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Abstract

In this thesis we consider languages of in�nite words or trees de�ned by
automata of various types or formulas of various logics. We ask about the
highest possible position in the Borel or the projective hierarchy inhabited
by sets de�ned in a given formalism. The answer to this question is called
the topological complexity of the formalism.

It is shown that the topological complexity of Monadic Second Order
Logic extended with the unbounding quanti�er (introduced by Boja«czyk
to express some asymptotic properties) over ω-words is the whole projective
hierarchy. We also give the exact topological complexities of related classes
of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata
studied by Boja«czyk and Colcombet, and a lower complexity bound for an
alternating variant of ωBS-automata.

We present the series of results concerning bi-unambiguous languages of
in�nite trees, i.e. languages recognized by unambiguous parity tree automata
whose complements are also recognized by unambiguous parity automata.
We give an example of a bi-unambiguous tree language G that is Σ1

1-complete
(analytic-complete). We present an operation σ on tree languages with the
property that σ (L) is topologically harder than any language in the sig-
ma-algebra generated by the languages continuously reducible to L. If the
operation is applied to a bi-unambiguous language than the result is also
bi-unambiguous. We then show that the application of the operation can be
iterated to obtain harder and harder languages. We also de�ne another oper-
ation that enables a limit step iteration. Using the operations we are able to
construct a sequence of bi-unambiguous languages of increasing topological
complexity, of length at least ω2.

ACM Computing Classi�cation System

Theory of computation � Formal languages and automata theory � Automata
over in�nite objects
Theory of computation � Formal languages and automata theory � Tree
languages
Theory of computation � Formal languages and automata theory � Automata
extensions
Mathematics of computing � Continuous mathematics � Topology � Point-
set topology
Theory of computation � Logic � Higher order logic
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Streszczenie

W niniejszej rozprawie rozwa»ane s¡ j¦zyki niesko«czonych sªów lub drzew
de�niowane poprzez automaty ró»nych typów lub formuªy ró»nych logik. Py-
tamy o najwy»sz¡ mo»liw¡ pozycj¦ w hierarchii borelowskiej lub rzutowej
zajmowan¡ przez zbiory de�niowane w danym formalizmie. Odpowied¹ na
to pytanie jest nazywana zªo»ono±ci¡ topologiczn¡ formalizmu.

Przedstawiony zostaª dowód, »e zªo»ono±ci¡ topologiczn¡ Logiki Monady-
cznej Drugiego Rz¦du rozszerzonej o kwanty�kator Unbounding (wprowad-
zony przez Boja«czyka w celu umo»liwienia wyra»ania wªasno±ci asymptoty-
cznych) na sªowach niesko«czonych jest caªa hierarchia rzutowa. Obliczone
zostaªy równie» zªo»ono±ci topologiczne klas j¦zyków rozpoznawanych przez
niedeterministyczne ωB-, ωS- i ωBS-automaty rozwa»ane przez Boja«czyka
i Colcombet'a, oraz zostaªo podane dolne ograniczenie zªo»ono±ci wariantu
alternuj¡cego ωBS-automatów.

Zaprezentowane zostaªy wyniki dotycz¡ce j¦zyków podwójnie jednoznacz-
nych, tzn. j¦zyków rozpoznawanych przez jednoznaczne automaty parzys-
to±ci na drzewach, których dopeªnienia równie» s¡ rozpoznawane przez jed-
noznaczne automaty parzysto±ci. Podany zostaª przykªad podwójnie jed-
noznacznego j¦zyka drzew G, który jest Σ1

1-zupeªny (analityczny-zupeªny).
Zostaªa wprowadzona operacja σ na j¦zykach drzew taka, »e j¦zyk σ (L)
jest topologicznie bardziej zªo»ony ni» jakikolwiek j¦zyk nale»¡cy do sigma-
algebry generowanej przez j¦zyki redukuj¡ce si¦ w sposób ci¡gªy do j¦zyka
L. W wyniku zastosowania powy»szej operacji do j¦zyka podwójnie jednoz-
nacznego otrzymujemy j¦zyk podwójnie jednoznaczny. Zostaªo pokazane,
»e kolejne iteracje aplikacji powy»szej operacji daj¡ coraz bardziej zªo»one
j¦zyki. Zostaªa równie» wprowadzona druga operacja, która umo»liwia krok
graniczny iteracji. U»ywaj¡c obydwu powy»szych operacji mo»na skonstru-
owa¢ ci¡g dªugo±ci ω2 zªo»ony z j¦zyków podwójnie jednoznacznych o coraz
wi¦kszej zªo»ono±ci.
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Introduction

The theory of de�nability is the branch of logic which studies the
complexity of concepts by looking at the grammatical complexity
of their de�nitions. To measure the complexity of a concept it is
necessary �rst to �nd a de�nition which is as simple as possible
from the standpoint of the grammatical yardstick under consid-
eration and second to show that no simpler de�nition is possible.
If a certain kind of de�nition is possible for a given concept then
it is usually (but not always!) not so hard to establish that it
can be described in the given grammatical form, but often it is
di�cult, even if true, to prove that the concept is unde�nable in
the given form.

J.W. Addison [Add04]

Measuring complexity of �concepts� in terms of the complexity of their
de�nitions is the main interest of this thesis. The concepts that we con-
sider are properties of words or labeled trees, while as �grammars� (called
formalisms in the thesis) we take automata models, logics or descriptive set
theoretical constructions.

A basic version of such a measurement is to determine whether a set pro-
vided through some informal description can be de�ned in a given formalism.
Is there, for example, a �nite automaton that accepts exactly those words
over a one letter alphabet that have even length? The answer is yes, and
it is straightforward to construct an appropriate automaton. Now one can
ask: Is the same set of words de�nable by a formula of �rst order logic that
quanti�es over word positions and uses order relation on the positions? This
question is more involved, and the answer is negative1.

A natural question arises: How the measures relate to each other? Based
on the above example we already see that not every set de�nable using �nite
automata is de�nable in terms of �rst order logic. However, it occurs that the
opposite is true. Thanks to the results of Büchi [Büc60] and Elgot [Elg61],

1See e.g. [Tho97, Proposition 4.1].
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we know that the expressive power of �nite automata is the same as the
expressive power of monadic second order logic (an extension of �rst order
logic).

In this thesis we concentrate on in�nite words and trees. While in�nite ob-
jects occur naturally in mathematics, it may require explanation why should
they be considered on the ground of computer science. In�nite words are used
e.g. in formal veri�cation to model potentially in�nite runs of systems, like
an operating system or a server interacting with clients (see e.g. [JGP99]). In
such a context system can be modeled as an automaton, while a speci�cation
of a system can be expressed in some logic. In�nite trees occur e.g. when we
need to reason about all possible computations of a nondeterministic system
(see e.g. branching time concept [Eme90]).

By considering in�nite structures, we gain a variety of complexity mea-
sures that come from descriptive set theory. A set of all words or all trees
over a �nite alphabet is, from the topological point of view, equivalent to
the Cantor space�one of the two main spaces of interest of descriptive set
theory (the other being the Baire space). The measures provided by this dis-
cipline include: the Borel hierarchy, the projective hierarchy, and the Wadge
hierarchy.

A hierarchy is here understood as an increasing, with respect to inclusion,
sequence of classes of sets. Hierarchies implement a way of measuring com-
plexity of sets, already mentioned by Addison in the paragraph cited above.
Once we know that a given set is de�nable in a given formalism, we ask how
complex is its description. For example: What is the number of alterna-
tions between existential and universal quanti�ers in a formula necessary to
describe the set? Or: At what level of the Borel hierarchy the set is?

Hierarchies also provide a way to measure complexity of formalisms, or
more generally, to compare complexity measures. Let F be a formalism and
letH be a complexity hierarchy de�ned in terms of a di�erent formalism, e.g.
the Borel hierarchy. We may ask what level of the hierarchy do the sets de-
�nable in F reach. We call the answer to this question for the hierarchy being
the combined Borel and projective hierarchy the topological complexity
of F. If F comes with associated internal hierarchy G, e.g. alternation depth
hierarchy for a logic, we may additionally ask how classes of G embed into
classes of H. The concepts are presented in Figure 1.

In his paper [Büc62], Büchi showed that MSO logic over ω-words is equiva-
lent to a certain model of �nite automata, later called Büchi automata. Since
this model, as many other automata models, came with straightforward de-
cidability properties, the equivalence was used to prove decidability of MSO
logic over ω-words. Similar method�through introduction of an appropriate

10
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the Borel and the projective hierarchies.

11



model of automata�was used by Rabin [Rab69] to prove that MSO logic is
decidable also over in�nite binary labeled trees. Sets de�nable in MSO logic
are called regular languages, both for words and for trees.

Until now several models of automata equivalent to the Rabin's one were
developed. In this thesis, we concentrate on one of them: parity tree au-
tomata. We also consider parity automata on ω-words. This is because
those are the ones that give rise to a hierarchy, namely so called Rabin-
Mostowski index hierarchy�another descriptive complexity measure.

Regular languages of in�nite words (called ω-regular languages) are al-
ready well understood: topologically, they reach the class of boolean combi-
nations of Π0

2 (or Gδ) sets in the Borel hierarchy and not beyond [BL69]; the
Rabin-Mostowski index hierarchy for nondeterministic automata collapses
at the level of (1, 2), i.e. each ω-regular language is recognized by a Büchi
automaton (see e.g. [PP04, Proposition 10.6]); the Rabin-Mostowski index
hierarchy for deterministic automata is known to be strict and for a given lan-
guage one can e�ectively compute its position in the index hierarchy [NW98].

Robustness and tractability of the class of ω-regular languages have en-
couraged researchers, including Boja«czyk and Colcombet [Boj04, BC06,
Boj11, Boj10], to look for extension of this class of sets that would main-
tain some of the good properties. One of the approaches [Boj04] was to add
to MSO logic a quanti�er, called unbounding quanti�er, that allows for
expressing properties like �the length of blocks of consecutive letters a in a
word is unbounded�. The extended logic is called MSO+U. Similar quantita-
tive extensions of Büchi automata were considered [BC06]. Automata with
bounding condition, called ωB-automata, are able to recognize languages like

LB = {an0ban1ban2b . . . | lim supni <∞} ,

while automata with strongly unbounding condition, called ωS-automata,
are able to recognize languages like

LS = {an0ban1ban2b . . . | lim inf ni =∞} .

Automata combining features of the two above models are called ωBS-auto-
mata. Chapter 2 presents topological complexity analysis of ωB-automata,
ωS-automata, ωBS-automata and MSO+U logic, what is described in details
in the next section.

On the other hand, the class of regular languages of in�nite trees is still a
bit mysterious. Its topological complexity is non-Borel, namely regular tree
languages reach the level ∆1

2 of the projective hierarchy. The computability
of nondeterministic Rabin-Mostowski index is proven only if as an input

12



one provides a language recognized by a deterministic automaton, called a
deterministic language [NW05], or a language recognized by a so-called game
automaton [FMS16]. Also the shape of the embedding into the Borel and
projective hierarchies (see Figure 1) is better understood for deterministic
than for all regular languages. Niwi«ski and Walukiewicz have shown that
each deterministic language is either Π1

1-complete or is at most at the level
Π0

3 of the Borel hierarchy. It is clear, for the cardinality reasons, that some
gap exists also for the full class of regular languages, but the question what
levels does the gap embrace remains open. Skurczy«ski [Sku93], Duparc
and Murlak [DM07] have described the embedding of another subclass of
regular tree languages into the Borel hierarchy. Namely, they have shown
that languages recognized by weak automata inhabit exactly all �nite levels
of the Borel hierarchy.

The complexity of the class of regular languages of trees encourages one
to look for subclasses that would be simpler to tackle. Since the best under-
stood subclass corresponds to deterministic automata, we consider a natural
extension of the class�unambiguous automata. An important characteristic
of deterministic automata is that they admit only one run on each input.
Unambiguous automata, in a way, preserve this characteristic by having at
most one accepting run on each input while syntactically preserving nonde-
terminism. It is known that the class is a strict extension of the class of
deterministic languages and a strict subclass of the class of regular languages
[NW96, CL07, CLNW10].

The class of unambiguous tree languages is not well understood yet. For
instance, it is not known if the following question is decidable: given a regular
language of in�nite trees, is the language recognized by some unambiguous
automaton. Before results obtained by the author of this thesis, it was not
even known whether topological complexity of this class is any greater than
the complexity of deterministic languages, which are known to be co-analytic
(i.e. Π1

1). It occurred to be greater [Hum12]. The thesis presents results that
lift lower topological complexity bound for unambiguous languages, but no
upper bound is given. In particular, it is still not known whether for each
regular language there exists an unambiguous language that is topologically
harder.

Contribution

We prove that the topological complexity of the class of languages recognized
by ωB-automata (ωS-automata, ωBS-automata, respectively) is Σ0

3 (Π
0
3, Σ0

4,
respectively) Borel class (Theorems 2.5.10, 2.5.13).

13



We give a sequence of languages Ln (De�nition 2.5.19) hard for consec-
utive �nite levels of the Borel hierarchy de�nable in MSO+U (Proposition
2.5.23). We prove that the languages are recognized by an alternating variant
of ωBS-automata (Theorem 2.5.25). The result provides a negative answer to
the question stated by Boja«czyk and Colcombet [BC06, Chapter 6], whether
nondeterministic ωBS-automata are equivalent to their alternating variant.

We construct an in�nite sequence of MSO+U de�nable languages of
ω-words hard for consecutive levels of the projective hierarchy (Theorem
2.4.1). The results conclude the subject of the topological complexity of
MSO+U, since it is easy to see that each MSO+U de�nable language is
projective.

All the mentioned results on the topological complexity of ωB-automata,
ωS-automata, ωBS-automata, and MSO+U were published [HMT10, HS12].

We construct an analytic-complete unambiguous language of in�nite trees
(language G in Section 3.7). This language witnesses that unambiguous
languages are topologically more complex than the deterministic ones, that
are all co-analytic. The result was published [Hum12]. We observe that
the language G is bi-unambiguous, i.e. unambiguous, whose complement
is also unambiguous.

We present an operation that applied to a given tree language L outputs
a language that is topologically harder than any countable boolean combi-
nation of sets continuously reducible to L (Theorem 3.8.16). The operation
preserves bi-unambiguity (Theorem 3.10.24). The operation also preserves a
topological property called stretchability. As a result consecutive iterations
of application of the operation to a stretchable language give topologically
harder and harder languages (Theorem 3.8.37). We also construct another
version of the operation (also preserving bi-unambiguity and stretchability),
that allows for trans�nite iterations (Section 3.11). Using the two operations,
starting from any bi-unambiguous stretchable language, we can construct a
sequence of length ω2 of bi-unambiguous languages of increasing topological
complexity. The results described in this paragraph are not published yet.

Applications of the Results

The topological complexity of MSO+U was used by Boja«czyk, Gogacz,
Michalewski and Skrzypczak [BGMS14] to prove that the logic is �almost
undecidabile�. Precisely, they have shown that no algorithm which decides
the MSO+U theory of the full binary tree has a correctness proof in ZFC.
The technique used in this proof became a model example of utilization of
relation between topological complexity and decidability. One year later Bo-
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ja«czyk, Parys and Toru«czyk [BPT16] gave undecidability proof that did
not use topology. However, the topological results have given a direction
towards a solution of the decidability question that was open for a decade.

While working on the topological complexity of unambiguous languages,
the author have consulted Jacques Duparc to �nd out how operations in-
troduced by Wadge and Duparc, and then transferred to trees by Murlak
[Wad72, Wad84, Dup01, Mur06, DM07], �t the unambiguous world. The co-
operation resulted in a paper [DFH15], coauthored also by Kevin Fournier,
about the Wadge hierarchy of unambiguous languages. The result used lan-
guage G mentioned above.

Structure of the Thesis

Chapter 1 serves as a kind of extended introduction. In Sections 1.1, 1.2 we
recall basic de�nitions from set theory, topology and descriptive set theory,
and provide as many facts as it is necessary to be able to apply descriptive set
theory to languages of in�nite words and trees. In Section 1.3 we recall what
it means for an automaton or a formula to de�ne a language. The central
notion of the thesis, i.e. the topological complexity of a formalism is explained
in Section 1.4. In Section 1.5 we enumerate some applications of topological
complexity to formal language theory, what gives a motivation for the study
in this context. A reader acquainted with descriptive set theory and its
applications to formal language theory may skip this chapter, or quickly skim
over it taking notice of the de�nition of a topological complexity class at
the beginning of Section 1.2 and De�nition 1.4.1, that may be considered not
entirely standard. Note additionally that Sections 1.5.2 and 1.5.3 contain
abstract statements and remarks that, formally, may be considered as proof
templates to be referenced later.

Chapter 2 contains results concerning topological complexity of MSO+U
de�nable and ωBS-automata de�nable languages of ω-words. Sections 2.1-
2.3 and the initial part of Section 2.5 provide the context, basic de�nitions,
background and former results of other researchers. Sections 2.4 and 2.5.1-
2.5.3 present original results: Section 2.4 presents the topological complexity
of MSO+U logic; Sections 2.5.1-2.5.2 present the topological complexity of
ωB-, ωS-, and ωBS-automata; Section 2.5.3 presents a lower topological com-
plexity bound for alternating ωBS-automata. The chapter is concluded in
Section 2.6.

Chapter 3 contains results on the topological complexity of bi-unambigu-
ous languages of in�nite trees. Sections 3.1, 3.2 provide de�nitions of parity
automata and regular tree languages, but in a bit generalized way suited to

15



the further needs. Also the presentation of index hierarchy in Section 3.4
may be considered nonstandard, although the notion itself is the same as
in classical texts in the �eld. Sections 3.3, 3.5, and 3.6 present state-of-the-
art results to be contrasted with author's results. The original results by
the author of this thesis are presented in Sections 3.7-3.11, where in Section
3.7 we recall the analytic-complete bi-unambiguous language presented be-
fore on a conference [Hum12], and the remaining sections introduce abstract
operations on tree languages that preserve bi-unambiguity and lift topolog-
ical complexity, that are not included in any publication yet. Section 3.12
contains various concluding remarks concerning unambiguous languages.

Let us explain the convention we use for theorem-like statement names.

• Fact � a well known fact or a theorem by another researcher,

• Proposition � the author's contribution of minor importance,

• Theorem � the author's contribution of substantial importance, or an-
other researcher's result that the author did not dare to name a �fact�
(always signed with a name or reference),

• Lemma � a proposition of an importance only in the context of the
currently considered proof of a theorem or a proposition,

• Remark � a statement that, in the author's opinion, does not require a
proof in a given context, but is stated for further reference.

Credits

The lower complexity bounds stated in Theorems 2.5.10 and 2.5.13 were
proven using the example languages provided by the authors of ωB-auto-
mata and ωS-automata models, Mikoªaj Boja«czyk and Thomas Colcombet
[BC06]. Lemma 2.5.14 giving an upper topological complexity bound for
ωBS-automata was proven by Szymon Toru«czyk.

A sequence of MSO+U de�nable languages Ln (De�nition 2.5.19) hard for
respective �nite levels of the Borel hierarchy was given by Michaª Skrzypczak
(Proposition 2.5.23). The author of this thesis have proven that the languages
are recognized by an alternating variant of ωBS-automata (Theorem 2.5.25).

The results concerning projective topological complexity of MSO+U were
obtained together with Skrzypczak (Theorem 2.4.1). The presentation of one
of the parts of the proof was improved in cooperation with Toru«czyk.
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At an early stage of the construction of the operation presented in Sec-
tion 3.8 the author have obtained support from Skrzypczak, that made the
operation simpler, clearer and more general.

The notion of stretchability (De�nition 3.8.31) and the way how it can be
used to prove that a set is not continuously reducible to itself, was borrowed
from André Arnold and Damian Niwi«ski [AN07].
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Chapter 1

Topological Complexity

1.1 Preliminaries

Set Theory By N we note the set of natural numbers (including 0), by ω
the smallest in�nite ordinal (the type of the natural order on N) and by ω1

the smallest uncountable ordinal. We recall that the co�nality of ω1 is ω1,
i.e. supremum of a countable set of countable ordinals is always countable.

Let X be a set. For a subset A ⊆ X we denote by A the complement
of A, i.e. X \ A. Powerset of X (the set of all subsets of X) is denoted by
P (X). By |X| we denote the cardinality (number of elements) of X.

De�nition 1.1.1 (Set Algebra) Let X be a set. A set A ⊆ P (X) of sub-
sets of X is an algebra if ∅ ∈ A, A is closed under �nite intersections, �nite
unions, and under complements.

For a set A of subsets of some set X, we use a notation BC (A) for an
algebra generated by A, i.e. the smallest algebra containing all elements of
A. Note that the notion is well-de�ned, because P (X) is an algebra and an
arbitrary intersection of algebras is an algebra. Set BC (A) is often referred
to as the set of (�nite) boolean combinations of sets in A.

De�nition 1.1.2 (Sigma-Algebra) Let X be a set. A set A ⊆ P (X) of
subsets of X is a sigma-algebra if ∅ ∈ A, A is closed under countable
intersections, countable unions, and under complements.

For A ⊆ P (X), we denote by σ (A) the sigma-algebra generated by A,
i.e. the smallest sigma-algebra containing all elements of A. This is also
a well-de�ned notion, because P (X) is a sigma-algebra and an arbitrary
intersection of sigma-algebras is a sigma-algebra. Intuitively, σ (A) is the
class of all sets obtained from sets in A by countable boolean operations.
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Topology1

A topological space is a pair (X, τ), where X is a set and τ ⊆ P (X)
is a topology, i.e. such set of subsets of X that ∅ ∈ τ , X ∈ τ , and that
is closed under arbitrary unions and �nite intersections. Members of τ are
called open sets. Complements of open sets are called closed sets. A set
B ⊆ τ is called a basis (of the topology τ) if each open set can be obtained
as a union of sets from B (by the convention the empty set is obtained as
the union of the empty family of sets). A subbasis is such a set S ⊆ τ that
closure of S under �nite intersection gives a basis.

A subspace of a topological space (X, τ) is a topological space consisting
of a subset Y ⊆ X and the relative topology τ |Y = {U ∩ Y : U ∈ τ}.

Let (X, τ) and (Y, θ) be topological spaces. A function f : X → Y is
called continuous if an inverse image of each open set in Y is open in X.
The function is open if an image of each open set in X is open in Y . It is
a homeomorphism if it is a continuous and open bijection. Homeomorphism
plays a role of equivalence in the topological context. If two spaces, X and
Y , are homeomorphic, i.e. if there is a homeomorphism between them, in
symbols X ' Y , they share all the properties of interest of the topology.

A topological space is called discrete if all its subsets are open.
One of the ways to de�ne topology of a space is to give a metric.
A metric space is a pair (X, d), where X is a set and d : X2 → [0,∞)

is a metric, i.e. a function satisfying:

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x),

3. d(x, z) 6 d(x, y) + d(y, z).

Given a metric space (X, d), a ball (or precisely a d-ball) with center x
and radius r is de�ned as:

Bd(x, r) = {y : d(x, y) < r}

Set of all balls forms a subbasis of a topology that is called the topology
de�ned by metric d. Topological space (X, τ) is metrizable if there is
such a metric d that τ is de�ned by d.

We recall here a handy characterization of closed sets in metric spaces.
We say that a sequence {xn} in a metric space (X, d) converges to x ∈ X,
if for each ε > 0, almost all elements of the sequence are in the ball Bd(x, ε).
If such an x exists, it is unique, it is called a limit of {xn}, is denoted by
lim {xn}, and sequence {xn} is called convergent.

1Most of the de�nitions in this section are repeated after Kechris's textbook [Kec95].
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Fact 1.1.3 A subset Y ⊆ X of a metric space (X, d) is closed in the topology
de�ned by d if and only if the limit of each convergent sequence {xn} ⊆ Y of
elements in Y belongs to Y .

Fact 1.1.4 Let (X, dX), (Y, dY ) be metric spaces. Function f : X → Y
is continuous (in topologies de�ned by metrics dX , dY ) if and only if for
each convergent sequence {xn} ⊆ X, {f(xn)} ⊆ Y is also convergent and
f(lim {xn}) = lim {f(xn)}.

De�nition 1.1.5 Let (X, dX), (Y, dY ) be metric spaces. Function f :
X → Y is contracting if there is c < 1 such that for each x1, x2 ∈ X,
dY (f(x1), f(x2)) 6 c · dX(x1, x2).

Corollary 1.1.6 (of Fact 1.1.4) Each contracting function is continuous.

Let (X, d) be a metric space. A Cauchy sequence is a sequence {xn}
of elements of X such that:

∀ε>0 ∃N ∀n,m>N d(xn, xm) < ε

We call (X, d) complete if every Cauchy sequence {xn} has a limit in X.
We call a topological space (X, τ) completely metrizable if there is such
a metric d that (X, d) is complete and τ is de�ned by d.

A subset A of a topological space (X, τ) is dense if it intersects each
nonempty open set. A topological space is separable if it has a countable
dense set.

Fact 1.1.7 Each topological space that has a countable basis is separable.
Each metrizable separable space has a countable basis.

A topological space that is separable and completely metrizable is called
Polish.

A topological space (X, τ) is compact if every its cover consisting of
open sets has a �nite subcover, i.e. if {Ui}i∈I is such a family of open sets
that X =

⋃
i∈I Ui, then there exists a �nite I0 ⊆ I such that X =

⋃
i∈I0 Ui.

For a family of topological spaces {(Xi, τi)}i∈I , the product space∏
i∈I(Xi, τi) is the Cartesian product of sets Xi with the topology (called

Tychono� topology) where basic open sets are of the form
∏

i∈I Ui, for
Ui ∈ τi, such that Ui 6= Xi for only �nitely many i.

If all the spaces in the family are equal, then the product
∏

i∈I X is
denoted by XI .

Theorem 1.1.8 (Tychono�) The product of any family of compact spaces
is compact.
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A point x in a topological space (X, τ) is isolated if {x} is an open set.
A topological space is perfect if it has no isolated points.

A neighborhood of a point x is an open set containing x. A topological
space is Hausdor� if every two distinct points have disjoint neighborhoods.
Note that each metrizable space is Hausdor�.

A subset of a topological space is called clopen if it is closed and open.
A space is connected if it has no clopen subsets except the empty set ∅ and
the whole space. A space is zero-dimensional if it is Hausdor� and has a
basis consisting of clopen sets.

Word Spaces and Tree Spaces
Let A be an arbitrary set. A (�nite or in�nite) word over alphabet A is

a (�nite or in�nite, respectively) sequence of elements (called letters) from
set A. We denote the set of all �nite words over alphabet A by A∗. The
empty word (the sequence of length 0) is denoted by ε. The set of all in�nite
words of length ω (ω-words for short) is denoted by Aω. Subsets of A∗ or Aω

are called languages. We use notation A6ω for A∗ ∪ Aω. By |w| we denote
the length of a sequence w. For a word w, wn denotes its n'th element
(counting from 0, unless otherwise noted). We use multiplicative notation
for concatenation of sequences. Namely, the concatenation wv of w ∈ A∗

and v ∈ A∗ is de�ned as follows:

wv = w0w1 . . . w|w|−1v0v1 . . . v|v|−1

The concatenation is also well de�ned in case of the second word in�nite, i.e.
for w ∈ A∗, v ∈ Aω:

wv = w0w1 . . . w|w|−1v0v1 . . .

Now we de�ne the concatenation of sets of words. For L ⊆ A∗, M ⊆ A6ω

LM = {lm : l ∈ L,m ∈M} (1.1)

For L ⊆ A∗, we de�ne:

Ln = LL . . . L︸ ︷︷ ︸
n

(1.2)

L∗ =
⋃
n>0

Ln the Kleene star operator (1.3)

Lω = {w0w1w2 . . . : ∀i∈ω wi ∈ L} (1.4)

In this context, for singleton languages, we often use abbreviated notation
v instead of {v}.
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We use 4 to designate the pre�x order on words. Namely, for v ∈ A∗ and
w ∈ A6ω, v 4 w if and only if there exists u ∈ A6ω such that w = vu. By
w�n we note the pre�x of length n of sequence α ∈ A6ω.

We de�ne topology τω on set Aω by giving the following basis:

W = {Ww}w∈A∗ , where Ww = wAω = {v ∈ Aω : w 4 v}.

We note that this is standard Tychono� product topology on the product of
ω copies of discrete space A. Since we never use di�erent topology on Aω we
will simply write Aω to designate the topological space (Aω, τω).

Let us consider the following metric d on Aω, called ��rst di�erence met-
ric�. For w, v ∈ Aω:

d(w, v) =

{
0 if w = v
2−min{n:wn 6=vn} otherwise

Since balls in this metric are exactly the elements of basis W de�ned above,
topology τω is de�ned by metric d.

Let B be a set. An unlabeled tree on B (or B-branching tree) is a
pre�x-closed set of �nite sequences of elements from B. The set of all trees
on B is denoted by TB. A tree t is full if dom (t) = B∗. A tree t is binary
if |B| = 2 (we use B = {l, r} in this case).

For A being a set, a labeled tree over alphabet A (A-labeled tree) is
a function t : dom (t) → A, where dom (t) is an unlabeled tree. A labeled
tree t is full if so is dom (t). The set of all full B-branching trees over A
is denoted by TBA . A labeled tree t is binary (respectively �nite) if so is
dom (t). The set of all �nite B-branching labeled trees over A is denoted
by TB,fin

A . Since the whole Chapter 3 is focused on binary trees we use a
convention that TA := T

{l,r}
A and T fin

A := T
{l,r},fin
A .

The elements of the domain of a tree2 are called nodes. All nodes that are
words of length n form the n'th level of a tree. A branch of a B-branching
tree t is a sequence α ∈ Bω such that each pre�x of α is a node in t. We
sometimes identify the branch with this set of nodes. For a labeled tree
t ∈ TBA , by t (α) we denote the sequence of labels along a branch α ∈ Bω (so
t (α) ∈ Aω).

We consider TBA as a topological space. The following family indexed by
�nite trees is a basis of the topology:

G = {Gs}s∈TB,fin
A

,where Gs =
{
t ∈ TBA : ∀v∈dom(s) t(v) = s(v)

}
(1.5)

2To be able to talk about labeled and unlabeled trees at the same time whenever
possible, we assume dom (t) = t for an unlabeled tree t.
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Under such a de�nition, if B is countable and nonempty, space TBA can
also be viewed as a product AB

∗
of countably many copies of discrete space

A. Since the structure of the set that indexes the product does not a�ect the
product topology, we get:

Remark 1.1.9 If 0 < |B| 6 ω, TBA ' Aω.

The above remark suggests that the topology (or descriptive set theory) is
an appropriate environment to compare complexity of languages of trees and
words, what will be deeper covered in the next section.

In order to de�ne metric on TBA in case of countable B, we assign natural
numbers to the nodes of the full B-labeled tree. Let num : B∗ → N be such
a function that each value occurs only �nitely many times. Let us de�ne a
metric dnum on TBA as follows. For t, s ∈ TBA :

dnum(t, s) =

{
0 if t=s
2−min{num(x):t(x)6=s(x)} otherwise

Note that if B is �nite then the function assigning the level to each node
of the full B-branching tree can be used as num.

Fact 1.1.10 Let num : B∗ → N be such a function that each value occurs
only �nitely many times. Metric dnum de�nes topology with basis G.

Proof:
First we note that each set Gs can be obtained as a union of balls in

metric dnum, namely:

Gs =
⋃{

Bdnum(t, 2−max{num(y):y∈dom(s)) : t ∈ Gs

}
Now we show how to obtain each dnum-ball as a union of sets Gs:

Bdnum(t, 2−n) =
⋃
{Gs : ∀x∈B∗ (num(x) 6 n =⇒ x ∈ dom (s) ∧ t(x) = s(x))}

Therefore, basis consisting of dnum-balls and basis G give the same topology.
�

The above fact implies, in particular, that the topology de�ned by metric
dnum does not depend on function num. Therefore, since we are mainly
interested in topological properties, we will simply write d and not mention
any speci�c num function. Since the metric is, in essence, the same as on
words3, we also call it ��rst di�erence metric�.

3This can be easiest seen when we take a bijection as num.
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Remark 1.1.11 Balls in metric d are closed.

Proof:
It is enough to note that:

Bdnum(t, 2−n) =
⋃{

Gs : ∃x∈dom(s) (num(x) 6 n ∧ t(x) 6= s(x))
}
.

�

Corollary 1.1.12 Spaces Aω and TBA are zero-dimensional.

Since basis W of space Aω is countable if and only if A is countable and
basis G of space TBA is countable if A and B are countable, by Fact 1.1.7, we
get:

Fact 1.1.13 If A and B are countable then spaces Aω and TBA are separable.

Metric spaces (Aω, d) and (TBA , d) are complete. Therefore, topological
spaces Aω, TBA are completely metrizable, what, together with Fact 1.1.13,
gives:

Corollary 1.1.14 If B is countable then spaces Aω and TBA are Polish.

By de�nition, a discrete space is compact if and only if it is �nite. There-
fore, by Tychono�'s Theorem:

Fact 1.1.15 If A is �nite then spaces Aω and TBA are compact.

Fact 1.1.16 If |A| > 1 and |B| > 0 then spaces Aω and TBA are perfect.

Proof:
Let X be one of Aω and TBA . Assume, towards a contradiction, that there

is such x ∈ X that {x} is open, i.e. X \ {x} is closed. Recall that X is
metrizable, and consider the metric that is de�ned above. By the de�nition
of the metric, we can obtain a point (i.e. a word or a tree) arbitrary close to
x by changing a label in just one appropriately chosen position of this word
or tree. Therefore we can construct a sequence in X \ {x} that converges to
x, what contradicts the closedness of X \ {x}. �

If A = {0, 1} then Aω is the Cantor space C, as de�ned e.g. by Kechris
[Kec95, Section 3.A]. If A = N then Aω is the Baire space Nω, as de�ned in
the same place. We now recall facts that generalize those observations.

First we recall a theorem characterizing the Cantor space.
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Theorem 1.1.17 (Brouwer)4 Each perfect, nonempty, compact, metriz-
able, zero-dimensional space is homeomorphic to the Cantor space.

Using this theorem, thanks to Fact 1.1.16, Fact 1.1.15, Fact 1.1.10 and
Corollary 1.1.12, we get:

Corollary 1.1.18 If 1 < |A| < ω and 0 < |B| 6 ω then spaces Aω and TBA
are homeomorphic to the Cantor space.

Now we recall a theorem characterizing the Baire space.

Theorem 1.1.19 (Alexandrov-Urysohn)5 Each nonempty Polish ze-
ro-dimensional space for which none compact subset has a nonempty open
set as a subset is homeomorphic to the Baire space.

Corollary 1.1.20 If |A| = ω and 0 < |B| 6 ω then spaces Aω and TBA are
homeomorphic to the Baire space.

Proof:
By Corollary 1.1.14 and Corollary 1.1.12, it is enough to show that none

compact subset of considered spaces has a nonempty open set as a subset.
Thanks to Remark 1.1.9 it is enough to prove the claim for TBA . Let us

�x a bijection num : B∗ → N. Take any compact Y ⊆ X. Assume, towards
a contradiction, that there is a nonempty open set Z ⊆ Y . Then there is a
ball U = Bdnum(x, 2−n) ⊆ Z. By Remark 1.1.11, U is closed, so, as a closed
subset of a compact set Y , U is compact (see e.g. [Kec95, Proposition 4.1.ii]).
Now consider a family of balls {Bdnum(ta, 2

−n−1)}a∈A such that:

ta(x) =

{
a if num(x) = n+ 1
t(x) otherwise

This is an in�nite family of pairwise-disjoint nonempty sets that exactly
covers set U (a partitioning of U). Therefore, there is no �nite subcover,
what contradicts compactness of U . �

We also consider sets of unlabeled trees as topological spaces. To de�ne
a topology on set TB, we treat it as a subspace of TB{0,1}, where tree t ∈ TB{0,1}
is treated as a characteristic function of a subset of B∗.

Fact 1.1.21 Set TB is a closed subset of TB{0,1}.

4See e.g. [Kec95, Theorem 7.4].
5See e.g. [Kec95, Theorem 7.7].
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Proof:
An element t ∈ TB{0,1} does not represent an unlabeled tree, i.e. a pre-

�x-closed subset of B∗, if there is a node v such that t(v) = 1 and there is
a pre�x w of v such that t(w) = 0. For any �xed v and w the set of such
trees is open. The complement of TB is the union of such open sets over all
possible v's and w's, therefore, it is also open. �

Since each closed subspace of a Polish space is Polish (see e.g. [Kec95,
Proposition 3.3.ii]), we get:

Fact 1.1.22 Space TB is Polish.

Since each closed subset of a compact space is compact (see e.g. [Kec95,
Proposition 4.1.ii]), by Fact 1.1.15, we get:

Fact 1.1.23 Space TB is compact.

Thanks to the characterization of the Cantor space given in Theo-
rem 1.1.17, it su�ces to show the following to observe that TB is also the
Cantor space.

Fact 1.1.24 If B is in�nite then TB is perfect.

Proof:
It su�ces to show that for each t ∈ TB, there is a sequence of trees

{tn} ⊆ TB \ {t} that converges to t.
Take any t ∈ TB. We consider two cases. First assume that t has an

in�nite branch. Then, as a needed sequence, we can take the sequence of
trees that instead of this branch have longer and longer its �nite pre�xes.

Now assume that t does not have an in�nite branch. Then the following
can be taken as a needed sequence: tn is a tree t to which branch n0ω was
added.

Convergence of sequences in both cases is easy to verify. �

Corollary 1.1.25 If |B| = ω then TB is homeomorphic to the Cantor space.

Additional Notations and Terminology
Let L ⊆ A∗ and M ⊆ A6ω. The left quotient L−1M of language M with

respect to language L is de�ned as:

L−1M = {v : ∃u∈L uv ∈M}

We write v−1w to designate a su�x of w, precisely the unique element of
{v}−1{w}, if we know that v 4 w.
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Let L,M ⊆ A∗. The right quotient LM−1 of language L with respect to
language M is de�ned as:

LM−1 = {v : ∃u∈M vu ∈ L}

We write wv−1 to designate a pre�x of w, precisely the unique element of
{w}{v}−1, if we know that v is a su�x of w.

We use graph-theoretic terminology for trees. Therefore, the elements of
the domain of a tree are called nodes; we consider paths connecting nodes
(typically the root, i.e. node ε, with some other node). Node w is a successor
of node v in a B-branching tree t if v, w ∈ dom (t) and w = vb for b ∈ B; v is
then a predecessor (or a parent) of w. Node w is a descendant of node
v in t if v, w ∈ dom (t) and w = vu for some u ∈ B∗; v is then an ancestor
of w. If a node does not have any successors it is called a leaf, otherwise it
is called an inner node.

For a tree t and a node v ∈ dom (t), subtree of t rooted in v, denoted
tv, is a tree such that dom (tv) = {w : vw ∈ dom (t)} and, if t is labeled, for
each w ∈ dom (tv), tv(w) = t(vw).

1.2 Topological Complexity Classes

Analogously to the computational complexity theory, the topological com-
plexity theory uses the notions of reduction and completeness. Let X, Y
be two zero-dimensional Polish spaces and let K ⊆ X and L ⊆ Y . In general,
a reduction of K to L is a function f : X → Y such that K = f−1(L). We
say that K is Wadge reducible to L, in symbols K 6W L, if there is a
continuous reduction of K to L.

We call a class C of subsets of zero-dimensional Polish spaces a topolog-
ical complexity class if the class is downward closed under Wadge reduc-
tions, i.e. if for each L ∈ C and K 6W L, K ∈ C. The notion corresponds
to a pointclass from Srivastava's book [Sri98]. A set L is called C-hard if
K 6W L for each K ∈ C. We say that L is C-complete if additionally
L ∈ C.

The following fact presents a standard way of using the above notions.

Fact 1.2.1 If C ( D are two complexity classes and L is D-hard, then
L /∈ C.

1.2.1 Borel and Projective Hierarchy

Standard examples of topological complexity classes come from the Borel
and the projective hierarchies, that were introduced by descriptive set theory.
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De�nitions follow.
Let us �x a Polish space X. The Borel hierarchy consists of classes Σ0

α,
Π0
α, for α < ω1. The classes, restricted to subsets of space X, are de�ned

inductively:

• Σ0
1(X) denotes the class of open subsets of X,

• Π0
1(X) denotes the class of closed subsets of X,

for a countable ordinal α:

• Σ0
α(X) is the class of countable unions of sets from

⋃
β<α Π0

β(X),

• Π0
α(X) is the class of countable intersections of sets from

⋃
β<α Σ0

β(X).

Note that for each α the class Σ0
α(X) consists exactly of the complements of

the languages from Π0
α(X). The classes constitute a hierarchy�each class is

included in all classes with greater subindex (see Figure 1.1).
One also considers two kinds of intermediate classes.

∆0
α(X) = Σ0

α(X) ∩Π0
α(X)

BC0
α(X) = BC (Σ0

α(X)) = BC (Π0
α(X))

Classes Σ0
α(X) and Π0

α(X) are closed under �nite unions and intersec-
tions. Therefore, classes ∆0

α(X) are algebras, hence BC0
α(X) ⊆∆0

α+1(X).
The hierarchy is strict. Namely:

Theorem 1.2.2 (see e.g. [Sri98, Corollary 3.6.8]) If X is an uncount-
able Polish space, then for α > 1, Σ0

α(X)\∆0
α(X) 6= ∅ and Π0

α(X)\∆0
α(X) 6=

∅.

The class of Borel sets is de�ned as

Bor(X) := σ
(
Σ0

1(X)
)

=
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X)

We use notation Σ0
α, Π0

α, Bor, etc. for topological complexity classes
corresponding to appropriate classes of subsets of Polish spaces. Therefore,
Σ0
α aggregates Σ0

α(X) for all Polish spaces X, etc. We note that all classes
of the hierarchy are closed under continuous preimages (see [Sri98, Exercise
3.6.4]), hence are topological complexity classes.

Proofs and details about the Borel hierarchy can be found e.g. in Sri-
vastava's handbook [Sri98, Chapter 3.6]. The hierarchy is presented on Fig-
ure 1.1.
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Π0
1 Π0

2 Π0
3 · · · Π0

ω · · ·

BC0
1 ∆0

2 BC0
2 ∆0

3 · · · ∆0
ω BC0

ω ∆0
ω+1 · · ·

Σ0
1 Σ0

2 Σ0
3 · · · Σ0

ω · · ·

Figure 1.1: The Borel hierarchy (ω1 levels).

The class of Borel sets is not closed under continuous images. In par-
ticular, a Borel subset of a product space when projected onto one of the
coordinate spaces can no longer be Borel. We de�ne the following class of
projections of Borel sets:

Σ1
1(X) =

{
P ⊆ X : ∃B∈Bor(Nω×X) P=π2(B)

}
,

where π2 is the projection on the second coordinate, and call each set in
Σ1

1 analytic. The superscript 1 in Σ1
1 means that the class is a part of the

projective hierarchy. The rest of the projective hierarchy is de�ned as
follows. For i < ω:

• Π1
i (X) consists of the complements of the sets from Σ1

i (X),

• Σ1
i+1(X) consists of the projections of the sets from Π1

i (X).

The sets from class Π1
1 are called co-analytic.

The two intermediate classes considered for the projective hierarchy are:

∆1
i (X) = Σ1

i (X) ∩Π1
i (X)

σ (Σ1
i ) (X) = σ (Σ1

i (X)) = σ (Π1
i (X))

Classes Σ1
i (X) and Π1

i (X) are closed under countable unions and inter-
sections (see [Sri98, Proposition 4.1.7]). Therefore, ∆1

i (X) is a sigma-algebra
and σ (Σ1

i ) (X) ⊆∆1
i (X).

The projective hierarchy is also strict.

Theorem 1.2.3 (see e.g. [Sri98, Theorem 4.1.11]) If X is an uncount-
able Polish space, then for i < ω, Σ1

i (X)\∆1
i (X) 6= ∅ and Π1

i (X)\∆1
i (X) 6=

∅.

The remarkable result by Souslin ties the two hierarchies together:

Theorem 1.2.4 ([Sou17]) If X is a Polish space, then ∆1
1(X) = Bor(X).
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By Theorem 1.2.3 and Theorem 1.2.4 we get:

Corollary 1.2.5 In every uncountable Polish space there is an analytic set
that is not Borel and there is a co-analytic set that is not Borel.

Since all the classes of the projective hierarchy are closed under continuous
preimages, they are topological complexity classes.

A set P ⊆ X is called projective if P ∈ Σ1
i for some i < ω.

The Borel hierarchy together with the projective hierarchy constitute the
so-called boldface hierarchy, see the diagram on Figure 1.2.

Π0
1 Π0

2 · · ·

BC0
1 ∆0

2 BC0
2 · · ·

Σ0
1 Σ0

2 · · ·︸ ︷︷ ︸
Borel (ω1 levels)

Π1
1 Π1

2 · · ·

Bor ∆1
1 σ (Σ1

1) ∆1
2 σ (Σ1

2) · · ·

Σ1
1 Σ1

2 · · ·︸ ︷︷ ︸
projective (ω levels)

Figure 1.2: The boldface hierarchy.

Examples of Complete Sets

Theorem 1.2.6 (see e.g. [Kec95, Theorem 22.10]) Let X be a zero-di-
mensional Polish space. Set A ⊆ X is Σ0

α-complete if and only if A ∈
Σ0
α \Π0

α.

We use the following abbreviated notation:

∃∞x ϕ(x) − there exists in�nitely many positions x for which ϕ holds
∀∞x ϕ(x) − for all x except �nitely many, ϕ holds

Fact 1.2.7 ([Kec95, Page 179])

1. Language Q1 := {w ∈ {0, 1}ω : ∃nwn = 1} is Σ0
1-complete.

2. Language N1 := {w ∈ {0, 1}ω : ∀nwn = 0} is Π0
1-complete.

3. Language N2 := {w ∈ {0, 1}ω : ∃∞n wn = 1} is Π0
2-complete.

4. Language Q2 := {w ∈ {0, 1}ω : ∀∞n wn = 0} is Σ0
2-complete.
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Before we proceed with a proof, we recall two more facts from Descriptive
Set Theory. We use the following notation for the union of the family of
languages: ⊔

i∈I

Li

to indicate that the sets in the family are pairwise disjoint.

Lemma 1.2.8 (see e.g. [Sri98, Proposition 3.6.3]) Let X be a zero-di-
mensional Polish space, and α > 2. Each set L ∈ Σ0

α(X) is a countable
disjoint union

⊔
n<ω Ln of sets from

⋃
β<α Π0

β(X).

We use the following notation for the intersection of a decreasing (not
necessarily strictly) sequence of sets:

−→⋂
n<ω

Ln

Again, semantics of this operator is identical as of ordinary intersection. It
is only used to indicate that for each n < m, Lm ⊆ Ln.

Lemma 1.2.9 Let X be a Polish space, and α > 1. Each set L ∈
Π0
α(X) is an intersection

−→⋂
n<ω Ln of a decreasing ω-sequence of sets from⋃

β<α Σ0
β(X).

Proof:
By the de�nition L =

⋂
n<ωMn, where Mn ∈

⋃
β<α Σ0

β(X) for each n. It
is enough to take Ln =

⋂
k6nMk. �

Proof (of Fact 1.2.7):

(1) Note that:
Q1 =

⋃
n<ω

{w : wn = 1}︸ ︷︷ ︸
Dn

Since for a �xed n < ω, Dn is a clopen set, Q1 ∈ Σ0
1, as a countable union of

clopen sets.
To prove hardness, we note that, since {0, 1}ω is a zero-dimensional un-

countable Polish space, there is a Σ0
1-complete subset U of {0, 1}ω (see The-

orem 1.2.6, Theorem 1.2.2, Corollary 1.1.14, Corollary 1.1.12). By the de�-
nition of the topology on words:

U =
⋃
w∈W

w{0, 1}ω, for some W ⊆ {0, 1}∗.
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Hence the following continuous function f : {0, 1}ω → {0, 1}ω:

(f(x))n =

{
1 if x�n∈ W
0 otherwise

is a reduction of U to Q1, what concludes the proof of Σ0
1-hardness of Q1.

(2) It is enough to note that N1 = Q1.

(3) For ω-words formula ∃∞n ϕ(n) can be unravelled to:

∃∞n ϕ(n) = ∀m∃n>mϕ(n)

Therefore:
N2 =

⋂
m

⋃
n>m

Dn ∈ Π0
2 ({0, 1}ω)

To prove hardness, as in point (1), we note that there is a Π0
2-complete

set F ⊆ {0, 1}ω. By, Lemma 1.2.9:

F =
−→⋂
m<ω

Um,

where Um ∈ Σ0
1 for each m. Now, let:

Um =
⋃
n<ω

wm,n{0, 1}ω,

where wm,n ∈ {0, 1}∗, for each m and each n. Note that we can assume that6:

∀m¬∃n1,n2 wm,n1 4 wm,n2 (1.6)

Let us �x a bijection ι : ω × ω → ω, and de�ne a function f : {0, 1}ω →
{0, 1}ω, by:

(f(x))ι(m,n) =

{
1 if wm,n 4 x
0 otherwise

Since position ι(m,n) of f(x) depends only on the pre�x of x of length
max{|wm,k| : k 6 n}, the function is continuous. The following proves that
f reduces F to N2.

f(x) ∈ N2 ⇐⇒ ∃∞k (f(x))k = 1
⇐⇒ ∃∞(m,n) wm,n 4 x by the de�nition of f
⇐⇒ ∃∞m∃n wm,n 4 x by (1.6)
⇐⇒ ∃∞m x ∈ Um
⇐⇒ ∀m x ∈ Um because {Um}m<ω is decreasing
⇐⇒ x ∈ F

6Note that Lemma 1.2.8 does not imply (1.6), but they both follow the same idea.
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Hence, N2 is Π0
2-hard.

(4) It is enough to note that Q2 = N2.
�

1.2.2 Wadge Hierarchy

The �nest topological complexity measure is given by the Wadge hierarchy.
It is the �nest because the classes in this hierarchy (called Wadge degrees)
correspond exactly to the notion of reducibility.

The hierarchy is de�ned by Wadge quasiorder. Let X and Y be Polish
spaces. Wadge equivalence relation is de�ned for A ⊆ X, B ⊆ Y as:
A ≡W B if A 6W B and B 6W A. Equivalence classes of the relation,
calledWadge degrees, constitute a hierarchy ordered by Wadge quasiorder.
The shape and characteristics of this hierarchy are described e.g. by Kechris
[Kec95, Section 21.E].

1.3 Automata, Formulas and De�nability

We give an abstract de�nition of an automaton. Although types of automata
signi�cantly di�er in the shape of runs and other technical details, in this
chapter we want to introduce as much of notions as it is necessary to be able
to link automata theory to topological complexity. In particular we say what
it means for an automaton to de�ne a language. The detailed de�nitions
of particular types of automata of interest will be given in the following
chapters.

Each type of automata is compatible with a particular class of structures,
e.g. in�nite words over �nite alphabets, or in�nite binary trees over �nite
alphabets, or other graph-like structures. Let A be an automaton of a given
type T . Each structure compatible with A can be accepted by A or not.
In the latter case we say that the structure is rejected by A. Language
recognized by A is the subset of space of all structures compatible with A
that contains structures accepted by A. For automata �recognizing� is the
way of de�ning a language. The class of languages recognized by automata
of a given type is an object of consideration of this thesis.

Using logical formulas to de�ne sets is a common activity in the �eld
of mathematics. The de�nability notion here comes from model theory. In
our context, a logic is a set of connectives and quanti�ers in use, together
with their associated meaning. Let us �x a logic L and a signature S (set
of relational symbols with their arities). Let ϕ be a formula of logic L over
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signature S. In language theory, in order to be able to say what language ϕ
de�nes, we need to �x a kind of structures we are interested in. From the
model theoretical point of view it is usually equivalent to putting restrictions
not only on the domain of a model, but also on the interpretation of relations
from S in the model. For example if we want to consider languages of in�nite
binary trees over alphabet {a, b}, the signature could contain two binary
relations l and r, and two unary relations a and b, the domain would be
�xed as {l, r}∗, and the interpretation of the binary relations would be �xed
as left and right successor relation, while interpretation of the unary relations
would re�ect the label of a given node, i.e. for each element of the domain
exactly one of the predicates a, b would hold. If, then, X is the class of all
structures (models) of interest, ϕ de�nes the language of all structures from
class X that are models of ϕ. In metamathematical notation:

L (ϕ) = {L ∈ X : L |= ϕ}

We use word formalism as a common name for a type of objects that
can be used to de�ne languages. In particular, certain type of automata
is a formalism, as is a logic. The class of languages that can be de�ned
using a given formalism is often referred to as the expressive power of the
formalism.

1.4 Topological Complexity of Classes of

Languages

The questions that we concentrate on in this thesis is of the form:

Given a class of languages X.
What is the topological complexity of X?

Here comes an explanation how to read this question.
Our context for this question is always the de�nability theory (see e.g.

[Add04]). Therefore, X is always a class of languages de�nable by automata
of some speci�c type or by formulas of some speci�c logic (language theoretic
class). Standard examples of language theoretic classes would be: the class
of languages of words of length ω recognized by �nite parity automata or the
class of languages of in�nite binary trees de�ned by formulas of MSO logic
with two successor relations and predicates for labels.

De�nition 1.4.1 The topological complexity of class X is the downward
closure of X under Wadge reduction, i.e. the least topological complexity class
C such that X ⊆ C.
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The topological complexity of a formalism is de�ned as the topolog-
ical complexity of the class of all languages de�ned in this formalism.

Note that, under the above de�nition, ifC is such a topological complexity
class that X ⊆ C, then C is an upper topological complexity bound of
X. IfC is such a topological complexity class that for each set A fromC there
is such a language A′ ∈ X that A 6W A′, then C is a lower topological
complexity bound of X.

A lower topological complexity bound is usually determined using com-
plete sets. Namely, if topological complexity class C admits complete sets,
then it can be proven that C is a lower topological complexity bound of class
X by showing C-complete set in class X.

1.5 Applications

In this section we enumerate some basic applications of topological complex-
ity methods in formal language theory.

1.5.1 Separation of Classes

First we show how topological complexity can be used to prove unde�nability
in a given formalism. Let F be a formalism, and assume that it is known
that its upper topological complexity bound is C. By de�nition, any lan-
guage that is not in the topological complexity class C is not de�nable in
formalism F . Since descriptive set theory is a well developed mathematical
discipline the simple observation above gives a powerful tool to prove that a
certain language is not de�nable in a given formalism � for some languages
calculating their topological hardness is easier than providing a direct proof
of unde�nability.

The method was used by Mikoªaj Boja«czyk to prove that nondeter-
ministic max automata recognize strictly more languages than deterministic
ones (see [Boj11, Theorem 24]). We will come back to this example in Sec-
tion 1.5.3 below. This result has its consequences in separating weak and full
second order logic with the unbounding quanti�er, which will be discussed
in Section 2.3.1.

1.5.2 Logics and Topological Complexity

Although, it was already implicitly used above, we want to mention explicitly
the relation between construction of logics and their topological complexity.
It is hard to say anything generic about the impact of predicates or relations
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used in a logic on its topological complexity. On the other hand, there is a
close and usually generic relationship between the quanti�ers used and the
topological complexity of a logic.

Let us think of trees or words as structures. Let us �rst consider �rst order
quanti�ers. We use a convention that variables in scope of such quanti�ers
are denoted with lowercase letters. If L (ϕ) denotes the language de�ned by
a formula ϕ, and ϕ [α] denotes formula ϕ with substitution α applied, then:

L (∃xϕ(x)) =
⋃
v

L (ϕ [x 7→ v]) (1.7)

L (∀xϕ(x)) =
⋂
v

L (ϕ [x 7→ v]) (1.8)

Therefore, if structures have countable domains, like trees with countable
branching or words of countable length, then:

∀v
(
L (ϕ [x 7→ v]) ∈ Σ0

α

)
=⇒ L (∃xϕ(x)) ∈ Σ0

α (1.9)

∀v
(
L (ϕ [x 7→ v]) ∈ Π0

α

)
=⇒ L (∀xϕ(x)) ∈ Π0

α (1.10)

and

∀v
(
L (ϕ [x 7→ v]) ∈ Σ1

i

)
=⇒ L (∃xϕ(x)) , L (∀xϕ(x)) ∈ Σ1

i (1.11)

∀v
(
L (ϕ [x 7→ v]) ∈ Π1

i

)
=⇒ L (∃xϕ(x)) , L (∀xϕ(x)) ∈ Π1

i (1.12)

If we restrict structures to ω-words, we have:

∃∞n ϕ(n) = ∀m∃n>mϕ(n) and ∀∞n ϕ(n) = ∃m∀n>mϕ(n)

Therefore, by (1.9) and (1.10), for words we immediately get7:

∀v
(
L (ϕ [x 7→ v]) ∈ Σ0

α

)
=⇒ L (∃∞x ϕ(x)) ∈ Π0

α+1 (1.13)

∀v
(
L (ϕ [x 7→ v]) ∈ Π0

α

)
=⇒ L (∀∞x ϕ(x)) ∈ Σ0

α+1 (1.14)

Let us now look at second order quanti�ers, i.e. quanti�ers ranging over
subsets of the domain of a structure (with variables denoted with uppercase
letters). If D is the domain of structures of interest, then:

L (∃Xϕ(X)) =
⋃
S⊆D

L (ϕ [X 7→ S]) (1.15)

Note that if D is in�nite then the above is not a countable union. Therefore,
in order to estimate the topological complexity of the left hand side language,

7The �rst of the equations was already used in the proof of Fact 1.2.7.(3).
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we look at set variables as at bit vectors (i.e. characteristic functions). Let
1X ∈ {0, 1}D denotes the characteristic function of a subset X ⊆ D, and
observe:

L (∃Xϕ(X)) = π1 ({(t, 1S) : t ∈ L (ϕ [X 7→ S])}) (1.16)

Using this equation we obtain:

{(t, 1S) : t ∈ L (ϕ [X 7→ S])} ∈ Σ1
i =⇒ L (∃Xϕ(X)) ∈ Σ1

i (1.17)

By the duality of quanti�ers ∀ and ∃ and of classes Σ1
i and Π1

i , we im-
mediately get:

{(t, 1S) : t ∈ L (ϕ [X 7→ S])} ∈ Π1
i =⇒ L (∀Xϕ(X)) ∈ Π1

i (1.18)

It is also valuable to mention weak second order quanti�ers, i.e. the ones
that range over �nite sets (denoted ∃fin and ∀fin). Note that in this case
the following union and intersection range over countable sets (in case of a
countable domain).

L
(
∃finX ϕ(X)

)
=

⋃
S⊆D
S �nite

L (ϕ [X 7→ S]) (1.19)

L
(
∀finX ϕ(X)

)
=

⋂
S⊆D
S �nite

L (ϕ [X 7→ S]) (1.20)

Therefore, if structures have countable domains then:

∀finS
(
L (ϕ [X 7→ S]) ∈ Σ0

α

)
=⇒ L

(
∃finX ϕ(X)

)
∈ Σ0

α (1.21)

∀finS
(
L (ϕ [X 7→ S]) ∈ Π0

α

)
=⇒ L

(
∀finX ϕ(X)

)
∈ Π0

α (1.22)

and

∀finS
(
L (ϕ [X 7→ S]) ∈ Σ1

i

)
=⇒ L

(
∃finX ϕ(X)

)
, L
(
∀finX ϕ(X)

)
∈ Σ1

i (1.23)

∀finS
(
L (ϕ [X 7→ S]) ∈ Π1

i

)
=⇒ L

(
∃finX ϕ(X)

)
, L
(
∀finX ϕ(X)

)
∈ Π1

i (1.24)

1.5.3 Automata Models and Their Limitations

In this section, still talking about them on an abstract level, we classify
automata classes with respect to the way a run is constructed, where a run
is an intermediate notion that allows an automaton to decide acceptance of
an input structure. We will see that this classi�cation is very well aligned
with the topological complexity of the classes of languages recognized by
respective automata.
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Deterministic Automata

A complete deterministic automaton has exactly one run on each input. For
all types of automata considered in this thesis (and for many others), the
run is a labeling of an input structure with the states of the automaton,
or more generally its con�gurations. Moreover, the run is constructed step
by step, where the next step is fully determined by the so far constructed
part of the run and by the so far seen input structure. Depending on the
type of automaton there are other restrictions on the run construction for a
deterministic automaton, but the ones enumerated above allow us to conclude
that the construction of a run is the application of a continuous function that
maps a (labeled) input structure to the structure of the same shape but with
labels from possibly di�erent alphabet. To give an intuition why the function
is continuous we note that in the context of in�nite words, each label of the
run depends only on a �nite pre�x of an input word.

The acceptance condition of an automaton is a subset of the space of
all possible runs. The automaton accepts an input if the unique run on the
input is in this subset (we usually say that the run �satis�es the acceptance
condition�). Therefore, the language recognized by the automaton is a con-
tinuous preimage of the acceptance condition. Since topological complexity
classes are closed under continuous preimages, we get:

Remark 1.5.1 The topological complexity of the language recognized by a
complete deterministic automaton is bounded from above by the topological
complexity of the acceptance condition of the automaton.

As a result, we get:

Remark 1.5.2 If A is a class of complete deterministic automata and there
is such a topological complexity class C that each automaton in A has the
acceptance condition in C (i.e. the acceptance condition has a bounded topo-
logical complexity) then C is an upper topological complexity bound of A.

A deterministic automaton, in contrast to a complete deterministic au-
tomaton, has at most (not necessarily �exactly�) one run on each input. This
is because a run of such an automaton may lock in some point. As a result, a
mapping of input structures to runs, de�ned by such an automaton, is only a
partial function. However, since in all contexts considered in this thesis each
deterministic automaton can be easily extended to a complete one without a
change in the recognized language, the expressive power of both classes of au-
tomata is the same. Therefore, the topological complexity bound mentioned
in Remark 1.5.2 can be applied to (not necessarily complete) deterministic
automata.
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The method was used by Boja«czyk [Boj11] to show the separation of de-
terministic and nondeterministic max automata mentioned above. Namely,
it was shown that the acceptance condition of a max automaton is always in
BC0

2. Since a natural example of a language recognized by nondeterministic
max automata is, in essence, the set D3 mentioned by Kechris [Kec95, Exer-
cise 32.2] as Π0

3-complete, it cannot be recognized by any deterministic max
automaton.

Nondeterministic Automata

A run of a nondeterministic automaton is, as in the case of a deterministic
one, a labeling of an input structure with the alphabet of con�gurations of
the automaton. The di�erence here is that there can be many possible runs
on one input structure. The automaton accepts an input if there is a run that
satis�es the acceptance condition (an accepting run). Let X be the space
of all structures compatible with the automaton, R the space of all runs of
the automaton, and Acc ⊆ R the set of all accepting runs of the automaton.
The language accepted by the automaton is the following projection:

π1 ((X × Acc) ∩ {(s, ρ) ∈ X ×R : ρ is a run on s}) (1.25)

The �rst factor of the intersection in the above formula has the same com-
plexity as the acceptance condition. The second is usually a closed set�
consistency of a run with a structure and the adjacent parts of the run needs
to be veri�ed locally in all positions of the structure. As a result we get:

Remark 1.5.3 The language recognized by a nondeterministic automaton
belongs to the smallest Σ1

n class that contains the acceptance condition.

In particular, if the acceptance condition is Borel then we get Σ1
1 upper

topological complexity bound from the remark.
The upper topological complexity bound that we get from the above

remark for a class of nondeterministic automata is usually not satis�able,
therefore, we often need to �nd some other arguments. Examples can be
found in Sections 2.5.1 and 2.5.2. However, for example, for nondetermin-
istic parity automata on in�nite trees the method gives quite a good and
commonly used upper bound (see Section 3.2).

Alternating Automata

For an alternating automaton, the acceptance of an input structure is de�ned
in terms of a game played by an existential player ∃ and a universal player ∀.
The language recognized by the automaton consists of those input structures,
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for which ∃ has a winning strategy. In an abstract setting, each player has a
set of strategies, S∃ and S∀, respectively, depending only on the automaton.
The sets of strategies, the set X of all input structures compatible with the
automaton, as well as the set P of plays produced by players playing their
strategies, are topological spaces. The game is de�ned by two relations and
a function:

Correct∃ ⊆ X × S∃
Acc ⊆ P
Play : S∃ × S∀ → P

Here, Correct∃(x, s∃) expresses that the strategy s∃ of ∃ is compatible with an
input structure x. This relation is usually de�ned in terms of local properties
and has low, in particular Borel, topological complexity. Whereas Acc is the
acceptance condition of an automaton, i.e. the set of plays won by ∃. Finally,
Play is the continuous function that maps a pair of strategies to the unique
play they determine.

Now the set of input structures accepted by an automaton can be pre-
sented by:

{x ∈ X : ∃s∃∈S∃ (Correct∃(x, s∃) ∧ ∀s∀∈S∀ (s∃, s∀) ∈ Play−1(Acc)︸ ︷︷ ︸
as complex as Acc︸ ︷︷ ︸

smallest Π1
i containing Acc

)

︸ ︷︷ ︸
Π1
i︸ ︷︷ ︸

Σ1
i+1

}

Therefore:

Remark 1.5.4 The topological complexity of the language recognized by an
alternating automaton is bounded by the smallest Σ1

n+1 class such that Π1
n

contains the acceptance condition.

In particular, if the acceptance condition is Borel then we get Σ1
2 upper

topological complexity bound from the remark.

Unambiguous Automata

An unambiguous automaton is a nondeterministic automaton that has at
most one accepting run on each input. It might seem that the complexity
of languages recognized by such automata is similar to the complexity of
languages recognized by deterministic automata. It was proven by the author
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of this thesis [Hum12] and by his coauthors [DFH15] that the complexities
signi�cantly di�er in the context of in�nite trees. The result of the �rst of
the mentioned papers [Hum12] is extended in Chapter 3.

Let A ⊆ X×Y be a set in a product space. A set U ⊆ A is a uniformiza-
tion of A if for each x ∈ X, ∃y(x, y) ∈ A ⇐⇒ ∃!y(x, y) ∈ U , where ∃! stands
for �there exists exactly one�. Let us identify a nondeterministic automaton
A with the set of pairs (x, ρ), where x is a structure and ρ is an accepting run
of A on x, as used in formula (1.25). Under this identi�cation there is some
analogy between an unambiguous automaton recognizing the same language
as a nondeterministic automaton, and a uniformization of a set. The analogy
is not exact, though, because the unambiguous automaton is not necessarily
a subset of the nondeterministic one in this setting. This di�erence makes
the analogy hard to use in practice. The author is not aware of any generic
way of using unambiguity to get an upper topological complexity bound, nor
any such way was invented in this thesis. Chapter 3 describes only some
lower topological complexity bound for languages de�ned by unambiguous
automata.

Nested Automata

Sometimes, in order to obtain decidability of some logic, models of nested
automata are used. For example Mikoªaj Boja«czyk and Szymon Toru«czyk
[BT12] show a model of nested deterministic automata that has the same
expressive power as Weak Monadic Second order Logic with the unbounding
quanti�er (WMSO+U) interpreted on in�nite trees.

A run of a nested automaton is constructed in such a way that on every
stage of its construction it can execute a run of a subautomaton on a sub-
structure of the input structure. A result (acceptance or rejection) of this
inner run can be used to determine an extension (a next step) of a run.

In general, nested automata can be simulated by alternating ones. Indeed,
a possibility to execute an inner run, can be replaced by existential player
declaring a result of an inner run, and universal player choosing whether the
play will continue with this declared value, or will the players switch to play
the inner game instead. If the declared value of an inner run is �reject�, then
in the inner game the roles of the players swap.

The author is not aware of any case where the topological complexity
bound for nested automata calculated using alternating automata is tight.
For example, in the mentioned article by Boja«czyk and Toru«czyk [BT12]
the construction of logic was used to obtain much better (Borel) bound.
However, the method presented in this section gives some theoretical upper
bound and we will use it in Section 2.4.
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1.5.4 Undecidability

In this section we mention an important contribution of the topological com-
plexity methods to the undecidability result.

It was shown by Michaª Skrzypczak and the author of this thesis [HS12]
that for each level of the projective hierarchy there exists a language hard
for this level and de�nable in MSO+U logic (see Section 2.4). This result
was used by Boja«czyk, Gogacz, Michlewski and Skrzypczak [BGMS14] in
a forcing-based proof that undecidability of MSO+U logic is relatively con-
sistent with ZFC axioms. We note that a year later a non-topological proof
of undecidability of the logic was given by Boja«czyk, Parys and Toru«czyk
[BPT16]. However, the topological results have given a direction towards a
solution of a problem that was open for a decade8.

8The bounding quanti�er was introduced by Boja«czyk in 2004 [Boj04].
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Chapter 2

In�nite Words

� Beyond Regularity

As we will see in Section 2.2, the languages of ω-words that are called regular,
are computationally and topologically not too complex. This fact encourages
us to seek extensions of the class that would maintain at least some of their
tractability. In this chapter we study how complex, from the topological
point of view, are some of the extensions.

The chapter essentially presents results of a paper coauthored by the
author of this thesis [HS12]. The presentation is preceded by a short intro-
duction motivating the study.

2.1 Regular Languages of In�nite Words

There are several equivalent ways to say what it means for a language of
ω-words to be regular. In this thesis we choose the de�nition through an
appropriate model of automata.

De�nition 2.1.1 A (nondeterministic) parity word automaton is a
tuple A = 〈A,Q, δ, I, p〉, where:

• A is a �nite alphabet,

• Q is a �nite set of states,

• δ ⊆ Q× A×Q is a transition relation,

• I ⊆ Q is a set of initial states,

• p : Q→ N is a priority function.
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A run of automaton A on an input word w ∈ Aω is a word ρ ∈ Qω such
that ρ0 ∈ I and for all n < ω, (ρn, wn, ρn+1) ∈ δ. Function p, that assigns
a priority to each state, is used to decide acceptance. Let us consider a
sequence p(ρ) := p(ρ0)p(ρ1)p(ρ2) . . .. Run ρ is accepting if the greatest
priority occurring in�nitely often in p(ρ) is even. This condition on the
sequences of natural numbers is called the parity condition. A word is
accepted by an automaton if there is an accepting run of the automaton on
the word. The language recognized by automaton A, denoted L (A), consists
of all words accepted by A.

A language is called ω-regular (or simply regular) if there is a parity
automaton recognizing it.

There exist several interesting subclasses of the class of parity automata.

De�nition 2.1.2 A Büchi automaton (or automaton with Büchi acceptance
condition) is a parity automaton A = 〈A,Q, δ, I, p〉 such that p(Q) ⊆ {1, 2}.
States of priority 2 are called accepting states in a Büchi automaton, and
Büchi acceptance condition can be restated as �an accepting state occurs in-
�nitely many times in a run�.

Fact 2.1.3 (see e.g. [Far01, Theorem 1.19]) Each ω-regular language
can be recognized by a nondeterministic Büchi automaton.

De�nition 2.1.4 Parity word automaton A = 〈A,Q, δ, I, p〉 is called deter-
ministic if |I| = 1 and δ is a function δ : (Q× A)→ Q.

Note that, as it was noted in Section 1.5.3, a deterministic parity automa-
ton has exactly one run on each input.

We say that two automata are equivalent if they recognize the same
language.

Theorem 2.1.5 (McNaughton [McN66]) For every nondeterministic par-
ity word automaton there is an equivalent deterministic parity word automa-
ton.

In the original proof deterministic automaton with Muller acceptance
condition were used1. While Muller condition is a priori more general, it
can be proven that deterministic parity automata have the same expressive

1In his paper McNaughton uses term �regular ω-event� instead of ω-regular language
and the term is de�ned using ω-regular expressions. The proof of the equivalence of the
notions can be found e.g. in Farwer's handbook article [Far01, Theorem 1.5]. Languages
recognized by Muller automata are, in turn, called ��nite-state ω-events� in the paper.
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power as deterministic Muller automata. A proof using latest appearance
record (LAR) construction is presented e.g. by Farwer [Far01, Section 1.4.2].

Contemporary textbooks usually present the proof of McNaughton's The-
orem given by Safra [Saf88]. The proof is a re�nement of the powerset con-
struction used in determinization of �nite automata on �nite words, keeping
track of particular runs. See handbook articles by Roggenbach [Rog01] or
Thomas [Tho97] for a comprehensive presentation of Safra's construction.

The original use of �nite automata on in�nite words, namely Büchi au-
tomata, was to prove decidability of Monadic Second Order (MSO) logic on
ω with the successor relation (called S1S theory) [Büc62]. As a by-product
Büchi has shown that MSO logic over in�nite words de�nes exactly regular
languages. Let us introduce the logic and state the equivalence.

With a word u ∈ Aω over an alphabet A = {a0, a1, . . . , an}, we associate
the relational structure, called word model:

u = (dom (u) , Sω,6ω, a0
u, a1

u, . . . , an
u) ,

where the domain dom (u) = ω can be identi�ed with the set of positions in
the word, Sω is the successor relation, i.e. (i, i+ 1) ∈ Sω for i < ω, 6ω is the
natural order on word positions, and a0

u, a1
u, . . . , an

u are letter predicates,
i.e. ai

u(k) holds if and only if uk = ai. Note that, as mentioned before, for
each k ∈ dom (u), k belongs to exactly one of the sets a0

u, a1
u, . . . , an

u.
Monadic Second Order logic (MSO for short) on ω-words over alphabet

A uses:

• �rst-order (individual) variables x, y, z, . . . ranging over positions in
word models,

• monadic second-order (set) variables X, Y , Z, . . . ranging over sets of
positions in word models,

• ∀, ∃ quanti�ers that can bind both, �rst- and second-order variables,

• atomic formulas (in the following, x, y are individual variables, and X
is a set variable): x = y, x ∈ X, S(x, y), x 6 y, a(x) for a ∈ A, where
the last three are interpreted as the respective relations in word models
as presented above,

• logical connectives: ∧, ∨, ¬, =⇒, ⇐⇒ .

Let us note by SigωA the signature of this logic on ω-words over alphabet
A. Namely, for A = {a0, a1, . . . , an}, SigωA = {S,6, a0, a1, . . . , an}. De�n-
ability notions are de�ned as presented in Section 1.3. Therefore, for na MSO
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formula ϕ over signature SigωA, L (ϕ) is the language of such words u over A
that ϕ is satis�ed in u.

From the expressive power perspective and in the context of Monadic
Second Order logic, only one of the relations Sω, 6ω su�ces, since they are
mutually expressible by each other in the logic (see [Tho97, Section 2.3] for
details). We assume the signature includes both for further convenience. We
also note that if ω is �xed as the domain, then 0 is clearly de�nable using Sω

(even in �rst order logic). Similarly, each natural number is de�nable using
Sω. Therefore, although we do not put functional symbols explicitly into the
signature, we will use natural numbers as constants in the logic.

Theorem 2.1.6 (Büchi [Büc62]) Languages of ω-words de�ned by MSO
are exactly ω-regular languages.

Although the original proof of Büchi have not used determinization of au-
tomata, the theorem may be seen as a consequence of McNaughton's Theo-
rem. To prove that a model of automata captures a logic that uses ¬ con-
nective, we need to be able to construct an automaton for the complement
of the language recognized by a given automaton. Models of deterministic
automata are convenient for this purpose. Essentially, to complement a de-
terministic automaton we only need to modify its acceptance parameter. In
the case of the parity condition, shifting values of the priority function by 1
su�ces.

Another feature of a logic to be captured is quanti�cation. Büchi (fol-
lowing what he did for �nite words [Büc60]) does it using nondeterminism.
Consecutive positions of quanti�ed set are guessed by nondeterministic au-
tomaton.

We summarize the above two observations in the following note:

Remark 2.1.7 In order to capture a logic using negation and existential
quanti�cation, it is convenient to have a model of nondeterministic automata
that admits determinization.

De�nition 2.1.8 Weak Monadic Second Order logic (WMSO for short) uses
the same syntax as MSO, but the second order quanti�cation is restricted to
�nite sets.

Since in MSO on ω-words �niteness is de�nable using order, it is not hard
to see that each language de�nable in WMSO can also be de�ned in MSO.
The converse also holds for ω-words and the proof can use Büchi's Theorem
and determinization.

46



Theorem 2.1.9 (see e.g. [Tho97, Corollary 5.2]) Logics MSO and
WMSO are equally expressive on ω-words.

For a presentation of automata on ω-words and their relations to logics
see a survey article by Wolfgang Thomas [Tho97] or a handbook [GTW02].

2.2 Complexity of Regular Languages of

In�nite Words

Since, thanks to Theorem 2.1.5, the class of ω-regular languages can be char-
acterized using deterministic automata, we can use Remark 1.5.2 to estimate
the topological complexity of the class. We only need to calculate topological
complexity of the acceptance condition.

Let Q be the set of states of an automaton, and let p be its priority
function.

Let us consider the following subset of Qω:

Ok := {ρ ∈ Qω : ∃∞n p(ρn) = k}

Note that Ok = fk
−1(N2) for fk : Qω → {0, 1}ω de�ned by:

(fk(ρ))n =

{
1 if p(ρn) = k
0 otherwise

,

and N2 de�ned as in Fact 1.2.7. Therefore, Ok is in class Π0
2.

Since Q is �nite, there is such even number n that for each q ∈ Q,
p(q) 6 n. In such case the parity condition can be expressed as the following
subset of Qω:

Accn = ((. . . ((((O0 \O1) ∪O2) \O3) ∪O4) . . .) \On−1) ∪On

Therefore, for each parity word automaton, the acceptance condition is a
�nite boolean combination of Π0

2 sets. Using Remark 1.5.2 we conclude:

Theorem 2.2.1 ([BL69, Corollary 1]) Each ω-regular language is in BC0
2

topological complexity class.

Let us add several notes suggesting that ω-regular languages are relatively
simple from the computational complexity point of view2. The most popular
decision problem considered for automata is emptiness.

2We do not recall computational complexity notions here, because the computational
complexity references are only side notes for the thesis.
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Emptiness Problem:
Given an automaton,
decide whether the language recognized by the automaton is empty.

Fact 2.2.2 (see e.g. [PP04, Propositions 10.12, 10.10])

1. The emptiness problem for Büchi automata is decidable in linear time
with respect to the number of states. It is NL-complete.

2. Let A be a Büchi automaton, and let n be a number of its states. There
is a Büchi automaton with nO(n) states recognizing the complement of
language L (A).

Before we enumerate conclusions of the fact, we recall two more famous
decision problems.

Universality Problem:
Given an automaton,
decide whether the automaton accepts each input.

Language Inclusion Problem:
Given automata A and B,
decide whether L (A) ⊆ L (B).

The following can be viewed as a consequence of Fact 2.2.2.

Fact 2.2.3 (see e.g. [PP04, Proposition 10.13]) The universality prob-
lem for Büchi automata is decidable in exponential time. It is
PSPACE-complete.

The following mainly relies on the fact that verifying inclusion is equiva-
lent to verifying emptiness of the language L (A) ∩ L (B).

Fact 2.2.4 ([KV98, Theorem 1]) The language inclusion problem for
Büchi automata is decidable in exponential time.

Since a conversion of a parity automaton into a Büchi automaton causes
polynomial increase in the number of states (see [PP04, Proposition 10.6]3),
we immediately get the following.

Corollary 2.2.5

3In fact, a conversion of a Rabin automaton into a Büchi automaton is shown there,
but a parity automaton is just a special case of a Rabin automaton.
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1. The emptiness problem is decidable for parity word automata in poly-
nomial time with respect to the number of states.

2. The universality problem for parity word automata is decidable in ex-
ponential time.

3. The language inclusion problem for parity word automata is decidable
in exponential time.

Also logics are studied from the computational complexity perspective.
When talking about decidability of a logic we mean the following decision
problem.

Satis�ability Problem for logic L over words:
Given a formula ϕ of L,
decide whether there is a word model satisfying this formula.

Thanks to Büchi's result cited as Theorem 2.1.6, the satis�ability problem
for MSO on ω-words can be reduced to emptiness problem for automata,
therefore, is decidable. The decision procedure coming from this construction
has nonelementary time complexity � alternating between existential and
universal quanti�cation requires determinisation of an automaton which may
cause exponential blowup in the number of states � however, the situation is
not worse than in the case of �nite words.

The decidability of MSO, linear complexity of emptiness problem for Bü-
chi automata, and Borel topological complexity of ω-regular languages are
what we have referred to as �computationally and topologically not too com-
plex� in the introduction to this chapter. In the next section we present a
logic that was considered as a potential decidable extension of MSO. Unfor-
tunately, as we know now, the logic is not decidable. We show a topological
complexity result for the logic that have contributed to an undecidability
proof. In the following sections we consider, from the topological point of
view, automata models that extend parity automata4, have decidable empti-
ness, and implement a similar idea that the extended logic.

2.3 Unbounding Quanti�er

Mikoªaj Boja«czyk has proposed an extension of the class of ω-regular lan-
guages which is able to express some asymptotic properties of words. The

4The ωB-automata and ωS-automata are not exactly syntactic extensions of parity
automata, but it will be clear that the encoding of a parity automaton as a ωB-automaton
or a ωS-automaton is straightforward.
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extension was �rst introduced to tree languages [Boj04], and then studied
both for ω-words (see e.g. [BC06, Boj11, Boj10]) and trees (see e.g. [BT12]).

The extension was designed to be able to de�ne properties as captured
by the following ω-word languages:

LB = {an0ban1ban2b . . . | lim supni <∞} (2.1)

LS = {an0ban1ban2b . . . | lim inf ni =∞} (2.2)

First observe that these languages are not regular.

Fact 2.3.1 ([BC06]) Language LB ⊆ {a, b}ω is not ω-regular.

Proof:
Assume, towards a contradiction, that there is a Büchi automaton A =

〈{a, b}, Q, δ, I, p〉 that recognizes language LB. Consider a word:

w = a|Q|+1ba|Q|+1b . . .

Since w ∈ LB, there is an accepting run ρ of automaton A on w. Since each
block of consecutive letters a surrounded by b's has length greater than the
number of states of A, there is a loop (i.e. some state occurs at least twice) in
ρ inside each of those blocks. We now use the fact that each such loop can be
repeated arbitrary (positive) number of times without a�ecting acceptance.
The process is often used in automata theory and is called pumping. Let for
i'th block of a's, si be the position of the �rst and ei of the next occurrence
of the same state inside the block. Now consider the following word:

w′ = a|Q|+1+1(e1−s1)ba|Q|+1+2(e2−s2)ba|Q|+1+3(e3−s3)b . . .

and the following run on it:

ρ′ = ρ1,s1−1(ρs1,e1)2ρe1+1,s2−1(ρs2,e2)3ρe2+1,s3−1(ρs3,e3)4ρe3+1,s4−1 . . . ,

where ρi,j denotes sequence of consecutive elements of sequence ρ from posi-
tion i to j inclusive.

Since (ei− si) is positive for each i > 1, the sequence of lengths of blocks
of a's in w′ tends to in�nity, therefore, w′ /∈ LB. On the other hand ρ′ has
exactly the same set of states that occur in�nitely many times that run ρ,
hence ρ′ is accepting. This is a contradiction with the assumption that A
recognizes LB. �

Fact 2.3.2 ([BC06]) Language LS ⊆ {a, b}ω is not ω-regular.
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To prove this fact we use a topological argument. The following fact is
given as an exercise in Kechris's book. We prove it for completeness.

Fact 2.3.3 (see e.g. [Kec95, Exercise 23.2])
Set C3 = {x ∈ Nω : limn xn =∞} is Π0

3-hard
5.

Proof:
Let L ∈ Π0

3(X), for a zero-dimensional Polish space X. By the de�nition,
L =

⋂
n<ω Ln, for some sequence {Ln}n<ω of Σ0

2 sets. By Fact 1.2.7, Point 4,
there exists a sequence {fn}n<ω of continuous functions fn : X → C, where
fn reduces Ln to Q2. Let us now �x a bijection ι : ω × ω → ω. The function
f : X → Nω de�ned by:

(f(x))ι(n,m) =

{
n if (fn(x))m = 1
ι(n,m) otherwise

is continuous and reduces L to C3. Indeed, by the de�nition of set C3,
f(x) /∈ C3 if and only if some value occurs in�nitely many times in sequence
f(x). By the de�nition of f , this happens if and only if for some n there is
in�nitely many 1's in sequence fn(x), what, by the assumption on fn, holds
if and only if x /∈ Ln. �

Let us introduce continuous embedding g : Nω → {a, b}ω of the Baire
space into the Cantor space {a, b}ω, de�ned by:

g(x) = ax0bax1bax2 . . . (2.3)

Lemma 2.3.4 Language C3 is Wadge-reducible to LS. As a result, LS is
Π0

3-hard.

Proof:
Function g reduces C3 to LS. �

Proof (of Fact 2.3.2):
By Theorem 2.2.1 and Lemma 2.3.4, language LS cannot be ω-regular.

�

We note that a similar topological argument could not be used for the
proof of Fact 2.3.1. This is because, it can be proven that LB ∈ Σ0

2.
As we can see, being able to de�ne languages LS and LB requires an ex-

tension of ω-regularity. On the logical side, the extension was implemented

5In fact, C3 is Π0
3-complete, but we do not need it here. Additionally the fact that

C3 ∈ Π0
3 will follow from Lemma 2.3.4, Example 2.5.6 and Corollary 2.5.12.
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by introduction of an additional set quanti�er U, called the unbounding
quanti�er6. The quanti�er is de�ned so that the formula UXϕ(X) is equiv-
alent to writing:

�ϕ(X) is satis�ed by �nite sets X of arbitrarily large cardinality�

More formally:

UXϕ(X) :=
∧
n<ω

∃X (ϕ(X) ∧ n < |X| < ω) (2.4)

Towards a usage example, consider the following formula with one free
set variable:

Blocka(X) := ∀x∈X a(x) ∧ ∀x<y<z (x∈X ∧ z∈X) =⇒ y∈X

The formula says that X is a set of consecutive positions labeled with a. Now
language LB can be expressed by the formula:

¬UXBlocka(X) (2.5)

Adding this formula de�ning in�nity:

Inf(X) := ∀x∃y>x y ∈ X,

and the following formula de�ning maximality of blocks of consecutive letters
a in a set:

Maxa(X) := ∀x∀y

 (x ∈ X ∧ S(x, y) ∧ a(y)) =⇒ y ∈ X
∧
(x ∈ X ∧ S(y, x) ∧ a(y)) =⇒ y ∈ X

 , (2.6)

we can de�ne language LS using formula:

¬∃X (Inf(X) ∧ ∀x∈Xa(x) ∧Maxa(X) ∧ ¬UB (Blocka(B) ∧ ∀x∈Bx ∈ X))
(2.7)

Recall, that by Theorem 2.1.9, there are two logics that characterize ω-re-
gular languages, namely MSO and WMSO. Both of them can be extended
by a use of quanti�er U.

De�nition 2.3.5 Monadic Second Order logic with Unbounding
Quanti�er (MSO+U for short) is MSO logic where additionally quanti�er
U is used.

6Originally bounding quanti�er was introduced [Boj04], but in later works its dual,
unbounding quanti�er, was considered.
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De�nition 2.3.6 Weak Monadic Second Order logic with Unbound-
ing Quanti�er (WMSO+U for short) is WMSO logic where additionally
quanti�er U is used.

Note that formula (2.5) de�ning LB does not use set quanti�cation except
from quanti�er U, so, in particular, it is a formula of WMSO+U. On the
other hand, language LS is de�ned by MSO+U formula 2.7 and, as we will
see in Section 2.3.1, it cannot be de�ned in WMSO+U. Adding to the above
observation about LB, the fact that this language is not de�nable in MSO
(see Fact 2.3.1), we get that extensions of both the logics are strict:

Fact 2.3.7 On ω-words:

1. expressive power of MSO+U is strictly greater than the expressive power
of MSO,

2. expressive power of WMSO+U is strictly greater than the expressive
power of WMSO (and of MSO).

In the following sections we discuss how big, from the topological view-
point, are the extensions. Section 2.3.1 presents a result of Mikoªaj Boja«czyk
and serves only as a context for the thesis.

2.3.1 Topological Complexity of WMSO+U

Mikoªaj Boja«czyk [Boj11] has proven decidability of WMSO+U logic on
ω-words by providing a model of automata, called max automata, with
the same expressive power. E�ective translations between formulas and au-
tomata were also given in his paper. What is important from our perspective,
automata of this model are deterministic. As it was already mentioned in
Section 1.5.3, the acceptance condition of a max automaton is always in BC0

2.
Therefore, using Remark 1.5.2, all languages de�ned in WMSO+U logic are
in BC0

2.
Additionally, Cabessa, Duparc, Facchini and Murlak [CDFM09] have

shown that languages de�ned by WMSO+U occupy exactly the same lev-
els of the Wadge hierarchy as ω-regular languages.

Note that, since language LS is de�nable using an MSO+U formula (2.7)
and is Π0

3-hard, we get:

Corollary 2.3.8 MSO+U has greater expressive power than WMSO+U on
ω-words.

To emphasize the contrast between WMSO+U and the full MSO+U, we
mention that WMSO+U is decidable also on in�nite trees [BT12].
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2.4 Topological Complexity of MSO+U

In this section we inductively construct a sequence of languages {Hi}i<ω. We
show that for each i > 0 the language Hi is MSO+U de�nable and Σ1

i -hard.
Therefore, we prove the following theorem.

Theorem 2.4.1 For every i > 0 there exists an MSO+U formula ϕi such
that the language L (ϕi) is Σ1

i -hard.

In our construction we use a sequence IFi of languages of �multi-
branching� trees (i.e. trees on Ni). First, we prove that for each i the
language IFi is Σ1

i -hard. Then we inductively show that the languages can
be reduced to ω-word languages Hi de�nable in MSO+U. We use a function
ri−1 reducing IFi−1 to Hi−1 to construct a reduction ci of IFi to the language
EPath

(
Hi−1

)
of labeled trees on N that have a branch labeled with a word

w /∈ Hi−1. Then we again code such labeled trees in ω-words. The details
follow.

Let us �x a �nite alphabet B0 := {a, |0, b} and de�ne inductively Bi :=
Bi−1 ∪ {[i−1, |i, ]i−1}, for i > 0.

Recall that TX is the set of all unlabeled X-branching trees, TXB is the
set of all full X-branching B-labeled trees. By B+ we denote the set of all
nonempty words over B.

The inductive construction begins from step i = 1 and in each step the
picture looks as follows:

TNi ci−→ TN
B+
i−1

di−→ (B+
i )ω

⊆ ⊆ ⊆

IFi EPath
(
Hi−1

)
Hi

The construction ensures that:

di
−1 (Hi) = EPath

(
Hi−1

)
, ci

−1
(
EPath

(
Hi−1

))
= IFi, ri = di ◦ ci.

The formal de�nitions and proofs of properties of the elements of the
above diagram are the subject of following sections.

Trees

Fix an order v of type ω on N∗, such that N∗ = {v0, v1, . . .} and that for all
n < ω we have |vn| 6 n. For example any order consistent with the pre�x
order on N∗ has this property.
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De�nition 2.4.2 Consider i > 0, a tree t ∈ TNi+1
and a word w ∈ N6ω. We

de�ne the section t�w∈ TNi of the tree t as follows

t�w=
{
w′ ∈ (Ni)∗ : |w′| 6 |w| ∧ (w�|w′| ×w′) ∈ t

}
,

where

(w0, w1, w2, . . .)× (w′0, w
′
1, w

′
2, . . .) = (w0 · w′0, w1 · w′1, w2 · w′2, . . .).

The dots in the above de�nition can stand for a �nite or an in�nite sequence.

Figure 2.1 presents an example tree t on N2, i.e. t ∈ TN2
, together with

example sections of this tree along two words of length 1.

t :

0

1

2

3

0 1 2 3

t�0:

0 1 2 3

t�2:

0 1 2

Figure 2.1: An example tree on N2, and its sections.

Observe that if w is a �nite word, t�w is a �nite-depth tree�its depth is
bounded by |w|.

De�nition 2.4.3 We de�ne inductively IFi ⊆ TNi.
Let IF1 be the set of all trees t ∈ TN1

that contain an in�nite branch.
Take i > 0. Let IFi+1 be a set of all trees t ∈ TNi+1

such that there exists
an in�nite word α ∈ Nω such that

t�α /∈ IFi.

The following is proven e.g. in the textbook by Guzicki and Zbierski
[GZ78, Theorem 5.1], but we prove it here for the sake of completeness.

Fact 2.4.4 For each i > 1 the set IFi is a Σ1
i -complete subset of TNi.
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Proof:

(Upper bound) We proceed by induction. IF1 is a set of Ill-Founded trees
(usually denoted by IF ), that is well known to be Σ1

1-complete (see e.g.
[Kec95, Theorem 27.1]). For the inductive step, assume that IFi ∈ Σ1

i . Then
the set

Pi =
{

(α, t) ∈ Nω × TNi+1

: t�α /∈ IFi
}
∈ Π1

i ,

because function p : (α, t) 7→ t�α is continuous, and Pi is an inverse image of

IFi with respect to p. Note that IFi+1 is a projection of Pi, so it is in Σ1
i+1.

(Hardness) It is enough to show that each Σ1
i set in Nω is continuously

reducible to IFi.
As we know (see e.g. [Sri98, Proposition 4.1.1.(iv)]), each analytic (Σ1

1)
set in a space X is a projection of a closed set in Nω × X. Recall that, by
de�nition, each Σ1

i+1 set is a projection of some Π1
i set. Therefore, each Σ1

i

set in Nω is of the form7:

S = {x : ∃x1∈Nω¬∃x2∈Nω¬∃x3∈Nω . . .¬∃xi∈Nω(x1, x2, . . . , xi, x) ∈ FS} ,

for some closed set FS ∈ (Nω)i+1. Since every second ∃ quanti�er is under
even number of negations, the above formula unravels to:

∃x1∀x2∃x3 . . . ∃xi(x1, x2, . . . , xi, x) ∈ FS if i is odd, and to:
∃x1∀x2∃x3 . . . ∀xi(x1, x2, . . . , xi, x) /∈ FS if i is even.

The set FS can be seen as a set in the space (Ni+1)
ω, by simple transpo-

sition. This space is obviously homeomorphic to the Baire space Nω. Each
closed set in the Baire space can be expressed as the set of branches of some
tree (see e.g. [Kec95, Proposition 2.4]). So there is tS ∈ TNi+1

such that:

FS =
{
x ∈

(
Ni+1

)ω
: ∀n<ω x�n∈ tS

}
(2.8)

To simplify the notation, for a tree t on set X, by [t] ⊆ Xω we denote the
set of in�nite branches of t. Using this notation, the above equation can be
formulated as

FS = [tS].

We will use the tree tS to de�ne the needed reduction. Let f : Nω → TNi

be de�ned as follows:

f(x) =
{
v ∈

(
Ni
)k

: (v × x�k) ∈ tS, k < ω
}

7Formally, for i = 1 the formula takes the form S = {x : ∃x1∈Nω (x1, x) ∈ FS}.
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To determine whether a node at some level k belongs to f(x) we only need
to know the �rst k numbers in the sequence x, so the function is continuous.
To prove that this is a reduction of S to IFi we need:

f(x) ∈ IFi ⇐⇒ x ∈ S (2.9)

Now we will take a closer look at the sets IFi. Observe that:

IFi = {t : ∃x1∀x2∃x3 . . . ∃xi(x1 × x2 × . . .× xi) ∈ [t]} if i is odd, and:
IFi = {t : ∃x1∀x2∃x3 . . . ∀xi(x1 × x2 × . . .× xi) /∈ [t]} if i is even.

So the quanti�er structure is the same as in case of the above represen-
tation of S. Therefore, to obtain (2.9), it su�ces to show that for any �xed
x1, x2, . . . , xi:

(x1 × x2 × . . .× xi) ∈ [f(x)] ⇐⇒ (x1, x2, . . . , xi, x) ∈ FS.

By (2.8) it is equivalent to:

(x1 × x2 × . . .× xi) ∈ [f(x)] ⇐⇒ (x1 × x2 × . . .× xi × x) ∈ [tS].

But the latter follows immediately from the de�nition of f . �

Functions ci, di

In this section we de�ne functions ci, di. The idea is that both these functions
are continuous and 1−1. Their task is to present a tree t ∈ TNi as an in�nite
word in such a way that an MSO+U formula can determine whether t ∈ IFi

or not.
Recall our inductively de�ned alphabets B0 = {a, |0, b}, Bi = Bi−1 ∪

{[i−1, |i, ]i−1} and de�ne:

De�nition 2.4.5 For a node u = (u1, u2, . . . , um) ∈ N∗ of a tree, we call the
word au1bau2b . . . baumb the address of u in the tree.

Let an i-block be a word of the form [iw|iw′]i where w ∈ {a, b}∗ and
w′ ∈ (Bi \ {|i})+. We call the word w the address of this i-block (since it
will be interpreted as an address of a node in a tree) and the word w′ the
body of this i-block.

Functions di
Take any i > 0. We encode a tree t ∈ TN

B+
i−1

into a word di(t) ∈ (B+
i )ω

in the following way. Take a tree t ∈ TN
B+
i−1

and a node vn ∈ N∗, i.e the
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n'th node with respect to the order v. Let vn = (u1, u2, . . . , um) and let
w0, w1, . . . , wm ∈ B+

i−1 be the list of labels of t on the path from the root to
vn. Then:

di(t)n := au1bau2b . . . baumb |i [i−1w0]i−1 · [i−1w1]i−1 · . . . · [i−1wm]i−1 ∈ B+
i

Intuitively, di(t)n encodes the node vn in t. Such an encoding consists of
two parts: the part before |i is the address of vn in the tree, while the part
after |i is intended to store labels in t on the path from the root to vn as
(i−1)-blocks. The fact that we store not only the label but also the address
of the given node in this coding will be crucial for the following parts of the
construction.

Functions ri, ci
Now we can inductively de�ne functions ci : TNi → TN

B+
i−1

and ri = di ◦ ci.

Take a tree t ∈ TN1
and a node v = (u1, u2, . . . , um) ∈ N∗. De�ne

c1(t) ∈ TN
B+

0

by:

c1(t)(v) =

{
au1bau2b . . . baumb |0 a if v ∈ t
au1bau2b . . . baumb |0 b if v /∈ t

For i > 1 take a tree t ∈ TNi and a node v ∈ N∗. Let:

ci(t)(v) = (ri−1(t�v))|v| ∈ B
+
i−1

Lemma 2.4.6 For i < ω, functions ci, di, ri de�ned above are continuous.

Proof:
For di it holds by the de�nition�n'th element of the resulting sequence

depends on �nitely many nodes of an input tree.
The continuity of ci can be proved by induction together with the con-

tinuity of ri, since they cyclically depend on each other. Function c1 is
clearly continuous. Function ri is continuous as a composition of continuous
functions, likewise, for i > 1, ci at each coordinate v is a composition of
continuous functions: −�v, ri−1, −|v|. �

The following lemma states that functions ri are in some sense sequen-
tial.

Lemma 2.4.7 Let i > 0 and m < ω. If t1, t2 ∈ TNi agree on all v ∈ (Ni)∗

such that |v| 6 m then:
ri(t1)m = ri(t2)m
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Proof:
Recall that ri(t) = di(ci(t)). First observe that for a given tree t′ ∈ TN

B+
i−1

,

by the de�nition of di, the value di(t′)m depends only on vm and the labels
of t′ on the path from the root to vm.

Now use an induction on i and consider labels of ci(t1) and ci(t2) on the
path from the root to vm. For i = 1 they depend only on t1, t2 up to the
depth of |vm|, and |vm| 6 m, thanks to our assumption about the order v.

Take i > 1 and a node v 4 vm. By the de�nition, ci(t)(v) = ri−1(t�v)|v|.
Therefore, by the inductive assumption, this value depends only on t at the
depth of at most |v| 6 |vm| 6 m. �

From the above lemma we conclude that the labels on each branch α ∈ Nω

in ci(t) code the section t�α. Formally:

Lemma 2.4.8 For i > 1, a given tree t ∈ TNi and an in�nite branch α ∈ Nω

we have:
ci(t) (α) = ri−1(t�α) ∈

(
B+
i−1

)ω
Proof:

Take any m < ω and consider v = α�m∈ Nm. By the de�nition:

(ci(t) (α))m = ci(t)(α�m) = (ri−1(t�v))m

Since t�v and t�α agree on all nodes up to the depth m, by Lemma 2.4.7, we
have:

(ri−1(t�α))m = (ri−1(t�v))m = ci(t) (α)m

�

Languages Hi and Formulas

In this section we de�ne MSO+U formulas ϕi. The i'th formula ϕi expresses
properties of in�nite words over Bi+1.

All the above work is done in the spaces (B+
i )ω. Since we want to build

MSO+U formulas over �nite signatures, we need to work with �nite alpha-
bets. To achieve this we will use one additional encoding which is simply a
kind of concatenation.

For i > 0, consider functions ji : (B+
i )ω → (Bi+1)ω de�ned as follows.

ji(w0, w1, . . .) := [iw0]i · [iw1]i · . . . (2.10)

Of course functions ji de�ned above are continuous and 1− 1, where the
latter comes from the fact that [i, ]i /∈ Bi.
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Recall that the address of an i-block is supposed to represent a node of
a tree (see De�nition 2.4.5). We say that such an i-block (or its address)
corresponds to this node.

We will call a set A of addresses of nodes:

deep if the number of letters b in elements of A is unbounded,

thin if for any set P of pre�xes of elements of A such that the number of
letters b in elements of P is bounded, the lengths of sequences a∗ in
elements of P are bounded (see Figure 2.2).

Figure 2.2: An illustration of the thin property�any section of �nite depth
contains only �nitely many pre�xes of branches in A.

The following remark provides a way of using the above properties.

Remark 2.4.9 A tree t ⊆ N∗ has an in�nite branch if and only if there is a
thin and deep set A of addresses of nodes in t.

Proof:
First assume that t has an in�nite branch α ∈ Nω. Take as A the set

of addresses of nodes in {α�n: n < ω}. Of course such A is deep. We show
that A is thin. Consider any set P of pre�xes of addresses in A, such that
the number of letters b in elements of P is bounded by some number k ∈ N.
Since in each element of A the sequence a∗ before the n'th letter b has length
αn−1, lengths of sequences a∗ in P are bounded by maxn6k αn.

Now take a thin and deep set A of addresses of nodes of t. We identify
elements of A with those nodes, i.e. A ⊆ t. Consider as T the closure of A
under pre�xes, i.e.:

T := {v ∈ N∗ : ∃v′∈A v 4 v′}
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Then T is an in�nite tree, because A is deep. Additionally, at each level
k < ω, there are only �nitely many nodes in T ∩ Nk, by thinness of A. So
T is a �nitely branching tree. Therefore, by König's Lemma, T contains an
in�nite branch α. But T ⊆ t, so α is also an in�nite branch of t. �

Observe that both properties deepness and thinness of a set of ad-
dresses of a sequence of i-blocks can be expressed in MSO+U. It is because
in those de�nitions we only use regular properties and properties like the
number of letters b is unbounded or the length of sequences a∗ is
bounded.

We now de�ne a series of MSO+U formulas ϕi. It is easy to see that we
can express in MSO that a given word α ∈ (Bi+1)ω is of the form b0 · b1 · . . .
such that each bn is an i-block. We implicitly assume that all formulas ϕi
express it.

Let ϕ0 additionally express that a given word is not of the form:

([0 (a∗b)∗ |0 a ]0)ω

For i > 0, let ϕi express the following property:

There exists a set G containing only whole i-blocks such that:

1. the set of addresses of the i-blocks of G is deep,

2. the set of addresses of the i-blocks of G is thin,

3. the body of each i-block of G is a concatenation of
(i− 1)-blocks,

4. the bodies of the i-blocks of G, when concatenated (in the
order as they occur in a word8), form an in�nite word that
satis�es ¬ϕi−1.

Take i > 0. Since L (ϕi) ⊆ (Bi+1)ω, we can de�ne:

Hi := j−1
i (L (ϕi)) ⊆ (B+

i )ω

Therefore, languages Hi de�ned above are (up to encoding j) MSO+U
de�nable.

We will use one important property of languages Hi.

De�nition 2.4.10 A language L ⊆ Xω is monotone if for any α, β ∈ Xω:

{αn : n < ω} ⊆ {βn : n < ω} =⇒ (α ∈ L⇒ β ∈ L)

8It will occur further that the order does not matter, but we �x the order to make the
de�nition unambiguous.
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Note, that belonging to a monotone language depends only on the set of
letters occurring in a word, namely:

Remark 2.4.11 If L ⊆ Xω is a monotone language, then for any α, β ∈ Xω:

{αn : n < ω} = {βn : n < ω} =⇒ (α ∈ L⇔ β ∈ L)

Lemma 2.4.12 Languages Hi ⊆ (B+
i )ω are monotone.

Proof:
The proof is by an induction on i.
For i = 0 the claim is obvious.
For i > 0, formula ϕi expresses that there exists a set of i-blocks such

that points (1)�(4) are satis�ed. The order of the i-blocks does not a�ect
points (1), (2), (3). We show that the order in which we concatenate bodies
of i-blocks in point (4) does not matter. Observe, that the bodies are, by
point (3), concatenations of (i−1)-blocks, so the concatenation of the bodies
is also a concatenation of (i−1)-blocks. Now, by the inductive assumption,
whether this concatenated word satis�es ϕi−1, depends only on the set of
(i−1)-blocks it contains. As a result, indeed, ϕi depends only on the set
of i-blocks in a word, and, since the outermost symbol in the formula is
existential quanti�cation, the dependency is monotonic. �

Reductions

In this section we show that ri is a reduction of IFi to Hi. We do it in two
steps.

De�nition 2.4.13 For L ⊆ Xω let EPath (L) ⊆ TN
X be a set of such trees t

that there exists an in�nite word α ∈ Nω such that t (α) ∈ L.
In other words EPath (L) is the set of trees that contain an in�nite branch

such that labels on this branch form a word in L.

Lemma 2.4.14 For i > 0, function di : TN
B+
i−1

→ (B+
i )ω is a reduction of

EPath
(
Hi−1

)
to Hi.

Proof:
We have to prove that for any t ∈ TN

B+
i

t ∈ EPath
(
Hi−1

)
⇐⇒ di(t) ∈ Hi.

First assume that t ∈ EPath
(
Hi−1

)
. Let α ∈ Nω be a branch such that

t (α) /∈ Hi−1. Let w = ji(di(t)) ∈ (Bi+1)ω. We show that w |= ϕi. Take as
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G the set containing i-blocks corresponding to nodes of α. Then the set of
addresses of i-blocks of G is obviously thin and deep (one node at each level
of the tree). By the de�nition of di, the bodies of i-blocks are concatenations
of (i−1)-blocks. Additionally, the set of (i−1)-blocks occurring in the bodies
of i-blocks of G is exactly the set

{[i−1 · (t (α))n · ]i−1 : n < ω} .

Language Hi−1 is monotone, so, by Remark 2.4.11, since t (α) /∈ Hi−1, the
set G satis�es point 4 in the de�nition of ϕi.

The other direction is a little more tricky. Assume that ji(di(t)) |= ϕi.
Let G be as in the de�nition of ϕi. Then the set of addresses of i-blocks of
G is deep and thin. Let B ⊆ N∗ be the set of nodes corresponding to these
addresses and let T be the closure of B under pre�xes, i.e.:

T = {v ∈ N∗ : ∃v′∈B v 4 v′} .

As in Remark 2.4.9, there exists an in�nite branch α ∈ Nω of T . Observe
that the set

{[i−1 · (t (α))n · ]i−1 : n < ω}

is contained in the set of (i−1)-blocks in bodies of i-blocks in G. Because of
the monotonicity of Hi−1 and point 4 in the de�nition of ϕi, t (α) /∈ Hi−1. �

Lemma 2.4.15 For i > 0, function ci is a reduction of IFi to EPath
(
Hi−1

)
.

Proof:
We prove it by an induction on i.
Take i = 1. A tree t ∈ TN1

contains an in�nite branch if and only if c1(t)
contains a branch labeled by words of the form (a∗b)∗|0a, what happens if
and only if c1(t) ∈ EPath

(
H0

)
.

Let i > 1. Take a tree t ∈ TNi . The following conditions are equivalent:

t ∈ IFi

∃α∈Nω t�α /∈ IFi−1 by the de�nition of IFi

∃α∈Nω ci−1(t�α) /∈ EPath
(
Hi−2

)
by the inductive assumption

∃α∈Nω ri−1(t�α) /∈ Hi−1 by Lemma 2.4.14
∃α∈Nω ci(t) (α) /∈ Hi−1 by Lemma 2.4.8

ci(t) ∈ EPath
(
Hi−1

)
by the de�nition of EPath (L).

�

We are now ready to prove the theorem.
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Proof (of Theorem 2.4.1):
Take i < ω and ϕi as de�ned above. Functions ci, di, ji are continuous by

Lemma 2.4.6 and the de�nition of ji. Moreover, using the de�nition of Hi

and Lemmas 2.4.15, 2.4.14, their composition reduces IFi to L (ϕi). Thanks
to Fact 2.4.4, the set IFi is Σ1

i -hard. �

Upper Complexity Bound

Theorem 2.4.1 gives a lower topological complexity bound for MSO+U logic.
The corresponding upper bound relies on an easy observation.

Proposition 2.4.16 For every MSO+U formula ϕ over ω-words or in�nite
trees, the language L (ϕ) is in Σ1

i for some i < ω.

Proof:
Quanti�ers ∃, ∀ lift topological complexity by at most one level of the

projective hierarchy, as expressed by formulas (1.17) and (1.18). Equation
(2.4) shows that quanti�er U can be interpreted as a countable intersection
of countable unions ranging over �nite sets. Therefore, for a given MSO+U
formula ϕ we can inductively show that L (ϕ) ∈ Σ0

|ϕ|, no matter whether
ω-word or in�nite tree languages are concerned. �

As a result we get the exact topological complexity of MSO+U logic.
Historically, we have started from considering ω-word languages, hoping that
the complexity of the logic would not be too high. Finally, it turned out to
be so high that even changing the domain to trees is not able to increase it.

Theorem 2.4.17 The topological complexity of MSO+U logic over ω-words
or in�nite trees is the class of all projective sets.

Proof:
Upper bound is obtained by Proposition 2.4.16.
Theorem 2.4.1 gives the lower bound for ω-words. For trees, we, for

example, may observe that being the left-most branch is expressed in MSO
and that each language Hi can be continuously reduced to the language of
all trees that have a word from Hi labeling the left-most branch. �

As a side note of this chapter, we observe that the theorem is also true
for languages of countable graphs, digraphs, grids, and many other countable
structures that do not have non-projective predicates and that we can encode
ω-words in (in an MSO de�nable way).
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Consequences

The �rst level of the construction used to prove Theorem 2.4.1 was shown in
a paper by Skrzypczak, Toru«czyk and the author of this thesis [HMT10].
Theorem 1 of the paper states that there is a Σ1

1-complete language de�nable
in MSO+U. Since in MSO+U we can use negation, we immediately got from
that result the Π1

1-complete language de�nable in MSO+U. From the dis-
cussion of the topological complexity of automata (see Remark 1.5.3), we get
that there is no model of nondeterministic automata with Borel acceptance
condition that captures MSO+U logic (this was noted as Corollary 1 in the
paper).

Theorem 2.4.1, together with remarks in Section 1.5.3, leads to much
stronger conclusion (�rst observed in the paper being the main source of this
chapter [HS12, Theorem 5.2]):

Corollary 2.4.18 There is no model of deterministic, nondeterministic, al-
ternating, or nested automata with an accepting condition on a �xed level
of the projective hierarchy that can capture the whole expressive power of
MSO+U on ω-words.

The above summarizes the automata theoretic consequences of the re-
sult about MSO+U presented in this thesis. The undecidability theorem
[BPT16] implies that there is no automata model capturing MSO+U, that
has decidable emptiness problem.

2.5 ωBS-automata

Prior to the results of the article coauthored by the author of this thesis
[HMT10], several models of automata capturing some interesting fragments
of MSO+U were considered. In this section we show the exact topological
complexity of ωBS-, ωB- and ωS-automata introduced by Boja«czyk and
Colcombet [BC06]. As we will see, the topological complexity gap between
MSO+U logic and these models of automata is huge. However, the automata
capture the motivating example languages LB and LS, and, what is partic-
ularly important, have decidable emptiness problem (see [BC06]). To the
best author's knowledge, the class of languages recognized by ωBS-automata
is still the largest known subclass of MSO+U de�nable languages with de-
cidable emptiness problem9. In Section 2.5.3 we add a discussion about a

9Note, for example, that all min- and max-automata considered by Boja«czyk and
Toru«czyk [BT09, Boj11] can be simulated by nondeterministic ωBS-automata (see [BT09,
Theorem 3]).
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possible alternating variant of the automata. All the topological complex-
ity results of this section were originally presented in the mentioned article
[HMT10].

First, we present ωBS-automata in an equivalent way to those used by
Boja«czyk and Colcombet [BC06, Boj10]. The automata use counters. Note
that, according to the de�nition below, the counters can only be updated and
cannot be read during the run. They are used by the acceptance condition.

De�nition 2.5.1 A (nondeterministic) ωBS-automaton is a tuple A =
〈A,Q,Γ, δ, I, Acc〉, where:

• A is a �nite alphabet,

• Q is a �nite set of states,

• Γ is a �nite set of counters,

• δ ⊆ Q×A×Q× ({res, inc}× Γ)∗ is a �nite transition relation, where
inc stands for the increment and res for the reset of a given counter,

• I ⊆ Q is a set of initial states,

• Acc is an acceptance condition.

A run of the automaton A on a word w ∈ Aω is a sequence of transitions
from δ of the form:

(q0, w0, q1, γ0), (q1, w1, q2, γ1), (q2, w2, q3, γ2), . . . ,

where q0 ∈ I.
The value of each counter c ∈ Γ is initially 0 and is incremented or reset

to 0 according to the consecutive transitions in a run. For c ∈ Γ and a run
ρ we de�ne a sequence valρ(c), where valρ(c)i is the value of counter c right
before its i'th reset in the run ρ. Note that if a counter c is reset only �nitely
many times then the sequence valρ(c) is �nite.

The acceptance condition Acc is a boolean combination of constraints that
can be of one of the forms:

lim sup
i

valρ(c)i <∞ lim inf
i

valρ(c)i =∞,

for c ∈ Γ. The �rst constraint is called the B-condition (bounded), the
second�the S-condition (strongly unbounded). In order for lim inf and
lim sup to make sense, the constraints implicitly require the corresponding
sequences to be in�nite.
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We use the notation B(c) for the B-condition and S(c) for the S-condition
imposed on a counter c.

Fact 2.5.2 For each nondeterministic ωBS-automaton, there is an equiva-
lent nondeterministic ωBS-automaton that uses a positive boolean combina-
tion of S-conditions and B-conditions as the acceptance condition.

Proof:
By De Morgan laws, without loss of generality, we can assume that the ac-

ceptance condition of a given automaton A is a positive boolean combination
of literals of the form:

B(c), ¬B(c), S(c), ¬S(c),

where c is a counter of the automaton.
We show how to replace literal ¬B(c) with S(c′) for a new counter c′. We

modify automaton A by introduction of counter c′ and extension of transition
relation by the following operations on the new counter. After each reset of
counter c and at the beginning of a run, automaton can nondeterministically
decide to apply an increment to counter c′ with each increment of c until the
next reset, or not to apply any of those increments. If the decision was to
apply the increments, then also the reset is applied to c′. Additionally in any
moment when the automaton decides not to reset counter c any more, it can
enter a mode in which an increment or a reset of counter c′ is possible on
every transition. After entering this mode the automaton stays in it until the
end of the run, and it cannot reset counter c any more. No other operations
on c′ are performed.

Note that for any run ρ of the modi�ed automaton there is a run of A
that has the same sequence of operations on counter c and other counters of
A as ρ. Additionally, any run of A can be extended to a run of the modi�ed
automaton. Note that under the above construction, if valρ(c) is in�nite,
then valρ(c′) can be any subsequence but only a subsequence of valρ(c) for a
run ρ in the extended automaton. If valρ(c) is �nite, then starting from some
moment there are no resets and the automaton may use free increments and
resets of counter c′. In particular, it can make condition S(c) satis�ed. Since
counter c does not satisfy condition B(c) if and only if sequence valρ(c) is
�nite or has a subsequence tending to in�nity, literal ¬B(c) can be replaced
with S(c′) in the extended automaton.

The proof that literal ¬S(c) can be replaced with B(c) is exactly analo-
gous. �
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De�nition 2.5.3 If the acceptance condition of an automaton is a positive
boolean combination of B-conditions, the automaton is called an ωB-auto-
maton. We analogously de�ne ωS-automata.

Languages recognized by ωBS-automata (respectively ωB-automata,
ωS-automata) are called ωBS-regular (respectively ωB-regular, ωS-regu-
lar).

An important result of Boja«czyk and Colcombet [BC06] states:

Theorem 2.5.4 ([BC06, Theorem 4.1]) The complement of an ωB-regu-
lar language is an ωS-regular language, and vice versa.

The result is much more involved than the partial duality of the B-con-
dition and the S-condition used in the proof of Fact 2.5.2, because, by the
straightforward transformation, while negating a nondeterministic automa-
ton we obtain a co-nondeterministic (universal) one, not a nondeterministic
one.

Both the classes are extensions of the class of ω-regular languages, since
the Büchi condition can be simulated by either a B-condition or an S-condi-
tion. The simulation relies on the fact that both, B- and S-condition, require
in�nite number of resets. We get:

Remark 2.5.5 ([BC06]) Each ω-regular language is both ωB-regular and
ωS-regular.

Example 2.5.6 Language LS can be recognized by an ωS-automaton. The
automaton has one state and uses one counter that is increased when reading
letter a and is reset after each b. The acceptance condition is simply an
S-condition on the only counter.

2.5.1 Complexity of ωB- and ωS-regular Languages

As it is argued by Boja«czyk and Colcombet [BC06], ωB-, ωS-, and ωBS-
automata cannot be determinized. For ωB-automata it can be proven using
topological argument.

De�nition 2.5.7 An ωB-, ωS-, or ωBS-automaton is deterministic, if it has
exactly one initial state, and transition relation is a function δ : Q × A →
Q× ({res, inc} × Γ)∗.

Lemma 2.5.8 Each language recognized by a deterministic ωB-automaton
is in class BC0

2.
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Proof:
Recall that the acceptance condition of an ωB-automaton is a positive

boolean combination of B-condition and that B-condition is a conjunction
of:

1. the lengths of sequences of increments of counter c separated by resets
are commonly bounded, and

2. counter c is reset in�nitely many times.

Condition (1) can be unraveled as the following countable disjunction:∨
n<ω

there is no sequence of n inrements of c without a reset in between︸ ︷︷ ︸
Ln

Observe that for a �xed n, Ln is closed. Therefore, condition (1) describes
a Σ0

2 set of runs. Condition (2) is Π0
2, since it can be projected to set N2

from Fact 1.2.7. Therefore, the acceptance condition of a ωB-automaton is
in class BC0

2. By Remark 1.5.2, all languages recognized by deterministic
ωB-automata are in class BC0

2. �

Corollary 2.5.9 Deterministic ωB-automata have less expressive power
than the nondeterministic ones.

Proof:
Note that, by the complementation result (Theorem 2.5.4) and by Exam-

ple 2.5.6, the complement of language LS is recognized by a nondeterministic
ωB-automaton. By Lemma 2.3.4, language LS is Σ0

3-hard, hence cannot be
recognized by any deterministic ωB-automaton. �

The reminder of the section is dedicated to the proof of the following.

Theorem 2.5.10 The topological complexity of the class of ωB-regular lan-
guages is Σ0

3. The topological complexity of the class of ωS-regular languages
is Π0

3.

Lemma 2.5.11 Each ωB-regular language is in Σ0
3.

Corollary 2.5.9 implies that we cannot use the common routine of estimat-
ing topological complexity using the complexity of the acceptance condition
of a deterministic automaton. On the other hand, straightforward inference
of the topological complexity using nondeterministic automata would give
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non-Borel complexity (see Remark 1.5.3). Recall that this is because nonde-
terminism corresponds to second order quanti�cation (or projection) �exists
a run�. The trick of the following proof is to push the quanti�cation inside
the formula where we can, in a way, get rid of it using determinization of
parity automata.
Proof:

Fix an ωB-automaton A recognizing a language L, and let us �rst assume
that its accepting condition is a conjunction of B-conditions, i.e. is of the form∧

c∈ΓB

B(c),

for a set of counters ΓB.
Since there are �nitely many counters, each of the considered counters is

bounded if and only if there is a common bound k for all of them. Therefore
L can be de�ned as:

L =
{
w : ∃ρ

∧
c∈ΓB

valρ(c) is in�nite but bounded
}

=
⋃
k<ω

{
w : ∃ρ

∧
c∈ΓB

valρ(c) is in�nite and bounded by k
}︸ ︷︷ ︸

Lk

,

where the quanti�cation is over the set of all runs of A on w.
It is easy to see that for a �xed k, Lk can be recognized by a nonde-

terministic Büchi automaton. We simply store counter values in states and
do not allow them to be incremented above k. The acceptance condition
requires each of the counters c ∈ ΓB to be reset in�nitely often. Hence Lk is
ω-regular. Since, by Theorem 2.2.1, each ω-regular language is in BC0

2 and
L is a countable union of such sets, L ∈ Σ0

3.
In the general form, the acceptance condition of an ωB-automaton is a

positive boolean combination of B-conditions. We can write such a condition
in disjunctive normal form (DNF).

n∨
i=1

∧
c∈Γi

B(c),

for some n < ω and some sets of counters Γi. The language accepted by this
automaton is:

L =
{
w : ∃ρ

∨n
i=1

∧
c∈Γi

valρ(c) is in�nite but bounded
}

=
{
w :
∨n
i=1 ∃ρ

∧
c∈Γi

valρ(c) is in�nite but bounded
}

=
n⋃
i=1

{
w : ∃ρ

∧
c∈Γi

valρ(c) is in�nite but bounded
}︸ ︷︷ ︸

∈Σ0
3
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Hence L ∈ Σ0
3. �

Thanks to Theorem 2.5.4, we have:

Corollary 2.5.12 Each ωS-regular language is in Π0
3.

Proof (of Theorem 2.5.10):
The upper complexity bound is given by Lemma 2.5.11 and Corol-

lary 2.5.12.
Language LS provides the lower complexity bound for ωS-regular lan-

guages (see Example 2.5.6 and Lemma 2.3.4), while its complement�for
ωB-regular languages. �

2.5.2 Complexity of ωBS-regular Languages

In this section we show that the reasoning presented in the previous section
can be lifted to the case of automata that can use both S- and B-conditions.

Theorem 2.5.13 The topological complexity of the class of ωBS-regular lan-
guages is Σ0

4.

The proof of the following is by Szymon Toru«czyk.

Lemma 2.5.14 Each ωBS-regular language is in Σ0
4.

Proof:
The proof, on one hand, will use the result of Corollary 2.5.12 and, on

the other hand, will repeat a reasoning similar to the one from the proof of
Lemma 2.5.11.

Let us �x an ωBS-regular language L and an automaton A recognizing
it. First assume that an acceptance condition of A is of the form:∧

c∈ΓB

B(c) ∧
∧
c∈ΓS

S(c)

Then language L satis�es:

L =
⋃
k<ω

{
w : ∃ρ

∧
c∈ΓB

valρ(c) is in�nite and bounded by k
∧
∧
c∈ΓS

valρ(c) converges to ∞

}
︸ ︷︷ ︸

Lk

Note that each language Lk is ωS-regular, hence, by Corollary 2.5.12, it
is in Π0

3. Therefore L, as a countable union of such languages, is in Σ0
4.
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A general acceptance condition can be written in disjunctive normal form
(DNF), where literals are of the form B(c) or S(c) (see Fact 2.5.2). Again,
the language accepted by such an automaton is a union of languages corre-
sponding to each disjunct, so it is in Σ0

4. �

Now we need to show that the bound is tight. For that we consider the
same language, that was used in the paper by Boja«czyk and Colcombet
[BC06, Corollary 2.8] to show that the class of ωBS-regular languages is not
closed under complements. Let

S =

x ∈ Nω :
the sequence x can be partitioned into
a (possibly �nite) bounded subsequence and
a subsequence that is empty or tends to ∞


For g : Nω → {a, b}ω as de�ned by equation 2.3, g(S) is exactly the

language used in the mentioned paper [BC06, Corollary 2.8]. The same
language is given by Thomas and Lescow [TL93, page 595] as an example of
Σ0

4-complete set.
First, observe that:

S =
{
x ∈ Nω : ∃∞k∈N∃∞j<ω xj = k

}
Fact 2.5.15 Language S is Π0

4-complete.

Proof:

First we prove Π0
4-hardness. Let L ∈ Π0

4(X) for a zero-dimensional Polish
space X. By Lemma 1.2.9 and Lemma 1.2.8:

L =
−→⋂
m<ω

⊔
n<ω

Lm,n

for Lm,n ∈ Π0
2(X) for each m and n. Since, by Fact 1.2.7, N2 is Π0

2-complete,
for each m and each n there is a continuous reduction fm,n : X → {0, 1}ω of
Lm.n to N2.

Let us �x a bijection ι : ω × ω → ω and de�ne a continuous function
f : X → Nω by:

(f(x))ι(ι(m,n),l) =

{
ι(m,n) if (fm,n(x))l = 1
0 otherwise
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Let us now argue that f reduces L to S.

f(x) ∈ S
⇐⇒ ∃∞k ∃∞j (f(x))j = k

⇐⇒ ∃∞k ∃∞l (f(x))ι(k,l) = k by the de�nition of f
k can only occur at positions
of the form ι(k,_) in f(x)

⇐⇒ ∃∞(m,n)∃∞l (f(x))ι(ι(m,n),l) = ι(m,n)

⇐⇒ ∃∞(m,n)∃∞l (fm,n(x))l = 1 by the de�nition of f
⇐⇒ ∃∞(m,n) fm,n(x) ∈ N2 by the de�nition of N2

⇐⇒ ∃∞(m,n) x ∈ Lm,n because fm,n is a reduction
⇐⇒ ∃∞m x ∈

⊔
n<ω Lm,n because for each m there is

at most one n s.t. x ∈ Lm,n
⇐⇒ x ∈

−→⋂
m<ω

⊔
n<ω Lm,n because

{⊔
n<ω Lm,n

}
m<ω

is
decreasing

⇐⇒ x ∈ L

This concludes the proof of hardness.
We prove that S ∈ Π0

4. Let us observe that:

S =
{
x ∈ Nω : ∃∞k∈N x ∈ hk−1(N2)

}
,

for hk : Nω → {0, 1}ω de�ned by:

(hk(x))i =

{
1 if xi = k
0 otherwise

Therefore, by equation (1.13), S ∈ Π0
4. �

Corollary 2.5.16 Language S is Σ0
4-complete.

For function g as de�ned by equation (2.3), we have:

Corollary 2.5.17 Language g(S) is Σ0
4-hard.

Proof:
Function g is an injection, so g−1 (g(S)) = S and g reduces S to g(S).

Function g is also continuous, hence, language g(S) is Σ0
4-hard. �

Now it su�ces to note that:

Fact 2.5.18 ([BC06]) Language g(S) is ωBS-regular.
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Originally the fact is proven by de�ning the language using an appropriate
ωBS-regular expression10, however it is straightforward to de�ne a nondeter-
ministic automaton recognizing this language.

Proof (of Fact 2.5.18, sketch):
We construct a nondeterministic ωBS-automaton recognizing the lan-

guage. The automaton uses two counters and before each block of a's non-
deterministically decides which one of the counters will be increased while
reading the block. The acceptance condition imposes S-condition on one
counter and B-condition on the other one. �

Proof (of Theorem 2.5.13):
The upper topological complexity bound is given by Lemma 2.5.14, while

the lower bound comes from Fact 2.5.18 and Corollary 2.5.17. �

2.5.3 Alternating ωBS-automata

On the way towards �nding a model of automata for MSO+U logic, alternat-
ing ωBS-automata were considered (see [HMT10]). As it was later discovered
(see Corollary 2.4.18), the model is not able to capture the whole logic. On
the other hand, to the author's best knowledge, it is not known if each lan-
guage recognized by an alternating ωBS-automaton is de�nable in MSO+U
logic. However, since the class seems to be a natural extension of the class
of nondeterministic ωBS-automata, we give here a lower bound for the topo-
logical complexity of alternating ωBS-automata. The bound is ω levels of
the Borel hierarchy, which can be compared to 4 levels inhabited in case of
nondeterministic automata.

Alternating ωBS-automata are de�ned similarly as nondeterministic
ωBS-automata. The main di�erence is that the state space Q is partitioned
into Q∀ (universal states) and Q∃ (existential states). We use game semantics
for such automata. For a given alternating automaton A and a word w ∈ Aω
we de�ne a two-player game. A play in this game starts in the initial state11

of the automaton and in the �rst position of the word, and proceeds by

10In their paper [BC06], Boja«czyk and Colcombet introduce ωBS-regular expressions
as an extension of standard regular expressions by introduction of bounded and strongly
unbounded exponents. They are proven to have the same expressive power as ωBS-auto-
mata. We refer the reader to the paper [BC06] for details.

11To provide a convenient way of complementing alternating automata it is important
that there is only one initial state. However, since nondeterministic ωBS-automata with
one initial state have the same expressive power as automata with a set of initial states,
the alternating automata are still a proper extension of the nondeterministic ones.

74



applying transitions of the automaton on word w consistent with the current
state and the letter in the current position in the word. Player ∀ (respectively
∃) chooses transitions when the automaton is in a state from Q∀ (respectively
Q∃). Additionally, in such automata, the transition relation can contain ε-
transitions. An ε-transition consists only of a state change; the letter is not
read (position in the word does not change) nor are the counters updated by
such a transition. The result of the play is an in�nite sequence of transitions
consistent with the transition relation and consecutive letters of the word.
The play is winning for ∃ if the sequence of counter operations induced by
the transitions satis�es the acceptance BS-condition of A, i.e. a boolean
combination of B- and S-conditions. Word w is accepted by the automaton
if and only if Player ∃ has a winning strategy in the above game.

Languages Complete for the Classes Π0
2n

We now present examples of languages of in�nite words complete for the
Borel classes Π0

2n, which are recognized by alternating ωBS-automata. The
languages essentially generalize set S from Section 2.5.2.

First, we work with the spaces of sequences of vectors of numbers Nn =
(Nn)ω. An easy embedding, described below, will transfer the results into the
space of in�nite words over �nite alphabet. For n = 0, the above de�nition
gives the space consisting of the unique in�nite ω-sequence of empty vectors,
N0 = {(ε)ω}.

Let us �x an alphabet A = {a, b, c}. We encode a sequence of vec-
tors in space Aω. Each vector (zn, zn−1, . . . , z1) is mapped to the word
caznbazn−1b . . . baz1 , and the codes of consecutive vectors are concatenated.
We denote the embedding de�ned this way Wn : Nn → Aω.

We use the following notations to easily operate on sequences of vectors.

• For n > 0, η ∈ (Nn)6ω and S ⊆ N, let η �∈S be the subsequence
of η consisting of those vectors that have a value from S at the �rst
coordinate. If S = {m} for some m ∈ N, we simply write η�=m instead
of η�∈{m}.

• For n > 0, let π1̄ : (Nn)6ω → (Nn−1)
6ω be the projection that cuts o�

the �rst coordinate from each vector in a given sequence.

The following sequence of languages is, up to an encoding, presented as
an example by Thomas and Lescow [TL93, pages 595�596].

De�nition 2.5.19 For n > 0 we de�ne:

Ln :=
{
η ∈ Nn : ∃∞mn∈N∃∞mn−1∈N . . . ∃∞m1∈N∃∞x<ω ηx = (mn,mn−1, . . . ,m1)

}
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Note that the order of quanti�ers is important, because the quanti�ers ∃∞x ∃∞y
do not commute, in general. Additionally note that L0 = {ε}ω = N0.

Let us observe that L1 = S, for S de�ned as in Section 2.5.2.
The following remark describes languages Ln in an inductive fashion.

Remark 2.5.20 For n > 0, a sequence η ∈ Nn belongs to Ln if and only if
there exist in�nitely many m ∈ N such that η�=m is an in�nite sequence and
π1̄ (η�=m) ∈ Ln−1.

Note the following properties of languages Ln.

Proposition 2.5.21

• monotonicity: If η ∈ Nn and ν is a subsequence of η, then ν ∈
Ln =⇒ η ∈ Ln,

• pre�x independence: For η ∈ Nn and ν ∈ (Nn)∗, η ∈ Ln ⇐⇒ νη ∈
Ln.

• pigeonhole property: Let ν1, ν2, . . . , νk be a partition of a sequence
η ∈ Ln into subsequences, then for some j ∈ {1, 2. . . . , k}, νj ∈ Ln.

Proof:
Monotonicity and pre�x independence come straight from the correspond-

ing properties of ∃∞ quanti�er, namely the innermost occurrence of this
quanti�er in the formula de�ning Ln.

We prove pigeonhole property by an induction on n using the character-
ization of languages Ln given by Remark 2.5.20.

Let n = 0. In a partition of η ∈ L0 into �nitely many subsequences, one
of the subsequences is in�nite. Each in�nite sequence in N0 is in L0, what
concludes the proof of the induction basis.

For the inductive step take n > 0 and assume that pigeonhole property
holds for Ln−1. Now take η ∈ Ln and let ν1, ν2, . . . , νk be a partition of
η into subsequences. By Remark 2.5.20, there is an in�nite set of numbers
{m0,m1,m2, . . .} ⊆ N such that for each i < ω, η�=mi is an in�nite sequence
and π1̄ (η�=mi) ∈ Ln−1. Note that for each i, π1̄ (ν1�=mi), π1̄ (ν2�=mi), . . . ,
π1̄ (νk�=mi) is a partition of π1̄ (η�=mi). Therefore, by the inductive assump-
tion, there is such ji ∈ {1, 2, . . . , k} that π1̄ (νji�=mi) ∈ Ln−1. Since each
ji 6 k, there is such p 6 k that Ip := {i : ji = p} is an in�nite set. There-
fore, {mi}i∈Ip is an in�nite sequence of numbers, such that for each i ∈ Ip,
νp�=mi is an in�nite sequence and π1̄ (νp�=mi) ∈ Ln−1. Hence, νp ∈ Ln, what
concludes the inductive step proof. �
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Let us now transform characterization given by Remark 2.5.20 to ob-
tain characterization in logical terms, that will serve as a guideline in the
construction of alternating automata recognizing the languages.

For n > 0, for a sequence η ∈ Nn and for a set X of positions in η, let
Bndn(η,X) express that the values of the �rst coordinate of vectors in η at
positions from X are bounded.

Proposition 2.5.22 For n > 0, a sequence η ∈ Nn belongs to Ln if and
only if:

∀X
[
Bndn(η,X) =⇒ ∃Y

[
Bndn(η, Y ) ∧ (X ∩ Y=∅) ∧

(
π1̄

(
{ηi}i∈Y

)
∈ Ln−1

)]]
(2.11)

In the above, {ηi}i∈Y denotes the subsequence of η consisting of the elements
whose positions belong to Y .

Proof:
Let us �x n > 0.

(⇒) Let η ∈ Ln. Take any set X of positions of η such that values of the �rst
coordinate of vectors at those positions are commonly bounded. We need to
�nd a set Y as required by (2.11). Let mX be the greatest value occurring
at the �rst coordinate at positions from X. By Remark 2.5.20, there are
in�nitely many numbers m such that π1̄ (η�=m) ∈ Ln−1. Let us then take
mY > mX such that π1̄ (η�=mY ) ∈ Ln−1. Now take as Y the set of all positions
at which η has value mY at the �rst coordinate. Such Y is clearly disjoint
with X; Bndn(η, Y ) clearly holds; and π1̄

(
{ηi}i∈Y

)
= π1̄ (η�=mY ) ∈ Ln−1.

Hence (2.11) holds for η.

(⇐) Take any η ∈ Nn that satis�es (2.11). We prove that there are arbi-
trary large m such that π1̄ (η�=m) ∈ Ln−1. Let m0 ∈ N and let X be the set
of all positions at which η has a value less than m0 at the �rst coordinate.
Let us take Y such that (2.11) holds, in particular π1̄

(
{ηi}i∈Y

)
∈ Ln−1.

Let mY be the greatest value occurring as the �rst coordinate at posi-
tions from Y . Observe that π1̄

((
{ηi}i∈Y

)
�=m0

)
, π1̄

((
{ηi}i∈Y

)
�=(m0+1)

)
, . . . ,

π1̄

((
{ηi}i∈Y

)
�=mY

)
is a partition of π1̄

(
{ηi}i∈Y

)
. By pigeonhole property,

there is such m0 6 m 6 mY that π1̄

((
{ηi}i∈Y

)
�=m

)
∈ Ln−1. Now, by mono-

tonicity, π1̄ (η�=m) ∈ Ln−1. We have shown that for each m0 there is such
m > m0 that π1̄ (η�=m) ∈ Ln−1. Therefore, there is in�nitely many m such
that π1̄ (η�=m) ∈ Ln−1. Hence, by Remark 2.5.20, η ∈ Ln. �

We sketch a proof of the following as a side note of the section:

Proposition 2.5.23 Languages Wn(Ln) are MSO+U de�nable.
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Proof (sketch):
The idea is to formalize in MSO+U the property given by (2.11). The

�rst step to achieve it is to work with Wn-encodings of sequences of vectors.
For such encoded sequences, using i.a. techniques as shown in formula (2.6),
we can express in MSO properties like �being a maximal block of consec-
utive a's that correspond to the k-th coordinate of one of the vectors in a
sequence�. One can observe that, by similar means that are used in equation
2.5, property Bndn can also be de�ned in MSO+U in this context. �

Topological Complexity

Since the topological complexity of languages Wn(Ln) is mentioned but not
proven in the paper by Thomas and Lescow [TL93, pages 595�596], we prove
the following fact, for completeness.

Proposition 2.5.24 For every n>0, language Ln is Π0
2n+2-complete.

Proof:
The proof is inductive. For n = 1 this is a consequence of Fact 2.5.15.

For n > 1, by equation (1.13) and by the inductive assumption, language Ln
is in class Π0

2n+2.
Let us take n > 1, and any M ∈ Π0

2n+2(X), for a zero-dimensional Polish
space X. We construct a continuous reduction of M to Ln.

By Lemma 1.2.9, there is a decreasing sequence {Mi}i<ω of sets from

Σ0
2n+1 such that M =

−→⋂
iMi. By Lemma 1.2.8, there is a sequence{

M
(i)
k

}
k<ω

of sets from Π0
2n that are (for �xed i) pairwise disjoint, and:

⊔
k

M
(i)
k = Mi

By the inductive assumption, language Ln−1 is Π0
2n-hard, so there are

continuous reductions R(i)
k : X → Nn−1 of sets M (i)

k to Ln−1.
Let us �x a bijection ι : ω2 → ω, and de�ne function R : X → Nn by:

(R(x))ι(ι(i,k),m) :=
(
ι(i, k),

(
R

(i)
k (x)

)
m

)
∈ Nn, (2.12)

where the �rst element in braces is a number and the second is an (n−1)-
vector of numbers, so they form an n-vector.

Since functions R(i)
k are continuous, R is also continuous. Now, it is

enough to show that x ∈M ⇔ R(x) ∈ Ln.
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R(x) ∈ Ln
⇐⇒ ∃∞m π1̄ (R(x)�=m) ∈ Ln−1 by Remark 2.5.20
⇐⇒ ∃∞(i,k) π1̄

(
R(x)�=ι(i,k)

)
∈ Ln−1 by (2.12)

⇐⇒ ∃∞(i,k) R
(i)
k (x) ∈ Ln−1 by (2.12)

⇐⇒ ∃∞(i,k) x ∈M
(i)
k because R(i)

k is a reduction

of M (i)
k to Ln−1

⇐⇒ ∃∞i ∃k x ∈M
(i)
k because for a �xed i there is

at most one k s.t. x ∈M (i)
k

⇐⇒ ∃∞i x ∈Mi

⇐⇒ x ∈
−→⋂

iMi = M

�

Automata Construction

Theorem 2.5.25 For each n < ω, there is an alternating ωBS-automaton
recognizing a Π0

2n+2-hard language.

In order to prove this theorem we provide yet another characterization of
languages Ln. This time in terms of games.

For n < ω and η ∈ Nn, let Gn (η) be the following game. The game is
played by two players, the existential one ∃ and the universal one ∀. During
a play in the game players process consecutive vectors of sequence η. In
each vector ηk = (zn, zn−1, . . . , z1) they consider consecutive components zn,
zn−1, . . . ,z1. A move of each player can be to select a given component or
not to select it, according to the following rules. If a component currently
considered is the �rst component of some vector, Player ∀ decides to select
it or not. If ∀ has not selected the component, ∃ decides to select it or not,
otherwise she cannot select the component. If the component is not the �rst
one in a vector, Player ∀ can select it only if all preceding components of this
vector were selected by ∃. Player ∃ can select any given component only if
she has selected all preceding components of the same vector and if Player
∀ has decided not to select the considered component. As soon as players
make their decisions, the play progresses to the next component, or the �rst
component of the next vector if the considered component is the last one in
a vector.

The winning condition is stated using sequences a(n), e(n), a(n−1), e(n−1),
. . . , a(1), e(1), where a(n) is the sequence of the �rst components selected
by Player ∀, e(n) is the sequence of the �rst components selected by Player
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∃, and, in general, a(n−k+1) (respectively e(n−k+1)) is the sequence of kth
components selected by Player ∀ (respectively Player ∃). Player ∃ wins if
and only if for each 0 < k 6 n:

sequence e(k) is in�nite and bounded, or
there exists such m > k that sequence a(m) is unbounded.

(2.13)

Otherwise Player ∀ wins.

Lemma 2.5.26 For n < ω and η ∈ Nn, η ∈ Ln if and only if Player ∃ has
a winning strategy in game Gn (η).

Proof:

(⇒)We show a winning strategy σn (η) for the existential player in Gn (η)
for each η ∈ Ln. The strategy is constructed inductively. For n = 0, there is
only one sequence in Ln, namely the sequence of empty vectors (ε)ω. There is
only one play in the game on this sequence and players do not need to make
any decisions during this play, because there are no components of vectors.
Therefore, there is only one strategy of ∃ in this case. We take the unique
strategy as σ0 ((ε)ω).

In the inductive step, we assume that for each θ ∈ Ln−1 strategy σn−1 (θ)
is constructed and we construct strategy σn (η) for a given η ∈ Ln. The
strategy uses a register m∀n, which, in each moment, stores the greatest value
of the �rst component selected by Player ∀ so far (initially value−1 is stored).
Recall that for n > 0, η ∈ Ln if and only if there exist in�nitely many m ∈ N
such that

η�=m is in�nite and π1̄ (η�=m) ∈ Ln−1 (2.14)

Observe, that register m∀n increases its value when Player ∀ selects the
�rst component of a vector and the value of this component is greater than
the value stored in the register so far. Let a play be at its beginning or
in the moment when register m∀n has just increased. Let i be the number
of currently processed vector. Let m∃n be the least m greater than m∀n, for
which condition (2.14) holds. Let ηi: be the su�x of η starting at position
i. By pre�x independence of Ln−1, π1̄

(
ηi:�=m∃n

)
∈ Ln−1. Starting from this

point (until the next increase of the register) strategy σn (η) selects the �rst
component of each vector if and only if its value is m∃n (note that in such
a case Player ∀ has not selected it because otherwise m∀n > m∃n, what is
impossible by the de�nition of m∃n). On the remaining components of each
vector, the strategy follows strategy σn−1

(
π1̄

(
ηi:�=m∃n

))
.

The proof that the strategies are winning is inductive.
Induction basis: It is enough to note that the unique play on η ∈ L0 is

winning for ∃.
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Inductive step: Let n > 0. Note that if m∀n increases in�nitely many
times during a play, then sequence a(n) from the de�nition of the game is
unbounded and Player ∃ wins the play. Otherwise, the register stabilizes,
so there exists the greatest value of the �rst components selected by Player
∀ during the whole play. Let us denote this value by m̂∀n . Let m̂∃n be the

least m greater than m̂∀n, for which condition (2.14) holds. There exists such
i that Player ∃, playing according to strategy σn (η), starting from vector
i till the end of the play have selected exactly those �rst components that

have value m̂∃n and played according to σn−1

(
π1̄

(
ηi:�=m̂∃n

))
on the remaining

components. Note that in such a play e(n) is clearly in�nite and bounded,
and that winning condition (2.13) holds for the su�x of a play on ηi: by the
inductive assumption. By pre�x independence of (2.13), winning condition
also holds for the whole play.

(⇐) Now we show a winning strategy σn (η) for Player ∀ in Gn (η) for each
η ∈ Nn \Ln. Since there is no η ∈ N0 \L0, no strategy needs to be given for
n = 0.

Note that, for n > 0, if η ∈ (Nk)
6ω \Ln, then there exists natural number

M such that for all m >M :

η�=m is �nite or π1̄ (η�=m) /∈ Ln−1 (2.15)

Let M∀
n (η) be the least such M . In particular, M∀

n (ε) = 0.
The strategy uses two types of registers to make decisions: registers m∀n,

m∀n−1, . . . , m
∀
1, and registers m∃n,m

∃
n−1, . . . , m

∃
1. Registers m∀n and m∃n are

used to determine behavior on the �rst components of vectors, registersm∀n−1,
m∃n−1 are used to determine behavior on the second components, and so on.
For each k, register m∃k, in each moment, stores the largest value of the
(n − k + 1)st component selected by Player ∃ (value −1 is stored initially).
Register m∀n initially stores value M∀

n (η). For k < n, register m∀k initially
stores value 0. The value stored by register m∀n never changes. Each time
when register m∃k increases (Player ∃ selects (n − k + 1)th component with
value greater than the value stored in the register so far), the values of all
registersm∀l for l < k are recalculated. Now we describe how the recalculation
procedure looks like.

For each 0 < k 6 n, we de�ne sequence η(k) ∈ (Nk)
6ω

as follows.

η(n) := η

η(k) := π1̄

(
η(k+1)�∈{m∀k+1,m

∀
k+1+1,...,m∃k+1}

)
for k < n

We maintain the invariant that for each 0 < k 6 n and for each m > m∀k:

η(k)�=m is �nite or π1̄

(
η(k)�=m

)
/∈ Lk−1 (2.16)
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For k = n the invariant is initially satis�ed, by (2.15). Initially for each
k, m∀k > m∃k, therefore, for k < n, η(k) = ε and the invariant is satis�ed.

Let a play be in the moment when register m∃k has just increased. Let i
be the number of currently processed vector. By invariant (2.16), for every
m ∈ {m∀k,m∀k+1, . . . ,m∃k}, η(k)�=m is �nite or π1̄

(
η(k)�=m

)
/∈ Lk−1. Therefore,

by the pigeonhole property of Lk−1:

η(k)�∈{m∀k ,m∀k+1,...,m∃k}
is �nite or η(k−1) = π1̄

(
η(k)�∈{m∀k ,m∀k+1,...,m∃k}

)
/∈ Lk−1

Therefore, we can set m∀k−1 := M∀
k−1

(
η(k−1)

)
. By the de�nition of M∀

k−1,
the invariant for k − 1 is satis�ed. The change of m∀k−1 causes the change of
η(k−2), by the de�nition. Therefore, in order to maintain the invariant, we
set m∀k−2 := M∀

k−2

(
η(k−2)

)
. Further, we set m∀k−3, m

∀
k−4, . . . , m

∀
1 analogously.

Strategy σn (η) tells Player ∀ to select all the �rst components with value
less than m∀n. If Player ∃ selects the �rst component of a vector, the strategy
tells Player ∀ to select the second component of the vector if and only if its
value is less than m∀n−1. In general, if k �rst components of a given vector
are selected by Player ∃, then Player ∀, playing according to the strategy,
selects (k + 1)st component if and only if its value is less then m∀n−k.

Now we prove that the strategy is winning.
Let η ∈ Nn\Ln. Note that there is no η ∈ N0\L0, so we may assume that

n > 0. While following strategy σn (η), Player ∀ selects the �rst coordinates
with values less than m∀n, which does not change during a play, so sequence
a(n) is bounded. If sequence e(n) is unbounded or �nite then Player ∀ wins.
Otherwise the value of register m∃n increases �nitely many times. Let in be

the number of vector on which m∃n increases for the last time, and let m̂∃n
be the maximal value of m∃n. Note that, according to the rules of the game
and by the construction of register m∃n, starting from inth vector, Player ∃
selects only the �rst components of vectors with values between m∀n and m̂∃n
(potentially selects not all of them). Starting from inth vector, m∀n−1 =
M∀

n−1

(
η(n−1)

)
, and Player ∀ selects second components with value less than

m∀n−1. Therefore sequence a
(n−1) is bounded. If sequence e(n−1) is unbounded

or �nite then Player ∀ wins. Otherwise, m∃n−1 stabilizes at some vector and,
repeating the above reasoning, we get that m∀n−2 also stabilizes at that point.
We repeat the reasoning for the remaining coordinates and obtain that either
Player ∀ wins because Player ∃ makes one of the registers m∃n, m

∃
n−1, . . . , m

∃
1

to increase in�nitely many times, or all the registers m∃n, m
∃
n−1, . . . , m

∃
1 and

m∀n, m
∀
n−1, . . . , m

∀
1 stabilize at some point with values that we denote m̂∃k

and m̂∀k, respectively. In the latter case, also all sequences η(k) do not change

from some point. By invariant (2.16), for each m̂∀1 6 m 6 m̂∃1, η
(1) �=m
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is �nite or π1̄

(
η(1)�=m

)
/∈ L0. Since, by the de�nition of L0, if η(1) �=m is

in�nite then π1̄

(
η(1)�=m

)
∈ L0, we get that η(1) �=m is �nite in this case.

Hence also η(1)�∈{m̂∀1 ,m̂∀1+1,...,m̂∃1}
is �nite. Now observe that Player ∃ selects,

from some moment, only those last components of vectors, that belong to
η(1) �∈{m̂∀1 ,m̂∀1+1,...,m̂∃1}

. Therefore, �niteness of sequence η(1) �∈{m̂∀1 ,m̂∀1+1,...,m̂∃1}

implies �niteness of sequence e(1) and Player ∀ wins the play.
We conclude that all plays played by Player ∀ according to the strategy

are won by ∀. �

Proof (of Theorem 2.5.25):
It is possible to construct an alternating ωBS-automaton recognizing ex-

actly the language Wn(Ln), for any given n. However, to avoid technical
inconveniences, we construct an automaton An for which we only require
that it accepts a word Wn(η) if and only if η ∈ Ln. The latter is su�cient
for the proof of hardness. The automaton implements game Gn (η).

The sequences a(n), e(n), a(n−1), e(n−1), . . . , a(1), e(1) are realized by coun-
ters. Selecting a given component by a given player in the game is done
by incrementing the corresponding counter on each letter of the block of as
corresponding to the component and reseting it after this block (when letter
b is read). Additionally all a(i) counters are reset on each letter b.

The acceptance condition follows exactly the winning condition (2.13)
and uses B-conditions. Recall that B-condition implicitly requires in�nite
number of resets. This is why we reset counters a(i) on each letter b, regardless
whether Player ∀ have selected the preceding block of as or not. This allows
Player ∀ to select a �nite set without losing a play. �

2.6 Remarks and Open Questions

Automata

As far as the author knows, the following was never observed before the paper
coauthored by him [HMT10].

Corollary 2.6.1 (of Theorem 2.5.25) Alternating ωBS-automata are mo-
re expressive than boolean combinations of nondeterministic ωBS-automata.

While the topological complexity of ωB-, ωS-, and ωBS-regular languages
is solved by Theorem 2.5.10 and Theorem 2.5.13, there is one question on
the automata side that we leave open. There is a huge gap between the
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upper and the lower bound for the complexity of alternating ωBS-automata
that we provide. On one hand we know that they inhabit at least all �nite
levels of the Borel hierarchy. On the other hand, by Remark 1.5.4, each
language recognized by such an automaton is in Σ1

2. The gap is signi�cant,
however, the importance of the model has decreased, as we know that it is
not su�cient to cover the whole expressive power of MSO+U logic.

To the best authors knowledge, it is open whether emptiness problem is
decidable for alternating ωBS-automata. If it occurs to be undecidable, the
topological complexity of this model may occur even less interesting.

Alternating ωBS-automata may regain the interest of researchers if it is
proven that, as it is widely believed, they recognize a subclass of MSO+U-
de�nable languages.

MSO+U

While in this thesis we concentrate on calculating the topological complexity
of a class of languages, what was done for MSO+U in Theorem 2.4.17, another
question that could be asked from the descriptive set theoretical perspective
is what levels of the Borel hierarchy are inhabited by sets de�ned by the logic
(see Figure 1).

In general, each language theoretic class is doomed to have a gap prop-
erty similar to the one observed for deterministic tree languages in paper by
Damian Niwi«ski and Igor Walukiewicz [NW03]. To observe this, �rst note
that since all sets in a language theoretic class are described by �nitely rep-
resented objects, like formulas or automata, the class is countable. On the
other hand, there are ω1 levels of the Borel hierarchy. Moreover, since the
co�nality of ω1 is ω1, for each language theoretic class there is a countable
upper bound on the level of the Borel hierarchy inhabited by sets of the class.
For each given class the question can be asked what is the lowest such bound.

Proposition 2.5.23 gives a partial answer to this question, by providing
languages de�nable in MSO+U on each of the �rst ω levels of the Borel
hierarchy. A single step behind ω is given by Skrzypczak in his paper with
the author of this thesis (see [HS12, Example 6.2]). However, according to
the author's best knowledge, no countable upper bound for the occupied
levels is known.
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Chapter 3

In�nite Trees � Within Regularity

The notion of regularity extends to the domain of trees. A natural mod-
i�cation of the model of parity automata and MSO logic with signature
suitable for tree-models, both lead to the same class of languages called reg-
ular languages of in�nite trees (or shorter: regular tree languages).
Compared to regular languages of ω-words, the class is much more complex.
Topologically, it contains non-Borel languages, and even languages beyond
the �rst level of the projective hierarchy (see Section 3.3). There are sev-
eral widely studied and well motivated decidability questions that are still
unanswered for this class. A notable example is the problem of calculating
Rabin-Mostowski index of a language, as de�ned in Section 3.4. The situ-
ation motivates analysis of subclasses of the class of regular tree languages,
for which some of the complexities would decrease and some of the questions
would be easier to answer. Some of the subclasses come from restrictions
of the automata model in consideration�and those are the ones that we
concentrate on in this thesis.

In this chapter we give a lower bound for the topological complexity of
the class of languages recognized by unambiguous parity tree automata. We
show, in particular, that it reaches beyond the sigma-algebra generated by Σ1

1

and Π1
1 sets. Recall that languages recognized by deterministic automata are

all in Π1
1. The research was initiated in the paper by the author of this thesis

[Hum12], but the majority of the results presented are not published yet.
The results are preceded by a short introduction to regular tree languages
including the topological complexity of the class and some of its subclasses.
We also introduce Rabin-Mostowski index hierarchy as it is a complexity
measure that we compare to the topological complexity.
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3.1 Parametrized Tree Languages

Although we are mainly interested in full binary trees, some constructions
use trees with leaves. Therefore, we introduce the notation TA,X for labeled
trees, in which all inner nodes are of arity 2 (have two successors) and have
labels from A, and all leaves are labeled with letters from X (sets X and A
do not need to be disjoint). Trees from TA,X are sometimes called contexts,
languages of such trees are called parametrized languages, and letters
from X are parameters (or variables). Leaves of contexts are often called
holes, since they are designed to be �lled with trees or other contexts.

Now we de�ne language substitution, that is one of possible extensions
of concatenation of word languages to trees.

Let L ⊆ TA,X be a parametrized language and, for B, Y being arbitrary
alphabets, let α : X (→ P

(
TB,Y

)
be a partial function. We de�ne L [α]

to be the language of all trees that come from substituting each occurrence
of any variable x ∈ dom (α) with some tree from α(x) in some tree from L.
More formally:

t ∈ L [α] ⇐⇒ ∃t′∈L ∀v∈{l,r}∗
if v is an inner node in t′ then t(v) = t′(v)
if v is a leaf in t′ then

if t′(v) ∈ dom (α) then tv ∈ α(t′(v))
otherwise v is a leaf of t and t(v) = t′(v).

Note that if dom (α) = X and Y = ∅ then L [α] ⊆ TA∪B is a language of full
binary trees.

We sometimes write L(x1, x2, . . . , xk) for L ⊆ TA,{x1,x2,...,xk} to indicate
the set of all parameters. For α = {x1 7→ L1, x2 7→ L2, . . . , xk 7→ Lk}, we
sometimes write

L [x1 7→ L1, x2 7→ L2, . . . , xk 7→ Lk] , or even L(L1, L2, . . . , Lk)

instead of L [α].
Note that tree substitution is monotonic, in the following sense:

Remark 3.1.1 If dom (α) = dom (β) =: Z, ∀x∈Z α(x) ⊆ β(x), and L ⊆ L′,
then L [α] ⊆ L′ [β].

3.2 Parity Tree Automata

Parity tree automata constitute one of the standard models of automata for
regular languages of in�nite binary trees. Let us start with a more general
model.
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De�nition 3.2.1 (Parametrized Automaton) A parametrized parity
tree automaton (or simply parametrized automaton) is a tuple A =
〈A,Q,X, δ, I, p〉, where:

• A is a �nite alphabet,

• Q is a �nite set of states,

• X ⊆ Q is a set of parameters (or parameter-states),

• δ ⊆ (Q \X)× A×Q×Q is a transition relation,

• I ⊆ Q is a set of initial states,

• p : (Q \X)→ N is a priority function.

For X = {x1, x2, . . . , xk}, we sometimes use the term-like notation
A(x1, x2, . . . , xk) to explicitly enumerate the set of all parameters and to
set their order. To talk about runs and, especially, the acceptance we need
to instantiate the automaton.

Let, then, X = {x1, x2, . . . , xk} and let L1, L2, . . . , Lk ⊆ TA,B be lan-
guages, for some alphabet B. We note by A(L1, L2, . . . , Lk) the instantia-
tion of automaton A with languages L1, L2, . . . , Lk. A run of instantiated
automaton A(L1, L2, . . . , Lk) on a tree (or context) t ∈ TA,B is a labeled
context ρ ∈ TQ,X such that:

1. dom (ρ) ⊆ dom (t),

2. ε ∈ dom (ρ),

3. ρ(ε) ∈ I,

4. ρ(v) ∈ Q \X =⇒ vl, vr ∈ dom (ρ) ∧ (ρ(v), t(v), ρ(vl), ρ(vr)) ∈ δ,

5. ρ(v) ∈ X =⇒ vl /∈ dom (ρ) ∧ vr /∈ dom (ρ).

A run ρ is accepting if:

1. ∀α∈{l,r}ω (∀nα�n∈ dom (ρ)) =⇒ ρ (α) satis�es the parity condition,

2. ∀v∈{l,r}∗
∧k
i=1 (ρ(v)=xi =⇒ tv ∈ Li).

The language recognized by instantiation A(L1, L2, . . . , Lk) of the
parametrized automaton is the set of those contexts t ∈ TA,B on
which there is an accepting run of A(L1, L2, . . . , Lk) and is denoted by
L (A(L1, L2, . . . , Lk)).
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De�nition 3.2.2 (Parity Automaton) A parametrized tree automaton
with the empty set of parameters is called a parity tree automaton and
denoted A = 〈A,Q, δ, I, p〉 (the empty set of parameters is omitted). Such an
automaton does not need an instantiation (or there is the unique instantia-
tion). The notions of a run, an accepting run and the language recog-
nized by a parity automaton (denoted L (A)) are inherited from the respective
de�nitions for an instantiation of a parametrized automaton. Note that a run
of a parity automaton is always a full tree, hence only points (3), (4) of the
above de�nition of a run and point (1) of the de�nition of accepting run are
relevant in this case.

In the sequel we denote a transition (q, a, q1, q2) ∈ δ as a

q

q1 q2

. We

also use a compressed notation, e.g. if (q, a, q1, q2), (q′, a, q1, q2) ∈ δ we write

a

q, q′

q1 q2

.

We use the notation Aq for the automaton A modi�ed in such a way, that
q becomes the only initial state. We also write AI if we want to put set I as
initial states in A.

De�nition 3.2.3 (Regular Tree Language) A language L ⊆ TA of full
in�nite binary trees is called regular if it is recognized by a parity tree au-
tomaton.

Example 3.2.4 Consider the following language of full binary trees over
alphabet {0, 1}:

EB =
{
t ∈ T{0,1} : there exists a path in t with in�nitely many labels 1

}
Note that EB is recognized by the following nondeterministic parity tree au-
tomaton EB = 〈{1, 0}, {1, 2,>}, δ, {1}, p〉, where p = {1 7→ 1, 2 7→ 2,> 7→ 2}
and δ contains the following transitions:

1

1, 2

2 >

1

1, 2

> 2

0

1, 2

1 >

0

1, 2

> 1

0, 1

>

> >

Therefore, EB is regular.

Note that a parametrized automaton can be instantiated with arbitrary
languages, not necessarily regular. We use this fact e.g. in Lemma 3.8.36
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below, that is proven with no regularity assumption. If, on the other hand,
languages L1, L2, . . . , Lk are regular, a parity automaton recognizing lan-
guage L (A(L1, L2, . . . , Lk)) can be constructed using the following notion.

De�nition 3.2.5 (Composition of Automata)
Let A = 〈A,Q,X, δ, I, p〉 be a parametrized automaton. Let X =
{x1, x2, . . . , xk} for some k < ω. Let L1 = 〈A,Q1, δ1, I1, p1〉, L2 =
〈A,Q2, δ2, I2, p2〉, . . . , Lk = 〈A,Qk, δk, Ik, pk〉 be parity tree automata. As-
sume, without loss of generality, that Q, Q1, Q2, . . . , Qk are pairwise disjoint.
Composed parity automaton A(L1,L2, . . . ,Lk) := 〈A,Q′, δ′, I ′, p′〉 is de�ned
as follows:

Q′ = Q1 ∪Q2 ∪ . . . ∪Qk ∪Q \X
δ′ = δ1 ∪ δ2 ∪ . . . ∪ δk ∪ {(q, a, q1, q2) :

∃r1,r2(q, a, r1, r2) ∈ δ
∧ ((r1 ∈ Q \X ∧ q1 = r1) ∨

∨
i (r1 = xi ∧ q1 ∈ Ii))

∧ ((r2 ∈ Q \X ∧ q2 = r2) ∨
∨
i (r2 = xi ∧ q2 ∈ Ii))}

I ′ =
⋃
{Ii : xi ∈ I} ∪ I \X

p′ = p1 ∪ p2 ∪ . . . ∪ pk ∪ p�Q\X

Remark 3.2.6 L (A (L1,L2, . . . ,Lk)) = L (A (L (L1) , L (L2) , . . . , L (Lk))).

We de�ne subclasses of the class of nondeterministic parity automata. As
will be argued later, contrary to the case of ω-words, none of the subclasses
is able to recognize all regular tree languages.

De�nition 3.2.7 (Deterministic Automaton) A nondeterministic par-
ity tree automaton A = 〈A,Q, δ, I, p〉 is deterministic if |I| = 1 and tran-
sition relation is a function δ : (Q× A)→ (Q×Q).

De�nition 3.2.8 (Unambiguous Automaton) A nondeterministic par-
ity tree automaton is unambiguous if it has at most one accepting run on
each tree.

We note that, despite the property of a nondeterministic automaton to be
unambiguous is not syntactic, it can be easily decided, by checking emptiness
of an appropriately constructed product automaton, as closer discussed in
[Col12, page 5].

The notion below is, in essence, a generalization of a parity tree automa-
ton. However, it de�nes the same class of languages.
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De�nition 3.2.9 (Alternating Automaton) An alternating parity tree
automaton1 is a tuple A = 〈A,Q∃, Q∀, δ, qI , p〉, where A is a �nite alphabet,
Q∃ is a set of states of Player ∃, Q∀ is a set of states of Player ∀, Q∃∩Q∀ = ∅,
for Q := Q∃ ∪Q∀, δ ⊆ Q× A× {l, r, ε} ×Q is a transition relation, qI ∈ Q
is an initial state and p : Q→ N is a priority function.

For automaton A and a tree t ∈ TA, we de�ne a parity game. The game
is played by the two players ∃ and ∀. A play in the game starts in the root
of t in the initial state qI of A and is played down the tree along some path.
If the current state belongs to Q∃ then Player ∃ moves, otherwise Player ∀
moves. A move is an application of a transition, i.e. if the play is in a node
v of the tree in state q ∈ QΓ for Γ ∈ {∃,∀} then Player Γ choses a transition
(q, t(v), d, q′) ∈ δ for some d ∈ {l, r, ε} and q′ ∈ Q. As a result the position
of the play changes to vd and the state changes to q′. The player that cannot
make a move loses immediately. If a play is in�nite, then Player ∃ wins if
the sequence of priorities of consecutive states in the play satis�es the (word)
parity condition; otherwise Player ∀ wins.

A tree t ∈ TA is accepted be the automaton if Player ∃ has a winning
strategy in the above game on t. Language recognized by A, denoted by
L (A), consists of all trees accepted by A.

Theorem 3.2.10 ([MS84]) Alternating parity tree automata recognize ex-
actly regular tree languages.

To complete the picture we recall the de�nition of a widely studied sub-
class of the alternating parity tree automata.

De�nition 3.2.11 (Weak Automaton) A parity tree automaton
A = 〈A,Q, δ, I, p〉 is weak if for each (q, a, q1, q2) ∈ δ, p(q1), p(q2) > p(q).

Although the de�nition of weakness makes sense for any of nondeter-
ministic, deterministic, unambiguous and alternating types of automata, it
is mostly studied for alternating ones. Therefore, in the sequel, weak au-
tomaton means �alternating weak automaton�, unless otherwise noted. We
note that the weak variant of each of the mentioned types of automata has
less expressive power than the unrestricted variant.

1Among many equivalent de�nitions of the notion we have selected the one presented
e.g. in [ADMN08].
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3.3 Complexity of Regular Tree Languages

Theorem 3.3.1 (Rabin [Rab69]) The complement of a regular tree lan-
guage is a regular tree language2.

Rabin's Theorem implies the following upper topological complexity
bound for the class of regular tree languages.

Fact 3.3.2 Each regular tree language is in ∆1
2.

Before we proceed with a proof, let us introduce the notation for the set
of accepting runs of a parity tree automaton.

De�nition 3.3.3 The following set T(ι,κ) ⊆ T{ι,ι+1,...,κ} is called (ι, κ)-parity
tree condition.

T(ι,κ) := {t ∈ T{ι,ι+1,...,κ} : ∀α∈{l,r}ω t(α) satis�es the (word) parity condition}

Lemma 3.3.4 For each ι, κ < ω, (ι, κ)-parity tree condition is in Π1
1.

Proof:
Recall that, for a bounded set of priorities, the (word) parity condition

is in BC0
2 (see Theorem 2.2.1). Therefore, T(ι,κ) ∈ Π1

1, as a co-projection (i.e.
the complement of the projection) of the following Borel set:{

(t, α) ∈ T{a,b} × {l, r}ω : t(α) does not satisfy the (word) parity condition
}
�

Proof (of Fact 3.3.2):
By Lemma 3.3.4 and Remark 1.5.3, each regular tree language L is a

Σ1
2-set. By Rabin's Theorem, also the complement of L is in Σ1

2, therefore,
L ∈∆1

2. �

We note that this is not true that ∆1
2 is the topological complexity of

regular tree languages, because, as it was observed in the context of �xpoint
logic by Brad�eld [Bra03, Corollary 11] and also comes from stronger state-
ments formulated in terms of tree automata i.a. by Gogacz, Michalewski, Mio,
Skrzypczak [GMMS14] and by Finkel, Lacomte, Simonnet [FLS15], there are
sets in ∆1

2 that are not Wadge reducible to any regular tree language. How-
ever, the above upper bound is tight, as far as the projective hierarchy is
concerned.

2The original Rabin's proof concerns automata with Muller acceptance condition, how-
ever, tree automata with Muller and parity condition have the same expressive power (see
e.g. [Tho97, Theorem 6.1]).
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Fact 3.3.5 There are regular tree languages outside topological class σ (Σ1
1).

Here we only recall examples of regular languages outside Π1
1 and Σ1

1.
Based on these examples one can build an example proving Fact 3.3.5, but
since a similar (but more general) construction is the subject of Section 3.8,
we do not describe it here. The following was given as an example in an
article by Niwi«ski and Walukiewicz (see [NW03], the Example in Section 4
and Lemma 9).

Lemma 3.3.6 ([NW03]) Language T(0,1) is Π1
1-complete.

Note that for EB de�ned as in Example 3.2.4, EB = T(0,1).

Corollary 3.3.7 (of Lemma 3.3.6) Language EB is Σ1
1-complete.

Similarly as in the case of word automata, tree automata were used to
show decidability of MSO logic (the signature contained two successors in
this case) [Rab69]. As an intermediate step decidability of the emptiness
problem for automata was shown. The complexity of this problem is brie�y
discussed in Section 3.4.

3.4 Rabin-Mostowski Index

De�nition 3.4.1 (Index of a Graph) An index is a set of pairs of natu-
ral numbers. Let G be a directed graph with nodes labeled with natural num-
bers. We say that G is of index {(ι1, κ1), (ι2, κ2), . . . , (ιk, κk)}, if for each
strongly connected component of G, the labels of its nodes fall into interval
[ιj, κj] for some 1 6 j 6 k.

De�nition 3.4.2 (Graph of an Automaton)
Let A be a (parametrized) nondeterministic parity tree automaton. The

graph of automaton A, denoted Graph (A), is a directed graph whose ver-
tices are the non-parameter states of A, node labels are the priorities of states,
and there is an edge from a vertex p to a vertex q, if there is a transition
(p, a, q1, q2) in A for some letter a and for q ∈ {q1, q2}.

For A being an alternating parity tree automaton, the graph Graph (A)
is de�ned similarly with the exception that there is an edge from a vertex p
to a vertex q, if there is a transition (p, a, d, q) in A for some letter a and
d ∈ {l, r, ε}.

De�nition 3.4.3 (Index of an Automaton) A parity tree automaton A
is of Rabin-Mostowski index I if Graph (A) is of index I.
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For convenience, we use a simpli�ed notation (ι, κ) for index {(ι, κ)}.

De�nition 3.4.4 (Index Classes of Languages) Index class Lndet (I)
(respectively Ldet (I), Luamb (I), Lalt (I), Lweak (I)) is the class containing
all languages recognized by nondeterministic (respectively deterministic, un-
ambiguous, alternating, weak alternating) parity tree automata of index I.

For convenience we write LΓ ((ι1, κ1), (ι2, κ2), . . . , (ιk, κk)), omitting curly
brackets, but remembering that an argument of the term LΓ () is actually a
set.

We want to observe that it is enough to consider index classes of the
form LΓ ((0, κ)), LΓ ((1, κ+ 1)), LΓ ((0, κ), (1, κ+ 1)) for κ < ω and Γ ∈
{ndet, det, uamb, alt, weak}. For this we prove the following.

Fact 3.4.5
For any Γ ∈ {ndet, det, uamb, alt, weak} and any index {I1, I2, . . . , Ik}:

1. LΓ ((ι, κ), I1, I2, . . . , Ik) = LΓ ((0, κ− ι), I1, I2, . . . , Ik), if ι is even,

2. LΓ ((ι, κ), I1, I2, . . . , Ik) = LΓ ((1, κ− ι+ 1), I1, I2, . . . , Ik), if ι is odd,

3. LΓ ((ι, κ), I1, I2, . . . , Ik) ⊆ LΓ ((ι′, κ′), I1, I2, . . . , Ik), if κ− ι < κ′ − ι′,

4. LΓ ((ι, κ), (ι′, κ′), I1, I2, . . . , Ik) = LΓ ((ι′, κ′), I1, I2, . . . , Ik), if κ − ι <
κ′ − ι′.

Proof:
Points (1), (2), (3), (4) come from an observation that if we shift the

values of the priority function for all states of a given strongly connected
component of the graph of an automaton by an even number the language
recognized by the automaton does not change. �

Remark 3.4.6 Let A be a parametrized automaton of index I, with param-
eters x1, x2, . . . , xk. Let L1, L2, . . . , Lk be parity automata of indexes I(1),
I(2), . . . , I(k), respectively. Composed parity automaton A(L1,L2, . . . ,Lk) is
of index I ∪ I(1) ∪ . . . ∪ I(k).

Let us additionally de�ne the following index classes of languages:

∆Γ
κ = LΓ ((0, κ− 1)) ∩ LΓ ((1, κ)) (3.1)
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LΓ ((0, 0), (1, 1))

∆Γ
2

LΓ ((0, 1)) LΓ ((1, 2))

LΓ ((0, 1), (1, 2))

∆Γ
3

LΓ ((0, 2)) LΓ ((1, 3))

LΓ ((0, 2), (1, 3))

...
...

...

Figure 3.1: The Rabin-Mostowski index hierarchy (for Γ ∈
{ndet, det, uamb, alt, weak}).

Index classes of languages constitute Index Hierarchy. Depending on
type of index considered we have Nondeterministic Index Hierarchy, Alter-
nating Index Hierarchy, etc. The inclusions between classes of each of the
hierarchies are depicted in Figure 3.1. An important question that is asked
about each of the hierarchies is whether the inclusions are strict.

The following was proven for the nondeterministic hierarchy by Niwi«ski
[Niw86], for the weak hierarchy by Mostowski [Mos91], for the alternating
hierarchy �rst by Brad�eld [Bra99] and then by Arnold [Arn99]. For the
deterministic hierarchy it follows from the analogous result for ω-words by
Wagner [Wag79].

Theorem 3.4.7 (strictness [Niw86, Mos91, Bra99, Arn99, Wag79])
Nondeterministic, weak, alternating and deterministic index hierarchies are
strict, namely for κ > 0 and Γ ∈ {ndet, det, alt, weak}:

∆Γ
κ ( LΓ ((0, κ− 1))

∆Γ
κ ( LΓ ((1, κ))

Theorem 3.4.8 (Santocanale, Arnold [SA05, Theorem 2.2])

94



For κ > 2:
Lalt ((0, κ− 1), (1, κ)) ( ∆alt

κ+1

Theorem 3.4.9 (Rabin [Rab70])

Lalt ((0, 0), (1, 1)) = ∆alt
2

De�nition 3.4.10 The dual index to index (ι, κ) for ι ∈ {0, 1} is denoted
by (ι, κ) and de�ned as

(0, κ) := (1, κ+ 1)

(1, κ) := (0, κ− 1)

We use the implied notation LΓ
(

(ι, κ)
)
also for index classes.

Fact 3.4.11 If a language is in index class Lalt ((ι, κ)) then its complement

is in index class Lalt
(

(ι, κ)
)
.

Proof:
Since parity games are determined (see e.g. [EJ91, Corollary 4.3]), it is

enough to switch players and shift priorities by one in an alternating automa-
ton recognizing a given language. �

We recall that alternating index classes admit complete languages. For
W(ι,κ) ∈ Lalt ((ι, κ)) being the game tree languages used by Brad�eld
[Bra99] and Arnold [Arn99] to witness strictness of the alternating hierarchy,
we have:

Fact 3.4.12 ([Arn99]) If L ⊆ Lalt ((ι, κ)) then L 6W W(ι,κ).

The above fact, together with the strictness theorem (Theorem 3.4.7), makes
the alternating index hierarchy another topological complexity measure (al-
though index classes are not formally topological complexity classes in the
sense of the de�nition from Section 1.2).

Fact 3.4.13 For κ > 2, classes Lndet ((0, κ− 1), (1, κ)) and ∆ndet
κ+1 are not

closed under complements.

Proof:
The proof of Theorem 3.4.7 for nondeterministic index by Niwi«ski

[Niw86] relied on the fact that language T(ι,κ) is recognized by a nondetermin-
istic automaton of index (ι, κ), but not by any nondeterministic automaton of
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index (ι, κ). Note that T(ι,κ) is recognized by a nondeterministic automaton of
index (1, 2) that guesses the path not satisfying the parity condition and the
maximal odd priority occurring in�nitely many times on the path, and veri�es
the guess. Hence, for κ > 2, the language T(0,κ) is in Lndet ((0, κ− 1), (1, κ))
and in ∆ndet

κ+1 , while T(0,κ) is not in any of those classes. �

Fact 3.4.13 makes the interpretation of Figure 3.1 for Nondeterministic
Index Hierarchy a bit nonstandard. Therefore, the index hierarchy in its full
form, as in the Figure 3.1, is studied almost only for the alternating case.

3.4.1 Relations Between Hierarchies

Since an important thread of the thesis is a comparison of di�erent complexity
measures, we note some facts about relations between index hierarchies.

Deterministic Index versus Nondeterministic Index

By de�nition, nondeterministic index classes include corresponding determin-
istic classes. Since the strictness of deterministic hierarchy comes from the
strictness of the corresponding hierarchy for ω-words and since each ω-regular
language is recognized by a Büchi automaton on ω-words, there are languages
arbitrary high in the deterministic index hierarchy that are in Lndet ((1, 2)).
On the other hand, the languages T(ι,κ) used by Niwi«ski [Niw86] to witness
the strictness of the nondeterministic hierarchy, are all deterministic, and
have the same deterministic and nondeterministic index.

Unambiguous Index versus Nondeterministic Index

Since each deterministic class is included in the respective unambiguous class
which in turn is included in the respective nondeterministic class, the example
of T(ι,κ) languages can be also used to observe that for each index class there
is a language that has the same nondeterministic and unambiguous index.
The languages can also be used to observe the following.

Remark 3.4.14 The unambiguous index hierarchy is strict.

However, there are examples of languages that have greater unambiguous
than nondeterministic index. An example will be seen in Section 3.7.

Deterministic Index versus Alternating Index

Fact 3.4.15 (see e.g. [NW03, Theorem 6]) Each language recognized by
a deterministic tree automaton is in Lalt ((0, 1)).
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Nondeterministic Index versus Alternating Index

As it was recalled before, nondeterministic and alternating parity tree au-
tomata recognize the same class of languages. However, the index classes do
not coincide. By de�nition, alternating index classes include corresponding
nondeterministic classes. The example of languages T(ι,κ) shows that there
are languages arbitrary high in the nondeterministic index hierarchy that are
in Lalt ((0, 1)) (see Fact 3.4.15). On the other hand, the languages W(ι,κ) wit-
nessing strictness of the alternating hierarchy have the same nondeterministic
and alternating index.

Weak Index versus Alternating Index

Theorem 3.4.16 (Arnold and Niwi«ski [AN92]) Weak automata rec-
ognize exactly the languages that are in Lalt ((0, 0), (1, 1)).

Algorithmic Considerations

As it was already mentioned in the previous section, the emptiness problem
of tree automata is decidable. Standard approach to solving this algorithmic
problem is to construct a parity game out of an automaton and �nd out
whether an existential player has a winning strategy in this game. Although
solving parity games is known to be in NP ∩ co-NP complexity class, and
many researchers believe they can be solved in polynomial time, no polyno-
mial algorithm is known yet. However, subexponential algorithms solving the
emptiness problem considered the most e�cient until this year [Sch07], and
the recent breakthrough quasi-polynomial time algorithm [CJK+17], both
have time complexity expressed by an exponential function with exponent
dependent only on the number of distinct priorities, not the number of game
positions:

Theorem 3.4.17 ([CJK+17]) The emptiness problem for parity tree au-
tomata is decidable in time

O
(
ndlog de+6

)
,

where n is the number of states and d is the number of di�erent priorities
used in the automaton.

The above motivates the search for automata that use as small number of
priorities as possible for recognizing a given language. This, in turn, makes
the following algorithmic problem practically important.
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Below Type 1 and Type 2 refer to types of automata, e.g. they can be
�nondeterministic�, �deterministic�, �alternating�, etc.

Type 1 Index Problem for Type 2 automata:
Given a Type 2 parity tree automaton A,
calculate the smallest Type 1 index class containing L (A).

In general, i.e. for Type 2 being �nondeterministic� or �alternating�, the
solution for the index problem is not known. There are some partial re-
sults, though. Colcombet, Kuperberg, Löding and Vanden Boom [CKLV13,
Theorem 9] have shown that it is decidable whether for a given alternat-
ing automaton there exists a nondeterministic automaton of index (0, 1) (i.e.
a co-Büchi automaton) that recognizes the same language. More progress
have been achieved by considering subclasses of the class of regular lan-
guages. For example, all the variants of the index problem are solved for
languages recognized by deterministic automata. Algorithms calculating po-
sition in the deterministic [NW98], the nondeterministic [NW05], and the
weak [NW03, Mur08a] hierarchy are known for such languages. The same
applies to so-called Game Automata [FMS16]. Some progress has been also
made for unambiguous automata [MS14], that are the main topic of this
chapter.

3.5 Subclasses of Known Topological

Complexity

3.5.1 Deterministic Tree Languages

De�nition 3.5.1 (Deterministic Tree Language) A regular tree lan-
guage is called deterministic if it is recognized by a deterministic parity
tree automaton.

Consider the following language:

LR = {t : (t(l) = a ∧ t(r) = b) ∨ (t(l) = b ∧ t(r) = a)} (3.2)

One can observe that the language cannot be recognized by a deterministic
automaton, but can be easily recognized by a nondeterministic one. There-
fore, deterministic tree languages constitute a proper subclass of the class of
regular languages. We note that a stronger statement holds: the topological
complexities (in the sense of De�nition 1.4.1) of the classes di�er.

Fact 3.5.2 The topological complexity of the class of deterministic tree lan-
guages is Π1

1.
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First, note that each language T(ι,κ) from De�nition 3.3.3 can be recog-
nized by a deterministic automaton (of index (ι, κ)):

Remark 3.5.3 Language T(ι,κ) is deterministic.

Proof (of Fact 3.5.2):
Recall that, by Lemma 3.3.4, the acceptance condition of parity tree

automata is in Π1
1 projective class. By Remark 1.5.2, the same upper bound

refers to the class of deterministic languages.
Language T(0,1) provides the desired lower topological complexity bound,

by Lemma 3.3.6 and Remark 3.5.3. �

The following fact can be seen as a consequence of Fact 3.5.2, but it can
also be proven without use of topology that the complement of language
T(0,1), i.e. the language EB, is not deterministic.

Fact 3.5.4 The class of deterministic tree languages is not closed under the
complement.

The latter is a bit unusual, since deterministic automata usually trivially
complement. The issue in the case of tree automata comes from the fact that
�on each branch� quanti�er is hard-coded in the acceptance condition, and
the dual cannot be used.

The following algorithmic question concerning topological complexity was
solved for deterministic automata.

Topological Complexity Problem:
Given an automaton A,
calculate the smallest boldface hierarchy class containing L (A).

Niwi«ski and Walukiewicz [NW03] gave an e�ective characterization (de-
cision procedure) of deterministic automata that recognize non-Borel (namely
Π1

1-complete) languages. They also show that if a deterministic language is
Borel, then it is in Π0

3 and it is also recognized by a weak automaton. Murlak
[Mur05] have added to this by providing algorithms deciding whether a given
deterministic automaton recognizes language in Π0

1, Σ0
1, Π0

2, Σ0
2. The two re-

sults combined give a procedure solving the topological complexity problem
(restricted to Πi

j, Σi
j and ∆i

j classes) for deterministic languages.
Murlak [Mur08b] has shown that classes Lweak ((0, 1)), Lweak ((1, 2)),

Lweak ((0, 2)), Lweak ((1, 3)) of the weak index hierarchy correspond exactly to
the aforementioned Borel classes Π0

1, Σ0
1, Π0

2, Σ0
2 for deterministic languages.

Therefore, the above algorithm can be used to solve the weak index problem
for deterministic automata. As it was noted above, all the other considered
variants of the index problem are also solved for deterministic languages.
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Niwi«ski and Walukiewicz [NW03] have also shown that the following
problem is decidable (and EXPTIME-complete).

Determinizability Problem:
Given a nondeterministic parity tree automaton A,
decide whether the language recognized by A is deterministic.

3.5.2 Büchi Tree Languages

Similarly as in the context of ω-words we de�ne:

De�nition 3.5.5 A parity tree automaton of index (1, 2) is called a Büchi
tree automaton.

De�nition 3.5.6 A language is called a Büchi (tree) language if it is
recognized by a nondeterministic Büchi tree automaton.

Fact 3.5.7 The topological complexity of the class of Büchi tree languages is
Σ1

1.

First observe one of the facts that cause the uniqueness of Büchi au-
tomata, namely that Büchi acceptance condition is topologically less complex
than the general parity tree condition.

Lemma 3.5.8 T(1,2) ∈ Π0
2.

Proof:
For k < ω, let Tk ⊆ T{1,2} be the set of trees that have at least k labels

2 on each branch. For t ∈ Tk, let t̂ be the tree that is produced from t by
removing all nodes that have k labels 2 above. Note that, by König's Lemma,
t̂ is �nite, because it contains only �nite branches. Therefore, Tk is open as
the following union of basic open sets:

Tk =
⋃
t∈Tk

Gt̂,

for Gs as in the de�nition of the topology on trees (1.5). Now, T(1,2) =⋂
k<ω Tk ∈ Π0

2. �

Proof (of Fact 3.5.7):
By Lemma 3.5.8, each Büchi language is recognized by a nondeterministic

automaton with a Borel acceptance condition so, by Remark 1.5.3, it is in
Σ1

1.
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For the lower topological complexity bound it is enough to note that an
automaton from Example 3.2.4 is a Büchi tree automaton, and to recall that
E is Σ1

1-complete, by Corollary 3.3.7. �

By the following result by Arnold and Niwi«ski, the nondeterministic and
the alternating hierarchies coincide on the class (1, 2).

Theorem 3.5.9 ([AN92]) A language is recognized by an alternating Bü-
chi automaton if and only if it is recognized by a nondeterministic Büchi
automaton.

Corollary 3.5.10 If language L is recognized by an alternating Büchi au-
tomaton then L ∈ Σ1

1.

Corollary 3.5.11 If language L is recognized by an alternating automaton
of index (0, 1) then L ∈ Π1

1.

Michaª Skrzypczak and Igor Walukiewicz [SW16] have shown that a Bü-
chi language is either Borel and recognized by a weak automaton, or Σ1

1-
complete, and that it can be algorithmically decided which of the two cases
holds.

3.5.3 Weak Tree Languages

De�nition 3.5.12 A regular tree language is called weak if it is recognized
by a weak alternating tree automaton.

Skurczy«ski [Sku93] has shown examples of Π0
i and Σ0

i -complete lan-
guages recognized by weak alternating automata of index (0, i) and (1, i+1),
respectively. On the other hand, Duparc and Murlak [DM07] have shown
that each language recognized by a weak automaton of index (0, i) is Π0

i

and, by duality, each language recognized by a weak automaton of index
(1, i+ 1) is Σ0

i . We get:

Theorem 3.5.13 ([Sku93, DM07]) The topological complexity of
Lweak ((0, i)) is Π0

i . The topological complexity of Lweak ((1, i+ 1)) is Σ0
i .

Corollary 3.5.14 The topological complexity of the class of weak tree lan-
guages is

⋃
i<ω Σ0

i .

Although this is conjectured that Borel hierarchy and weak index hierar-
chy coincide for weak languages, it is still possible that there exists a weak
language on ith level of the Borel hierarchy that is not recognized by any
weak automaton using i + 1 priorities. As it was noted above, the coin-
cidence holds if we restrict to weak languages that are also deterministic
[Mur08b] (however, there are only 4 classes in that case).
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3.6 Unambiguous Tree Languages

3.6.1 Basic Properties

De�nition 3.6.1 (Unambiguous Tree Language) A regular tree lan-
guage is called unambiguous if it is recognized by an unambiguous parity
tree automaton.

By de�nition, each deterministic tree language is unambiguous and each
unambiguous tree language is regular. In contrast to the case of ω-words, it
turns out that both the associated class inclusions are strict. For the �rst
case it is a folklore fact and comes e.g. from an observation that the language
LR from equation (3.2) is unambiguous.

Fact 3.6.2 Deterministic tree languages constitute a proper subclass of un-
ambiguous tree languages.

Strictness of the second inclusion is a more involved result that was �rst
proven by Niwi«ski and Walukiewicz [NW96] using a result of Gurevich and
Shelah [GS83] on lack of uniformization property of MSO over the binary
tree. An elementary proof was given by Arnaud Carayol and Christof Löd-
ing [CL07], what was followed by a joined paper [CLNW10]. The following
are examples of regular languages that are not unambiguous (i.e. are am-
biguous).

E := {t ∈ T{0,1} : ∃v∈{l,r}∗ t(v) = 1} (3.3)

EB − de�ned as in Example 3.2.4

Intuitively speaking, an automaton is not able to select unambiguously
one of possibly many branches or nodes witnessing that a tree belongs to EB
or E, respectively.

Theorem 3.6.3 ([NW96]) Unambiguous tree languages constitute a proper
subclass of regular tree languages.

Observe that the following language is unambiguous:

UB := {t ∈ T{0,1} : ∃!α∈{l,r}ω t (α) ∈ N2},

where N2 de�ned as in Fact 1.2.7.
Turning towards a discussion of the topological complexity of unambigu-

ous languages we start with recalling the following fact.
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Fact 3.6.4 Set UB is in Π1
1.

Proof:
Note that:

UB =
{
t ∈ T{0,1} : ∃!α∈{l,r}ω (t, α) ∈ B

}
(3.4)

for B =
{

(t, α) ∈ T{0,1} × {l, r}ω : t(α) ∈ N2

}
(3.5)

Observe that B ∈ Π0
2, as an inverse image of N2 under a continuous function.

A theorem by Lusin (see e.g. [Kec95, Theorem 18.11]) states that each set of
the form as in equation (3.4) for B Borel is in Π1

1. �

Recall that deterministic automata are capable of recognizing some Π1
1-

complete sets. Because UB seems to be typical and close to the very de�-
nition of unambiguous automata, before the article [Hum12] by the author
of this thesis, it had been commonly believed that there was no unambigu-
ous language topologically more complex than all deterministic languages.
In Section 3.7 we recall the main result of the mentioned paper [Hum12],
that falsi�es the belief by showing an example of Σ1

1-complete unambiguous
language. The construction providing more and more complex unambiguous
languages is given in sections 3.8, 3.9, 3.10. However, no progress is obtained
in terms of upper topological complexity bound for unambiguous languages,
what is discussed deeper in Section 3.12.

There is some uniqueness for unambiguous languages in terms of closure
properties.

De�nition 3.6.5 Given automata A, B, a product of A and B is any au-
tomaton with state space being a product of sets of states of the two automata,
and transition relation corresponding coordinate-wise to transition relations
of A and B.

Fact 3.6.6 The class of unambiguous languages is closed under:

1. intersection of two languages,

2. union of two disjoint languages,

3. inverse image under letter substitution. Precisely, for any f : A→ B,
if L ⊆ TB is recognized by unambiguous parity tree automaton L, then
{t ∈ TA : f ◦ t ∈ L} ⊆ TA is recognized by a parity tree automatonM,
with state space and priority function the same as L and with the set of

103



transitions de�ned as follows: a

q

q1 q2

is a transition inM if and only

if f(a)

q

q1 q2

is a transition in L. The automatonM is unambiguous.

Proof (sketch):

(1) Let unambiguous parity automata L and M recognize languages L
and M , respectively. We construct an unambiguous automaton recogniz-
ing L ∩M . Let us consider a product of automata L andM. A run of such
a product is a pair: a run of automaton L and a run of automaton M. In
order for the product to recognize language L∩M we would like to say that
the product-run is accepting if and only if in both component-runs maximal
priority occurring in�nitely often is even. Although, the acceptance condi-
tion formulated like this is not a parity condition, we prove that it can be
recognized by a deterministic parity tree automaton. First recall that a tree
parity condition T(ι,κ) is recognized by a deterministic automaton. Deter-
ministic tree automaton is, in essence, a deterministic word automaton that
reads directions {l, r} and labels, in alternation (for details see the article by
Niwi«ski and Walukiewicz [NW03]). Now, by McNaughton's determinization
theorem and by closure of ω-regular languages under intersection, we get that
the conjunction of the parity conditions for the component-runs can also be
recognized by a deterministic word parity automaton, hence also by a deter-
ministic tree parity automaton. Now we let the deterministic automaton run
on top of the run of the product automaton. We get a combined automaton
(such a construction is called a cascade of automata [Col12]) that recognizes
L ∩M .

It remains to observe that the constructed automaton is unambiguous.
Note that each run of this automaton corresponds to a pair of runs of L and
M, each pair of such runs corresponds to exactly one run of the resulting
automaton, and a run of the resulting automaton is accepting only if the
two component-runs are accepting. Since there is at most one pair of accept-
ing runs of component-automata, there is at most one accepting run of the
constructed automaton on each input tree.

(2) Let unambiguous parity automata L andM recognize languages L and
M , respectively. We construct the so-called disjoint union of the pair of
automata. Without loss of generality we may assume that state spaces of
L and M are disjoint. The disjoint union automaton has the state space
that is the union of state spaces of L and M, the transition relation is the
union of the transition relations of L andM, and the set of initial states is
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the union of the sets of initial states of L and M. Clearly, the automaton
accepts a tree if and only if L orM accepts it.

Observe that the constructed automaton is unambiguous. Indeed, if there
were two accepting runs on some tree t, it would mean that either one of the
automata L,M is not unambiguous or that the sets L andM are not disjoint.

(3) Note that each run (respectively accepting run) of automaton M on
t ∈ TA is also a run (respectively an accepting run) of L on f ◦ t ∈ TB.
Therefore,M recognizes language M = {t ∈ TA : f ◦ t ∈ L}.

Now suppose that there are two di�erent accepting runs of M on some
tree t. Then they are also two di�erent accepting runs of L on f ◦ t, what
contradicts unambiguity of L. Hence,M is unambiguous. �

Fact 3.6.7 The class of unambiguous languages is not closed under:

1. union,

2. complementation.

Proof:

(1) Bilkowski and Skrzypczak [BM13, Proposition 2] show that a union of
two deterministic languages may not be unambiguous on the example of the
language T{0,1} ∪ T{1,2}.
(2) It is enough to recall that the language E de�ned by equation (3.3)
is ambiguous and observe that E = {t ∈ T{0,1} : ∀v∈{l,r}∗ t(v) = 0} is a
deterministic, hence also an unambiguous, language. �

De�nition 3.6.8 (Bi-Unambiguous Languages) Language L is bi-un-
ambiguous3 if L is unambiguous and L is unambiguous.

Fact 3.6.9 The class of bi-unambiguous languages is closed under:

1. union,

2. intersection,

3The author of the thesis used to use the name �strongly unambiguous� for the same
notion to follow Thomas Colcombet's [Col12] notion of strongly unambiguous automata,
[Hum12]. It was later questioned by Damian Niwi«ski whether there is anything �strong�
in the languages (as opposed to the case of automata, where �strong unambiguity� was
really strengthening of �unambiguity�). The name �bi-unambiguous� was proposed as one
better re�ecting the matter.

105



3. complementation,

4. inverse image under letter substitution.

Proof:

(1) If L,L,M,M ⊆ TA are unambiguous languages then, by closure of un-
ambiguous languages under intersection and disjoint union (see Fact 3.6.6),
L ∪M and L ∪M are unambiguous, because:

L ∪B = L t
(
M ∩ L

)
,

L ∪B = L ∩M,

where by t we designate union in which operands are disjoint.

(3) By the de�nition.

(2) By points (3), (1) and De Morgan laws.

(4) Follows from Fact 3.6.6(3), because f∗
−1(L) = f∗

−1(L), for f∗ : TA → TB
being the function induced by an alphabet projection f : A → B, namely
f∗(t) = f ◦ t. �

Fact 3.6.10 The class of bi-unambiguous languages is not closed under em-
bedding in a space with larger alphabet.

Proof:
It is enough to consider deterministic language L = {t : ∀v∈{l,r}∗ t(v) = 0}.

This language as a subset of T{0} is bi-unambiguous. The same language
considered as a subset of T{0,1} is still unambiguous, but its complement

L = E is the already known example of ambiguous language. �

From the algorithmic point of view, apart from the index problems pre-
sented before, the following decision problems seem the most interesting in
the context of unambiguous languages:

Unambiguity (Bi-unambiguity) Problem:
Given a nondeterministic parity tree automaton,
decide whether the language recognized by the automaton is unambiguous

(bi-unambiguous).

According to the author's knowledge there is not much progress made
in answering the question whether the unambiguity problem is decidable.
Marcin Bilkowski and Michaª Skrzypczak [BM13] have given a partial solu-
tion to the bi-unambiguity problem. They have shown that it is decidable if
deterministic automaton is given as an input (i.e. it is decidable whether the
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complement of a given deterministic automaton is unambiguous). Moreover,
the authors conjecture that the decision procedure works also for the general
bi-unambiguity problem.

Recall, for the contrast, that it is easily decidable whether a given au-
tomaton is unambiguous.

In this chapter we follow the approach that the discussion of the topo-
logical complexity of unambiguous automata may give some guidance in the
search for algorithms for the above unsolved problems, similarly as it have
given guidance to the proof of undecidability of MSO+U (see Section 1.5.4).

3.6.2 Topological Complexity of Unambiguous Büchi

Automata

In this section we recall some partial results concerning the complexity of
unambiguous automata. We start with a result by Olivier Finkel and Pierre
Simonnet:

Theorem 3.6.11 ([FS09, Corollary 4.14]) A tree language recognized by
an unambiguous Büchi automaton is Borel.

The result was strengthened by Henryk Michalewski and Michaª
Skrzypczak:

Theorem 3.6.12 ([MS14, Theorem 1]) A tree language recognized by an
unambiguous Büchi automaton is weak.

In its general form the result states:

Theorem 3.6.13 ([MS14, Theorem 1]) For κ > 0:

Luamb ((0, 2κ)) ⊆ Lalt ((0, 2κ− 1), (1, 2κ))

Luamb ((1, 2κ)) ⊆ Lalt ((0, 2κ− 2), (1, 2κ− 1))

3.7 Analytic-Complete Unambiguous Language

The result presented in this section was inspired by the work of Marcin
Bilkowski [Bil10] published in an extended form in a paper co-authored by
Michaª Skrzypczak [BM13], and by the decidability result presented by Ni-
wi«ski and Walukiewicz [NW03]. Bilkowski has shown that the complement
of a deterministic language is unambiguous if and only if the language is rec-
ognized by a thin automaton, i.e. by an automaton that has only countably
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many non-trivial paths in each accepting run. A path is trivial if, from some
moment on, it is labeled only by all-accepting or all-rejecting states.

The deterministic automaton recognizing the complement of language
G described below is thin in Bilkowski's sense, and has split property�
the su�cient condition for the Π1

1-hardness from the result of Niwi«ski and
Walukiewicz [NW03]. The proofs presented in this section are self-contained,
they do not use the results of Bilkowski, Niwi«ski and Walukiewicz.

We call a branch of a binary tree over the alphabet {a, b} good if:

1. it is labeled only with a's,

2. it turns left in�nitely many times.

Let:
G :=

{
t ∈ T{a,b} : t has a good branch

}
The following lemma is crucial for the unambiguity:

Lemma 3.7.1 If an in�nite binary tree over the alphabet {a, b} has a good
branch, then it has the left-most such branch, i.e. a good branch such that
there is no good branch to the left.

Proof:
Assume that a tree t has a good branch. The construction of the left-most

good branch goes as follows. We start from the root. If we have constructed
a pre�x of the branch up to a node v we advance to the left descendant if
there are good branches going through it. Otherwise we advance to the right
descendant. Call the branch constructed by this procedure ρ(t).

By the construction, it is clear that there is no good branch to the left of
ρ(t). Now we prove that ρ(t) is good. Note that during the construction we
maintain the invariant that there is a good branch going through a considered
node. In particular, all nodes we have selected are labeled with a, therefore,
we only need to verify that ρ(t) turns left in�nitely many times.

Suppose that ρ(t) turns left only �nitely many times. Then there is a
node v on the branch ρ(t) after which ρ(t) turns only right. Let us take a
good branch going through v, and call it σ. By the assumption, ρ(t) is not
good, so branches ρ(t) and σ diverge in some node w. Since w is below v, ρ(t)
goes right from w and σ goes left. Since σ is good, the construction should
have selected the left descendant of w, but have selected the right one. That
yields a contradiction, so ρ(t) turns left in�nitely many times. �

Now let L = G.
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Proposition 3.7.2 Language G is recognized by an unambiguous automa-
ton and its complement L is recognized by a deterministic automaton. In
particular, G is bi-unambiguous.

Proof:
Let us start with constructing a deterministic automaton L recognizing

L. It has 3 states: states l0 and l1 (subscript indicates the priority) occur on
paths that have had only a's so far; state >0 is all-accepting (i.e. self-looping
with priority 0). Initial state is l1 and the transitions are as follows:

a

l0, l1

l1 l0

b

l0, l1

>0 >0

The automaton uses priorities {0, 1}. Note that, for a given tree t, the run
of L on t has a branch with in�nitely many priorities 1 on it if and only if
there is an a-labeled branch turning left in�nitely often in t. Therefore the
automaton recognizes L.

Thanks to Lemma 3.7.1, to prove unambiguity of G it is enough to con-
struct an automaton G that guesses the left-most good branch and veri�es
correctness of the guess. The idea is that the automaton goes along a branch
labeled with a's, proving that the branch turns left in�nitely many times,
and proving that everything that diverges to the left of the branch does not
have a good branch (i.e. belongs to L), and not caring what happens to the
right of the branch.

The automaton G uses L as a component. It has 7 states and uses priori-
ties 0, 1, 2. States g1 and g2 (again, subscript indicates the priority) are used
to track the branch; states of L�to prove non-existence of a good branch in
a subtree; state >2 is all-accepting, and state ⊥1 is all-rejecting. The initial
state is g1. The automaton uses the following transitions:

L-part

a

g1, g2

g2 >2

a

g1, g2

l1 g1

b

g1, g2

⊥1 ⊥1

a

l0, l1

l1 l0

b

l0, l1

>0 >0

It is not hard to see that presented automaton implements described
idea, therefore accepts if and only if a given tree has a good branch. It
is unambiguous, because it only can accept by labeling the left-most good
branch with g states. �
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As we can see the automaton L is of index (0, 1). The automaton G uses
priorities {0, 1, 2}, however, the L-part of the automaton, that uses priorities
{0, 1}, constitutes a strongly connected component, while the remaining part
of the automaton uses only priorities {1, 2}. As a result we get:

Remark 3.7.3 G ⊆ Luamb ((0, 1), (1, 2))

Proposition 3.7.4 Set G is Σ1
1-complete.

Proof:
To prove the hardness we continuously reduce the set IF1 of N-branching

trees with an in�nite branch to our set G (see Fact 2.4.4). We construct a
reducing function f : TN → T{a,b}. Fix a tree t ∈ TN. Put labels a to the root
and all right descendant nodes in the tree f(t). For each node n1n2n3 . . . nk
of tree t we put label a to the node rn1lrn2lrn3l . . . rnk l in f(t). Remaining
left descendant nodes obtain label b.

Note that f(t) has an a-labeled branch that turns left in�nitely many
times (i.e. a good branch) if and only if t has an in�nite branch. Therefore

f(t) ∈ G ⇐⇒ t ∈ IF1

So f indeed reduces IF1 to G.
Function f is continuous, because the labels at the nth level of the

tree f(t) are determined by the �nite part of a tree t, namely the part in
{1, ..., n}6n.

The upper topological complexity bound for setG comes from Proposition
3.7.6, that will be proven later, and from Fact 3.5.7. �

Therefore, we have proven the following:

Theorem 3.7.5 There is a bi-unambiguous language of in�nite trees that is
Σ1

1-complete.

Thanks to Theorem 3.6.11 we know that no unambiguous Büchi automa-
ton recognizes language G. Proposition 3.7.4 implies that G is not a Π1

1 set,
therefore, by Corollary 3.5.11, it cannot be recognized by any (even alter-
nating) automaton of index (0, 1). As a result we obtain that the use of 3
priorities is necessary for unambiguous automaton to recognize G. On the
other hand observe that:

Proposition 3.7.6 Language G is recognized by a nondeterministic Büchi
automaton.
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Proof:

It su�ces to remove L-part from the unambiguous automaton G presented
in the proof of Proposition 3.7.2, replacing l1 with >2 in other transitions, to
obtain needed nondeterministic automaton. The only purpose of that part
was to make sure that we select the left-most good branch. We do not need
this if we do not care about the number of accepting runs. �

From this observation we obtain that Theorem 3.6.11 by Finkel and Si-
monnet is tight in the following sense:

Corollary 3.7.7 There is a language of non-Borel topological complexity
that is on one hand unambiguous, and on the other hand Büchi.

3.8 Sigma-Lifting Operation

In this section we introduce an operation on tree languages that preserves
bi-unambiguity and increases the topological complexity. More precisely, the
operation applied to a language L produces a language that is topologically
more complex that the whole sigma algebra generated by the sets reducible
to L.

First we give an intuition of the operation. Let L be a given language.
To construct language σ (L) we consider trees that correspond to formulas
of a logic with negation and countable disjunction. Atomic formulas are
trees with ] in the root. Negation is represented by a tree with ¬ in the
root, whose left subtree is disregarded and right subtree corresponds to the
negated formula. Countable disjunction is represented as a tree with whole
left-most branch labeled with ∨, where subtrees diverging right from this
branch correspond to the disjuncts. An atomic formula evaluates to TRUE
if and only if the right subtree of ]-labeled node is in L. The evaluation of
disjunction and negation is standard. Language σ (L) consists of those trees
that correspond to formulas that evaluate to TRUE. As usual, formulas
are required to be well-founded, meaning that there is no in�nite nesting in
a formula (but nesting depth does not have to be globally bounded for a
formula). Figure 3.2 gives an example of a tree in σ (L).

The formal de�nitions follow.
First we give a �xpoint de�nition of a pair of parametrized languages

P σ(tt, ff,>), Nσ(tt, ff,>) ⊆ T{¬,∨},{tt,ff,>}. Intuitively P and N stand for �pos-
itive� and �negative�; parameters tt and ff stand for �TRUE� and �FALSE�.
Parameter > will always be replaced with a whole space, which is di�erent
for di�erent alphabets�this is why we need it to be a parameter.
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∨

]

t0

∈ L
∨

¬

]

t1

∈ L

∨

]

t2

∈ L
∨

¬

∨

¬

]

t′0

∈ L

∨

]

t′1

∈ L
∨

]

t′2

∈ L

∨

]

t4

∈ L
∨

]

t5

∈ L
∨

]

t6

∈ L

∈ σ (L)

Figure 3.2: An example tree in σ (L) (with unimportant left subtrees of ]- or
¬-labeled nodes omitted for clarity).
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The operator Φ :
(

P
(
T{¬,∨},{tt,ff,>}

))2

→
(

P
(
T{¬,∨},{tt,ff,>}

))2

is de�ned

using parametrized languages ΦP ,ΦN ⊆ T{∨,¬},{p,n,tt,ff,>} by:

(P,N)
Φ7−→ (ΦP [p 7→ P, n 7→ N] ,ΦN [p 7→ P, n 7→ N])

where:

ΦP :=



∨

x1

∨

x2∨

xn

:
∀i xi ∈ {p, n}
∃i xi = p

︸ ︷︷ ︸
ΦP∨

∪

 ¬

> n

︸ ︷︷ ︸
ΦP¬

∪
{

tt
}

︸ ︷︷ ︸
ΦPT

(3.6)

ΦN :=



∨

n
∨

n∨

n

︸ ︷︷ ︸
ΦN∨

∪

 ¬

> p

︸ ︷︷ ︸
ΦN¬

∪
{

ff
}

︸ ︷︷ ︸
ΦNF

(3.7)

The set of pairs of languages over a �xed alphabet ordered by coor-
dinate-wise inclusion forms a complete lattice. Moreover, operation Φ is
monotonic�this comes from monotonicity of substitution and union. There-
fore, by Knaster-Tarski Fixpoint Theorem, Φ has the least �xed point. Let:

(P σ(tt, ff,>), Nσ(tt, ff,>)) := Fix (Φ) (3.8)

Now we want to prove that under some assumption on languages T , F ,
K, languages P σ(T, F,K) and Nσ(T, F,K) are disjoint. To achieve this we
�rst note a general fact about sets de�ned by �xpoints:

Lemma 3.8.1 Let X be a complete lattice. Let Y ⊆ X (a property of ele-
ments of X) be such that:

1. ⊥ ∈ Y (for ⊥ being the least element of X),

2. Y is closed, in the sense that for each ordinal β and each increas-
ing (not necessarily strictly) sequence {xα}α<β, if {xα}α<β ⊆ Y then
supα<β xα ∈ Y .
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Let f : X → X be such a function that:

1. f is monotonic,

2. f preserves property Y , i.e. if f(Y ) ⊆ Y .

Then Fix(f) ∈ Y .

Proof:

First note that Fix(f) = fα(⊥) for some ordinal α, where:

• f 0 = id,

• fγ+1 = f ◦ fγ,

• for β being a limit ordinal, for each x ∈ X, fβ(x) = supγ<β f
γ(x).

Therefore it su�ces to prove that fβ(⊥) ∈ Y , for each ordinal β. We do
it by induction on β.

For β = 0 we have fβ(⊥) = ⊥ ∈ Y by the assumption on Y .
Successor step of the induction comes directly from the assumption that

f preserves Y : if fβ(x) ∈ Y then fβ+1(x) = f
(
fβ(x)

)
∈ Y .

Let now β be a limit ordinal. By the monotonicity of f , the sequence
{fγ(⊥)}γ<β is increasing. By the inductive assumption, {fγ(⊥)}γ<β ⊆ Y ,
therefore, by closedness of Y , fβ(⊥) = supγ<β f

γ(⊥) ∈ Y . This concludes
the limit step of the induction. �

Now we prove a lemma that is very speci�cally tight to our needs. Since
it will be reused later, we prove it in a bit more general form than it is
necessary for this section.

Lemma 3.8.2 Let f :
(

P
(
TB,{x1,x2,...,xk}

))2

→
(

P
(
TB,{x1,x2,...,xk}

))2

be a

monotonic function on pairs of parametrized languages with k > 0 param-
eters. Let L1, L2, . . . , Lk, M be languages such that, for any G, H, for
(G′, H ′) := f(G,H), and for the substitution:

α = {x1 7→ L1, x2 7→ L2, . . . , xk 7→ Lk} ,

if G[α], H[α], M are pairwise disjoint then G′[α], H ′[α], M are pairwise dis-
joint. Then for (G0, H0) := Fix(f), languages G0[α], H0[α], M are pairwise
disjoint.
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Proof:
We intend to use Lemma 3.8.1, for Y being a set of pairs of languages

(G,H) such that G[α], H[α], M are pairwise disjoint. Function f is mono-
tonic and preserves Y by the assumption of the lemma we prove. Of course
⊥ = (∅, ∅) ∈ Y , because each substitution performed on the empty set re-
turns the empty set, and the empty set is disjoint with any set (including
the empty set itself).

We need to prove that Y is closed in the sense as in Lemma 3.8.1. Let
{(Gγ, Hγ)}γ<β be a coordinate-wise increasing sequence such that for each
γ < β, (Gγ, Hγ) ∈ Y . Assume, towards a contradiction, that (Gβ, Hβ) :=
supγ<β(Gγ, Hγ) /∈ Y . It means that one of the two cases holds:

1. there exists a tree t and contexts g ∈ Gβ and h ∈ Hβ such that t is
context g with some substitutions done according to α and t is also
context h with some substitutions done according to α,

2. there exists a tree t ∈M and context g ∈ Gβ∪Hβ such that t is context
g with some substitutions done according to α.

For the �rst case, note that, since set of pairs of sets is ordered by co-

ordinate-wise inclusion, supγ<β(Gγ, Hγ) =
(⋃

γ<β Gγ,
⋃
γ<βHγ

)
. Therefore,

there are some γ1 < β, γ2 < β such that g ∈ Gγ1 and h ∈ Hγ2 . Since
{(Gγ, Hγ)} is increasing, g ∈ Gmax(γ1,γ2) and h ∈ Hmax(γ1,γ2), and we obtain
a contradiction with the assumption that Gmax(γ1,γ2)[α] and Hmax(γ1,γ2)[α] are
disjoint.

For the second case it is enough to note that there is some γ < β such
that g ∈ Gγ ∪ Hγ, what gives a contradiction with the assumption on M
being disjoint with both Gγ[α] and Hγ[α]. �

Proposition 3.8.3 Let sets T and F be disjoint and such that for t ∈ T ∪F ,
t(ε) /∈ {¬,∨}. Let K arbitrary. Then sets P σ(T, F,K) and Nσ(T, F,K) are
disjoint.

Proof:
We intend to use Lemma 3.8.2 for f = Φ, k = 3, L1 = T , L2 = F , L3 = K,

andM = ∅. Therefore, it is enough to show that for T and F as in the state-
ment we prove, for any P,N ⊆ T{¬,∨},{tt,ff,>}, if P(T, F,K)∩N(T, F,K) = ∅,
then for (P′,N′) = Φ (P,N) also P′(T, F,K) ∩N′(T, F,K) = ∅.

Below we use sets ΦP∨ , ΦP¬ , ΦPT , ΦN∨ , ΦN¬ , ΦNF , as used to de�ne
operator Φ. Set ΦP∨ [p 7→ P, n 7→ N] is disjoint with ΦN∨ [p 7→ P, n 7→ N]
thanks to disjointness of P and N. The same argument gives disjointness of
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ΦP¬ [p 7→ P, n 7→ N,> 7→ K] and ΦN¬ [p 7→ P, n 7→ N,> 7→ K]. Sets
ΦPT [tt 7→ T, ff 7→ F ] and ΦNF [tt 7→ T, ff 7→ F ] are disjoint thanks to the dis-
jointness of T and F . To observe the disjointness of the remaining pairs of
components (e.g. ΦP∨ and ΦN¬ ; ΦP∨ and ΦNF ; etc.) it is enough to look at
the labels in the root of given subtrees. �

Now we are ready to de�ne a sigma-lifting operation.
Let L be a language of trees over a nonempty alphabet A. Let us �x an

arbitrary letter a ∈ A, and let

Aσ = A ∪ {∨,¬, ]}

(we do not require that {∨,¬, ]} and A are disjoint). Now we extend L
to a language over Aσ. The way we do it will play a role when we discuss
unambiguity.

Let πa : Aσ → A be the following alphabet projection:

πa(x) =

{
a if x /∈ A
x otherwise

A tree mapping π̂a : TAσ → TA is de�ned by mapping each label according
to πa, i.e.:

π̂a(t) = πa ◦ t (3.9)

It is crucial for our construction that π̂a
−1
(
L
)

= π̂a
−1(L).

Finally, we use the following substitution:

λLa :=

tt 7→
]

TAσ π̂a
−1(L)

, ff 7→
]

TAσ π̂a
−1
(
L
) ,> 7→ TAσ

 (3.10)

to de�ne:
σa (L) := P σ

[
λLa
]

(3.11)

Note that the de�nition implements the idea presented in Figure 3.2, with
this exception that the alphabet projection is omitted in the �gure. Namely,
De�nition (3.11) expects subtrees diverging to the right from ]-labeled nodes
to belong to π̂a

−1(L) or π̂a
−1
(
L
)
, instead of L and L.

Since the choice of a hardly ever a�ects properties that we are interested
in, we usually simply write σ (L), instead of σa (L), and λL instead of λLa .

From Proposition 3.8.3 we derive:

Corollary 3.8.4
P σ
[
λLa
]
∩Nσ

[
λLa
]

= ∅
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As it was discussed above, trees from P σ and from Nσ correspond to
boolean formulas. Now, we de�ne several notions that come from this corre-
spondence.

In the following de�nitions let t ∈ TB,C for some alphabets B, C such
that {∨,¬} ⊆ B, and C ∩ {∨,¬} = ∅ (C can be empty).

De�nition 3.8.5 We call v ∈ {l, r}∗ a boolean path in t if for all w ≺ v:

• t(w) ∈ {∨,¬},

• if t(w) = ¬ then wr 4 v, i.e. v turns right after each label ¬,

• if t(w) = ∨ and wl 4 v, then t(wl) = ∨.

For D ⊆ (B ∪ C) \ {∨,¬}, we call a boolean path v D-correct in t if it
satis�es:

• t(v) ∈ {∨,¬} ∪D,

• if t(v) = ∨ then t(vl) = ∨.

If D = {x} for some x, then we write x-correct instead of {x}-correct.

De�nition 3.8.6 We call α ∈ {l, r}ω a boolean branch in t if each pre�x
of α is a boolean path. A boolean branch α is correct in t if α ∈ {l, r}∗lω,
i.e. if it turns right only �nitely many times.

We sometimes abuse this terminology and call correct boolean branches
D-correct, although the de�nition does not depend on D. On the other
hand, if D is clear from the context, we may simply write correct instead of
D-correct for a boolean path.

A path (or a branch) is D-incorrect (or incorrect, respectively) if it is
not D-correct (or correct, respectively).

Remark 3.8.7 (Su�x and concatenation closure)
1. The set of boolean paths is closed under concatenation, in the following

sense.

If v is a boolean path in t
and w is a boolean path (or branch) in tv,
then vw is a boolean path (respectively branch) in t.

Since the de�nition of a boolean branch cares only about the local proper-
ties (labels and successors), also in�nite concatenation of boolean paths
yields a boolean branch.
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2. The set of boolean paths is closed under su�xes, in the following sense.

If v is a boolean path (or branch) in t
and v = xy for x ∈ {l, r}∗ and y ∈ {l, r}6ω,
then y is a boolean path (or branch) in tx.

Remark 3.8.8 Correctness is a pre�x-independent property of boolean
paths and branches, in the following sense.

If vw is a boolean branch or path in t then:
vw is D-correct in t if and only if w is D-correct in tv.

We introduce one more set that will play an important role until the
end of the chapter. Let, as above, {∨,¬} ⊆ B, C ∩ {∨,¬} = ∅, and let
D ⊆ (B ∪ C) \ {∨,¬}.

WD :=


t ∈ TB,C :
all boolean paths in t are D-correct (proper shape)
and all boolean branches in t are correct (well-foundedness)


(3.12)

If D = {x} for some x, than we write W x instead of W {x}.
We sometimes write WD = WD

B,C , for W
D ⊆ TB,C and WD = WD

B , for
WD ⊆ TB = TB,∅.

Remark 3.8.9 If v is a boolean path in t ∈ WD and t(v) = ∨, then for
n ∈ N, t(vln) = ∨.

Proposition 3.8.10
P σ ∪Nσ ⊆ W {tt,ff}

Proof:
Knaster-Tarski Theorem (see e.g. [Tar55]) implies that if f is a mono-

tonic function on a complete lattice (X,6), then Fix(f) = inf{X :
Φ(X) 6 X}. Therefore, to prove the proposition it su�ces to show that
Φ
(
W {tt,ff},W {tt,ff}) ⊆ (

W {tt,ff},W {tt,ff}), where ⊆ designates coordinate-wise
inclusion. Indeed, if

(
W {tt,ff},W {tt,ff}) ∈ {(P,N) : Φ(P,N) ⊆ P,N}, then

(P σ, Nσ) = Fix(Φ) ⊆
(
W {tt,ff},W {tt,ff}), i.e. P σ ⊆ W {tt,ff} and Nσ ⊆ W {tt,ff},

so P σ ∪Nσ ⊆ W {tt,ff}.
We show that languages ΦP

[
p 7→ W {tt,ff}, n 7→ W {tt,ff}] and ΦN [p 7→

W {tt,ff}, n 7→ W {tt,ff}] consist of trees in which each boolean path
is {tt, ff}-correct and each boolean branch is correct. Take t ∈
ΦP

[
p 7→ W {tt,ff}, n 7→ W {tt,ff}] ∪ ΦN

[
p 7→ W {tt,ff}, n 7→ W {tt,ff}]. Then one of

the three cases holds:
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1. t(ε) = ¬ and tr ∈ W {tt,ff}. The path containing only the root is
{tt, ff}-correct in t. All other potential boolean paths and branches
in t are of the form rv for v being a boolean path or branch in tr.
They are {tt, ff}-correct, because correctness is pre�x-independent and
all boolean paths and branches in tr are {tt, ff}-correct.

2. t(ε) ∈ {tt, ff}. Then ε is the only boolean path in t, and it is {tt, ff}-cor-
rect.

3. For each k > 0, t
(
lk
)

= ∨ and tlkr ∈ W {tt,ff}. Each boolean path or
branch is either contained in the leftmost branch�then it is {tt, ff}-cor-
rect; or �nishes in some subtree tlkr�then it is also {tt, ff}-correct, by
pre�x-independence.

�

Corollary 3.8.11 For any alphabet A, for D ⊆ A\{∨,¬} and any languages
L,M,N ⊆ TA such that if t ∈ L ∪M then t(ε) ∈ D, the following holds.

P σ(L,M,N) ∪Nσ(L,M,N) ⊆ WD

Proof:
If t ∈ P σ(L,M,N)∪Nσ(L,M,N) then there is t′ ∈ P σ ∪Nσ such that t

is t′ with each occurrence of tt replaced with a tree from L, each occurrence
of ff replaced with a tree from M , and each occurrence of > replaced with a
tree from N . Recall that, by Proposition 3.8.10, t′ ∈ W {tt,ff}.

Suppose, towards a contradiction, that t has a D-incorrect boolean path
or branch α.

If α is a branch, then either it is entirely included in t′, then it is correct�
a contradiction; or there is a boolean path v ≺ α in t′ such that t′(v) ∈
{tt, ff,>}. If t′(v) = > then v is a {tt, ff}-incorrect path in t′�a contradiction.
If t′(v) ∈ {tt, ff}, then t(v) ∈ D (by the assumption on languages L and M)
and α is not a boolean branch in t, because no label di�erent than ∨ and ¬
can occur on a boolean branch. Therefore, all the possible cases for α being
a branch lead to a contradiction.

If α is a path, then, again, it could potentially be entirely included in
t′. Then, since α is D-incorrect and {tt, ff}-correct, t′(α) ∈ {tt, ff}. Then
t(α) ∈ D, so α is D-correct in t�a contradiction. Therefore, there is a
boolean path v ≺ α in t′ such that t′(v) ∈ {tt, ff}. Then, as above, t(v) ∈ D
and α is not a boolean path in t, what yields a contradiction. �

We de�ne the following relation on the set WD:

s @D t ⇐⇒ s = tw for some boolean path w ∈ {l, r}∗r in t
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We show that @D is a strict well-founded order on WD. Suppose that t1 AD
t2 AD t3 AD . . . is an in�nite @D-decreasing sequence of trees satisfying
well-foundedness and proper shape. Then:

t2 = t1w1r, t3 = t2w2r, t4 = t3w3r, . . .

for some boolean paths w1r, w2r, w3r, . . .. By closure under the in�-
nite concatenation, w1rw2rw3r . . . is a boolean branch in t1 turning right
in�nitely many times. This contradicts well-foundedness assumption on
boolean branches of t1.

The above also proves the antisymmetry of the relation, because if
t1 @D t2 @D t1, then the alternating sequence t1, t2, t1, t2, . . . is an in�-
nite decreasing sequence satisfying the above assumptions.

Transitivity of@D comes immediately from closure of boolean paths under
concatenation.

Let us note, that:

Remark 3.8.12 If t ∈ WD and w is a boolean path in t, then tw ∈ WD.

This is because boolean paths and branches in tw are su�xes of boolean
paths and branches in t, and correctness of boolean paths and branches is
pre�x-independent.

For any tree t, ε is a boolean path. If this path is correct then t(ε) ∈
{∨,¬} ∪D. If t(ε) ∈ D then there are no more boolean paths or branches,
so, in particular, there is no tree s @D t. If t(ε) ∈ {∨,¬} then r is a boolean
path in t as well. If additionally t ∈ WD then, by the above remark and the
de�nition of @D, tr @D t. Finally, we obtain:

Remark 3.8.13 If t ∈ WD, then t is a minimal element of @D if and only
if t(ε) ∈ D.

Now we prove that a kind of inverse of Corollary 3.8.11 holds.

Proposition 3.8.14 Let B, C be any alphabets such that {∨,¬} ⊆ B and
{∨,¬} ∩ C = ∅. Let D ⊆ (B ∪ C) \ {∨,¬}. Let L,M ⊆ TB,C be languages
such that for t ∈ TB,C, if t(ε) ∈ D then t ∈ L ∪M . Then:

WD
B,C ⊆ P σ(L,M, TB,C) ∪Nσ(L,M, TB,C)

Proof:
Knowing that relation @D is well-founded onWD, we prove that each tree

from WD is in (P σ ∪Nσ)(L,M, TB,C) = P σ(L,M, TB,C)∪Nσ(L,M, TB,C) by
an induction with respect to @D.
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If t is a minimal element of @D then, by Remark 3.8.13, t(ε) ∈ D. Then
t ∈ L ∪M . Let t ∈ L. Thanks to the construction of ΦPT (see equation
(3.6)), and by the assumption on languages L and M , we have:

t ∈ ΦP


p 7→ ∅,
n 7→ ∅,
tt 7→ L,
ff 7→M,
> 7→ ∅

 ⊆ ΦP


p 7→ P σ

(
L,M, TB,C

)
,

n 7→ Nσ
(
L,M, TB,C

)
,

tt 7→ L,
ff 7→M,
> 7→ TB,C

 = P σ
(
L,M, TB,C

)

where the �rst inclusion comes from the monotonicity of Φ and the equality
comes from the fact that the pair

(
P σ
(
L,M, TB,C

)
, Nσ

(
L,M, TB,C

))
is a

�xpoint of Φ
[
tt 7→ L, ff 7→M,> 7→ TB,C

]
.

The prove that if t ∈M then t ∈ Nσ
(
L,M, TB,C

)
is analogous.

If t ∈ WD is not @D-minimal then t(ε) ∈ {∨,¬}.
Let us take t ∈ WD such that t(ε)=¬. Then, thanks to the above notes

concerning @D relation, tr ∈ WD and tr @D t. By the inductive assumption,
tr ∈ (P σ ∪Nσ)

(
L,M, TB,C

)
. Therefore, using ΦP¬ or ΦN¬ we obtain:

t ∈ (ΦP ∪ ΦN)


p 7→ P σ

(
L,M, TB,C

)
,

n 7→ Nσ
(
L,M, TB,C

)
,

tt 7→ L,
ff 7→M,
> 7→ TB,C

 = (P σ ∪Nσ)
(
L,M, TB,C

)

If t ∈ WD is such that t(ε)=∨, then, by proper shape assumption, whole
leftmost branch is labeled with ∨'s. Then for each k > 0, lkr is a boolean
path, so tlkr ∈ WD and tlkr @D t. By the inductive assumption, for each k >
0, tlkr ∈ (P σ∪Nσ)

(
L,M, TB,C

)
. If there is such k that tlkr ∈ P σ

(
L,M, TB,C

)
,

then using ΦP∨ , we get:

t ∈ ΦP


p 7→ P σ

(
L,M, TB,C

)
,

n 7→ Nσ
(
L,M, TB,C

)
,

tt 7→ L,
ff 7→M,
> 7→ TB,C

 ⊆ (P σ ∪Nσ)
(
L,M, TB,C

)

Otherwise for each k, tlkr ∈ Nσ
(
L,M, TB,C

)
, therefore, using ΦN∨ , we get:

t ∈ ΦN


p 7→ P σ

(
L,M, TB,C

)
,

n 7→ Nσ
(
L,M, TB,C

)
,

tt 7→ L,
ff 7→M,
> 7→ TB,C

 ⊆ (P σ ∪Nσ)
(
L,M, TB,C

)
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�
The following equality will be important for the construction of automata

in the following sections (recall that we use t as a union sign that additionally
designates that the components are disjoint):

Corollary 3.8.15 For a nonempty alphabet A and a language L ⊆ TA:

W ]
Aσ

= P σ
[
λL
]
tNσ

[
λL
]

Proof:
Note that t ∈ λL(tt)∪λL(ff) if and only if t(ε) = ]. Additionally recall that

{∨,¬, ]} ⊆ Aσ. Therefore, by Corollary 3.8.11, P σ
[
λL
]
∪ Nσ

[
λL
]
⊆ W ]

Aσ

and, by Proposition 3.8.14, W ]
Aσ
⊆ P σ

[
λL
]
∪ Nσ

[
λL
]
. Sets P σ

[
λL
]
and

Nσ
[
λL
]
are disjoint by Corollary 3.8.4. �

We conclude the section with one more de�nition using relation @D.
Since relation @D is well-founded on WD, we can use it to de�ne a rank

in a standard way. Let for a tree t ∈ WD:

rankD(t) = sup{rankD(s) + 1 : s @D t}

The rank of a tree is always a countable ordinal. This is because trees smaller
than t with respect to @D are subtrees of t, t has countably many subtrees,
whereas the co�nality of ω1 is ω1.

3.8.1 Topological Properties

First we prove the property of the sigma-lifting operation that it was designed
for and that explains its name.

Theorem 3.8.16 Let L ⊆ TA. If L is hard for a topological complexity class
K (e.g. K = {K : K6WL}), then σ (L) is hard for the sigma-algebra4 σ (K).

Proof:
For the sake of the proof we strengthen the claim slightly. We use sub-

stitution λLa as in the de�nition of σ (L) (see equation (3.10)), and sets:

P := P σ
[
λLa
]

= σa (L)
N := Nσ

[
λLa
]

W := W ]
Aσ

= P ∪N (by Corollary 3.8.15)

4Formally, σ (K) is de�ned for K being a set of subsets of some space (see Section 1.1),
while K is not necessarily a set. Here, we say that a subset L ⊆ X of a space X belongs
to σ (K) if it belong to the sigma algebra generated by the subsets of X that are in class
K.
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Let X, Y be topological spaces, and let K ⊆ X, L1 ⊆ Y , L2 ⊆ Y . We
say that a function f : X → Y reduces K to the pair (L1, L2) if:

f(x) ∈ L1 ⇐⇒ x ∈ K
f(x) ∈ L2 ⇐⇒ x /∈ K

If L1 and L2 are disjoint, it is equivalent to:

x ∈ K =⇒ f(x) ∈ L1

x /∈ K =⇒ f(x) ∈ L2

Figure 3.3: A function f reduces a set K to a pair (P,N).

For the proof of the theorem it is enough to show that the class of sets
continuously reducible to pair (P,N) contains all sets from K, and is closed
under complementation and countable unions.

(sets from K) Each set K ⊆ X from class K is continuously reducible to
L. So there is a continuous function f : X → TA such that:

f(x) ∈ L ⇐⇒ x ∈ K, or equivalently:
f(x) ∈ TA \ L ⇐⇒ x /∈ K.

Let us put:

f](x) :=

]

f(x) f(x)

(the left subtree does not matter,
we put an arbitrary �xed tree there)

The function is clearly continuous, because f is continuous. We show
that f] : X → TAσ is a needed reduction of K to (P,N). If x ∈ K then, by
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the assumption on f , f(x) ∈ L ⊆ π̂a
−1(L). Then, thanks to the component

ΦPT of the �xpoint de�nition of P σ and the shape of the language λLa (tt),
f](x) ∈ P . If x /∈ K then f(x) ∈ TA \ L ⊆ π̂a

−1(TA \ L). Then, thanks to
the component ΦNF and the language λLa (ff), f](x) ∈ N .

(closure under the complement) Take any set K ⊆ X continuously
reducible to the pair (P,N), and let f : X → TAσ be an appropriate reducing
function. We construct a reduction f : X → TAσ of K to (P,N) by putting:

f(x) :=

¬

f(x) f(x)

(the left subtree does not matter,
we put an arbitrary �xed tree there)

By the construction of ΦP¬ and ΦN¬ in the �xpoint de�nition of sets P σ

and Nσ, if f(x) ∈ N then f(x) ∈ P and if f(x) ∈ P then f(x) ∈ N . Hence
we obtain needed:

x ∈ K ⇐⇒ x /∈ K ⇐⇒ f(x) ∈ N =⇒ f(x) ∈ P
x /∈ K ⇐⇒ x ∈ K ⇐⇒ f(x) ∈ P =⇒ f(x) ∈ N

(closure under unions) Take a set K ⊆ X such that K =
⋃ω
i=0Ki, where

each Ki is continuously reducible to (P,N). For each i, let fi : X → TAσ
be an appropriate reduction for set Ki. We build a reduction for set K as
follows:

f(x) :=

∨

f0(x)

∨

f1(x)

∨

f2(x)

∨

f3(x)

Function f is clearly continuous. We now prove that it is a needed re-
duction.

By the assumption, for each i, fi(X) ⊆ W . Therefore, by the construction
of the components ΦP∨ and ΦN∨ in the �xpoint de�nition of P σ and Nσ sets,
f(x) ∈ P if fi(x) ∈ P for some i, otherwise f(x) ∈ N . Since x ∈ K if and
only if x ∈ Ki for some i and, by the assumption, x ∈ Ki if and only if
fi(x) ∈ P , f is a reduction to (P,N). �

We show one more topological property of the operation for further con-
venience.
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Proposition 3.8.17 For a nonempty alphabet A, any a ∈ A, and any lan-
guage L ⊆ TA:

σa (L) ≡W σa
(
L
)

Proof:
Since L = L, it su�ces to prove that for any L, σa (L) 6W σa

(
L
)
.

As a function that reduces σ (L) to σ
(
L
)
, we take a function f that works

as the identity with an exception that each ]-labeled node v that does not
have any ]-labeled node above is replaced with a context:

c :=

¬

]

l r

(the left subtree of the root
does not matter�we put
an arbitrary �xed tree there)

In the sense that f(t)v is the context c with the hole l substituted with tvl
and the hole r substituted with tvr.

First we prove that W ] = f−1
(
W ]
)
.

( ⊇) We show that if there is a ]-incorrect path or branch in t then there is
a ]-incorrect path or branch in f(t).

Suppose that there is an incorrect boolean branch α in t. Since there is
no ] labels on a boolean branch, this branch is untouched by f , and α is also
an incorrect boolean branch in f(t).

Let us now assume that there is a ]-incorrect path v in t. One of the two
possible reasons for this may be that t(v) /∈ {∨,¬, ]}. In such a case, the
path v is not changed by f and v is a ]-incorrect path in f(t). The other
reason may be that t(v) = ∨ and t(vl) 6= ∨. If t(vl) 6= ], then the whole
path vl is not changed by f , and v is a ]-incorrect path in f(t). If t(vl) = ],
then the node vl is replaced with c by f , and f(t)(vl) = ¬ 6= ∨, so v is also
a ]-incorrect path in f(t).

( ⊆) We show that if there is a ]-incorrect path or branch in f(t) then there
is a ]-incorrect path or branch in t.

If there is an incorrect boolean branch in f(t) then it does not cross any
context c, because if it were crossing c then it would go through a ]-labeled
node and boolean branches cannot have ]-labeled nodes. Therefore, the
branch is also included in t and has the same labels, so t has an incorrect
branch.

Now assume that there is a ]-incorrect path v in f(t). One of the two
possible reasons for this may be that f(t)(v) /∈ {∨,¬, ]}. Since all boolean
paths that enter c end in ¬ or ]-labeled node, v does not intersect any context
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c, therefore, it is included in t and is a ]-incorrect path there. If v is ]-in-
correct because f(t)(v) = ∨ and f(t)(vl) 6= ∨, then v does not intersect any
context c, but it is possible that there is a context c rooted in node vl. Then
if the context c comes from the replacement done by f then t(vl) = ] and v is
a ]-incorrect path in t; otherwise v is entirely included in t and is ]-incorrect
there. As a result, in all the cases v is also a ]-incorrect path in t.

We have proven that t ∈ W ] if and only if f(t) ∈ W ]. Recall that
W ] = P σ

[
λLa
]
tNσ

[
λLa
]
. Now we only need to prove that for t ∈ W ]:

t ∈ P σ
[
λLa
]
⇐⇒ f(t) ∈ P σ

[
λLa

]
(3.13)

I.e., referring to the intentional logic-like semantics of trees in W ], among
trees expressing well-shaped formulas the value of a formula is preserved by
f .

Thanks to the restriction to the trees in W ], we can prove equiva-
lence (3.13) by the induction over rank](t).

The base of the induction involves trees with ] in the root (see Re-
mark 3.8.13). Such a tree t is in P σ

[
λLa
]
if and only if tr ∈ π̂a−1(L). Since f(t)

is context c with subtree tr (unchanged) plugged into hole r, f(t) ∈ P σ
[
λLa

]
if and only if tr ∈ π̂a−1

(
L
)

= π̂a
−1(L) (see the value of λLa (ff) in equation

(3.10)). Therefore, t ∈ P σ
[
λLa
]
if and only if f(t) ∈ P σ

[
λLa

]
.

The step of the induction is straightforward: function f is compositional,
it does not change the shape of tree in ∨- or ¬-labeled node (nor in a ∨-labeled
leftmost branch), so the evaluation of subtrees simply propagates. �

3.8.2 Automata Theoretic Properties

Now we prove that the sigma-lifting operation preserves bi-unambiguity.

Theorem 3.8.18 If a language L ⊆ TA is bi-unambiguous and a ∈ A, then
σa (L) is bi-unambiguous.

Using an unambiguous automaton L recognizing a language L ⊆ TA, and
an unambiguous automaton L recognizing L, we construct an unambigu-
ous automaton CL,L recognizing σa (L). The alphabet of the automaton is
Aσ = A ∪ {∨,¬, ]}. In the further part of the section we will construct an
unambiguous automaton recognizing σa (L), what will conclude the proof of
bi-unambiguity.
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First we modify automata L and L according to projection π̂a to work
with alphabet Aσ. Namely, let L′ (respectively L′) be the same as L (re-
spectively L), except that it treats letters outside A as if they were a. Then
L′ recognizes π̂a−1 (L), and L′ recognizes π̂a−1

(
L
)
. Note that the languages

recognized by the two automata are complements in TAσ .
Now we construct a parametrized automaton C(`, `, τ ). Apart from the

parameter-states, the automaton uses states: P 1, P 1
∨, N

1, N0
∨, W

1, W 0
∨,

where upper index denotes the priority of a state. States P 1, N1, W 1 are
meant to recognize languages P σ, Nσ, W ] used in the de�nition of σ (L) (see
equations (3.8), (3.12)), respectively. The initial state is P 1. The transitions
of C are as follows:

1) ∨

P 1, P 1
∨

W 0
∨ P 1

2) ∨

P 1, P 1
∨

P 1
∨ N1

3) ∨

N1, N0
∨

N0
∨ N1

4) ∨

W 1,W 0
∨

W 0
∨ W 1

5) ¬
P 1

τ N1

6) ¬
N1

τ P 1

7) ¬
W 1

τ W 1

8) ]

P 1

τ `

9) ]

N1

τ `

10) ]

W 1

τ τ

Now we put CL,L := C(L′,L′, {>0}), where {>0} is a one-state automaton
accepting every tree in TAσ (state>

0 is a self-looping state with even priority).
In the proofs in this section we use substitution λLa , and languages P ,

N , W , as in the previous section. Let us recall their de�nitions for easier
reference:

λLa :=

tt 7→
]

TAσ π̂a
−1(L)

, ff 7→
]

TAσ π̂a
−1
(
L
) ,> 7→ TAσ


P := P σ

[
λLa
]

= σa (L)
N := Nσ

[
λLa
]

W := W ]
Aσ

= P ∪N
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Lemma 3.8.19 If automaton L recognizes L and automaton L recognizes L
then:

L
(
CL,LP 1

)
= P,

L
(
CL,LN1

)
= N,

L
(
CL,LW 1

)
= W.

Proof:
Note that, by the construction of transitions of CL,L, in a run of CL,L

starting from either of states P 1, N1, W 1 on a tree t ∈ TAσ , each boolean
path (or branch) is labeled only with states P 1, P 1

∨, N
1, N0

∨, W
1, W 0

∨.
Using this fact we prove that each tree t /∈ W is not accepted from any of

states P 1, N1, W 1. By the de�nition of W ], for such a tree one of the three
holds:

1. there is a boolean path w such that t(w) /∈ {∨,¬, ]},

2. there is a boolean path w such that t(w)=∨ and t(wl)6=∨,

3. there is a boolean branch α that turns right in�nitely many times.

In the �rst case each run of automaton CL,L from either of states P 1, N1,
W 1 gets stuck in node w, because there is no transition from any of states
P 1, P 1

∨, N
1, N0

∨, W
1, W 0

∨ by any letter di�erent than ∨, ¬ and ].
In the second case, node wl obtains a state label P 1

∨, N
0
∨, or W

0
∨ in each

run of CL,L on t. There is no transition from any of these states for any letter
di�erent than ∨, so the run is stuck.

For the third case we note that in each run of CL,L on t, state P 1, N1, or
W 1 occurs on branch α after each turning right. Therefore, priority 1 of the
automaton occurs in�nitely often on this path, and the run is rejecting.

For t ∈ W we prove, by an induction on the rank of t, that t ∈ P if and
only if t is accepted from state P 1 and that t ∈ N if and only if t is accepted
from state N1.

For rank](t) = 0, by Remark 3.8.13, t(ε) = ], and then:

• from state W 1: tree t is accepted immediately�all-accepting state >0

is assigned to both successors of the root;

• from state P 1: tree t is accepted if and only if tr ∈ π̂a−1(L) (see transi-
tion (8)). By the construction of ΦP (see equation (3.6)) and the shape
of the language λLa (tt) (see equation (3.10)), if t(ε) = ] then t ∈ P if
and only if tr ∈ π̂a−1(L). Therefore, t is accepted if and only if t ∈ P ;

128



• from state N1: tree t is accepted if and only if tr ∈ π̂a
−1
(
L
)
(see

transition (9)). By the construction of ΦN (see equation (3.7)) and
the shape of the language λLa (ff) (see equation (3.10)), if t(ε) = ] then
t ∈ N if and only if tr ∈ π̂a−1

(
L
)
. Therefore, t is accepted if and only

if t ∈ N .

If rank](t) > 0, then tree t is of one of the forms:

1. It has ¬ in the root and subtree tr ∈ W is a tree of smaller rank. Then,
by the inductive assumption, tr is accepted from W 1, so t is accepted
from W 1 ((7) is the only transition from W 1 for letter ¬).
Such a tree is accepted from state P 1 if and only if tr is accepted from
state N1 ((5) is the only transition from P 1 for letter ¬), so, by the
inductive assumption, if and only if tr ∈ N . By the �xpoint de�nition
of P σ, t ∈ P if and only if tr ∈ N (see ΦP¬), so among trees t ∈ W with
¬ in the root exactly those are accepted from state P 1 that belong to
P .

We similarly prove analogous claim for state N1 and set P .

2. The whole leftmost branch is labeled with ∨, and for each n, tlnr ∈ W
is a tree of smaller rank than t. Then, by the inductive assumption, for
each n, tree tlnr is accepted from state W 1. Then, since there is a run
of CL,L from state W 1 on t that labels whole leftmost branch (except
the root) with W 0

∨, and each node of the form lnr with state W 1 (see
transition (4)), also t is accepted from W 1.

Let us now consider a run of CL,L from state N1 on such a tree t. The
leftmost branch (except the root) in such a run is always labeled with
state N0

∨, and nodes lnr�with state N1 (transition (3) is the only one
from state N1 or N0

∨ for letter ∨). Hence, the tree is accepted if and
only if each of trees tlnr is accepted from N1, what, by the inductive
assumption, holds if and only if tlnr ∈ N for each n, i.e. if and only if
t ∈ N (see ΦN∨).

Now consider a run from state P 1. Such a run could assign state P 1
∨

to all nodes on the leftmost branch (using transition (2)), but then it
would not be accepting, because P 1

∨ has an odd priority. Therefore, in
order to accept, the automaton has to use transition (1) in some node
on the leftmost branch. As a result, the tree can only be accepted if
one of subtrees tlnr is accepted from state P 1, what, by the inductive
assumption, holds if and only if this subtree is in P .

Now we show an accepting run from state P 1 on tree t with ∨ at the
leftmost branch and at least one subtree tlnr in P . It uses transition
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(1) as soon as possible, i.e. in the node ln for the least n such that tlnr
belongs to P . By the inductive assumption, tlnr is accepted from state
P 1. In this run all nodes lmr for m < n are labeled with state N1. By
the inductive assumption and the fact that P and N partition W (see
Corollary 3.8.15), subtrees tlmr for m < n are accepted from N1. For
m > 1, nodes ln+m obtain state label W 0

∨, and nodes ln+mr label W 1

in the run (see transition (4)). Since subtrees tln+mr belong to W , they
are accepted from state W 1, from the inductive assumption. Also the
leftmost branch of the run satis�es the parity condition, since W 0

∨ has
priority 0. As a result whole run is accepting, and we have proven that
t is accepted from state P 1 if and only if one of the subtrees tlnr is in
P , i.e. if and only if t ∈ P (see ΦP∨ in equation (3.6)).

�

Since σa (L) = P , we obtain in particular:

Corollary 3.8.20 Automaton CL,L recognizes language σ (L).

Now we use Lemma 3.8.19 in the proof of the following:

Lemma 3.8.21 If automata L and L are unambiguous and s is a single
state of CL,L, then the automaton CL,Ls is unambiguous.

Proof:
First observe that if automata L and L are unambiguous then also au-

tomata L′ and L′ are unambiguous, by Fact 3.6.6(3).
Component {>0} is obviously unambiguous.
Now assume, to the contrary, that there are two di�erent accepting runs

ρ1 and ρ2 of automaton CL,Ls on some tree t. Let v be such a node of t that
runs ρ1 and ρ2 di�er on v, but they are the same on each pre�x of v. Note
that v 6= ε, because CL,Ls has only one initial state. Note that v cannot be
in the subtree where the runs are already in one of the components L′, L′ or
{>0}, because then there would be two accepting runs on the subtree, which
is impossible since L′, L′ and {>0} are unambiguous.

The only nondeterminism in C(`, `, τ ) part of automaton CL,Ls occurs in
state P 1 or P 1

∨ for label ∨. Therefore, node v is labeled with ∨ and, without
loss of generality, run ρ1 takes transition (1) and run ρ2 takes transition (2)
in this node. As a result ρ1 assigns state P 1 to node vr, while ρ2 assigns state
N1 to this node. By Lemma 3.8.19 and Corollary 3.8.4, languages accepted
from states P 1 and N1 are disjoint, so at least one of the runs is rejecting,
what yields a contradiction. �
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Corollary 3.8.22 (of Lemma 3.8.21 and Corollary 3.8.20) If a lan-
guage L ⊆ TA is bi-unambiguous then language σ (L) ⊆ TAσ is unambiguous.

Now we need to show that language σ (L) is also unambiguous.
Recall that, by Corollary 3.8.15, σ (L) is the disjoint union of W and N .

Since the class of unambiguous languages is closed under disjoint unions, and
N is recognized by an unambiguous automaton CL,LN1 , we only need to show

how to recognize trees in W unambiguously.
Similarly as we have done for the set G in Lemma 3.7.1, we proceed by

proving the following:

Lemma 3.8.23 If t /∈ WD, then t has the rightmost D-incorrect boolean
path or branch.

Proof:
Take t ∈ WD. By the de�nition of WD, t has a D-incorrect boolean path

or branch (we call both of them paths for the sake of this proof). We construct
the rightmost D-incorrect boolean path starting from the root, maintaining
the following invariants: 1) whenever we descend to some subtree, it has
a D-incorrect boolean path, 2) the path constructed so far (call it ρ) is a
boolean path, 3) there is no D-incorrect boolean path η such that for v being
a common pre�x of ρ and η, vl 4 ρ and vl 4/ η. The initial one-node path is
boolean (as ε is a boolean path in each tree), and the invariants are satis�ed.

We consider the following cases:

1. If label in the current node is ¬ then we descend right. We prove that
this move maintains invariants. First observe that r is a boolean path in
the current subtree (subtree rooted in the current node), so invariant
(2) is maintained by closure of boolean paths under concatenation.
Now, if current subtree has an incorrect boolean path, then this path
has to turn right in ¬-labeled node (path ε is not incorrect), and right
subtree also has an incorrect boolean path (by pre�x-independence), so
invariant (1) is maintained. Invariant (3) is trivially maintained, since
we turn right.

2. If the current node is labeled with ∨ and the right subtree has an
incorrect path, then we descend right. It trivially maintains invariants
(1) and (3). It also maintains invariant (2), because r is a boolean path
in ∨-rooted tree.

3. If the current node is labeled with ∨, the right subtree has no incorrect
boolean path, and the left successor node is labeled with something
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di�erent than ∨, then we �nish the construction�the path constructed
so far is the desired incorrect boolean path.

4. If the current node is labeled with ∨, the right subtree has no incorrect
boolean path, and the left successor node is labeled with ∨, then we
descend left. In this case the root of the subtree does not constitute
an incorrect boolean path. Since the current subtree has an incorrect
boolean path and the right subtree does not have one, the left subtree
has to have an incorrect boolean path (again by pre�x-independence,
because both r and l are boolean paths in the current subtree). There-
fore, invariant (1) is maintained in this case. Invariant (2) follows from
the fact that the left successor, that we descend to, is labeled with ∨.
Invariant (3) is maintained, because the right subtree has no D-incor-
rect boolean path and the current path is not D-incorrect.

5. If the current node is labeled with something outside {∨,¬} ∪D, then
we �nish the construction�the path constructed so far is the desired
incorrect boolean path.

By invariant 1, at any step of the construction, the current node cannot be
labeled with a symbol from D (trees with a label from D in the root do not
have D-incorrect paths). Therefore, the cases considered above exhaust the
possibilities.

Let us denote the constructed path by ρ. By invariant (3), there is no
D-incorrect boolean path to the right from ρ. It su�ces to prove that ρ is
indeed a D-incorrect boolean path.

If ρ is �nite, then it was �nished in case 3 or case 5 of the construction. If
it was case 3 then ρ is a boolean path ending with label ∨ such that t(ρl)6=∨,
so it is an incorrect boolean path. In case 5 ρ is a boolean path ending with
label di�erent than ∨, ¬, and not in D, so it is also D-incorrect.

Let us now consider the case of ρ in�nite. Suppose additionally, to the
contrary, that ρ has �nitely many turnings right. Then ρ = ρ0l

ω, for some
ρ0 ∈ {l, r}∗ such that for each n > 0, t(ρ0l

n)=∨ (ρ is a boolean branch).
However, by invariant (1), subtree tρ0 has an incorrect boolean path. Since lω

is not incorrect in this subtree, there has to be some incorrect path diverging
right in some point ln. It contradicts invariant (3), therefore, ρ turns right
in�nitely many times, so it is an incorrect boolean branch. �

Now we are ready to construct an unambiguous automaton B recognizing

language W = W ]
Aσ
. It selects the rightmost ]-incorrect boolean path and

veri�es the selection.
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The automaton uses states B2, B1
∨, W

1, W 0
∨, >0. States B2 and B1

∨ are
used to track the path, states W 1 and W 0

∨ serve showing non-existence of
an incorrect boolean path in a subtree, and >0 is an all-accepting state, as
before. Again, upper index designates the priority of a state. The initial
state is B2. The transitions are as follows:

as in CL,L

11) ∨

B2, B1
∨

>0 B2

12) ∨

B2, B1
∨

B1
∨ W 1

4) ∨

W 1,W 0
∨

W 0
∨ W 1

13) ¬
B2

>0 B2

14) ¬, ]

B1
∨

>0 >0

7) ¬
W 1

>0 W 1

15) b

B2, B1
∨

>0 >0

for b/∈{∨,¬, ]} 10) ]

W 1

>0 >0

Lemma 3.8.24 Automaton B recognizes language W .

Proof:
First note that, in any run ρ of automaton B on tree t ∈ TAσ , states B

2

and B1
∨ mark a single path starting from the root, and they cannot occur

outside this one path. Let us call this path βρ. The path descends downwards
only if the conditions of a boolean branch are satis�ed: no transition extends
this path in case of label di�erent than ∨ and ¬; it turns right after label ¬;
if label di�erent than ∨ occurs after turning left in ∨-labeled node, the path
is terminated (transition (12) is then followed by (14) or (15)). As a result,
either the path is in�nite�then it is a boolean branch; or βρ is a boolean
path; or βρ = wl for w ∈ {l, r}∗, where w is a boolean path.

Let us consider any branch η containing path βρ. The construction of
the transitions of the automaton implies that the priorities of states on this
branch satisfy the parity condition if and only if one of the three holds:

1. η = βρ, so βρ is a boolean branch labeled only with states B2 and B1
∨.

Because of the priorities, B2 has to occur in�nitely often and it occurs
only after turning right;

2. βρ = wl for some boolean path w ∈ {l, r}∗, where t(w) = ∨ and
t(wl) 6= ∨�transition (14) or transition (15) is taken in node wl, that
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assign all-accepting state >0 to both successor nodes, so in particular
to the one contained in η that extends wl in this case;

3. t(βρ) /∈ {∨,¬, ]}�transition (15) is taken in node βρ, all-accepting
state is assigned to both successor nodes, as above.

The �rst case witnesses existence of an incorrect boolean branch, while the
latter two correspond to ]-incorrect boolean paths. This shows that a run
cannot be accepting if a tree does not contain any ]-incorrect path or branch.

Now we need to prove that there always is an accepting run ρ on a tree
with an incorrect path or branch. We use Lemma 3.8.23, and consider a
run ρ that marks the rightmost incorrect path with B-states, i.e. βρ contains
the rightmost incorrect boolean path. Then, by the above observations, ρ
is accepting on all branches containing βρ. Additionally, every subtree that
diverges to the right from βρ contains no incorrect branch, i.e. is in W . Then
we can use Lemma 3.8.19 (remember that W -part of automaton B is exactly
the same as in automaton CL,L), to conclude that those subtrees can be
accepted from stateW 1. Since ρ assigns stateW 1 to nodes descending to the
right from βρ (see transition (12)), the subtrees are accepted. The subtrees
descending to the left from βρ are always accepted, because transitions (11)
and (13) assign state >0 to them. �

Lemma 3.8.25 Automaton B is unambiguous.

Proof:
The only nondeterminism in automaton B occurs in states B2, B1

∨ for
label ∨. Two transitions are possible from such con�gurations: transition
(11) assigns state B2 to the right successor, while transition (12) assigns
state W 1 to the right successor. Analogously as in the proof of Lemma
3.8.21, we use the fact that languages L

(
BB2

)
=W and L

(
BW 1

)
=W are

disjoint (see Lemma 3.8.24 and Lemma 3.8.19), to conclude that only one of
the transitions can be used in an accepting run from a given node in a given
tree. �

Proof (of Theorem 3.8.18):
If language L is bi-unambiguous and unambiguous automata L and L,

recognize L and L, respectively, then:

• Language σ (L) is recognized by unambiguous automaton CL,L (by
Corollary 3.8.20 and Lemma 3.8.21),
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• Language σ (L) is unambiguous, as a disjoint union of language recog-

nized by unambiguous automaton CL,LN1 and language recognized by un-
ambiguous automaton B (by lemmas 3.8.19, 3.8.24, 3.8.21 and 3.8.25).

Therefore, language σ (L) is bi-unambiguous. �

P 1 ; P 1
∨

N1 ;N0
∨

(0,1)

W 1 ; W 0
∨

(0,1)

>0

(0,0)

L′

L′

B2 ; B1
∨

(1,2)

CL,L B

Figure 3.4: Diagram of strongly connected components of automata CL,L
and B.

Looking at the diagram of strongly connected components of the con-
structed automata depicted in Figure 3.4, we conclude that:

Remark 3.8.26 If a language L is recognized by an unambiguous (respec-
tively nondeterministic) automaton of index I, and L is recognized by an un-
ambiguous (respectively nondeterministic) automaton of index J , then σ (L)
is recognized by an unambiguous (respectively nondeterministic) automaton
of index {(0, 1)} ∪ I ∪ J , and σ (L) is recognized by an unambiguous (respec-
tively nondeterministic) automaton of index {(0, 1), (1, 2)} ∪ I ∪ J .

3.8.3 Iteration Potential

At the �rst glance it is not clear whether σ (σ (L)) 6= σ (L). It occurs that,
under relatively weak assumptions, not only this is true, but also iterating
sigma operation yields topologically harder and harder sets. The assumptions
were inspired by the property introduced in a paper by Arnold and Niwi«ski
[AN07]:

De�nition 3.8.27 Let X be a metric space. We say that a set L ⊆ X has
a Reduction Contractability Property5 if for each metric space Y and

5Arnold and Niwi«ski do not use this name, but they have introduced the notion.
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each set K ⊆ Y such that L6WK, there is a contracting6 reduction of L to
K.

Under this de�nition, Lemma 2 of the mentioned paper [AN07] states
that game languages W(ι,κ) have Reduction Contractability Property.

Now we show where the contractability can be used. The following also
comes from the paper [AN07]:

Proposition 3.8.28 Let X be a complete metric space, and let L ⊆ X. If
L has Reduction Contractability Property then L 
W L.

Proof:
Let us assume, towards contradiction, that L continuously reduces to L.

Then, by the same reduction, L continuously reduces to L. Since L has
Reduction Contractability Property, there is a contracting reduction r of L
to L. Space X is complete and r : X → X is a contraction, so, by Banach
Fixpoint Theorem, it has a �xed point x ∈ X. Since r is a reduction, we
have:

x ∈ L ⇐⇒ f(x) ∈ L ⇐⇒ x ∈ L,

where the latter comes from the fact, that f(x) = x. We have obtained a
contradiction. �

In this section we show that, in a sense, sigma-lifting operation preserves
Reduction Contractability Property. Precisely we only prove that a stronger
property is preserved. The proof is an adaptation of the proof by Arnold and
Niwi«ski of their lemma [AN07, Lemma 2].

De�nition 3.8.29 (Stretching) Let (X, d) be a metric space, let L ⊆ X,
and let {an} be a sequence of natural numbers. A mapping s : X → X is a
stretching of L with respect to {an} if it reduces L to itself and satis�es for
each k>0 and each t1, t2 ∈ X:

d(t1, t2) 6 2−k =⇒ d(s(t1), s(t2)) 6 2−ak (3.14)

We also say that s stretches L with respect to {an}.

Note that if {an} tends to in�nity then a stretching with respect to {an}
is continuous.

The name stretching comes from the context of trees, and the following
note explains its etymology.

6See De�nition 1.1.5.
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Remark 3.8.30 If X is a space of trees, inequality 3.14 is equivalent to
saying that the �rst ak levels of the resulting tree are determined by the �rst
k levels of an argument-tree.

De�nition 3.8.31 (Stretchability) Let (X, d) be a metric space. A lan-
guage L ⊆ X is stretchable if for each sequence {an} of natural numbers,
there is a stretching of L with respect to {an}.

In our context, strechability is indeed su�cient for Reduction Con-
tractability. Namely:

Proposition 3.8.32 If A is a �nite alphabet, and language L ⊆ TA is
stretchable, then L has Reduction Contractability Property.

Proof:

Take L ⊆ TA as in the claim of the proposition. Let Y be an arbitrary
metric space, K ⊆ Y , and let f : TA → Y be a continuous reduction of
L to K. Now recall that each continuous mapping from a compact space
is uniformly continuous7. Since A is �nite, space TA is compact; so, in
particular, there is a function δf : (0,∞)→ (0,∞), such that for each ε > 0:

dTA(t1, t2) 6 2−δf (ε) =⇒ dY (f(t1), f(t2)) 6 ε,

where dTA is the metric in TA, and dY is the metric in Y .
Since L is stretchable, we can take a stretching s of L with respect to

sequence ak = dδf
(
2−k−1

)
e. We show that f ◦ s is a needed contracting

reduction of L to K. For each k > 0 we have:

dTA(t1, t2) 6 2−k =⇒ dTA(s(t1), s(t2)) 6 2−dδf(2−k−1)e 6 2−δf(2−k−1)

=⇒ dY (f(s(t1)), f(s(t2))) 6 2−k−1

Since the set of all possible positive values of dTA is {2−k : k ∈ N}, and since
s reduces L to L, and f reduces L to K, f ◦ s is a contracting reduction of
L to K with constant 1

2
.

Figure 3.5 presents the above argument for Y being a tree space. �

Theorem 3.8.33 If A is a �nite nonempty alphabet and a language L ⊆ TA
is stretchable then σ (L) is also stretchable.

7See e.g. [Kur72, XVI.5, Theorem 4].
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Figure 3.5: The use of stretching s to make f contracting. The �rst k levels
of f(t) are determined by dδf (2−k)e levels of t, while the �rst dδf (2−k−1)e
levels of s(t) are determined by k levels of t. As a result the �rst k+ 1 levels
of f(s(t)) are determined by the �rst k levels of t.

It may seem that the easiest way to prove the above theorem is
to use a compositionality of strechability. One might want to have
a lemma that says that if a parametrized language L(x1, x2, . . . , xk) is
stretchable, and languages L1, L2, . . . , Lk are stretchable, then language
L [x1 7→ L1, x2 7→ L2, . . . , xk 7→ Lk] is stretchable. However, we conjecture
that such a general statement is not true. Intuitively, one of the problems
here is that if we do not know where the parts coming from languages Li are
plugged, we have no clue what reduction to apply: the one for language L
or one of the ones for Li languages. If we even know that the latter, then
for which of Li languages. In general, the reductions for all the considered
languages can be di�erent, and it may not be possible to �nd the common
reduction for them.

We now introduce notions that allow us to state the lemma as abstract
and general to be reusable in the sequel, and as speci�c to be provable. We
also want the lemma to provide a way to prove stretchability by looking only
at an automaton recognizing a language. The statement of the lemma to
occur may look complex, but the set of assumptions is natural and well tight
to our setting.

First we introduce the following de�nition:

De�nition 3.8.34 (Acceptance Pro�le) Let A be a parity tree automa-
ton (potentially parametrized) over an alphabet A, with state set Q. Let
S ⊆ Q be any subset of states. For a context c with holes v1, v2, . . . , vk
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we de�ne the S-acceptance pro�le of c in A as the following relation
R ⊆ S × (N×Q)k:
(p,m1, q1,m2, q2, . . . ,mk, qk) ∈ R ⇐⇒ There exists a run ρ of A on

c from state p that is accepting
on all branches that are entirely
contained in c, and for each i,
ρ(vi) = qi and the maximal pri-
ority on the path from the root
of c to vi is mi.

If S = Q then the above is simply called A-acceptance pro�le of c.

It can be seen that the acceptance pro�le of a context stores enough
information about the context to study accepting runs of A on trees that
contain it.

De�nition 3.8.35 (Simultaneous Stretchability) Sets L1, L2, . . ., Lk
are simultaneously stretchable if for each sequence {an} there is a func-
tion that stretches each of the sets with respect to {an}.

Lemma 3.8.36 (Stretchability is Quasi-Compositional) Let L1, L2,
. . ., Lk ⊆ TA. Let M = 〈A,Q, {x1, x2, . . . , xk}, δ, I, o〉 be a parametrized
automaton. Let S = Q \ {x1, x2, . . . , xk}. Assume that:

1. {x1, x2, . . . , xk} ∩ I = ∅.

2. Positions on which parameter states occur in a run are determined by
the label of the parent node and by the direction to which the node de-
scends from the parent. Formally, there is a function p : (A× {l, r})→

{0, 1} such that for each transition a

q

q1 q2

inM:

q1 ∈ {x1, x2, . . . , xk} ⇐⇒ p(a, l) = 1
∧ q2 ∈ {x1, x2, . . . , xk} ⇐⇒ p(a, r) = 1.

3. For each a ∈ A and each n < ω there is a two-hole context cna with holes
l and r at the level at least n, that has the same S-acceptance pro�le in

M(L1, L2, . . . , Lk) as context:

a

l r

.

Additionally we require that if v = v1v2 . . . vd is a hole in cna then for
each 0 6 m 6 d−2, p (cna (v1v2 . . . vm) , vm+1) = 0, i.e. none of parame-
ter-states can occur on the path from the root to a hole (except possibly
in the hole itself).
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4. For each n < ω, there is a one-hole context cn0 with the hole at the level
at least n, such that the states reachable in the hole from initial states
of M are exactly the initial states. Formally, the I-acceptance pro�le
of cn0 is a relation R ⊆ I ×N×Q that projected to the third coordinate
equals I.

Additionally we require that if v = v1v2 . . . vd is a hole in cn0 then for
each 0 6 m 6 d−1, p (cn0 (v1v2 . . . vm) , vm+1) = 0, i.e. none of parame-
ter-states can occur on the path from the root to the hole (including the
hole itself).

5. L1, L2, . . . , Lk are simultaneously stretchable.

Then language M := L (M(L1, L2, . . . , Lk)) is stretchable.

Proof:

Let languages L1, L2, . . . , Lk and an automaton M be as in the state-
ment of the lemma. For a given sequence {an}, let sL{an} be a simultaneous
stretching of all languages L1, L2, . . . , Lk with respect to sequence {an}. The
existence of such a stretching is guaranteed by assumption 5 of the lemma.
Let, additionally, p be a function determining transitions to parameter-states,
as in assumption 2 of the lemma.

Take any sequence of natural numbers {an}. We show a stretching s{an} :

TA → TA of M with respect to {an}. For t ∈ TA, we construct s{an}(t) from
the root downwards, putting cn0 (from assumption 4) �rst, then replacing each
node of t labeled with a with appropriate context cna (from assumption 3) until
reaching a position v for which p is 1, when we plug sL{bn}(tv), for sequence
{bn} appropriately calculated from {an}. The details follow.

For a sequence α, let us de�ne a k-shift α(k) of this sequence by α(k)
n =

αn+k.

For a sequence α, stretching sα can be de�ned by equations:

sα(x) =

cα0
0

s
α(1)(x)
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sβ(y) =

cβ0

y(ε)

h
p(y(ε),l)
β (yl) h

p(y(ε),r)
β (yr)

hbγ(z) =


s
γ(1)(z) if b = 0

sLγ (z) if b = 1

Note that this set of equations uniquely de�nes function sα. This is
because in the right hand side of the equation for sβ at least one level of the

tree is �xed�precisely β0 levels of context cβ0

y(ε).
Now we prove that constructed function s{an} stretches trees as desired.

By a straightforward induction over the levels we obtain that, as long as
function p returns 0, a node at level k (assuming the root is at level 0) is
replaced with a context that has at least ak+1 levels �xed (holes are below
this level) by s{an} . Additionally the �rst a0 levels are �xed independently
on an argument-tree, because ca0

0 is put as an initial part of the resulting
tree. As a result, in such a case the �rst k levels of an argument-tree t
determine

∑k
i=0 ai levels of s{an}(t). Since {an} is a sequence of positive

numbers,
∑k

i=0 ai > ak, therefore, by Remark 3.8.30, we get the stretching
condition for the paths on which function p returns only 0.

If function p returns 1 for the �rst time on some path of t in a node v, then
subtree tv turns into sL

{an}(|v|)
(tv) in s{an}(t). Since sL

{an}(|v|)
is a stretching

with respect to {an}(|v|), the �rst k levels of tv determine the �rst a|v|+k
levels of sL

{an}(|v|)
(tv). Remember that v is the �rst occurrence of the value

1 for p on the path, so sL
{an}(|v|)

(tv) is plugged at the level at least
∑|v|

i=0 ai

into s{an}(t). As a result, when we restrict to the nodes inside sL
{an}(|v|)

(tv),

at least a|v|+k +
∑|v|

i=0 ai > a|v|+k levels of s{an}(t) are determined by |v| + k
levels of t. This again corresponds to the condition for stretchability given by
Remark 3.8.30, hence we have proven that s{an} stretches trees accordingly.

Now we need to prove that s{an} reduces M to itself. Equivalently, for
each t ∈ TA, t is accepted by M(L1, L2, . . . , Lk) if and only if s{an}(t) is
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accepted byM(L1, L2, . . . , Lk).

(⇒)
This direction of the proof is quite straightforward. Let us assume that

there is an accepting run ρ of M(L1, L2, . . . , Lk) on t. We construct an
accepting run ρ′ on s{an}(t) based on ρ. Let us construct the run from
the root. Recall that s{an}(t) is built of appropriate contexts cna , c

n
0 and of

subtrees coming from applications of sLα (for appropriate sequences α) to
subtrees of t. We maintain the invariant that the root of a context cna or a
subtree sLα being a building block of s{an}(t) obtains the same state label in
ρ′ as the corresponding node of t obtains in ρ.

Let i0 be the initial state of the run ρ. The initial part of s{an}(t) is the
context ca0

0 . By assumption 4, there is a run on this context starting from
some initial state of M(L1, L2, . . . , Lk) that assigns i0 to the hole. We put
this run at the beginning of ρ′.

There is ca1

t(ε) plugged below ca0
0 in s{an}(t). The root of this context is

labeled with state i0 in ρ′, so the declared invariant holds. If ρ takes a

transition t(ε)

i0

q1 q2

in the root, then, thanks to assumption 3, there is a run

on ca1

t(ε) starting from i0 that is accepting on all branches contained in ca1

t(ε),
assigns q1 to the left hole, q2 to the right hole, has no priority greater then
the priorities of i0 and q1 on the path from the root to the left hole and has
no priority greater then the priorities of i0 and q2 on the path from the root
to the right hole. We use this run on ca1

t(ε) in ρ
′. This maintains the invariant

for the successor nodes of the root. We use the same construction for both
successor nodes, their successors, and so on, as long as we do not meet a
node for which function p returns 1.

If function p returns 1 for a considered node v (precisely for the label of
the parent of v and for the direction into which v descends from the parent),
then, by assumption 2, ρ(v) = xi for some i. Since ρ is accepting, this
means that tv ∈ Li. Remember that, by the construction, this subtree is
turned into sL

{an}(|v|)
(tv) in s{an}(t). Since sL

{an}(|v|)
is a reduction of Li to

itself, sL
{an}(|v|)

(tv) ∈ Li. Therefore, subtree sL
{an}(|v|)

(tv) is accepted from xi

and this is the state that ρ′ assigns to the the root of this subtree, by the
invariant.

Let us show that the constructed run is accepting. As it was already
noted, acceptance condition holds on the branches entirely contained in one
of the contexts cna or cn0 . The same for the paths that end up in some of the
subtrees coming from applications of sLα�run on such paths ends in one of
xi states, and the appropriate subtree is accepted form this state. We are
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left with showing that the acceptance condition holds on branches that cross
in�nitely many contexts cna . Each such branch in s{an}(t) comes from some
branch in t and the run ρ′ on such branch has the same maximal priority
occurring in�nitely often as the corresponding branch in ρ. Therefore, the
acceptance condition is satis�ed on all branches of s{an}(t), and the run is
accepting.

(⇐)
This direction of the proof is only a bit more subtle. Now we assume

that there is an accepting run ρ of M(L1, L2, . . . , Lk) on s{an}(t) and we
construct an accepting run ρ′ on t based on ρ. As above, reduction s{an} sets
the decomposition of s{an}(t) into contexts cna , c

n
0 and subtrees coming from

application of sLα (for appropriate sequences α), that correspond to nodes
and subtrees of t.

Consider the run ρ on the context ca0
0 being an initial part of s{an}(t).

Since, by assumption 4, none of the parameter-states x1, x2, . . . , xk can occur
on the path from the root to the hole, there is a state i0 that is assigned by
ρ to the hole of the context. Also by assumption 4, i0 is initial. We start ρ′

from state i0.
Let us now assume that we have constructed run ρ′ on t until a point

when it assigns a state q ∈ S to an a-labeled node v that is replaced with a
context c = cna in s{an}(t). Let us also assume that so far we have maintained
an invariant that ρ′ assigns to a node the same state that ρ assigns to the
root of the context or subtree that corresponds to this node in s{an}(t) (in
particular, all ancestor-nodes of v have corresponding contexts in s{an}(t)).
This in particular means that the state assigned by ρ to the root of the
considered context c is q. We use the part of assumption 3 that requires
non-existence of any of states xi on the path from the root to a hole, to
note that there are states q1, q2 assigned by ρ to the respective holes of
the context. Thanks to the �rst part of assumption 3, there is a transition

a

q

q1 q2

in M(L1, L2, . . . , Lk). We put this transition onto v in ρ′. This

maintains the invariant. Note that assumption 3 implies that there is no
priority greater than both the priorities of q and q1 (recpectively q2) on the
path from the root of c to the left (respectively right) hole of c in ρ.

Let us now assume that the above part of the construction of run ρ′ assigns
state xi for some i to a node v. By assumption 2, it means that function
p returns 1 for node v. Therefore, tv was turned into cv := sL

{an}(|v|)
(tv) in

s{an}(t). Moreover, by the maintained invariant, ρ assigns state xi to the root
of cv. Since ρ is accepting, cv is accepted from xi, hence cv ∈ Li. Therefore,
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since sL
{an}(|v|)

is a reduction of Li to Li, also tv ∈ Li, so tv is accepted from
xi.

The important point of this construction is that, thanks to the strong
assumptions 2, 3, 4 of the lemma, holes of the contexts de�ned on s{an}(t)
by s{an} that are assigned states xi are uniformly determined for all runs and
correspond exactly to the positions in t for which function p returns 1. As
a result, each run on s{an}(t) terminates with one of parameter-states xi in

exactly those places where the construction have put respective sL
{an}(|v|)

(tv)

subtrees. Note that here we use the assumption that sL
{an}(|v|)

is a simulta-

neous stretching for languages L1, L2, . . . , Lk, because it is not determined
which of the states xi is assigned to a given hole.

The acceptance of the constructed run ρ′ is justi�ed exactly the same way
as in the other direction of the proof. �

The proof of the theorem is now a straightforward application of the
lemma.

Proof (of Theorem 3.8.33):
Take L ⊆ TA as in the claim of the theorem, and any a ∈ A.
Recall that automaton CL,L = C(L′,L′, {>0}) recognizes σa (L), where:

L′ recognizes π̂a−1(L), L′ recognizes π̂a−1
(
L
)
, and one-state component {>0}

recognizes TAσ . Therefore, by Remark 3.2.6:

L
(
CL,L

)
= L

(
C
(
π̂a
−1(L), π̂a

−1
(
L
)
, TAσ

))
We apply Lemma 3.8.36 to automaton C

(
π̂a
−1(L), π̂a

−1
(
L
)
, TAσ

)
.

Since none of parameter-states of C is initial, assumption 1 of
Lemma 3.8.36 is satis�ed.

Now we show that the automaton satis�es assumption 2 of the lemma.
For this we de�ne function p : (A× {l, r})→ {0, 1} as follows:

p(b, d) = 1 ⇐⇒ b = ] ∨ (b = ¬ ∧ d = l)

This re�ects the fact that automaton C enters one of the parameter-states `,
`, τ always after seeing label ] and in the left successor of ¬-labeled node,
and it does not enter any of these components in any other case.

Let {an} be any sequence of natural numbers and let s{an} : TA → TA
be a stretching of L with respect to {an}. Such a stretching exists by the
assumption of the theorem. Note that s′{an} : TAσ → TAσ de�ned by s′{an} =

s{an} ◦ π̂a is a stretching of π̂a
−1(L), because π̂a

−1(L) ∩ TA = L. Since

π̂a
−1(L) = π̂a

−1
(
L
)
, the same function also stretches π̂a

−1
(
L
)
. Additionally
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each function, in particular s′{an} , reduces whole space TAσ to itself. The

choice of {an} was arbitrary, therefore languages π̂a−1(L), π̂a
−1
(
L
)
, TAσ are

simultaneously stretchable, and assumption 5 of Lemma 3.8.36 is satis�ed.
Now we need to construct contexts that are required in assumptions 4

and 3 of the lemma. First we �x any tree t0 ∈ TA. We use the following tree
as a building block in our construction:

tN :=



]

t0 t0

if t0 /∈ L

¬

t0

]

t0 t0

if t0 ∈ L

Note that tN is accepted by C
(
π̂a
−1(L), π̂a

−1
(
L
)
, TAσ

)
from states N1, W 1

and τ , and rejected from each of the states P 1, P 1
∨, N

0
∨, W

0
∨.

Now we de�ne a context (or rather a sequence of contexts) required by
assumption 4 ( is a hole):

cn0 :=

∨

tN

∨

tN

∨

tN

∨

∨

tN

∨

tN

n levels

Thanks to the construction of tN , any run accepting on all branches entirely
contained in cn0 has to assign state N1 or W 1 to each node diverging right
from the left-most branch except the hole-node. Therefore, if such a run
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starts with state P 1 (the only initial state of C), then it has to assign state
P 1 to the hole�otherwise it would end up labeling whole left-most branch
with states P 1 and P 1

∨, and the labeling of this branch would not satisfy
the acceptance condition. Hence, the acceptance pro�le of cn0 projected to
the last coordinate consists of the only initial state of C. Additionally the
hole occurs below level n, and no parameter-state can occur on the path
from the root to the hole, hence context cn0 satis�es conditions described in
assumption 4 of Lemma 3.8.36.

Now, for each n and each label b ∈ Aσ, we need to de�ne a context cnb
satisfying conditions form assumption 3 of the lemma. Note that the set
of non-parameter states of C is S := {P 1, P 1

∨, N
1, N0

∨,W
1,W 0

∨}. We will
consider S-acceptance pro�les of the contexts. It will be clear, from the
construction of the transitions of the automaton, that no parameter-state
can occur on the path from the root to a hole in any of the considered
contexts, so we will not mention this any more.

For labels other than ∨, ¬ and ], a run, when in one of the states from
S, gets stuck. Therefore, the S-acceptance pro�le of one-node context with
such a label is empty. Hence, for b ∈ Aσ \ {∨,¬, ]}, we can take any context
with b in the root and holes at the required level as cnb .

Now we present contexts for labels ∨, ¬, and ], together with all possible
accepting runs on those contexts starting with states from S. It is easy to
verify that those runs are the only ones accepting on all branches entirely
contained in the contexts and that the resulting S-acceptance pro�les are
the same as acceptance pro�les of one-node contexts labeled with ∨, ¬, or ],
respectively.

cn∨ :=

∨

tN

∨

tN

∨

tN

∨

rl

n levels
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The accepting runs on cn∨:

∨

P 1, P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

r

P 1

l

W 0
∨

∨

P 1, P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

r

N1

l

P 1
∨

∨

N1, N0
∨

tN

N1

∨

N0
∨

tN

N1

∨

N0
∨

tN

N1

∨

N0
∨

r

N1

l

N0
∨

∨

W 1,W 0
∨

tN

W 1

∨

W 0
∨

tN

W 1

∨

W 0
∨

tN

W 1

∨

W 0
∨

r

W 1

l

W 0
∨

The runs correspond respectively to transitions (1), (2), (3), (4) over ∨ in
the automaton C. Hence, the context cn∨ has the same S-acceptance pro�le
as the context with one ∨-labeled inner node.

Now the next context:

cn¬ :=

¬

tN

¬

tN

¬

tN

¬

rl

⌈
n
2

⌉
· 2 + 1 levels
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The accepting runs on cn¬:

¬
P 1

tN

τ
¬
N1

tN

τ

¬
N1

tN

τ

¬
P 1

r

N1

l

τ

¬
N1

tN

τ
¬
P 1

tN

τ

¬
P 1

tN

τ

¬
N1

r

P 1

l

τ

¬
W 1

tN

τ
¬
W 1

tN

τ

¬
W 1

tN

τ

¬
W 1

r

W 1

l

τ

The runs correspond respectively to transitions (5), (6), (7) over ¬ in the
automaton C. Hence, the context cn¬ has the same S-acceptance pro�le as
the context with one ¬-labeled inner node.

And the last context:

cn] :=

¬

tN

¬

tN

¬

tN

]

rl

⌈
n
2

⌉
· 2 + 1 levels
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The accepting runs on cn] :

¬
P 1

tN

τ
¬
N1

tN

τ

¬
N1

tN

τ

]

P 1

r

`

l

τ

¬
N1

tN

τ
¬
P 1

tN

τ

¬
P 1

tN

τ

]

N1

r

`

l

τ

¬
W 1

tN

τ
¬
W 1

tN

τ

¬
W 1

tN

τ

]

W 1

r

τ

l

τ

These runs correspond respectively to transitions (8), (9), (10) over ] in the
automaton C. Hence, the context cn] has the same S-acceptance pro�le as
the context with one ]-labeled inner node.

The presented contexts provide satisfaction of assumption 3 of Lem-
ma 3.8.36�the last assumption to be proved. Therefore, the claim of the
lemma holds for language σa (L), and σa (L) is stretchable (for any a). �

Finally, we come to the iteration mentioned in the title of the section.

Theorem 3.8.37 If A is a �nite nonempty alphabet and L ⊆ TA is stretch-
able then, for each n>0, σn (L) <W σn+1 (L).

Proof:
Inequality σn (L) 6W σn+1 (L) is obvious (e.g. by Theorem 3.8.16).
For n = 0, σn (L) = L ⊆ TA and for n > 0, σn (L) ⊆ TAσ (re-

member that we did not assume that ∨, ¬, and ] are new symbols). By
straightforward induction from Theorem 3.8.33 we obtain that for each
n > 0, σn (L) is stretchable, so, by Proposition 3.8.32, it has Reduction
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Contractability Property. Since spaces TA and TAσ are complete, by Propo-
sition 3.8.28, σn (L) 
W σn (L). On the other hand, by Theorem 3.8.16, we
have σn (L) 6W σn+1 (L). As a result we obtain that σn+1 (L) 
W σn (L). �

3.9 Lower Bound Pushed Up

Since the empty set ∅ is obviously stretchable (each function reduces ∅ to ∅)
and bi-unambiguous (trivial one-state, hence unambiguous, automata recog-
nize both ∅ and ∅), by Theorem 3.8.37 and Theorem 3.8.18, languages σn (∅)
constitute a strictly increasing (with respect to the Wadge order) sequence
of bi-unambiguous languages.

∅ <W σ (∅) <W σ2 (∅) <W σ3 (∅) <W . . . (3.15)

Each consecutive language is topologically harder than the whole sigma-al-
gebra generated by all the sets reducible to the previous language in the
sequence (by Theorem 3.8.16).

Now we locate this sequence in the context of previously known examples.
For this we need to estimate the topological complexity of set σ (∅). Since

sigma-algebra σ ({∅}) is still a trivial set, namely σ ({∅}) = {∅, ∅}, it is not
enough to use Theorem 3.8.16. We prove the following:

Proposition 3.9.1 Set σ (∅) is Σ1
1-complete.

Proof:

(Hardness) Thanks to Proposition 3.8.17, we can prove that σ
(
T{∨,¬,]}

)
⊆

T{∨,¬,]} is Σ1
1-hard, instead.

To achieve this we continuously reduce set IF1 ⊆ TN of ill-founded trees

on N, which is Σ1
1-complete (see Fact 2.4.4), to the set σ

(
T{∨,¬,]}

)
. Recall

that TN is a set of unlabeled N-branching trees. A tree is ill-founded if it has
an in�nite branch.

We construct a continuous reduction f : TN → T{∨,¬,]}. Let t ∈ TN and
let us note that each node v ∈ {l, r}∗ of a tree from T{∨,¬,]} is of the form:

ln1rln2r . . . lnkrlnk+1

for some k > 0, and some n1, n2, . . . , nk, nk+1 > 0. We de�ne:

f(t)(ln1rln2r . . . lnkrlnk+1) =

{
∨ if n1n2 . . . nk ∈ dom (t)
] otherwise
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Since each node of f(t) depends on one node of t, the function is contin-
uous.

Now we prove that f(t) ∈ σ
(
T{∨,¬,]}

)
⇐⇒ t ∈ IF1.

If t ∈ IF1 then there exists an in�nite branch in t, hence, by the de�nition
of f , there is an in�nite ∨-labeled branch α in f(t) that turns right in�nitely
many times. Branch α is then an ]-incorrect boolean branch, so f(t) ∈ W ] ⊆
σ
(
T{∨,¬,]}

)
.

If t /∈ IF1 then all branches in t are �nite, and it is not hard to see that,
by the de�nition of f , all boolean paths and branches in f(t) are ]-correct.

Therefore, t ∈ W ], and we are left with checking whether f(t) ∈ P σ
[
λT{∨,¬,]}

]
or f(t) ∈ Nσ

[
λT{∨,¬,]}

]
(see Corollary 3.8.15).

Note that trees in f
(
TN
)
only have labels ∨ and ]. We prove by induction

on rank] that if a tree inW ] has only labels ∨ and ] then it is in P σ
[
λT{∨,¬,]}

]
.

If rank](t) = 0, then t(ε) = ] (see Remark 3.8.13). In such a case t ∈
P σ
[
λT{∨,¬,]}

]
if and only if tr ∈ π̂a

−1
(
T{∨,¬,]}

)
= T{∨,¬,]}. Therefore, the

claim holds for each tree of rank 0.
If rank](t) > 0, then the whole left-most branch is labeled with ∨ (re-

member that we consider only trees inW ]∩T{∨,]}). By Remark 3.8.12, all the
subtrees tlnr are in W ]. They also have only labels ∨ and ], therefore, by the

inductive assumption, they are in P σ
[
λT{∨,¬,]}

]
. Hence, t ∈ P σ

[
λT{∨,¬,]}

]
.

We have shown that if t /∈ IF1 then f(t) ∈ P σ
[
λT{∨,¬,]}

]
⊆ σ

(
T{∨,¬,]}

)
,

so f(t) /∈ σ
(
T{∨,¬,]}

)
.

(Upper Bound) By Corollary 3.5.10, it is enough to prove that σ (∅) is
recognized by an alternating Büchi automaton.

Let us note that language σ (∅) is the (non disjoint) union of the following
languages:

1. W ],

2. Trees on which player ∀ wins a game satisfying the following conditions:

(a) A con�guration of the game consists of a position in a tree and a
state from set {P,N}.

(b) A play starts in the root of a tree in state P .

(c) If a current node of a tree is labeled with ∨, then the possible
moves are to one of the successor nodes. A move is chosen by
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player ∃ if in state P and by player ∀ if in state N . Both possible
moves from a ∨-labeled node preserve state.

(d) There is only one possible move from a ¬-labeled node. The move
descends to the right successor and switches a state.

(e) When a play reaches ]-labeled node it is won by player ∀ if in state
P , and by player ∃ if in state N .

(f) Additionally none of the players can move left in�nitely many
times in a row.

Note that point 2 does not specify the winning condition for plays that
turn right in�nitely many times. This is because all trees on which such a
play is possible are considered in point 1.

It is not hard to see that for t ∈ W ], player ∀ has a winning strategy in a
game satisfying conditions from point 2 if and only if t ∈ Nσ

[
λ∅
]
. Remember

that σ (∅) = W ] ∪Nσ
[
λ∅
]
.

Now we prove that both the above languages are recognized by a Büchi
automaton.

By Lemma 3.8.24, language W ] is recognized by the automaton B. Au-
tomaton B is not a Büchi automaton. It uses priorities 0, 1, 2. Note that the
W -part of the automaton was introduced only to ensure unambiguity. If we
do not care for unambiguity, we can eliminate this part (precisely we replace
it with the all-accepting state >0) and what we are left with is an automaton
that tracks incorrect path or branch and uses only priorities 1 and 2, hence
is Büchi.

Now we observe that a game satisfying conditions from point 2 can be
implemented by an alternating Büchi automaton. First consider �nite plays.
Recall that such a play always ends in a ]-labeled node. In an automaton
this situation can be handled by entering self-looping state of the automaton
after seeing label ]. The state is accepting or rejecting depending on the state
of a play: if a play is in state P then the state of the automaton is rejecting
(odd priority), otherwise it is accepting (even priority).

For in�nite plays we need to ensure that none of the players turns left
from some moment on (as required by condition (2f)). We do it be assigning
to a state a priority that is not preferable for the player that makes choice
from this state, i.e. states in which player ∃ makes a choice have odd priority
and those in which player ∀ makes a choice have even priority. It makes each
play that is played by one player from some moment on, without crossing a
]-labeled node, losing for this player. Since players alternate only in ¬-labeled
nodes and a play always turns right there (see condition (2d)), the above in
particular causes that a player that turns left in in�nitely many consecutive
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moves loses. This also makes some plays that turn in�nitely many times right
losing, but we do not care who wins such plays in this construction because
they all are handled in point 1.

Note that in the above discussion we only refer to parity of the priorities
of states, not the actual priority value. This means that the above construc-
tion can be implemented by both an automaton of index (0, 1) and by an
automaton of index (1, 2). Note that the languages recognized by the two au-
tomata (the one of index (0, 1) and the one of index (1, 2)) may be di�erent,
but they are the same if intersected with W ]. �

Thanks to the above proposition we see that σ (∅) is topologically equiva-
lent (Wadge equivalent) to the set G from Section 3.7 (see Proposition 3.7.4).
The construction of the language L(C) in Section 3 of the paper that the set
G comes from [Hum12] is not described as a generic operation, but, in fact,
it is an application of an operation equivalent to σ to G. As a result we get:

G ≡W σ (∅)
L (C) ≡W σ

(
σ (∅)

)
≡W σ2 (∅)

According to author's knowledge, the two sets, G and L (C), were the most
topologically complex bi-unambiguous languages known before introduction
of the construction presented in this thesis.

We only note for the completeness, that it can be easily proven looking at
the automaton from Section 2 of the paper [Hum12] and using Lemma 3.8.36
that language G is stretchable. Hence, the sequence (3.15) could be alterna-
tively built based on language G�it would only cause one-level shift.

We �nish this section by putting the above sequence into the context of
index hierarchies. By Remark 3.8.26, we have:

Remark 3.9.2 For any n > 0, both languages σn (∅) and σn (∅) are of un-
ambiguous index Luamb ((0, 1), (1, 2)).

For n > 2, the above remark gives the tight index-complexity bound
even in the context of alternating index hierarchy. To prove this we recall
that alternating automata of index (0, 1) and of index (1, 2) can recognize
only sets in Π1

1 and Σ1
1, respectively (by Corollaries 3.5.11 and 3.5.10). By

Proposition 3.9.1 and by duality, σ (∅) is Π1
1-complete, therefore, by Propo-

sition 3.8.37, σ2 (∅) /∈ Π1
1. On the other hand, since, by Remark 3.8.17,

σ2 (∅) ≡W σ
(
σ (∅)

)
and since σ (∅) is Σ1

1-complete, again by Proposi-

tion 3.8.37, σ2 (∅) /∈ Σ1
1. The fact that σ

2 (∅) /∈ Π1
1∪Σ1

1 immediately implies
that σ2 (∅) /∈ Π1

1 ∪Σ1
1. Finally we obtain:
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Remark 3.9.3 For n > 2, neither language σn (∅) nor language σn (∅) is
recognized by an alternating automaton of any of the indexes (0, 1), (1, 2).

Looking at the sequence presented in inequality (3.15), it is natural to
ask whether it can be extended to the level ω and potentially beyond. This
question is addressed in the next section.

3.10 Limit Step

The main goal of this section is to de�ne such an operation σω that for each n,
σn (L) <W σω (L). The intuition behind the construction of this operation
is best understood when we think of the automaton recognizing language
σn (L) that comes from the construction presented in Section 3.8.2. Such
an automaton consists of n nested copies of the automaton C. After seeing
label ] it passes from one copy to the �deeper� one, or to the automaton
recognizing the complement of the �deeper� language, i.e. the disjoint union
of automaton CN1 and the automaton B. The idea of the automaton for
σω (L) is that it has one component similar to C that, after seeing ], loops
to itself. The full picture is a bit more complex, though, because one has
to make a decision about how to deal with branches with in�nitely many
]'s. The decision a�ects properties of the resulting language. One of the
properties of interest is bi-unambiguity.

Since σω is meant to be an operation on languages, an input language L
also plays a role in the construction. For this we extend an alphabet with
letter ]1, that plays the same role as ] plays in the de�nition of σ (L). As
a result, in σω (L) there are trees with possibly many layers of formula-like
contexts separated with ]'s where an occurrence of ]1-labeled node means
that no more layers will occur on the given path. The subtrees rooted in
]1-labeled nodes are tested whether they belong to L or to the complement.

Before we proceed with a formal de�nition let us �x an input language.
Let, then, A be a �nite alphabet, and let L ⊆ TA be an arbitrary set of trees.
The alphabet of the language σω (L) is Aω := A∪{∨,¬, ], ]1}. Similarly as in
the case of the construction for σ, we do not require that A and {∨,¬, ], ]1}
are disjoint.

The de�nitions in this section use languages P σ and Nσ de�ned in equa-
tion (3.8), and languages WD from equation (3.12), for D being a subset of
the alphabet. We also use notation:

BD
E,X := TE,X \WD

E,X

If X = ∅ then we write BD
E,X = BD

E . If the space TE,X in which we comple-
ment is clear from the context, we write BD

E,X = BD.
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The formal de�nition uses the least �xpoint. An operator to de�ne this
�xpoint is two-dimensional. The aim is to de�ne a pair of parametrized
languages P ω(ttω, ffω,>ω), Nω(ttω, ffω,>ω) ⊆ TAω ,{ttω ,ffω ,>ω}.

The operator Ψ :
(

P
(
TAω ,{ttω ,ffω ,>ω}

))2

→
(

P
(
TAω ,{ttω ,ffω ,>ω}

))2

is de-

�ned as follows: (
P
N

)
Ψ7−→

(
P σ
[
ηP,N

]
Nσ
[
ηP,N

] ) , (3.16)

where:

ηP,N :=



tt 7→
]

>ω P
∪ ttω ,

ff 7→
]

>ω N ∪B{],]
1}

Aω

∪ ffω ,

> 7→ >ω


(3.17)

The desired languages are now de�ned as the least �xpoint:

(P ω, Nω) := Fix(Ψ)

To de�ne σωa (L) we need to use alphabet projection similar to the one used

for the de�nition of operation σ. For a ∈ A, tree mapping π̂(ω)
a : TAω → TA

is the application of the alphabet projection:

π(ω)
a (x) :=

{
a if x /∈ A
x otherwise

to each node of a tree, i.e.:

π̂
(ω)
a (t) := π(ω)

a ◦ t (3.18)

We use the following substitution:

δLa :=

ttω 7→
]1

TAω π̂
(ω)
a

−1

(L)
, ffω 7→

]1

TAω π̂
(ω)
a

−1 (
L
) ,>ω 7→ TAω

 (3.19)

to de�ne:
σωa (L) := P ω

[
δLa
]

Similarly as for σ operation, we sometimes omit a and simply write σω (L).
By the �xpoint de�nition of P ω and Nω and by Corollary 3.8.11, we

immediately get:
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Remark 3.10.1
P ω ∪Nω ⊆ W

{],ttω ,ffω}
Aω ,{ttω ,ffω ,>ω}

What, in turn, implies:

Corollary 3.10.2

P ω
[
δLa
]
∪Nω

[
δLa
]
⊆ W

{],]1}
Aω

It occurs that the inverse inclusion does not hold. The reason, as antici-
pated before, lies in some of the branches with in�nitely many ]'s.

We are going to give a precise characterization of the gap between
P ω
[
δLa
]
∪ Nω

[
δLa
]
and W {],]1}. This will be crucial for the construction

of the automaton recognizing the complement of σωa (L). We de�ne several
notions that extend the vocabulary introduced in Section 3.8 to talk about
trees in TB,C for {¬,∨} ⊆ B.

De�nition 3.10.3 (Closed Boolean Path) Let B, C be alphabets such
that {∨,¬} ⊆ B and C arbitrary (possibly empty), and let D ⊆ (B ∪ C) \
{∨,¬}. A boolean path v in tree t ∈ TB,C is called D-closed if t(v) ∈ D.

If D = {x} for some x, then we write x-closed instead of {x}-closed.

Remark 3.10.4 A boolean path v is D-closed in t if and only if

1. v is maximal (i.e. there is no boolean path extending v in t), and

2. v is D-correct.

For P σ and Nσ de�ned by equation (3.8) we note:

Corollary 3.10.5 (of Remark 3.10.4 and Proposition 3.8.10) Let t ∈
P σ∪Nσ, let v ∈ dom (t). Then t(v) ∈ {tt, ff} if and only if v is a {tt, ff}-closed
boolean path.

De�nition 3.10.6 A branch ρ in a tree t is called a ]-chain if ρ =
w1rw2r . . . wnr . . ., where for each i, wi is a ]-closed boolean path in
tw1rw2r...wi−1r.

De�nition 3.10.7 A ]-chain ρ is called proper if ∀v≺ρ tv ∈ W {],]1}.

Now we are ready to de�ne the set that will occur to �ll the gap men-
tioned:

H =
{
t ∈ TAω : ∃ρ ρ is a proper ]-chain in t

}
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Proposition 3.10.8

W {],]1} = P ω
[
δLa
]
tNω

[
δLa
]
tH,

by what we mean that W {],]1} = P ω
[
δLa
]
∪Nω

[
δLa
]
∪H and that sets P ω

[
δLa
]
,

Nω
[
δLa
]
, H are pairwise disjoint.

The rest of this section is devoted to the proof of this proposition.

De�nition 3.10.9 Let A be an arbitrary alphabet. Path v is a ]-boolean
path in t ∈ TAω if, for some k > 0, v = v0rv1r . . . rvk, where for each l < k,
vl is a ]-closed boolean path (in tv0r...rvl−1r), and vk is a boolean path (in
tv0r...rvk−1r).

The path is {], ]1}-correct (or simply correct) if vk is {], ]1}-correct.
The path is ]1-closed (or simply closed) if vk is a ]

1-closed boolean path.

We note, for further reference, that:

Remark 3.10.10 If v is a ]-boolean path in t, then for w ≺ v, t(w) ∈
{∨,¬, ]}.

Since each ]-boolean path ends with a (possibly empty) boolean path and
it also starts with a boolean path, by the concatenation-closure of boolean
paths we get:

Remark 3.10.11 (concatenation-closure) The set of ]-boolean paths is
closed under concatenation, in the following sense:

if v is a ]-boolean path in t and w is a ]-boolean path in tv,
then vw is an ]-boolean path in t.

Remark 3.10.12 A �nite pre�x of a ]-chain is a ]-boolean path. A concate-
nation of a ]-boolean path and a ]-chain is a ]-chain.

We also have an analogue of Remark 3.10.4:

Remark 3.10.13 A ]-boolean path v is ]1-closed in t if and only if

1. v is maximal (i.e. there is no ]-boolean path extending v in t), and

2. v is {], ]1}-correct.

Remark 3.10.14 If ρ is a ]-chain in t, then for w ≺ ρ, t(w) ∈ {∨,¬, ]}.

As a consequence of the su�x-closure of boolean paths we get:
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Remark 3.10.15 (su�x-closure)

1. The set of ]-boolean paths is su�x-closed.

Precisely, if v is a ]-boolean path in t and w ≺ v, then w−1v is a
]-boolean path in tw.

2. Correctness is su�x-closed.

Precisely, if v is a {], ]1}-correct ]-boolean path in t and w ≺ v, then
w−1v is a {], ]1}-correct ]-boolean path in tw.

3. The set of ]-chains is su�x-closed.

Precisely, if ρ is a ]-chain in t and v ≺ ρ, then v−1ρ is a ]-chain in tv.

4. The set of proper ]-chains is su�x-closed.

Precisely, if ρ is a proper ]-chain in t and v ≺ ρ, then v−1ρ is an proper
]-chain in tv.

By the de�nition of the set H, we get:

Remark 3.10.16 H ∩B{],]
1}

Aω
= ∅

Lemma 3.10.17 Let P,N ⊆ TAω ,{ttω ,ffω ,>ω} and let α : {ttω, ffω,>ω} → TAω
be any substitution such that for t ∈ α(ttω)∪α(ffω), t(ε) = ]1. Let (P′,N′) :=
Ψ (P,N), for Ψ as de�ned by equation (3.16). Then:

(P[α] ∪N[α]) ∩H = ∅ =⇒ (P′[α] ∪N′[α]) ∩H = ∅.

Proof:
Recall that (P′,N′) = Ψ (P,N) =

(
P σ
[
ηP,N

]
, Nσ

[
ηP,N

])
. Assume,

towards a contradiction, that there exists a tree t ∈ P σ
[
ηP,N

]
[α] ∪

Nσ
[
ηP,N

]
[α] that has a branch ρ that is a proper ]-chain.

Note that t is a context t′ ∈ P σ∪Nσ with appropriate substitutions done
according to ηP,N and α. First observe that branch ρ cannot be entirely
contained in t′. This is because a ]-chain contains nodes labeled with ]
(precisely, it has in�nitely many such nodes) and t′ ∈ P σ∪Nσ ⊆ T{∨,¬},{tt,ff,>}.

Therefore, only a pre�x v of ρ is contained in t′, and v is a hole in t′. Note
that, by de�nitions of P σ and Nσ (precisely by de�nition of Φ), label > can
occur only in the left successor of a node labeled with ] or ¬. On the other
hand, by the de�nition of a ]-chain, ρ turns right in any node labeled with
any of these labels. Therefore, t′(v) ∈ {tt, ff} and tv ∈ ηP,N(tt)[α]∪ηP,N(ff)[α].
Hence, tv is a context t′′ ∈ ηP,N(tt) ∪ ηP,N(ff) with appropriate substitutions
done according to α. Consider two cases coming from the de�nition of ηP,N:
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1. t′′(ε) ∈ {ttω, ffω}�In this case tv ∈ α(ttω)∪α(ffω), so, by the assumption
on α, t(v) = ]1. By Remark 3.10.14, label ]1 cannot occur on a ]-chain,
so we get a contradiction.

2. t′′(ε) = t(v) = ] and tvr ∈ P[α] ∪ N[α] ∪ B{],]
1}

Aω
� This also yields a

contradiction, because, by su�x-closure (Remark 3.10.15), (vr)−1ρ is a
proper ]-chain in tvr, while, by the assumption and by Remark 3.10.16,
none of the sets P[α], N[α], B{],]

1}
Aω

can have a tree with such a branch.

�

Lemma 3.10.18 Let P,N ⊆ TAω ,{ttω ,ffω ,>ω} and let α : {ttω, ffω,>ω} → TAω
be any substitution such that α(ttω)∩α(ffω) = ∅ and that for t ∈ α(ttω)∪α(ffω),
t(ε) = ]1. Let (P′,N′) := Ψ (P,N). Then:

If sets P[α], N[α] and B
{],]1}
Aω

∪H are pairwise disjoint,

then sets P′[α], N′[α] and B
{],]1}
Aω

∪H are pairwise disjoint.

Proof:
Observe that none of the labels from dom (α) occurs in a context from

P σ ∪Nσ. By this and by the de�nition of Ψ we get:

P′[α] = P σ
[
ηP,N

]
[α] = P σ

[
α ◦ ηP,N

]
N′[α] = Nσ

[
ηP,N

]
[α] = Nσ

[
α ◦ ηP,N

]
where the composition of substitutions is meant to have the following seman-
tics:

For β : X → TA,Y , α : Y → TA, x ∈ X, we have: α ◦ β(x) = β(x)[α].
Thanks to the above, we can prove the disjointness of P′[α] and N′[α]

using Proposition 3.8.3, provided we show that T := α ◦ ηP,N(tt) and F :=
α ◦ ηP,N(ff) are disjoint, and that for each t ∈ T ∪ F , t(ε) /∈ {∨,¬}. The
latter is true because, by the de�nition of ηP,N and assumption on α, for
t ∈ T ∪ F , t(ε) ∈ {], ]1}.

For the disjointness of T and F observe that, since trees in B{],]
1}

Aω
have

no holes, we have:

T =
]

>ω P[α]
∪ α(ttω)

F =
]

>ω N[α] ∪B{],]
1}

Aω

∪ α(ffω)
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By the assumption on α, for t ∈ α(ttω)∪α(ffω), t(ε) = ]1, and sets α(ttω),

α(ffω) are disjoint. Sets P[α] and N[α] ∪B{],]
1}

Aω
are disjoint also disjoint, by

the assumption. Therefore, T , F are disjoint, and we get the disjointness of
P′[α] and N′[α].

Since for t ∈ T ∪ F , t(ε) ∈ {], ]1}, by Corollary 3.8.11, P′[α] ∪ N′[α]

and B{],]
1}

Aω
are disjoint. The disjointness of P′[α] ∪N′[α] and H comes from

the assumed disjointness of P[α] ∪ N[α] and H by Lemma 3.10.17. This
concludes the proof of the required pairwise disjointness. �

We conclude the disjointness discussion with:

Proposition 3.10.19 Sets P ω
[
δL
]
, Nω

[
δL
]
, B

{],]1}
Aω

, H are pairwise dis-
joint.

Proof:
Observe that Ψ is a monotonic operation, as a composition of unions

and substitutions, that are always monotonic. Also observe that for each
t ∈ δL(ttω) ∪ δL(ffω), t(ε) = ]1 and that δL(ttω) ∩ δL(ffω) = ∅. Therefore, by
Lemma 3.10.18, we can use Lemma3.8.2 to obtain pairwise disjointness of
sets P ω

[
δL
]
, Nω

[
δL
]
and B{],]

1}
Aω

∪H.

Sets B{],]
1}

Aω
and H are disjoint by Remark 3.10.16. �

Proposition 3.10.20 W {],]1} \H ⊆ P ω
[
δL
]
∪Nω

[
δL
]
.

Before we proceed with a proof, we introduce a strict order on TAω .

t @ω s ⇐⇒
t = svr for some ]-boolean path vr

∧ ∀w4v sw /∈ B{],]
1}

Aω
∪H

(3.20)

We prove that @ω is a strict well-founded order.
Transitivity comes from the concatenation-closure of ]-boolean paths.
We now prove well-foundedness. Let t1 Aω t2 Aω t3 Aω . . . be an in�nite

@ω-decreasing sequence of trees in TAω . Let w1r, w2r, . . . be ]-boolean paths,
such that:

t2 = t1w1r, t3 = t2w2r, t4 = t3w3r, . . .

Then ρ = w1rw2rw3r . . . is such a branch that for each v ≺ ρ, t1v /∈
B
{],]1}
Aω

∪H and:

1. either ρ starting from some point on contains only labels ∨ and ¬.
Then there is k > 1 such that ρ′ = (w1rw2r . . . rwk−1r)

−1 ρ is a boolean
branch in tk. Since ρ′ turns right in�nitely many times, it is incorrect
and tk ∈ B{],]

1}
Aω

, what yields a contradiction;
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2. or ρ is an in�nite ]-chain in t1. Since for each v ≺ ρ, t1v /∈ B{],]
1}

Aω
∪H,

ρ is a proper ]-chain, and t1 ∈ H, what yields a contradiction.

Transitivity and well-foundedness imply antisymmetry, so we have proven
that @ω is a strict well-founded order.

Note that:

Lemma 3.10.21 A tree t is a minimal element of @ω if and only if t ∈
B
{],]1}
Aω

∪H or t(ε) = ]1.

Proof:
If t ∈ B{],]

1}
Aω

∪H then there is no tree less than t with respect to @ω, by
the de�nition. If t(ε) = ]1, then by Remark 3.10.10, ε is the only ]-boolean
path in t, therefore, there is no tree less than t with respect to @ω. We have
proven the right-to-left implication.

Assume t /∈ B{],]
1}

Aω
∪H and t(ε) 6= ]1. Then t(ε) ∈ {∨,¬, ]}. Therefore, r

is a ]-boolean path. Since the only v ≺ r is v = ε, and since tε /∈ B{],]
1}

Aω
∪H,

tr @ω t. Therefore, t is not minimal. �

Lemma 3.10.22 Let t ∈ W {],]1} \H. If v ∈ {l, r}∗r is a boolean path in t,
then tv ∈ W {],]1} \H and tv @ω t.

Proof:
Let us take any t ∈ W {],]1} \H and a boolean path v ∈ {l, r}∗r. Recall

that t ∈ W {],]1} implies tv ∈ W {],]1}, by Remark 3.8.12.
Assume now, towards a contradiction, that tv ∈ H. Let ρ be a proper

]-chain in tv. By concatenation-closure of boolean paths, vρ is a ]-chain in t.
By 3.8.12, for any w 4 v, tw ∈ W {],]1}, therefore vρ is a proper ]-chain, and
t ∈ H, what yields a contradiction.

Now since each w ≺ v is a boolean path, we can apply what we have
already proven to obtain that tw ∈ W {],]1} \H. Therefore, by the de�nition,
tv @ω t. �

Proof (of Proposition 3.10.20):
We prove the stated inclusion by the induction with respect to the order

@ω.
Induction basis: if t is @ω-minimal and t ∈ W {],]1} \ H then t(ε) = ]1.

By the de�nitions of P σ, Nσ, ηP,N, and δL, if tr ∈ π̂
(ω)
a

−1

(L) then t ∈

P ω
[
δL
]
, and if tr ∈ π̂(ω)

a

−1

(L) then t ∈ Nω
[
δL
]
. Therefore, since π̂(ω)

a

−1

(L)∪

π̂
(ω)
a

−1

(L) = TAω , t ∈ P
ω
[
δL
]
∪Nω

[
δL
]
.
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For the inductive step assume that t is not @ω-minimal, i.e. t ∈ W {],]1}\H
and t(ε) 6= ]1, and consider the following cases:

1. t(ε) /∈ {∨,¬, ], ]1}�then t ∈ B
{],]1}
Aω

, so this is in fact not a possible
case here;

2. t(ε) = ]�then r is an ]-boolean path and tr @ω t. Hence, by the

inductive assumption, tr ∈ P ω
[
δL
]
∪ Nω

[
δL
]
∪ B{],]

1}
Aω

∪ H. Consider
the cases:

(a) tr ∈ P ω
[
δL
]
�by the de�nition of Ψ (remember that (P ω, Nω) =

Ψ (P ω, Nω)), t ∈ P ω
[
δL
]
,

(b) tr ∈ Nω
[
δL
]
∪B{],]

1}
Aω

�by the de�nition of Ψ, t ∈ Nω
[
δL
]
,

(c) tr ∈ H�there is a proper ]-chain in tr. In such a case rρ is also a
proper ]-chain in t, so t ∈ H, what contradicts the assumption of
the inductive step;

3. t(ε) = ¬�path r is a boolean path in t, and by assumption t ∈ W {],]1}\
H, so, by Lemma 3.10.22, tr ∈ W {],]1} \H. Therefore, by the inductive
assumption, tr ∈ P ω

[
δL
]
∪ Nω

[
δL
]
. Hence, by the de�nition of P σ

and Nσ, t ∈ Nω
[
δL
]
∪ P ω

[
δL
]
;

4. t(ε) = ∨�since t ∈ W {],]1}, the whole left-most branch lω is labeled
with ∨, and for each n > 0, lnr is a boolean path. Therefore, by
Lemma 3.10.22, for each n > 0, tlnr ∈ W {],]1} \H, so, by the inductive
assumption, for each n > 0, tlnr ∈ P ω

[
δL
]
∪ Nω

[
δL
]
. Hence, by the

de�nition of P σ and Nσ, t ∈ P ω
[
δL
]
∪Nω

[
δL
]
.

�

We are ready to prove the main proposition of this section.

Proof (of Proposition 3.10.8):
Sets P ω

[
δL
]
, Nω

[
δL
]
, H partition W {],]1}, by Proposition 3.10.19 and

Proposition 3.10.20. �

In the sequel we refer to the partition of space TAω that is equivalent to
the statement of the proposition.

Corollary 3.10.23 For a nonempty alphabet A, for L ⊆ TA:

TAω = P ω
[
δL
]
tNω

[
δL
]
tB{],]

1}
Aω

tH
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3.10.1 Automaton

The goal of this section is to prove the following.

Theorem 3.10.24 If a language L is bi-unambiguous then the language
σω (L) is bi-unambiguous.

Corollary 3.10.23 gives a decomposition of space TAω that allows us to
construct unambiguous automata recognizing σω (L) and its complement.

Let A be an arbitrary nonempty alphabet, and a ∈ A be an arbitrary
letter. Let us �x a language L ⊆ TA. Let L be an automaton recognizing L
and L be an automaton recognizing L.

Analogously as during the construction of automaton recognizing σ (L)
(see Section 3.8.2), we modify automata L and L to work over alphabet Aω.
Let then L′ (respectively L′) be the same as L (respectively L), except that

it treats letters outside A as if they were a. Then L′ recognizes π̂(ω)
a

−1

(L),

and L′ recognizes π̂(ω)
a

−1 (
L
)
. Note that the languages recognized by the two

automata are complements in TAω .

We approach constructing automaton OL,L that recognizes language
σω (L) by constructing component automata that recognize components of
the partition given by 3.10.23. As already anticipated in Section 3.10, while
constructing the automata, we use extended and modi�ed versions of com-
ponents of automata CL,L and B used in section 3.8.2.

We start with a construction of an automaton Wω, that recognizes lan-
guage W {],]1}. The automaton is the same as the component CL,LW 1 of CL,L,
except that it treats both, ] and ]1, as CL,LW 1 treats ]. We �rst de�ne an
automaton W1(τ ) with one parameter τ . We maintain numeration of the
states of automaton C.
W1:

4) ∨

W 1,W 0
∨

W 0
∨ W 1

7) ¬
W 1

τ W 1

16) ]

W 1

τ >0

17) ]1

W 1

τ τ

18) ∨

>0

>0 >0

19) ¬, ]

>0

τ >0

20) ]1

>0

τ τ

21) b

>0

>0 >0

for b /∈
{∨,¬, ], ]1}

The initial state is W 1.
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Now we de�ne Wω = W1({>0}), for {>0} being a one-state automaton
accepting every tree8.

Consider the following letter projection θ : Aω → Aσ:

θ(a) =

{
] if a = ]1

a otherwise

The tree homomorphism θ̂ : TAω → TAσ is de�ned by θ̂(t) = θ ◦ t.
Observe that the automaton Wω is the result of application to the au-

tomaton CL,LW 1 of the construction presented in Fact 3.6.6(3) for inverse im-

age of letter projection θ̂. Therefore, by Lemma 3.8.19 and since W {],]1}
Aω

=

θ̂−1(W ]
Aσ

), we have:

Remark 3.10.25 L (Wω) = W {],]1}.

Additionally observe that:

Remark 3.10.26 Automaton Wω is deterministic of index (0, 1).

We construct automaton Bω, recognizing language B{],]
1}

Aω
, from automa-

ton B the same way as we have constructed automaton Wω from CL,LW 1 .
Namely, Bω acts as B, except that it treats both, ] and ]1, as B treats ].
Again, we start with de�ning an automaton B1(τ ) with one parameter. We
maintain the numeration of the states of automaton B.
B1:

8The fact that automaton Wω consists of two components, W1 and {>0}, will be
important in Section 3.10.3, where we prove stretchability using Lemma 3.8.36.
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as in W1

11) ∨

B2, B1
∨

>0 B2

12) ∨

B2, B1
∨

B1
∨ W 1

4) ∨

W 1,W 0
∨

W 0
∨ W 1

18) ∨

>0

>0 >0

22) ¬
B2

τ B2

23) ¬, ]

B1
∨

τ >0

7) ¬
W 1

τ W 1

19) ¬, ]

>0

τ >0

24) ]1

B1
∨

τ τ

16) ]

W 1

τ >0

20) ]1

>0

τ τ

15) b

B2, B1
∨

>0 >0

for b/∈{∨,¬, ], ]1} 17) ]1

W 1

τ τ

21) b

>0

>0 >0

for b /∈
{∨,¬, ], ]1}

The initial state is B2.
Let Bω = B1({>0}).
As above, by Lemma 3.8.24, we get:

Remark 3.10.27 L (Bω) = B
{],]1}
Aω

.

Since automaton B is unambiguous, by Fact 3.6.6(3), we observe that:

Remark 3.10.28 Automaton Bω is unambiguous of index {(0, 1), (1, 2)}.

Let us now construct automaton OL,L recognizing σω (L).
First we de�ne an automaton O(`, `, τ ) with three parameters. Apart

from the states of the automaton B1, and states P 1, P 1
∨, N

1, N0
∨ used by the

automaton C, the automaton O uses state F 0
∨ (F stands for �formula�) that is

intended to recognize P ω
[
δL
]
∪Nω

[
δL
]
. The initial state of the automaton

is P 1. Superscript in state symbols designates priority. The transitions are
presented on Figure 3.6.

Let OL,L = O
(
L′,L′, {>0}

)
.

To show that the automaton recognizes the appropriate language, we
prove the following:
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25) ∨

P 1, P 1
∨

F 0
∨ P 1

2) ∨

P 1, P 1
∨

P 1
∨ N1

3) ∨

N1, N0
∨

N0
∨ N1

26) ∨

F 0
∨

F 0
∨ P 1

27) ∨

F 0
∨

F 0
∨ N1

5) ¬
P 1

τ N1

6) ¬
N1

τ P 1

28) ]

P 1

τ P 1

29) ]

N1

τ N1

30) ]

N1

τ B2

31) ]1

P 1

τ `

32) ]1

N1

τ `

Figure 3.6: Transitions of automatonO. Transition leading to B2 leads to the
embedded automaton B1(τ ). The numbering of transitions coming directly
from automaton C is preserved.
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Lemma 3.10.29 If L ⊆ TA, an automaton L recognizes L and L recognizes
L, then:

L
(
OL,LP 1

)
= P ω

[
δLa
]

L
(
OL,LN1

)
= Nω

[
δLa
]

Proof:
Let F∨ :=

(
P ω
[
δLa
]
∪Nω

[
δLa
])
∩ {t : t(ε) = ∨}.

We prove that for each t ∈ TAω :

t is accepted by OL,L from state P 1 if and only if t ∈ P ω
[
δLa
]
(3.21)

t is accepted by OL,L from state N1 if and only if t ∈ Nω
[
δLa
]
(3.22)

t is accepted by OL,L from state F 0
∨ if and only if t ∈ F∨ (3.23)

The proof is by induction (simultaneous for the three equivalences) with
respect to relation @ω on TAω .

By Remark 3.10.21, for the induction basis we need to consider such
t ∈ TAω that t ∈ H, t ∈ B{],]

1}
Aω

, or t(ε) = ]1.

Consider a run ρ of OL,L on a tree t ∈ H from one of the states P 1, N1,
F 0
∨. In such a tree there exists a proper ]-chain α. Let us analyze what states

are assigned to nodes of α in run ρ. If state B2 occurs on α then the run
is rejecting, because, by de�nition, no subtree rooted in a node on a proper

]-chain can belong to B{],]
1}

Aω
and, by Remark 3.10.27, L

(
OL,LB2

)
= B

{],]1}
Aω

.

Let us now consider the case when no state B2 occurs on α in ρ. Then by the
shape of the transitions of OL,L, only states P 1, P 1

∨, N
1, N0

∨, F
0
∨ can occur on

α in this run. Additionally after each label ] one of the states P 1, N1 occurs.
Since both these states have priority 1 and no greater priority occurs on α,
the parity condition is not satis�ed on α and ρ is rejecting. Therefore, no tree
from H is accepted from any of the states P 1, N1, F 0

∨. Hence, equivalences
(3.22),(3.23),(3.23) are satis�ed for t ∈ H, because, by Proposition 3.10.19,
t /∈ P ω

[
δLa
]
∪Nω

[
δLa
]
.

Now consider t ∈ B{],]
1}

Aω
. By Proposition 3.10.19, t /∈ P ω

[
δLa
]
∪Nω

[
δLa
]
,

therefore, in order for equivalences (3.22),(3.23),(3.23) to be satis�ed, t should
not be accepted from any of states P 1, N1, F 0

∨. Let us consider a run ρ of

automaton OL,L from one of the states P 1, N1, F 0
∨ on t. Since t ∈ B{],]

1}
Aω

,
it has a {], ]1}-incorrect boolean path or branch α. The path is labeled with
states P 1, P 1

∨, N
1, N0

∨, F
0
∨. Since α is {], ]1}-incorrect, one of the following

holds:

• α is in�nite, labeled with ∨ and ¬, and turns right in�nitely many
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times�then state N1 or P 1 occurs after each turning right, so the
parity condition is not satis�ed on the branch,

• a label di�erent than ∨, ¬, ], ]1 occurs at the end of the path�then
the run is stuck at the end of α, because there is no transition from
any of P 1, P 1

∨, N
1, N0

∨, F
0
∨ over a letter di�erent than ∨, ¬, ], ]1,

• label di�erent than ∨ occurs in the left successor of last node of α that
is labeled with ∨�then the run is stuck in αl, because one of the states
P 1
∨, N

0
∨, F

0
∨ is assigned to this node and there are only transitions over

∨ from each of these states.

As a consequence, there is no run from any of states P 1, N1, F 0
∨ that is

accepting on an {], ]1}-incorrect path or branch, so t is not accepted from
those states�as required.

If t(ε) = ]1 then t ∈ P ω
[
δLa
]
if and only if tr ∈ π̂(ω)

a

−1

(L), that is if and
only if tr is accepted by automaton L′, i.e. if and only if t is accepted from
P 1, since transition (31) is the only one from state P 1. Similarly, t ∈ Nω

[
δLa
]

if and only if tr ∈ π̂(ω)
a

−1 (
L
)
that is if and only if tr is accepted by automaton

L′, i.e. if and only if t is accepted from N1, since transition (32) is the only
one from state N1. Since there is no transition over ]1 from state F 0

∨, and
trivially (because of the label in the root) t does not belong to the set F∨,
we have concluded the inductive hypothesis for case when t(ε) = ]1.

Now, as an inductive step, it is enough to consider t ∈ W {],]1}\H such that
t(ε) 6= ]1. Since such t has no {], ]1}-incorrect boolean path, in particular, ε
is a {], ]1}-correct boolean path, so one of the three cases holds:

1. t(ε) = ¬�then t is not accepted from state F 0
∨, because there is no

transition over ¬ from this state. Since, on the other hand, t does not
belong to F∨, equivalence (3.23) is satis�ed.

Tree t is accepted from P 1 if and only if tr is accepted from N1 (transi-
tion (5) is the only transition from P 1 over ¬). Note that r is a boolean
path, so tr @ω t, by Lemma 3.10.22. Then, by the inductive assump-
tion, tr is accepted from N1 if and only if tr ∈ Nω

[
δLa
]
, so if and only

if t ∈ P ω
[
δLa
]
, by the way how P ω and Nω are de�ned using P σ and

Nσ (see equation (3.16)). Hence, equivalence (3.22) is satis�ed in this
case.

Tree t is accepted from N1 if and only if tr is accepted from P 1 (tran-
sition (6) is the only transition from N1 over ¬). Equivalence (3.23) is
satis�ed by exactly analogous argument as for the state P 1 and equiv-
alence (3.22).
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2. t(ε) = ∨�then the whole left-most branch is labeled with ∨ (otherwise
there would be an {], ]1}-incorrect boolean path in t). Moreover, for
each n > 0, lnr is a boolean path, so tlnr @ω t, by Lemma 3.10.22, and
we can use an inductive assumption for each of those subtrees.

First, analyze all possible runs on a tree with the whole left-most branch
labeled with ∨ from one of the states P 1, N1, F 0

∨. Note that the
left-most branch is assigned states P 1, P 1

∨, N
1, N0

∨, F
0
∨ in such a run.

All the nodes diverging right from the branch are assigned state P 1 or
N1. This is enough to conclude that if there is n > 0 such that tlnr
is accepted from neither P 1 nor N1, then t is accepted from neither of
states P 1, N1, F 0

∨.

Now consider a run from state N1. Note that it has to use transition (3)
on each node of the left-most branch. Therefore, it is accepting if and
only if each subtree tlnr is accepted from N1.

A run from state F 0
∨ can use any of transitions (26), (27) in any node

of the left-most branch. Therefore, there is an accepting run from this
state if and only if each subtree tlnr is accepted from P 1 or N1.

For a run from state P 1 there is a bit more of choice. In order to be
accepting, a run cannot use only transition (2) on the whole left-most
branch (parity condition on this branch would not be satis�ed). There-
fore, such a run can use this transition zero or �nite number of times,
then it has to use transition (1), and then it reaches state F 0

∨ for which
we have already discussed the acceptance. As a result, t is accepted
from state P 1 if and only if there is n for which tlnr is accepted from
state P 1 and for each n > 0, tlnr is accepted from P 1 or N1.

The above discussion of possible runs implies, in particular, that, if
t(ε) = ∨, then language accepted from state F 0

∨ is a union of languages
accepted from states P 1 and N1.

Now we confront this acceptance discussion with the other hand, i.e.
with de�nitions of the languages P ω

[
δLa
]
, Nω

[
δLa
]
, F∨.

SinceNω
[
δLa
]
is equal the setNσ with variables replaced with appropri-

ate languages, we can infer from the �xpoint de�nition (see equation
(3.8)) of set Nσ (without even touching the substituted part), that,
t ∈ Nω

[
δLa
]
if and only if for each n, tlnr ∈ Nω

[
δLa
]
. Now we use the

inductive assumption for the subtrees and obtain that t ∈ Nω
[
δLa
]
if

and only if each of the subtrees tlnr is accepted from state N1. By
the above discussion concerning accepting runs, this is exactly the case
when there is a run from N1 on t, so equivalence (3.23) is satis�ed.
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Language P ω
[
δLa
]
is equal the set P σ with variables replaced with ap-

propriate languages, but to consider belonging to this language we need
to use also the fact about Nω

[
δLa
]
being Nσ (substituted), because P σ

is de�ned using both P σ and Nσ (see equation (3.6)). By the �xpoint
de�nition of sets P σ and Nσ, t ∈ P ω

[
δLa
]
if and only if there is n such

that tlnr ∈ P ω
[
δLa
]
and for each n, tlnr ∈ P ω

[
δLa
]
or tlnr ∈ Nω

[
δLa
]
,

i.e., by the inductive assumption, if and only if each of the subtrees tlnr
is accepted from state P 1 or state N1 and there is n such that tlnr is
accepted from state P 1. This corresponds exactly to the outcome of
the discussion of acceptance cases from state P 1 and equivalence (3.22)
is satis�ed.

Now equivalence (3.23) comes from the, already noted, fact that the
language accepted from state F 0

∨ is a union of languages accepted from
states P 1 and N1.

3. t(ε) = ]�then t is not accepted from state F 0
∨, because there is no

transition over ] from this state. Such trees also do not belong to the
language F∨, so equivalence (3.23) is satis�ed.

Note that if t(ε) = ] then r is a ]-boolean path in t. Since additionally
t ∈ W {],]1} \H, tr @ω t (see equation (3.20) for the de�nition of @ω).
Now consider all possible cases for the right subtree of the root.

Since transitions (28), (29), and (30) are the only ones from states
P 1 and N1 over the letter ], t is accepted from P 1 is and only if tr
is accepted from state P 1, and t is accepted from N1 is and only if
tr is accepted from one of the states N1, B2. On the other hand,
by the construction of ηP,N(ttω) used to de�ne languages Nω and P ω

(see equation (3.17)), t ∈ P ω
[
δLa
]
if and only if tr ∈ P ω

[
δLa
]
, and

t ∈ Nω
[
δLa
]
if and only if tr ∈ Nω

[
δLa
]
or tr ∈ B{],]

1}
Aω

. Therefore, it is
enough to prove that:

tr ∈ L
(
OL,LP 1

)
⇐⇒ tr ∈ P ω

[
δLa
]

(3.24)

tr ∈ L
(
OL,LN1

)
⇐⇒ tr ∈ Nω

[
δLa
]

(3.25)

tr ∈ L
(
OL,LB2

)
⇐⇒ tr ∈ B{],]

1}
Aω

(3.26)

Equivalence (3.26) holds by Remark 3.10.27, while equivalences (3.24),
(3.25) hold by the inductive assumption.

The above enumeration of cases concludes the proof of the inductive step.
�
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Corollary 3.10.30 If L ⊆ TA, automaton L recognizes L and L recognizes

L, then automaton OL,L recognizes language σω (L).

Lemma 3.10.31 If automata L and L are unambiguous, and s is a single
state of OL,L, then automaton OL,Ls is unambiguous.

Proof:
First we note that if L and L are unambiguous then L′ and L′ are unam-

biguous, by Fact 3.6.6(3).
Now assume, towards contradiction, that there is a tree t that admits two

distinct accepting runs ρ1 and ρ2 of automaton OL,Ls . Since OL,Ls has only
one initial state, there is a node v such that on the path to this node the
runs are equal and in the node the runs use di�erent transitions. The state
that the runs assign to v cannot be in L′ or L′ because this would contradict
unambiguity of the automata. We consider all cases where there is more than
one transition from a given state for a given letter:

• state P 1 or P 1
∨, letter ∨, transitions: (25), (2). One of them assigns

state P 1 to the right successor, while the other assigns N1 there.
Since the languages accepted from the two states are disjoint (by
Lemma 3.10.29 and Proposition 3.10.19), it is impossible that both
the transitions can be used in two accepting runs on the same tree;

• state F 0
∨, letter ∨, transitions: (26), (27). Again, at least one of them

cannot be used in an accepting run since languages accepted from states
P 1 and N1 are disjoint;

• state N1, letter ], transitions: (29), (30). Here we use the fact that lan-
guages accepted from N1 and B2 are disjoint (by Proposition 3.10.19);

• state B2 or B1
∨, letter ∨, transitions: (11), (12). Here we use the

disjointness of languages B{],]
1}

Aω
and W {],]1}, accepted from B2 and

W 1, respectively (see Remark 3.10.27 and Remark 3.10.25).

We have come to a contradiction in all the cases so there are no such distinct
accepting runs. �

Since our �nal goal is bi-unambiguity of σω (L), we need to show that
the complement of the language can also be recognized by an unambiguous
automaton. Lemma 3.10.29 and Remark 3.10.27 show that automaton OL,L
provides a way to recognize most of the component languages mentioned
in Corollary 3.10.23. The only missing component is the language H. Be-
fore we proceed with the construction of the automaton, we prove a kind of
uniqueness property of trees in H.
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Lemma 3.10.32 If t ∈ H then there exists the right-most proper ]-chain in
t.

Proof:

The proof goes similarly as the proof of Lemma 3.8.23. We start with
the root and proceed downwards to construct a branch β that will occur to
be the right-most of proper ]-chains. We maintain the invariant that the
path constructed so far is a ]-boolean path and that the subtree rooted in
the current node (the node that the path constructed so far ends in) is in
H. Note that the path ε that we start with satis�es the invariants, since
t ∈ H ⊆ W {],]1}. Having constructed the path until a node v, we proceed as
follows:

1. If t(v) = ¬ then we extend the path being constructed rightwards.
Note that this extension maintains invariants. Indeed, if tv has a proper
]-chain then this chain has to start with r if the root is labeled with ¬,
so tvr also has a proper ]-chain (by su�x-closure of proper ]-chains).
Moreover, boolean paths are closed under concatenations, so if v ends
with a boolean path (as a ]-boolean path) then vr does as well.

2. If t(v) = ] then we extend the path being constructed rightwards. This
extension also maintains invariants. This is because if t(v) = ] then v
ends with a ]-closed boolean path, and in a ]-boolean path there is a
turning right after each ]-closed boolean path. So the argument goes
as above.

3. If t(v) = ∨ and tvr ∈ H then we descend rightwards. The second
invariant is trivially maintained. The �rst one is maintained, again, by
closure of boolean paths under concatenation.

4. If t(v) = ∨ and tvr /∈ H then we extend the path leftwards. First
note that if t(vl) 6= ∨ then ε is an {], ]1}-incorrect boolean path in tv,
so tv /∈ W {],]1}, so tv /∈ H�a contradiction with the second invariant
being satis�ed for v. Therefore, t(vr) = ∨ and l is a boolean path in tv,
so, by closure of boolean paths under concatenation, the �rst invariant
is maintained.

Since the second invariant is satis�ed for v, there is a proper ]-chain
α in tv. If α starts with r then, by closure of proper ]-chains under
su�xes, tvr ∈ H�a contradiction with an assumption of this bullet
point. Therefore, α starts with l and, again by su�x-closure, tvl ∈ H,
so the second invariant is satis�ed.
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The above cases exhaust the possibilities, because if t(v) /∈ {∨,¬, ]} then,
by Remark 3.10.14, t /∈ H, what contradicts the second invariant being
satis�ed for v. Let the branch β be the one that comes from in�nitely many
applications of the above cases.

It is clear, from the construction, that there is no proper ]-chain to the
right from β. We show that β is a proper ]-chain. First observe that each
pre�x of β is a ]-boolean path, by the �rst invariant. This implies that β
consists of ]-closed boolean paths, separated from each other by r's, with
possibly an unclosed boolean branch at the end. Let then assume that there
indeed is such v, that v−1β is a boolean branch. Since tv does not have an
{], ]1}-incorrect boolean path (by the second invariant tv ∈ H ⊆ W {],]1}),
then there is w such that (vw)−1β = lω. On the other hand, by the second
invariant for vw, there is a proper ]-chain γ in tvw. Since, in particular, such
a chain turns right in�nitely many times, γ diverges from lω in some node
u of tvw. Then tvwur ∈ H and β should have turned right in node vwu, by
the construction, and it has not�a contradiction. Therefore, β is an in�nite
]-chain. It is proper, because for each v ≺ β the second invariant is satis�ed,
and v ∈ H ⊆ W {],]1}. �

We are ready to construct an automaton recognizing language TAω \
σω (L). Recall that, by Corollary 3.10.23:

TAω \ σ
ω (L) = Nω

[
δLa
]
tH tB{],]

1}
Aω

We construct an automaton HL,L that recognizes this language.
Automaton HL,L contains whole automaton OL,L. Apart from the states

of OL,L it uses states H1, H2, H1
∨, that serve recognizing language H, and

transitions:

33) ∨

H1, H2, H1
∨

W 0
∨ H1

34) ∨

H1, H2, H1
∨

H1
∨ P 1

35) ∨

H1, H2, H1
∨

H1
∨ N1

36) ¬
H1, H2

>0 H1

37) ]

H1, H2

>0 H2

The set of initial states of HL,L is {N1, H1, B2}.

Lemma 3.10.33 L
(
HL,LH1

)
= H
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Proof:
First note that in each full run ρ of HL,L on any tree t from state H1

there is exactly one branch that is labeled with states H1, H2, H1
∨ (we will

call them H-states). The way how H-states are propagated by transitions
correspond to the shape of boolean paths, with the exception that if label ]
is met state H2 occurs and the H-labeled path is continued to the right. As
a result, each interval between two occurrences of state H2 corresponds to
a ]-closed boolean path. The parity condition is satis�ed on the H-labeled
branch if and only if ] occurs in�nitely many times, i.e. if and only if the
branch is a ]-chain. We show that the whole run is accepting if and only if
the branch is proper.

Assume that t ∈ H. We show that there is an accepting run ρ of HL,L
on t from H1. This run labels the right-most proper ]-chain η with H-states.
As we have noted above, such a run is accepting on η. We show how to �ll
other parts of the run to make it accepting.

First consider subtree that diverges left from η in some node v ≺ η. If
t(v) = ¬ or t(v) = ] then state >0 is assigned to vl (transition (36) or (37)
was used in v), so the subtree is clearly accepted. Now consider the case
when t(v) = ∨. Note that since η is a proper ]-chain, tv ∈ W {],]1}, so ε is
a ]-closed boolean path, so l is a boolean path, tvl ∈ W {],]1} and t(vl) = ∨.
Run ρ uses transition (33) in v, so vl has the state label of W 0

∨. Note that
W 0
∨ has exactly the same set of transitions as W 1 over the letter ∨, so the

subtree tvl can be accepted from W 0
∨, by Remark 3.10.25.

Now consider subtree that diverges right from η in some node v ≺ η.
Note that it can only happen if t(v) = ∨, because only transitions over ∨
propagate H-states to the left. Hence, path r is boolean in tv and, since η is
a proper ]-chain, tv ∈ H ⊆ W {],]1}, so tvr ∈ W {],]1}, by Remark 3.8.12. Then,
by Proposition 3.10.20, tvr ∈ H, tvr ∈ P ω

[
δLa
]
or tvr ∈ Nω

[
δLa
]
. However,

since η was selected the right-most proper ]-chain, tvr /∈ H. Therefore, by
Lemma 3.10.29, tvr is accepted from state P 1 or from N1. Then ρ can accept
the subtree by using transition (34) or (35), respectively, in node v.

Now assume that t /∈ H, and assume that there is an accepting run ρ
of HL,L from H1 on t. Let us call η the branch that ρ assigns H-states to.
As noted above in order for ρ to be accepting on η it needs to be a ]-chain.
Since t /∈ H, η is not proper. Therefore, there is v ≺ η such that tv /∈ W {],]1}.
Then there is an {], ]1}-incorrect boolean path w in tv. There are three cases
to be considered for w:

1. w diverges left from η, i.e. there are u, x such that w = ulx, vu ≺ η,
vul ⊀ η�then ul is a boolean path in tv (as a pre�x of a boolean
path), so t(vu) = ∨ and transition (33) was used in vu, so state W 0

∨ is
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assigned to vul. Boolean path x is {], ]1}-incorrect in tvul (as a su�x of
a {], ]1}-incorrect path), so tvul /∈ W {],]1} and tvul is not accepted from
W 0
∨, because a subset of W {],]1} is accepted from this state;

2. w diverges right from η, i.e. there are u, x such that w = urx, vu ≺ η,
vur ⊀ η�then one of the transitions (34), (35) was used in node vu
(as the only ones that propagate an H-state to the left), and state
P 1 or state N1 is assigned to vur. Boolean path x is {], ]1}-incorrect
in tvur (as a su�x of a {], ]1}-incorrect path), so tvur /∈ W {],]1}. By
Corollary 3.10.2 and Lemma 3.10.29, tvur is not accepted from any of
states P 1, N1;

3. vw ≺ η�the only case when a pre�x of a ]-closed boolean path is a
{], ]1}-incorrect boolean path is when the pre�x ends in a node with
label ∨ whose left successor has label di�erent than ∨. Therefore,
t(vw) = ∨, t(vwl) 6= ∨ and vwl ⊀ η. In such a case ρ uses transition
(33) in vw, therefore, state W 0

∨ is assigned to vwl. Since there is no
transition over label di�erent than ∨ from state W 0

∨, the run is stuck.

In all the cases we have obtained a contradiction with the assumption that
the run is accepting, so there is no accepting run from state H1 on tree t /∈ H.
�

Corollary 3.10.34 If L ⊆ TA, automaton L recognizes L and L recognizes

L, then HL,L recognizes language σω (L).

Proof:
Since the initial states of automatonHL,L areN1,H1, B2, the claim comes

from Corollary 3.10.23, Lemma 3.10.29, Remark 3.10.27, and Lemma 3.10.33.
�

Lemma 3.10.35 If automata L and L are unambiguous then automaton
HL,L is unambiguous.

Proof:
Note that, by Corollary 3.10.23, Lemma 3.10.29, Remark 3.10.27, and

Lemma 3.10.33, languages accepted from the initial states of HL,L are pair-
wise disjoint. Therefore, if there are two distinct accepting runs on the same
tree, they start with the same state. As in the previous unambiguity proofs,
we consider a node v in such runs where they use di�erent transitions, but
used the same transitions on the path to the node. In particular, in such a
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case, the runs assign the same state to v. Thanks to the Lemma 3.10.31 we
know that it is not possible for any of the states of automaton OL,L, so the
runs assign one of H-states to v. The only nondeterministic choice for these
states is by letter ∨. Three transitions are possible from any of H-states
over letter ∨: (33), (34), (35). They assign states H1, P 1, N1, respectively,
to the right successor. Since the three states have pairwise disjoint accepted
languages, at most one of them can be used in an accepting run on a given
tree. �

Proof (of Theorem 3.10.24):
Let L ⊆ TA, let unambiguous automaton L recognizes L and let unam-

biguous automaton L recognizes L. By Corollary 3.10.30 and Lemma 3.10.31,
unambiguous automaton OL,L recognizes σω (L). By Corollary 3.10.34 and
Lemma 3.10.35, unambiguous automaton HL,L recognizes σω (L). �

P 1 ; P 1
∨

N1 ; N0
∨

F 0
∨

(0,1)
W 1 ; W 0

∨

(0,1)

>0

(0,0)

L′

L′ B2 ; B1
∨

(1,2)

H1 ; H2

H1
∨

(1,2)

OL,L

HL,L

Figure 3.7: Strongly connected components of automata OL,L and HL,L.

Looking at the diagram of strongly connected components depicted in
Figure 3.7, we conclude that:

Remark 3.10.36 If a language L is recognized by an unambiguous (respec-
tively nondeterministic) automaton of index I, and L is recognized by an un-
ambiguous (respectively nondeterministic) automaton of index J , then σω (L)
and σω (L) are recognized by unambiguous (respectively nondeterministic) au-
tomata of index {(0, 1), (1, 2)} ∪ I ∪ J .
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3.10.2 Topological Properties

In this section we prove that the operation has the planned topological com-
plexity, namely:

Theorem 3.10.37 Let A be a nonempty alphabet, let L ⊆ TA and let a ∈ A.
Then for each n > 0, σna (L) 6W σωa (L).

Proof:
For each n we show a continuous function fn reducing σn (L) to σω (L).

The de�nition is inductive.
For n = 0 we de�ne f0 : TA → TAω as:

f0(t) =

]1

t t

(the left subtree does not matter,
we put an arbitrary �xed tree there)

By the �xpoint de�nition of P ω and Nω sets (namely by equation (3.19)) we
get:

t ∈ σ0 (L) = L =⇒ f0(t) ∈ P ω
[
δLa
]

= σω (L) (3.27)

t ∈ σ0 (L) = L =⇒ f0(t) ∈ Nω
[
δLa
]
⊆ σω (L) (3.28)

because M ⊆ π̂
(ω)
a

−1

(M) for each M ⊆ TA (see equation (3.18)).
Recall that operation σ is de�ned using projection π̂a : TAσ → TA, which

maps letters from Aσ\A to a (see equation (3.9)). Note that this projection is
trivial whenever {∨,¬, ]} ⊆ A. Therefore, if we iterate application of σ, then
only for the innermost application, the projection is di�erent than identity
(alphabet of language σ (L) already contains ∨, ¬ and ]). To avoid confusion
we will use a separate notation for π̂a on each iteration level. Let then π(n)

a

be the following projection of the space of set σn+1 (L) onto the space of set
σn (L):

π(n)
a =

{
id : TAσ → TAσ if n > 0
π̂a : TAσ → TA if n = 0

Let us �x an arbitrary tree tB from T{∨,¬,],]1} ∩B
{],]1}
Aω

. For example let:

tB :=

∨

¬ ¬

where ¬-labeled subtrees are subtrees with all nodes labeled with ¬.
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The de�nition of fn : TAσ → TAω for n > 0 follows. Let fn(t) be tree t
with two kinds of modi�cations performed (the kinds are mutually exclusive,
by de�nition):

1. Subtrees to the right from the end of ]-closed boolean paths are replaced
according to fn−1. Namely, if v is a ]-closed boolean path in t then:
fn(t)vr = fn−1 ◦ π(n−1)

a (tvr). Note that no ]-closed boolean path is a
pre�x of a di�erent ]-closed boolean path so there is no ambiguity in
the de�nition.

2. If v is a ]1-closed boolean path (it is possible that ]1 ∈ A�we do not
want to restrict this) then we replace the subtree of node v with tB,
i.e. fn(t)v = tB in this case.

Now we prove by induction on n > 0 the following properties, that in
particular imply that fn are appropriate reductions:

t ∈ σn+1 (L) = P σ
[
λLa
]

=⇒ fn+1(t) ∈ P ω
[
δLa
]

= σω (L)
t ∈ Nσ

[
λLa
]

=⇒ fn+1(t) ∈ Nω
[
δLa
]

t ∈ B] =⇒ fn+1(t) ∈ B{],]
1}

Aω

Since sets P σ
[
λLa
]
, Nσ

[
λLa
]
, B] cover the whole space TAσ , the above impli-

cations entail that fn(t) /∈ H.
First consider t ∈ B], i.e. t has a ]-incorrect boolean path or branch α.

If α is in�nite or if it is �nite and t(α) 6= ]1, then the path is also {], ]1}-in-
correct and the replacements do not touch α (no {], ]1}-closed boolean path
is a pre�x of a {], ]1}-incorrect boolean path), so α is also a {], ]1}-incorrect
boolean path in fn+1(t), and fn+1(t) ∈ B

{],]1}
Aω

. If t(α) = ]1 then the path
above node α is not changed by fn+1 and fn+1(t)α = tB. In such a case α is a
boolean path in fn+1(t) and ε is a {], ]1}-incorrect boolean path in fn+1(t)α,

so α is a {], ]1}-incorrect boolean path in fn+1(t), and fn+1(t) ∈ B{],]
1}

Aω
.

Let now t ∈ P σ
[
λLa
]
. It means that there is a context tP ∈ P σ such

that t is tP with leaves tt replaced with some trees with ] in the root and a

tree from π
(n)
a

−1
(σn (L)) as the right subtree and leaves ff with some trees

with ] in the root and a tree from π
(n)
a

−1
(
σn (L)

)
as the right subtree (see

equation (3.10)). Let us consider the e�ect of application of fn+1 to t. Since
t does not have ]-incorrect paths, only modi�cation (1) is applied. This
modi�cation does not touch the part of t coming from tP , but for each v such
that tP (v) ∈ {tt, ff}, tvr is replaced with fn(π

(n)
a (tvr)). Recall that if tP (v) = tt
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then tvr ∈ π(n)
a

−1
(σn (L)), therefore:

fn+1(tvr) ∈ fn

(
π(n)
a

(
π(n)
a

−1
(σn (L))

))
= fn (σn (L)) ⊆ σω (L) = P ω

[
δLa
]

(3.29)
where the last inclusion comes from inductive assumption for n > 0 and from

equation (3.27) for n = 0. If tP (v) = ff then tvr ∈ π(n)
a

−1
(
σn (L)

)
, therefore:

fn+1(tvr) ∈ fn

(
π

(n)
a

(
π

(n)
a

−1
(
σn (L)

)))
= fn

(
σn (L)

)
=

{
fn
(
Nσ
[
λLa
]
∪B]

)
for n > 0

fn
(
L
)

for n = 0

⊆
{
Nω
[
δLa
]
∪B{],]

1}
Aω

for n > 0
Nω
[
δLa
]

for n = 0

⊆ Nω
[
δLa
]
∪B{],]

1}
Aω

(3.30)

where the �rst inclusion comes from inductive assumption for n > 0 and
from equation (3.28) for n = 0.

Since for each node v such that tP (v) ∈ {tt, ff}, fn+1(t)(v) = ] and
fn+1(tvr) is as in (3.29) and (3.30), by Corollary 3.10.5, we get:

fn+1(t) ∈ P σ

tt 7→ ]

TAω P ω
[
δLa
] , ff 7→

]

TAω Nω
[
δLa
]
∪B{],]

1}
Aω

, > 7→ TAω


(3.31)

Now note that, since (P ω, Nω) = Fix(Ψ) and by the de�nition of ηP,N

(equation (3.17)), we get:

P ω = P σ
[
ηP

ω ,Nω] ⊇ P σ

tt 7→ ]

>ω P ω
, ff 7→

]

>ω Nω ∪B{],]
1}

Aω

,> 7→ >ω


(3.32)
Since ttω, ffω, >ω do not occur in trees from P σ (although may occur in trees
from P ω or Nω), (3.32) implies:

P ω
[
δLa
]
⊇ P σ

tt 7→ ]

TAω P ω
[
δLa
] , ff 7→

]

TAω Nω
[
δLa
]
∪B{],]

1}
Aω

, > 7→ TAω


(3.33)

By (3.31) and (3.33) we get:

fn+1(t) ∈ P ω
[
δLa
]

(3.34)
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If t ∈ Nσ
[
λLa
]
, then t is equal to a context tN ∈ Nσ with tt and ff labeled

holes replaced with trees from the same languages as for tP , above. Therefore,
exactly the same sequence of arguments leads to the conclusion that:

fn+1(t) ∈ Nω
[
δLa
]

�

Corollary 3.10.38 If A is a �nite nonempty alphabet and L ⊆ TA is stretch-
able then, for each n>0, σn (L) <W σω (L).

Proof:
By Theorem 3.10.37, for each n, σn (L) 6W σω (L). If for some n,

σω (L) 6W σn (L), then σn+1 (L) 6W σω (L) 6W σn (L), what contradicts
Theorem 3.8.37, by stretchability of L. �

3.10.3 Stretchability

In this section we prove that limit-step operation σω preserves stretchability.

Theorem 3.10.39 If A is a �nite nonempty alphabet and a language L ⊆ TA
is stretchable then σω (L) is also stretchable.

Proof:
We want to apply Lemma 3.8.36. To do this we recall that the au-

tomaton OL,L is composed using components: L′, L′, {>0}, by OL,L =

O
(
L′,L′, {>0}

)
. The components recognize languages π̂(ω)

a

−1

(L), π̂(ω)
a

−1

(L),

TAω , respectively. Note that if a function f : TA → TA stretches L with

respect to a sequence {an}, then f ◦ π̂(ω)
a stretches each of the languages

π̂
(ω)
a

−1

(L), π̂(ω)
a

−1

(L), TAω with respect to {an}. Therefore, the languages are
simultaneously stretchable and assumption 5 of the lemma is satis�ed.

The following function determines places where the automaton enters one
of the three components, as required by assumption 2 of the lemma:

p(a, d) = 1 ⇐⇒ (a = ]1) ∨ (a ∈ {¬, ]} ∧ d = l)

None of the parameter states is initial in O, so assumption 1 of the lemma
is also satis�ed.
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We are left with showing contexts as in assumptions 4 and 3 of the lemma.
First we �x a tree that is always (regardless of L) accepted from states N1,
>0 and τ . Let then:

tN :=

]

¬ ¬

where the ¬-labeled subtrees are subtrees with all nodes labeled with ¬.

As a context cn0 required in assumption 4 we take:

cn0 :=

]

tN

]

tN

]

tN

]

tN

n levels

We immediately present all possible runs on such a context from the
initial state of O:

]

P 1

tN

τ
]

P 1

tN

τ
]

P 1

tN

τ

]

P 1

P 1

tN

τ
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We use a similar context (or actually a series of contexts) for cn] :

cn] :=

]

tN

]

tN

]

tN

]

rl

n levels

All the possible runs on this context follow:

]

P 1

tN

τ
]

P 1

tN

τ

]

P 1

tN

τ

]

P 1

r

P 1

l

τ

]

N1

tN

τ
]

N1

tN

τ

]

N1

tN

τ

]

N1

r

N1, B2

l

τ

]

B1
∨

tN

τ
]

>0

tN

τ

]

>0

tN

τ

]

>0

r

>0

l

τ

]

W 1,>0

tN

τ
]

>0

tN

τ

]

>0

tN

τ

]

>0

r

>0

l

τ

They correspond exactly to the transitions (28), (29), (30), (23), (16), (19)
of O over the letter ].

182



Now we present the sequence of contexts for letter ¬:

cn¬ :=

¬

tN

¬

tN

¬

tN

¬

rl

⌈
n
2

⌉
· 2 + 1 levels

The runs on it:

¬
P 1

tN

τ
¬
N1

tN

τ

¬
N1

tN

τ

¬
P 1

r

N1

l

τ

¬
N1

tN

τ
¬
P 1

tN

τ

¬
P 1

tN

τ

¬
N1

r

P 1

l

τ

¬
B2

tN

τ
¬
B2

tN

τ

¬
B2

tN

τ

¬
B2

r

B2

l

τ

¬
B1
∨

tN

τ
¬
>0

tN

τ

¬
>0

tN

τ

¬
>0

r

>0

l

τ
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¬
W 1

tN

τ
¬
W 1

tN

τ

¬
W 1

tN

τ

¬
W 1

r

W 1

l

τ

¬
>0

tN

τ
¬
>0

tN

τ

¬
>0

tN

τ

¬
>0

r

>0

l

τ

They correspond exactly to the transitions (5), (6), (22), (23), (7), (19) of O
over the letter ¬.

Now the contexts for ]1:

cn]1 :=

]

tN

]

tN

]

tN

]1

rl

n levels

All the runs on it:

]

P 1

tN

τ
]

P 1

tN

τ

]

P 1

tN

τ

]1

P 1

r

`

l

τ

]

N1

tN

τ
]

N1

tN

τ

]

N1

tN

τ

]1

N1

r

`

l

τ
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]

W 1,>0

tN

τ
]

>0

tN

τ

]

>0

tN

τ

]1

>0

r

τ

l

τ

]

B1
∨

tN

τ
]

>0

tN

τ

]

>0

tN

τ

]1

>0

r

τ

l

τ

One could note that also transition (30) could be taken in the root of this
context, but then the run would stuck, because there is no transition from B2

over any of letters ], ]1. The runs depicted above correspond to transitions
(31), (32), (17), (20), (24) of automaton O over the letter ]1.

Now the context for ∨:

cn∨ :=

∨

tN

∨

tN

∨

tN

∨

rl

n levels

All the runs on it:

∨

P 1, P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

r

P 1

l

F 0
∨

∨

P 1, P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

tN

N1

∨

P 1
∨

r

N1

l

P 1
∨
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∨

N1, N0
∨

tN

N1

∨

N0
∨

tN

N1

∨

N0
∨

tN

N1

∨

N0
∨

r

N1

l

N0
∨

∨

W 1,W 0
∨

tN

W 1

∨

W 0
∨

tN

W 1

∨

W 0
∨

tN

W 1

∨

W 0
∨

r

W 1

l

W 0
∨

∨

F 0
∨

tN

N1

∨

F 0
∨

tN

N1

∨

F 0
∨

tN

N1

∨

F 0
∨

r

P 1

l

F 0
∨

∨

F 0
∨

tN

N1

∨

F 0
∨

tN

N1

∨

F 0
∨

tN

N1

∨

F 0
∨

r

N1

l

F 0
∨

∨

B2, B1
∨

tN

W 1

∨

B1
∨

tN

W 1

∨

B1
∨

tN

W 1

∨

B1
∨

r

B2

l

>0

∨

B2, B1
∨

tN

W 1

∨

B1
∨

tN

W 1

∨

B1
∨

tN

W 1

∨

B1
∨

r

W 1

l

B1
∨
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∨

>0

tN

>0

∨

>0

tN

>0

∨

>0

tN

>0

∨

>0

r

>0

l

>0

The runs correspond to transitions (25), (2), (3), (4), (26), (27), (11), (12),
(18) of automaton O. Those are all the possible transitions over the letter
∨.

Now let b ∈ Aω \ {∨,¬, ], ]1}. We put:

cnb :=

b

tN

b

tN

b

tN

b

rl

n levels

All possible runs on it follow.

b

B2, B1
∨,>0

tN

>0

b

>0

tN

>0

b

>0

tN

>0

b

>0

r

>0

l

>0

This corresponds to the fact that transitions (15), (21) is the only one over
b.
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We have constructed all the contexts required by assumptions 3 and 4
of Lemma 3.8.36, so we have shown that all the assumptions are satis�ed.
Therefore, we can use the lemma to obtain that:

O
(
π̂

(ω)
a

−1

(L), π̂
(ω)
a

−1

(L), TAω

)
= σω (L) is stretchable.

�

3.11 The Hierarchy

Since we have proven that operation σω:

1. has the required topological hardness property (∀n σn (L) <W σω (L)),

2. preserves bi-unambiguity, and

3. preserves stretchability,

we conclude that, similarly to operation σ, the operation can be iterated and
that the two operations, σ and σω, can be alternated to obtain more and more
complex sets. This leads to the observation, that the sequence presented in
equation (3.15) can be extended to obtain the following strictly increasing
(with respect to the Wadge order) sequence of bi-unambiguous languages:

∅ <W σ (∅) <W σ2 (∅) <W σ3 (∅) <W . . .

<W σω (∅) <W σ (σω (∅)) <W σ2 (σω (∅)) <W σ3 (σω (∅)) <W . . .

<W σω (σω (∅)) <W σ (σω (σω (∅))) <W σ2 (σω (σω (∅))) <W . . .

... (3.35)

<W (σω)k (∅) <W σ
(

(σω)k (∅)
)
<W σ2

(
(σω)k (∅)

)
<W . . .

<W (σω)k+1 (∅) <W . . .

...

The length of the above sequence is ω2 (elements are numbered with
all the ordinals less than ω2). All languages in the sequence are in the
unambiguous index class Luamb ((0, 1), (1, 2)).

Note that an increasing sequence of bi-unambiguous languages similar to
the one shown in (3.35) can be built starting from any stretchable bi-unam-
biguous language.
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3.12 Further Work and Discussion

3.12.1 A Vain Attempt

The author of this thesis have attempted to extend the sequence (3.35) to
the length ωω. It was done by the introduction of ω operations σω

i
similar to

the operation σω. If we think of operation σω as of ω iterations of operation
σ, then the new operations would correspond to ω2, ω3, . . . iterations of σ.

Recall that the construction of σω introduces a symbol ]1. In the de�ni-
tion of σ we have considered a notion of ill-foundedness, namely a tree with
an incorrect boolean branch cannot belong to σ (L). An incorrect boolean
branch is, roughly speaking, a branch turning right in�nitely many times
with ∨ and ¬ labels and without ] labels. The operation σω introduces an-
other type of ill-foundedness. This one is connected with the existence of
proper ]-chain, i.e., roughly speaking, a branch turning right in�nitely many
times labeled with ∨, ¬ and ], with no label ]1. Each operation σω

i
intro-

duces a symbol ]i and, together with it, a new type of ill-foundedness. The
most complex point of this construction is �xing a relation between the types
of ill-foundedness. Recall that in the case of σω, a ]-chain is proper only if
there is no incorrect boolean branch diverging from it. Similar solutions lead
to the de�nition of σω

i
that was considered by the author.

Unfortunately an automaton considered by the author as a candidate for
recognizing language σω

i
(L) (a natural extension of OL,L) occurred not to

be unambiguous for i > 1. In order to obtain this conclusion the author
have written a Python script that translated the unambiguity question for
language σω

2
(∅) into a parity game that was then solved by PGSolver�a

parity game solving tool by Oliver Friedmann and Martin Lange [FL15].

3.12.2 Di�erence Hierarchy

In the already cited paper by Finkel and Simonnet [FS09], the di�erence
hierarchy of analytic sets is considered. The authors show a sequence of
regular tree languages hard for the levelsDα(Σ1

1) of the hierarchy, for α < ωω.
Then, on page 10, they note that the languages (even the �rst one in the
sequence) are not recognized by unambiguous tree automata.

The base for the construction by Finkel and Simonnet is the set EB as
de�ned in Example 3.2.4. If we look at the construction there, we see that
we can instead use the unambiguous set G from Section 3.7 as a base, and
hardness results still hold. Actually the proofs remain exactly the same, since
they only use Σ1

1-hardness of the basic set.
Now we note that each automaton built during the construction is unam-
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biguous if we use the unambiguous automaton G recognizingG and the unam-
biguous automaton L recognizing its complement (i.e. the set L from Section
3.7) as basic building blocks. Indeed, for a given tree t, the automaton de-
scribed in the proof of Lemma 4.5 in the paper [FS09] always selects the path
corresponding to the smallest ordinal ωn−1 ·an−1 +ωn−2 ·an−2 + . . .+ω ·a1 +a0

for which the tree tlan−1rlan−2r···rla0 belongs to G, and proves that all paths
corresponding to smaller ordinals end up in something that does not belong
to G (i.e. belongs to L). The unambiguous automaton G is used to verify
belonging to G and L is used to verify belonging to L.

As a result, using example languages G and L from this thesis and the
construction from the paper [FS09] by Finkel and Simonnet, we get a se-
quence of unambiguous languages hard for the classes Dα(Σ1

1), for α < ωω.
Note that, since each set at any countable level of the di�erence hierarchy
of analytic sets is, by de�nition, in σ(Σ1

1), all the languages in the sequence
continuously reduce to the language σ (G). Therefore, the constructions pre-
sented in this thesis are able to produce bi-unambiguous languages of higher
topological complexity than all the languages in the sequence considered by
Finkel and Simonnet.

3.12.3 Unambiguous vs Regular

In this section we discuss possible upper topological complexity bounds for
unambiguous languages. As noted before, the thesis does not present any
results in this regard. We only enumerate some open questions.

First observe that it is still possible that the topological complexity of
nondeterministic and unambiguous languages is the same. Let us formalize
it in the following.

Question 3.12.1 Is it true that: For each regular language L of in�nite trees
there is such an unambiguous (or even bi-unambiguous) language U that L
is Wadge reducible to U?

If the answer to the above question is negative, then there is a spectrum
of possibilities. Note that all the unambiguous languages presented in this
thesis are of alternating index Lalt ((0, 1), (1, 2)). According to the author's
knowledge the answer to the following question is not known.

Question 3.12.2 Are all unambiguous tree languages in the alternating in-
dex class Lalt ((0, 1), (1, 2))?

Or more generally:
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Question 3.12.3 Is there an alternating index class that contains all unam-
biguous (bi-unambiguous) languages? If yes, then what is the smallest such
class?

Note that negative answer to the last question does not contradict potential
negative answer to Question 3.12.1, because Fact 3.4.12 works only one di-
rection, and there may be languages outside Lalt ((ι, κ)) reducible to W(ι,κ).
An answer to Question 3.12.3 would �ll the missing paragraph in Section
3.4.1 about relations between the hierarchies.

3.12.4 Wadge Hierarchy

As it was noted before, the �nest way to measure the di�erence in the topo-
logical complexity of unambiguous and regular languages is by the use of
the Wadge hierarchy. This approach, though, when applied to non-Borel
sets, usually uses an extension of ZFC with an appropriate axiom of deter-
minacy. The thesis of Kevin Fournier [Fou16, Section 1.3.1] gives a summary
of results on the Wadge hierarchy of non-Borel languages using full axiom
of determinacy. The measure applied there (as well as e.g. in the work by
Murlak and Duparc [Mur06, DM07]) is the length of the Wadge hierarchies
induced by languages in a given class. Some lower bound for this length is
also given for unambiguous automata in the paper by Duparc, Fournier and
the author of this thesis [DFH15]. The paper shows a sequence of unambigu-
ous languages of strictly increasing Wadge degree of length ϕ2(0), which is
much larger than the length of the Wadge hierarchy for deterministic lan-
guages discovered by Murlak [Mur06], and much smaller than the length of
the longest such sequence known for regular languages, which is ϕω(0) (given
by Fournier [Fou16, Section 6.3]).

It would be interesting to compare the sequence of unambiguous lan-
guages from the mentioned paper [DFH15] with the sequence given in this
chapter. It is not easy, since they use di�erent approaches. The one from
the paper is very long and described in terms of the Wadge degrees using
axiom of co-analytic determinacy. The sequence described in this chapter
is much shorter, but the gap between the elements is much bigger, since
each step concerns going beyond the sigma-algebra generated by the pre-
vious ones. Additionally in the thesis we have decided not to use axioms
beyond ZFC�which makes the comparison harder.

The two sequences have signi�cant similarities, though. They both are
built from bi-unambiguous languages (although the paper does not state
it explicitly) that can be recognized by automata of index {(0, 1), (1, 2)}
(the paper mentions index (0, 2), but it can be observed that it is actually
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{(0, 1), (1, 2)}). In particular the class Lalt ((0, 1), (1, 2)) is a common upper
topological complexity bound for both the examples.

3.12.5 Bi-unambiguous vs Unambiguous

Recall that the unambiguous index hierarchy is strict (see Remark 3.4.14).
One can ask:

Question 3.12.4 Is there an unambiguous index class that contains all
bi-unambiguous languages?

The following question is somehow related to Question 3.12.1 and Ques-
tion 3.12.3.

Question 3.12.5 What is the di�erence in the topological complexity of un-
ambiguous and bi-unambiguous languages?
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Notations

ω the smallest in�nite ordinal, page 18

ω1 the smallest uncountable ordinal, page 18

|A| the cardinality (number of elements) of a set A, page 18

A the complement of a set A, page 18

inf A the in�mum of a subset A of an ordered set X, i.e. the greatest
element of X less than or equal to each element of A, page 118

P (A) the power set of a set A, i.e. the set of subsets of A, page 18⊔
i∈I Ai the disjoint union of a family of sets. The semantics of this

operator is the same as of the ordinary union operator, we use
it to indicate that the sets in the family are pairwise disjoint,
page 31

A tB the disjoint union of sets A and B. As an operator it is an
ordinary union, it only additionally informs that the operands
are disjoint. If used in multi-argument union, like A1tA2t . . .t
Ak, it designates pairwise disjointness, page 106

−→⋂
n<ω Ln the intersection of the (not necessarily strictly) decreasing se-

quence {Ln}n<ω of sets. Semantics of this operator is identical
as of ordinary intersection. It is only used to indicate that for
each n < m, Lm ⊆ Ln, page 31

πi(A) the projection of a subset A of a product space on the i'th coor-
dinate, page 29

BC (A) the smallest algebra containing all elements of A, page 18

σ (A) the smallest sigma-algebra containing all elements of A, page 18
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∃∞x ϕ(x) there exists in�nitely many x for which ϕ holds, page 30

∀∞x ϕ(x) for all except �nitely many x, ϕ holds, page 30

∃fin the existential weak second order quanti�er, i.e. the one ranging
over �nite subsets of a domain, page 37

∀fin the universal weak second order quanti�er, i.e. the one ranging
over �nite subsets of a domain, page 37

∃!xϕ(x) there exists exactly one x for which ϕ holds, page 41

ϕ [α] a formula ϕ with a substitution α applied, page 36

1X the characteristic function 1X : D → {0, 1} of a subset X ⊆ D
of a set D, page 37

dom (f) the domain of a (partial) function f , page 22

id an identity function, page 114

A(→ B for f : A (→ B, f is a partial function from a set A to B,
page 86

f�A restriction of the domain of a function, namely, for f : X → Y ,
if A ⊆ X, then f �A: A → Y is de�ned by f �A (x) = f(x) for
each x ∈ A, page 89

Bd(x, r) the ball with center x and radius r in metric d (we may write
B(x, r) if the metric is clear from the context), page 19

τ |Y relative topology: for topological space (X, τ) and for Y ⊆ X,
τ |Y = {U ∩ Y : U ∈ τ}, page 19

X ' Y topological spaces X and Y are homeomorphic, page 19

Nω the Baire space , page 24

C the Cantor space C = {0, 1}ω, page 24

A ≡W B a set A is Wedge-equivalent to a set B, i.e. they are mutually
continuously reducible to each other, page 33

A 6W B a set A is continuously reducible (Wedge-reducible) to a set B,
page 27

Fix(Φ) the least �xed point of an operator Φ, page 113
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A∗ the set of all �nite words over an alphabet A, page 21

Aω the set of all ω-words over an alphabet A, page 21

A6ω the set of �nite and in�nite words over alphabet A, i.e. A6ω =
A∗ ∪ Aω, page 21

A+ the set of all �nite nonempty words over an alphabet A, page 54

wv the concatenation of words w and v, page 21

LM the concatenation of sets of words, LM = {wv : w ∈ L, v ∈M},
page 21

L−1M the left quotient of language M w.r.t. language L: L−1M = {v :
∃u∈L∃w∈M uv = w}. We also write v−1w to designate a su�x of
w (the element of {v}−1{w}) if we know that v 4 w, page 26

LM−1 the right quotient of language L w.r.t. language M : LM−1 =
{v : ∃w∈L∃u∈M vu = w}. We also write wv−1 to designate a
pre�x of w (the element of {w}{v}−1) if we know that v is a
su�x of w, page 27

L∗ the Kleene star of a set L of words, i.e. L∗ =
⋃
i>0 L

i, page 21

Lω the set of in�nite concatenations of words from L, i.e. Lω =
{w0w1w2 . . . : ∀i∈ω wi ∈ L}, page 21

v 4 w the pre�x order, i.e. w = vu for some u ∈ A∗, where A is an
alphabet, page 22

v ≺ w the strict pre�x order, page 22

ε the empty sequence (or word), page 21

|w| the length of a sequence w, page 21

α�n the pre�x of length n of a (�nite or in�nite) sequence α, page 22

TB the set of all unlabeled trees on B (B-branching trees), page 22

TBA the set of all full B-branching trees over A (A-labeled), page 22

TB,fin
A the set of all �nite B-branching A-labeled trees, page 22

T fin
A the set of all �nite binary A-labeled trees, page 22
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TA the set of all full binary A-labeled trees, page 22

[t] the set of in�nite branches of a tree t ∈ TX , i.e. [t] := {α ∈ Xω :
∀n<ω α�n∈ t}, page 56

t (α) the sequence of labels of a tree t along a branch α, page 22

tv the subtree of tree t rooted in node v, page 27

t�w the section of a multi-branching tree t along a word w on the
�rst branching coordinate, page 55

L [α] a substitution α applied to a parametrized language L of trees,
page 86

Aq an automaton A with initial state changed to q (q may also be
a set of states), page 88

LΓ (I) an index class of languages. A language is in index class LΓ (I),
for Γ ∈ {ndet, det, uamb, alt, weak}, if there is a nondeterminis-
tic (respectively deterministic, unambiguous, alternating, weak)
automaton of index I that recognizes it, page 93

∆Γ
κ a delta index class of languages, ∆Γ

κ = LΓ ((0, κ− 1)) ∩
LΓ ((1, κ)), page 93

(ι, κ) the dual index to an index (ι, κ) ∈ {0, 1}×ω, (ι, κ) = (1− ι, κ+
(−1)ι), page 95

O (f(n)) asymptotic upper bound notation, namely, g(n) = O (f(n))
means that there exist such constants c, n0, that for n > n0,
g(n) 6 c · f(n), page 48
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