aiα2(Aiα2 +Bi+s−d) =
r−s−1∑
i=d−s

aiBi+s−dα2 ∈ Kf .

We claim that it is not possible. By Equation (3.21), it is enough to show that no monomial of
the form Bjα2 for j ∈ {0, . . . , r − d− 1} is in Jf . This is clear since monomials of degree e+ 2

in Jf that are divisible by α2 are also divisible by αr−d0 .
SinceKf is saturated, it follows from Remark 2.46 that [Kf ] ∈ Slipr,2. Therefore, [If ] ∈ Slipr,2

by Lemma 3.19.

Finally, we will show that [If ] is a smooth point of Hilb
hr,2
S . It is enough to show that

dimk HomS(If , S/If )0 = dimkT[If ] Hilb
hr,2
S ≤ dim Slipr,2 = 2r,

51



where the first equality follows from Theorem 2.74. Lemmas 3.22, 3.24, 3.25 and 3.31 are devoted
to this calculation.

Lemma 3.22. In the above notation, dimk HomS(Jf/If , S/If )0 = (r − d)2.

Proof. Since Jf/If ∼= k(−e)⊕(r−d) we have

dimk HomS(Jf/If , Jf/If )0 = (r − d)2 dimk HomS(k(−e),k(−e))0

= (r − d)2 dimk HomS(k,k)0 = (r − d)2.

Since (Jf : α2) = Jf and α2 · Jf/If = 0 it follows that HomS(Jf/If , S/Jf )0 = 0. Therefore,

dimk HomS(Jf/If , S/If )0 = dimk HomS(Jf/If , Jf/If )0 = (r − d)2

from the long exact sequence obtained by applying HomS(Jf/If ,−)0 to the short exact sequence

0→ Jf/If → S/If → S/Jf → 0. (3.23)

Lemma 3.24. In the above notation, dimk Ext1
S(Jf/If , S/If )0 = (r − d)2.

Proof. We claim that dimk ExtiS(Jf/If , Jf/If )0 = 0 for i = 1, 2. It is enough to show that

dimk ExtiS(k,k)0 = 0

since ExtiS(Jf/If , Jf/If )0 = (ExtiS(k,k)0)⊕(r−d)2 . Therefore, the claim follows from Lemma 2.28.
Applying the functor HomS(Jf/If ,−)0 to the short exact sequence (3.23) we obtain

dimk Ext1
S(Jf/If , S/If )0 = dimk Ext1

S(Jf/If , S/Jf )0.

We have Ext1
S(Jf/If , S/Jf )0

∼= (Ext1
S(k, S/Jf )e)

⊕(r−d) so it is enough to compute the dimension
of Ext1

S(k, S/Jf )e as a k-vector space.
Applying the functor HomS(−, S/Jf )e to the Koszul resolution of k we obtain the following

complex:

(S/Jf )e


α0

α1

α2


−−−−→ (S/Jf )⊕3

e+1


−α1 α0 0

−α2 0 α0

0 −α2 α1


−−−−−−−−−−−−−−→ (S/Jf )⊕3

e+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ (S/Jf )e+3.

We need to show that the cohomology at (S/Jf )⊕3
e+1 is an (r − d)-dimensional k-vector space.

We will denote the map (S/Jf )e → (S/Jf )⊕3
e+1 by d0 and the map (S/Jf )⊕3

e+1 → (S/Jf )⊕3
e+2 by d1.

Let h0, h1, h2 ∈ Se+1 be such that d1(h0, h1, h2) = 0, where hi is the class of hi in the quotient
ring S/Jf . Let h2 = α2h

′
2(α0, α1, α2) + h′′2(α0, α1). Then (−α1h0 + α0h1, α2(−h0 + α0h

′
2) +

α0h
′′
2, α2(−h1 + α1h

′
2) + α1h

′′
2) ⊆ Jf . The ideal Jf is monomial. Therefore, since (Jf : α2) = Jf

and h′′2 does not depend on α2, we get (h0 − α0h
′
2, h1 − α1h

′
2) ⊆ Jf . Thus, (h0, h1, h2) =

(0, 0, h′′2)+d0(h′2). We claim that (0, 0, h′′2) ∈ ker d1 for every degree e+1 homogeneous polynomial
h′′2 ∈ k[α0, α1]. Indeed, we have α0h

′′
1, α1h

′′
1 ∈ Jf as (Jf )e+2 ∩ k[α0, α1] = k[α0, α1]e+2. It follows

that
dimk Ext1

S(k, S/Jf )e = dimk k[α0, α1]e+1/(Jf ∩ k[α0, α1])e+1 = (r − d).
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Lemma 3.25. In the above notation, dimk HomS(Jf , S/If )0 = 2r.

Proof. Observe that Ext1
S(Jf , Jf/If )0

∼= (Ext1
S(Jf , k)−e)

⊕(r−d) = 0 is zero by Lemma 2.28.
Indeed, (Jf )e−1 = 0 so β1,e(Jf ) = β2,e(S/Jf ) = 0.

Therefore, applying the functor HomS(Jf ,−)0 to the short exact sequence (3.23) we obtain
a short exact sequence

0→ HomS(Jf , Jf/If )0 → HomS(Jf , S/If )0 → HomS(Jf , S/Jf )0 → 0. (3.26)

Since (Jf )≤e−1 = 0 we have

dimk HomS(Jf , Jf/If )0 = (r − d) · dimk HomS

(
Jf , k(−e)

)
0

= (r − d) · dimk(Jf )e

= (r − d)(dimk Se − d).
(3.27)

Finally, let af = Jf ∩ T , where T = k[α0, α1]. Then Jf = af · S, which implies that

dimk HomS(Jf , S/Jf )0 =
∑
i≤0

dimk HomT (af , T/af )i. (3.28)

Since Spec(T/af ) corresponds to a point of the Hilbert scheme Hilbr(A2) which is smooth and
2r-dimensional we get∑

i≤0

dimk HomT (af , T/af )i = 2r −
∑
i>0

dimk HomT (af , T/af )i (3.29)

by [48, Prop. 2.3]. By Equation (3.15) the minimal generators of af appear in degrees e, e+1, e+2.
Furthermore, HT/af (e+ 2) = 0. Therefore, by Proposition 2.22 we have∑
i>0

dimk HomT (af , T/af )i = β1,e(T/af )·HT/af (e+1) = (e+1−d+s)·(r−d) = (dimk Se−d)(r−d).

(3.30)
The exact sequence (3.26) and Equations (3.27), (3.28), (3.29) and (3.30) imply that

dimk HomS(Jf , S/If )0 = 2r.

Lemma 3.31. In the above notation, dimk HomS(If , S/If )0 ≤ 2r.

Proof. From the long exact sequence obtained by applying the functor HomS(−, S/If )0 to the
short exact sequence 0→ If → Jf → Jf/If → 0 we get

dimk HomS(If , S/If )0 ≤ dimk HomS(Jf , S/If )0 + dimk Ext1
S(Jf/If , S/If )0

− dimk HomS(Jf/If , S/If )0.

Using Lemmas 3.22, 3.24 and 3.25 we conclude that dimk HomS(If , S/If )0 ≤ 2r.

We summarize the above considerations to obtain a proof of Theorem 3.12.

Proof of Theorem 3.12. Let f be the Hilbert function of S/I. By Lemma 3.13 we may assume
that f satisfies condition (??), i.e. that f ∈ Ωr. Let Uf be the locus of those closed points [I ′]

of Hilb
hr,2
S for which S/I ′ has Hilbert function f . We shall show that Uf ⊆ Slipr,2. Locus Uf is
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irreducible by Lemma 3.14. We claim that it is enough to find a point [I ′′] ∈ Slipr,2 ∩Uf such
that dimkT[I′′] Hilb

hr,2
S = 2r. Indeed, then by Lemma 2.30 every irreducible component of the

intersection Uf ∩ Slipr,2 passing through [I ′′] has dimension at least dimUf + dim Slipr,2−2r =

dimUf . It follows that Uf ⊆ Slipr,2.
We claim that we may take I ′′ = If as defined by Equation (3.16). We have [If ] ∈ Uf ∩Slipr,2

by Lemmas 3.17 and 3.20. Moreover, [If ] is a smooth point of Hilb
hr,2
S by Lemma 3.31 and

Theorem 2.74.

We illustrate Theorem 3.12 with the following example.

Example 3.32. Let S = k[α0, α1, α2] be a polynomial ring and J = (α0α1, α
2
0α2, α0α

2
2, α

4
1).

Then [J ] ∈ Hilb
h5,2

S and we claim that [J ] ∈ Slip5,2. The Hilbert function of S/J satisfies
condition (?). Thus, the claim follows from Theorem 3.12.

3.4.1 The analogue of the sufficient condition does not hold in general for
projective space

For fixed positive integers r, n, condition (?) can be generalized as follows:

there exist e, d ∈ Z>0 such that f(a) =

{
hr,n(a) if a 6= e

d if a = e.
(? ? ?)

For n ≥ 3 and r large enough, the Hilbert scheme Hilbr(Pn) is reducible (see [53]). Therefore,
it cannot be expected that a naive analogue of Theorem 3.12 holds in Pn. The following remark
gives a counterexample.

Remark 3.33. There are non-smoothable closed subschemes of P6 with Hilbert function

(1, 7, 13, 14, 14 . . .)

(see [21], [58]). Let R be such a subscheme and I = I(R) be its homogeneous ideal. Choose
a 14-dimensional subspace V of I2 and construct an ideal J = V ⊕ I≥3. Then [J ] ∈ Hilb

h14,6

S[P6]

and the Hilbert function of S[P6]/J satisfies condition (? ? ?) (with r = 14, n = 6). However,
[J ] /∈ Slip14,6.

The above remark may suggest, that existence of more irreducible components of Hilbr(Pn)

is the only obstacle. The following example shows that the Hilbert function of S/I may satisfy
condition (? ? ?) for [I] ∈ Hilb

hr,n
S[Pn] that is not in the closure of the locus of points corresponding

to saturated ideals.

Remark 3.34. Consider the ideal

I = (α2
0α1, α0α

2
1, α0α2, α0α3, α1α2, α1α3, α

4
2) ∈ S[P3] = k[α0, . . . , α3].

Then [I] ∈ Hilb
h6,3

S[P3]
and the Hilbert function of S/I satisfies condition (? ? ?) with r = 6, n =

3. Suppose that [I] is in the closure of the locus of points corresponding to saturated ideals.
Since, Hilb6(P3) is irreducible (see [20, Thm. 1.1]) it follows that [I] ∈ Slip6,3. This contradicts
Theorem 3.5 since HS/I2(6) = 23 < r(n+ 1) = 24.
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3.5 Points on projective space – examples, part I

3.5.1 Initial cases

Proposition 3.35. Let r be a positive integer. Then Hilb
hr,1
S[P1]

∼= Pr. In particular, Hilb
hr,1
S[P1]

=

Slipr,1.

Proof. We have hr,1 = fr,1 where fr,1 is as in Lemma 2.44. It follows that Hilb
hr,1
S[P1]

∼= Hilbr(P1).
The latter scheme is isomorphic to Pr (see [34, pages 111,112]).

Proposition 3.36. Let n be a positive integer. Then Hilb
h1,n

S[Pn]
∼= Pn. In particular, Hilb

h1,n

S[Pn] =

Slip1,n.

Proof. We have h1,n = f1,n where f1,n is as in Lemma 2.44. It follows that Hilb
h1,n

S[Pn]
∼= Hilb1(Pn).

The latter scheme is isomorphic with Pn (see [34, Ex. 7.3.1]).

Proposition 3.37. Let n be a positive integer. Then Hilb
h2,n

S[Pn] is a P2-bundle over

Gr(n− 1, S[Pn]1).

In particular, Hilb
h2,n

S[Pn] = Slip2,n.

Proof. It follows from [20, Prop. 3.1] that the Hilbert scheme Hilb
h2,n

S[Pn] is a Hilb
h2,1

S[P1]
-bundle over

Gr(n− 1, S[Pn]1). Furthermore, Hilb
h2,1

S[P1]
∼= P2 by Proposition 3.35.

Proposition 3.38. Let n be a positive integer. Then Hilb
h3,n

S[Pn] is irreducible. In particular,

Slip3,n = Hilb
h3,n

S[Pn].

Proof. By [20, Prop. 3.1] we may restrict to the case that n = 1 or n = 2. In the first case, the
claim follows from Proposition 3.35.

Assume that n = 2. Let [I] be a closed point of Hilb
h3,2

S[P2]
. If I = I, then [I] ∈ Slip3,2 by

Remark 2.46. On the other hand, if I 6= I, then S/I has Hilbert function h3,1 by Lemma 2.9(ii),
(iii). Therefore, [I] ∈ Slip3,2 by Theorem 3.12.

3.5.2 Example of a singular point in the interior of Slip for projective plane

Since Hilbr(P2) is smooth and Slipr,2 is related to Hilbr(P2) by the natural morphism

ϕr,P2 : Hilb
hr,2
S[P2]

→ Hilbr(P2)

from Remark 2.46, it could be expected that the only singular points of Hilb
hr,2
S[P2]

in Slipr,2 are
the points that lie in another irreducible component. We apply Theorem 3.12 to give an example
of a singular point in the interior of Slip8,2.

We start with introducing some notation. Let Θ8 be the set of all functions f : Z → Z such
that f is the Hilbert function of a saturated homogeneous ideal of S defining a zero-dimensional
closed subscheme of P2 of length 8. Given f ∈ Θ8, let Vf be the locally closed subset of Hilbr(P2)

defined by those closed points that correspond to subschemes of P2 with Hilbert function f . These
sets with varying f ∈ Θ8 form a stratification of Hilbr(P2) by locally closed irreducible subsets
(see Proposition 3.11). Let Uf be the set-theoretic inverse image of Vf under ϕr,P2 . In particular,
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Slip8,2 = Uh8,2 . Also, we say that f ≤ g for f, g : Z→ Z if for every a ∈ Z we have f(a) ≤ g(a).
This gives a partial order on Θ8.

Let f1, f2 : Z→ Z be given by

f1(a) =


dimk Sa for a < 3

7 for a = 3

8 for a > 3

and f2(a) =


dimk Sa for a < 2

5 for a = 2

7 for a = 3

8 for a > 3

or, in brief form, f1 = (1, 3, 6, 7, 8, 8, . . .) and f2 = (1, 3, 5, 7, 8, 8, . . .).
Let I = (α2

1α2, α0α
2
1 + α1α

2
2, α

4
1, α1α

3
2, α

5
2). Then the Hilbert function of S/I is f1 so [I] ∈

Slip8,2 by Theorem 3.12. Hence also its initial ideal with respect to lex order (α0 > α1 > α2),
i.e. I ′ = (α0α

2
1, α

2
1α2, α

4
1, α1α

3
2, α

5
2), is in Slip8,2. Since dimkT[I′] Hilb

h8,2

S[P2]
= 16 = dim Slip8,2,

it follows that every irreducible closed subset of Hilb
h8,2

S[P2]
passing through [I ′] is contained in

Slip8,2. In particular
J = (α3

1, α
2
1α2, α

2
1α

2
0, α1α

3
2, α

5
2)

belongs to Slip8,2 since [I ′], [J ] lie in Uf2 which is irreducible by Lemma 2.43.
We have dimkT[J ] Hilb

h8,2

S[P2]
= 17 > dim Slip8,2. Let Z be an irreducible component of

Hilb
h8,2

S[P2]
containing [J ]. We will show that Z = Slip8,2. Let η be the generic point of Z, if

η /∈ Uh8,2 ∪ Uf1 ∪ Uf2 then [J ] /∈ {η} since Uf2 is open in Hilb
h8,2

S[P2]
\(Uh8,2 ∪ Uf1) as f2 is the

greatest element of Θ8 \ {h8,2, f1}. Therefore, Z = {η} ⊆ Uf1 ∪ Uf2 ∪ Slip8,2. As shown above,
we have Uf1 ∪ Uf2 ⊆ Slip8,2. Hence Z = Slip8,2.

We have established the following result.

Proposition 3.39. Let J = (α3
1, α

2
1α2, α

2
1α

2
0, α1α

3
2, α

5
2). Then [J ] ∈ Hilb

h8,2

S is a singular point
that belongs to the irreducible component Slip8,2 and no other.

3.6 Criterion based on smoothness

In this section we give another criterion for a closed point [I] ∈ Hilb
hr,n
S to be in Slipr,n. The

criterion is based on smoothness of a point in a certain related multigraded Hilbert scheme. It
is first stated in a general form (Theorem 3.40) but later we will impose additional assumptions
to guarantee that conditions 1.-3. from the theorem are fulfilled.

Subsections 3.6.1 - 3.6.3 are concerned with describing some situations in which assump-
tions 1.-3. are fulfilled (each subsection deals with one assumption). The main results of these
subsections are:

• Proposition 3.45 which implies condition 1. of Theorem 3.40

• Proposition 3.53 which implies condition 2. of Theorem 3.40

• Lemma 3.56 which implies condition 3. of Theorem 3.40.

Moreover, in Subsections 3.6.4 and 3.6.5 we present two applications of Theorem 3.40: The-
orems 3.65 and 3.74. In the proof of the first of them we use Proposition 3.45 and Lemma 3.56.
The proof of the second result, i.e. Theorem 3.74 is based on Propositions 3.45, 3.53 and Lemma
3.56.

56



Notation

In this section [I] ∈ Hilb
hr,n
S is a closed point corresponding to an ideal that is not saturated. By

d we denote a positive integer such that Id 6= Id. We define J = I ∩md and K = I ∩md.
Now we present the main result of this section.

Theorem 3.40. Assume that the following conditions hold:

1. the natural map HomS(J, S/J)0 → HomS(K,S/J)0 is surjective;

2. [J ] ∈ HilbhS is a smooth point where h is the Hilbert function of S/J ;

3. the natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective.

Then there is no [I ′] ∈ Slipr,n such that I ′≥d = I≥d. In particular, [I] /∈ Slipr,n.

Proof. Let k be the Hilbert function of S/K. Consider the multigraded flag Hilbert scheme
Hilbk,hS (see Subsection 2.2.4) and natural morphisms πk : Hilbk,hS → HilbkS and πh : Hilbk,hS →
HilbhS .

We first show that πk induces isomorphism on tangent spaces T[K⊆J ] Hilbk,hS → T[K] HilbkS .
This map on tangent spaces is the upper horizontal map in the pullback diagram

T[K⊆J ] Hilbk,hS HomS(K,S/K)0

HomS(J, S/J)0 HomS(K,S/J)0

in which the right vertical and the lower horizontal maps are natural maps of Hom groups
(see Theorem 2.77). By assumption 1., the lower horizontal map is surjective. Moreover,
HomS(J/K, S/J)0 = 0 by Lemma 2.8 since J = J≥d and mr · J/K = 0. Therefore, the lower
horizontal map is bijective. Thus, so is the upper horizontal map since the diagram is a pullback.

Now we show that the natural transformation D
Hilbk,hS ,[K⊆J ]

→ DHilbkS ,[K] of deformation
functors induced by πk admits a map of tangent-obstruction theories which is injective on ob-
struction spaces. By Theorem 2.74, there are tangent-obstruction theories for DHilbhS ,[J ] and
DHilbkS ,[K] with obstruction spaces Ext1

S(J, S/J)0 and Ext1
S(K,S/K)0, respectively. Moreover,

by Theorem 2.77 there is a tangent-obstruction theory for D
Hilbk,hS ,[K⊆J ]

with obstruction space
given by the pullback diagram

Ob[K⊆J ] Hilbk,hS Ext1
S(K,S/K)0

Ext1
S(J, S/J)0 Ext1

S(K,S/J)0,

β

α

where the lower horizontal and the right vertical maps are maps from long exact sequences of
Ext groups. Furthermore, α and β induce maps of tangent-obstruction theories. Here we have
used assumption 3. Since [J ] ∈ HilbhS is a smooth point, we can use Lemma 2.67, to change the
tangent-obstruction theory of D

Hilbk,hS ,[K⊆J ]
so that D

Hilbk,hS ,[K⊆J ]
→ DHilbkS ,[K] admits a map of

tangent-obstruction theories which is injective on obstruction spaces.
It follows from Corollary 2.65 that the map πk is étale at [K ⊆ J ]. In particular, there is an

open subset U of Hilbk,hS containing [K ⊆ J ] that is mapped onto an open subset V of HilbkS
containing [K]. If there is a point [I ′] ∈ Slipr,n such that I≥d = I ′≥d, then there is a saturated
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ideal I ′′ such that [I ′′] ∈ Hilb
hr,n
S and [I ′′ ∩ md] ∈ V . Therefore, there is an ideal [J ′′] ∈ HilbhS

such that I ′′ ∩md ⊆ J ′′. This gives a contradiction since I ′′ = J ′′ and I ′′d ( J ′′d .

Remark 3.41. It seems that assumption 2. of the above theorem is both the most restrictive
and potentially the hardest to check in practice. On the other hand, if n = 2 and

d = min{a ∈ Z | Ia 6= Ia}

then condition 2. always holds (see Proposition 3.10) since the usual Hilbert scheme Hilbr(P2) is
smooth. Furthermore, for d = max{a ∈ Z | Ia 6= Ia} condition 3. is satisfied (see Lemma 3.56).
Even in the case of P2 and d = max{a ∈ Z | Ia 6= Ia} it is not clear, in how general setups can we
expect condition 2. of Theorem 3.40 to hold. We present one specific situation when this holds
in Proposition 3.53.

In the following subsections we will study some situations in which conditions 1.-3. of Theo-
rem 3.40 hold.

3.6.1 About condition 1.

The main result of this subsection is Proposition 3.45 which describes a situation in which
condition 1. of Theorem 3.40 holds.

We keep the notation of Theorem 3.40. Let R = S/I and pick a linear form L ∈ S1 that is
a non-zero divisor on R. This is possible by Lemma 2.9(i). By a linear change of variables, we
may and will assume that L = α0.

We start with the following simple observation.

Lemma 3.42. Let b be a homogeneous ideal of S that is generated in degrees at most d for a
positive integer d. Let a = b+I

I
⊆ R. If dimk ad = dimk ad+1 then

aa′ = αa
′−a

0 aa

for every a′ ≥ a ≥ d.

Proof. Let ι : R → R be the multiplication by α0. This induces an injective map aa → aa+1 for
every integer a. It is enough to show that for a ≥ d this map is surjective. We prove this by
induction. The case a = d follows from the assumption that dimk ad = dimk ad+1. Let a0 > d

and suppose that aa0 = α0aa0−1. Let g ∈ aa0+1. Since b is generated in degrees at most d we
obtain

g =

n∑
i=0

αifi for some fi ∈ aa0 .

By induction there are hi ∈ aa0−1 such that fi = α0hi for i = 0, 1, . . . , n. Therefore, g =

α0(
∑n

i=0 αihi).

Notation 3.43. Let d = max{a ∈ Z | Ia 6= Ia}. Let b ⊆ S be a homogeneous ideal that is
generated in degrees at most d. Let a = b+I

I
⊆ S/I = R. Recall that J = md∩I and K = md∩I.

In particular, J/K ∼= k(−d)s where s = HS/K(d)−HS/J(d) and (S/J)d+1 = (S/K)d+1 = Rd+1.
Assume that dimk ad = dimk ad+1, so that we can apply Lemma 3.42 for a.

The following lemma will be used in the proof of Proposition 3.45 to extend a homomorphism
ϕ ∈ HomS(K,S/J)0 to an element ψ ∈ HomS(J, S/J)0 under some additional assumptions.
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Lemma 3.44. With Notation 3.43, let F ∈ Jd and assume that it is of the form F = fg for
some homogeneous f ∈ b and g ∈ I. Let ϕ ∈ HomS(K,S/J)0. Then, there is h ∈ (S/J)d such
that ϕ(α0F ) = α0h.

Proof. Observe that α0F ∈ Id+1 = Kd+1, so ϕ(α0F ) is a well-defined element of Rd+1. Let
a = deg(f). Then

αa0ϕ(α0F ) = αa0ϕ(α0fg) = fϕ(αa+1
0 g).

Hence αa0ϕ(α0F ) ∈ ad+a+1. Therefore, by Lemma 3.42 there is h ∈ ad ⊆ Rd = (S/J)d such that
αa0ϕ(α0F ) = αa+1

0 h. Since α0 is a non-zero divisor on R, it follows that ϕ(α0F ) = α0h.

Now we can present the main result of this subsection.

Proposition 3.45. With Notation 3.43, let F1, . . . , Fs ∈ Jd be elements whose classes form a
basis of Jd/Kd. Assume that Fi = figi for some homogeneous fi ∈ b and gi ∈ I. Let ϕ ∈
HomS(K,S/J)0. Then there exists ψ ∈ HomS(J, S/J)0 such that ψ|K = ϕ. Thus, condition 1.
from Theorem 3.40 is fulfilled.

Proof. Let {p1, . . . , pt} be a minimal set of homogeneous generators of J containing {F1, . . . , Fs}.
We may and will assume that pi ∈ K if pi /∈ {F1, . . . , Fs}. By Lemma 3.44, there are hi ∈ (S/J)d
such that

α0hi = ϕ(α0Fi) for i ∈ {1, 2, . . . , s}. (3.46)

We define ψ on generators {p1, . . . , pt} of J by

ψ(pi) =

{
ϕ(pi) if pi ∈ K
hj if pi = Fj for some j ∈ {1, 2, . . . , s}.

We claim that ψ is a well-defined element of HomS(J, S/J)0. Indeed, let

{p1, . . . , pt} = {F1, . . . , Fs, Qs+1, . . . , Qt}

and assume that Gi, Hi ∈ S are such that

s∑
i=1

GiFi +

t∑
i=s+1

HiQi = 0.

We need to show that

s∑
i=1

Giψ(Fi) +
t∑

i=s+1

Hiψ(Qi) =
s∑
i=1

Gihi +
t∑

i=s+1

Hiϕ(Qi) = 0.

Since α0 is a non-zero divisor on R, it is enough to observe that

α0

( s∑
i=1

Gihi +
t∑

i=s+1

Hiϕ(Qi)
) (3.46)

=
s∑
i=1

Giϕ(α0Fi) + α0

t∑
i=s+1

Hiϕ(Qi)

= ϕ

(
α0

( s∑
i=1

GiFi +
t∑

i=s+1

HiQi

))
= ϕ(0) = 0.
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3.6.2 About condition 2.

In this subsection we show in Proposition 3.53 that if n = 2 and under some additional assump-
tions, condition 2. from Theorem 3.40 is fulfilled.

In the notation of Theorem 3.40, assume that d = min{a ∈ Z | Ia 6= Ia}. We claim that
we have d = min{a ∈ Z | Ia 6= 0} and therefore, that J = I. Let d′ = min{a ∈ Z | Ia 6= 0}.
If Ia = 0 then Ia = Ia so d′ ≤ d. On the other hand, if d′ < d then Id′ = Id′ 6= 0. Thus,
HS/I(a) = HS/I(a) = r for every a ≥ d′ by Lemma 2.9(ii) and the definition of hr,n. It follows
that I≥d′ = I≥d′ which contradicts the definition of d and proves the claim.

The smoothness of Hilbr(P2) and its consequence, Proposition 3.10, play a key role in our
approach to condition 2. of Theorem 3.40. However, Proposition 3.45 requires d = max{a ∈
Z | Ia 6= Ia} while Proposition 3.10 corresponds to the case d = min{a ∈ Z | Ia 6= Ia}, when
[J ] = [I ∩md] = [I]. Therefore, we would like to show that, under some additional assumptions,
the condition that [I ∩md] is a smooth point of HilbhS holds also for d = max{a ∈ Z | Ia 6= Ia}.
This will be achieved in Proposition 3.53.

Lemma 3.47. Let I ⊆ S = k[α0, α1, α2] be a homogeneous ideal. Then

dimk Ext2
S(k, S/I)a = β1,a+3(S/I)

for every a ≥ 0.

Proof. Consider the short exact sequence

0→ I → S → S/I → 0.

Applying the functor HomS(k,−)a to the above short exact sequence we obtain the exact se-
quence

. . .→ Ext2
S(k, S)a → Ext2

S(k, S/I)a → Ext3
S(k, I)a → Ext3

S(k, S)a → . . . . (3.48)

We claim that ExtiS(k, S)a = 0 for i = 2, 3.
Consider the Koszul complex

0→ S(−3)


α2

−α1

α0


−−−−−→ S(−2)⊕3


−α1 −α2 0

α0 0 −α2

0 α0 α1


−−−−−−−−−−−−−−−→ S(−1)⊕3

[
α0 α1 α2

]
−−−−−−−−−−→ S → 0. (3.49)

The Ext groups ExtiS(k, S)a = 0 for i = 2, 3 can be computed as the cohomology groups at S⊕3
a+2

and Sa+3 of the complex

0→ Sa


α0

α1

α2


−−−−→ S⊕3

a+1


−α1 α0 0

−α2 0 α0

0 −α2 α1


−−−−−−−−−−−−−−→ S⊕3

a+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ Sa+3 → 0

obtained from the Koszul complex (3.49) by applying the functor HomS(−, S)a. These groups
are trivial.
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Thus,
dimk Ext2

S(k, S/I)a = dimk Ext3
S(k, I)a

by exact sequence (3.48). Applying the functor HomS(−, S/I)a to the Koszul complex (3.49) we
get that Ext3

S(k, I)a is the cokernel of the map

I⊕3
a+2

[
α2 −α1 α0

]
−−−−−−−−−−−−→ Ia+3.

Hence dimk Ext3
S(k, I)a = β1,a+3(S/I).

Lemma 3.50. Let f be the Hilbert function of a zero-dimensional length r subscheme of Pn. Let
I be a saturated ideal of S such that [I] ∈ HilbfS. Let m = min{a ∈ Z | Ia 6= 0} and let d ≥ m be
a positive integer. Let h be the Hilbert function of S/I ∩ md. Assume that [I] is a smooth point
and that the natural map HomS(I ∩ ma, S/I)0 → HomS(I ∩ ma+1, S/I)0 is bijective for every
m ≤ a < d. Then [I ∩ md] ∈ HilbhS is a smooth point. Moreover, dimkT[I∩md] HilbhS = dimW

where W ⊆ HilbhS is the locally closed subset whose closed points correspond to ideals defining
subschemes of Pn with Hilbert function f .

Proof. For an integer m ≤ a ≤ d let ga be the Hilbert function of S/I∩ma. In particular, gm = f

and gd = h. LetWa be the locally closed subset of HilbgaS whose closed points correspond to ideals
defining subschemes of Pn with Hilbert function f . In particular, Wd = W . For m ≤ a ≤ d− 1

let πa : HilbgaS → Hilb
ga+1

S be the natural map given on closed points by [I ′] 7→ [I ′ ∩ma+1]. The
map πa induces a homeomorphism Wa

∼= Wa+1 by Lemma 2.29.
We assumed that the natural map HomS(I ∩ma, S/I)0 → HomS(I ∩ma+1, S/I)0 is bijective

for every m ≤ a ≤ d − 1. Therefore, by Lemma 2.79 the map πa induces an isomorphism of
tangent spaces

T[I∩ma] HilbgaS
∼= T[I∩ma+1] Hilb

ga+1

S (3.51)

for every m ≤ a ≤ d− 1.
Now we show that [I ∩ md] ∈ HilbhS is a smooth point. Observe that Wm ⊆ HilbfS is open

and [I ∩mm] = [I] ∈ HilbfS is a smooth point by assumption. Therefore,

dimkT[I∩md] HilbhS = dimkT[I] HilbfS = dimWm = dimWd = dimW (3.52)

where the first equality follows from Equation (3.51), the second from the fact that [I] is a
smooth point and Wm ⊆ HilbfS is open and the third equality follows from the homeomorphism
Wm
∼= Wd. Equation (3.52) implies that [I∩md] is a smooth point of HilbhS since [I∩md] ∈W .

Finally, we present the main result of this subsection.

Proposition 3.53. In the notation of Theorem 3.40, assume that n = 2. Let

m = min{a ∈ Z | Ia 6= Ia} = min{a ∈ Z | Ia 6= 0}.

Let f be the Hilbert function of S/I and assume that

f(a)− 3f(a+ 1) + 3f(a+ 2)− f(a+ 3) = β1,a+3(S/I) (3.54)

for every m ≤ a ≤ d − 1. Then [J ] is smooth in HilbhS, i.e. condition 2. from Theorem 3.40 is

61



fulfilled. Moreover, dimk HomS(J, S/J)0 = dimW where W ⊆ HilbhS is the locally closed subset
whose closed points correspond to ideals defining subschemes of P2 with Hilbert function f .

Proof. The point [I ∩ mm] = [I] ∈ HilbfS is a smooth point by Proposition 3.10. Therefore, by
Lemma 3.50 it is enough to show that the natural map

HomS(I ∩ma, S/I)0 → HomS(I ∩ma+1, S/I)0 (3.55)

coming from the exact sequence of Hom groups is bijective for every m ≤ a < d. Fix m ≤ a ≤
d− 1 and let Q = I ∩ma/I ∩ma+1. Since m ·Q = 0 and (I : m) = I, we conclude by Lemma 2.8
that HomS(Q,S/I)0 = 0. Thus, the map from Equation (3.55) is injective.

We have Q = k(−a)s for some integer s. Therefore, by Lemma 2.27 we have

s
(
f(a)− 3f(a+ 1) + 3f(a+ 2)− f(a+ 3)

)
=

3∑
i=0

(−1)i dimk ExtiS(Q,S/I)0.

Since dimk HomS(Q,S/I)0 = 0, it follows from Equation (3.54) and Lemma 3.47 that

dimk Ext1
S(Q,S/I)0 + dimk Ext3

S(Q,S/I)0 = 0.

In particular, Ext1
S(Q,S/I)0 = 0. Thus, the map from Equation (3.55) is surjective.

3.6.3 About condition 3.

Lemma 3.56. In the notation of Theorem 3.40, assume that d = max{a ∈ Z | Ia 6= Ia}.
Then the natural map HomS(K,S/K)0 → HomS(K,S/J)0 is surjective, i.e. condition 3. from
Theorem 3.40 is fulfilled.

Proof. It is enough to establish that Ext1
S(K,J/K)0 = 0. Let P• be a minimal graded free

resolution of K. Then Ext1
S(K,J/K)0 is a subquotient of HomS(P1, J/K)0 so it is enough to

show that the latter group is trivial. This holds, since the minimal generators of P1 are of degree
at least d+ 1 and (J/K)≥d+1 = 0.

3.6.4 Application one: subschemes contained in a line

In this subsection we consider ideals defining subschemes contained in a line. The statement
of Theorem 3.65 coincides with [66, Thm. 2.8] but we provide a new proof in the setting of
Theorem 3.40.

We start with a lemma. It is stated in a general version since we will also use it in Subsec-
tion 3.6.5. We introduce some notation. Let f be the Hilbert function of a zero-dimensional,
length r subscheme of ProjS. Assume that f 6= hr,n. Let

e = max{a ∈ Z | f(a) 6= hr,n(a)}.

Let h : Z→ Z be defined by

h(a) =

{
dimk Sa for a < e;

f(a) for a ≥ e
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and k : Z→ Z be defined by

k(a) =

{
dimk Sa for a < e;

hr,n(a) for a ≥ e.

Let π : Hilb
hr,n
S → HilbkS , πh : HilbhS → Hilbr(Pn) and πk : HilbkS → Hilbr(Pn) be the natural

morphisms.
Let V be the locally closed subset of Hilbr(Pn) consisting of points corresponding to sub-

schemes with Hilbert function f . Let W be the set-theoretic inverse image of V under πh and
let W ′ be the set-theoretic inverse image of V under πk.

Lemma 3.57. In the above notation, assume that:

1. f(e) = r − 1;

2. V ⊆ Hilbr(Pn) is irreducible;

3. there exists an irreducible closed (rn−1)-dimensional subset U ⊆W ′ such that π(Slipr,n)∩
W ′ ⊆ U , set-theoretically;

4. dimk HomS(J, S/J)0 = dimW for every [J ] ∈W ⊆ HilbhS;

5. dimk Ext1
S(k, S/J)e ≤ 1 for every [J ] ∈W ⊆ HilbhS.

Then π(Slipr,n) ∩W ′ = U , set-theoretically.

Proof. From assumption 1. and hr,n(e) 6= f(e) we get hr,n(e) = r. Let N = dimV . It follows
from Lemmas 2.43, 2.44, [80, 11.4.C] and assumption 2. that W,W ′ are irreducible and their
dimensions are dimW = N and dimW ′ = N + (dimk Se − (r − 1)− 1) = N + dimk Se − r.

We have dimπ(Slipr,n) = rn. We claim that V ∩Hilbsmr (Pn) 6= ∅. Let [R] ∈ V and let I ′ be the
generic initial ideal of the ideal I(R) with respect to the grevlex order with α0 > α1 > . . . > αn.
Then [ProjS/I ′] ∈ V by Corollary 2.10 and [ProjS/I ′] ∈ Hilbsmr (Pn) by [20, Prop. 4.15] since
I ′ is an extended ideal from k[α0, . . . , αn−1] by Lemma 2.11. Since πk ◦ π(Slipr,n) = Hilbsmr (Pn)

and V ∩Hilbsmr (Pn) 6= ∅, we have π(Slipr,n) ∩W ′ 6= ∅.
Now we will show that

dimk HomS(K,S/K)0 ≤ N + dimk Se − r + 1 = dimW ′ + 1 (3.58)

for every [K] ∈W ′ ⊆ HilbkS .
Let [K] ∈W ′ and J = K ∩me. Consider the exact sequences

0→ HomS(J/K, S/J)0 → HomS(J, S/J)0 → HomS(K,S/J)0 → Ext1
S(J/K, S/J)0 (3.59)

and

0→ HomS(K,J/K)0 → HomS(K,S/K)0 → HomS(K,S/J)0 → Ext1
S(K,J/K)0. (3.60)

By assumption 1., J/K = k(−e). It follows from Lemma 2.28 that

dimk HomS(K,J/K)0 = β1,e(S/K) = dimk Se − r (3.61)
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and
dimk Ext1

S(K,J/K)0 = 0. (3.62)

Thus, by Equations (3.60) and (3.62) we get

dimk HomS(K,S/K)0 = dimk HomS(K,J/K)0 + dimk HomS(K,S/J)0. (3.63)

Moreover, HomS(J/K, S/J)0 = 0 by Lemma 2.8. Therefore, it follows from Equations (3.59)
and (3.63) that

dimk HomS(K,S/K)0 ≤ dimk HomS(K,J/K)0 + dimk HomS(J, S/J)0 + dimk Ext1
S(k, S/J)e.

Equation (3.58) follows from Equation (3.61) and assumptions 4., 5.
Let [K] ∈ W ′ ∩ π(Slipr,n) and let Z be an irreducible component of W ′ ∩ π(Slipr,n) passing

through [K]. By Theorem 2.74, Lemma 2.30 and Equation (3.58) we get that

dimZ ≥ dimπ(Slipr,n) + dimW ′ − (dimW ′ + 1) = rn− 1.

Moreover, W ′ is open in W ′ since W ′ is locally closed. Therefore, the generic point of Z belongs
to W ′. As a result, Z ⊆ U by assumption 3. and in fact Z = U since dimZ ≥ rn− 1 = dimU .
Since U is closed in W ′ we get U = W ′ ∩Z ⊆W ′ ∩π(Slipr,n) and therefore, W ′ ∩π(Slipr,n) = U

by assumption 3.

Lemma 3.64. Let J be a homogeneous ideal of S such that S/J has Hilbert function hr,1. Then

dimk Ext1
S(k, S/J)a = 0

for 1 ≤ a < r − 2 and
dimk Ext1

S(k, S/J)r−2 = 1.

Proof. Up to a linear change of variables, we may assume that J =
(
α0, . . . , αn−2, θr(αn−1, αn)

)
.

The Ext groups from the statement are the middle cohomology groups of the complex

(S/J)a
δ0−→ (S/J)n+1

a+1
δ1−→ (S/J)

(n+1
2 )

a+2

obtained from the Koszul complex. Here

δ0([f ]) = ([αif ])i=0,...,n and δ1([fi]i=0,...,n) = ([αifj − αjfi])0≤i<j≤n.

Let a ∈ {1, . . . , r − 3} and assume that δ1([fi]i=0,...,n) = 0. Observe that [αjfi] = 0 for every
i ∈ {0, . . . , n} and j ∈ {0, . . . , n− 2}. Furthermore, multiplications by αn−1 or αn give injective
maps (S/J)a → (S/J)a+1. It follows that [fj ] = 0 for j ≤ n− 2. Moreover, we have [αnfn−1] =

[αn−1fn]. There are unique representatives fn−1, fn of the classes [fn−1] and [fn] in S/J which
are polynomials in variables αn−1, αn. Since Ja+2 = (α0, . . . , αn−2)a+2, it follows that there is
a polynomial g in variables αn−1, αn such that gαn−1 = fn−1 and gαn = fn. Hence δ0([g]) =

([fi])i=0,...,n. Consequently, Ext1
S(k, S/J)a = 0.

Now assume that a = r − 2. As in the previous case, we get [fi] = 0 for i ≤ n − 2. Lift
[fn−1], [fn] to unique representatives which are polynomials in αn−1, αn. Now from the equation
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[αnfn−1] = [αn−1fn] we deduce that there is a constant c such that

αnfn−1 = αn−1fn + cθr.

The space

Θ = {(fn−1, fn) ∈ (k[αn−1, αn]r−1)2 | αnfn−1 − αn−1fn is divisible by θr}

is r-dimensional. It follows that

dimk Ext1
S(k, S/J)r−2 = r − dimk δ0

(
(S/J)r−2

)
= r − (r − 1) = 1.

Finally, we can present the criterion for ideals defining subschemes contained in a line.

Theorem 3.65. Let [I] ∈ Hilb
hr,n
S be a closed point corresponding to an ideal I such that S/I

has Hilbert function hr,1. Then there exists [I ′] ∈ Slipr,n such that I≥r−2 = I ′≥r−2 if and only if
(I

2
)r−2 ⊆ Ir−2.

Proof. We may assume that n ≥ 2 and r ≥ 4 since otherwise both conditions are trivially
satisfied. Indeed, if n = 1 or r < 4 then Hilb

hr,n
S is irreducible (see Propositions 3.35 - 3.38) so

we may take I ′ = I. On the other hand, if n = 1 then I = I while if r ≤ 3 then (I
2
)r−2 = 0.

We use the notation of the beginning of this subsection with f = hr,1. Let U be the locus of
those points [K] from W ′ that satisfy

(K
2
)r−2 ⊆ Kr−2.

In this notation, we need to prove that π(Slipr,n) ∩W ′ = U , set-theoretically.
We start with showing that π(Slipr,n)∩W ′ ⊆ U . Let [I ′′] ∈ Hilb

hr,n
S be such that [I ′′∩mr−2] ∈

W ′\U . We will use Theorem 3.40 with d = r−2 and I = I ′′ to show that [I ′′∩mr−2] /∈ π(Slipr,n).
By Lemma 3.56 condition 3. of Theorem 3.40 holds. Recall Notation 3.43. Let R = S/I ′′ and
let b = ((I ′′)1) ⊆ S. Then (0) = a = b+I′′

I′′
⊆ R. In particular, dimk ar−2 = dimk ar−1 = 0.

Furthermore, since [I ′′ ∩mr−2] /∈ U we have (I ′′)r−2 = I ′′r−2 + lin{F} for some F ∈ ((I ′′)2)r−2 =

((I ′′1) · I ′′)r−2 = (b · I ′′)r−2. Thus, by Proposition 3.45 condition 1. of Theorem 3.40 is fulfilled.
We are left with proving that [I ′′ ∩ mr−2] is a smooth point of HilbhS . Note that the following
proof of this fact uses only the assumption that S/I ′′ has Hilbert function hr,1.

By Lemma 2.42 and Proposition 3.35, [I ′′] = [I ′′ ∩ m] is a smooth point. Therefore, by
Lemma 3.50 it is enough to show that the natural map

HomS(I ′′ ∩ma, S/I ′′)0 → HomS(I ′′ ∩ma+1, S/I ′′)0

is bijective for every 1 ≤ a < r − 2. Let 1 ≤ a ≤ r − 3 and Q = (I ′′ ∩ ma)/(I ′′ ∩ ma+1). Then,
we have an exact sequence

0→ HomS(Q,S/I ′′)0 → HomS(I ′′ ∩ma, S/I ′′)0 → HomS(I ′′ ∩ma+1, S/I ′′)0 → Ext1
S(Q,S/I ′′)0.

Since HomS(Q,S/I ′′)0 = 0 by Lemma 2.8, it follows from Lemma 3.64 that

HomS(I ′′ ∩ma, S/I ′′)0
∼= HomS(I ′′ ∩ma+1, S/I ′′)0. (3.66)
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Thus, [I ′′∩mr−2] ∈ HilbhS is a smooth point by Lemma 3.50. By Theorem 3.40 we conclude that
[I ′′ ∩mr−2] /∈ π(Slipr,n). Hence

π(Slipr,n) ∩W ′ ⊆ U.

Now we shall show the opposite inclusion using Lemma 3.57. Assumption 1. is satisfied.
Moreover, assumption 4. holds by Lemma 3.50 and Equation (3.66). We have shown above that
π(Slipr,n)∩W ′ ⊆ U . Assumption 5. is fulfilled by Lemma 3.64. In our case, V is homeomorphic
to a Hilb

hr,1
S[P1]

-bundle over Gr(n − 1, S1) by [20, Prop. 3.1]. In particular, V is irreducible of
dimension 2(n− 1) + r.

We need to show that U is irreducible of dimension rn − 1. Consider the natural map
U → V . The fiber over every closed point is irreducible of dimension (n − 1)(r − 2) − 1.
Indeed, up to a linear change of variables we may assume that we have [ProjS/I] ∈ V with
I = (α0, . . . , αn−2, θr(αn−1, αn)). Then the fiber over [ProjS/I] is the set of codimension one
subspaces of

lin{αiαan−1α
b
n | i ∈ {0, . . . , n− 2}, a+ b = r − 3, a, b ≥ 0}.

It follows from [80, 11.4.C] that U is irreducible of dimension

(n− 1)(r − 2)− 1 + 2(n− 1) + r = rn− 1.

We end this subsection with two examples of applications of Theorem 3.65. In the first of
them, we show that a certain point does not belong to Slipr,n.

Example 3.67. Let S = k[α0, . . . , α3] be a polynomial ring and let

I ′′ = (α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2).

Then [I ′′] ∈ Hilb
h4,3

S . We claim that [I ′′] /∈ Slip4,3. Indeed, I ′′ = (α0, α1, α
4
2) but α2

0 ∈ (I ′′
2
)2 \ I ′′2 .

Thus, the claim follows from Theorem 3.65.
Observe that HS/(I′′)2(6) = 15 < 16. Thus, we could have deduced that [I ′′] /∈ Slip4,3 from

Theorem 3.5. In fact, the proof of Theorem 3.65 presented in [66, Thm. 2.8] is based on the
criterion from Theorem 3.5. Here we presented another proof that fits into the bigger picture
(Theorem 3.40).

On the other hand dimk HomS(I ′′ + md, S/(I ′′ + md))0 ≥ 12 for every d ≥ 3. It follows that
Proposition 3.1 cannot be used to deduce that [I ′′] /∈ Slip4,3.

Consider again ideals I from Example 3.3 and I ′ from Example 3.6. We have (I
2
)4 = (I ′

2
)4 =

(α2
0)4. Moreover, (α2

0)4 ⊆ I4 and (α2
0)4 ⊆ I ′4. Thus, Theorem 3.65 cannot be used to deduce that

[I] /∈ Slip6,2 or [I ′] /∈ Slip6,2.
The following table summarizes Examples 3.3, 3.6 and 3.67.

Ideal Prop. 3.1 Thm. 3.5 Thm. 3.65

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) ⊆ k[α0, α1, α2] X ? ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ⊆ k[α0, α1, α2] ? X ?

(α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2) ⊆ k[α0, . . . , α3] ? X X

In the second example, we use Theorem 3.65 to show that a given point belongs to Slipr,n.
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Example 3.68. Let S = k[α0, . . . , α3] be a polynomial ring and

J ′ = (α2
0, α0α1, α

2
1, α0α2, α1α2, α0α3, α1α

2
3, α

4
2).

Then [J ′] ∈ Hilb
h4,3

S and we claim that [J ′] ∈ Slip4,3. We have J ′ = (α0, α1, α
4
2) and (J ′

2
)2 ⊆ J2.

Therefore, by Theorem 3.65 there exists [K] ∈ Slip4,3 such that K≥2 = J ′≥2. Since K1 = J ′1 = 0,
we conclude that [J ′] = [K] ∈ Slip4,3.

3.6.5 Application two: constant growth on projective plane

In this subsection n = 2, so S = k[α0, α1, α2]. Let [I] ∈ Hilb
hr,2
S and let f be the Hilbert function

of S/I. Let m = min{a ∈ Z | Ia 6= 0}. Assume that there exist positive integers t and e > m

such that f is given by

f(a) =


dimk Sa for a < m

r − (e+ 1− a)t for a ∈ {m,m+ 1, . . . , e}
r for a ≥ e+ 1

(3.69)

Observe that for r ≥ 4 the function hr,1 is of the above form with m = 1, e = r − 2 and t = 1.
Another example of such Hilbert function is (1, 3, 5, 7, 9, 11, 11, . . .). Here m = 2, e = 4, t = 2.

Thus, in this subsection we consider more general Hilbert functions of S/I than in Subsec-
tion 3.6.4 but we require that n = 2.

The goal of this subsection is Theorem 3.74. There, we give a necessary condition for [I] to
be in Slipr,2.

In the following lemma, we show that [I ∩me] is a smooth point. Thus, we verify condition 2.
from Theorem 3.40.

Lemma 3.70. In the above notation we have

β1,a(S/I) = 0 for e+ 2 6= a ≥ m+ 2, (3.71)

and
β1,e+2(S/I) = t. (3.72)

As a result, [I ∩ me] ∈ HilbhS is a smooth point where h is the Hilbert function of S/(I ∩ me).
Moreover, dimk HomS

(
I∩me, S/(I∩me)

)
0

= dimW whereW ⊆ HilbhS is the locally closed subset
whose closed points correspond to the ideals defining subschemes of P2 with Hilbert function f .

Proof. Recall that the Hilbert function f of S/I satisfies Equation (3.69). Let e+2 6= a ≥ m+2.
Then, by Lemma 2.13 we obtain β1,a(S/I) ≤ 2f(a− 1)− f(a)− f(a− 2) = 0. Similarly, we get
β1,e+2(S/I) ≤ 2f(e+ 1)− f(e+ 2)− f(e) = t.

We shall show that β1,e+2(S/I) ≥ t. Since I is saturated, dimk HomS(k, S/I) = 0. Therefore,
by Lemma 2.27 we get

− dimk Ext1
S(k, S/I)e−1 + dimk Ext2

S(k, S/I)e−1 − dimk Ext3
S(k, S/I)e−1

= HS/I(e− 1)− 3HS/I(e) + 3HS/I(e+ 1)−HS/I(e+ 2)

= (r − 2t)− 3(r − t) + 3r − r = t.
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It follows from Lemma 3.47 that β1,e+2(S/I) ≥ t.
Having calculated the Betti numbers, we proceed to proving the second part of the lemma.

By Proposition 3.53 it is enough to show that

HS/I(a)− 3HS/I(a+ 1) + 3HS/I(a+ 2)−HS/I(a+ 3) = β1,a+3(S/I) (3.73)

for every a ∈ {m,m+ 1, . . . , e− 1}. By direct calculation, the left-hand side of Equation (3.73)
equals zero for a ∈ {m, . . . , e− 2} and equals t for a = e− 1. The same is true for the right-hand
side by Equations (3.71) and (3.72).

We present the main result of this subsection.

Theorem 3.74. In the notation of Theorem 3.40 assume additionally that n = 2. Let m =

min{a ∈ Z | Ia 6= 0} and e = max{a ∈ Z | Ia 6= Ia}. Assume that e > m and that there exists a
positive integer t such that S/I has Hilbert function f as in Equation (3.69). Then

(i) There exists θ ∈ St such that Ie ⊆ (θ)e;

(ii) Let θ be as in part (i). If Ie = Ie+(θ ·I)e then there is no [I ′] ∈ Slipr,2 such that I ′≥e = I≥e.
In particular, [I] /∈ Slipr,2;

(iii) If t = 1 and θ ∈ S1 is as in part (i), then there exists [I ′] ∈ Slipr,2 such that I ′≥e = I≥e if
and only if (θ · I)e ⊆ Ie.

Proof. (i) By Lemma 2.9(i) there is an element L ∈ S1 that is a non-zero divisor on S/I.
Moreover, we can take for L any general linear form. Let T = S/(L) and

a =
(
I + (L)

)
/(L) ⊆ T.

Then HS/I(a) −HS/I(a − 1) = HT/a(a) for any positive integer a. In particular, am 6= 0.
Therefore, t = HT/a(m + 1) ≤ HT/a(m) ≤ m, where the first inequality follows from
Lemma 2.12 and the second from the fact that am 6= 0. We get t = HT/a(e + 1) =

HT/a(e) < e. Hence a has maximal growth in degree e. By [5, Lem. 1.4], we get that
I ′ = (I≤e) is a saturated ideal. Moreover, β1,e+1(S/I) = 0 by Lemma 3.70. Thus, S/I ′

has Hilbert polynomial P (a) = at + (r − e − 1) by Gotzmann’s persistence theorem [10,
Thm. 4.3.3] applied to T/(a≤e). Since P is of degree 1 and its leading coefficient is t it
follows from [47, Prop. I.7.6] that the subscheme of P2 defined by I ′ contains a curve of
degree t. Hence there exists θ ∈ St such that Ie ⊆ (θ)e.

(ii) We want to use Theorem 3.40 with d = e. Assumption 3. of the theorem is fulfilled by
Lemma 3.56. Lemma 3.70 implies that assumption 2. is satisfied.

Finally, we address assumption 1. Recall Notation 3.43. Let b = (θ) and a = (θ)+I

I
⊆ S/I.

We assumed that Ie = Ie + (θ · I)e. Therefore, by Proposition 3.45 it is enough to show
that dimk ae = dimk ae+1. By part (i) and Equation (3.71) we get I≤e+1 ⊆ (θ). It follows
that

dimk ae+1 − dimk ae = (dimk(θ)e+1 − dimk(θ)e)− (dimk Ie+1 − dimk Ie)

= (dimk Se−t+1 − dimk Se−t)−
(

dimk Se+1 −HS/I(e+ 1)− dimk Se +HS/I(e)
)

= (e+ 2− t)− (e+ 2− t) = 0.
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(iii) Assume that there exists [I ′] ∈ Slipr,2 such that I ′≥e = I≥e. We shall show that (θ ·I)e ⊆ Ie.
It follows form t = 1 that Ie is of codimension 1 in Ie. Therefore, if (θ · I)e 6⊆ Ie then
(θ · I)e + Ie = Ie. Thus, we obtain a contradiction with part (ii).

We proceed to the proof of the other implication. Let h, k, V,W,W ′ be defined as in the
beginning of Subsection 3.6.4 with n = 2 and f being the Hilbert function of S/I.

Let U be the locus of those points [K] of W ′ for which

(θ ·K)e ⊆ Ke

where θ ∈ S1 is the common divisor of Ke. We need to show that U ⊆ π(Slipr,2)∩W ′ set-
theoretically. We shall use Lemma 3.57. Assumption 1. is clear and assumption 2. follows
from Proposition 3.11. Assumption 4. is a consequence of Lemma 3.70. Part (ii) implies
that π(Slipr,2) ∩W ′ ⊆ U , set-theoretically. Therefore, we need to show that

(a) U is irreducible of dimension 2r − 1;

(b) Ext1
S(k, S/J)e ≤ 1 for every [J ] ∈W .

We start with (a). By [80, 11.4.C] the subset U is an irreducible subset of HilbkS of dimension

dimV +
(

dimk Se − r −
(

dimk Se−1 − (r − 2)
))

= dimV + e− 1.

Indeed, the fiber over a closed point [ProjS/I ′] ∈ V of the natural map U → V is the set
of those codimension 1 subspaces of (I ′)e that contain (θ · I ′)e where θ ∈ S1 is the common
divisor of (I ′)e. Now, it suffices to establish the equality dimV = 2r − e.

Let Ef ⊆ HilbfS be the open subset whose points correspond to saturated ideals. Then Ef
is homeomorphic with V by Lemma 2.29 applied to the natural map HilbfS → Hilbr(P2).

Let I ′′ = (αm0 , α
m−1
0 α1, . . . , α

s
0α

m−s
1 , αs−1

0 αm−s+2
1 , . . . , α0α

m
1 , α

e+2
1 ) ⊆ S where m+ 1− s =

dimk Sm − f(m). Then S/I ′′ has Hilbert function f and I ′′ is saturated. Therefore, by
Propositon 3.10 and Theorem 2.74, it is enough to show that

dimk HomS(I ′′, S/I ′′)0 = 2r − e.

Let T = k[α0, α1] and a = T ∩ I ′′. We have

dimk HomS(I ′′, S/I ′′)0 = dimk HomT (a, T/a)≤0 = 2r − dimk HomT (a, T/a)>0,

where the last equality follows from the fact that [SpecT/a] is a point of the smooth 2r-
dimensional scheme Hilbr(A2) and [48, Prop. 2.3]. By Proposition 2.22 the dimension of
HomT (a, T/a)>0 can be computed from the staircase diagram of a.

Observe that a can have minimal generators only in degrees m,m+ 1, e+ 2. Furthermore,
β2,a(T/a) can be non-zero only for a ∈ {m+1,m+2, e+3}. LetA = (m+1−s) = β1,m(T/a).
Then β1,m+1(T/a) = m− A, β2,m+1(T/a) = A− 1 and β2,m+2(T/a) = m− A. Therefore,
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by Proposition 2.22 we get

HomT (a, T/a)>0 = β1,m(T/a)(e−m+ 1) + β1,m+1(T/a)(e−m)

−β2,m+1(T/a)(e−m)− β2,m+2(T/a)(e−m− 1)

= A(e−m+ 1) + (m−A)(e−m)− [(A− 1)(e−m) + (m−A)(e−m− 1)] = e.

This concludes the proof of (a).

Let [J ] ∈W . Using Lemmas 3.47 and 3.70 we get

dimk Ext2
S(k, S/J)e = dimk Ext2

S(k, S/J)e = β1,e+3(S/J) = 0.

Furthermore, Lemma 2.27 and Equation (3.69) (with t = 1) imply that

−dimk Ext1
S(k, S/J)e + dimk Ext2

S(k, S/J)e − dimk Ext3
S(k, S/J)e

= HS/J(e)− 3HS/J(e+ 1) + 3HS/J(e+ 2)−HS/J(e+ 3) = −1.

It follows that dimk Ext1
S(k, S/J)e ≤ 1. Thus, (b) holds.

We end this subsection with two more examples. In the first, we shall use Theorem 3.74 to
show that a certain point is outside of Slip6,2.

Example 3.75. Let S = k[α0, α1, α2] be a polynomial ring and let

I ′′′ = (α2
0α1, α

2
0α2, α0α

2
1, α0α1α2, α

4
0, α

5
1).

Then [I ′′′] ∈ Hilb
h6,2

S and we claim that [I ′′′] /∈ Slip6,2. We have I ′′′ = (α2
0, α0α1, α

5
1). Thus, the

Hilbert function of S/I ′′′ is as in Equation 3.69 with r = 6,m = 2, e = 3 and t = 1. We have
(I ′′′)3 ⊆ (α0)3 but α3

0 ∈ (α0 · I ′′′)3 \ I ′′′3 . It follows from Theorem 3.74 that [I ′′′] /∈ Slip6,2.
On the other hand, criteria from Proposition 3.1 and Theorem 3.5 (with k = 2) do not show

that [I ′′′] /∈ Slip6,2. Furthermore, criterion from Theorem 3.65 cannot be applied to [I ′′′] since
HS/I′′′(1) 6= 2.

We summarize Examples 3.3, 3.6, 3.67 and 3.75 in the following table. Here ideals from
first, second and fourth rows are in k[α0, α1, α2], while ideal in the third row is in the ring
k[α0, α1, α2, α3]. The symbol NA means that a certain criterion cannot be applied to a given
point since the assumptions are not fulfilled. As before, the question mark means that a given
necessary condition is satisfied by the given point, i.e. the criterion is inconclusive.

Ideal Prop. 3.1 Thm. 3.5 Thm. 3.65 Thm. 3.74

(α3
0, α0α

2
1, α

2
0α2, α0α1α2, α0α

4
2, α

6
1) X ? ? ?

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, α

6
2) ? X ? ?

(α0α1, α
2
1, α0α2, α0α3, α1α2, α1α3, α

3
0, α

4
2) ? X X NA

(α2
0α1, α

2
0α2, α0α

2
1, α0α1α2, α

4
0, α

5
1) ? ? NA X

In the second example, we use Theorem 3.74(iii) to deduce that a certain point belongs to
the irreducible component Slip6,2.
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Example 3.76. Let S = k[α0, α1, α2] and J ′′ = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α0α

3
2, α

5
1). Then

[J ′′] ∈ Hilb
h6,2

S and we claim that [J ′′] ∈ Slip6,2. The Hilbert function of S/J ′′ is of the form
given by Equation 3.69 with m = 2, e = 3, t = 1 and r = 6. Furthermore, (J ′′)≤3 ⊆ (α0)3. We
have (α0 ·J ′′)3 = (α2

0α1, α
2
0α2)3 ⊆ J ′′3 . Therefore, by Theorem 3.74(iii), there exists [K] ∈ Slip6,2

with K≥3 = J ′′≥3. Since K≤2 = J ′′≤2 = 0, we conclude that [J ′′] = [K] ∈ Slip6,2.
We summarize Examples 3.32, 3.68 and 3.76 in the following table. Here the ideal in the

second row is in k[α0, . . . , α3] while the other two ideals are in k[α0, α1, α2]. As before, NA means
that a certain criterion cannot be applied to the given ideal.

Ideal Theorem 3.12 Theorem 3.65 Theorem 3.74

(α0α1, α
2
0α2, α0α

2
2, α

4
1) X NA NA

(α2
0, α0α1, α

2
1, α0α2, α1α2, α0α3, α1α

2
3, α

4
2) NA X NA

(α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α0α

3
2, α

5
1) NA NA X

Observe that we cannot use Theorem 3.74(iii) for J since, in the notation of that theorem,
we have m = e = 2.

3.7 Points on projective space – examples, part II

From Fogarty’s result [35] on Hilbr(P2) it may seem that Hilb
hr,2
S[P2]

should be smooth, or at least
not too complicated. We show that this is not the case. Speculating a bit, we may say that
Fogarty’s result concerns the case of codepth two, while we work in nonsaturated setting, hence
in codepth three. Thus, the correct parallel would be Hilbr(P3), where almost nothing is known
about the principal component.

3.7.1 4 points on projective space

In this subsection, we describe the closed points of Slip4,n for a positive integer n.

Proposition 3.77. Let I ⊆ S[Pn] be a homogeneous ideal such that S[Pn]/I has Hilbert function
h4,n. Then [I] ∈ Slip4,n if and only if (I

2
)2 ⊆ I2.

Proof. Condition (I
2
)2 ⊆ I2 holds trivially for [I] ∈ Hilb

h4,n

S[Pn] if I is saturated. On the other
hand, Hilb4(Pn) is irreducible by [20, Thm. 1.1]. Thus, by Remark 2.46, it is enough to consider
ideals that are not saturated. Furthermore, by [20, Prop. 3.1], we may assume that n ≤ 3.

If n = 1, then every closed point [I] ∈ Hilb
h4,1

S[P1]
corresponds to a saturated ideal.

If n = 2 and [I] ∈ Hilb
h4,2

S[P2]
with I 6= I, then S/I has Hilbert function h4,1. This follows from

Lemma 2.9. Therefore, by Theorem 3.65

(I
2
)2 ⊆ I2 ⇔ there exists [J ] ∈ Slip4,2 such that J≥2 = I≥2 ⇔ [I] ∈ Slip4,2 .

The latter equivalence follows from the fact that J≤1 = I≤1 = 0.
Assume that n = 3 and [I] ∈ Hilb

h4,3

S[P3]
is such that I 6= I. Then S/I has Hilbert function

h4,2 or h4,1. In the first case the condition (I
2
)2 ⊆ I2 holds. We claim that [I] ∈ Slip4,3. Indeed,

[ProjS/I] ∈ Hilbsm4 (P3) = Hilb4(P3), so there exists an ideal [J ] ∈ Slip4,3 with J = I. However,
J1 = I1 = 0 and J≥2 = I≥2 = I≥2, so [I] = [J ] ∈ Slip4,3.
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Finally, assume that [I] ∈ Hilb
h4,3

S[P3]
is such that S/I has Hilbert function h4,1. Then, as in

the case n = 2, by Theorem 3.65 we get

(I
2
)2 ⊆ I2 ⇔ there exists [J ] ∈ Slip4,3 such that J≥2 = I≥2 ⇔ [I] ∈ Slip4,3 .

As a corollary, we obtain an example of a reducible multigraded Hilbert scheme.

Corollary 3.78. The scheme Hilb
h4,2

S[P2]
is reducible. In fact, [(α0α1, α0α2, α

3
0, α

4
1)] /∈ Slip4,2.

We stress the fact, that there is a point outside of Slip4,2 that corresponds to a monomial
ideal.

Remark 3.79. The comment after [13, Cor. 6.3] puts forward a conjecture that conditions (i)
and (iii) of [13, Cor. 6.3] imply condition (iv). Corollary 3.78 shows that this is not true.

3.7.2 5 points on projective plane

In this subsection, we describe the closed points of Slip5,2 (see Proposition 3.89). Let S = S[P2] =

k[α0, α1, α2] and [I] be a closed point of Hilb
h5,2

S . By Lemma 2.9, the Hilbert function of S/I is
one of the three: h5,2, g, h5,1, where g : Z→ Z is given by

g(a) =


dimk Sa for a ≤ 0;

a+ 2 for a = 1, 2;

5 for a ≥ 3;

or informally, g = (1, 3, 4, 5, 5, . . .).
We start with points corresponding to saturated ideals.

Lemma 3.80. Let [I] ∈ Hilb
h5,2

S be a closed point such that I = I. Then [I] ∈ Slip5,2.

Proof. This follows from Remark 2.46 since Hilb5(P2) is irreducible.

The case when S/I has Hilbert function g is also easy.

Lemma 3.81. Let [I] ∈ Hilb
h5,2

S be a closed point such that S/I has Hilbert function g. Then
[I] ∈ Slip5,2.

Proof. Observe that g(a) 6= h5,2(a) if and only if a = 2. Thus, the claim follows from Theo-
rem 3.12.

Finally, we study those points [I] ∈ Hilb
h5,2

S for which S/I has Hilbert function h5,1. We
introduce some more notation. Let h : Z→ Z be given by h = (1, 3, 6, 5, 5, . . .) or more formally,

h(a) =

{
dimk Sa for a ≤ 2;

5 for a ≥ 3.

Let π : Hilb
h5,2

S → HilbhS and π′ : HilbhS → Hilb5(P2) be the natural morphisms. Let V ⊆
Hilbr(P2) be the closed subset whose closed points correspond to the subschemes with Hilbert
function h5,1.
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LetW ⊆ HilbhS be the set-theoretic inverse image of V under π′ and let U be the set-theoretic
inverse image of W under π. We show that these subsets are irreducible and we calculate their
dimensions. We start with V , but we state it in greater generality since we need this also in
Subsection 3.7.3.

Lemma 3.82. Let r be a positive integer. Let V be the closed subset of Hilbr(P2), whose closed
points correspond to subschemes with Hilbert function hr,1. Then V is irreducible and r + 2

dimensional.

Proof. The scheme Hilb
hr,1
S is irreducible, smooth and r+2-dimensional by Proposition 3.35 and

[20, Prop. 3.1]. Therefore, the natural morphism Hilb
hr,1
S → Hilbr(P2) factors through V (with

reduced subscheme structure). It follows from Lemma 2.29 that V is homeomorphic to Hilb
hr,1
S .

In particular, it is irreducible and r + 2-dimensional.

Lemma 3.83. The subset U ⊆ Hilb
h5,2

S is irreducible and 11-dimensional.

Proof. By Lemma 3.82, the locus V is irreducible and 7-dimensional. Thus, in order to show
that U is irreducible and 11-dimensional, it is enough to show that the fiber of π′ ◦ π over
every closed point of V is irreducible and 4-dimensional (see [80, 11.4.C]). Choose a closed point
[ProjS/I] ∈ V . Denote the fiber of π′◦π over this point by X. Then we have a pullback diagram

X Fl(3, 5, I3)

Gr(1, I2) Gr(3, I3),

where Fl(3, 5, I3) is the flag variety parametrizing pairs of linear subspaces A3 ⊆ A5 of I3 such
that dimAi = i for i = 3, 5. The lower horizontal morphism maps lin{`} to lin{α0`, α1`, α2`}.
Since the fibers of the right vertical map are irreducible and of dimension 2, it follows that X is
irreducible and of dimension dimX = dim Gr(1, I2) + 2 = 4.

Let U ′ be the subset of U whose closed points [I] satisfy (I
2
)3 ⊆ I3.

Lemma 3.84. The subset U ′ of U is closed.

Proof. Consider the diagram

Hilb
h5,2

S

Fl(3, 5, S3) Gr(5, S3)

Gr(1, S1) Gr(3, S3) ,

d

c

b

a

where a(lin(`)) = lin{α0`
2, α1`

2, α2`
2} and b, c, d are the natural maps. Then U ′ = U ∩

d−1(c(b−1(a(Gr(1, S1))))), so it is closed.

Let W ′ ⊆ HilbhS be the set-theoretic image π(U ′). It is closed by Lemma 3.84 since π is a
morphism of projective schemes by Theorem 2.36.

Lemma 3.85. The subset W ′ ⊆ HilbhS is irreducible and 9-dimensional.
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Proof. Consider the natural map W ′ → V . By Lemma 3.82 and [80, 11.4.C], it is enough to
show that the fibers are irreducible and 2-dimensional. Let [ProjS/I] ∈ V . We may assume that
I =

(
α0, θ5(α1, α2)

)
. We have (α2

0)3 ⊆ I3 for every [I] ∈ W ′ that is in the fiber over [ProjS/I].
Thus, the fiber of W ′ → V is Gr(2, lin{α0α

2
1, α0α1α2, α0α

2
2}).

Let
W ′i = {[K] ∈W ′ | dimk(K : m)2 = i}

for i = 1, 2. Observe that W ′ = W ′1 ∪W ′2. Indeed, let [K] ∈ W ′ and assume that K1 = (α0)1.
Then α2

0 ∈ (K : m)2 by the definition of W ′. On the other hand, if (K : m)2 ≥ 3 then (α0)2 ⊆
(K : m)2. It follows that (α0)3 ⊆ K3. This contradicts the assumption that HS/K(3) = 5.

Lemma 3.86. The closed subset W ′2 of W ′ is irreducible and 8-dimensional.

Proof. We have a natural map W ′2 → V . By Lemma 3.82 and [80, 11.4.C], it is enough to show
that its fibers are irreducible and 1-dimensional. Consider the point [ProjS/(α0, θ5(α1, α2))] ∈ V .
Fiber over this point is

{[K3] ∈ Gr(5, (α0)3) | (α2
0)3 ⊆ K3 and dimk((K3) : m)2 = 2}.

We have α2
0 ∈ ((K3) : m)2 for every [K3] in the fiber. Therefore, the fiber is P1 corresponding to

the choice of [`] ∈ P(lin{α1, α2}) such that K3 = lin{α3
0, α

2
0α1, α

2
0α2, α0α1`, α0α2`}.

Let
Z1 = {[I] ∈ U ′ | dimk(I≥3 : m)2 = 1}

and
Z2 = {[I] ∈ U ′ | dimk(I≥3 : m)2 = 2}.

Lemma 3.87. The closed subsets Z1, Z2 are irreducible and 9-dimensional. Moreover, U ′ =

Z1 ∪ Z2 set-theoretically.

Proof. By definition we have Zi = π−1(W ′i ) set-theoretically. Moreover, Z1 is homeomorphic to
W ′1. We claim that the fiber of Z2 →W ′2 over every closed point is irreducible and 1-dimensional.
Indeed, the fiber over [K] is P1 corresponding to the choice of a non-zero element of (K : m)2.

Therefore, Z1, Z2 are irreducible and 9-dimensional by Lemmas 3.85, 3.86 and [80, 11.4.C].

Now we can describe the set-theoretic intersection of Slip5,2 with U .

Lemma 3.88. Set-theoretically we have U ∩ Slip5,2 = Z1 ∪ Z2.

Proof. Containment U ∩ Slip5,2 ⊆ Z1 ∪ Z2 follows from Theorem 3.65. Moreover, for every
[I] ∈ Z1, the only ideal [J ] ∈ Hilb

h5,2

S with J≥3 = I≥3 is I. Thus, Z1 ⊆ Slip5,2 by Theorem 3.65.
We shall show that Z2 ⊆ Slip5,2. Let I = (α0α1, α

3
0, α

2
0α2, α0α

3
2 +α4

1). We have [I] ∈ Hilb
h5,2

S .
Moreover, the Hilbert function of S/I is g. Thus, [I] ∈ Slip5,2 by Lemma 3.81. Consider
the initial ideal I ′ of I with respect to the grevlex order with α1 < α2 < α0. Then I ′ =

(α0α1, α
3
0, α

2
0α2, α0α

3
2, α

5
1). We have [I ′] ∈ Slip5,2 ∩Z2. Furthermore, dimk HomS(I ′, S/I ′)0 =

12 = dimU + 1 (see Lemma 3.83). It follows from Theorem 2.74 and Lemma 2.30 that every
irreducible component of Slip5,2 ∩U passing through [I ′] is at least 9-dimensional. This intersec-
tion is contained in Z1 ∪ Z2 and this is a union of two irreducible 9-dimensional subsets. Hence
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it suffices to show that [I ′] /∈ Z1. Consider the projection Hilb
h5,2

S → Gr(1, S2). Then the image
of Z1 is

{lin{`2} | ` ∈ S1 \ {0}},

i.e. it is the image of the second Veronese embedding of PS1. On the other hand, α0α1 ∈ I ′2 is
not a power of a linear form. Thus, [I ′] /∈ Z1.

We summarize the above results in the following proposition which describes Slip5,2.

Proposition 3.89. Let S = k[α0, α1, α2] and [I] ∈ Hilb
h5,2

S be a closed point. Then [I] ∈ Slip5,2

if and only if (I
2
)3 ⊆ I3.

Proof. If S/I has Hilbert function h5,2 or g, then [I] ∈ Slip5,2 by Lemma 3.80 or Lemma 3.81.
On the other hand, in both this cases (I

2
)3 ⊆ I3 holds since (I

2
)3 = 0.

Assume that S/I has Hilbert function h5,1. Then (I
2
)3 ⊆ I3 if and only if [I] ∈ Z1 ∪ Z2 (see

Lemma 3.87). This is equivalent to [I] ∈ Slip5,2 by Lemma 3.88.

3.7.3 6 points on projective plane

The main result of this subsection is the description of Slip6,2 (see Proposition 3.105). Let
S = k[α0, α1, α2] and let [I] ∈ Hilb

h6,2

S be a closed point. Then the Hilbert function of S/I is
one of the four: h6,2, f, g, h6,1 where f : Z→ Z is given by

f(a) =


0 for a < 0;

2a+ 1 for a ∈ {0, 1, 2};
6 for a ≥ 3

(or, in a brief form, f = (1, 3, 5, 6, 6, . . .)) and g : Z→ Z is given by

g(a) =


dimk Sa for a ≤ 1;

a+ 2 for a ∈ {2, 3};
6 for a ≥ 4

(or, g = (1, 3, 4, 5, 6, 6, . . .)).
We start with the points corresponding to saturated ideals.

Lemma 3.90. Let [I] ∈ Hilb
h6,2

S be a closed point such that I = I. Then [I] ∈ Slip6,2.

Proof. This follows from Remark 2.46.

The case when S/I has Hilbert function f is also simple.

Lemma 3.91. Let [I] ∈ Hilb
h6,2

S be a closed point such that S/I has Hilbert function f . Then
[I] ∈ Slip6,2.

Proof. Observe that f(a) 6= h6,2(a) if and only if a = 2. Thus, the claim follows from Theo-
rem 3.12.

Next we consider points [I] corresponding to ideals such that S/I has Hilbert function g.
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Lemma 3.92. Let [I] ∈ Hilb
h6,2

S be a closed point such that S/I has Hilbert function g. Then
there is a linear form θ ∈ S1 such that I3 ⊆ (θ)3. We have [I] ∈ Slip6,2 if and only if (θ ·I)3 ⊆ I3.

Proof. The existence of θ as in the statement follows from Theorem 3.74(i). Moreover, by
Theorem 3.74(iii) there exists [J ] ∈ Slip6,2 such that J≥3 = I≥3 if and only if (θ · I)3 ⊆ I3. We
claim that necessarily [J ] = [I].

We have h6,2(a) = dimk Sa for every a ≤ 2. Therefore, if [J ] ∈ Hilb
h6,2

S is such that J≥3 = I≥3,
then J = I.

In order to study the case when S/I has Hilbert function h6,1, we introduce some notation.
Let Ug be a locally closed subset of Hilb

h6,2

S , whose closed points correspond to ideals I for
which S/I has Hilbert function g. Similarly, let U be the closed subset corresponding to Hilbert
function h6,1. Let h : Z→ Z be given by h = (1, 3, 6, 10, 6, 6, . . .), or more formally,

h(a) =

{
dimk Sa for a ≤ 3;

6 for a > 3.

We have the natural morphisms π : Hilb
h6,2

S → HilbhS and π′ : HilbhS → Hilb6(P2).
We start with showing that Ug is irreducible and we compute its dimension.

Lemma 3.93. The locus Ug is irreducible and 13-dimensional.

Proof. Consider the locally closed subset Vg (with reduced subscheme structure) of Hilb6(P2)

whose closed points correspond to subschemes with Hilbert function g. This locus is irreducible
by Proposition 3.11. We claim that Vg has dimension 9. Let πg : HilbgS → Hilb6(P2) be the
natural map. Let Eg ⊆ HilbgS be the open subset of points corresponding to saturated ideals.
Then Eg is smooth by Proposition 3.10. Therefore, πg : Eg → Hilb6(P2) factors through Vg. It
follows from Lemma 2.29 that Vg is homeomorphic to Eg. Consider the point [I] ∈ Eg with
I = (α2

0, α0α1, α
5
1). We have dimk HomS(I, S/I)0 = 9. Therefore, by Theorem 2.74 we have

dimkT[I] HilbgS = 9. Thus, dimVg = dimEg = 9 by Proposition 3.10.
By definition, Ug is the inverse image of Vg under π′ ◦π. By [80, 11.4.C], it is enough to show

that the fiber over each point is irreducible and 4-dimensional. This follows from Lemma 2.43.

Let Ui = {[I] ∈ U | dimk(I≥4 : m)3 = i}. We claim that U = U4 ∪U5. Indeed, let [I] ∈ U and
denote (I≥4 : m) by K. We have I3 ⊆ K3 ( I3. The latter inclusion is proper since otherwise we
obtain I4 ⊆ I4 which contradicts the assumption HS/I(4) = 6.

We claim that U4, U5 are irreducible. In order to prove this, we introduce more notation.
Let V ⊆ Hilb6(P2) be the closed subset of points corresponding to the subschemes with Hilbert
function h6,1. Then U is the set-theoretic inverse image of V under π′ ◦ π. Let W ⊆ HilbhS be
the set-theoretic inverse image of V under π′.

For an integer 0 ≤ i ≤ 10, let Wi = {[K] ∈ W | dimk(K : m)3 = i} and W≥i =
⋃
j≥iWj .

Observe that W≥i is closed for every i. Furthermore, W5 = W≥5 ∩ π(U) and W4 ∪ W5 =

W≥4 ∩ π(U) are closed in HilbhS .
We shall show that W4,W5 are irreducible. Moreover, we compute their dimensions. We

have natural maps W5 → V and W4 ∪W5 → V and we want to study their fibers over a closed
point [ProjS/I] ∈ V .

Recall the notion of the dual ring from Subsection 2.4.1.
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Lemma 3.94. Let I =
(
α0, θ6(α1, α2)

)
for some θ6 ∈ k[α1, α2]6 \ {0}. Then the fiber of

π′ : HilbhS → Hilb6(P2) over [ProjS/I] is isomorphic with P9. Moreover, the points of the fiber
are in the natural correspondence with points [F ] in PS∗3 where S∗ = kdp[x0, x1, x2] is the dual
ring of S.

Proof. By Lemma 2.43 this fiber is isomorphic to the Grassmannian of codimension 1 subspaces
of I4. Dually, a point of the fiber corresponds to a choice of an element [G] ∈ P(S∗4/(I4)⊥) where
(I4)⊥ is the set of element of S∗4 which are annihilated by I4 = (α0)4. Therefore, we may take
[G] = [x0F ] for some F ∈ S∗3 .

Given F ∈ S∗3 we denote by CatF (1, 2; 3) the catalecticant matrix (see [55, §1.1]). This is a
3 × 6-matrix of coefficients of αiyF (for i = 0, 1, 2) in the basis of S∗2 given by divided power
monomials.

In the notation of Lemma 3.94, the condition that a point of the fiber corresponding to
[F ] ∈ PS∗3 is in Ws (for s ∈ {4, 5}) is equivalent to the condition that

dimk lin{α0yx0F, α1yx0F, α2yx0F, x
[3]
1 , x

[2]
1 x2, x1x

[2]
2 , x

[3]
2 } = 10− s.

Moreover, αiy(x0F ) = x0(αiyF ) for i = 0, 1, 2. Therefore, the point of the fiber corresponding
to [F ] ∈ PS∗3 is in Ws if and only if the catalecticant matrix CatF (1, 2; 3) has rank 6− s, that is
either 2 or 1.

Lemma 3.95. The locus W5 is irreducible and 10-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. SinceW5 is closed in HilbhS ,
it is enough to show that points of the fiber of π′ : HilbhS → Hilb6(P2) belonging to W5 form
an irreducible subset of dimension 2 (see [80, 11.4.C]). In fact, we claim that the locus of these
points inside PS∗3 coincides with ν3(PS∗1). This follows from [71, Cor. 3.5] since this locus is given
by the ideal generated by the 2× 2-minors of the generic catalecticant matrix Cat(1, 2; 3).

The case of W4 is analogous.

Lemma 3.96. The locus W4 is irreducible and 13-dimensional.

Proof. The locus V is irreducible and 8-dimensional by Lemma 3.82. It is enough to show that
the closed subset W4 ∪ W5 ⊆ HilbhS is irreducible and 13-dimensional. Thus, by [80, 11.4.C]
it suffices to show that the fiber over every closed point is irreducible and 5-dimensional. The
fiber is given by the ideal generated by the 3 × 3-minors of the generic catalecticant matrix
Cat(1, 2; 3). This coincides set-theoretically with the 2-nd secant variety σ2(ν3(PS∗1)) by [55,
Thm. 4.5A]. Furthermore, it is irreducible and 5-dimensional by [55, Prop. 1.23].

Remark 3.97. Observe that if char k = 0, then in fact in the proof of Lemma 3.96 the set-
theoretical equality of the fiber with σ2(νd(PS∗1)) can be strengthened to the equality of their
defining ideals. See [72].

Now we show that U4, U5 are irreducible and we compute their dimensions.

Lemma 3.98. In the above notation, U4 and U5 are irreducible. Moreover, dimU4 = 13 and
dimU5 = 14.
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Proof. Let i ∈ {4, 5}, [I] ∈ Ui and [K] = π([I]) ∈ Wi. Then I and K differ only in degree 3.
Furthermore, dimk I3 = 4 and I3 ⊆ (K : m)3.

Therefore, the natural map U4 → W4 is bijective on closed points. Thus, U4 is irreducible
and 13-dimensional by Lemmas 2.29 and 3.96.

Let [K] ∈ W5. The fiber of the map U5 → W5 over [K] is irreducible and 4-dimensional.
Indeed, it corresponds to the choice of a 4-dimensional subspace of the 5-dimensional linear space
(K : m)3. Thus, W5 is irreducible and of dimension 14 by Lemma 3.95 and [80, 11.4.C].

Let U ′i = {[I] ∈ Ui | (I
2
)4 ⊆ I4} for i = 4, 5.

Lemma 3.99. Let [I] ∈ Ui for i = 4 or i = 5. Then, there is a point [J ] ∈ Slip6,2 such that
I≥4 = J≥4 if and only if [I] ∈ U ′i . In particular, U4 ∩ Slip6,2 = U ′4, set-theoretically.

Proof. The first part of the lemma follows from Theorem 3.65. If [I] ∈ U ′4 and [J ] ∈ Hilb
h6,2

S are
such that I≥4 = J≥4 then we claim that I = J . Since I≤2 = J≤2 = 0 it is enough to show that
I3 = J3. However, by the definition of U4 we get

I3 = (I≥4 : m)3 = (J≥4 : m) = J3.

Thus, U ′4 ⊆ Slip6,2, set-theoretically.

Let U ′′5 = {[I] ∈ U ′5 | (I · (I≤4))3 ⊆ I3}. We claim that U ′5 ∩ Slip6,2 = U ′′5 set-theoretically.
We start with describing (I≤4) for [I] ∈ U ′5.

Lemma 3.100. Let [I] ∈ U ′5. Then, up to a linear change of variables, (I≤4) = (α2
0, α0α1).

Proof. Up to a linear change of variables, we may assume that I = (α0, θ6(α1, α2)) for some
non-zero θ ∈ k[α1, α2]6. Let [F ] ∈ PS∗3 be the point corresponding to the point [I≥4] in the fiber
of π′ : HilbhS → Hilb6(P2) over [ProjS/I] (see Lemma 3.94).

Since [I] ∈ U ′5 we have dimk(I≥4 : m)3 = 5 and [F ] ∈ P(kdp[x1, x2]3). As a result,

dimk lin{α1yF, α2yF} = 1.

Therefore, we may assume by a linear change of variables in k[α1, α2] that F = x
[3]
2 .

Then,
I4 = Ann(lin{x0x

[3]
2 , x

[4]
1 , x

[3]
1 x2, x

[2]
1 x

[2]
2 , x1x

[3]
2 , x

[4]
2 })4.

It follows that (α2
0, α0α1) ⊆ (I≤4). On the other hand, (I≤4) ⊆ (α0). Thus, if (α2

0, α0α1) ( (I≤4)

then α0α
N
2 ∈ (I≤4) for some N . This is impossible since α0α

N
2 /∈ (I≤4) for every positive integer

N .

Let W ′5 = {[I] ∈W5 | (I
2
)4 ⊆ I4}.

Lemma 3.101. In the above notation, W ′5 is irreducible and 9-dimensional.

Proof. Consider the natural morphism W ′5 → V . The target is irreducible and 8-dimensional
by Lemma 3.82. By [80, 11.4.C], it is enough to show that the fibers are irreducible and 1-
dimensional. Let T ∗ = kdp[x1, x2] ⊆ S∗ = kdp[x0, x1, x2]. In the notation of Lemma 3.94 we now
have [F ] ∈ PT ∗3 ⊆ PS∗3 since we have to choose a codimension one subspace of (α0)4 containing
(α2

0)4. Therefore, the fiber inside PT ∗3 is set-theoretically given by the vanishing of 2× 2-minors
of the generic catalecticant matrix Cat(1, 2; 2). Thus, it is ν3(PT ∗1 ) by [71, Cor. 3.5].
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Now we show that U ′′5 is irreducible and we compute its dimension.

Lemma 3.102. In the above notation, U ′′5 is irreducible and 11-dimensional.

Proof. Consider the natural map U ′′5 → W ′5. Let [K] ∈ W ′5 be a closed point with (K≤4) =

(α2
0, α0α1) (see Lemma 3.100). Then the fiber over [K] is isomorphic to P2 corresponding to a

choice of a two-dimensional subspace of lin{α0α
2
1, α0α

2
2, α0α1α2}. Thus, U ′′5 is irreducible and 11

dimensional by Lemma 3.101 and [80, 11.4.C]

The key technical step is the following lemma.

Lemma 3.103. The locus U ′5 \ U ′′5 is disjoint from Slip6,2.

We defer the proof of this lemma until the end of the subsection. We use it to describe the
set-theoretic intersection U5 ∩ Slip6,2.

Lemma 3.104. In the above notation, U5 ∩ Slip6,2 = U ′′5 set-theoretically.

Proof. Consider the point [I] ∈ Hilb
h6,2

S where I = (α3
0, α

2
0α1, α0α

2
1 + α2

0α2, α0α1α2, α0α
4
2, α

6
2).

Then [I] ∈ U ′′5 . We claim that it also belongs to Slip6,2. Let J = (α0α1α2 + α3
2, α0α

2
1 + α2

0α2 +

α1α
2
2, α

2
0α1+α0α

2
2, α

3
0). Then [J ] ∈ Hilb

h6,2

S and J is a saturated ideal. It follows that [J ] ∈ Slip6,2

by Lemma 3.90. The initial ideal of J with respect to the weight vector (3, 2, 1) is I.
Now we use Lemma 2.30 to conclude that U5 ∩ Slip6,2 = U ′′5 set-theoretically. Indeed,

we have U5 ∩ Slip6,2 ⊆ U ′′5 by Lemmas 3.99 and 3.103. Moreover, [I] ∈ U5 ∩ Slip6,2 and
dimk HomS(I, S/I)0 = 15 = dimU5 + 1. It follows from Theorem 2.74 and Lemma 2.30 that the
intersection contains an irreducible subset of dimension 11. Therefore, the intersection is U ′′5 by
Lemma 3.102.

The following proposition summarizes the above considerations.

Proposition 3.105. Let [I] ∈ Hilb
h6,2

S . Then [I] ∈ Slip6,2 if and only if one of the following
holds:

1. The ideal I is saturated.

2. The algebra S/I has Hilbert function f = (1, 3, 5, 6, 6, . . .).

3. The algebra S/I has Hilbert function g = (1, 3, 4, 5, 6, 6, . . .) and (θ · I)3 ⊆ I3 where θ is the
common linear divisor of two quadratic generators of I.

4. The algebra S/I has Hilbert function h6,1 = (1, 2, 3, 4, 5, 6, 6, . . .) and

((I≤d+1) · I)d ⊆ Id

for d = 3 and d = 4.

Proof. The cases 1,2,3 follow from Lemmas 3.90, 3.91 and 3.92.
Observe that if [I] ∈ U then I5 = (I1)5 = I5 and therefore

(I
2
)4 = ((I≤5) · I)4.

Hence in case 4, if [I] ∈ U5 the claim follows from Lemma 3.104.
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Assume that [I] ∈ U4. By Lemma 3.99 we have [I] ∈ Slip6,2 if and only if

(I
2
)4 = ((I≤5) · I)4 ⊆ I4. (3.106)

We need to show that if [I] ∈ U ′4, then ((I≤4) · I)3 ⊆ I3. Let f ∈ ((I≤4) · I)3 and i ∈ {0, 1, 2}.
Then αif ∈ (I

2
)4. From Equation (3.106) we get αif ∈ I4. It follows that f ∈ (I≥4 : m)3 = I3

where the last equality follows from the definition of U4.

We are left with proving Lemma 3.103. Assume that [I] ∈ U ′5 \U ′′5 with I =
(
α0, θ6(α1, α2)

)
.

By Lemma 3.100 we may assume that (I≤4) = (α2
0, α0α1). It follows that

I = (W ) + (α2
0, α0α1)≥4 + (α0)≥5 + (θ6) (3.107)

where [W ] ∈ Gr(4, lin{α3
0, α

2
0α1, α0α

2
1, α

2
0α2, α0α1α2}) is such that lin{α3

0, α
2
0α1} is not contained

in W .
Assume that [I] ∈ Slip6,2 is as in Equation (3.107) with α3

0 /∈ W . Then by taking the initial
ideal with respect to lex order with α2 > α1 > α0 we obtain an ideal of the form

I ′ =
(
α2

0α1, α0α
2
1, α

2
0α2, α0α1α2, α

4
0, α0α

4
2, θ
′
6(α1, α2)

)
(3.108)

such that [I ′] ∈ Slip6,2.
On the other hand, if [I] ∈ Slip6,2 is as in Equation (3.107) with α3

0 ∈ W but α2
0α1 /∈ W ,

then by taking the initial ideal we get a point [I ′] in Slip6,2 of the form

I ′ =
(
α3

0, α0α
2
1, α

2
0α2, α0α1α2, α0α

4
2, θ
′
6(α1, α2)

)
. (3.109)

We claim that if I ′ is of the form as in Equation (3.108) or (3.109) then [I ′] /∈ Slip6,2.

Lemma 3.110. There is no point [I ′] ∈ Slip6,2 with I ′ as in Equation (3.109).

Proof. Let J = I ′ + m5. Note that it does not depend on θ′6 so it is the same for every I ′ as in
Equation (3.109). Then dimk HomS(J, S/J)0 = 8. Thus, [I ′] /∈ Slip6,2 by Proposition 3.1.

We shall show that there is no point [I ′] ∈ Slip6,2 with I ′ as in Equation (3.108). First, we
introduce some more multigraded Hilbert schemes. Let h6,2 : Z→ Z be defined by

h6,2(a) =

{
h6,2(a) for a ≤ 4;

0 for a > 4

or, more briefly, by h6,2 = (1, 3, 6, 6, 6, 0, 0, . . .). Define f : Z→ Z by f = (1, 3, 5, 6, 6, 0, 0, . . .) or,
more formally, by

f(a) =

{
f(a) for a ≤ 4;

0 for a > 4.

Finally, let k : Z→ Z be defined by

k(a) =


dimk Sa for a ≤ 1;

a+ 3 for a ∈ {2, 3, 4};
0 for a > 4
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or, in a brief form by k = (1, 3, 5, 6, 7, 0, 0, . . .).
We have natural maps Hilbk,fS → HilbfS → Hilb

h6,2

S . Let Z be the set-theoretic image of

Hilbk,fS in Hilb
h6,2

S . We claim that it is irreducible and 12-dimensional.

Lemma 3.111. In the above notation, Z is irreducible closed and 12-dimensional.

Proof. Observe that both morphisms Hilbk,fS → HilbfS and HilbfS → Hilb
h6,2

S are closed by Theo-

rem 2.36. We claim that they are both injective on closed points. We start with HilbfS → Hilb
h6,2

S .
Suppose that there are two points [I] 6= [I ′] ∈ HilbfS such that I ∩ m3 = I ′ ∩ m3. Let
J = (I2 ⊕ I ′2) ⊕ I≥3. Then S/J has Hilbert function (1, 3, 4, 6, 6, 0, 0, . . .). This contradicts
the Macaulay’s bound [10, Thm. 4.2.10].

Now we show that Hilbk,fS → HilbfS is injective on closed points. Let [I ′ ⊆ I ′′] ∈ Hilbk,fS .
Then (I ′≤3) = (θ2, θ3) for some generators θi ∈ Si. Furthermore, I ′ has no minimal generator
of degree 4 since there is no homogeneous ideal J of S such that S/J has Hilbert function
(1, 3, 5, 6, 8, . . .) by Macaulay’s bound [10, Thm. 4.2.10]. Therefore, we have I ′ = (I ′′≤3) +m5. As

a result, Hilbk,fS → HilbfS is injective on closed points.
It follows from the above considerations that it suffices to show that the flag multigraded

Hilbert scheme Hilbk,fS is irreducible and 12-dimensional.
Let πk : Hilbk,fS → HilbkS be the natural projection. The fiber over a closed point [K] ∈ HilbkS

is irreducible and 6-dimensional corresponding to the choice of a 9-dimensional subspace of S4

containing the 8-dimensional subspace K4. By [80, 11.4.C] it is enough to show that HilbkS is
irreducible and 6-dimensional.

Let X be the pullback

X Fl(3, 4, S2)

Gr(1, S1) Gr(3, S2)

where the lower horizontal map takes [`] to [lin{α0`, α1`, α2`}]. Then X is irreducible and of
dimension 4. Moreover, if [I] ∈ HilbkS then the generators of I of degree 2 and 3 have a common
linear factor since HS/I(4) = 7 > 6. Therefore, we have a parametrization X×Gr(1, S1)→ HilbkS
given by (

([`], [`S1 ⊆ V ]), [`′]
)
7→ (``′) + (V `′) + m5.

Thus, HilbkS is irreducible and of dimension 6.

Let p : Hilb
h6,2

S → Hilb
h6,2

S be the natural map given by [I] 7→ [I + m5]. Let

K = (α2
0α1, α0α

2
1, α

2
0α2, α0α1α2, α

4
0) + m5.

For every ideal I ′ as in Equation (3.108), we have p([I ′]) = [K]. Thus, it is enough to show that
there is no point [J ] ∈ Slip6,2 with p([J ]) = [K].

Lemma 3.112. In the above notation, if [K] ∈ p(Slip6,2), there is an irreducible 10-dimensional
subset Z ′ of the set-theoretic intersection p(Slip6,2) ∩ Z. Furthermore, [K] ∈ Z ′.

Proof. Let K ′ = (α0α1, α
2
0α2) + m5 and K ′′ = K ′ + (α4

0 + α4
1). Then [K ′ ⊆ K ′′] ∈ Hilbk,fS .

Therefore, [K ′′ ∩ m3 + m5] ∈ Z. However, the initial ideal of K ′′ ∩ m3 + m5 with respect to the
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lex order with α0 > α1 > α2 is K. Thus, [K] ∈ p(Slip6,2) ∩ Z. Moreover, dimkT[K] Hilb
h6,2

S =

dimk HomS(K,S/K)0 = 14, where the first equality follows from Theorem 2.74. Therefore, the
claim follows from Lemmas 2.30 and 3.111 since dim p(Slip6,2) = dim Slip6,2 = 12.

Suppose that [K] ∈ p(Slip6,2). There exists an irreducible closed subset Z ′′ ⊆ Slip6,2 such
that p(Z ′′) = Z ′, where Z ′ is as in Lemma 3.112. Since p(Z ′′) ⊆ Z, it follows that Z ′′ is disjoint
from the set of saturated ideals. Moreover, p(Ug), p(U4) and p(U5) are of dimension less than 10

(see Lemmas 3.93 and 3.98). It follows that Z ′′ is contained in the closure of the locus Uf where

Uf = {[I] ∈ Hilb
h6,2

S | S/I has Hilbert function f = (1, 3, 5, 6, 6, . . .)}.

Let q : HilbfS → Hilb
h6,2

S be the natural map. It is a closed map by Theorem 2.36 and it is
injective on closed points corresponding to saturated ideals. Thus, Z ′′ is contained in the image
of the closure of the locus of points of HilbfS corresponding to saturated ideals.

It follows that there is an ideal [I ′′] ∈ HilbfS that satisfies I ′′≤4 = (α0α1, α
2
0α2, α

4
0)≤4 and I ′′ is

a limit of saturated ideals.
By taking an initial ideal, we get that at least one of the following ideals corresponding to

points of HilbfS is a limit of saturated ideals:

1. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

5
1);

2. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

4
1α2);

3. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

3
1α

2
2);

4. I ′′′ = (α0α1, α
2
0α2, α

4
0, α

2
1α

3
2);

5. I ′′′ = (α0α1, α
2
0α2, α

4
0, α1α

4
2);

6. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

6
1);

7. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

5
1α2);

8. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

4
1α

2
2);

9. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

3
1α

3
2);

10. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

2
1α

4
2);

11. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

1
1α

5
2);

12. I ′′′ = (α0α1, α
2
0α2, α

4
0, α0α

4
2, α

6
2).

We claim that this is impossible. Cases 1.-5. can be excluded since then [I ′′′∩m3] ∈ Slip6,2 ∩Ug
but I ′′′ ∩m3 is not of the form from Lemma 3.92. Furthermore, if I ′′′ is one of the ideals 6.-12.,
then HS/(I′′′)2(8) = 17 < 18. Therefore, by Theorem 3.5, I ′′′ is not in the closure of the locus of
radical ideals. Thus, it is also not in the closure of the locus of saturated ideals since a general
saturated ideal of S such that the quotient algebra has Hilbert function f is radical.

To summarize, we have arrived at a contradiction after assuming that [K] ∈ p(Slip6,2).
This shows in particular, that if I ′ is as in Equation (3.108) then [I ′] /∈ Slip6,2. Together with
Lemma 3.110, this finishes the proof of Lemma 3.103 and thus, of Proposition 3.105.
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Chapter 4

Criteria for smooth projective toric
varieties

In this chapter we work in the category of schemes over the complex numbers. We will consider
smooth projective toric varieties and the corresponding multigraded Hilbert schemes. The main
motivation is to study the case of the product of projective spaces. However, secant varieties of
more general toric varieties have also been studied [25], [37]. Therefore, we present our results
in their natural generality.

In Section 4.1 we recall the basic notions of the theory of toric varieties. We mainly follow
[28]. In Section 4.2 we consider a morphism with connected fibers f : X → Y between smooth
projective toric varieties. We present a necessary condition for an ideal I in the Cox ring of X to
be in the irreducible component Slipr,X . In Sections 4.3 and 4.4 we present two particular cases
of that criterion. In Section 4.3 we assume that X is the blowing up of Y at the closure of a
torus orbit. In Section 4.4 we assume that X is a projective toric bundle over Y . In particular,
the criterion from this section is applicable to the case of the product of projective spaces. In
Section 4.5 we obtain another necessary condition in the case that X is the product of projective
spaces. Finally, in Section 4.6 we present two examples of reducible multigraded Hilbert schemes
corresponding to two points on a toric surface.

The main technical tool used in this chapter is the possibility to lift a morphism between
smooth projective toric varieties to a homomorphism of their Cox rings (see Subsection 4.1.3).
This and similar problems have been extensively studied. In particular, in [9] there are general
results that could shorten our presentation. This is true, for example for Lemmas 4.4, 4.10, 4.11
and Proposition 4.21. However, since in the generality that we require, most of those results can
be presented from scratch, we decided to do so.

4.1 Toric varieties

In Subsections 4.1.1-4.1.3 we recall some basic definitions and results related to toric varieties.
This is mainly to fix the notation. Therefore, we will omit most of the proofs, reffering the reader
to [28]. Our notation follows closely the one used there. In Subsection 4.1.3 we recall the main
technical tool - lifting a morphism between smooth projective toric varieties to a morphism of
their Cox rings.

Subsection 4.1.4 is concerned with morphisms f : X → Y between smooth projective toric
varieties such that f∗OX ∼= OY . This property will be assumed in Theorem 4.15 which is one of
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the main results of this chapter.
In Subsection 4.1.5 we finally give the definition of a multigraded Hilbert scheme of points

in general position for a smooth projective toric variety. This is the generality in which it was
introduced in [13].

Note that the results from this section are stated for smooth projective toric varieties. Some
of them are still true for more general toric varieties.

4.1.1 Fans and toric varieties

By a toric variety we shall mean a normal variety X over the field of complex numbers such that
X contains an algebraic torus T ∼= (C∗)n as an open subset and the action of T on itself extends
to an action of T on X.

Given an algebraic torus T ∼= (C∗)n, we will denote by M the character lattice of T, i.e.
M = Hom(T,C∗) is the set of algebraic group homomorphisms from T to the one-dimensional
torus. Then M ∼= Zn is a lattice and the dual lattice HomZ(M,Z) will be denoted by N . For
m ∈M the corresponding character is χm : T→ C∗. We will denote by 〈 , 〉 the natural pairing
M ×N → Z and its extension to the R-vector spaces MR = M ⊗Z R and NR = N ⊗Z R.

Toric varieties are obtained by gluing affine toric varieties corresponding to certain combina-
torial objects in the R-vector space NR. We explain in more details how to obtain affine toric
varieties. A subset σ ⊆ NR is called a (rational polyhedral) cone if there is a finite set of elements
u1, . . . ,uk ∈ N such that σ = {

∑k
i=1 λiui | λi ≥ 0}. Since we will not consider more general

cones, we will omit the phrase "rational polyhedral". A cone σ ⊆ NR is strongly convex if σ
does not contain a positive dimensional vector subspace of NR. Given a cone σ ⊆ NR, we can
consider the semigroup Sσ = σ∨ ∩M where σ∨ = {m ∈ MR | 〈m,u〉 ≥ 0 for all u ∈ σ} is the
dual cone of σ. If σ is strongly convex, then the spectrum of the semigroup algebra C[Sσ] is an
n-dimensional affine toric variety and will be denoted by Uσ. As shown in [28, Thm. 1.3.5], all
affine toric varieties are of this form.

Given a cone σ ∈ NR, its face is the intersection of σ with an affine hyperplane

Hm = {u ∈ NR | 〈m,u〉 = 0}

in NR for some m ∈ MR such that 〈m,u〉 ≥ 0 for every u ∈ σ. A fan is a finite collection Σ of
strongly convex cones in NR satisfying conditions:

1. Each face of each cone in Σ is an element of Σ.

2. Every two cones in Σ intersect along a common face.

Given such combinatorial data there is a toric variety XΣ obtained by gluing the affine toric
varieties {Uσ | σ ∈ Σ} (see [28, Thm. 3.1.5]). Moreover, every toric variety with torus T comes
from the above construction for a fan in NR where N is the lattice dual to the character lattice
of the torus (see [28, Cor. 3.1.8]). For a toric variety X we will denote by ΣX a fan such that
XΣX = X. Note that ΣX is not uniquely determined by X since we can apply any Z-linear
automorphism of NR to a fan Σ and obtain the same abstract toric variety. In Sections 4.3 and
4.4 we will consider a morphism of toric varieties X → Y . Starting from an arbitrary choice of a
fan ΣY corresponding to Y we will describe a fan ΣX corresponding to X that will be convenient.

84



4.1.2 Picard groups and Cox rings

Given a smooth projective toric variety X and a corresponding fan ΣX in NR the Picard group
Pic(X) of X can be calculated using the combinatorial data of the one-dimensional cones in ΣX

(see [28, Thm. 4.1.3]). We recall this here. Let ΣX(1) be the set of one-dimensional cones in ΣX ,
i.e. cones whose linear span is a one-dimensional real vector subspace of NR. The torus invariant
prime divisors on X are in bijective correspondence with elements of ΣX(1). Given ρ ∈ ΣX(1)

we denote by uρ the ray generator of ρ (i.e. the unique generator of the semigroup ρ ∩N) and
the corresponding divisor by Dρ.

Let e1, . . . , en a Z-basis of M . Then Pic(X) is generated by classes of [Dρ] for ρ ∈ ΣX(1).
Moreover, these generators are subject to relations

0 = [div(χei)] =
∑

ρ∈ΣX(1)

〈ei,uρ〉[Dρ]

for i = 1, . . . , n.
Let X be a smooth projective toric variety associated with a fan ΣX ⊆ NR. Then there is a

corresponding polynomial ring S[X] graded by the Picard group Pic(X). This ring is called the
Cox ring of X. We have

S[X] = C[αρ | ρ ∈ ΣX(1)] and deg(αρ) = [Dρ].

By [28, Prop. 5.3.7] we have S[X][D]
∼= Γ(X,OX(D)) for [D] ∈ Pic(X).

Remark 4.1. The construction of a Cox ring can be carried out for more general varieties, see
[1]. Then it does not have to be a polynomial ring. Moreover, unlike for toric varieties, the
construction requires some choices so we speak of a Cox ring of X instead of the Cox ring of X.

4.1.3 Irrelevant ideals and the quotient construction

One of the main tools in this chapter is Theorem 4.3 which states that a morphism f : X → Y

between smooth projective toric varieties can be lifted to a graded homomorphism f
#

: S[Y ]→
S[X] of their Cox rings.

We start with recalling the quotient construction of a smooth projective toric variety X

presented in [28, Thm. 5.1.11]. Let X = XΣX for a fan ΣX ⊆ NR. Given a cone σ ∈ ΣX we
denote by σ(1) the set of 1-dimensional faces of σ. Let S[X] = C[αρ | ρ ∈ ΣX(1)] be the Cox
ring of X. For σ ∈ ΣX(1) we define ασ̂ to be

∏
ρ∈ΣX(1)\σ(1) αρ. The irrelevant ideal of X is

B(ΣX) = (ασ̂)σ∈ΣX ⊆ S[X].

Observe that it is enough to take generators corresponding to maximal cones of ΣX . We denote
the affine space SpecS[X] by X and the open subset X \ V

(
B(ΣX)

)
by X̂.

By [28, Prop. 4.2.5] we have Pic(X) ∼= Zk for some integer k. Therefore,HX = SpecC[Pic(X)]

is a torus. Since S[X] is Pic(X)-graded, there is a natural action of the torus HX on X. Then
X is the geometric quotient by the induced action of HX on X̂. We denote the open immersion
X̂ → X by iX and the quotient X̂ → X by πX .

Definition 4.2. Suppose that f : X → Y is a morphism between smooth projective toric varieties
and let f∗ : Pic(Y ) → Pic(X) be the pullback map. Suppose that there exists a C-algebra
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homomorphism f
#

: S[Y ]→ S[X] such that:

1. f#
(S[Y ][D]) ⊆ S[X]f∗([D]) for every [D] ∈ Pic(Y );

2. the corresponding morphism f : X → Y restricts to a morphism f̂ : X̂ → Ŷ ;

3. πY ◦ f̂ = f ◦ πX .

Then we call f# a lift of f .

If f# is a lift of a morphism f : X → Y between smooth projective toric varieties, we have a
commutative diagram

X Y

X̂ Ŷ

X Y.

f

iX

f̂

πX πY

iY

f

Observe that once conditions 1.-2. from Definition 4.2 are satisfied, there is a unique morphism
f ′ : X → Y such that f ′ ◦ πX = πY ◦ f̂ . Indeed, πY ◦ f̂ is constant on HX -orbits and πX is a
categorical quotient (see [28, Thm 5.1.11]). Condition 3. says, that f ′ = f .

The possibility of lifting a morphism f : X → Y to a homomorphism f
#

: S[Y ] → S[X] has
been studied in various settings. The version suitable for our needs is considered in [26]. The
case of rational maps of toric varieties using multi-valued maps of Cox rings is studied in [9].
Analogous quotient construction holds for the so called Mori dreams spaces. These are varieties
admitting a Cox ring that is a finitely generated C-algebra. Lifting of rational maps of Mori
dreams spaces is discussed in [18] and the case of a regular map can be found in [51].

Now we can state the key existence theorem.

Theorem 4.3 ([26, Thm. 3.2]). Let f : X → Y be a morphism between smooth projective toric
varieties. Then there exists a lift f# of f .

Let X,Y be smooth projective toric varieties corresponding to fans ΣX ⊆ (NX)R and ΣY ⊆
(NY )R, respectively. Assume that f : X → Y is a toric morphism, i.e. it maps the torus TX of
X into the torus TY of Y and the restricted map TX → TY is a group homomorphism. Such
morphisms correspond to Z-linear maps φ : NX → NY such that for every cone σ ∈ ΣX , there is
a cone σ′ ∈ ΣY satisfying φR(σ) ⊆ σ′ (see [28, Thm. 3.3.4]). Here φR = φ ⊗Z idR. We say that
φ is compatible with the fans ΣX and ΣY .

In the following lemma we study the condition under which a homomorphism of graded rings
f

#
: S[Y ]→ S[X] is a lift of the given toric morphism f : X → Y .

Lemma 4.4. Let f : X → Y be a toric morphism between smooth projective toric varieties. Let
S[X] = C[αρ | ρ ∈ ΣX(1)] and S[Y ] = C[βρ | ρ ∈ ΣY (1)] be the Cox rings of X,Y , respectively.
Let φ : NX → NY be the map corresponding to f .

Assume that we are given a homomorphism of rings f#
: S[Y ]→ S[X] satisfying conditions

1. and 2. from Definition 4.2. Then f# is a lift of f , if and only if∏
ρ∈ΣY (1)

(
f

#
(βρ)

)〈m,uρ〉 =
∏

ρ∈ΣX(1)

α
〈ψ(m),uρ〉
ρ (4.5)
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for every m ∈MY , where ψ : MY →MX is the dual map of φ : NX → NY .

Proof. Let f ′ : X → Y be the morphism induced by f . It is enough to show that f and f ′ define
the same morphism Uσ → Uσ′ of affine toric varieties for every pair of cones σ ∈ ΣX and σ′ ∈ ΣY

such that φR(σ) ⊆ σ′.
Recall that βσ̂′ =

∏
ρ∈ΣY (1)\σ′(1) βρ and ασ̂ =

∏
ρ∈ΣX(1)\σ(1) αρ. We have an isomorphism

C[(σ′)∨ ∩ MY ] ∼= (S[Y ]
βσ̂′

)0 given by χm 7→
∏
ρ∈ΣY (1) β

〈m,uρ〉
ρ (see the proof of [28, 5.1.11]).

There is a similar isomorphism C[σ∨ ∩MX ] ∼= (S[X]ασ̂)0.
The map Uσ → Uσ′ induced by f corresponds to the homomorphism C[(σ′)∨ ∩ MY ] →

C[σ∨ ∩ MX ] given by χm 7→ χψ(m). On the other hand, the map Uσ → Uσ′ induced by f ′

corresponds to the map (f
#

βσ̂′
)0 : (S[Y ]

βσ̂′
)0 → (S[X]ασ̂)0. Therefore, f and f ′ induce the same

map Uσ → Uσ′ if and only if Equation (4.5) holds. Indeed, this is equivalent to the commutativity
of the diagram

C[(σ′)∨ ∩MY ] C[σ∨ ∩MX ]

(S[Y ]
βσ̂′

)0 (S[X]ασ̂)0.

χm 7→
∏
ρ∈ΣY (1) β

〈m,uρ〉
ρ

χm 7→χψ(m)

χm 7→
∏
ρ∈ΣX (1) α

〈m,uρ〉
ρ

(f
#

βσ̂
′ )0

The fact that a morphism f : X → Y restricts to a morphism f̂ : X̂ → Ŷ has the following
algebraic consequence.

Lemma 4.6. Let f : X → Y be a morphism between smooth projective toric varieties. Assume
that f#

: S[Y ] → S[X] is a homomorphism of C-algebras satisfying condition 2. from Defini-
tion 4.2. Suppose that I ⊆ S[X] is a homogeneous ideal which is saturated with respect to
B(ΣX). Then (f

#
)−1(I) is saturated with respect to B(ΣY ).

Proof. By assumption that f : X → Y restricts to a morphism f̂ : X̂ → Ŷ we conclude that

f
−1
(
V
(
B(ΣY )

))
⊆ V

(
B(ΣX)

)
. (4.7)

By [6, Prop. 3 §6.2] we have f−1
(
V
(
B(ΣY )

))
= V

(
f

#(
B(ΣY )

))
. Therefore, from Equation

(4.7) we get

B(ΣX) ⊆
√
f

#(
B(ΣY )

)
· S[X].

Since S[X] is a Noetherian ring, there is a positive integer k such that

B(ΣX)k ⊆ f#(
B(ΣY )

)
· S[X]. (4.8)

Let J = (f
#

)−1(I). Take F ∈ (J : B
(
ΣY )

)
. We need to show that F ∈ J , or equivalently,

that f#
(F ) ∈ I. Since I is saturated with respect to B(ΣX), it is enough to show that f#

(F ) ∈
(I : B(ΣX)k). We have

f
#

(F ) ·B(ΣX)k
(4.8)
⊆ f

#
(F ) · f#(

B(ΣY )
)
· S[X] ⊆ f#(

F ·B(ΣY )
)
· S[X] ⊆ f#

(J) · S[X] ⊆ I,

where the penultimate containment follows from the choice of F and the ultimate one is by the
definition of J .
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4.1.4 Morphism with connected fibers

In this subsection X,Y are smooth projective toric varieties. We consider a morphism f : X → Y

such that the natural map f : OY → f∗OX is an isomorphism. We lift f to a homomorphism
f

#
: S[Y ]→ S[X] as in Definition 4.2.
In what follows we do not assume that f is a toric morphism. However, if f happens to be a

toric morphism, then the condition f∗OX ∼= OY has an equivalent combinatorial reformulation
(see [29, Prop. 2.1]).

Lemma 4.9. In the above notation, let f∗ : Pic(Y )→ Pic(X) be the pullback map. Then

dimC S[X]f∗([D]) = dimC S[Y ][D]

for every [D] ∈ Pic(Y ).

Proof. We have

S[X]f∗([D])
∼= H0(X, f∗OY (D)) ∼= H0(Y, f∗(f

∗OY (D)))

∼= H0(Y, f∗OX ⊗OY (D)) ∼= H0(Y,OY (D)) ∼= S[Y ][D].

The middle equality follows from projection formula [47, Ex. II.5.1]. The first and the last
equality follow from [28, Prop. 5.3.7].

The following lemma will be used in the proof of Theorem 4.15 - one of the main results of
this chapter.

Lemma 4.10. In the above notation we have:

(i) the pullback map f∗ : Pic(Y )→ Pic(X) is injective;

(ii) the map f# induces an isomorphism of the C-vector spaces S[Y ][D] → S[X]f∗([D]) for every
[D] ∈ PicY .

Proof. (i) Since f∗OX → OY , it follows from projection formula (see [47, Ex. II.5.1]) that
f∗ : Pic(Y )→ Pic(X) is injective.

(ii) The pullback f∗ : Pic(Y )→ Pic(X) is injective by part (i). Hence the corresponding map
of algebraic tori HX = SpecC[Pic(X)] → SpecC[Pic(Y )] = HY is dominant. Thus, it is
surjective by [28, Prop. 1.1.1].

Since f is a projective morphism such that f∗OX ∼= OY , it is surjective. We claim that f
is dominant. It is enough to show that f̂ : X̂ → Ŷ is surjective. Let ŷ ∈ Ŷ . Since f , πX
are surjective, there is a point x̂ such that f ◦ πX(x̂) = πY (ŷ). Thus, there is an element
t ∈ HY such that t ·

(
f̂(x̂)

)
= ŷ. Using the fact that the map of tori is surjective and f̂ is

equivariant, we conclude that there is t′ ∈ HX such that f̂(t′ · x̂) = ŷ.

This shows f is dominant and hence f# is injective. In particular, it induces injections
S[Y ][D] → S[X]f∗([D]) for every [D] ∈ Pic(Y ). These maps are surjective by Lemma 4.9.

Given a finite set of points {p1, . . . , pr} ∈ X, we denote by I({p1, . . . , pr}) the unique B(ΣX)-
saturated homogeneous ideal of S[X] defining this set of points as a reduced subscheme of X.
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Lemma 4.11. In the above notation, we have

(f
#

)−1(I({p1, . . . , pr})) = I({f(p1), . . . , f(pr)}).

Proof. Let R ⊆ X be the (reduced) subscheme {p1, . . . , pr}. Let i : R → X be the closed
immersion. Let R′ be the scheme-theoretic image of R. Since R is reduced and f is closed, R′ is
the (reduced) subscheme {f(p1), . . . , f(pr)}.

The scheme theoretic image R′ of R is defined by the ideal sheaf ker(OY → f∗OX → f∗i∗OR).
By assumption OY → f∗OX is an isomorphism. Therefore, the ideal sheaf of R′ is ker(f∗OX →
f∗i∗OR). Moreover, f∗ is left-exact, so the ideal sheaf of R′ is the pushforward under f of the
ideal sheaf of R.

The ideal I({p1, . . . , pr}) is saturated with respect to B(ΣX). Hence, the subscheme of Y
corresponding to (f

#
)−1(I({p1, . . . , pr})) ⊆ S[Y ] is R′ by [65, Thm. 3.5] and Lemma 4.10. By

Lemma 4.6, the ideal (f
#

)−1(I({p1, . . . , pr})) is saturated with respect to B(ΣY ). Thus,

(f
#

)−1(I({p1, . . . , pr})) = I({f(p1), . . . , f(pr)}),

as claimed.

4.1.5 Multigraded Hilbert schemes

Let Y be a smooth projective toric variety with Cox ring S[Y ]. A natural generalization of the
function hr,Pn : Z→ Z studied in Chapters 2 and 3 is the function hr,Y : Pic(Y )→ Z defined by

hr,Y ([D]) = min{dimCH
0(Y,OY (D)), r} = min{dimC S[Y ][D], r},

where the latter equality follows from [28, Prop. 5.3.7]. Observe that in the case of the projective
space we have implicitly used the identifications Pic(Pn) = Z[H] where H is a hyperplane divisor
and H0(Pn,OPn(dH)) ∼= C[α0, . . . , αn]d.

Let Hilb
hr,Y
S[Y ] be the corresponding multigraded Hilbert scheme (see Subsection 2.2.2). We

shall denote by Sipr,Y the subset of Hilb
hr,Y
S[Y ] whose closed points correspond to B(ΣY )-saturated,

homogeneous ideals of r-tuples of disjoint points in Y . Let Slipr,Y be the closure of Sipr,Y in
Hilb

hr,Y
S[Y ]. By [13, Prop. 3.13] it is an irreducible component of Hilb

hr,Y
S[Y ].

We will construct natural morphisms from r-tuples of distinct points of Y (respectively,
r-tuples of distinct points of Y in general position) to Hilbr(Y ) (respectively, Hilb

hr,Y
S[Y ]). Let

Y r
dis = {(p1, . . . , pr) | pi 6= pj for i 6= j} be the set of r-tuples of distinct points of Y . This is an

open subset of Y r so it has a natural scheme structure.
Recall that, given a point (p1, . . . , pr) ∈ Y r

dis, we denote by I({p1, . . . , pr}) the unique B(ΣY )-
saturated homogeneous ideal defining this set of points as a reduced subscheme of Y . Let

Y r
gen = {(p1, . . . , pr) ∈ Y r

dis | S[Y ]/I({p1, . . . , pr}) has Hilbert function hr,Y }.

We will use the following key observation.

Theorem 4.12 ([15, Thm. 1.4]). In the above notation, Y r
gen is an open subset of Y r

dis. In
particular, it has a natural scheme structure.
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The rest of this subsection is devoted to showing that (p1, . . . , pr) 7→ [I({p1, . . . , pr})] defines
a morphism Y r

gen → Hilb
hr,Y
S[Y ].

We start with constructing a morphism Y r
dis → Hilbr(Y ). Let Udis ⊆ Y r

dis × Y be the
(reduced) closed subscheme

∐r
i=1 Zi where

Zi = {(p1, . . . , pr), q | pi = q}.

Let πdis : Udis → Y r
dis be the projection. The family Udis is flat over Y r

dis, since each Zi is mapped
isomorphically to Y r

dis. By construction, the fiber of πdis over a closed point (p1, . . . , pr) of Y r
dis

is the (reduced) subscheme {p1, . . . , pr} of Y . Since Y is of finite type over C, it follows that all
fibers of πdis are of length r. Therefore, the family Udis defines a natural map Y r

dis → Hilbr(Y )

by the universal property of the Hilbert scheme.
We proceed to the construction of the map Y r

gen → Hilb
hr,Y
S[Y ]. We shall denote by U the

restriction of Udis to Y r
gen × Y . Let π : Y r

gen × Y → Y r
gen be the natural projection. Consider the

exact sequence of sheaves of OY rgen×Y -modules

0→
⊕

[D]∈Pic(Y )

IU (D)→
⊕

[D]∈Pic(Y )

OY rgen×Y (D)
η−→

⊕
[D]∈Pic(Y )

OU (D)→ 0. (4.13)

Let A = im(π∗η). We shall verify the following claims:

1. π∗
(⊕

[D]∈Pic(Y )OY rgen×Y (D)
) ∼= OY rgen ⊗C S[Y ];

2. A is a sheaf of OY rgen ⊗C S[Y ]-algebras;

3. A[D] is a locally free sheaf of OY rgen-modules of rank hr,Y ([D]) for every [D] ∈ Pic(Y ).

The first claim follows from [47, Prop. III.9.3] since Γ(Y,OY (D)) ∼= S[Y ][D].
The second claim follows from the fact that in exact sequence (4.13) the OY rgen×Y -submodule⊕

[D]∈Pic(Y ) IU (D) of the sheaf of OY rgen×Y -algebras
⊕

[D]∈Pic(Y )OY rgen×Y (D) is in fact a sheaf
of ideals. Therefore, from left-exactness of the pushforward, it follows that the kernel of π∗(η) is
a sheaf of ideals of the sheaf OY rgen ⊗C S[Y ].

Finally, we address the third claim. We will consider two cases:

(a) hr,Y ([D]) = r;

(b) hr,Y ([D]) < r.

Observe that by definition of U , for every y ∈ Y r
gen we have

dimCH
0
(
(Y r
gen × Y )y, (IU (D))y

)
= dimC S[Y ][D] − hr,Y ([D]).

Similarly, we have dimCH
0
(
(Y r
gen × Y )y, (OU (D))y

)
= r for every y ∈ Y r

gen. Moreover, both
OU (D) and IU (D) are flat over Y r

gen. Therefore, by [47, Cor. III.12.9] the sheaves of OY rgen-
modules π∗(IU (D)) and π∗(OU (D)) are locally free of rank dimC S[Y ][D] − hr,Y ([D]) and r,
respectively. In particular, this establishes claim 3. in the case (b) since then A[D]

∼= OY rgen ⊗C
S[Y ][D].

Thus, it is enough to show that if hr,Y ([D]) = r then π∗(η) induces a surjection OY rgen ⊗C
S[Y ][D] → π∗(OU (D)). This can be checked on stalks over closed points, and by Nakayama’s
lemma it is even enough to check this on fibers. Let y ∈ Y r

gen correspond to the subscheme
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Z ⊆ Y and let IZ denote its B(ΣY )-saturated ideal. Using [47, Cor. III.12.9], it is enough to
show that natural map

S[Y ][D] → Γ(Y,OZ(D))

is surjective for every [D] ∈ Pic(Y ) such that hr,Y ([D]) = r. However, the kernel of this map is
(IZ)[D] and

r = dimC Γ(Y,OZ(D)) = dimC S[Y ][D] − dimC(IZ)[D]

by the choice of [D]. This finishes the proof of claims 1.-3.

Lemma 4.14. In the above notation, there is a natural morphism ψr,Y : Y r
gen → Hilb

hr,Y
S[Y ] which

on closed points maps {p1, . . . , pr} to [I({p1, . . . , pr})].

Proof. By properties 1.-3. above, A defines an admissible family over Y r
gen for the Hilbert function

hr,Y . Thus, there is a morphism Y r
gen → Hilb

hr,Y
S[Y ]. By construction, on closed points, it maps

{p1, . . . , pr}, to I({p1, . . . , pr}).

4.2 Criterion based on a morphism of toric varieties

Let f : X → Y be a morphism between smooth projective toric varieties such that f∗OX ∼= OY .
Let r be a positive integer. In this section we present a necessary condition for a closed point
[I] ∈ Hilb

hr,X
S[X] to be in the irreducible component Slipr,X . The most interesting case is when

X = Pn1 × . . . × Pnk+1 , Y = Pn1 × . . . × Pnk for some positive integers k, n1, . . . , nk+1 and f is
the natural projection.

Theorem 4.15. Let f : X → Y be a morphism between smooth projective toric varieties such
that f∗OX ∼= OY . Let r be a positive integer and [I] ∈ Hilb

hr,X
S[X] be a closed point. Let f#

: S[Y ]→
S[X] be a lift of f as in Definition 4.2. Then

(i) f# induces a morphism π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] given on closed points by [I] 7→ [(f

#
)−1(I)];

(ii) The morphism π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ] from part (i) induces a surjection Slipr,X → Slipr,Y .

Proof. The existence of a lift f# follows from Theorem 4.3.

(i) Using Lemma 4.10 we may identify (as Pic(Y )-graded rings) the ring S[Y ] with the subring⊕
[D]∈PicY S[X]f∗([D]) of S[X]. Under this identification,

(f
#

)−1(I) = I|f∗(Pic(Y )) :=
⊕

[D]∈Pic(Y )

If∗([D]).

It follows that if S[X]/I has Hilbert function hr,X , then S[Y ]/(f
#

)−1(I) has Hilbert func-
tion hr,Y . Thus, we have a natural transformation of functors of points

Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ]

given on a C-algebra R by

Hilb
hr,X
S[X](R) 3 I 7→ I|f∗(Pic(Y )) ∈ Hilb

hr,Y
S[Y ](R).
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Hence we have the corresponding morphism of schemes π : Hilb
hr,X
S[X] → Hilb

hr,Y
S[Y ].

(ii) We first show that π(Slipr,X) ⊆ Slipr,Y set-theoretically. If I is radical then (f
#

)−1(I) is

also radical. Moreover, if I is saturated with respect to B(ΣX), then (f
#

)−1 is saturated
with respect to B(ΣY ) by Lemma 4.6. It follows that π(Sipr,X) ⊆ Sipr,Y set-theoretically.
Therefore, π(Slipr,X) ⊆ Slipr,Y set-theoretically.

Now we show that in fact π : Slipr,X → Slipr,Y is surjective. Recall the definition of Y r
gen

from Subsection 4.1.5. Consider the product morphism f r : Xr → Y r. By Chevalley’s the-
orem [40, Thm. 10.20] the image of Xr

gen in Y r is constructible. Moreover, f r is projective
and surjective and Xr

gen is dense in Xr by Theorem 4.1.5. It follows that f r(Xr
gen) is dense

in Y r. Thus, there is an open subset U ⊆ Y r contained in f r(Xr
gen) (see [47, Ex. II.3.18]).

Let V = U ∩ Y r
gen and W = (f r)−1(V ) ∩Xr

gen. We have a diagram

Hilb
hr,X
S[X] Hilb

hr,Y
S[Y ]

W V

π

(ψr,X)|W
fr|W

(ψr,Y )|V

where the maps ψr,X and ψr,Y are as in Lemma 4.14. We claim that this diagram is commu-
tative. Let (p1, . . . , pr) be a point ofW . Then ψr,Y ◦f r(p1, . . . , pr) = [I({f(p1), . . . , f(pr)})].

On the other hand π◦ψr,X(p1, . . . , pr) = [(f
#

)−1(I({p1, . . . , pr}))] = [I({f(p1), . . . , f(pr)})].
Here the last equality follows from Lemma 4.11. We have shown that the diagram com-
mutes.

By construction, f r(W ) = V , so it is dense in Y r
gen. Since π is projective, it follows that

Slipr,Y = ψr,Y ◦ f r(W ) = π ◦ ψr,X(W ) = π(ψr,X(W )) = π(Slipr,X)

set-theoretically.

We obtain the following corollary.

Corollary 4.16. In the notation of Theorem 4.15, assume that [J ] ∈ Slipr,Y is such that there

exists a unique closed point [I] ∈ Hilb
hr,X
S[X] for which (f

#
)−1(I) = J . Then [I] is in Slipr,X .

Remark 4.17. The usual Hilbert scheme Hilbr(X) is usually not functorial in X. That is,
let f : X → Y be a regular non-constant morphism of algebraic varieties. A general r-tuple of
distinct points of X is mapped to an r-tuple of points of Y and this assignment induces a rational
map of the smoothable components π : Hilbsmr (X) 99K Hilbsmr (Y ). However, this map needs not
to extend to a regular morphismHilbr(X)→ Hilbr(Y ), or evenHilbsmr (X)→ Hilbsmr (Y ). To see
some of the problems, for simplicity assume X and Y are smooth and projective, f is dominant,
and dimY ≥ 2.

1. If Hilbr(X) has a component whose general point represents a subscheme of X with em-
bedding dimension larger than dimY , then the image of such scheme has length less than
r, thus it is hard or impossible to sensibly define Hilbr(X)→ Hilbr(Y ) on this component.
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2. Even restricting to the smoothable components, the rational map π does not necessarily
extend to a regular morphism. Already if r = 2, Y = P2 and f is the blowup of P2 at a single
point (thus we are in the situation of Theorem 4.15), there are degree 2 finite subschemes
contained in the exceptional divisor, which is contracted to a point. It is straightforward
to verify that there is no continuous map that extends π : Hilbsm2 (X) 99K Hilbsm2 (P2) to
the points representing such subschemes.

In contrast, Theorem 4.15 shows that the multigraded Hilbert scheme Hilb
hr,X
S[X] and the ana-

logue of its smoothable component Slipr,X behave nicely (functorially), at least under some
special morphisms. In some sense, the induced map Slipr,X → Slipr,Y is a natural resolution of
the rational map Hilbsmr (X) 99K Hilbsmr (Y ).

4.3 Blowup of the closure of a torus orbit

In this section we study a special case of Theorem 4.15 - the blowup of a smooth projective toric
variety at the closure of a torus orbit.

Let Y be a smooth projective n-dimensional toric variety associated with a fan ΣY ⊆ N⊗ZR.
Let f : X → Y be the blowup of Y at the closure of the torus orbit V (τ) = O(τ) corresponding
to a cone τ ∈ ΣY (see [28, Thm. 3.2.6]). In that case, as follows from [28, pages 132-133], the
variety X is the toric variety associated with the fan Σ∗Y (τ) ⊆ N ⊗Z R, whose construction we
recall below. Moreover, the blowup f : X → Y corresponds to the identity map on the lattice N .
Observe that the special case, when τ is n-dimensional (or, equivalently, when V (τ) is a torus
invariant point of Y ) is [28, Prop. 3.3.15].

Now we recall the construction of the fan Σ∗Y (τ). Given a cone σ ∈ ΣY , we denote by σ(1)

the set of edges of σ. Let uτ =
∑

ρ∈τ(1) uρ be the sum of the ray generators of edges of τ . Let
σ ∈ ΣY be a cone containing τ and consider the set

(ΣY )∗σ(τ) = {Cone(A) | A ⊆ {uτ} ∪
⋃

ρ∈σ(1)

{uρ} such that τ(1) 6⊆ A}.

Then
Σ∗Y (τ) = {σ ∈ ΣY | τ 6⊆ σ} ∪

⋃
τ⊆σ

(ΣY )∗σ(τ).

Let ΣY (1) = {ρ1, . . . , ρn, ρ
′
1, . . . , ρ

′
t} and τ = Cone(ρi | i = 1, . . . , s) for some 1 ≤ s ≤ n. Let

e1, . . . , en be the standard basis of M and let e∗1, . . . , e
∗
n be the dual basis. Since Y is smooth,

we may assume that the ray generator uρi of ρi for i = 1, . . . , n is e∗i . We can express the ray
generators of ρ′j in terms of this basis

uρ′j =
n∑
i=1

aije
∗
i (4.18)

for some aij ∈ Z. Then ΣX(1) = ΣY (1) ∪ {ρτ}, where ρτ = Cone(uτ ).
By [28, Thm. 4.1.3], the Picard group Pic(Y ) is generated by the classes

[Dρ1 ], . . . , [Dρn ], [Dρ′1
], . . . , [Dρ′t

]
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of prime torus invariant divisors modulo the relations

0 = [div(χei)] =
n∑
j=1

〈ei,uρj 〉[Dρj ] +
t∑

j=1

〈ei,uρ′j 〉[Dρ′j
] for i = 1, . . . , n. (4.19)

It follows from Equations (4.18) and (4.19) that

Pic(Y ) =

t⊕
i=1

Z[Dρ′i
]

where

[Dρi ] =
t∑

j=1

−aij [Dρ′j
]

for i = 1, . . . , n. We use this description to identify Pic(Y ) with Zt.
Similarly, we obtain

Pic(X) =

t⊕
i=1

Z[Dρ′i
]⊕ [Dρτ ]

where

[Dρi ] = −
t∑

j=1

aij [Dρ′j
]− [Dρτ ]

for i = 1, . . . , s and

[Dρi ] = −
t∑

j=1

aij [Dρ′j
]

for i = s+ 1, . . . , n.
It follows that the Cox ring of Y is

S[Y ] = C[β1, . . . , βn, β
′
1, . . . , β

′
t]

with deg(βi) = [Dρi ] = −
∑t

j=1 aijei for i = 1, . . . , n and deg(β′i) = ei where e1, . . . , et is the
standard basis of Zt ∼= Pic(Y ).

Similarly, the Cox ring of X is

S[X] = C[α1, . . . , αn, α
′
1, . . . , α

′
t, α
′′]

with

deg(αi) = [Dρi ] = −
t∑

j=1

aijfj − ft+1 for i = 1, . . . , s,

deg(αi) = [Dρi ] = −
t∑

j=1

aijfj for i = s+ 1, . . . , n,

deg(α′i) = [Dρ′i
] = fi for i = 1, . . . , t

deg(α′′) = [Dρτ ] = ft+1
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where f1, . . . , ft+1 is the standard basis of Zt+1 ∼= Pic(X).
We will lift the map f : X → Y to a map of Cox rings f#

: S[Y ]→ S[X] as in Definition 4.2.
We start with describing the pullback map f∗ : Pic(Y )→ Pic(X).

Lemma 4.20. In the above notation, the pullback map f∗ : Pic(Y )→ Pic(X) is given by ei 7→ fi
for i = 1, . . . , t.

Proof. For i = 1, . . . , t, let ϕDρ′
i
: N → R be the support function of the torus invariant Cartier

divisor Dρ′i
on Y (see [28, Def. 4.2.11]). Then by [28, Prop. 6.2.7], f∗([Dρ′i

]) is the class of the
torus invariant Cartier divisor on X corresponding to the same support function. By definition

ϕDρ′
i
(uρ) = −δρρ′i for ρ ∈ ΣY (1).

In particular, ϕDρ′
i
(uτ ) = 0 since ϕDρ′

i
is zero on each ray generator of the cone τ . Thus,

f∗(ei) = fi for i = 1, . . . , t.

Now we describe a lift of f : X → Y to a map f#
: S[Y ]→ S[X].

Proposition 4.21. In the above notation the C-algebra homomorphism

f
#

: S[Y ]→ S[X]

given by

βi 7→ αi · α′′ for i = 1, . . . , s

βi 7→ αi for i = s+ 1, . . . , n

β′i 7→ α′i for i = 1, . . . , t

is a lift of f : X → Y as in Definition 4.2. In particular, if r is a positive integer and [I] ∈ Slipr,X ,

then [(f
#

)−1(I)] ∈ Slipr,Y .

Proof. By Lemma 4.20, the homomorphism f
# is a map of graded rings with respect to the

homomorphism f∗ : Pic(Y )→ Pic(X) of grading groups, i.e.

f
#

(S[Y ][D]) ⊆ S[X]f∗([D])

for every [D] ∈ Pic(Y ).
It follows that f# defines an equivariant map f : X = SpecS[X] → SpecS[Y ] = Y . Let

B(ΣX) ⊆ S[X] and B(ΣY ) ⊆ S[Y ] be the irrelevant ideals. We claim that f restricts to a map

f̂ : X \ V
(
B(ΣX)

)
= X̂ → Ŷ = Y \ V

(
B(ΣY )

)
.

Recall that ΣY (n) is the set of maximal cones of the fan ΣY . For σ ∈ ΣY (n) let βσ̂ be the
product of variables in S[Y ] corresponding to rays in ΣY (1) which are not rays in σ(1). Then,

B(ΣY ) = (βσ̂)σ∈ΣY (n)

by [28, page 207].
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We will consider two types of maximal cones in ΣY (n). Namely, ΣY (n) = Σ′Y (n) ∪ Σ′′Y (n)

where
Σ′Y (n) = {σ ∈ ΣY (n) | τ 6⊆ σ}

and
Σ′′Y (n) = {σ ∈ ΣY (n) | τ ⊆ σ}.

For a cone σ ∈ Σ′′Y (n) and i ∈ {1, . . . , s} we define σi = Cone
((⋃

ρ∈σ(1),ρ 6=ρi{uρ}
)
∪ {uτ}

)
.

Then ΣX(n) = Σ′Y (n) ∪
⋃
σ∈Σ′′Y (n)

⋃s
i=1{σi}. For a cone σ ∈ ΣX(n), let ασ̂ be the product of

variables of S[X] corresponding to rays from ΣX(1) \ σ(1). Then

B(ΣX) = (ασ̂)σ∈ΣX(n).

The map f : An+t+1 → An+t is given by

p := (a1, . . . , an, a
′
1, . . . , a

′
t, a
′′) 7→ (a1a

′′, . . . , asa
′′, as+1, . . . , an, a

′
1, . . . , a

′
t).

Assume that f(p) ∈ V
(
B(ΣY )

)
. We shall show that p ∈ V

(
B(ΣX)

)
.

Let σ ∈ Σ′Y (n). Then

0 = βσ̂
(
f(p)

)
= (a′′)k ·

(
βσ̂(a1, . . . , an, a

′
1, . . . , a

′
t)
)

= (a′′)k−1 ·
(
ασ̂(p)

)
where s ≥ k ≥ 1 is the number of rays in τ(1) \ σ(1). It follows that ασ̂(p) = 0.

Let σ ∈ Σ′′Y (n) and i ∈ {1, . . . , s}. Then

ασ̂i(p) = ai ·
(
βσ̂
(
f(p)

))
= 0.

We have shown that p ∈ V
(
B(ΣX)

)
.

By Lemma 4.4, in order to verify that f# is a lift of f , it suffices to show that

s∏
i=1

(αiα
′′)〈m,uρi 〉 ·

n∏
i=s+1

α
〈m,uρi 〉
i ·

t∏
i=1

α′
〈m,uρ′

i
〉

i =
s∏
i=1

α
〈m,uρi 〉
i ·

n∏
i=s+1

α
〈m,uρi 〉
i ·

t∏
i=1

α′
〈m,uρ′

i
〉

i ·α′′〈m,uτ 〉

for every m ∈M . This holds since uτ =
∑s

i=1 uρi .
The last part of the proposition follows from Theorem 4.15.

4.4 Toric bundle

In this section we study another special case of Theorem 4.15 - where X is a decomposable toric
vector bundle.

Let Y be a smooth projective toric variety defined by a fan ΣY ⊆ NR. Let n be a positive
integer and consider torus invariant divisors Di =

∑
ρ∈ΣY (1) aiρDρ for i = 0, ..., n, where Dρ’s

are prime torus invariant divisors of Y corresponding to rays of ΣY and aiρ’s are integers. Let
E = OY (D0)⊕ ...⊕OY (Dn) and let X = P(E ). Then X is a smooth projective toric variety (see
[28, Prop. 7.3.3.]). We construct a lift f#

: S[Y ] → S[X] of the natural projection f : X → Y .
A special case of interest is when Y = Pa × Pb, X = Pa × Pb × Pc and f is the projection.

We start with describing the Cox ring of X. Let f1, ..., fm be a basis of the lattice M
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and let f∗1 , . . . , f
∗
m be its dual basis. Consider Zn with standard Z-basis e∗1, ..., e

∗
n and let e∗0 =

−e∗1 − ...− e∗n. Given a ray generator uρ ∈ NR with ρ ∈ ΣY (1) we define

vρ = uρ + (a1ρ − a0ρ)e
∗
1 + ...+ (anρ − a0ρ)e

∗
n ∈ NR × Rn.

The cones of the fan ΣX ⊆ NR × Rn of X are of the form

σi = Cone(vρ | ρ ∈ σ(1)) + Cone(e∗0, ..., ê
∗
i , ..., e

∗
n)

together with their faces, where σ ∈ ΣY , i ∈ {0, ..., n} and ê∗i means that e∗i is omitted ([28,
Prop. 7.3.3.]). Thus, the ray generators of the fan of X are

{vρ | ρ ∈ ΣY (1)} ∪ {e∗0, ..., e∗n}.

In particular, by [28, Thm. 4.1.3] the Picard group of X is generated by the classes of torus
invariant divisors Fρ for ρ ∈ ΣY (1) corresponding to vρ and the classes of E0, ..., En corresponding
to e∗0, ..., e

∗
n. Moreover, these generators are subject to the relations

0 = [div(χfi)] =
∑

ρ∈ΣY (1)

〈fi,uρ〉[Fρ] for i = 1, ...,m

and
0 = [div(χei)] = [Ei]− [E0] +

∑
ρ∈ΣY (1)

(aiρ − a0ρ)[Fρ] for i = 1, ..., n.

Therefore, we have an isomorphism Pic(X) ∼= Pic(Y )× Z given by

[Fρ] 7→ ([Dρ], 0) for ρ ∈ ΣY (1)

[Ei] 7→ (−
∑

ρ∈ΣY (1)

(aiρ − a0ρ)[Dρ], 1) for i = 0, ..., n.

In particular, [E0] ∈ Pic(X) corresponds to (0, 1) ∈ Pic(Y ) × Z. From these considerations, it
follows that the Cox rings of Y and X are

S[Y ] = C[{βρ | ρ ∈ ΣY (1)}] and S[X] = C[{αρ | ρ ∈ ΣY (1)}, α′0, ..., α′n]

with

deg(βρ) = [Dρ] ∈ Pic(Y ) for ρ ∈ ΣY (1),

deg(αρ) = [Fρ] = ([Dρ], 0) ∈ Pic(Y )× Z for ρ ∈ ΣY (1) and

deg(α′i) = [Ei] for i = 0, . . . , n.

Let φ : N × Zn → N be the natural surjection of lattices. If τ is a face of σi ∈ ΣX for some
σ ∈ ΣY and i ∈ {0, . . . , n}, then φR(τ) is a face of σ. Therefore, the map φ is compatible with
the fans of X and Y . Thus, it induces a toric morphism f : X → Y [28, Thm. 3.3.4]. We want
to lift this morphism to a homomorphism of Cox rings as in Definition 4.2. First we describe the
pullback map f∗ : Pic(Y )→ Pic(X).

Lemma 4.22. In the above notation, the pullback map f∗ : Pic(Y )→ Pic(X) maps [Dρ] to [Fρ]
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for every ρ ∈ ΣY (1).

Proof. Let ϕDρ : NR → R be the support function corresponding to Dρ, i.e. it is linear on each
cone of ΣY and ϕDρ(uρ′) = −δρρ′ (see [28, Thm. 4.2.12]). Then by [28, Thm. 6.2.7] f∗([Dρ]) is
the class of the torus invariant Cartier divisor with support function

ψ : NR × Rn φR−→ NR
ϕDρ−−→ R.

We have ψ(vρ′) = ϕDρ(uρ′) = −δρρ′ and ψ(e∗i ) = 0. Thus, ψ is the support function of Fρ.

Now we describe a lift of f to a map f#
: S[Y ]→ S[X].

Proposition 4.23. In the above notation, the C-algebra homomorphism f
#

: S[Y ]→ S[X] given
by βρ 7→ αρ for ρ ∈ ΣY (1) is a lift of f as in Definition 4.2. In particular, if [I] ∈ Slipr,X is a

closed point, then [(f
#

)−1(I)] ∈ Slipr,Y .

Proof. By Lemma 4.22, the homomorphism f
# is a homomorphism of graded rings, i.e.

f
#

(S[Y ][D]) ⊆ S[X]f∗([D])

for every [D] ∈ Pic(Y ). Therefore, it induces an equivariant map f : X → Y . We claim that it
restricts to a morphism f̂ : X̂ → Ŷ . The map f is defined by

(a1, . . . , as, a
′
0, . . . , a

′
n) 7→ (a1, . . . , as),

where the first s = #ΣY (1) coordinates of the affine space X correspond to αρ’s. By ΣY (m) we
denote the set of m-dimensional cones of ΣY . Given σ ∈ ΣY , let βσ̂ =

∏
ρ∈ΣY (1)\σ(1) βρ. Recall

that B(ΣY ) = (βσ̂ | σ ∈ ΣY (m)). Similarly, we have B(ΣX) = (ασ̂i | σ ∈ ΣY (m), i ∈ {0, ..., n}).
Assume that (a1, . . . , as) ∈ V (B(ΣY )). Let σ ∈ ΣY (m) and i ∈ {0, ..., n}. Then βσ̂(a1, . . . , as) =

0 implies that
0 = a′i · βσ̂(a1, . . . , as) = ασ̂i(a1, . . . , as, a

′
0, . . . , a

′
n).

Thus, (a1, . . . , as, a
′
0, . . . , a

′
n) ∈ V (B(ΣX)).

We have shown, that f : X → Y restricts to a map f̂ : X̂ → Ŷ . Therefore, we also have an
induced morphism f ′ : X → Y . We claim that f = f ′. By Lemma 4.4, it is enough to show that

∏
ρ∈ΣY (1)

α
〈m,uρ〉
ρ =

∏
ρ∈ΣY (1)

α
〈ψ(m),vρ〉
ρ ·

n∏
i=0

α
′〈ψ(m),e∗i 〉
i

for everym ∈M , where ψ : M →M×Zn is dual to N×Zn → N (i.e., it is the natural inclusion).
The claimed equality follows from the definition of vρ.

The last part of the proposition is implied by Theorem 4.15.

4.5 Product of projective spaces

Let X be the product of projective spaces X = Pn1 × . . . × Pnk for some positive integers
k ≥ 2, n1, . . . , nk. Proposition 4.23 gives a necessary condition for [I] ∈ Hilb

hr,X
S[X] to be in Slipr,X .

In this section, we will present another condition that must be fulfilled for [I] to be in the
irreducible component Slipr,X .
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The Cox ring of X is of the form

S[X] = C[α1,0, . . . , α1,n1 , α2,0, . . . , α2,n2 , . . . , αk,0, . . . , αk,nk ].

It has a grading in Zk. In the standard basis e1, . . . , ek of Zk we have deg(αi,j) = ei for
i ∈ {1, . . . , k} and j ∈ {0, . . . , ni}. The Cox ring of the i-th factor of X = Pn1 × . . . × Pnk
is the polynomial ring C[αi,0, . . . , αi,ni ] with the standard Z-grading, i.e. deg(αi,j) = 1 for j ∈
{0, . . . , ni}. The irrelevant ideal B(Σi) of Pni is B(Σi) = (αi,0, . . . , αi,ni). The irrelevant ideal of
X is B(ΣX) = B(Σ1) · . . . ·B(Σk) =

(
S[X](1,1,...,1)

)
.

We will use the following lemma about Hilbert functions of quotient algebras of homogeneous
ideals in S[X].

Lemma 4.24. Let I 6= (1) be a Zk-graded ideal in S[X]. Assume that I is saturated with
respect to the irrelevant ideal B(ΣX). Then for all i ∈ {1, . . . , k} there is a homogeneous element
γi ∈ S[X]ei such that γi is a non-zero divisor on S[X]/I. Therefore:

(i) For all u ∈ Zk and for all i ∈ {1, 2, . . . , k} we have HS[X]/I(u) ≤ HS[X]/I(u + ei).

(ii) Let u ∈ Zk≥0 and assume that there is i ∈ {1, 2, . . . , k} such that

HS[X]/I(u) = HS[X]/I(u + ei).

Then HS[X]/I(u + ei) = HS[X]/I(u + 2ei).

Proof. Let p1, . . . , ps be the associated primes of S[X]/I. These are Zk-graded ideals. We
claim that for each i, the C-vector subspace

⋃s
j=1(pj)ei ⊆ S[X]ei is a proper subspace. Indeed,

otherwise, there is j ∈ {1, . . . , s} such that (pj)ei = S[X]ei . Therefore, B(ΣX) ⊆ pj . We obtain
(I : B(ΣX)) 6= I which contradicts the assumption that I is saturated with respect to B(ΣX).
Having established the claim, we proceed to the proof of the lemma.

(i) By the above claim, for every i ∈ {1, . . . , k} there is a homogeneous non-zero divisor
γi on S[X]/I of degree ei. It follows that the map (S[X]/I)u → (S[X]/I)u+ei given by
multiplication by γi is injective.

(ii) Let [Θ] ∈ (S[X]/I)u+2ei . Then there are Θ0, . . . ,Θni ∈ S[X]u+ei such that

[Θ] = [αi,0Θ0 + . . .+ αi,niΘni ].

Using the notation of the proof of part (i), multiplication by γi gives an isomorphism
(S[X]/I)u → (S[X]/I)u+ei . Therefore, there are Γ0, . . . ,Γni ∈ S[X]u such that [Θj ] =

[γiΓj ] for j ∈ {0, . . . , ni}. It follows that [Θ] = γi([αi,0Γ0 + . . .+αi,niΓni ]). Thus, the injec-
tive map (S[X]/I)u+ei → (S[X]/I)u+2ei given by multiplication by γi is in fact bijective.

We present a necessary condition for [I] ∈ Hilb
hr,X
S[X] to be in the irreducible component Slipr,X .

Theorem 4.25. Let X = Pn1 × . . . × Pnk for some positive integers k ≥ 2, n1, . . . , nk. For
i ∈ {1, . . . , k} let B(Σi) ⊆ S[X] be the extension of the irrelevant ideal of Pni under the natural
inclusion S[Pni ]→ S[X]. If [I] ∈ Slipr,X for some positive integer r, then

dimC HomS[X]

(
I +B(Σi)

2, S[X]/
(
I +B(Σi)

2
))

0
≥ r(n1 + . . .+ nk)
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for i ∈ {1, . . . , k}.

Proof. Assume that [I] ∈ Hilb
hr,X
S[X] where I ⊆ S[X] is an ideal saturated with respect to B(ΣX).

Fix an integer i ∈ {1, . . . , k} and let

Ai = {u = (u1, . . . , uk) ∈ Zk | uj ≥ 0 for j ∈ {1, . . . , k} and ui ∈ {0, 1}}.

Let J be the ideal of S[X] generated by ⊕
u∈Ai

Iu.

We claim that (J : B(ΣX)∞) = I. We first show how to conclude the proof using the claim. Let
g be the Hilbert function of S[X]/(I +B(Σi)

2) and consider the natural map

χ : Hilb
hr,X
S[X] → HilbgS[X]

given on closed points by χ([I]) = [I + B(Σi)
2]. It follows from the claim that χ is injective on

points corresponding to ideals that are saturated with respect to B(ΣX). Indeed, the inverse
map is [I ′] 7→ [

(⊕
u∈Ai I

′
u

)
: B(ΣX)∞]. Since a general closed point of Slipr,X corresponds to an

ideal of S[X] that is saturated with respect to B(ΣX), it follows that the image of Slipr,X under
χ is of dimension dim Slipr,X = r(n1 + . . . + nk). Therefore, if [I] ∈ Slipr,X then the tangent
space to HilbgS[X] at χ([I]) is of dimension at least r(n1 + . . .+nk). Application of Theorem 2.74
finishes the proof of the theorem.

We are left with proving the claim. Let K = (J : B(ΣX)∞). Since J ⊆ K ⊆ I, it follows
that for u ∈ Ai we have Ku = Ju = Iu. Let u = (u1, . . . , uk) ∈ Ai with uj ≥ r for j 6= i and
ui = 0. Since

HS[X]/K(u) = HS[X]/K(u + ei) = r,

it follows from Lemma 4.24(ii) that

HS[X]/K(u) = r

for all u = (u1, . . . , uk) ∈ Zk with uj ≥ r for j ∈ {1, 2, . . . , k}. Therefore, HS[X]/K(u) ≤ r for all
u ∈ Zk by Lemma 4.24(i). Since K ⊆ I and S[X]/I has Hilbert function hr,X , it follows that
the Hilbert function of S[X]/K is also hr,X . Thus, K = I as claimed.

4.6 Small examples of reducible multigraded Hilbert schemes

In this section we show that Hilb
h2,X

S[X] need not be irreducible for a smooth projective toric surface
X. We present two examples: Hirzebruch surface H1 = P

(
OP1 ⊕ OP1(1)

)
and P1 × P1. These

examples illustrate that the necessary condition described in Theorem 4.15 is in general not
sufficient even for small values of r and dimX. In fact, as we shall see, this condition is trivially
satisfied in these two cases.

Both special versions of Theorem 4.15 studied in Sections 4.3 and 4.4 apply to multigraded
Hilbert scheme Hilb

h2,H1

S[H1] since H1 is also the blowup of P2 at a torus invariant point. However,

we present also the example of Hilb
h2,P1×P1

S[P1×P1]
to demonstrate that Theorem 4.25 gives some insight

into Slip2,P1×P1 even though Theorem 4.15 is of no use in this case.
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Proposition 4.26. Let S[P1×P1] = C[α0, α1, β0, β1] be the Cox ring of P1×P1 with deg(α0) =

deg(α1) = (1, 0) and deg(β0) = deg(β1) = (0, 1). Then Hilb
h2,P1×P1

S[P1×P1]
is not irreducible. In fact,

[(α0α1, α0β0, α1β0, β0β1)] ∈ Hilb
h2,P1×P1

S[P1×P1]
\Slip2,P1×P1 .

Proof. Let I = (α0α1, α0β0, α1β0, β0β1). Then [I] ∈ Hilb
h2,P1×P1

S[P1×P1]
. We claim that [I] /∈ Slip2,P1×P1 .

Let a = (α0, α1) and J = I+a2. Then HomS[P1×P1](J, S[P1×P1]/J)0 = 2. Thus, [I] /∈ Slip2,P1×P1

by Theorem 4.25.

The case of the Hirzebruch surface H1 will be more involved since we lack a criterion analogous
to Theorem 4.25.

Proposition 4.27. Let H1 = P
(
OP1 ⊕ OP1(1)

)
be the Hirzebruch surface. The multigraded

Hilbert scheme Hilb
h2,H1

S[H1] is not irreducible.

Proof. We start with calculating the Cox ring of H1. Let S[P2] = C[β0, β1, β2] with deg(β0) =

deg(β1) = deg(β2) = 1. The Hirzebruch surface H1 can be constructed as the blowup of P2 at
the torus invariant point [0 : 1 : 0].

Then the Cox ring S[H1] of H1 is C[α0, α1, α2, α3] with deg(α0) = deg(α2) = (1,−1),
deg(α1) = (1, 0) and deg(α3) = (0, 1) (see Section 4.3). Moreover, by Proposition 4.21 the graded
homomorphism of graded rings S[P2] → S[H1] given by β0 7→ α0α3, β1 7→ α1, β2 7→ α2α3 is a
lift of the natural map H1 → P2. We identify S[P2] with its image in S[H1].

Let W be the locus of those points [I] of Hilb
h2,P2

S[P2]
for which the unique linear generator

of I is of the form aα0α3 + bα2α3 for some a, b ∈ C (or geometrically, the locus of points
defining subschemes contained in a line passing through the center of the blowup). We claim
that W is irreducible and 3-dimensional. Indeed, it is a Hilb

h2,P1

S[P1]
-bundle over the projective line

P(lin{α0α3, α2α3}). Since Hilb
h2,P1

S[P1]
∼= P2 (see Proposition 3.35), our claim follows.

Let π : Hilb
h2,H1

S[H1] → Hilb
h2,P2

S[P2]
be the natural map from Theorem 4.15. We claim that the

set-theoretic inverse image V of W is of dimension at least 4. Let [I] ∈W be a closed point. We
may assume that

I = (α0α3, θ2), where θ2 = Aα2
2α

2
3 +Bα1α2α3 + Cα2

1

for some A,B,C ∈ C, not all zero. It is enough to show that the fiber over [I] is of positive
dimension. Let [a : b] ∈ P1. We claim that

[J ] = [(α0α3, θ2, α0(aα0 + bα2), α0α1)]

is a point of that fiber. We need to check two things:

1. J ∩ S[P2] = I;

2. S[H1]/J has Hilbert function h2,H1 .

We start with 1. Clearly, I ⊆ J ∩ S[P2]. Suppose that f ∈ (α0(aα0 + bα2), α0α1)(d,0) for some
positive integer d. We shall show that f ∈ (α0α3). Observe that deg(α0(aα0 + bα2)) = (2,−2)

and deg(α0α1) = (2,−1). Since deg(f) = (d, 0), we get that α3 divides f . This shows that 1. is
fulfilled.
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Now we show that 2. holds. We have J ⊆ K = (α0, θ2). Moreover, if J(a,b) 6= K(a,b) then
b = −a < 0 and dimC(S[H1]/K)(a,−a) = dimC(S[H1]/J)(a,−a) − 1. Thus, it is enough to show
that

dimC(S[H1]/K)(a,b) =

{
h2,H1(a, b)− 1 = 1 if b = −a < 0;

h2,H1(a, b) otherwise.

We can rewrite this as follows:

dimC(S[H1]/K)(a,b) =


0 if a+ b < 0 or a < 0;

1 if a+ b = 0 and a ≥ 0;

1 if a = 0 and b ≥ 0;

2 if a+ b > 0 and a > 0.

(4.28)

Let R = C[α1, α2, α3] ⊆ S[H1]. Then

dimCR(a,b) =

{
0 if a+ b < 0 or a < 0;

a+ b+ 1−max{0, b} otherwise.
(4.29)

Indeed, deg(α1) = (1, 0), deg(α2) = (1,−1) and deg(α3) = (0, 1) so the case a+ b < 0 or a < 0

is clear. On the other hand, if a+ b ≥ 0 and a ≥ 0 then R(a,b) is spanned by

{αa+b−c
1 αc−b2 αc3 | max{0, b} ≤ c ≤ a+ b}.

We have

dimC(S[H1]/K)(a,b) = dimC(R/(θ2))(a,b) = dimCR(a,b) − dimCR(a−2,b). (4.30)

Equations (4.29) and (4.30) imply Equation (4.28) and thus, finish the proof that V is of dimen-
sion at least 4.

Suppose that Hilb
h2,H1

S[H1] is irreducible. Then it is of dimension dim Slip2,H1
= 4. It follows

that V = Hilb
h2,H1

S[H1] set-theoretically. This contradicts Theorem 4.15 since W 6= Hilb
h2,P2

S[P2]
=

Slip2,P2 .

We conclude this chapter with a remark.

Remark 4.31. In this section we considered two examples of toric morphisms f : X → Y

between smooth projective toric varieties such that f∗OX ∼= OY . Hence Theorem 4.15 applies
to these cases. However, we have Y = P1 or P2 (depending on example) and r = 2. Therefore,
Hilb

h2,Y

S[Y ] = Slip2,Y (see Proposition 3.37). Thus, the necessary condition from Theorem 4.15 is

trivially satisfied. Nevertheless, Slip2,X 6= Hilb
h2,X

S[X] in both cases.
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Chapter 5

Applications of border apolarity to
secant varieties

In this chapter we present some applications of the border apolarity lemma (Proposition 2.91)
for studying secant varieties. Section 5.1 deals with existence of homogeneous wild polynomials,
i.e. polynomials whose border rank is strictly smaller than the smoothable rank. In Subsec-
tion 5.1.1 we show that there are no wild degree d polynomials in three variables of border rank
at most d + 2. In Subsection 5.1.2 we prove that there is no wild quartic in four variables of
border rank at most 6. In Subsection 5.1.3 we give an example of a wild quintic in four variables
of border rank 7. In Subsection 5.1.4 we show that the known example of a wild cubic of border
rank 5 in five variables (see [12, Thm. 1.3]) is a unique such example up to a change of variables.
Results from Section 5.1 depend on the criteria developed in Chapter 3. Subsections 5.1.1, 5.1.2
and 5.1.4 are based on [66].

Sections 5.2, 5.3 and 5.4 are based on [39]. This paper uses Proposition 2.91 in a simple
form. Namely, we do not use any criteria for distinguishing Slipr,n from Hilb

hr,n
S[Pn]. Therefore,

these results are not directly related to the rest of the thesis. Consequently, we present them
in special versions, where the proofs are simpler. In Section 5.2 we calculate cactus and border
cactus rank of a homogeneous subspace of a divided power ring that is divisible by a large power of
a linear form. This is then used in Section 5.3 to describe the points in κ14

(
νd(P6)

)
\σ14

(
νd(P6)

)
for d ≥ 7. Results from Section 5.3 have their analogues for κ8,3

(
νd(P4)

)
\ σ8,3

(
νd(P4)

)
. In

Section 5.4 we state the main theorem in that direction.

5.1 Wild polynomials

In this section we assume that the base field k is the field of complex numbers C since we cite
results from papers in which this is assumed. Let n be a positive integer and S = C[α0, . . . , αn]

be the polynomial ring with standard Z-grading. We consider the dual polynomial ring S∗ =

C[x0, . . . , xn] with the structure of an S-module on S∗ given by partial differentiation. We
denote this action by y. Given a homogeneous polynomial F ∈ S∗ we denote by Ann(F ) the
ideal {θ ∈ S | θyF = 0}. Recall the definitions of the border rank, the smoothable rank and the
cactus rank from Subsection 2.4.2.

We will use the following consequence of the border apolarity lemma (Proposition 2.91).
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Corollary 5.1. Let d be a positive integer and F ∈ S∗d . Assume that br(F ) ≤ r < cr(F ) for
some integer r. Then there exists an ideal I ⊆ Ann(F ) such that [I] ∈ Slipr,n and Id 6= Id.

Proof. By Proposition 2.91, there is an ideal [I] ∈ Slipr,n such that I ⊆ Ann(F ). If Id = Id,
then I ⊆ Ann(F ) by [11, Prop. 3.4]. Thus, cr(F ) ≤ r follows from Proposition 2.90. This is a
contradiction.

We always have br(F ) ≤ sr(F ) (see [55, Lem. 5.17]). Recall that we say that F is wild, if
the inequality is strict. Wild polynomials are more difficult to control using standard, existing
methods. Therefore, new methods need to be developed in order to study them effectively. For
example, see [3, Prop. 11] and its applications, [19, Rmk. 1.5] and [39].

We will study wild homogeneous polynomials F such that br(F ) ≤ deg(F ) + 2. If br(F ) ≤
deg(F ) + 1 then F is not wild. This is established in [11, Prop. 2.5] based on a result in [3].
Therefore, we will assume that br(F ) = deg(F ) + 2.

We shall use the following observation.

Lemma 5.2. Let r ≥ 2 be an integer and [I] ∈ Hilb
hr,n
S[Pn] be a closed point. If Ir−2 6= Ir−2 then

S/I has Hilbert function hr,1.

Proof. Let g be the Hilbert function of S/I. The Hilbert polynomial of S/I is r. Therefore, by
Lemma 2.9(ii) we have g(r − 2) ≤ r − 1. Lemma 2.9(iii) implies that g(0) = 1 < g(1) < g(2) <

. . . < g(r−2) ≤ r−1. It follows that g(a) = a+1 for every a ∈ {0, . . . , r−2}. Using Lemma 2.9
again we obtain g(a) = r for a ≥ r − 1. Thus, g = hr,1.

5.1.1 Polynomials in three variables of small border rank

In this subsection we prove that there is no wild homogeneous polynomial F in three variables
of border rank at most deg(F ) + 2.

We start with the following observation.

Lemma 5.3. Let d be a positive integer and let e = dd+1
2 e. Let Hd−1 ∈ C[x1, x2]d−1 and

Hd ∈ C[x1, x2]d be homogeneous polynomials. Then there exists an element α0ξe−1 + ξe ∈
Ann(x0Hd−1 +Hd) with ξe 6= 0, where ξe−1 ∈ C[α1, α2]e−1 and ξe ∈ C[α1, α2]e.

Proof. Let T ∗ = C[x1, x2] and T = C[α1, α2]. We will consider the restriction of the action of
S = C[α0, α1, α2] on S∗ = C[x0, x1, x2] to an action of T on T ∗. If H ∈ T ∗ ⊆ S∗, we write
AnnT (H) if we compute the annihilator ideal with respect to the T action.

Let F = x0Hd−1 + Hd. We have (α0ξe−1 + ξe)yF = x0(ξeyHd−1) + (ξe−1yHd−1 + ξeyHd).
Therefore, we need to choose ξe ∈ AnnT (Hd−1). If there exists a non-zero ξe ∈ AnnT (Hd−1) ∩
AnnT (Hd) we can set ξe−1 = 0 and we are done.

Otherwise, let h be the Hilbert function of T/AnnT (Hd−1). The C-vector space

lin{ξeyHd | ξe ∈ AnnT (Hd−1)e}

has dimension e+ 1− h(e). On the other hand the vector space

lin{ξe−1yHd−1 | ξe−1 ∈ Te−1}
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is of dimension h(e − 1). It is enough to show that these two vector subspaces of T ∗d−e have a
non-zero intersection. It suffices to establish that

e+ 1− h(e) + h(e− 1) ≥ d− e+ 2. (5.4)

By the definition of e we have d + 1 ≤ 2e. We claim that h(e − 1) − h(e) ≥ 0. If
AnnT (Hd−1)e−1 6= 0 then it follows from Lemma 2.12 that h(e − 1) − h(e) ≥ 0. On the other
hand, if AnnT (Hd−1)e−1 = 0 and h(e) > h(e−1), then AnnT (Hd−1)e = 0. Since T/AnnT (Hd−1)

is Gorenstein, we get h(d − 1 − e) = h(e) = e + 1. This gives a contradiction with d + 1 ≤ 2e.
These remarks imply Equation (5.4).

Now we present the main result of this subsection.

Proposition 5.5. Let S = C[α0, α1, α2] be a polynomial ring with dual ring S∗ = C[x0, x1, x2].
Let F ∈ S∗d be a non-zero polynomial for some d ∈ Z>0. If the border rank of F is at most d+ 2,
then cr(F ) = sr(F ) = br(F ).

Proof. By [11, Prop. 2.5] we may assume that br(F ) = d+ 2. Furthermore, sr(F ) = cr(F ) since
Hilbr(P2) is irreducible for every positive integer r. If cr(F ) ≤ d+ 2, it follows from

d+ 2 = br(F ) ≤ sr(F ) = cr(F ) ≤ d+ 2

that cr(F ) = sr(F ) = br(F ). Assume that cr(F ) > d + 2. From Corollary 5.1 we obtain that
there is an ideal I ⊆ Ann(F ) such that [I] ∈ Slipd+2,2 and Id 6= Id. From Lemma 5.2 we get that
S/I has Hilbert function hd+2,1. We may assume that I =

(
α0, Fd+2(α1, α2)

)
. It follows from

Theorem 3.65 that (α2
0) · (α0, α1, α2)d−2 ⊆ I ⊆ Ann(F ). Thus, α2

0 ∈ Ann(F ) and consequently,
F is of the form F = x0Hd−1 +Hd with Hd−1 ∈ C[x1, x2]d−1 and Hd ∈ C[x1, x2]d.

Let e = dd+1
2 e. By Lemma 5.3, there is an element ηe = α0ξe−1 + ξe ∈ Ann(F ) with

ξe−1 ∈ C[α1, α2]e−1 and non-zero ξe ∈ C[α1, α2]e. Let J = (α2
0, ηe). Then J ⊆ Ann(F ) and S/J

has Hilbert polynomial 2e ≤ d+ 2. Moreover, J is saturated. Indeed, let > be the lex order with
α2 > α1 > α0 and let J ′ be the initial ideal of J with respect to the order >. Then J ′ = (α2

0,M)

where M ∈ {αe1, α
e−1
1 α2, . . . , α

e
2}. In particular, J ′ is saturated. Thus, so is J by Lemma 2.7. It

follows from Proposition 2.90 that cr(F ) ≤ d+ 2.

Remark 5.6. In [3, page 37] in the paragraph above Remark 13, there is an example that
suggests that there could exist a wild polynomial in σ8(ν6(P2)). Proposition 5.5 shows that there
is no such polynomial.

In the context of Proposition 5.5, there is the following natural question.

Problem 5.7. Does there exist a homogeneous polynomial F ∈ C[x0, x1, x2] such that br(F ) 6=
sr(F )? If it does, what is the smallest possible degree of such a polynomial?

It follows from Proposition 5.5 that if there exists a wild polynomial F ∈ C[x0, x1, x2]d,
then d ≥ 6 since otherwise σd+2(νd(P2)) = P(2+d

d )−1 by the Alexander–Hirschowitz theorem [7,
Thm. 1.2].
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5.1.2 Quartics in four variables of small border rank

There are no wild cubics in four variables [12, Thm. 1.3]. In this subsection we prove that there
are no wild homogeneous quartics in four variables of border rank at most 6.

Proposition 5.8. Let S = C[α0, . . . , α3] be a polynomial ring with dual ring S∗ = C[x0, . . . , x3].
Let F ∈ S∗4 be non-zero. If the border rank of F is at most 6, then cr(F ) = sr(F ) = br(F ).

Proof. By [11, Prop. 2.5] we may assume that br(F ) = 6. Since Hilb6(P3) is irreducible (see [20,
Thm. 1.1]), it is enough to show that cr(F ) ≤ 6. Assume that it does not hold.

By Corollary 5.1 there is an ideal [I] ∈ Slip6,3 such that I ⊆ Ann(F ) and I4 6= I4. It follows
from Lemma 5.2 that S/I has Hilbert function h6,1. We may assume that I1 = (α0, α1)1. Then,
by Theorem 3.65 we get (α0, α1)2 ⊆ Ann(F ). Thus, we may restrict our attention to the case
that F = x0C1 + x1C2 +D where C1, C2 ∈ C[x2, x3]3 and D ∈ C[x2, x3]4.

There is a polynomial θ ∈ C[α2, α3]3 such that θyC1 = θyC2 = 0. By a linear change of
variables in C[α2, α3] we may assume that θ is one of the following:

1. θ = α3
2;

2. θ = α2
2α3;

3. θ = α2α3(α2 − α3).

We study this case by case. We will further simplify F by a linear change of variables and in
each case we will find a homogeneous ideal J ⊆ Ann(F ) whose initial ideal with respect to the lex
order with α2 > α3 > α1 > α0 will be saturated and the Hilbert polynomial of the corresponding
quotient algebra will be 6. Thus, cr(F ) ≤ 6 by Lemma 2.7 and Proposition 2.90. In each case
the given set of generators of J will be a Gröbner basis. We may assume that Ann(F )1 = 0 by
Proposition 5.5 and [12, §3.1].

We start with case 1. Up to a linear change of variables in S∗ we have one of the cases:

1.A F = x0(x2
2x3 + ax3

3) + x1x2x
2
3 +Q with a ∈ C and Q ∈ C[x2, x3]4;

1.B F = x0(x2
2x3 + ax2x

2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4;

1.C F = x0x2x
2
3 + x1x

3
3 +Q with Q ∈ C[x2, x3]4.

Let α3
2yQ = Ax2 +Bx3. Corresponding to the above cases, the following ideals contained in

Ann(F ) show that the cactus rank of F is at most 6:

1.A J = (α2
0, α0α1, α

2
1, α0α2 − α1α3, α1α

2
2, α

3
2 − A

2 α0α2α3 − B
2 α1α2α3);

1.B J = (α2
0, α0α1, α

2
1, α1α2, α0α

2
2 − 1

3α1α
2
3, α

3
2 − A

2 α0α2α3 + aA−B
6 α1α

2
3);

1.C J = (α2
0, α0α1, α

2
1, α1α2, α0α

2
2, α

3
2 − A

2 α0α
2
3 − B

6 α1α
2
3).

Now we consider case 2, namely we assume that α2
2α3yC1 = α2

2α3yC2 = 0. Then, up to a
linear change of variables in S∗ and excluding possibilities already considered in case 1, we have
one of the cases:

2.A F = x0(x3
2 + ax3

3) + x1(x2x
2
3 + bx3

3) +Q with a, b ∈ C and Q ∈ C[x2, x3]4;

2.B F = x0(x3
2 + ax2x

2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4.
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Let α2
2α3yQ = Ax2 +Bx3. Corresponding to the above cases, the following ideals contained

in Ann(F ) show that the cactus rank of G is at most 6:

2.A If a 6= 0 take J = (α2
0, α0α1, α

2
1, aα1α2 − 1

3α0α3, α0α2α3, α
2
2α3 − A

6 α0α
2
2 − B

2 α1α2α3).

If a = 0 take J = (α2
0, α0α1, α

2
1, α0α3, α1α

2
2, α

2
2α3 − A

6 α0α
2
2 − B

2 α1α2α3);

2.B Take J = (α2
0, α0α1, α

2
1, α1α2, α0α2α3 − a

3α1α
2
3, α

2
2α3 − A

6 α0α
2
2 − B

6 α1α
2
3).

Finally we consider case 3, that is we assume that α2α3(α2 − α3)yC1 = α2α3(α2 − α3)yC2 = 0.
Then, up to a linear change of variables in S∗ and excluding possibilities considered in case 1,
we have one of the cases:

3.A F = x0(x3
2 + ax3

3) + x1(x2
2x3 + x2x

2
3 + bx3

3) +Q with a, b ∈ C and Q ∈ C[x2, x3]4;

3.B F = x0(x3
2 + ax2

2x3 + ax2x
2
3) + x1x

3
3 +Q with a ∈ C and Q ∈ C[x2, x3]4.

Let (α2
2α3 − α2α

2
3)yQ = Ax2 + Bx3. Corresponding to the above cases, the following ideals

show that the cactus rank of G is at most 6:

3.A If a 6= 0 take J = (α2
0, α0α1, α

2
1, aα1α2 + a

3α0α2 − aα1α3 + (b − 1
3)α0α3, α0α2α3, α

2
2α3 −

α2α
2
3 − A

6 α0α
2
2 − B

2 α1α
2
2).

If a = 0 take J = (α2
0, α0α1, α

2
1, α0α3, α1α

2
2 + 1

3α0α
2
2 − α1α2α3, α

2
2α3 − α2α

2
3 − A

6 α0α
2
2 −

B
2 α1α

2
2);

3.B If a = 0 then we are in case 2.B. Therefore, assume that a 6= 0. Take

J = (α2
0, α0α1, α

2
1, α1α2, α0α2α3−α0α

2
3−

a

3
α1α

2
3, α

2
2α3−α2α

2
3−

A

6
α0α

2
2 +

aA− 3B

18
α1α

2
3).

5.1.3 Wild quintic in four variables of border rank 7

In Proposition 5.8 we showed that there are no wild quartics in four variables of border rank 6.
In this subsection, we give an example of a wild quintic in four variables of border rank 7.

Proposition 5.9. Let S = C[α0, α1, α2, α3] be polynomial ring with graded dual ring S∗ =

C[x0, x1, x2, x3]. Let F = x0x
4
2 +x0x

3
2x3 +x1x

2
2x

2
3 +x1x

4
3. Then br(F ) = 7 and cr(F ) > 7. Thus,

F is wild.

Proof. The Hilbert scheme Hilb7(P3) is irreducible by [20, Thm. 1.1]. Therefore, sr(F ) = cr(F )

so it is enough to show that br(F ) = 7 < cr(F ). Furthermore, by [11, Prop. 2.5] it suffices to
show that br(F ) ≤ 7 < cr(F ).

The following claims were obtained by computation in Macaulay2 [42].
We have (α0, α1)2 ⊆ Ann(F ). Let J = (Ann(F )≤3)+(α7

2). Then [J ] ∈ Hilb
h7,3

S and it follows
from Theorem 3.65 that there is an ideal [J ′] ∈ Slip7,3 such that (J ′)≥5 = J≥5. In particular,
J ′5 = J5 ⊆ Ann(F )5 so J ′ ⊆ Ann(F ). It follows from Proposition 2.91 that br(F ) ≤ 7.

Now we show that cr(F ) > 7. Otherwise, by Proposition 2.90 there exists a homogeneous,
saturated ideal K ⊆ Ann(F ) such that S/K has Hilbert polynomial 7. Since HS/Ann(F )(a) =

h7,3(a) for a ≤ 3, we have K≤3 = Ann(F )≤3. In particular, (α0, α1) = (Ann(F )≤3) ⊆ K. This
is a contradiction since K1 ⊆ Ann(F )1 = 0.
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5.1.4 Cubics in five variables of minimal border rank

In this subsection we let S = C[α0, . . . , α4] be a polynomial ring and S∗ = C[x0, . . . , x4] be the
dual ring. Let C ∈ S∗ be a homogeneous polynomial of degree 3. We say that C is concise if
Ann(C)1 = 0. It is known that there exists a wild concise cubic in S∗ of border rank 5 (see [12,
Thm. 1.3]) and that a concise cubic in S∗ of border rank 5 is wild if and only if its Hessian is
zero (see [52, Thm. 4.9]).

Using Theorem 3.65 we obtain in a simple way that up to a linear change of variables, the
cubic given in [12, Thm. 1.3] is the unique wild cubic in S∗ of border rank 5.

Proposition 5.10. Let S = C[α0, . . . , α4] be a polynomial ring with graded dual ring S∗ =

C[x0, . . . , x4]. Up to a linear change of variables, the cubic

x0x
2
3 − x1(x3 + x4)2 + x2x

2
4. (5.11)

is the unique wild cubic in S∗ of border rank 5.

Proof. Let C ∈ S be a wild cubic of border rank 5. By [12, Thm. 1.3] we may assume that C is
concise. By Proposition 2.91 there is an ideal I ⊆ Ann(C) such that [I] ∈ Slip5,4. If the Hilbert
function of S/I is not h5,1, then I3 = I3 by Lemma 5.2. Thus, cr(C) ≤ 5 by Corollary 5.1.
Consequently, C is not wild since cr(C) = sr(C) (see [20, Thm. 1.1]). Therefore, we may assume
that I =

(
α0, α1, α2, F (α3, α4)

)
for some F ∈ C[α3, α4]5. Since [I] ∈ Slip5,4 it follows from

Theorem 3.65 that (α0, α1, α2)2 · (α0, α1, . . . , α4) ⊆ Ann(C) and thus, (α0, α1, α2)2 ⊆ Ann(C).
Hence

C = x0Q0 + x1Q1 + x2Q2 + C ′ where Q0, Q1, Q2 ∈ C[x3, x4]2 and C ′ ∈ C[x3, x4]3.

Moreover, Q0, Q1, Q2 ∈ C[x3, x4]2 are linearly independent since C is concise. Therefore, after a
linear change of variables we may reduce C to the form given in Equation (5.11).

Remark 5.12. The annihilator ideal Ann(C) of a concise cubic C has a minimal generator of de-
gree 3 (see [13, Thm. 5.4] for a vast generalization). Therefore, the form given in Equation (5.11)
should be compared to the form given in [16, Thm. 4.5].

5.2 (Border) cactus rank of a homogeneous subspace divisible by
a large power of a linear form

In this section we compute the cactus rank and the border cactus rank of a homogeneous subspace
of a divided power ring divisible by a large power of a linear form. This result is based on [39,
Thm. 4.2 and 4.3]. However, here we strengthen the assumptions to omit technical difficulties.

Let k be an algebraically closed field, let n be a positive integer and consider polynomial
rings S = k[α1, . . . , αn] ⊆ k[α0, . . . , αn] = T with graded dual rings S∗ = kdp[x1, . . . , xn] ⊆
kdp[x0, . . . , xn] = T ∗. Let d1 be a positive integer and W ⊆ S∗≤d1

be a linear subspace. For a
non-negative integer d2 we define

W hom,d2 = {fhom,d2 | f ∈W} ⊆ T ∗d1+d2
.
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where

fhom,d2 =

deg(f)∑
i=0

Fix
[d2+d1−i]
0 ∈ T ∗d1+d2

for f = Fdeg f + . . .+ F0 ∈W with Fi ∈ S∗i . We shall show that

cr(W hom,d2) = bcr(W hom,d2) = dimk S/Ann(W )

if d2 ≥ d1.
We start with a lemma which is based on [4, Lem. 2].

Lemma 5.13 ([39, Lem. 3.6 and 3.8]). In the above notation we have:

(i) Ann(W )hom ⊆ Ann(W hom,d2), and

(ii) (Ann(W )hom)≤d2 = Ann(W hom,d2)≤d2.

Proof. The proof of the lemma is based on the following calculation. Let

Γ = αd0Θ0 + αd−1
0 Θ1 + . . .+ Θd,

where Θi ∈ Si and let f ∈W . We can rewrite Γyfhom,d2 as follows

Γyfhom,d2 =

d1∑
e=0

min(d1−e,d)∑
j=0

(αd−j0 Θj)y(x
[d1+d2−(e+j)]
0 Fe+j)

=

d1∑
e=0

min(d1−e,d)∑
j=0

(αd−j0 yx[d1+d2−(e+j)]
0 )(ΘjyFe+j)

=

min(d1,d1+d2−d)∑
e=0

min(d1−e,d)∑
j=0

x
[d1+d2−d−e]
0 (ΘjyFe+j)

=

min(d1,d1+d2−d)∑
e=0

x
[d1+d2−d−e]
0

min(d1−e,d)∑
j=0

ΘjyFe+j .

(5.14)

(i) Let θ = Θ0 + · · · + Θd ∈ Ann(W ), where Θi is homogeneous of degree i. We show that
θhom = αd0Θ0 + αd−1

0 Θ1 + . . .+ Θd ∈ Ann(W hom,d2). We have

Ann(W hom,d2) =
⋂
f∈W

Ann(fhom,d2). (5.15)

Thus, it suffices to show that θhom ∈ Ann(fhom,d2) for every f ∈ W . Pick f ∈ W . Then
θ ∈ Ann(f). We set Γ = θhom in Equation (5.14). For every e = 0, . . . ,min(d1, d1 + d2 − d)

the sum
∑min(d1−e,d)

j=0 ΘjyFe+j is zero since θyf = 0. Hence θhomyfhom,d2 = 0, as claimed.

(ii) We have Ann(W )hom ⊆ Ann(W hom,d2) by part (i). We claim that

(Θ|α0=1) ∈ Ann(f) for every f ∈W and Θ ∈ Ann(fhom,d2)≤d2 . (5.16)

Before proving the claim, we show how to conclude the proof of part (ii). Let Θ ∈
Ann(W hom,d2)≤d2 . Then it follows from Equation (5.15) that Θ ∈ Ann(fhom,d2) for every

109



f ∈W . Thus, by Equation (5.16) we get

Θ|α0=1 ∈
⋂
f∈W

Ann(f) = Ann(W ).

As a result Θ ∈ (Ann(W )hom)≤d2 .

We are left with proving the claimed Equation (5.16). Pick f ∈ W . Assume that d ≤ d2

and let Θ = αd0Θ0 + αd−1
0 Θ1 + . . . + Θd, where Θi ∈ Si, be such that Θyfhom,d2 = 0. We

claim that (Θ|α0=1)yf = 0. By Equation (5.14) (with Γ = Θ) we have

0 =

d1∑
e=0

x
[d1+d2−d−e]
0

min(d1−e,d)∑
j=0

ΘjyFe+j .

Since the exponents at x0 are pairwise different, we get

min(d1−e,d)∑
j=0

ΘjyFe+j = 0 for every d1 ≥ e ≥ 0.

This implies that (Θ|α0=1)yf = 0.

We will use the following result, which bounds the degree from which T/Ann(W )hom agrees
with its Hilbert polynomial.

Lemma 5.17 ([39, Cor. 3.3]). Let W ⊆ S∗≤d1
be a linear subspace. Then

H(T/Ann(W )hom, e) = dimk S/Ann(W )

for e ≥ d1.

Now we present the main result of this section. Note that the version for polynomials instead
of arbitrary subspaces can be strengthened, see [39, Thm. 4.3]. Recall the notion of a standard
Hilbert function from Definition 2.92.

Theorem 5.18 ([39, Thm. 4.2]). Let W ⊆ S∗≤d1
be a linear subspace and r = dimk S/Ann(W ).

Let d2 be a non-negative integer. We have the following:

(i) The cactus rank of W hom,d2 is at most r.

(ii) If d2 ≥ d1, then there is no homogeneous ideal J ⊆ Ann(W hom,d2) such that T/J has an
(r− 1, n+ 1)-standard Hilbert function. In particular, the border cactus rank bcr(W hom,d2)

of W hom,d2 equals r.

(iii) If d2 ≥ d1 + 1, and J ⊆ Ann(W hom,d2) is a homogeneous ideal such that T/J has an
(r, n+ 1)-standard Hilbert function, then J = Ann(W )hom.

Proof. (i) We have Ann(W )hom ⊆ Ann(W hom,d2) by Lemma 5.13(i). The Hilbert polynomial
of T/Ann(W )hom is dimk S/Ann(W ) = r. Moreover, the ideal Ann(W )hom is saturated.
Hence the claim follows from Proposition 2.90.
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(ii) We have H(T/Ann(W )hom, d1) = r by Lemma 5.17. Therefore, by Lemma 5.13(ii) we
have

H(T/Ann(W hom,d2), d1) = r.

Thus, there exists no ideal J ⊆ Ann(W hom,d2) such that T/J has an (r−1, n+1)-standard
Hilbert function. By Proposition 2.93 we get bcr(W hom,d2) ≥ r, which together with
part (i) implies that bcr(W hom,d2) = r.

(iii) Assume that J ⊆ Ann(W hom,d2) is such that T/J has an (r, n + 1)-standard Hilbert
function. By Lemmas 5.13(ii) and 5.17

H(T/Ann(W hom,d2), d2) = H(T/Ann(W )hom, d2) = r.

In particular, Jd2 = (Ann(W )hom)d2 . Since Ann(W )hom is generated in degrees smaller or
equal d1 + 1 ≤ d2, it follows that Jd ⊇ (Ann(W )hom)d for every d ≥ d2.

Ideals J and Ann(W )hom have the same Hilbert polynomial. Hence we have

J = (Ann(W )hom) = Ann(W )hom.

5.3 Distinguishing secant from cactus varieties

In this section we work over the field of complex numbers. We show that for d ≥ 7, the
cactus variety κ14

(
νd(P6)

)
has two irreducible components: η14

(
νd(P6)

)
and the secant variety

σ14

(
νd(P6)

)
. Moreover, we describe the points of η14

(
νd(P6)

)
and present an algorithm that

verifies whether a point in κ14

(
νd(P6)

)
is in σ14

(
νd(P6)

)
. These results are special cases of [39,

Thm. 1.4 and Thm. 1.6] which address the case of κ14

(
νd(Pn)

)
for n ≥ 6 and d ≥ 5 ([39,

Thm. 1.4]) or d ≥ 6 ([39, Thm. 1.6]). Our presentation follows [39] with minor changes and some
simplifications due to additional assumptions.

For X = An or Pn, we denote by HilbGorr (X) the open subset of the Hilbert scheme Hilbr(X)

consisting of points corresponding to Gorenstein subschemes. Let HilbGor,smr (X) denote its
smoothable component. It is a key observation, that the cactus variety κr

(
νd(Pn)

)
is actually

determined by the Gorenstein locus of the Hilbert scheme. More precisely, we have

κr(νd(Pn)) =
⋃
{〈νd(R)〉 | [R] ∈ HilbGorr (Pn)} (5.19)

by [11, Prop. 2.2]. Therefore, if HilbGorr (Pn) is irreducible then κr
(
νd(Pn)

)
= σr

(
νd(Pn)

)
. Note

that a description of the cactus variety, similar to the one given by Equation (5.19), works over
an arbitrary field (see [17, Cor. 6.20]).

If either r ≤ 13 or r = 14 and n < 6, the scheme HilbGorr (An) is irreducible by [21, Thm.
A]. Therefore, in that case, κr

(
νd(Pn)

)
= σr

(
νd(Pn)

)
. Thus, the cactus variety κ14

(
νd(P6)

)
that

we study in this section is the simplest example of a reducible cactus variety. We assume that
d ≥ 7. However, the presented results hold for d ≥ 6, and some of them, even for d = 5, with
more technical proofs. See [39] for this as well as the case n > 6.

We start with defining for d ≥ 3 an irreducible, closed subset η14

(
νd(P6)

)
. Consider the

following rational map ϕ, which assigns to a scheme R its projective linear span 〈vd(R)〉

ϕ : HilbGor14 (P6) Gr(14,SymdC7).
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Let U ⊆ HilbGor14 (P6) be a dense open subset on which ϕ is regular. Consider the projectivized
universal bundle PS over Gr(14, SymdC7), given as a set by

PS = {([P ], [p]) ∈ Gr(14, SymdC7)× P(SymdC7) | p ∈ P},

together with the inclusion i : PS ↪→ Gr(14,SymdC7)× P(SymdC7). We pull the commutative
diagram

PS Gr(14,SymdC7)× P(SymdC7)

Gr(14, SymdC7)

i

π

pr1

back along ϕ to U , getting the commutative diagram

ϕ∗(PS) U × P(SymdC7)

U .

ϕ∗i

ϕ∗π

pr1

Let Y be the closure of ϕ∗(PS) inside HilbGor14 (P6) × P(SymdC7). The scheme Y has two irre-
ducible components, Y1 and Y2, corresponding to two irreducible components of HilbGor14 (P6), the
schemes HilbGor,sm14 (P6) and H1661, respectively. For the description of irreducible components
of HilbGor14 (P6) see [21].

Then

σ14

(
νd(P6)

)
= pr2(Y1), and we define

η14

(
νd(P6)

)
= pr2(Y2).

By construction, if κ14

(
νd(P6)

)
is reducible, then η14

(
νd(P6)

)
and σ14

(
νd(P6)

)
are its irreducible

components.
In the next lemma, we bound the dimension of η14

(
νd(P6)

)
.

Lemma 5.20 ([39, Prop. 5.5]). The irreducible set η14

(
νd(P6)

)
has dimension at most 89.

Proof. We have the following commutative diagram

P(SymdC7) ⊇ σ ∪ η Y1 ∪ Y2 PS

HilbGor14 (P6) HilbGor,sm14 (P6) ∪H1661 Gr(14,SymdC7)

χ

where σ and η denote σ14

(
νd(P6)

)
and η14

(
νd(P6)

)
respectively, and χ : Y1 ∪ Y2 → HilbGor14 (P6)

is the projection. Then dim η14(νd(P6)) ≤ dim(Y2) = m + 13, where m = dimH1661 and 13 is
the dimension of the general fiber of the map χ|Y2 : Y2 → H1661. It follows from [58, Thm. 1.1],
that m = 76 and therefore, dim η14

(
νd(P6)

)
≤ 89.

One of the reasons why the case of P6 is simpler than the case of Pn for n > 6 is the following
lemma which follows from [58].

Lemma 5.21. Let S = C[α1, . . . , α6] be a polynomial ring and let S∗ = C[x1, . . . , x6] be its
graded dual ring. For f = F3 + F2 + F1 + F0 ∈ S∗≤3 such that Fi ∈ S∗i consider the conditions:
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(i) Apolar(f) has (local) Hilbert function (1, 6, 6, 1);

(ii) Apolar(F3) has Hilbert function (1, 6, 6, 1);

(iii) [Spec Apolar(f)] ∈ HilbGor14 (A6) \ HilbGor,sm14 (A6);

(iv) [Spec Apolar(F3)] ∈ HilbGor14 (A6) \ HilbGor,sm14 (A6).

Then conditions (i) and (ii) are equivalent. Conditions (iii) and (iv) are equivalent.

Proof. The equivalence of (i) and (ii) follows from [58, Rmk. 2.2] and the other equivalence is a
consequence of [58, Thm. 1.1].

In Lemma 5.22 we identify some points in κ14

(
νd(P6)

)
\σ14

(
νd(P6)

)
for d ≥ 7. Later, we will

show that the closure of the locus of these points is the irreducible component η14

(
νd(P6)

)
.

Lemma 5.22 ([39, Prop. 5.6]). Let T = C[α0, . . . , α6] be a polynomial ring with graded dual ring
T ∗ = C[x0, . . . , x6]. Let (y0, y1, . . . , y6) be a C-basis of T ∗1 . Assume that G = yd−3

0 P for some
natural number d ≥ 7 and P ∈ T ∗3 . Define f := P |y0=1 = F3 +F2 +F1 +F0 ∈ R∗ := C[y1, . . . , y6].
If f satisfies the following conditions:

(a) Apolar(f) has (local) Hilbert function (1, 6, 6, 1),

(b) [Spec Apolar(f)] /∈ HilbGor,sm14 (A6),

then [G] ∈ κ14

(
νd(P6)

)
\ σ14

(
νd(P6)

)
.

Proof. Let F ′i = (d− i)!Fi for i = 0, 1, 2, 3 and let f ′ = F ′3 + F ′2 + F ′1 + F ′0. Then

G =
3∑
i=0

y
[d−i]
0 F ′i . (5.23)

By Lemma 5.21, conditions (a) and (b) hold with f ′ instead of f . By condition (a) we
have dimC(R/Ann(f ′)) = 14. Therefore, from Theorem 5.18(i) and Equation (5.23) we get
cr(G) ≤ 14.

From Proposition 2.91, if [G] ∈ σ14

(
νd(P6)

)
then there exists J ⊆ Ann(G) with [J ] ∈

Slip14,PT ∗1 ⊆ Hilb
h14,6

T . Thus, [Proj(T/J)] ∈ Hilbsm14 (P6). From Theorem 5.18(iii) it follows
that J = Ann(f ′)hom, so

[Spec(R/Ann(f ′))] ∈ HilbGor,sm14 (A6).

This contradicts condition (b).

The following lemma is an analogue of [39, Lem. 5.3].

Lemma 5.24. Let S = C[α1, . . . , α6] be a polynomial ring and S∗ = C[x1, . . . , x6] be the graded
dual ring. Define subsets

Â = {f ∈ S∗≤3 | S/Ann(f) has local Hilbert function (1, 6, 6, 1)}

and
B̂ = {f ∈ Â | [SpecS/Ann(f)] /∈ HilbGor,sm14 (A6)}.

Then Â is irreducible and 84 dimensional. Furthermore, B̂ is dense in Â.
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Proof. It follows from Lemma 5.21 that for f = F3 + F2 + F1 + F0 ∈ S∗≤3 we have f ∈ Â

(respectively, f ∈ B̂) if and only if F3 ∈ Â (respectively, F3 ∈ B̂). Moreover, Â is open in S∗≤3

so dim Â = dimS∗≤3 = 84.
We have a well defined morphism

π : Â→ HilbGor14 (A6) ⊆ Hilb14(A6)

that maps f to [SpecS/Ann(f)] (see [39, Thm. 7.1] which is based on [58, Prop. 2.12]). By defini-
tion, B̂ = π−1

(
H1661 \HilbGor,sm14 (A6)

)
, where H1661 is the irreducible component of HilbGor14 (A6)

other than the smoothable component. It follows that B̂ is open, and hence dense in Â.

Now we present the main result of this section.

Theorem 5.25 ([39, Thm. 1.1]). Let d ≥ 7 be an integer and T ∗ = C[x0, x1, . . . , x6]. Then
the cactus variety κ14

(
νd(PT ∗1 )

)
has two irreducible components: the secant variety σ14

(
νd(PT ∗1 )

)
and the other one, denoted by η14

(
νd(PT ∗1 )

)
. Consider the map ψ : PT ∗1 × PT ∗3 → PT ∗d given by

([y0], [P ]) 7→ [yd−3
0 P ]. Its image is η14

(
νd(PT ∗1 )

)
.

Proof. Let
U0 = {[a0x0 + . . .+ a6x6] ∈ PT ∗1 | ai ∈ C and a0 6= 0}.

Let S∗ = C[x1, . . . , x6]. Given [y0] ∈ U0 with y0 = a0x0 + . . .+a6x6 and P ∈ T ∗d , we can consider
P |y0=1 as an element of S∗. Note that it is independent of the choice of representative y0 of the
class [y0]. Indeed, it is obtained by substituting x0 = 1−

∑6
i=1

ai
a0
xi. Recall the definition of the

set B̂ from Lemma 5.24. We will use the following subset of PT ∗1 × PT ∗3 :

D = {[y0], [P ] ∈ PT ∗1 × PT ∗3 | [y0] ∈ U0 and P |y0=1 ∈ B̂}.

Observe that the condition P |y0=1 ∈ B̂ is independent of the choice of representatives y0 and P of
[y0] and [P ]. By construction and Lemma 5.24, D is irreducible and of dimension 6+dim B̂−1 =

89. We have dim(PT ∗1 ×PT ∗3 ) = 6 + 83 = 89. Thus, D = PT ∗1 ×PT ∗3 . The morphism ψ is closed.
Hence

ψ(PT ∗1 × PT ∗3 ) = ψ(D).

By Lemma 5.22 the set-theoretic image ψ(D) is contained in η14

(
νd(PT ∗1 )

)
. Therefore,

ψ(PT ∗1 × PT ∗3 ) ⊆ η14

(
νd(PT ∗1 )

)
. Observe that ψ has finite fibers. It follows that ψ(PT ∗1 × PT ∗3 )

is an 89-dimensional, irreducible closed subset of η14

(
νd(PT ∗1 )

)
. The latter variety is irreducible

and of dimension at most 89 (see Lemma 5.20). Thus, ψ(PT ∗1 × PT ∗3 ) = η14

(
νd(PT ∗1 )

)
.

Having described the irreducible component of κ14

(
νd(P6)

)
other than σ14

(
νd(P6)

)
we can

algorithmically check whether a given point [G] ∈ κ14

(
νd(P6)

)
belongs to σ14

(
νd(P6)

)
.

We start with the following lemma which characterizes the points of κ14

(
νd(P6)

)
\σ14

(
νd(P6)

)
.

Lemma 5.26. Let T = C[α0, . . . , α6] be a polynomial ring and T ∗ = C[x0, . . . , x6] be the graded
dual ring. Let d ≥ 7. The point [G] ∈ κ14

(
νd(P6)

)
does not belong to σ14

(
νd(P6)

)
if and only if

there exist y0 ∈ T ∗1 and P ∈ T ∗3 such that G = yd−3
0 P and for any completion of y0 to a basis

(y0, . . . , y6) of T ∗1 (with dual basis equal to (β0, . . . , β6)) we have:

(a) Apolar(P |y0=1) has Hilbert function (1, 6, 6, 1),
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(b) [Spec Apolar(P |y0=1)] /∈ HilbGor,sm14 (A6).

Proof. If y0 ∈ T ∗1 and P ∈ T ∗3 are such that G = yd−3
0 P and there exists a completion of y0

to a basis (y0, . . . , y6) of T ∗1 for which conditions (a),(b) hold, we get [G] /∈ σ14

(
νd(P6)

)
by

Lemma 5.22.
Assume that [G] /∈ σ14

(
νd(P6)

)
. Then by Theorem 5.25 there exists a linear form y0 ∈ T ∗1 such

that yd−3
0 |G. We claim that G is not divisible by yd−2

0 . Indeed, otherwise, from Theorem 5.18(ii)
we get bcr(G) ≤ 8, so [G] ∈ κ8

(
νd(P6)

)
= σ8

(
νd(P6)

)
⊆ σ14

(
νd(P6)

)
. We showed thatG = yd−3

0 P

for some P ∈ T ∗3 . Extend y0 to a basis y0, y1, . . . , y6. Let f = P |y0=1 ∈ C[y1, . . . , y6]. Suppose
f = F3 + F2 + F1 + F0.

Now we prove that conditions (a),(b) hold. Let f ′ = F ′3 +F ′2 +F ′1 +F ′0 ∈ C[y1, . . . , y6] where
F ′i = (d − i)!Fi. By Lemma 5.21, it is enough to show that conditions (a) and (b) hold for f ′

instead of f = P |y0=1. We have

G =
3∑
i=0

y
[d−i]
0 F ′i .

By Lemma 5.13 (i)
Ann(f ′)hom ⊆ Ann(G).

If dimC
(

Apolar(f ′)
)
≤ 13, then cr(G) ≤ 13 by Proposition 2.90, since Ann(f ′)hom is saturated

and T/Ann(f ′)hom has Hilbert polynomial dimC
(

Apolar(f ′)
)
. Then, [G] ∈ κ13

(
νd(P6)

)
=

σ13

(
νd(P6)

)
⊆ σ14

(
νd(P6)

)
, a contradiction.

From Theorem 5.18(ii) we obtain dimC
(

Apolar(f ′)
)
≤ 14, and thus, dimC

(
Apolar(f ′)

)
=

14. We claim that [ProjT/Ann(f ′)hom] /∈ Hilbsm14 (P6). Indeed, otherwise, there is a point
[J ] ∈ Slip14,6 such that

J = Ann(f ′)hom ⊆ Ann(G).

By Proposition 2.91, this contradicts the assumption that [G] 6∈ σ14

(
νd(P6)

)
. We showed

that [ProjT/Ann(f ′)hom] /∈ Hilbsm14 (P6) and therefore, condition (b) holds. Hence the algebra
Apolar(f ′) has Hilbert function (1, 6, 6, 1) by [58, Thm. 1.1]. Thus, condition (a) also holds.

We present the aforementioned algorithm.

Theorem 5.27 ([39, Thm. 1.6]). Let T = C[α0, . . . , α6] be a polynomial ring with graded dual
ring T ∗ = C[x0, . . . , x6]. Given an integer d ≥ 7 and [G] ∈ κ14

(
νd(PT ∗1 )

)
⊆ PT ∗d the following

algorithm checks if [G] ∈ σ14

(
νd(PT ∗1 )

)
.

Step 1 Compute the ideal a =
√

((AnnG)≤d−3) ⊆ T .

Step 2 If a1 is not 6-dimensional, then [G] ∈ σ14

(
νd(PT ∗1 )

)
and the algorithm terminates. Oth-

erwise, compute {K ∈ T ∗1 | a1yK = 0}. Let y0 be a generator of this one dimensional
C-vector space.

Step 3 Let e be the maximal integer such that ye0 divides G. If e 6= d−3, then [G] ∈ σ14

(
νd(PT ∗1 )

)
and the algorithm terminates. Otherwise, let G = yd−3

0 P . Pick a basis y0, y1, . . . , y6 of
T ∗1 and compute f = P |y0=1 ∈ R∗ := C[y1, . . . , y6].

Step 4 Let I = Ann(f) ⊆ R. If the (local) Hilbert function of R/I is not (1, 6, 6, 1), then
[G] ∈ σ14

(
νd(PT ∗1 )

)
, and the algorithm terminates.

Step 5 Compute r = dimC HomR(I,R/I). Then [G] ∈ σ14

(
νd(PT ∗1 )

)
if and only if r > 76.
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Proof. Assume that [G] /∈ σ14

(
νd(P6)

)
. Then there exist a basis (y0, . . . , y6) of T ∗1 and P ∈ T ∗3

as in Lemma 5.26. Let f = P |y0=1 and define f ′ = F ′3 + F ′2 + F ′1 + F ′0 ∈ C[y1, . . . , y6] where
F ′i = (d− i)!Fi. Then G = y

[d−3]
0 F ′3 + y

[d−2]
0 F ′2 + y

[d−1]
0 F ′1 + y

[d]
0 F ′0. By Lemma 5.13(ii), we have

Ann(G)≤d−3 = (Ann(f ′)hom)≤d−3. Moreover,(
(Ann(f ′)hom)≤d−3

)
= Ann(f ′)hom

since d− 3 ≥ 4 > deg(f ′). Therefore, we have

a =
√

(Ann(G)≤d−3) =
√

Ann(f ′)hom = (β1, . . . , β6),

where β1, . . . , β6 ∈ T1 are dual to y1, . . . , y6 ∈ T ∗1 . This shows that if the C-linear space(√
(Ann(G)≤d−3)

)
1
is not 6-dimensional then [G] ∈ σ14

(
νd(P6)

)
. Therefore, in that case, al-

gorithm stops correctly at Step 2.
Assume that the algorithm did not stop at Step 2. Then if G is of the form as in Lemma 5.26,

then y0 divides G exactly (d − 3)-times. Otherwise [G] ∈ σ14

(
νd(P6)

)
and the algorithm stops

correctly at Step 3.
Assume that the algorithm did not stop at Step 3. Then the algorithm does not stop at

Step 4 if and only if condition (a) of Lemma 5.26 is fulfilled.
Assume that the algorithm did not stop at Step 4. Then P satisfies condition (a) from

Lemma 5.26. Hence [G] is in σ14

(
νd(P6)

)
if and only if P does not satisfy condition (b). The

irreducible component Hilb1661 of HilbGor14 (A6) is 76-dimensional and HilbGor14 (A6) is smooth at
points in Hilb1661 \ HilbGor,sm14 (A6) (see [58, Thm. 1.1 and Claim 3]). Thus, P does not satisfy
condition (b) from Lemma 5.26 if and only if

dimC HomR(I,R/I) > 76,

since the left term is the dimension of the tangent space T[SpecR/I]HilbGor14 (A6) by [48, Prop. 2.3].

An implementation in Macaulay2 [42] of the algorithm from Theorem 5.27 is presented in
[39, §A].

5.4 Distinguishing Grassmann secant from Grassmann cactus va-
rieties

Let d ≥ 5 be an integer. In this section, we state a theorem from [39] describing the irre-
ducible component η8,3

(
νd(P4)

)
of the cactus variety κ8,3

(
νd(P4)

)
other than the secant variety

σ8,3

(
νd(P4)

)
. This is analogous to Theorem 5.25.

Theorem 5.28 ([39, Thm. 1.2]). Let d ≥ 5 be an integer and T ∗ = C[x0, x1, . . . , x4]. Then
the Grassmann cactus variety κ8,3

(
νd(PT ∗1 )

)
has two irreducible components: the Grassmann

secant variety σ8,3

(
νd(PT ∗1 )

)
and the other one, denoted by η8,3

(
νd(PT ∗1 )

)
. Consider the map

ψ : PT1 ×Gr(3, T ∗2 )→ Gr(3, T ∗d ) given by ([y0], [U ]) 7→ [yd−2
0 U ]. Its image is η8,3

(
νd(PT ∗1 )

)
.

Theorem 5.28 can be generalized for n ≥ 4 (see [39, Thm. 1.5]). However, we present the
simpler version due to its similarity to Theorem 5.25.

116



By [20, Thm. 1.1], for r ≤ 8, the Hilbert scheme Hilbr(Pn) is reducible if and only if n ≥ 4

and r = 8. Furthermore, for n ≥ 4 and r = 8, a general point of the non-smoothable irreducible
component of Hilbr(Pn) corresponds to a subscheme whose coordinate ring has local Hilbert
function (1, 4, 3). Therefore, Theorem 5.28 describes the other irreducible component of the
Grassmann cactus variety in a minimal case when such a component exists.

As in Section 5.3, we can characterize the points of η8,3

(
νd(Pn)

)
\ σ8,3

(
νd(Pn)

)
(see [39,

Lem. 6.9]) and obtain an algorithm analogous to the one from Theorem 5.27 (see [39, Thm 6.8]).
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