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Abstract

This thesis contains a number of new results on a few different problems concerning connectivity
and separation in graphs, including algorithmic results and hardness results.

In Chapter 3, we study the Independent Feedback Vertex Set problem — a variant
of the classic Feedback Vertex Set problem where, given a graph G and an integer k, the
problem is to decide whether there exists a vertex set S ⊆ V (G) such that G \ S is a forest and
S is an independent set of size at most k. We present an O∗((1 +ϕ2)k)-time FPT algorithm for
this problem, where ϕ < 1.619 is the golden ratio. Our algorithm improves the previous fastest
O∗(4.1481k)-time algorithm of Agrawal et al. [3] and matches the running time of the algorithm
for FVS given by Kociumaka and Pilipczuk [81].

In Chapter 4, we study multi-budgeted variants of the classic minimum cut problem (Multi-
budgeted Cut) and graph separation problems that turned out to be important in parameter-
ized complexity: Skew Multicut and Directed Feedback Arc Set. In our generalization,
we assign colors 1, 2, ..., ` to some edges and give separate budgets k1, k2, ..., k` for colors 1, 2, ..., `.
For every color i ∈ {1, ..., `}, let Ei be the set of edges of color i. The solution C for the multi-
budgeted variant of a graph separation problem not only needs to satisfy the usual separation
requirements (i.e., be a cut, a skew multicut, or a directed feedback arc set, respectively), but
also needs to satisfy that |C ∩ Ei| ≤ ki for every i ∈ {1, ..., `}. Contrary to the classic min-
imum cut problem, the multi-budgeted variant turns out to be NP-hard even for ` = 2. We
propose an FPT algorithm parameterized by k = k1 + ...+k` and ` for Multi-budgeted Cut,
and then extend our algorithm to Multi-budgeted Skew Multicut and Multi-budgeted
Directed Feedback Arc Set.

In Chapter 5, we study Two Disjoint Shortest Paths Problem (2-DSPP) with tran-
sition restrictions. Given a directed graph G = (V,E), a length function w : E → R≥0 and
two pairs of vertices (s1, t1),(s2, t2) in G, the Directed Two Disjoint Shortest Paths
Problem (2-DSPP) asks to find two disjoint (vertex-disjoint or edge-disjoint) paths P1 and
P2 in G such that Pi is a shortest path from si to ti for i = 1, 2. Bérczi and Kobayashi showed
that 2-DSPP is polynomial-time solvable when every directed cycle has positive length [9]. We
show that 2-DSPP remains polynomial-time solvable when every directed cycle has positive
length even in the presence of a transition system. Here, a transition system allows to use only
prescribed pairs of incoming and outgoing edges as consecutive edges on the constructed paths.

In Chapter 6, we study the following variant of Cluster Editing. We are given a graph
G = (V,E), a packing H of modification-disjoint induced P3s (no pair of P3s in H share an
edge or non-edge) and an integer `. The task is to decide whether G can be transformed into a
union of vertex-disjoint cliques by at most ` + |H| modifications (edge deletions or insertions).
We show that this problem is NP-hard even when ` = 0 (in which case the problem asks to
turn G into a disjoint union of cliques by performing exactly one edge deletion or insertion per
element of H) and when each vertex is in at most 23 P3s of the packing. We also show that the
two-restricted version of this problem, where every vertex belongs to at most two P3s of H, can
be solved in O(n2`+O(1)) time.

In Chapter 7, we study the problem Metric Dimension. The Metric Dimension problem
asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a
set S ⊆ V (G) is resolving if no two distinct vertices of G have the same distance vector to S.
The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in
the past years. Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under



treewidth parameterization. In this work, we strengthen their lower bound to show that Metric
Dimension is NP-hard in graphs of treewidth 24.

2012 ACM Subject Classification: Graph algorithms analysis
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Abstract

Poniższa rozprawa zawiera kilka nowych wyników, zarówno algorytmicznych jak i podających
dolne ograniczenia, dotyczących wybranych problemów spójności i separacji w grafach.

W Rozdziale 3 rozważamy problem Independent Feedback Vertex Set — wariant
klasycznego problemu zbioru rozcyklającego (Feedback Vertex Set) w którym, mając dany
graf G i liczbę całkowitą k, pytamy, czy istnieje zbiór S ⊆ V (G) taki, że G\S jest lasem a S jest
zbiorem niezależnym wielkości co najwyżej k. Pokazujemy algorytm parametryzowany (FPT)
działający w czasie O∗((1 + ϕ2)k), gdzie ϕ < 1.619 to proporcja złotego podziału. Nasz wynik
poprawia uprzednio najszybszy algorytm Agrawal i innych [3], działający w czasie O∗(4.1481k), i
działa w tym samym asymptotycznym czasie co algorytm Kociumaki i Pilipczuka dla klasycznego
problemu zbioru rozcyklającego [81].

W rozdziale 4 rozważamy wielobudżetowe warianty klasycznego problemu minimalnego cię-
cia (Multi-budgeted Cut) oraz centralnych problemów złożoności parametryzowanej prob-
lemów separacji: Skew Multicut oraz Directed Feedback Arc Set. W naszym wariancie,
nadajemy kolory 1, 2, ..., ` niektórym krawędziom i podajemy oddzielne budżety k1, k2, ..., k` d-
la poszczególnych kolorów 1, 2, ..., `. Dla każdego koloru i ∈ {1, ..., `}, przez Ei oznaczamy
zbiór krawędzi koloru i. Rozwiązanie C wielobudżetowego wariantu rozważanego problemu
nie tylko musi spełnić oryginalne warunki separacji (tj., być cięciem, wielokierunkowym cię-
ciem, lub zbiorem rozcyklającym), ale też musi spełniać warunek |C ∩ Ei| ≤ ki dla każdego
koloru i ∈ {1, ..., `}. W przeciwieństwie do klasycznego problemu minimalnego cięcia, wariant
wielobudżetowy jest NP-trudny już od przypadku ` = 2. Pokazujemy algorytmy FPT przy
parametryzacji przez k = k1 + ... + k` i ` dla problemów Multi-budgeted Cut, Multi-
budgeted Skew Multicut i Multi-budgeted Directed Feedback Arc Set.

W rozdziale 5 rozważamy problem Two Disjoint Shortest Paths Problem (2-DSPP)
z ograniczeniami przejść. Mając dany graf skierowany G = (V,E) z długościami krawędzi
w : E → R≥0 oraz dwie pary wierzchołków (s1, t1),(s2, t2) w G, w problemie Directed Two
Disjoint Shortest Paths Problem (2-DSPP) pytamy o dwie rozłączne (wierzchołkowo lub
krawędziowo) ścieżki P1 i P2 w G takie, że Pi jest najkrótszą ścieżką z si do ti dla i = 1, 2. Bérczi
i Kobayashi udowodnili, że 2-DSPP jest rozwiązywalny w czasie wielomianowym jeśli każdy cykl
skierowany w G ma dodatnią długość [9]. Pokazujemy, że 2-DSPP pozostaje rozwiązywalny w
czasie wielomianowym (dalej przy założeniu, że każdy cykl ma dodatnią długość) nawet, jeśli do
problemu dodamy tzw. system przejść. System przejść to zestaw warunków, które pary krawędzi
można użyć bezpośrednio po sobie w konstruowanych ścieżkach.

W rozdziale 6 rozważamy następujący wariant problemu Cluster Editing. Dany jest
graf G = (V,E), rodzina H rozłącznych edycyjnie indukowanych podgrafów P3 (tj. żadne dwa
podgrafy P3 w H nie mają wspólnych dwóch lub trzech wierzchołków) oraz liczba całkowita `.
Zadaniem jest przekształcić G graf, którego każda spójna składowa jest kliką, używając co
najwyżej ` + |H| edycji (dodania lub usunięcia krawędzi). Pokazujemy, że ten p roblem jest
NP-trudny nawet dla ` = 0 (w którym to przypadku problem sprowadza się do przeprowadzenia
jednej edycji w każdym elemencie H) i gdy każdy wierzchołek zawarty jest w co najwyżej 23
podgrafów P3 w rodzinie H. Pokazujemy również, że wariant, gdzie każdy wierzchołek należy
do co najwyżej dwóch podgrafów P3 w H, można rozwiązać w czasie O(n2`+O(1)).

W rozdziale 7 badamy problem Metric Dimension. Problem ten pyta o tzw. zbiór
rozwiązujący (ang. resolving set) w danym (nieskierowanym, nieważonym) grafie G. Zbiór
S ⊆ V (G) nazywamy rozwiązującym jeśli nie ma dwóch wierzchołków G o tym samym wektorze
odległości do zbioru S. Złożoność problemu Metric Dimension w grafach o ograniczonej



szerokości drzewowej była otwartym problemem, kilkukrotnie wymienianym w ostatnich latach.
Bonnet i Purohit [IPEC 2019] pokazali, że problem ten jest W[1]-trudny przy parametryzacji sze-
rokością drzewową. Wzmacniamy ten wynik pokazując, że Metric Dimension jest NP-trudny
w grafach o szerokości drzewowej 24.
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Chapter 1

Introduction

Graph problems are ubiquitous in computer science. Graphs are one of the most natural models
that represent the networks in real-life world and have numerous applications in different dis-
ciplines. Computer scientists are perusing faster algorithms to solve graph problems, both in
practice and in theory. On the other side, there are many graph problems which are resistant to
efficient algorithms. NP-completeness theory provides some clue on these problems [30, 75, 55].
If a problem is shown to be in the class of NP-complete problems, any efficient or polynomial-
time algorithms for this problem imply that every NP-complete problem admits polynomial-time
algorithms. In other words, there are probably no efficient algorithms for this problem. Although
NP-hardness imply strong restrictions of algorithms for problems, people are still interested in
how fast a problem can be solved and where the limitations of algorithms are. Exact algo-
rithms for NP-hard problems focus mostly on reducing the exponential part of the running time
as much as possible [50]. Approximation algorithms for NP-hard (optimization) problems aim
to find efficient algorithms, classically polynomial-time algorithms at the cost of the optimal-
ity of the solution. Approximation algorithms try to find an approximate solution such that
the distance between the approximate solution and the optimal solution is within a provable
guarantee [121, 122].

Recently parameterized algorithms for NP-hard problems have received a lot of attention,
which focus on both the input instance and the parameter. More formally, a parameterized
problem is a language L ⊆ Σ∗ × N, where Σ is a fixed finite alphabet. An input instance of a
parameterized problem is of the form (x, k) ∈ Σ∗×N and k is called the parameter. If a param-
eterized problem can be solved in time bounded by f(k)|x|c, where |x| is the size of the input
instance, k is the parameter, f : N→ N is a computable function, and c is a universal constant,
then we say this problem is fixed-parameter tractable (FPT). If a parameterized problem can
be solved in time bounded by f(k)|x|f(k), where |x| is the size of the input instance, k is the
parameter and f : N → N is a computable function, then we say this problem can be solved in
XP time. A parameterized problem admits a kernel of size g(k) for some computable function g
if there is a polynomial-time procedure that reduces an arbitrary instance I of this problem with
parameter k to an equivalent instance I ′ with size and parameter value bounded by g(k). We
refer to the following books for a deeper introduction to parameterized algorithms [42, 49, 31, 52].

In this thesis, we study a few graph problems, mostly concerning connectivity and separation
in graphs.

1.1 Independent Feedback Vertex Set

The first problem is Independent Feedback Vertex Set, which is a variant of the classic
Feedback Vertex Set problem. Given a graphG, a feedback vertex set ofG is a set of vertices
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S ⊆ V (G) such that G\S is a forest. The Feedback Vertex Set problem (FVS) asks to find
a feedback vertex set of the minimum size. This problem is a classic NP-hard problem which
has been studied extensively in many fields of complexity and algorithms [1]. In the context
of parameterized complexity of the Feedback Vertex Set problem, there is a long line of
work improving the upper bound of the FPT algorithm for the standard parameterization of the
solution size [15, 19, 21, 40, 41, 62, 73, 81, 69, 92] (i.e., the input consists of a graph G and a
parameter k, and the goal is to find a feedback vertex set of size at most k or show that no such
set exists). At the same time, many variants of Feedback Vertex Set received significant
attention, including Subset FVS [37, 70, 100], Group FVS [34, 60, 70, 88], or Simultaneous
FVS [109]. In this part, we focus on the parameterized version of the Independent Feedback
Vertex Set problem (IFVS). The formal definition of this problem is as follows.

Independent Feedback Vertex Set (IFVS)
Input: An undirected graph G and an integer k.
Question: Is there a feedback vertex set S of size at most k such that no two vertices of S
are adjacent in G.

Misra et al. gave the first FPT algorithm running in time O(5knO(1)) and an O(k3) kernel for
IFVS [108]. Agrawal et al. presented an improved FPT algorithm running in time O∗(4.1481k)
for IFVS [3]. In this part, we propose a faster FPT algorithm.

Theorem 1. The Independent Feedback Vertex Set problem, parameterized by the so-
lution size, can be solved in O∗((1 + ϕ2)k) ≤ O∗(3.619k) time, where ϕ = 1+

√
5

2 < 1.619 is the
golden ratio.

We remark here that the exponential function of the time bound of Theorem 1 matches
the one of the algorithm of Kociumaka and Pilipczuk [81] for the classic Feedback Vertex
Set problem. Since Feedback Vertex Set trivially reduces to Independent Feedback
Vertex Set (subdivide each edge once), any (deterministic) improvement to the base of the
exponential function of Theorem 1 would give a similar improvement for Feedback Vertex
Set. Although Iwata and Kobayashi already gave a faster FPT algorithm for Feedback Ver-
tex Set problem [69], they use a totally different method which is involved in some sense. We
believe it still makes sense if one can show an algorithm for Feedback Vertex Set which is
faster than the algorithm of Kociumaka and Pilipczuk through some method different from the
one of Iwata and Kobayashi.

On the technical side, we follow the standard approach of iterative compression as in [3]
to reduce to a “disjoint” version of the problem. Here, our approach diverges from the one
of [3]. We follow a modified measure for the subsequent branching process, somewhat inspired
by the work of Kociumaka and Pilipczuk [81]. With a number of new notions (generalized W -
degree, potential nice vertices and tents) and some new reduction rules, we get a clean branching
algorithm for the “disjoint” version of the problem. This allows us to get an improved and also
simplified algorithm for the Independent Feedback Vertex Set problem.

The proof of Theorem 1 is covered in Chapter 3.

1.2 Multi-budgeted cut

Graph separation problems are important topics in both theoretical area and applications. Al-
though the famous minimum cut problem is known to be polynomial-time solvable, many well-
known variants are NP-hard, which are intensively studied from the point of view of approxi-
mation [2, 20, 46, 57, 56, 74] and, what is more relevant here, parameterized complexity.
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The notion of important separators, introduced by Marx [103], turned out to be funda-
mental for a number of graph separation problems such as Multiway Cut [103], Directed
Feedback Vertex Set [23], or Almost 2-CNF SAT [114]. Further work, concerning mostly
undirected graphs, resulted in a wide range of involved algorithmic techniques: applications of
matroid techniques [90, 89], shadow removal [28, 106], randomized contractions [25], LP-guided
branching [35, 61, 71, 67], and treewidth reduction [105], among others.

From the above techniques, only the notion of important separators and the related tech-
nique of shadow removal generalizes to directed graphs, giving FPT algorithms for Directed
Feedback Arc Set [23], Directed Multiway Cut [28], and Directed Subset Feedback
Vertex Set [27]. As a result, the parameterized complexity of a number of important graph
separation problems in directed graphs remains open, and the quest to investigate them has been
put on by Marx in a survey from 2012 [104]. Since the publication of this survey, two negative
answers have been obtained. Pilipczuk and Wahlström showed that Directed Multicut is
W[1]-hard even for four terminal pairs (leaving the case of three terminal pairs open) [112], while
Lokshtanov et al. [101] showed intractability of Directed Odd Cycle Transversal.

Saurabh posed the question of parameterized complexity of a weighted variant of Directed
Feedback Arc Set during an open problem session at Recent Advancements in Parameterized
Complexity school (December 2017), where given a directed edge-weighted graph G, an integer
k, and a target weight w, the goal is to find a set X ⊆ E(G) such that G−X is acyclic and X is
of cardinality at most k and weight at most w. Consider a similar problem Weighted st-cut:
given a directed graph G with positive edge weights and two distinguished vertices s, t ∈ V (G),
an integer k and a target weight w, decide if G admits an st-cut of cardinality at most k and
weight at most w. The parameterized complexity of this problem parameterized by k is open
even if G is restricted to be acyclic, while with this restriction the problem can easily be reduced
to Directed Feedback Arc Set (add an arc (t, s) of prohibitively large weight).

The Weighted st-cut problem becomes similar to another directed graph cut problem,
identified in [26], namely Chain `-SAT. While this problem is originally formulated in CSP
language, the graph formulation is as follows: given a directed graph G with a partition of
edge set E(G) = P1 ] P2 ] . . . ] Pm such that each Pi is an edge set of a simple path of
length at most `, an integer k, and two vertices s, t ∈ V (G), find an st-cut C ⊆ E(G) such
that |{i|C ∩ Pi 6= ∅}| ≤ k. This problem can easily be seen to be equivalent to minimum st-
cut problem (and thus polynomial-time solvable) for ` ≤ 2, but is NP-hard for ` ≥ 3 and its
parameterized complexity (with k as a parameter) remains an open problem.

Although the parameterized complexity of two aforementioned problems: weighted st-cut
problem (in general digraphs, not necessary acyclic ones) and Chain `-SAT are still open, we
make some progress towards answering this question. We define a multi-budgeted variant of a
number of cut problems (including the minimum cut problem) and show its fixed-parameter
tractability. In this variant, the edges of the graph are colored with ` colors, and the input
specifies separate budgets for each color. More formally, we primarily consider the following
problem.

Multi-budgeted cut
Input: A directed graph G, two disjoint sets of vertices X,Y ⊆ V (G), an integer `, and for
every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer ki.
Question: Is there a set of arcs C ⊆

⋃`
i=1Ei such that there is no directed X − Y path in

G \ C and for every i ∈ [`], |C ∩ Ei| ≤ ki.

We observe that Multi-budgeted cut for ` = 2 reduces to Weighted st-cut as follows.
Let (G,X, Y,E1, E2, k1, k2) be a Multi-budgeted cut instance for ` = 2. First, observe that
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we may assume that E1 ∩ E2 = ∅, as we can replace every edge e ∈ E1 ∩ E2 with two copies
e1 ∈ E1 \ E2 and e2 ∈ E2 \ E1. Second, construct an equivalent Weighted st-cut instance
(G′, s, t, k, w) as follows. To construct G′, first add two vertices s, t to G and edges {(s, x)|x ∈ X}
and {(y, t)|y ∈ Y } of prohibitively large weight. Assign also prohibitively large weight to every
edge e ∈ E(G) \ (E1 ∪ E2). Assign weight (k1 + 1)k2 + 1 to every edge e ∈ E1. For every edge
e ∈ E2, add k1 + 1 copies of e to G′ of weight 1 each. Finally, set k := (k1 + 1) · k2 + k1 as the
cardinality bound and w := k1((k1 +1)k2 +1)+(k1 +1)k2 as the target weight. The equivalence
of the instances follows from the fact that the cardinality bound allows to pick in the solution
at most k2 bundles of k1 + 1 copies of an edge of E2, while the weight bound allows to pick only
k1 edges of E1.

Thus, Multi-budgeted cut for ` = 2 corresponds to the case of Weighted st-cut where
the weights are integral and both target cardinality and weight are bounded in parameter.1 This
connection was our primary motivation to study the multi-budgeted variants of the cut problems.

Contrary to the classic minimum cut problem, we note that Multi-budgeted Cut becomes
NP-hard for ` ≥ 2. We show that Multi-budgeted Cut is FPT when parameterized by
k = k1 + ... + k` and `. For this problem, our branching strategy is as follows. A standard
application of the Ford-Fulkerson algorithm gives a minimum XY -cut C of size λ and λ edge-
disjoint X−Y paths P1, P2, . . . , Pλ. If C is a solution, then we are done. Similarly, if λ > k, then
there is no solution. Otherwise, we branch which colors of the sought solution should appear on
each paths Pj ; that is, for every i ∈ [`] and j ∈ [λ], we guess if Pj ∩ Ei contains an edge of the
sought solution, and in each guess assign infinite capacities to the edges of wrong color. If this
change increased the size of a maximum flow from X to Y , then we can charge the branching
step to this increase, as the size of the flow cannot exceed k. The critical insight is that if the
size of the minimum flow does not increase (i.e., P1, . . . , Pλ remains a maximum flow), then a
corresponding minimum cut is necessarily a solution. As a result, we obtain the following.

Theorem 2. Multi-budgeted Cut admits an FPT algorithm with running time bound O(2k
2`·

k · (|V (G)|+ |E(G)|)) where k =
∑`

i=1 ki.

The charging of the branching step to a flow increase appears also in the classic argument for
bound of the number of important separators [23] (see also [32, Chapter 8]). This motivates us to
define multi-budgeted variants of Directed Feedback Arc Set and Skew Multicut. We
observe that our branching algorithm can be merged with this procedure, yielding a bound (as a
function of k and `) and enumeration procedure of naturally defined multi-budgeted important
separators. This in turn allows us to generalize our FPT algorithm to Multi-budgeted Skew
Multicut and Multi-budgeted Directed Feedback Arc Set.

Theorem 3. Multi-budgeted Skew Multicut and Multi-budgeted Directed Feed-
back Arc Set admit FPT algorithms with running time bound 2O(k

3` log(k`))(|V (G)|+ |E(G)|)
where k =

∑`
i=1 ki.

The proof of Theorem 2 is covered in Section 4.1 and Theorem 3 is covered in Section 4.2.

1.3 Two Disjoint Shortest Paths Problem with transition restric-
tions

Finding disjoint paths with specified endpoints in a given graph is a well-known problem in
graph theory and combinatorial optimization. Given a graph G = (V,E) and k vertex pairs

1For a reduction in the other direction, replace every arc e of weight ω(e) with one copy of color 1 and ω(e)
copies of color 2, and set budgets k1 = k and k2 = w.
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(s1, t1), ..., (sk, tk), the k Disjoint Paths Problem (k-DPP) asks whether there exist k pair-
wise vertex-disjoint (or edge-disjoint) paths P1, ...., Pk such that Pi starts from si and ends at
ti for i = 1, ..., k. If G is a digraph, k-DPP is NP-hard even when k = 2 [53]. k-DPP is
NP-complete if k is part of the input, even when G is a planar undirected graph [107]. Robert-
son and Seymour gave an O(n3)-time algorithm for k-DPP in general undirected graphs for
every constant k [115]. Later Kawarabayashi et al. gave an O(n2)-time algorithm for the same
problem [77]. Chudnovsky et al. showed that there is a polynomial time algorithm for k-
Vertex-Disjoint Paths Problem for every fixed k if G is a semicomplete digraph [29]. Here
a digraph is semicomplete if for all distinct vertices u, v, at least one of uv, vu is an edge.

Researchers also studied k-DPP from the view of parameterized complexity [33, 98, 116].
Cygan et al. gave an FPT algorithm parameterized by k with running time 22

O(k2) · nO(1) for
k-Vertex-Disjoint Paths Problem when G is a directed planar graph [33]. Given a tree
decomposition of width at most w for the undirected graph G, k-DPP can be solved in time
2O(w logw) using dynamic programming techniques on tree decompositions [116], and Lokshtanov
et al. showed that there is no 2o(w logw) time algorithm for k-DPP assuming ETH [98].

It is natural to generalize k-DPP to k-DSPP (k-Disjoint Shortest Paths Problem)
with an exceptional requirement that every disjoint path is also a shortest one. More formally,
given a directed graph G = (V,E), a length function w : E → R≥0 and k pairs of vertices
((s1, t1), ..., (sk, tk) in G, the k-Disjoint Shortest Paths Problem asks to find k disjoint
(vertex-disjoint or edge-disjoint) paths P1, ...., Pk in G such that Pi is a shortest path from si to
ti for i = 1, ..., k. Eilam-Tzoreff showed that 2-DSPP in an undirected graph is polynomial-time
solvable [43]. Bérczi and Kobayashi showed that 2-DSPP is NP-hard in general directed graph
but polynomial-time solvable when every directed cycle has positive length [9].

In routing problems on graphs, we sometimes need to express constraints on the permitted
walks that are stronger than what the standard graph model allows for. For example, in a
road network, there can be a crossroad where drivers are not allowed to turn left. In this case,
many walks in the underlying graph would denote routes that a driver is not allowed to use. To
overcome this limitation, Kotzig introduced forbidden-transition graphs in [83]. In a directed
graph G, a transition is an ordered pair of adjacent edges such that the head of the first edge is
the tail of the second edge. A transition system T is a set of transitions in G. We say that a path
P is T -compatible if every two consecutive edges of P form a transition of T . For notational
clarity, it is sometimes useful to refer to the transitions T (v) of a specific vertex v ∈ V (G), that
is, T (v) = {{e1, e2} ∈ T | head(e1) = tail(e2) = v}.

In this thesis we generalize the polynomial-time algorithm of Bérczi and Kobayashi to graphs
with transition restrictions. Suppose that a prescribed transition system T = {T (v) | v ∈ V (G)}
is given, we study Directed Two Disjoint Shortest Paths Problem (2-DSPP) with
transition restrictions. The formal definition is as follows.

Directed Two Disjoint Shortest Paths Problem (2-DSPP) with transition
restrictions
Input: A directed graph G = (V,E) with transition system T , a length function w : E →
R≥0 and two pairs of vertices (s1, t1),(s2, t2) in G.
Task: Find two disjoint (vertex-disjoint or edge-disjoint) paths P1 and P2 in G such that for
both i = 1, 2, path Pi is a shortest path (even in the graph G with no transition restrictions)
from si to ti and Pi is also T -compatible.

We show that finding two vertex-disjoint (edge-disjoint) T -compatible paths P1 and P2 in a
digraph G such that Pi is a shortest path (even in the graph G with no transition restrictions)
from si to ti for i = 1, 2 can be solved in polynomial time. Roughly speaking, we show that
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transition restrictions are not a barrier for using the same strategy as that in [9]. Formally, we
show the following theorem.

Theorem 4. If the length of every directed cycle is positive, both edge-disjoint and vertex-disjoint
variants of 2-DSPP with transition restrictions can be solved in polynomial time.

Corollary 1. If the length of every edge is positive, both edge-disjoint and vertex-disjoint variant
of 2-DSPP with transition restrictions can be solved in polynomial time.

The proof of Theorem 4 is covered in Chapter 5.

1.4 Cluster Editing parameterized above modification-disjoint P3-
packings

Correlation clustering is a well-known problem motivated by research in computational
biology [8] and machine learning [5]. This problem aims at partitioning data points into groups
or clusters according to their similarity. In this thesis, we study this problem from the view
of graph theory. A graph H is called a cluster graph if H is a union of vertex-disjoint cliques.
Given a graph G = (V,E), the cluster editing problem asks for a cluster editing set S such
that G4S = (V,E4S) is a cluster graph. Here E4S is the symmetric difference of E and S,
i.e. E4S = (E \ S)∪ (S \E). The optimization version of cluster editing asks for a cluster
editing set of minimum size, which is shown to be NP-hard [117]. Given a natural number k and
a graph G = (V,E), the parameterized version of cluster editing asks if there exists a cluster
editing set S such that |S| ≤ k. A number of results were obtained for the parameterized version
of cluster editing and some of its variants [11, 13, 14, 16, 38, 47, 59, 63, 64, 82, 113, 51].
The current fastest FPT algorithm runs in time O(1.62k +n+m) [11] and it admits a kernel of
2k vertices [18, 24].

The interest in Cluster Editing is not merely theoretical. Indeed, parameterized tech-
niques are implemented in standard clustering tools [110, 123]. Although practitioners report
that in particular the parameterized data-reduction techniques are effective [13, 12], the param-
eter k is not very small in several real-world data sets [10, 13, 120]. For instance, Böcker et
al. [10, Table 2] considered 26 graphs derived from biological data with 91 to 100 vertices on
which the average number of needed edits is 315, despite noting that the Cluster Editing
model outperformed other clustering models.

A technique to deal with such large parameters is parameterization above lower bounds.
Herein, the parameter is of the form ` = k − h where h is a lower bound on the solution size,
usually computable in polynomial time, and ` is the excess of the solution size above the lower
bound. Research into parameterizations above lower bounds has been active and fruitful for
several parameterized problems, not only on the theory-side (see [102, 36, 58, 99, 85], for example)
but also in practice, as algorithms based on that approach yielded quite efficient implementations
for Vertex Cover [4] and among the most efficient ones for Feedback Vertex Set [68, 79].
For Cluster Editing we are aware of only one research work considering parameterizations
above lower bounds: Van Bevern, Froese, and Komusiewicz [120] studied edge-modification
problems parameterized above the lower bound from packings of forbidden induced subgraphs
and showed that Cluster Editing parameterized by the excess above the size of a given
packing of vertex-disjoint P3s is fixed-parameter tractable. Observe that a graph is a cluster
graph if and only if it does not contain any P3, a path on three vertices, as an induced subgraph.
Consequently, one needs to perform at least one edge deletion or insertion per element of the
packing.
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As the P3s in the above packing are vertex-disjoint, the value by which the packing can
decrease the parameter is limited. In the previous example with 315 edits, subtracting the
resulting lower bound would reduce the parameter by at most 33. In their conclusion, van Bevern
et al. [120] asked whether Cluster Editing is fixed-parameter tractable when parameterized
above a stronger lower bound, the size of a modification-disjoint packing of P3s. Here, a packing
H of induced P3s in G is modification-disjoint if every two P3s in H do not share edges or
non-edges, that is, they share at most one vertex. The formal problem definition is as follows.

Cluster Editing above modification-disjoint P3 packing (CEaMP)
Input: A graph G = (V,E), a packing H of modification-disjoint induced P3s of G, and a
non-negative integer `.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2

)
so that G4S is a

union of disjoint cliques, with |S| − |H| ≤ `?

We also say that a set S as above is a solution.
At Shonan Meeting no. 144 [72] Christian Komusiewicz re-iterated the question of van Bevern

et al. [120] and it was also asked in Vincent Froese’s dissertation [54]. In this thesis, we answer
this question negatively by showing the following.

Theorem 5. Cluster Editing above modification-disjoint P3 packing is NP-hard even
for ` = 0 and when each vertex in the input graph is incident with at most 23 P3s of H.

In other words, given a graph G and a packing H of modification-disjoint P3s in G, it is NP-hard
to decide if one can delete or insert exactly one edge per element of H to obtain a cluster graph.

Our NP-hardness result implies that CEaMP is probably not FPT or even in XP unless
P = NP . This motivates us to study a more restrictive variant of CEaMP in which every
vertex is incident with at most 2 packed P3s. Call a modification-disjoint P3 packing two-
restricted if each vertex is in at most two packed P3s. The problem Cluster Editing above
two-restricted modification-disjoint P3 packing (CEaTMP) is defined in the same
way as CEaMP except that the input packing H is two-restricted.

Cluster Editing above two-restricted modification-disjoint P3 packing
(CEaTMP)
Input: A graph G = (V,E), a packing H of modification-disjoint induced P3s of G such that
every vertex v ∈ V (G) is incident with at most 2 P3s of H, and a nonnegative integer `.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2

)
so that G4S is

a union of disjoint cliques, with |S| − |H| ≤ `?

It turns out that the complexity of the problem indeed drops when making the packing
two-restricted.

Theorem 6. Cluster Editing above two-restricted modification-disjoint P3 pack-
ing can be solved in O(n2`+O(1)) time.

The main ingredient for the XP algorithm is the following theorem.

Theorem 7. Cluster Editing above two-restricted modification-disjoint P3 pack-
ing can be solved in polynomial time when ` = 0.

The proof of Theorem 5 is covered in Section 6.1 and the proofs of Theorem 6 and 7 are
covered in Section 6.2.
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1.5 Hardness of Metric Dimension in Graphs of Constant Treewidth

Let G be an unweighted and undirected graph and let S ⊆ V (G). For a vertex v ∈ V (G), the
distance vector from v to S is the assignment S 3 w 7→ distG(v, w), where distG denotes the
distance in the graph G. The set S is resolving if a distance vector to S uniquely determines the
source vertex; that is, no two vertices of G have the same distance vector to S. The Metric
Dimension problem asks for a resolving set of minimum possible size; such a set is sometimes
called themetric basis of G. The formal definition of the decision version of Metric Dimension
is as follows.

Metric Dimension
Input: An undirected graph G and an integer k.
Question: Is there a resolving set S ⊆ V (G) such that |S| ≤ k?

Metric Dimension has already been introduced in 1970s [65, 118]. Determining its com-
putational complexity turned out to be quite challenging. It is polynomial-time solvable on
trees [65, 118, 78], outerplanar graphs [39], and chain graphs [48], but NP-hard for example on
planar graphs [39] or split graphs [45]. From the parameterized complexity point of view, the
FPT status of the Metric Dimension parameterized by the solution size has been open for a
while and finally resolved in negative by Hartung and Nichterlein [66]. In the search of a tractable
structural parameterization, FPT algorithms has been shown for parameters: treelength plus
maximum degree [7], vertex cover number [66], max leaf number [44], and modular-width [7].

The above list misses probably the most important graph width measure, namely treewidth.
Determining the complexity of Metric Dimension, parameterized by treewidth, remained
elusive in the last years, and has been asked a few times [7, 39, 44]. Bonnet and Purohit in a
paper presented at IPEC 2019 [17] showed that the problem is W[1]-hard, even with pathwidth
parameterization. In this work we strengthed their result by proving para-NP-hardness of this
parameterization.

Theorem 8. Metric Dimension, restricted to graphs of treewidth at most 24, is NP-hard.

Theorem 8 brings us much closer to closing (unfortunately mostly in negative) the question
of the complexity of Metric Dimension in graphs of bounded treewidth. The remaining gap
is to determine the exact treewidth value where the problem becomes hard: note that it is open
if Metric Dimension is polynomial-time solvable on graphs of treewidth 2.

The proof of Theorem 8 is covered in Chapter 7.

1.6 Articles
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Chapter 2

Preliminaries

2.1 Graph Notation

2.1.1 Basic Definitions

A simple undirected graph is a pair G = (V,E), where V is the set of vertices and E ⊆
(
V
2

)
is

the set of edges.
(
V
2

)
\E is the set of non-edges. An undirected edge between two vertices u and

v will be denoted by uv where we put uv = vu. An undirected non-edge between two vertices x
and y will be denoted by xy, where we put xy = yx, and we will explicitly mention that xy is a
non-edge in case of confusion with the notation of an edge. If uv is an edge in the graph, we say
u and v are adjacent. We also use V (G) and E(G) to denote the vertex set and the edge set of
G respectively. G is a simple graph if there are no loops or multiple edges (parallel edges). If we
allow loops or multiple edges in G, then we call G a multigraph. We also use V (G) and E(G)
to denote the vertex set and the edge multiset of G respectively.

We denote a bipartite graph by B = (U,W,E), where U,W are the two parts of the vertex
set of B and E is the set of edges of B. We say that a bipartite graph is complete if for every
pair of vertices u ∈ U and w ∈W , uw ∈ E.

A simple directed graph is a pair G = (V,E), where V is the set of vertices and E is the set of
directed edges or arcs. If we allow loops or multiple edges (parallel edges) in G, then we call G a
directed multigraph. We also use V (G) and E(G) to denote the vertex set and the directed edge
multiset of G respectively. A directed edge e from u to v is denoted by uv, where u = tail(e) is
called the tail of e and v = head(e) is called the head of e.

For a non-empty subset of vertices X ⊆ V (G), we denote the induced subgraph of X by G[X].
For simplicity, we use G \X to denote G[V (G) \X]. A clique Q in a graph G is a subgraph of
G in which any two distinct vertices are adjacent.

2.1.2 Neighborhoods and degrees

For a vertex v ∈ V (G), we use N(v) = {u ∈ V (G) : uv ∈ E(G)} to denote the neighborhood of
v. We define the closed neighborhood of v as N [v] = N(v)∪{v}. In an undirected simple graph,
the degree of a vertex v is deg(v) = |N(v)|. For a vertex set X ⊆ V (G), the neighborhood of X
is N(X) =

⋃
v∈X N(v) \X. For a vertex set X ⊆ V (G) and v ∈ V (G), we define X-degree of v

as the number of edges with one endpoint being v and the other lying in X, and we denote it
by degX(v). Note that the X-degree counts edges with multiplicities if the corresponding graph
is a multigraph. We say that two distinct vertices u, u′ are false twins if N [u] = N [u′].
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2.1.3 Paths and components

A path in G is a sequence (v1, e1, v2, e2, . . . , e`, v`+1), where vis are distinct vertices of G, eis are
edges of G, and for every 1 ≤ i ≤ `, the vertices vi and vi+1 are the two endpoints of the edge
ei. A cycle is a closed path in which no vertex occurs twice except the first and last vertex. For
a path P = (v1, e1, v2, e2, . . . , e`, v`+1), sometimes we denote it as P = e1, e2, . . . , e`. For two
directed paths P and Q with consecutive edges ep1, e

p
2, . . . , e

p
|P | and, respectively, e

q
1, e

q
2, . . . , e

q
|Q|

such that w = head(ep|P |) = tail(eq1) is the only vertex that P and Q have in common, by P ·Q we
denote the concatenation of paths P and Q, i.e., P ·Q = ep1, e

p
2, . . . , e

p
|P |, e

q
1, e

q
2, . . . , e

q
|Q|. Here |P |

and |Q| denote the number of edges of paths P and Q respectively. Similarly for two undirected
paths P and Q which have only one vertex in common, we denote the concatenation of paths P
and Q by P ·Q. If there are three paths P1, P2, P3 such that P1 · P2 · P3 = P , then we say that
P1, P2, P3 are subpaths of P . Note that we allow P1, P2 or P3 to be paths with one vertex.

In an undirected graph G, let G[X] be an induced subgraph of G. If for any two vertices
u, v ∈ X, there is a path in G connecting u and v, then we say that G[X] is connected. We say
that G[X] is a connected component of G if X is inclusion-wise maximal and G[X] is connected.

2.1.4 General cuts and budget-respecting cuts

Let X and Y be two disjoint vertex sets in a directed graph G, an XY -cut of G is a set of edges
C such that every directed path from a vertex in X to a vertex in Y contains an edge of C.
A cut C is minimal if no proper subset of C is an XY -cut, and minimum if C is of minimum
possible cardinality. Let C be an XY -cut and let R be the set of vertices reachable from X in
G \ C. We define δ+(R) = {(u, v) ∈ E(G)|u ∈ R and v /∈ R} and note that if C is minimal,
then δ+(R) = C. For two distinct (inclusion-wise) minimal XY -cuts C1, C2 we say that C1 is
closer to Y than C2 if every vertex reachable from X in G − C2 is also reachable from X in
G− C1. A classic submodularity argument implies that there is exactly one minimum XY -cut
closest to Y . For an XY -cut C, we say that C is important if C is inclusion-wise minimal and
any inclusion-wise minimal XY -cut C ′ which is closer to Y than C has strictly larger size than
C or such a cut C ′ does not exist.

In our study for multi-budgeted problems, the directed graph G comes with sets Ei ⊆ E(G)
for i ∈ [`] which we refer as colors. That is, an edge e is of color i if e ∈ Ei, and of no color if
e ∈ E(G) \

⋃`
i=1Ei. Note that an edge may have many colors, as we do not insist on the sets

Ei being pairwise disjoint.
Let (G,X, Y, `, (Ei, ki)

`
i=1) be a Multi-budgeted cut instance and let C be an XY -cut.

We say that C is budget-respecting if C ⊆
⋃`
i=1Ei and |C ∩ Ei| ≤ ki for every i ∈ [`]. For a set

Z ⊆ E(G) we say that C is Z-respecting if C ⊆ Z. In such contexts, we often call Z the set of
deletable edges. An XY -cut C is a minimum Z-respecting cut if it is a Z-respecting XY -cut of
minimum possible cardinality among all Z-respecting XY -cuts.

We will invoke the classic Ford-Fulkerson algorithm in our FPT algorithms for multi-budgeted
problems. We encapsulate our use of the classic Ford-Fulkerson algorithm in the following
statement.

Theorem 9. Given a directed graph G, two disjoint sets X,Y ⊆ V (G), a set Z ⊆ E(G), and
an integer k, one can in O(k(|V (G)|+ |E(G)|)) time either find the following objects:

• λ paths P1, P2, . . . , Pλ such that every Pi starts in X and ends in Y , and every edge e ∈ Z
appears on at most one path Pi;
• a set B ⊆ Z consisting of all edges of G that participate in some minimum Z-respecting
XY -cut;
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• a minimum Z-respecting XY -cut C of size λ that is closest to Y among all minimum
Z-respecting XY -cuts;

or correctly conclude that there is no Z-respecting XY -cut of cardinality at most k.

Proof. Assing capacity 1 to every edge of Z and capacity +∞ to every edge not in Z. Run
k + 1 rounds of the Ford-Fulkerson algorithm. If the final flow exceeded k, return that there is
no Z-respecting XY -cut of cardinality at most k. Otherwise, decompose the final flow into unit
flow paths P1, . . . , Pλ in a standard manner. For the set B, observe that B consists of exactly
those edges that are fully saturated in the flow network, and their reverse counterparts in the
residual network are not contained in a single strongly connected component of the residual
network (and thus can be discovered in linear time). Finally, observe that the sought cut C
consists of the last edge of B on every path Pi.

2.1.5 Cluster graph and P3s

A clique Q in an undirected graph G is a subgraph of G in which any two distinct vertices
are adjacent. A cluster graph is an undirected graph in which every connected component is a
clique. A connected component in a cluster graph is called a cluster.

Let G′ be a cluster graph and let S be a cluster editing set S, that is, a set S ⊆
(
V
2

)
of vertex

pairs such that G4S = G′. We say that two cliques Q1 and Q2 of G are merged (in G′) if they
belong to the same cluster in G′. We say that Q1 and Q2 are separated (in G′) if they belong
to two different clusters in G′. When mentioning the edges or non-edges between the vertices of
the clique Q1 and the vertices of the clique Q2, we refer to the edges or non-edges between the
clique Q1 and the clique Q2 for short. Let `, r ∈ N. We denote a path with ` vertices by P` and
a cycle with r vertices by Cr.

Let x, y, z be vertices in a graph G. We say that xyz is an induced P3 of G if xy, yz ∈ E(G)
and xz /∈ E(G). Vertex y is called the center of xyz. We say that vertices x, y, z belong to xyz or
x, y, z are incident with xyz. We also say that xyz is incident with the vertices x, y and z. Here
all P3s we mention are induced P3s; we sometimes skip the qualifier “induced” for convenience.

Given an instance (G,H, `) of CEaMP, if xyz is a P3 in G and xyz ∈ H, we say that xyz is
packed, and we say that the edges xy, yz are covered by xyz and the non-edge xz is covered by
xyz. If an edge xy is covered by some P3 of H, we say that xy is a packed edge. Otherwise we
say that xy is a non-packed edge. If a non-edge uv is covered by some P3 of H, we say that uv
is a packed non-edge. Otherwise we say that uv is a non-packed non-edge. If none of the edges
of a path P is packed, we say that the path P is non-packed. If xyz is a P3 in G and Q1, Q2,
and Q3 are pair-wise non-intersecting vertex sets of G, we say that xyz connects Q1 and Q3 via
Q2 if the center y of xyz belongs to Q2 and x, z belong to Q1 and Q3, respectively.

We will use finite fields of prime order in the NP-hardness proof of Cluster Editing above
modification-disjoint P3 packing. Let p be some prime. By Fp we denote the finite field
with the p elements 0, . . . , p− 1 with addition and multiplication modulo p. Let x ∈ Fp. Where
it is not ambiguous, −x and x−1 will denote the additive and multiplicative inverse, respectively,
of x in Fp.

2.2 Treewidth and Pathwidth

For an undirected graph G, a path decomposition of G is a sequence (X1, ..., Xt) of subsets of
V (G), i.e. Xi ⊂ V (G) for i = 1, ..., t, such that the following holds:

(i) for every edge uv ∈ E(G), there exists an integer i ∈ [t] such that u, v ∈ Xi.
(ii) for every v ∈ V (G), if v ∈ Xi and v ∈ Xk (i ≤ k), then v ∈ Xj for every i ≤ j ≤ k.
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The width of a path decomposition (X1, ..., Xt) is defined as max1≤i≤t |Xi| − 1.
For an undirected graph G, a tree decomposition of G is a pair (T , β) where T is a tree and

β : V (T )→ 2V (G) such that the following holds:

(i) for every v ∈ V (G), the set {t ∈ V (T ) | v ∈ β(t)} induces a nonempty connected subtree
of T , and

(ii) for every uv ∈ E(G), there exists t ∈ V (T ) with u, v ∈ β(t). That is, the function β
assigns to every node t ∈ V (T ) a subset β(t) ⊆ V (G), often called a bag.

It is often convenient to root T at an arbitrary vertex. The width of a tree decomposition (T , β)
equals maxt∈V (T ) |β(t)| − 1, and the treewidth of a graph is the minimum possible width of its
tree decomposition.

In this thesis, we will use the alternative characterization of pathwidth, i.e. the pathwidth of
a graph G equals the node search number of Gminus one [80]. The node search number is defined
as follows. We can imagine that the edges of a graph G are tunnels which are contaminated by
a poisonous gas and we need to use some searchers to clean the gas. An edge is cleaned when
its two endpoints are occupied by searchers at the same time. However, a cleaned edge will be
recontaminated by the gas immediately if we remove a searcher guarding at one of its endpoints
and there is a contaminated path which allows the gas to come into this edge through the non-
guarded endpoint. We can put a searcher on any non-guarded vertex of the graph or remove
a searcher from a vertex of the graph (the removed searchers can be put on other non-guarded
vertices of the graph). The node search number is the minimum number of searchers required
to clean the whole graph G.

2.3 Other notations

We use N to denote the set of nonnegative integers. For an integer n, we denote [n] =
{1, 2, . . . , n}. The O∗-notation suppresses factors that are polynomial in the input size.
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Chapter 3

Independent Feedback Vertex Set

In this chapter, we present an FPT algorithm running in time O∗(3.619k) for Independent
Feedback Vertex Set problem. Recall that Independent Feedback Vertex Set prob-
lem is a variant of the classic Feedback Vertex Set problem where, given a graph G and an
integer k, the task is to decide whether there exists a vertex set S ⊆ V (G) such that G \ S is a
forest and S is an independent set of size at most k.

Organization of this chapter. In Section 3.1, we present the top-level procedure of the
algorithm and introduce the problem Disjoint Independent Feedback Vertex Set, which
is the main subproblem to be solved by the algorithm. In Section 3.2, we give the reduction rules
for Disjoint Independent Feedback Vertex Set. In Section 3.3, we give the branching
rules for Disjoint Independent Feedback Vertex Set, thus completing the algorithm for
Disjoint Independent Feedback Vertex Set.

3.1 Disjoint Independent Feedback Vertex Set

Given an instance (G, k), we first invoke the O∗((1 + ϕ2)k)-time FPT algorithm for the classic
Feedback Vertex Set problem [81]. If the algorithm returns NO, we conclude that there is
no independent feedback vertex set of size at most k since an independent feedback vertex set is
also a feedback vertex set. Otherwise, the algorithm returns a feedback vertex set Z such that
|Z| ≤ k. Obviously, F = G \ Z is a forest.

Suppose there is a solution S for the input instance (G, k). The algorithm branches into
2|Z| directions, guessing a subset Z ′ of Z such that S ∩ Z = Z ′. Let W = Z \ Z ′. If G[Z ′]
is not an independent set or G[W ] is not a forest, the algorithm rejects this guess. Hence, we
can assume that G[Z ′] is an independent set and G[Z \ Z ′] is a forest. Let R = N(Z ′) ∩ F .
Since the solution S is an independent set and Z ′ ⊆ S, we have R ∩ S = ∅. Then the algorithm
tries to find an independent feedback vertex set S′ ⊆ F for G \ Z ′ such that S′ ∩ R = ∅ and
|S′| ≤ k − |Z ′|. Following [3], we call this subproblem Disjoint Independent Feedback
Vertex Set (DIS-IFVS for short). We give a faster FPT algorithm for DIS-IFVS in the next
section. The algorithm tries every possible Z ′ ⊆ Z and solves the corresponding subproblem of
DIS-IFVS. If the algorithm finds a YES instance of DIS-IFVS, then it returns YES for the
instance (G, k) of IFVS. Otherwise, if the algorithm tries every possible Z ′ ⊆ Z and obtains
a NO answer for every corresponding instance of DIS-IFVS, it reports that (G, k) is a NO
instance.

We give the formal definition of Disjoint Independent Feedback Vertex Set as fol-
lows.
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Disjoint Independent Feedback Vertex Set
Input: An undirected (multi)graph G, a feedback vertex set W of G, R ⊆ V (G) \W , and
an integer k.
Question: Is there an independent feedback vertex set X ⊆ V (G) \ (W ∪ R) for G such
that |X| ≤ k?

Let F = V (G \W ). Obviously, G[F ] is a forest since W is a feedback vertex set of G. A
vertex v ∈ F \R is a nice vertex if degW (v) = 2 and v has no neighbors in F . A vertex v ∈ F \R
is a tent if degW (v) = 3 and v has no neighbors in F .

As mentioned earlier, we rely on a measure different from the one in [3]. The measure µ of
an instance (G,W,R, k) is defined as

µ = k + ρ− (η + τ).

Here, ρ represents the number of connected components of G[W ], η is the number of nice vertices
in F \R and τ is the number of tents in F \R.

We remark that the distinction between sets W and R is purely for the sake of complexity of
the algorithm. The set of feasible solutions to a Disjoint Independent Feedback Vertex
Set instance (G,W,R, k) would be the same if we move vertices from R to W . However, the
notions of tents, nice vertices, and the measure µ strongly depends on the distinction between
the sets W and R. The algorithm maintains this distinction to ensure the promised running
time bound.

Our main technical result is the following.

Lemma 1. A Disjoint Independent Feedback Vertex Set instance I with measure µ
can be solved in time O∗(ϕµ), where ϕ = 1+

√
5

2 is the golden ratio.

Theorem 1 follows by standard analysis as in [3]:

Proof of Theorem 1. The algorithm for FVS of [81] runs in time O∗((1 + ϕ2)k). In a branch
with a set Z ′ ⊆ Z the routine for DIS-IFVS is passed an instance with both W = Z \ Z ′ and
the parameter bounded by k − |Z ′|, and hence with measure bounded by 2(k − |Z ′|). Since
the algorithm for DIS-IFVS runs in time O∗(ϕµ), the total running time of its applications is
bounded by

k∑
i=0

(
k

i

)
O∗(ϕ2(k−i)) = O∗((1 + ϕ2)k) ≤ O∗(3.619k).

This completes the proof.

The remainder of this section is devoted to the proof of Lemma 1. We start with showing
that µ is nonnegative on YES instances.

Lemma 2. Let I = (G,W,R, k) be a YES instance of Disjoint Feedback Vertex Set.
Then µ ≥ 0.

Proof. LetX be a solution to the instance I. ThusG′ = G\X is a forest. LetN ⊆ V (G)\(W∪R)
be the set of nice vertices and T ⊆ V (G) \ (W ∪ R) be the set of tents. Since X ∩W = ∅, we
have that H := G[W ∪ (N \X)∪ (T \X)] is a forest. Now we contract each component in H[W ]
into a single vertex and get a forest H̃. Since there are at most ρ+ |N \X|+ |T \X| vertices in
H̃, there are at most ρ+ |N \X|+ |T \X| − 1 edges in H̃. According to the definition of tents
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and nice vertices, (N ∪ T ) \X is an independent set. Moreover, since the degree of any vertex
in N \X and T \X is 2 and 3, respectively, we get the following inequality:

2|N \X|+ 3|T \X| ≤ |E(H̃)| ≤ ρ+ |N \X|+ |T \X| − 1.

It follows that:
|N \X|+ |T \X| ≤ |N \X|+ 2|T \X| ≤ ρ.

Hence, as |X| ≤ k,
|N |+ |T | ≤ ρ+ k.

As a result, µ = ρ+ k − (η + τ) ≥ 0.

A small comment is in place. Our measure µ is different from the one of [3]: µ′ = 2k +
ρ − (η + 2τ). The change in the measure is one of the critical insights in this result: while
it sometimes leads to weaker branching vectors as compared to [3], the “starting value” in an
application in the above proof of Theorem 1 is 2(k − |Z ′|), not 3(k − |Z ′|) as in [3]. Thus, to
obtain the promised running time bound, we are fine with branching vectors of the form (1, 2);
that is, we are fine with branching steps in two directions, where in one direction the measure
drops by at least one, and in the other direction by at least two. The change in the measure
is similar to the one that happened in the work of Kociumaka and Pilipczuk for Feedback
Vertex Set [81], as compared to a previous champion of Cao, Chen, and Liu [19].

We introduce now some definitions that will help us streamline later arguments. Let (G,W,R, k)
be an instance of DIS-IFVS and let F = V (G) \W . We say that u ∈ F \R is a potential nice
vertex or P-nice if u is of degree 2 and exactly one of its incident edges has a second endpoint in
W . For a vertex v in G[F ], we define the nice degree of v, denoted by Ndeg(v), as the number
of P-nice neighbors of v. A generalized degree of v is GdegW (v) = Ndeg(v) + degW (v). We say
that u ∈ F \R is a potential tent or P-tent if GdegW (u) = 2 and deg(u) = 3. For a vertex v in
F , we define the tent degree of v, denoted by Tdeg(v), as the number of neighbors of v that are
P-tents.

3.2 Reduction Rules for DIS-IFVS

Now we introduce some reduction rules for DIS-IFVS. We always apply the applicable reduction
rule of the lowest number. First, let us introduce five reduction rules from [3].

Reduction Rule 1: Delete any vertex of degree at most one.

Reduction Rule 2: Let u, v be two adjacent vertices of degree two in G \W which are not
nice vertices in F . Besides, u is adjacent to x while v is adjacent to y (x and y could be the
same vertex). If neither u nor v is in R or both are in R, then delete one vertex in {u, v}
arbitrarily and connect the neighbors of the deleted vertex with a new edge. If exactly one of
u and v is in R, say v ∈ R, then delete v and add an edge between its neighbors (i.e., an edge uy).

Reduction Rule 3: If k < 0 or µ < 0, return that the input instance is a NO instance.

Reduction Rule 4: If there is a vertex v ∈ R such that v has two incident edges with the sec-
ond endpoints in the same component ofW , then return that the input instance is a NO instance.

Reduction Rule 5: If there is a vertex v ∈ F \ R such that v has at least two incident edges
with the second endpoints in the same component of W , then remove v from G and add all
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vertices in F ∩N(v) to R. In this case, k decreases by one.

It is not difficult to verify the safeness of Reduction Rules 1− 5 as shown in [3]. But when
analyzing Reduction Rules 1 and 5, we need to be careful since we use a different measure
µ = k + ρ− (η + τ). In Reduction Rule 1, if one deletes a neighbor w of a tent or a nice vertex
v, then v stops being a tent or a nice vertex (η + τ could decrease by one), but also {w} stops
being a connected component of G[W ] (decreasing ρ by one). For Reduction Rule 5, it may
happen that v is a tent or a nice vertex, and its deletion decreases η + τ by one. However, the
removal of v also decreases k by one. Thus µ does not increase.

Now we introduce two new reduction rules.

Reduction Rule 6: If there is a vertex v ∈ R such that GdegW (v) ≥ 1 or Tdeg(v) ≥ 1, then
remove v from R and add v to W .

F

W

R
v

F

W

R

v

nicetent

Figure 3.1: Reduction Rule 6

Reduction Rule 7: If there is a vertex v ∈ F \R such that every neighbor w ∈ N(v)\ (W ∪R)
is of degree 2, and at least one such neighbor exists, then put N(v) \ (W ∪R) into R.

F

W

R vw3

w4

w1 w2

F

W

R vw3

w4

w1 w2

Figure 3.2: Reduction Rule 7

We first show their safeness.

Claim 1. Reduction Rules 6 and 7 are safe.
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Proof. The safeness of Reduction Rule 6 is straightforward. For the safeness of Reduction Rule
7, suppose that (G,W,R, k) is an input instance. Let v be the vertex satisfying the condition of
Reduction Rule 7 and (G,W,R∪(N(v)∩F ), k) be the instance obtained after applying Reduction
Rule 7. We claim that (G,W,R, k) is a YES instance if and only if (G,W,R ∪ (N(v) ∩ F ), k) is
a YES instance. The “if” direction is straightforward, since we only increased the set R.

For the “only if” direction, let X be a solution of size at most k to the instance (G,W,R, k).
If X ∩N(v) = ∅, then X is also a solution to (G,W,R∪ (N(v)∩F ), k). Otherwise, we construct
a vertex set X ′ = (X∪{v})\(N(v)∩F ). Obviously |X ′| ≤ k. We will show that X ′ is a solution
to (G,W,R ∪ (N(v) ∩ F ), k). Clearly, it is disjoint with W ∪R ∪N((v) ∩ F ) and independent,
as it is disjoint with N(v). To show that X ′ is a feedback vertex set in G, observe that since
every vertex w ∈ N(v) \ (W ∪R) is of degree 2, every cycle passing through w in G passes also
through v.

Since Reduction Rule 7 only moves vertices to R, its application does not change the measure;
note that the neighbors of a vertex affected by Reduction Rule 7 can be neither a nice vertex
nor a tent. However, the situation is not that easy for Reduction Rule 6, and we need to show
that its application does not increase µ. To this end, we show a number of generic observations
on how the measure µ changes if we modify a neighbor of a P-nice vertex or a P-tent.

Observation 1. Let v ∈ F be a vertex with a P-nice neighbor w. Consider the operation of
moving v to W . Then, the vertex w becomes nice and η goes up at least by one.

Observation 2. Let v ∈ F be a vertex with a P-tent neighbor w such that v is not P-nice.
Consider the operation of putting v in a solution: deleting it from G and putting N(v) ∩ F into
R. Then the application of reduction rules on w and its (possible) other neighbors in F decreases
µ by at least one.

Proof. The operation moves w to R and decreases its degree to 2. Since w is a P-tent and v is not
a P-nice vertex, every neighbor u ∈ (N(w)∩F )\{v} is a P-nice vertex. Consequently, Reduction
Rule 2 reduces (N [w] ∩ F ) \ {v} to a single vertex w′, which is in R if (N(w) ∩ F ) \ {v} ⊆
R. Furthermore, deg(w′) = degW (w′) = 2. If w′ has both neighbors in the same connected
component of G[W ], then either Reduction Rule 4 rejects the instance or Reduction Rule 5
decreases k by one. Otherwise, if w′ ∈ R, Reduction Rule 6 moves w′ toW , decreasing ρ by one.
If w′ /∈ R, then w′ becomes a nice vertex, increasing η by one. Thus, in all cases, µ decreases by
at least one.

Observation 3. Let v ∈ F be a vertex with a P-tent neighbor w such that v is not P-nice.
Consider the operation of moving v into W . Then the application of reduction rules on w and
its (possible) other neighbors in F decrease µ by at least one.

Proof. Since w is a P-tent and v is not P-nice, every neighbor u ∈ (N(w) ∩ F ) \ {v} is P-nice.
Consider such a vertex u; note that u ∈ F \ R by the definition of P-nice. Reduction Rule 7 is
applicable to w; this rule would move u to R and then Reduction Rule 6 would move u to W .
Along this process, Reduction Rule 4 or 5 can be triggered on w, either rejecting the instance
or decreasing k by one. Otherwise, if w ∈ R, Reduction Rule 6 moves w to W , decreasing ρ by
two. Finally, in the last case we are left with w ∈ F \ R with degW (w) = deg(w) = 3, that is,
w becomes a tent and increases τ by one. Thus, in all cases, µ decreases by at least one.

Armed with the above observations(see Fig. 3.3), we can now show that Reduction Rule 6
on its own does not increase the measure.

Claim 2. An application of Reduction Rule 6 does not increase the measure.
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Figure 3.3: Observation 1-3

Proof. If v is a tent or a nice vertex, then η or τ decreases by one but ρ decreases by at least one
because Reduction Rule 4 or 5 is not applicable. In this case, µ does not increase. If v is neither
a tent nor a nice vertex and degW (v) ≥ 1, ρ does not increase, and η and τ do not decrease. In
this case, µ does not increase.

We are left with the case degW (v) = 0, and then ρ increases by one. If GdegW (v) ≥ 1 but
degW (v) = 0, we have a P-nice neighbor w of v. Then, after v is moved to W , Observation 1
asserts that future application of reduction rules on w cause a measure decrease of at least one,
offsetting the increase of ρ. Otherwise, Tdeg(v) ≥ 1, and we have a neighbor w of v that is a
P-tent. Then, after v is moved to W , Observation 3 asserts that future application of reduction
rules on w and its possible neighbors in F cause measure decrease of at least one. This finishes
the proof.

3.3 Branching for DIS-IFVS

Now we are ready to introduce the branching algorithm. We assume that all reduction rules
have been applied exhaustively. As a branching pivot, we pick a vertex v ∈ F that is neither a
nice vertex, nor a tent, nor a P -nice vertex, and satisfies one of the following three cases:

Case A: GdegW (v) ≥ 3.
Case B: GdegW (v) ≥ 1 and Tdeg(v) ≥ 1.
Case C: Tdeg(v) ≥ 2.

In case of more than one vertices of F satisfying one of the above cases, we prefer to pick a
vertex v that satisfies an earlier case.

First, note that the non-applicability of Reduction Rule 6 implies that the chosen branching
pivot v does not lie in R.
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No matter which case the chosen branching pivot v satisfies, we branch into two cases. In
one case we include v into the solution: we delete v from the graph, include N(v) ∩ F into R,
and decrease k by one. In the other case, we move v to W .

We now show that in each of the cases, the branching gives a branching vector (1, 2) or better
with respect to the measure µ. That is, in one of the branches the measure drops by at least
one, and in the other by at least two.

Case A: GdegW (v) ≥ 3.

(i) Branch where v is deleted and all vertices in N(v) ∩ F are added to R. k decreases by 1,
ρ stays the same, and η and ρ does not decrease as v is neither a nice vertex nor a tent.
Thus, µ decreases by at least one.

(ii) Branch where v is moved from F to W . ρ decreases by degW (v) − 1 (which may be −1
if degW (v) = 0) and η increases by Ndeg(v). Since GdegW (v) = degW (v) + Ndeg(v) ≥ 3
and τ does not decrease, µ decreases by at least two.

Case B: GdegW (v) ≥ 1 and Tdeg(v) ≥ 1.

(i) Branch where v is deleted and all vertices in N(v) ∩ F are added to R. First, k decreases
by one. Furthermore, v has a P-tent neighbor w and Observation 2 asserts that future
applications of reduction rules on w and its remaining neighbors in F decrease the measure
by at least one. Thus, in total µ decreases by at least two.

(ii) Branch where v is moved from F to W . For every P-tent neighbor w of v, Observation 3
asserts that the application of reduction rules to w and its remaining neighbors in F cause
a measure decrease of at least 1. If degW (v) ≥ 1, then moving v to W does not increase
ρ, and we are done. Otherwise, if degW (v) = 0, moving v to W increases ρ by 1 but the
assumption GdegW (v) ≥ 1 implies that there also exists a P-nice neighbor w of v. For
every such P-nice neighbor w of v, Observation 1 asserts that the future application of
reduction rules on w and its remaining neighbors in F cause measure drop by at least 1.
Consequently, in this case we also have a measure drop of at least 1.

Case C: Tdeg(v) ≥ 2.

(i) Branch where v is deleted and all vertices in N(v) ∩ F are added to R. First, k decreases
by one. Furthermore, for every P-tent neighbor w of v, Observation 2 asserts that the
application of reduction rules on w and its remaining neighbors in F cause measure drop
by at least one. Since Tdeg(v) ≥ 2, together with the decrease of k we have a total measure
decrease of at least 3.

(ii) Branch where v is moved from F to W . The move itself may increase ρ by one. For every
P-tent neighbor w of v, Observation 3 asserts that the future application of reduction
rules on w and its remaining neighbors in F cause measure drop by at least 1. Since
Tdeg(v) ≥ 2, in total we have a measure decrease by at least 1.

We are left with analyzing what happens if no vertex of F satisfies any of the three cases for
the choice of the branching pivot. As in [3], we rely on the following base case.

Lemma 3 ([3]). Let (G,W,R, k) be an instance of DIS-IFVS where every vertex in V (G) \W
is either a nice vertex or a tent. Then we can find an independent feedback vertex set X ⊆
V (G) \ (W ∪R) for G of the minimum size in polynomial time.

Lemma 3 follows from the observation by Cao et al. [19] and the fact that all nice vertices
and tents form an independent set.

We show the following.
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Lemma 4. If no reduction rule can be applied and every vertex of F does not satisfy any of the
cases for the choice of the branching pivot, then the remaining instance of DIS-IFVS can be
solved in polynomial time.

Proof. We claim that every vertex in F of the remaining graph G is either a tent or a nice vertex;
the claim then follows by Lemma 3.

For contradiction, suppose that there is a connected component D of G[F ] that is not a
singleton with a tent or a nice vertex. Since no vertex of D falls into Case A, GdegW (v) ≤ 2 for
every v ∈ D; in particular, every leaf (a vertex in F that has only exactly one neighbor in F )
v ∈ D satisfies degW (v) ∈ {1, 2}. Root the tree G[D] at an arbitrary vertex, and consider a leaf
v ∈ D that is furthest from the root in G[D] and, among such leaves, choose one maximizing
degW (v). Note that v /∈ R as otherwise Reduction Rule 6 would move v to W .

First, assume degW (v) = 2. Since v is a leaf of D and is not nice, v has exactly one neighbor
u ∈ D, and v is a P-tent. Hence, Tdeg(u) ≥ 1. If deg(u) = 2, then Reduction Rule 7 applies to v
if u /∈ R and once u is in R, then Reduction Rule 6 applies to u, making v a tent. Consequently,
deg(u) ≥ 3. However, by the choice of v, degW (u) ≥ 1 or u is adjacent to another leaf v′ of D.
However, this implies that GdegW (u) ≥ 1 (if degW (u) ≥ 1 or v′ exists and degW (v′) = 1) or
Tdeg(u) ≥ 2 (if v′ exists and degW (v′) = 2), and Case B or C applies to u.

Second, assume degW (v) = 1, and again let u be the unique neighbor of v in G[D]. If
deg(u) = 2, then Reduction Rule 2 is applicable. By the choice of v, every other leaf v′ adjacent
to u also satisfies degW (v′) = 1; that is, every child of u is P-nice as u /∈ R. If GdegW (u) ≥ 3,
then Case A applies to u. Hence, deg(u) = 3 and GdegW (u) = 2: u has a parent x in G[D]
and either one more child v′ that is P-nice or a neighbor in W . In particular, u is a P-tent, and
Tdeg(x) ≥ 1.

If deg(x) = 2, then Reduction Rule 7 would apply to u and move v to R, and consequently
Reduction Rule 6 would move v toW . If GdegW (x) ≥ 1, then Case B applies to x. Hence, x has
another child u′ that is not P-nice. By the choice of v, the connected component of G[D] \ {x}
containing u′ is a star with u′ as a center. Furthermore, every child w of u′ is P-nice (i.e.,
degW (w) = 1). Since Case A is not applicable to u′, we have GdegW (u′) ≤ 2. If deg(u′) = 2,
then either u′ is P-nice (if degW (u′) = 1) or Reduction Rule 2 is applicable to u′ and its child
(if degW (u′) = 0). We infer that deg(u′) = 3 and GdegW (u′) = 2; in particular, u′ is a P-tent.
Hence, Tdeg(x) ≥ 2 and case C applies to x. This completes the proof of the lemma.

Every step of the reduction rules and branching can be executed in polynomial time. In
every case of branching, the branching vector is (1, 2). Thus we get the following recurrence:
T (µ) = T (µ − 1) + T (µ − 2). As a result, the running time of the algorithm for DIS-IFVS is
O∗(ϕ2k). This concludes the proof of Lemma 1 and thus of the whole Theorem 1.
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Chapter 4

Multi-budgeted Directed Cuts

In this chapter, we give an FPT algorithm parameterized by k = Σ`
i=1ki and ` for the Multi-

budgeted cut problem and show some of its applications. Recall that the Multi-budgeted
cut problem is a generalization of the classic minimum cut problem. In Multi-budgeted
cut problem, we assign colors 1, 2, ..., ` to some edges and give separate budgets k1, k2, ..., k`
for colors 1, 2, ..., `. For every color i ∈ {1, ..., `}, let Ei be the set of edges of color i. The
solution C for Multi-budgeted cut not only needs to be a cut satisfying the usual separation
requirements, but also needs to satisfy that |C ∩Ei| ≤ ki for every i ∈ {1, ..., `}. Contrary to the
classic minimum cut problem, the Multi-budgeted cut problem is NP-hard even for ` = 2.
The Directed Feedback Arc Set problem is a classic problem that played major role in
the development of parameterized complexity. In this problem, given a directed graph G and an
integer k, the problem is to decide if there exists an arc set S of size at most k such that G− S
has no directed cycles. In a similar way we define the problem Multi-budgeted Directed
Feedback Arc Set as follows.

Multi-budgeted Directed Feedback Arc Set
Input: A directed graph G, an integer `, and for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G)
and an integer ki.
Question: Is there a set of arcs S ⊆

⋃`
i=1Ei such that there is no directed cycle in G− S

and for every i ∈ [`], |S ∩ Ei| ≤ ki.

The first FPT algorithm for the Directed Feedback Arc Set problem is given by Chen et
al. [23]. In their algorithm, they use iterative compression and reduce the Directed Feedback
Arc Set compression problem to the Skew Edge Multicut problem. They propose a pushing
lemma for Skew Edge Multicut and solve Skew Edge Multicut through enumerating
important cuts. We show that for the multi-budgeted variant, a similar strategy enumerating
multi-budgeted important cuts works. Formally, the Multi-budgeted Skew Edge Multicut
problem is defined as follows.

Multi-budgeted Skew Edge Multicut
Input: A directed graph G, an integer `, for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an
integer ki, and a sequence (si, ti)

q
i=1 of terminal pairs.

Question: Is there a set of arcs C ⊆
⋃`
i=1Ei such that there is no directed path from si to

tj for any i ≥ j in G− C and for every i ∈ [`], |C ∩ E(i)| ≤ ki?
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Organization of this chapter. In Section 4.1, we show the NP-hardness of Multi-budgeted
cut problem when ` ≥ 2 and give an FPT algorithm for the Multi-budgeted cut problem pa-
rameterized by k = Σ`

i=1ki and `. In Section 4.2, we give FPT algorithms for the multi-budgeted
versions of skew edge multicut and feedback arc set parameterized by k = Σ`

i=1ki and
`.

4.1 Multi-budgeted cut

4.1.1 NP-hardness of Multi-budgeted cut

Although it is well-known that the minimum cut problem is polynomial-time solvable, we prove
that the Multi-budgeted cut problem is NP-hard for ` ≥ 2.

Lemma 5. Multi-budgeted cut problem is NP-hard for every ` ≥ 2.

Proof. We prove this lemma by making a reduction from constrained minimum vertex cover
problem on bipartite graphs (Min-CBVC), which is proved to be NP-hard by Chen and Kanj
[22]. In the Min-CBVC problem the input consists of a bipartite graph G = (U ] L,E) and
integers kU , kL; the goal is to find a vertex cover X ⊆ U ∪ L such that |X ∩ U | ≤ kU and
|X ∩ L| ≤ kL.

Given an instance (G, kU , kL) of Min-CBVC, where G = (U ∪ L,E) is a bipartite graph,
we construct an instance (G′, X, Y, `, (Ei, ki)

`
i=1) of Multi-budgeted cut as follows. We take

V (G′) = V (G)∪{s, t}, where s and t are two new vertices, and set X = {s} and Y = {t}. Then
for each vertex u ∈ U , we add an arc (s, u) with color 1 to G′ and for each vertex v ∈ L, we add
an arc (v, t) with color 2 to G′. For each undirected edge (u, v) ∈ E(G) such that u ∈ U and
v ∈ L, we add an arc (u, v) with no color. Let E1 be the set of arcs of color 1 in G′ and E2 be
the set of arcs of color 2 in G′. Let Ei = ∅ for i = 3, ..., `. Let Z = E1∪E2 be the deletable arcs.
Let the budgets of the Multi-budgeted cut instance be k1 = kU , k2 = kL, k3 = 0, ..., k` = 0.
This completes the construction.

Now we show that (G, kU , kL) is a yes instance if and only if (G′, X, Y, k1, k2, ..., k`) is a
yes instance. Suppose (G, kU , kL) is a yes instance. Then there exists a vertex cover U ′ ∪ L′
of G such that U ′ ⊆ U , L′ ⊆ L, |U ′| ≤ kU and |L′| ≤ kL. Let C1 = {(s, u)|u ∈ U ′} and
C2 = {(v, t)|v ∈ L′}. We claim that C1 ∪ C2 is a solution for (G′, X, Y, k1, k2, ..., k`). Obviously
|C1| ≤ k1, |C2| ≤ k2 and C is Z-respecting. For contradiction, suppose that there is a directed
path su′v′t in G′ \ (C1 ∪ C2). It follows that u′ /∈ U ′ and v′ /∈ L′. Thus there is an edge u′v′

which is not covered by U ′ ∪ L′ in G, contradicting that U ′ ∪ L′ is a vertex cover of G.
Suppose that (G′, X, Y, k1, k2, ..., k`) is a yes instance. Then there is a Z-respecting budget-

respecting st-cut C = C1 ∪ C2 such that C1 is a set of arcs of color 1 of size at most k1 and C2

is a set of arcs of color 2 of size at most k2. Obviously any arc between U and V in G′ is not in
the solution because they are not deletable. Let U ′ = {u|(s, u) ∈ C1} and L′ = {v|(v, t) ∈ C2}.
We get that U ′ ⊆ U , L′ ⊆ L, |U ′| ≤ k1 = kU and |L′| ≤ k2 = kL. We claim that U ′ ∪ L′ is
a solution for (G, kU , kL). For contradiction, suppose that there is an edge u′v′ not covered by
U ′ ∪ L′. It follows that su′v′t is a directed path in G′ \ C, contradicting that C = C1 ∪ C2 is a
solution for (G′, X, Y, `, (Ei, ki)

`
i=1). This completes the proof.

4.1.2 FPT algorithm for Multi-budgeted cut

We now give an FPT algorithm parameterized by k = Σ`
i=1ki and ` for the Multi-budgeted

cut problem. We follow a branching strategy that recursively reduces a set Z of deletable edges.
That is, we start with Z =

⋃`
i=1Ei (so that every solution is initially Z-respecting) and in each

recursive step, we look for a Z-respecting solution and reduce the set Z in a branching step.
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Consider a recursive call where we look for a Z-respecting solution to the input Multi-
budgeted cut instance (G,X, Y, `, (Ei, ki)

`
i=1). That is, we look for a Z-respecting budget-

respecting cut. We apply Theorem 9 to it. If it returns that there is no Z-respecting XY -cut,
we terminate the current branch, as there is no solution. Otherwise, we obtain the paths
P1, P2, . . . , Pλ, the set B (which we will not use in this section), and the cut C.

If C is budget-respecting, then it is a solution and we can return it. Otherwise, we perform
the following branching step. We iterate over all tuples (A1, ..., A`) such that for every i ∈ [`],
Ai ⊆ [λ] and |Ai| ≤ ki. Ai represents the subset of paths P1, ..., Pλ on which at least one edge
of color i is in the solution for each i ∈ [`]. For those edges of color i which are on the paths
not indicated by Ai, they are not in the solution. Thus we can safely delete them from Z. More
formally, for every i ∈ [`] and j ∈ [λ]\Ai, we remove from Z all edges of E(Pj)∩Ei. We recurse
on the reduced set Z. A pseudocode is available in Figure 6.2.

MultiBudgetedCut(G,X, Y, `, (Ei, ki)`i=1)
Input: A directed graph G, two disjoint set of vertices X,Y ⊆ V (G), an integer `, for every i ∈ [`]
a set Ei ⊆ E(G) and an integer k.
Output: an XY cut C ⊆

⋃`
i=1Ei such that for every i ∈ [`], |C ∩ Ei| ≤ ki if it exists, otherwise

return NO.

1. Z :=
⋃`
i=1Ei;

2. return Solve(Z);

Solve(Z)
a. apply Theorem 9 to (G,X, Y, k, Z) where k =

∑`
i=1 ki, obtaining objects (Pi)

`
i=1, B, and C, or

an answer NO;
b. if the answer NO is obtained, then return NO;
c. if C is budget-respecting, then return C;
d. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
d.1 Ẑ := Z;
d.2 for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (Ei ∩ E(Pj));

d.3 D = Solve(Ẑ);
d.4 if D 6=NO then return D;
e. return NO;

Figure 4.1: FPT algorithm for Multi-budgeted cut

Theorem 10. The algorithm in Figure 6.2 for Multi-budgeted cut is correct and runs in
time O(2`k

2 · k · (|V (G)|+ |E(G)|)) where k = Σ`
i=1ki.

Proof. We prove the correctness of the algorithm by showing that it returns a solution if and
only if the input instance is a yes-instance. The "only if" direction is obvious, as the algorithm
returns only Z-respecting budget-respecting XY -cuts and Z ⊆

⋃`
i=1Ei in each recursive call.

We prove the correctness for the "if" direction. Let C0 be a solution, that is, a budget-
respecting XY -cut. In the initial call to Solve, C0 is Z-respecting. It suffices to inductively
show that in each call to Solve such that C0 is Z-respecting, either the call returns a solution,
or C0 is Ẑ-respecting for at least one of the subcalls. Since C0 is Z-respecting, the appli-
cation of Theorem 9 returns objects (Pi)

λ
i=1, B, and C. If C is budget-respecting, then the

algorithm returns it and we are done. Otherwise, consider the branch (A1, A2, . . . , A`) where
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Ai = {j|E(Pj) ∩ C0 6= ∅}. Since C0 is budget-respecting, C0 ⊆ Z, and no edge of Z appears
on more than one path Pj , we have |Ai| ≤ ki for every i ∈ [`]. Thus, (A1, A2, . . . , A`) is a
branch considered by the algorithm. In this branch, the algorithm refines the set Z to Ẑ. By
the definition of Ai, for every i ∈ [`] and j ∈ [λ]\Ai, we have C0∩Ei∩E(Pj) = ∅. Consequently,
C0 is Ẑ-respecting and we are done.

For the time bound, the following observation is crucial.

Claim 3. Consider one recursive call Solve(Z) where the application of Theorem 9 in line a
returned objects (Pi)

λ
i=1, B, and C. Assume that in some recursive subcall Solve(Ẑ) invoked in

line d.3 (Figure 6.2), the subsequent application of Theorem 9 in line a of the subcall returned a
cut of the same size, that is, the algorithm of Theorem 9 returned a cut Ĉ of size λ̂ = λ. Then
the cut Ĉ is budget-respecting and, consequently, is returned in line c of the subcall.

Proof. Since |Ĉ| = λ is a Ẑ-respecting XY -cut, Ẑ ⊆ Z, and every edge e ∈ Z appears on at
most one path Pi, we have that Ĉ consists of exactly one edge of Ẑ on every path Pi, that is,
Ĉ = {e1, e2, . . . , eλ} and ej ∈ E(Pj)∩Ẑ for every j ∈ [λ]. (I.e., the paths (Pj)

λ
j=1 still correspond

to a maximum flow from X to Y with edges of Ẑ being of unit capacity and edges outside Ẑ
of infinite capacity.) If ej ∈ Ei for some j ∈ [λ] and i ∈ [`], then by the construction of set
Ẑ, we have j ∈ Ai. Consequently, |{j|ej ∈ Ei}| ≤ |Ai| ≤ ki for every i ∈ [`], and thus Ĉ is
budget-respecting. y

Claim 3 implies that the depth of the search tree is bounded by k, as the algorithm terminates
when λ exceeds k. At every step, there are at most (2λ)` ≤ (2k)` different tuples (A1, ..., A`)
to consider. Consequently, there are O(2(k−1)k`) nodes of the search tree that enter the loop in
line d and O(2k

2`) nodes that invoke the algorithm of Theorem 9. As a result, the running time
of the algorithm is O(2`k

2 · k · (|V (G)|+ |E(G)|)).

4.2 Multi-budgeted important separators with applications

Similar to the concept of important separators proposed by Marx [103] (see also [32, Chapter
8]), we define multi-budgeted important separators as follows.

Definition 1. Let (G,X, Y, `, (Ei, ki)
`
i=1) be a Multi-budgeted cut instance and let Z ⊆⋃`

i=1Ei be a set of deletable edges. Let C1, C2 be two minimal Z-respecting budget-respecting
XY -cuts. We say that C1 dominates C2 if

1. every vertex reachable from X in G− C2 is also reachable from X in G− C1;
2. for every i ∈ [`], |C1 ∩ Ei| ≤ |C2 ∩ Ei|.

We say that Ĉ is an important Z-respecting budget-respecting XY -cut if Ĉ is a minimal Z-
respecting budget-respecting XY -cut and no other minimal Z-respecting budget-respecting XY -
cut dominates Ĉ. Ĉ is an important budget-respecting XY -cut if it is an important Z-
respecting budget-respecting XY -cut for Z =

⋃`
i=1Ei.

Chen et al. [23] showed an enumeration procedure for (classic) important separators using
similar charging scheme as the one of the previous section. Our main result in this section is a
merge of the arguments from the previous section with the arguments of Chen et al., yielding
the following theorem.

Theorem 11. Let (G,X, Y, `, (Ei, ki)
`
i=1) be a Multi-budgeted cut instance, let Z ⊆

⋃`
i=1Ei

be a set of deletable edges, and denote k =
∑`

i=1 ki. Then one can in 2O(k
2` log(k`))(|V (G)| +

|E(G)|) time enumerate a family of minimal Z-respecting budget-respecting XY -cuts of size
2O(k

2` log(k`)) that contains all important ones.
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Theorem 3 follows from Theorem 11 via an analogous arguments as in [23]. In this section
we focus on the proof of Theorem 11.

Proof of Theorem 11. Consider the recursive algorithm presented in Figure 6.4. The recur-
sive procedure ImportantCut takes as an input a Multi-budgeted Cut instance I =
(G,X, Y, `, (Ei, ki)

`
i=1) and a set Z ⊆

⋃`
i=1Ei, with the goal to enumerate all important Z-

respecting budget-respecting XY -cuts. Note that the procedure may output some more Z-
respecting budget-respecting XY -cuts; we need only to ensure that

1. it outputs all important ones,
2. it outputs 2O(k

2` log(k`)) cuts, and
3. it runs within the desired time.

The procedure first invokes the algorithm of Theorem 9 on (G,X, Y, k, Z), where k =
∑`

i=1 ki.
If the call returned that there is no Z-respecting XY -cut of size at most k, we can return an
empty set. Otherwise, let (Pj)

λ
j=1, B, and C be the computed objects. We perform a branching

step, with each branch labelled with a tuple (A1, A2, . . . , A`) where Ai ⊆ [λ] and |Ai| ≤ ki
for every i ∈ [`]. A branch (A1, A2, . . . , A`) is supposed to capture important cuts C0 with
{j|C0 ∩B ∩E(Pj)∩Ei 6= ∅} ⊆ Ai for every i ∈ [`]; that is, for every i ∈ [`] and j ∈ [λ] we guess
if C0 contains a bottleneck edge of color i on path Pj . All this information (i.e., paths Pj , the
set B, the cut C, and the sets Ai) are passed to an auxiliary procedure Enum.

The procedure Enum shrinks the set Z according to sets Ai. More formally, for every i ∈ [`]
and j ∈ [λ] \Ai we delete from Z all edges from B ∩Ei ∩E(Pj), obtaining a set Ẑ ⊆ Z. At this
point, we check if the reduction of the set Z to Ẑ increased the size of minimum Z-respecting
XY -cut by invoking Theorem 9 on (G,X, Y, k, Ẑ) and obtaining objects (P̂j)

λ̂
j=1, B̂, Ĉ or a

negative answer. If the size of the minimum cut increased, that is, λ̂ > λ, we recurse with the
original procedure ImportantCut. Otherwise, we add one cut to S, namely Ĉ. Furthermore,
we try to shrink one of the sets Ai by one and recurse; that is, for every i ∈ [`] and every j ∈ Ai,
we recurse with the procedure Enum on sets A′i′ where A

′
i = Ai \ {j} and A′i′ = Ai′ for every

i′ ∈ [`] \ {i}.
Let us first analyse the size of the search tree. A call to ImportantCut invokes at most

2λ` ≤ 2k` calls to Enum. Each call to Enum either falls back to ImportantCut if λ̂ > λ or
branches into

∑`
i=1 |Ai| ≤ k` recursive calls to itself. In each recursive call, the sum

∑`
i=1 |Ai|

decreases by one. Consequently, the initial call to Enum results in at most (k`)k` recursive calls,
each potentially falling back to ImportantCut. Since each recursive call to ImportantCut
uses strictly larger value of λ, which cannot grow larger than k, the total size of the recursion
tree is 2O(k

2` log(k`)). Each recursive call to Enum adds at most one set to S, while each recursive
call to ImportantCut and Enum runs in time O(2k` · k · (|V (G)| + |E(G)|)). The promised
size of the family S and the running time bound follows. It remains to show correctness, that
is, that every important Z-respecting budget-respecting XY -cut is contained in S returned by
a call to ImportantCut(I, Z).

We prove by induction on the size of the recursion tree that (1) every call to Important-
Cut(I, Z) enumerates all important Z-respecting budget-respecting XY -cuts, and (2) every call
to Enum(I, (Pj)

λ
j=1, B,C, Z, (Ai)

`
i=1) enumerates all important Z-respecting budget-respecting

XY -cuts C0 with the property that {j|Ei ∩ E(Pj) ∩B ∩ C0 6= ∅} ⊆ Ai for every i ∈ [`].
The inductive step for a call ImportantCut(I, Z) is straightforward. Let us fix an arbitrary

important Z-respecting budget-respecting XY -cut C0. Since C0 is budget-respecting, C0 is a
Z-respecting cut of size at most k, and thus the initial call to Theorem 9 cannot return NO.
Consider the tuple (A1, A2, . . . , A`) where for every i ∈ [`], {j|E(Pj)∩Ei ∩B ∩C0} = Ai. Since
C0 is budget-respecting and the paths Pj do not share an edge of Z, we have that |Ai| ≤ ki
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ImportantCut(I, Z)
Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)

`
i=1) and a set Z ⊆

⋃`
i=1Ei.

Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all important
ones.

1. S := ∅;
2. apply the algorithm of Theorem 9 to (G,X, Y, k, Z) with k =

∑`
i=1 ki, obtaining either objects

(Pi)
λ
i=1, B, and C, or an answer NO;

3. if an answer NO is obtained, then return S;
4. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
4.1 S := S ∪Enum(I, (Pj)

λ
j=1, B,C, Z, (Ai)

`
i=1)

5. return S

Enum(I, Z, (Pj)λj=1, B,C, (Ai)
`
i=1)

Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)
`
i=1), a set Z ⊆

⋃`
i=1Ei, a family

(Pj)
λ
j=1 of paths from X to Y such that every edge of Z appears on at most one path Pj , a set

B consisting of all edges that participate in some minimum Z-respecting XY -cut, a minimum Z-
respecting XY -cut C closest to Y , and sets Ai ⊆ [λ] of size at most ki for every i ∈ [`]
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all cuts C0

that are important Z-respecting budget respecting XY -cuts and satisfy {j|E(Pj) ∩B ∩ C0 ∩ Ei 6=
∅} ⊆ Ai for every i ∈ [`].

a. Ẑ := Z;
b. for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (B ∩ Ei ∩ E(Pj));

c. apply the algorithm of Theorem 9 to (G,X, Y, k, Ẑ), obtaining either objects (P̂i)
λ̂
i=1, B̂, and Ĉ

or an answer NO;
d. if λ̂ exists and λ̂ > λ, then
d.1 S := S∪ ImportantCut(I, Ẑ);
e. else if λ̂ exists and equals λ, then
e.1 S := S ∪ {Ĉ};
e.2 for each i ∈ [`] do

for each j ∈ Ai do
A′i := Ai \ {j} and A′i′ := Ai′ for every i′ ∈ [`] \ {i}
S := S ∪Enum(I, Ẑ, (Pj)

λ
j=1, B̂, Ĉ, (A

′
i)
`
i=1).

f. return S

Figure 4.2: FPT algorithm for enumerating important multi-budgeted Z-respecting XY -cuts
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for every i ∈ [`] and the algorithm considers this tuple in one of the branches. Then, from the
inductive hypothesis, the corresponding call to Enum returns a set containing C0.

Consider now a call to Enum(I, (Pj)
λ
j=1, B,C, Z, (Ai)

`
i=1) and an important Z-respecting

budget-respecting XY -cuts C0 with the property that {j|Ei ∩ E(Pj) ∩ B ∩ C0 6= ∅} ⊆ Ai for
every i ∈ [`]. By the construction of Ẑ and the above assumption, C0 is Ẑ-respecting. In
particular, the call to the algorithm of Theorem 9 cannot return NO. Hence, in the case when
λ̂ > λ, C0 is enumerated by the recursive call to ImportantCut and we are done. Assume then
λ̂ = λ.

For i ∈ [`], let Âi = {j|Ei ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅}. Since Ẑ ⊆ Z but the sizes of minimum
Z-respecting and Ẑ-respecting XY -cuts are the same, we have B̂ ⊆ B. Consequently, Âi ⊆ Ai
for every i ∈ [`].

Assume there exists i ∈ [`] such that Âi ( Ai and let j ∈ Ai \ Âi. Consider then the branch
(i, j) of the Enum procedure, that is, the recursive call with A′i = Ai \ {j} and A′i′ = Ai′ for
i′ ∈ [`] \ {i}. Observe that we have {j|Ei′ ∩E(Pj)∩ B̂ ∩C0 6= ∅} ⊆ A′i′ for every i′ ∈ [`] and, by
the inductive hypothesis, the corresponding call to Enum enumerates C0. Hence, we are left
only with the case Âi = Ai, that is, Ai = {j|Ei ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅} for every i ∈ [`].

We claim that in this case C0 = Ĉ. Assume otherwise. Since |Ĉ| = λ̂ = λ and Ẑ ⊆ Z, Ĉ
contains exactly one edge on every path Pj . Also, Ĉ ⊆ B̂ by the definition of the set B̂. Since
Ĉ is the minimum Ẑ-respecting XY -cut that is closest to Y , Ĉ = {e1, e2, . . . , eλ} where ej is
the last (closest to Y ) edge of B̂ on the path Pj for every j ∈ [λ].

Let R0 and R̂ be the set of vertices reachable from X in G − C0 and G − Ĉ, respectively.
Let D be a minimal XY -cut contained in δ+(R0 ∪ R̂). (Note that δ+(R0 ∪ R̂) is an XY -cut
because X ⊆ R0 ∪ R̂ and Y ∩ (R0 ∪ R̂) = ∅.) Then since D ⊆ C0 ∪ Ĉ ⊆ Z, D is Z-respecting.
By definition, every vertex reachable from X in G−R0 is also reachable from X in G−D.

We claim that D is budget-respecting and, furthermore, dominates C0. Fix a color i ∈ [`];
our goal is to prove that |D ∩ Ei| ≤ |C0 ∩ Ei|. To this end, we charge every edge of color i in
D \C0 to a distinct edge of color i in C0 \D. Since D ⊆ C0 ∪ Ĉ, we have that D \C0 ⊆ Ĉ, that
is, an edge of D \ C0 of color i is an edge ej for some j ∈ [λ] with ej ∈ Ei and ej ∈ D \ C0.

Recall that we are working in the case Ai = {j|Ei ∩E(Pj)∩ B̂ ∩C0 6= ∅}. Since ej ∈ Ĉ ⊆ Ẑ,
we have that j ∈ Ai. Hence, there exists e′j ∈ Ei ∩E(Pj)∩ B̂ ∩C0. By the definition of Ĉ, ej is
the last (closest to Y ) edge of B̂ on Pj . Since ej /∈ C0, e′j 6= ej and e′j lies on the subpath of Pj
between X and the tail of ej . This entire subpath is contained in R̂ and, hence, e′j /∈ D.

We charge ej to e′j . Since e′j ∈ E(Pj) ∩ Ei ∩ B̂ ∩ (C0 \ D), for distinct j, the edges e′j are
distinct as the paths Pj do not share an edge belonging to Z and B̂ ⊆ Ẑ ⊆ Z. Consequently,
|D ∩ Ei| ≤ |C0 ∩ Ei|. This finishes the proof that D dominates C0.

Since C0 is important, we have D = C0. In particular, R̂ ⊆ R0. On the other hand, for every
j ∈ [λ] we have that ej ∈ Ĉ ⊆ Ẑ ⊆ Z ⊆

⋃`
i=1Ei. In particular, there exists i ∈ [`] such that

ej ∈ Ei and j ∈ Ai. Hence, we also have Ei ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅. But the entire subpath of
Pj from X to the tail of ej lies in R̂ ⊆ R0, while ej is the last edge of B̂ on Pj . Hence, ej ∈ C0.
Since the choice of j is arbitrary, Ĉ ⊆ C0. Since Ĉ is an XY -cut and C0 is minimal, Ĉ = C0 as
claimed.

This finishes the proof of Theorem 11.

Next we show the applications of multi-budgeted important separators to the problem-
s Multi-budgeted Skew Multicut and Multi-budgeted Directed Feedback Arc
Set. We start by observing a direct corollary of the maximality criterium in the definition of
important budget-respecting separators.
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Lemma 6. Given an instance (G,X, Y, `, (Ei, ki)
`
i=1) of Multi-budgeted cut, for every

minimal budget-respecting XY -cut C there exists an important budget-respecting XY -cut C ′

that dominates C.

Similar to the pushing lemma for Skew Edge Multicut [23], we propose a pushing lemma
for the multi-budgeted variant.

Lemma 7. Every yes-instance I = (G, `, (Ei, ki)
`
i=1, (si, ti)

q
i=1) of Skew Edge Multicut

admits a solution that contains an important budget-respecting XY -cut for X = {sq} and Y =
{t1, t2, . . . , tq}.

Proof. Let C be a solution to I. Let X = {sq}, Y = {t1, ..., tq}, and R be the set of vertices
reachable from sq in G − C. Since C is a solution, δ+(R) ⊆ C is a budget-respecting XY -cut;
let D ⊆ δ+(R) be a minimal one. By Lemma 6, there exists an important budget-respecting
XY -cut D∗ dominating D. Let R∗ be the set of vertices reachable from sq in G−D∗. We claim
that C∗ := (C \D) ∪D∗ is a solution to I as well.

Suppose for contradiction that there is a directed path P from si to tj for some i ≥ j in
G − C∗. If P contains one vertex of R∗, it contradicts that D∗ is an XY -cut because P must
contain one edge of D∗. Thus P is disjoint from R∗. Since R ⊆ R∗, P is disjoint from R, and
hence P is disjoint from D. Since P is not cut by C∗ = (C \D)∪D∗, P is not cut by C \D. It
follows that P is not cut by C = (C \D) ∪D, contradicting that C is a solution.

To complete the proof, note that for every i ≤ [`] we have |D∗ ∩ Ei| ≤ |D ∩ Ei| since D′
dominates D, and hence |C∗ ∩ Ei| ≤ |C ∩ Ei|. Consequently, C∗ is budget-respecting.

Lemma 7 yields the following branching strategy.

Theorem 12. There is an FPT algorithm for Multi-budgeted Skew Edge Multicut
running in time 2O(k

3` log(k`)) · (|V (G)|+ |E(G)|).

Proof. If ki < 0 for some i ∈ [`], then we can answer NO. Otherwise, if q = 0, then we can
answer YES. Otherwise, perform a depth-first search from sq. If no terminal ti has been reached,
delete the visited vertices together with tq, decrease q by one and restart the algorithm. Since
this operation can be performed in time linear in the size of the deleted part of the graph, in
total it takes linear time.

Otherwise, proceed as follows. By Lemma 7 if the input instance is a yes-instance, there
is a solution C∗ which contains an important budget-respecting sq{t1, t2, . . . , tq}-cut. By The-
orem 11, we can enumerate in time 2O(k

2` log(k`))(|V (G)| + |E(G)|) a set of minimal budget-
respecting XY -cuts S of size 2O(k

2` log(k`)) that contains all important ones. We invoke this
enumeration, and branch on the choice of important budget-respecting sq{t1, t2, . . . , tq}-cut con-
tained in the sought solution. In a branch where a cut D is chosen, we delete D from the graph
and decrease each budget ki by |D∩Ei|. Since at least one terminal ti is reachable from sq, in ev-
ery branch the cut D is nonempty and thus k =

∑`
i=1 ki decreases by at least one. Consequently,

the depth of the recursion is bounded by k. The running time bound follows.

We now use the algorithm of Theorem 12 to give an algorithm for Multi-budgeted Di-
rected Feedback Arc Set, completing the proof of Theorem 3.

Theorem 13. Multi-budgeted Directed Feedback Arc Set can be solved in time
2O(k

3` log(k`))(|V (G)|+ |E(G)|).

Proof. Let I = (G, `, (Ei, ki)
`
i=1) be an input instance. We start by applying the algorithm of

Chen et al. [23] for the classic Directed Feedback Arc Set on G with parameter k =
∑`

i=1.
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If the call returned that there is no solution, we can safetely return NO. Otherwise, let W be
the set of tails of the arcs of the returned solution; clearly |W | ≤ k and G−W is acyclic.

Suppose I is a yes-instance and there is a solution S. Then G−S is a directed acyclic graph,
admiting a topological ordering of V (G). This ordering indices a permutation of the vertices in
W . In our algorithm, we branch on every permutation of the vertices inW , ensuring that at least
one of the permutation is the same as the permutation induced by the topological ordering of
G−S. Let w1, ..., w|W | be an arbitrary permutation of the vertices inW . We construct a graphG′

as follows. For each i ∈ [|W |], we replace every vertex wi with two vertices si, ti, every edge (wi, a)
with (si, a) of the same color and every edge (b, wi) with (b, ti) of the same color. Then we add
a directed edge (ti, si) for each i ∈ [|W |] with no color. In this manner, we construct a Multi-
budgeted Skew Edge Multicut instance I ′ = (G′, `, (E′i, ki)

`
i=1, (si, ti)

|W |
i=1) corresponding

to the permutation w1, ..., w|W |.
We claim that the input instance I of Multi-budgeted Directed Feedback Arc Set

is a yes-instance if and only if there exists one permutation w1, ..., w|W | of W such that the
corresponding Multi-budgeted Skew Edge Multicut instance I ′ is a yes-instance. For the
"only if direction", let S be a solution to I. We have a topological ordering of V (G), inducing
an ordering w1, ..., w|W | on W . For this ordering, let I ′ be the corresponding instance of Multi-
budgeted Skew Edge Multicut. According to the way we construct G′, every edge in S
has a corresponding edge in G′. Let S′ be the set of the corresponding edges of edges in S. We
claim that S′ is a solution for I ′. Obviously S′ is budget-respecting. Suppose for contradiction
that there is a directed path P from si to tj for some i ≥ j in G′ − S′. If i = j, then the
corresponding edges of P form a directed cycle passing through wi in G − S, a contradiction.
Suppose that i > j. If P goes through some edge in {(ti, si)|i ∈ [|W |]}, then there must be a
subpath of P ′ from si′ to tj′ such that i′ > j′ and P ′ contains no edges in {(ti, si)|i ∈ [|W |]}.
Then the corresponding edges of P ′ is a directed path from wi to wj , contradicting that wi is
later than wj in the topological ordering of V (G) after removing S.

For the "if direction", suppose that S′ is a solution for I ′ and w1, ..., w|W | is the corresponding
ordering of W . Let S be the set of edges consisting of the corresponding edges of S′. We claim
that S is the solution for I. Obviously S is budget-respecting. Suppose that there is a cycle Q
in G− S. Since W is a feedback vertex set for G, Q must go through at least one vertex in W .
Suppose that Q goes through a vertex in W , namely wi. Then we can find a path from si to ti
in G′ − S′, contradicting that S′ is a solution to I ′.

This finishes the proof of the lemma and of the whole Theorem 3.
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Chapter 5

Two Disjoint Shortest Paths Problem
with transition restrictions

In this chapter, we present polynomial-time algorithms for vertex-disjoint and edge-disjoint cases
of 2-DSPP with transition restrictions when every directed cycle has positive length.
Recall that in a directed graph G, a transition is an ordered pair of adjacent edges such that
the head of the first edge is equal to the tail of the second edge. A transition system T is a set
of transitions in G. We say that a path P is T -compatible if every two consecutive edges of P
form a transition of T . Given a directed graph G = (V,E), a length function w : E → R≥0, two
pairs of vertices (s1, t1),(s2, t2) in G and a prescribed transition system T , the 2-DSPP with
transition restrictions asks to find two disjoint (vertex-disjoint or edge-disjoint) paths P1

and P2 in G such that Pi is a shortest path (even without transition restrictions) from si to ti
and Pi is also T -compatible for i = 1, 2.

Organization of this chapter. In Section 5.1, we present a polynomial-time algorithm for
edge-disjoint case of 2-DSPP with transition restrictions when every directed cycle has
positive length. In Section 5.2, we present a polynomial-time algorithm for vertex-disjoint case
of 2-DSPP with transition restrictions when every directed cycle has positive length..

Additional notions for this chapter. We define Ei to be the set of edges that appear in
some shortest path (without transition restrictions) from si to ti for i = 1, 2. By this definition,
an si-ti path is a shortest T -compatible si-ti path if and only if it consists of edges of Ei and is also
T -compatible for i = 1, 2. Thus the edge-disjoint (vertex-disjoint) 2-DSPP with transition
restrictions is equivalent to finding two edge-disjoint (vertex-disjoint) T -compatible paths P1

and P2 such that Pi is from si to ti, E(Pi) ⊆ Ei and Pi satisfies the transition restrictions for
i = 1, 2. Each set Ei can be computed in polynomial time using the method from the paper
of Bérczi and Kobayashi [9]. First, we compute the distance di(v) from si to v for i = 1, 2,
using Dijkstra’s algorithm. Let Ei = {uv | di(v) − di(u) = w(uv)}. Then Ei = {uv ∈ Ei |
there exists a path from v to ti in Ei}.

For a set F of directed edges, let F be the set of edges obtained by reversing all edges of F ,
that is, F = {vu | uv ∈ F}. For a directed edge e = uv, let e = vu denote the edge obtained by
reversing e.
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5.1 Edge-disjoint case of 2DSPP

We show that the edge-disjoint case of 2-DSPP with transition restrictions can be solved
in polynomial time. We use the method of Bérczi and Kobayashi [9], which reduces the problem
of Edge Disjoint 2-DSPP to finding a path in a graph G constructed from the input graph
G. Based on that, we just need to delete edges of G which correspond to forbidden transitions
of G with respect to T and it suffices to find the path in the remaining subgraph of G.

We repeat the procedure of Bérczi and Kobayashi [9] briefly here for consistency. Let G be
a graph (without transition systems T ) such that the length of every dicycle in G is positive.
First, we compute Ei for i = 1, 2. Then we create four new vertices s′1, s′2, t′1, t′2, create four
edges s′1s1, s′2s2, t1t′1, t2t′2 of length 0 respectively, and add s′isi, tit

′
i to Ei for i = 1, 2. Let

E0 = E1∩E2, E
∗
1 = E1 \E0, E

∗
2 = E2 \E0. We remove all edges of E(G)\ (E1∪E2), contract all

edges of E0 and reverse all edges of E∗2 . Finally we get a new graph G∗ = (V ∗, E∗ = E∗1 ∪ E∗2).
Let V0 ⊆ V be the set of vertices that are newly created after contracting E0. For v ∈ V0, we
use Gv to denote the subgraph of G− (E(G) \ (E1 ∪E2)) induced by the vertices corresponding
to v before contracting. For an edge e ∈ E∗, let f(e) ∈ E(G) be the edge corresponding to e
before the contracting and reversing operations.

The following two lemmas show that Gv is acyclic for every v ∈ V0 and G∗ is acyclic.

Lemma 8. [9] The edge set Ei forms no dicycle in G for i = 1, 2.

Lemma 9. [9] In the graph G, suppose that C is a dicycle in E1 ∪ E2. Then E1 ∩ E(C) ⊆ E2

and E2 ∩ E(C) ⊆ E1.

Then we define a new digraph G whose vertex set is W = E∗1 ×E∗2 . There is a directed edge
from (e1, e2) to (e′1, e

′
2) if one of three cases holds.

(i) e1 = e′1 and headG∗(e2) = tailG∗(e′2) = v. There is no path from headG∗(e1) to v in G∗.
Moreover, if v ∈ V0, then Gv contains a path from tailG(e′2) to headG(e2).

(ii) e2 = e′2 and headG∗(e1) = tailG∗(e′1) = v. There is no path from headG∗(e2) to v in G∗.
Moreover, if v ∈ V0, then Gv contains a path from headG(e1) to tailG(e′1).

(iii) headG∗(e2) = tailG∗(e′2) = headG∗(e1) = tailG∗(e′1) = v. If v ∈ V0, then Gv contain-
s two edge-disjoint paths from headG(e1) to tailG(e′1) and from tailG(e′2) to headG(e2)
respectively.

Finally the following lemma reduces the edge-disjoint version of 2-DSPP to finding a path
in G from (s′1s1, t

′
2t2) to (t1t

′
1, s2s

′
2). Note that si, ti ∈ V (G) might be the endpoints of edges of

E0 for i = 1, 2. In this case, although we might contract the edges incident to si, ti ∈ V (G) and
replace these vertices with new vertices. Therefore, we slightly abuse the notation and use si
and ti to denote the vertex adjacent to s′i and t

′
i respectively in G∗ for i = 1, 2, for the sake of

simplicity.

Lemma 10. [9] There is a directed path in G from (s′1s1, t
′
2t2) to (t1t

′
1, s2s

′
2) if and only if G

has two edge-disjoint paths P1 and P2 such that Pi is from s′i to t
′
i and Pi ⊆ Ei for i = 1, 2.

To solve the edge-disjoint version of Directed Two Disjoint Shortest Paths Problem
(2-DSPP) with transition restrictions, we will show that it suffices to delete the edges
in G which correspond to forbidden transitions of G and find a path in the remaining graph
of G from (s′1s1, t

′
2t2) to (t1t

′
1, s2s

′
2). For every edge in G, we check whether it corresponds to

forbidden transitions according to the following three cases and delete the edge if it corresponds
to forbidden transitions. Suppose the edge is from some vertex (e1, e2) ∈ W to another vertex
(e′1, e

′
2) ∈W .
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• The edge is of type (i), i.e., e1 = e′1 and headG∗(e2) = tailG∗(e′2) = v. If v ∈ V0, let Gs be
the subgraph of G consisting of all edges of Gv together with f(e2) and f(e′2). In this case,
if there is no T -compatible paths in Gs from tailG(f(e′2)) to headG(f(e2)), then remove
the edge from G. If v /∈ V0 and {e′2, e2} /∈ TG(v), then remove the edge from G.
• The edge is of type (ii), i.e., e2 = e′2 and headG∗(e1) = tailG∗(e′1) = v. If v ∈ V0, let Gs

be the subgraph of G consisting of all edges of Gv together with f(e1) and f(e′1). In this
case, if v ∈ V0 and there is no T -compatible path in Gs from tailG(f(e1)) to headG(f(e′1)),
then remove the edge from G. If v /∈ V0 and {e1, e′1} /∈ TG(v), then remove the edge from
G.

• The edge is of type (iii), i.e., headG∗(e2) = tailG∗(e′2) = headG∗(e1) = tailG∗(e′1) = v. If v ∈
V0, letGs be the subgraph ofG consisting of all edges ofGv together with f(e1), f(e′1), f(e2)
and f(e′2). In this case, if Gs does not contain two T -compatible edge-disjoint paths such
that one path is from tailG(f(e1)) to headG(f(e′1)) and the other path is from tailG(f(e′2))
to headG(f(e2)), then remove the edge from G. If v /∈ V0 and {e1, e′1} /∈ TG(v) or if v /∈ V0
and {e′2, e2} /∈ TG(v), then remove the edge from G.

We need to check whether there exists a T -compatible path between two given vertices in
a (direced) forbidden-transition graph. Szeider shows a dichotomy of NP-complete and linear-
time solvable for the problem of finding a T -compatible path between two given vertices of an
(undirected) graph [119]. In contrast, the following lemma shows that in a directed acyclic
graph, we can find a T -compatible path between two given vertices in polynomial time.

Lemma 11. In a directed acyclic graph G = (V,E) with transition system TG, we can compute
if there is a directed T -compatible path P from s to t for s, t ∈ V (G) in polynomial time.

Proof. We construct a directed graph G̃ as follows. First create two vertices s0, t0. Then for
every edge e ∈ E(G), create a vertex ve. For any two edges e, e′ ∈ E(G), create an edge
veve′ if ee′ ∈ E(TG(v)) for some v ∈ V (G). Finally, create edges s0ve for every e ∈ E(G)
such that tailG(e) = s and create edges ve′t0 for every e′ ∈ E(G) such that headG(e′) = t.
We claim that we can find a directed path P ′ from s0 to t0 in G̃ if and only if there is a
directed T -compatible path P from s to t in G. For the “if” direction, suppose that there is
such a path P = e1, e2, . . . , e` in G, where e1, . . . , e` are the consecutive edges of P . Then we
can obviously get the path P ′ = s0ve1 , ve1ve2 , . . . , ve`t0 by the definition of G̃. For the “only
if” direction, suppose that there is a directed path P ′ = s0vei1 , vei1vei2 , . . . , vei` t0 in G̃. Then
P = ei1 , ei2 , . . . , ei` is a directed T -compatible walk from s to t in G. Since G is acyclic, P is
also a path. This completes the proof of the claim. We can build the graph G̃ in O(|E|2)-time
and find an s0t0 path in G̃ using DFS in O(|E|2) time. Thus the lemma holds.

For v ∈ V0, by Lemma 8, there is no dicycle in Gv. Moreover, observe that we cannot have a
vertex in V (G)\V (Gv) adjacent to more than one edge from E(Gs)\E(Gv), so Gs is also acyclic.
So we can decide whether or not to remove the edges of type (i) or (ii) from G in polynomial
time according to lemma 11. For the edges of type (iii), we need to compute if there are two
edge-disjoint T -compatible paths in a directed acyclic graph. We show that it can be done in
polynomial time and the algorithm is an adaption of the algorithm of finding two vertex-disjoint
paths in DAG by Perl and Shiloach [111].

Lemma 12. In a directed acyclic graph G = (V,E) with transition system TG, we can solve the
edge-disjoint version of 2-DSPP with transition restrictions in polynomial time.

Proof. First we modify the graph G as follows. We create four vertices s′1, s′2, t′1, t′2 and update
V (G) as V (G)← V (G)∪ {s′1, s′2, t′1, t′2}. We create four edges {s′1s1, s′2s2, t1t′1, t2t′2} and update
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E(G) as E(G)← E(G) ∪ {s′1s1, s′2s2, t1t′1, t2t′2}. Also, for i = 1, 2, we update TG(si) as

TG(si)← TG(si) ∪ {{e, e′} | e = s′isi and tailG(e′) = si},

and we update TG(ti) as

TG(ti)← TG(ti) ∪ {{e, e′} | e′ = tit
′
i and headG(e) = ti}.

For every vertex v ∈ V (G), define the level `(v) as the length of a longest directed path in G
starting from v. Since G is acyclic, this can be computed by repeatedly removing a vertex of G.
Then we create a graph G̃ as follows. Let the vertex set of G̃ be V (G̃) = {(e1, e2) | e1, e2 ∈
E(G) and e1 6= e2}. For every (e1, e2), (e

′
1, e
′
2) ∈ V (G̃), create an edge from (e1, e2) to (e′1, e

′
2) if

one of the following cases holds:

(1) e1 = e′1, `(headG(e2)) ≥ `(headG(e1)), {e2, e′2} ∈ TG(headG(e2)).
(2) e2 = e′2, `(headG(e1)) ≥ `(headG(e2)), {e1, e′1} ∈ TG(headG(e1)).
(3) e1 = e′1 = t1t

′
1, `(headG(e2)) < `(t′1), {e2, e′2} ∈ TG(headG(e2)).

(4) e2 = e′2 = t2t
′
2, `(headG(e1)) < `(t′2), {e1, e′1} ∈ TG(headG(e1)).

We claim that there are two T -compatible edge-disjoint paths P1 and P2 in G such that Pi is
from s′i to t

′
i for i = 1, 2 if and only if there is a path P from (s′1s1, s

′
2s2) to (t1t

′
1, t2t

′
2) in G̃.

(“only if” direction): Let P1 = e01, e
1
1, . . . , e

p+1
1 and e01 = s′1s1, e

p+1
1 = t1t

′
1. Let P2 =

e02, e
1
2, . . . , e

q+1
2 and e02 = s′2s2, e

q+1
2 = t2t

′
2. For any i ∈ {0, 1, . . . , p+1}, j ∈ {0, 1, . . . , q+1} such

that (i, j) 6= (p+ 1, q + 1), one of the following four cases must hold.

• i ≤ p and j ≤ q, `(headG(ei1)) ≤ `(headG(ej2)) and there is an edge in G̃ from (ei1, e
j
2) to

(ei1, e
j+1
2 ).

• i ≤ p and j ≤ q, `(headG(ei1)) ≥ `(headG(ej2)) and there is an edge in G̃ from (ei1, e
j
2) to

(ei+1
1 , ej2).

• i = p + 1 and j ≤ q, `(headG(ej2)) < `(t′1) and there is an edge in G̃ from (ep+1
1 , ej2) to

(ep+1
1 , ej+1

2 ).
• j = q + 1 and i ≤ p, `(headG(ei1)) < `(t′2) and there is an edge in G̃ from (ei1, e

q+1
2 ) to

(ei+1
1 , eq+1

2 ).

As a result, there is a path P from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in G̃. This finishes the proof for

“only if” direction.

(“if” direction): Suppose that there exists a path P from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in G̃.

Let P = (e01, e
0
2), (e

1
1, e

1
2), . . . , (e

r
1, e

r
2) such that (s′1s1, s

′
2s2) = (e01, e

0
2) and (er1, e

r
2) = (t1t

′
1, t2t

′
2).

We construct two edge-disjoint T -compatible paths P1, P2 as follows. First we initialize P1 =
e01, P2 = e02. Then for i = 0, . . . , r − 1, we update P1 and P2 according to the following cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2 ) is of type (1). Then P2 ← P2 · ei+1

2 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (2). Then P1 ← P1 · ei+1

1 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (3). Then P2 ← P2 · ei+1

2 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (4). Then P1 ← P1 · ei+1

1 .

By the definition of edges of G̃, we get that P1 and P2 are two T -compatible edge-disjoint paths
in G such that Pi is from s′i to t

′
i for i = 1, 2. We can construct a graph G̃ in O(|E|3) time and

find a path from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in O(|E|3) time. Thus the lemma holds.

Thus we can also decide whether or not to remove an edge of type (iii) from G in polynomial
time and let Ĝ be the remaining subgraph of G. The following lemma shows that we can
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reduce edge-disjoint version of 2-DSPP with transition restrictions to finding a path
from (s′1s1, t

′
2t2) to (t1t

′
1, s2s

′
2) in Ĝ.

Lemma 13. There is a directed path in Ĝ from (s′1s1, t
′
2t2) to (t1t

′
1, s2s

′
2) if and only if G has

two edge-disjoint T -compatible paths P1 and P2 such that Pi is from s′i to t
′
i and Pi ⊆ Ei for

i = 1, 2.

Proof. (“if” direction) Suppose that G has two edge-disjoint T -compatible paths P1 and P2 such
that Pi is from s′i to t

′
i and Pi ⊆ Ei for i = 1, 2. E(P1) \ E0 forms a directed path P ∗1 in G∗

from s′1 to t′1. E(P2) \ E0 forms a directed path P ∗2 in G∗ from t′2 to s′2. Let P ∗1 = e01, e
1
1, ..., e

p+1
1

and e01 = s′1s1, e
p+1
1 = t1t

′
1. Let P ∗2 = e02, e

1
2, ..., e

q+1
2 and e02 = t′2t2, e

q+1
2 = s2s

′
2. It follows that

ei1 ∈ E∗1 for i = 0, 1, ..., p + 1 and ej2 ∈ E∗2 for j = 0, 1, ..., q + 1. By the proof of Lemma 10
(interested readers could refer to the proof of Lemma 8 in [9]), there is a directed path P
in G from (s′1s1, t

′
2t2) to (t1t

′
1, s2s

′
2) such that every edge of P is of one of the three types:

(i) from (ei1, e
j
2) to (ei1, e

j+1
2 ) (i ∈ {0, ..., p + 1}, j ∈ {0, ..., q}); (ii) from (ei1, e

j
2) to (ei+1

1 , ej2)

(i ∈ {0, ..., p}, j ∈ {0, ..., q + 1}); (iii) from (ei1, e
j
2) to (ei+1

1 , ej+1
2 ) ((i ∈ {0, ..., p}, j ∈ {0, ..., q})).

Since P1 and P2 are T -compatible, by the rules we construct Ĝ, we can see that all edges of P
in G remains in Ĝ. This completes the proof for “if direction”.

(“only if” direction) Suppose that there is a directed path P from (e01, e
0
2) = (s′1s1, t

′
2t2) to

(er1, e
r
2) = (t1t

′
1, s2s

′
2) in Ĝ that goes through (e01, e

0
2), (e

1
1, e

1
2), . . . , (e

r
1, e

r
2) consecutively. Since Ĝ

is a subgraph of G, by Lemma 10, there exists two edge-disjoint paths P1 and P2 in G such that
Pi is from s′i to t

′
i and Pi ⊆ Ei for i = 1, 2 in G. Moreover, again from the proof of Lemma 10,

it follows that ei1 ∈ E(P1) and ei2 ∈ E(P2). By the rule we construct Ĝ, for an edge from (ei1, e
i
2)

to (ei+1
1 , ei+1

2 ) (i ∈ {0, ..., r − 1}), there is a T -compatible subpath of P1 from tailG(f(ei1)) to
headG(f(ei+1

1 )) if ei1 6= ei+1
1 or there is a T -compatible subpath of P2 from tailG(f(ei+1

2 )) to
headG(f(ei2)) if ei2 6= ei+1

2 . It follows that P1 and P2 are also T -compatible. This finishes the
proof for “only if” direction.

Since Ĝ is a subgraph of G and G contains at most |E|2 vertices, we can detect a path in Ĝ
in polynomial time. Thus Lemma 13 shows that we can solve edge-disjoint version of 2-DSPP
with transition restrictions in polynomial time assuming that every cycle in the input
graph has positive length.

5.2 Vertex-disjoint case of 2DSPP

When computing vertex-disjoint version of 2-DSPP in the paper of Bérczi and Kobayashi [9],
they create a new digraph G2 as follows: for every vertex v ∈ V create two vertices v+ and v−.
Create an edge v−v+ with w(v−v+) = 0. Create an edge u+v− if there is an edge uv in G and
let w(u+v−) = w(uv). Thus vertex-disjoint 2-DSPP in G is reduced to edge-disjoint variant
of 2-DSPP in G2. However, this method does not work in the forbidden-transitions setting
because part of the information of transitions will be lost after creating the new graph G2.

In order to keep the information of transitions, we first modify G as follows. We compute
the set E1 and E2 of G. Remove all edges of E(G) \ (E1 ∪ E2) from E(G) and all isolated
vertices from V (G). When removing the edges or vertices we update the transition system
accordingly. Then create four new vertices s′1, s′2, t′1, t′2 and four edges s′1s1, s′2s2, t1t′1, t2t′2
all with length 0. Add s′isi and tit

′
i to Ei for i = 1, 2. Thus a shortest path from si to ti

corresponds to a shortest path from s′i to t
′
i starting with the edge s′isi and ending with the edge

tit
′
i. We update TG(si) by adding {{e, e′} | e = s′isi and tailG(e′) = si} to it for i = 1, 2. Let

TG(ti) = {{e, e′} | headG(e) = ti and e′ = tit
′
i} for i = 1, 2.
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Then we create a graph G′ as follows. For every vertex v ∈ V (G) \ {s′1, s′2, t′1, t′2}, create
two vertices v+ and v−. We also create four vertices s′1, s′2, t′1, t′2 in G′ and create four edges
s′1s
−
1 , s

′
2s
−
2 , t

+
1 t
′
1, t

+
2 t
′
2 in G′ all with length 0. For every vertex v ∈ V (G) \ {s′1, s′2, t′1, t′2}, let

in1(v), . . . , inrv(v) be the incoming edges of v. Then create rv parallel edges e1(v), . . . , erv(v)
with tailG′(ej(v)) = v− and headG′(ej(v)) = v+ in G′ for j = 1, . . . , rv such that each of
the edges is of length 0. If there is an edge uv = inp(v) in G for some p ∈ [rv] and u, v /∈
{s′1, s′2, t′1, t′2}, create an edge inp(v−) = u+v− in G′ and let w(u+v−) = w(uv). Next, we define
the transition system for G′ as follows. TG′(v

−) = {{inj(v−), ej(v)} | j ∈ [rv]}. For every
e, e′ ∈ (E1 ∪ E2) \ {t1t′1, t2t′2} ⊆ E(G) such that e = uv = inp(v), e′ = vw (let ê = v+w−),
if {e, e′} ∈ TG(v), then {ep(v), ê} ∈ TG′(v

+). In particular, let ei = t+i t
′
i for i = 1, 2. If

e = uti = inq(ti) ∈ E(G) for some q ∈ [rti ], then {eq(ti), ei} ∈ TG′(t+i ).
We also need to compute the set of edges E′i that exist in some shortest path (without

transitions) from s′i to t
′
i for i = 1, 2. By this definition, obviously s′is

−
i , s

−
i s

+
i , t
−
i t

+
i , t

+
i t
′
i ∈ E′i

for i = 1, 2.

Lemma 14. For u, v ∈ V (G) \ {s′1, s′2, t′1, t′2}, uv ∈ Ei if and only if u+v− ∈ E′i for i = 1, 2.
Moreover, if some incoming edge of v− belongs to E′i, then all of the parallel edges v−v+ belong
to Ei for i = 1, 2.

Proof. Suppose that P1 = s1, w, ..., u, v, ..., t1 is a shortest path from s1 to t1 in G. We
claim that P ′1 = s′1, s

−
1 , s

+
1 , w

−, w+, ..., u−, u+, v−, v+, ..., t−1 , t
+
1 , t
′
1 is a shortest path from s′1

to t′1 in G′. For contradiction, suppose the claim is not true. Then we can find a path
P ′0 = s′1, s

−
1 , s

+
1 , w

−
1 , w

+
1 , ..., w

−
` , w

+
` , t
−
1 , t

+
1 , t
′
1 in G′ such that w(P ′0) < w(P ′1) = w(P1). Then

there is a path P0 = s1, w1, ..., w`, t1 in G such that w(P0) = w(P ′0) < w(P1), contradicting that
P1 is a shortest path from s1 to t1.

Suppose that P ′1 = s′1, s
−
1 , s

+
1 , w

−, w+, ..., u−, u+, v−, v+, ..., t−1 , t
+
1 , t
′
1 is a shortest path from

s′1 to t′1 in G′. We claim that P1 = s1, w, ..., u, v, ..., t1 is a shortest path from s1 to t1 in G. For
contradiction, suppose that the claim is not true. Then there exists a path P0 = s1w1...w`t1 in G
such that w(P0) < w(P1) = w(P ′1). Thus there is a path P ′0 = s′1, s

−
1 , s

+
1 , w

−
1 , w

+
1 , ..., w

−
` , w

+
` , t
−
1 , t

+
1 , t
′
1

in G′ such that w(P ′0) = w(P0) < w(P ′1), contradicting that P ′1 is a shortest path from s′1 to t′1
in G′.

Similarly we can show that P2 = s2, w, ..., u, v, ..., t2 is a shortest path from s2 to t2 in G if
and only if P ′2 = s′2, s

−
2 , s

+
2 , w

−, w+, ..., u−, u+, v−, v+, ..., t−2 , t
+
2 , t
′
2 is a shortest path from s′2 to

t′2 in G′. It follows that for u, v ∈ V (G) \ {s′1, s′2, t′1, t′2}, uv ∈ Ei if and only if u+v− ∈ E′i for
i = 1, 2.

For i = 1, 2, as w(v−v+) = 0, we have that di(v+) = di(v
−) +w(v−v+). Since some ingoing

edge of v− belongs to E′i, there is a v−t′i path in E′i. It follows that there is also a v+t′i path in
E′i. By the definition of E′i, all of the parallel edges v−v+ belong to E′i.

It’s not hard to verify that Lemma 8 and Lemma 9 also apply to G′, but we will also state
them here for clarity.

Lemma 15. [9] The edge set E′i forms no dicycle in G′ for i = 1, 2.

Lemma 16. [9] In the graph G′, suppose that C is a dicycle in E′1 ∪E′2. Then E′1 ∩E(C) ⊆ E′2
and E′2 ∩ E(C) ⊆ E′1.

Let E′0 = E′1 ∩E′2, E∗1 = E′1 \E′0, E∗2 = E′2 \E′0. We contract all edges of E′0 and get a graph
G′′ = (V ′′, E′′). For an edge e ∈ E′′, let f(e) ∈ E(G′) denote the edge corresponding to e before
the contracting operations. We need to compute the new transition system of G′′ as follows. Let
V ′0 ⊆ V ′′ be the set of vertices that are newly created after contracting E′0. For v ∈ V ′0 , we use
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G′v to denote the subgraph of G′ − (E(G′) \ (E′1 ∪ E′2)) induced by the vertices corresponding
to v before contracting. For every u ∈ V (G′′) \ V ′0 , if f(e)f(e′) ∈ TG′(u) then {e, e′} ∈ TG′′(u).
Let v ∈ V ′0 and headG′′(e) = tailG′′(e′) = v. If there is a T -compatible path in the subgraph of
G′ consisting of all edges of G′v together with f(e) and f(e′) from tailG′(f(e)) to headG′(f(e′)),
then {e, e′} ∈ TG′′(v). By Lemma 15, there is no dicycle in G′v. Moreover, the subgraph of G′

consisting of all edges of G′v together with f(e) and f(e′) is also acyclic. So we can compute
TG′′(v) for every v ∈ V ′0 in polynomial time according to Lemma 11. Since E∗1 ∩ E∗2 = ∅, then
we can reverse all edges of E∗2 (the lengths of edges unchanged) with E∗1 unchanged. We get a
new graph G∗ = (V ∗, E∗), such that V ∗ = V ′′ and E∗ = E∗1 ∪ E∗2 .

Then we also need to compute the new transition systems of G∗. If e, g ∈ E∗1 and {e, g} ∈
TG′′(v) for some v ∈ V ′′, then {e, g} ∈ TG∗(v). If e, g ∈ E∗2 and {e, g} ∈ TG′′(v) for some v ∈ V ′′,
then {ḡ, ē} ∈ TG∗(v). Here we use ē, ḡ ∈ E∗2 to denote the reverse of e, g respectively.

Claim 4. After reversing the edges of E∗2 , there is no dicycle in G∗.

Proof. Suppose for contradiction that there is a dicycle C in G∗. By Lemma 15, E(C) 6⊆
E∗1 , E(C) 6⊆ E∗2 . It follows that E(C) ∩ E∗1 6= ∅ and E(C) ∩ E∗2 6= ∅. Then by Lemma 16, E(C)
should have been contracted in G′′, contradicting that C is a dicycle in G∗.

We define a new digraph G as follows. LetW = E∗1×E∗2 be its vertex set. For (e1, e2), (e
′
1, e
′
2) ∈

W , there is a directed edge from (e1, e2) to (e′1, e
′
2) if one of three cases hold.

(i) e1 = e′1, headG∗(e2) = tailG∗(e′2) = v and {e2, e′2} ∈ TG∗(v). There is no path from
headG∗(e1) to v in G∗.

(ii) e2 = e′2, headG∗(e1) = tailG∗(e′1) = v and {e1, e′1} ∈ TG∗(v). There is no path from
headG∗(e2) to v in G∗.

(iii) headG∗(e2) = tailG∗(e′2) = headG∗(e1) = tailG∗(e′1) = v and {e1, e′1}, {e2, e′2} ∈ TG∗(v).
Furthermore, if v ∈ V0, let Gs be the subgraph of G′ consisting of all edges of G′v together
with f(e1), f(e′1), f(e2) and f(e′2). Then Gs contains two T -compatible vertex-disjoint
paths such that one path is from tailG′(f(e1)) to headG′(f(e′1)) and the other path is from
tailG′(f(e′2)) to headG′(f(e2)).

In the third case above, we claim that v must belong to V ′0 . Suppose for contradiction that
v /∈ V ′0 . Clearly, v /∈ {s′1, s′2, t′1, t′2}, as in must be both, head and tail of some edges. So there are
two remaining cases. The first case is that v = u− for some u ∈ V (G). Then all outgoing edges
of u− in G′′ are parallel edges, that is, headG′′(e2) = headG′′(e′1). Then e′1 and e2 form a cycle in
G∗, contradicting that G∗ is acyclic. The second case is that v = u+ for some u ∈ V (G). Then
all ingoing edges of u+ in G′′ are parallel edges, that is, tailG′′(e′2) = tailG′′(e1). Then e1 and e′2
form a cycle in G∗, contradicting that G∗ is acyclic. Thus v must belong to V ′0 . Then we need
to solve the vertex-disjoint version of 2-DSPP with transition restrictions in the acyclic
graph G′v ∪ {e1, e′1, e2, e′2}. The following lemma shows that we can do it in polynomial time.
The algorithm is an adaption of the algorithm of finding two vertex-disjoint paths in DAG given
by Perl and Shiloach [111].

Lemma 17. In a directed acyclic graph G = (V,E) with transition system TG, we can solve the
vertex-disjoint version of 2-DSPP with transition restrictions in polynomial time.

Proof. First we modify the graph G as follows. We create four vertices s′1, s′2, t′1, t′2 and update
V (G) as V (G)← V (G)∪ {s′1, s′2, t′1, t′2}. We create four edges {s′1s1, s′2s2, t1t′1, t2t′2} and update
E(G) as E(G)← E(G) ∪ {s′1s1, s′2s2, t1t′1, t2t′2}. Also, for i = 1, 2, we update TG(si) as

TG(si)← TG(si) ∪ {{e, e′} | e = s′isi and tailG(e′) = si},
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and we update TG(ti) as

TG(ti)← TG(ti) ∪ {{e, e′} | e′ = tit
′
i and headG(e) = ti}.

For every vertex v ∈ V (G), define the level `(v) as the length of a longest directed path in G
starting from v. This can be computed by repeatedly removing a vertex of G. Then we create
a graph G̃ as follows. Let the vertex set of G̃ be V (G̃) = {(e1, e2) | e1, e2 ∈ E(G) and e1 6= e2}.
For every (e1, e2), (e

′
1, e
′
2) ∈ V (G̃), create an edge from (e1, e2) to (e′1, e

′
2) if one of the following

cases holds:

(1) e1 = e′1, `(headG(e2)) ≥ `(headG(e1)), {e2, e′2} ∈ TG(headG(e2)), headG(e′2) 6= tailG(e1)
and headG(e′2) 6= headG(e1).

(2) e2 = e′2, `(headG(e1)) ≥ `(headG(e2)), {e1, e′1} ∈ TG(headG(e1)), headG(e′1) 6= tailG(e2)
and headG(e′1) 6= headG(e2).

(3) e1 = e′1 = t1t
′
1, `(headG(e2)) < `(t′1), {e2, e′2} ∈ TG(headG(e2)).

(4) e2 = e′2 = t2t
′
2, `(headG(e1)) < `(t′2), {e1, e′1} ∈ TG(headG(e1)).

We claim that there are two T -compatible vertex-disjoint paths P1 and P2 in G such that Pi is
from s′i to t

′
i for i = 1, 2 if and only if there is a path P from (s′1s1, s

′
2s2) to (t1t

′
1, t2t

′
2) in G̃.

(“only if” direction): Let P1 = e01, e
1
1, . . . , e

p+1
1 and e01 = s′1s1, e

p+1
1 = t1t

′
1. Let P2 =

e02, e
1
2, . . . , e

q+1
2 and e02 = s′2s2, e

q+1
2 = t2t

′
2. For any i ∈ {0, 1, . . . , p + 1}, j ∈ {0, 1, . . . , q + 1},

such that (i, j) 6= (p+ 1, q + 1), one of the following four cases must hold.

• i ≤ p and j ≤ q, `(headG(ei1)) ≤ `(headG(ej2)), then there is an edge in G̃ from (ei1, e
j
2) to

(ei1, e
j+1
2 ).

• i ≤ p and j ≤ q, `(headG(ei1)) ≥ `(headG(ej2)), then there is an edge in G̃ from (ei1, e
j
2) to

(ei+1
1 , ej2).

• i = p + 1 and j ≤ q, `(headG(ej2)) < `(t′1), then there is an edge in G̃ from (ep+1
1 , ej2) to

(ep+1
1 , ej+1

2 ).
• j = q + 1 and i ≤ p, `(headG(ei1)) < `(t′2), then there is an edge in G̃ from (ei1, e

q+1
2 ) to

(ei+1
1 , eq+1

2 ).

As a result, there is a path P from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in G̃. This finishes the proof for

“only if” direction.

(“if” direction): Suppose that there exists a path P from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in G̃.

Let P = (e01, e
0
2), (e

1
1, e

1
2), . . . , (e

r
1, e

r
2), such that (e01, e

0
2) = (s′1s1, s

′
2s2) and (er1, e

r
2) = (t1t

′
1, t2t

′
2).

We construct two vertex-disjoint T -compatible paths P1, P2 as follows. First we initialize P1 =
e01, P2 = e02. Then for i = 0, . . . , r − 1, we update P1 and P2 according to the following cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2 ) is of type (1). Then P2 ← P2 · ei+1

2 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (2). Then P1 ← P1 · ei+1

1 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (3). Then P2 ← P2 · ei+1

2 .
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2 ) is of type (4). Then P1 ← P1 · ei+1

1 .

By the definition of edges of G̃, we get that P1 and P2 are two T -compatible vertex-disjoint
paths in G such that Pi is from s′i to t

′
i for i = 1, 2. We can construct a graph G̃ in O(|E|3) time

and find a path from (s′1s1, s
′
2s2) to (t1t

′
1, t2t

′
2) in O(|E|3) time. Thus the lemma holds.

By the results above, we can construct G in polynomial time. Now we show that we can
solve the vertex-disjoint version of 2-DSPP with transition restrictions in G by finding
a path in G from (s′1s

−
1 , t
′
2t

+
2 ) to (t+1 t

′
1, s
−
2 s
′
2). Note that s−i , t

+
i ∈ V (G′) might be the endpoints

of edges of E′0 for i = 1, 2. In this case, although we might contract the edges incident to
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s−i , t
+
i ∈ V (G′) and replace these vertices with new vertices, we slightly abuse s−i , t

+
i to denote

the vertex adjacent to s′i, t
′
i respectively in G∗ for i = 1, 2 for the sake of simplicity.

Lemma 18. There is a directed path in G from (s′1s
−
1 , t
′
2t

+
2 ) to (t+1 t

′
1, s
−
2 s
′
2) if and only if G′ has

two vertex-disjoint T -compatible paths P1 and P2 such that Pi is from s′i to t
′
i and Pi ⊆ E′i for

i = 1, 2.

Proof. (“if” direction) Suppose that G′ has two vertex-disjoint T -compatible paths P1 and P2

such that Pi is from s′i to t
′
i and Pi ⊆ E′i for i = 1, 2. Recall that we contract the edges of E′0 in G′

and reverse the edges of E∗2 in G′′ to get G∗. So by the definition of transition systems of G′′ and
G∗, the set E(P1) \ E′0 forms a directed T -compatible path P ∗1 in G∗ from s′1 to t′1, and the set
E(P2) \ E′0 forms a directed T -compatible path P ∗2 in G∗ from t′2 to s′2. Let P ∗1 = e01, e

1
1, . . . , e

p+1
1

and e01 = s′1s
−
1 , e

p+1
1 = t+1 t

′
1. Let P ∗2 = e02, e

1
2, . . . , e

q+1
2 and e02 = t′2t

+
2 , e

q+1
2 = s−2 s

′
2. It follows

that ei1 ∈ E∗1 for i = 0, 1, . . . , p + 1 and ej2 ∈ E∗2 for j = 0, 1, . . . , q + 1. Since G∗ is acyclic, for
any i = 0, 1, . . . , p + 1 and for any j = 0, 1, . . . , q + 1, at least one of the following three cases
holds.

(1) There is no directed path from headG∗(ei1) to headG∗(e
j
2) in G∗.

(2) There is no directed path from headG∗(e
j
2) to headG∗(ei1) in G∗.

(3) headG∗(ei1) = headG∗(e
j
2).

By the definition of G, the following statements hold.

• If (1) holds and j 6= q + 1, then G has an edge from (ei1, e
j
2) to (ei1, e

j+1
2 ).

• If (2) holds and i 6= p+ 1, then G has an edge from (ei1, e
j
2) to (ei+1

1 , ej2).
• If (3) holds, then G has an edge from (ei1, e

j
2) to (ei+1

1 , ej+1
2 ).

We can see that if i = p+1 then (1) holds and if j = q+1 then (2) holds. As a result, there is an
edge from (ei1, e

j
2) to (ei+1

1 , ej2), (ei1, e
j+1
2 ) or (ei+1

1 , ej+1
2 ) in G if (i, j) 6= (p+ 1, q + 1). It follows

that starting from (ei1, e
j
2) with i = 0, j = 0, we can find a directed path ending at (ep+1

1 , eq+1
2 )

through increasing i by 1, increasing j by 1 or increasing both i and j by 1 iteratively. This
concludes the proof for “if direction”.

(“only if” direction) Suppose that there is a directed path from (e01, e
0
2) = (s′1s

−
1 , t
′
2t

+
2 ) to

(er1, e
r
2) = (t+1 t

′
1, s
−
2 s
′
2) in G that goes through (e01, e

0
2), (e

1
1, e

1
2), ..., (e

r
1, e

r
2) consecutively. We

construct two T -compatible paths P1, P2 in G′ as follows. First we initialize P1 = e01, P2 = e02.
Then for i = 0, ..., r − 1, we update P1 and P2 according to the following three cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2 ) is of type (i), namely ei1 = ei+1

1 ,
headG∗(ei2) = tailG∗(ei+1

2 ) = v and {ei2, e
i+1
2 } ∈ TG∗(v). There is no path from headG∗(ei1)

to v in G∗. If v ∈ V ′0 , let Q be the T -compatible path in the subgraph of G′ consisting
of all edges of G′v together with f(ei2) and f(ei+1

2 ) from tailG′(f(ei+1
2 )) to headG′(f(ei2)).

Then P2 ← f(ei+1
2 ) ·Q \ {f(ei2), f(ei+1

2 )} · P2. Otherwise, if v /∈ V ′0 , P2 ← f(ei+1
2 ) · P2.

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2 ) is of type (ii), namely ei2 = ei+1

2 ,
headG∗(ei1) = tailG∗(ei+1

1 ) = v and {ei1, e
i+1
1 } ∈ TG∗(v). There is no path from headG∗(ei2)

to v in G∗. If v ∈ V ′0 , let Q be the T -compatible path in the subgraph of G′ consisting
of all edges of G′v together with f(ei1) and f(ei+1

1 ) from tailG′(f(ei1)) to headG′(f(ei+1
1 )).

Then P1 ← P1 ·Q \ {f(ei1), f(ei+1
1 )} · f(ei+1

1 ). Otherwise, if v /∈ V ′0 , P1 ← P1 · f(ei+1
1 ).

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2 ) is of type (iii), namely headG∗(ei1) =

tailG∗(ei+1
1 ) = headG∗(ei2) = tailG∗(ei+1

2 ) = v and {ei1, e
i+1
1 } ∈ TG∗(v), {ei2, e

i+1
2 } ∈

TG∗(v). If v ∈ V ′0 , let Gs be the subgraph of G′ consisting of all edges of G′v togeth-
er with f(e1), f(e′1), f(e2) and f(e′2). There are two T -compatible vertex-disjoint paths
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in Gs, namely Q1 from tailG′(f(ei1)) to headG′(f(ei+1
1 )) and Q2 from tailG′(f(ei+1

2 )) to
headG′(f(ei2)). Then P1 ← P1 · Q1 \ {f(ei1), f(ei+1

1 )} · f(ei+1
1 ) and P2 ← f(ei+1

2 ) · Q2 \
{f(ei2), f(ei+1

2 )} · P2. Otherwise, if v /∈ V ′0 , then P1 ← P1 · f(ei+1
1 ) and P2 ← f(ei+1

2 ) · P2.

As a result, we construct two vertex-disjoint T -compatible paths P1 and P2 such that Pi is from
s′i to t

′
i and Pi ⊆ E′i for i = 1, 2. This finishes the proof for “only if” direction.

Since G contains O(|E|3) edges, we can detect a path in G in polynomial time. Thus Lem-
ma 18 shows that the vertex version of 2-DSPP with transition restrictions can be solved
in polynomial time assuming that every cycle in the input graph has positive length.
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Chapter 6

Cluster Editing parameterized above
modification-disjoint P3-packings

In this chapter, we show the NP-hardness of Cluster Editing above modification-disjoint
P3 packing (CEaMP) when ` = 0 and give an XP algorithm for Cluster Editing above
two-restricted modification-disjoint P3 packing (CEaTMP). Recall that CEaMP is
a variant of Cluster Editing. In CEaMP, we are given a graph G = (V,E), a packing H
of modification-disjoint induced P3s (no pair of P3s in H share an edge or non-edge) and an
integer `. The task is to decide whether G can be transformed into a union of vertex-disjoint
cliques by at most ` + |H| modifications (edge deletions or insertions). CEaTMP is a variant
of CEaMP where every vertex of the input graph belongs to at most two P3s of the packing H.

Organization of this chapter. In Section 6.1, we present an NP-hardness reduction from 3-
SAT to CEaMP when ` = 0. In Section 4.2, we give a polynomial-time algorithm for CEaTMP
when ` = 0 and show an XP algorithm for CEaTMP.

6.1 NP-hardness for tight modification-disjoint packings

In this section, we prove Theorem 5 by showing a reduction from the NP-hard problem of
deciding satisfiability of 3-CNF formulas. Given a 3-CNF formula Φ, we construct a graph
G = (V,E) with a modification-disjoint packing H of induced P3s such that Φ has a satisfying
assignment if and only if G has a cluster editing set S which consists of exactly one vertex pair
of each P3 in H. In other words, the CEaMP instance (G,H, 0) is a yes-instance. We assume
that every clause of Φ has exactly 3 literals of pair-wise different variables as we can preprocess
the formula to achieve this in polynomial time otherwise. Similarly, we can assume that every
variable of Φ appears at least twice. In the following, we let m denote the number of clauses
in Φ, denote the clauses of Φ by Γ0, . . . ,Γm−1, let n be the number of variables, and denote
the variables of Φ by x0, . . . , xn−1. Furthermore, we let mi denote the number of clauses that
contain the variable xi, i = 0, . . . , n− 1.

6.1.1 Construction

Before giving the hardness proof, it is instructive to determine some easy and difficult cases when
solving CEaMP with ` = 0. This will give us an intuition about the underlying combinatorial
problem that we need to solve.

Let (G,H, 0) be an instance of CEaMP. It is helpful to consider the subgraph Gfix of G that
contains only those edges of G that are not contained in any P3 in H. Suppose that (G,H, 0) has
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A

B

C

D

E

Figure 6.1: Four proto-clusters A through E and two P3s in the underlying graph and in the
P3-packing that connects A to C via B and C to E via D, respectively. The dashed edge between
B and D means that there is a dividing non-edge between B and D.

a solution S and letGsol be the associated cluster graph. Observe that each connected component
of Gfix is part of a single cluster in Gsol. Let us hence call the connected components of Gfix
proto-clusters. Our task in finding Gsol is indeed to find a vertex partition P which is coarser
than the vertex partition given by the proto-clusters, and satisfies certain further conditions.
The additional conditions herein are given by the P3s in G and also by the non-edges of G which
are not contained in any P3 in H—let us call such non-edges dividing. A dividing non-edge
between two proto-clusters implies that these proto-clusters cannot be together in a cluster in
Gsol. Hence, we are searching for a vertex partition P as above subject to the constraints that
certain proto-cluster pairs end up in different parts.

The constraints on P given by P3s in G can be distinguished based on the intersection of
the P3s with the proto-clusters. We only want to highlight two situations that are most relevant
for the hardness construction. The first situation is when a P3, name it P , intersects with three
proto-clusters D1, D2, and D3, each in exactly one vertex and with center vertex in D2. The
corresponding constraint on P is that either D1 and D2 are merged or D2 and D3 are merged
into one cluster. We can satisfy such constraints easily, in the absence of further constraints, by
merging all proto-clusters into one large cluster. However, together with the constraints from
dividing non-edges a difficult picture emerges. Consider Fig. 6.1. Proto-clusters B and D cannot
be merged into one cluster because of a dividing non-edge. However, there is a path in G from
B to D via vertices of C. Hence, either B and C are in different clusters in Gsol or C and D
are. If B and C are in different clusters, then since we have only budget one for the P3 involving
A, B, and C, it follows that A and B are merged into one cluster in Gsol. It is not hard to
imagine that such behavior can be very non-local and in fact two different generalizations of this
behavior form the basis for the variable and clause gadget in our hardness reduction.

The second case is when there is a P3 in G and also in the packing H that has an edge
contained in one proto-cluster A and the remaining vertex in a different proto-cluster B. Call
this P3 P . Intuitively, regardless of whether A and B are merged into one cluster in Gsol, P can
be edited without excess cost over H to accommodate this choice. In our hardness reduction, a
main difficulty will be to pad subconstructions with P3s in the packing H, so that we are able
to find a solution with zero excess edits. For this we will heavily use P3s of the form that we
just described.

6.1.2 Construction

Our basic building blocks will be proto-clusters. A proto-cluster is a subgraph that is connected
through edges that are not contained in any P3 in the constructed packing H. The proto-clusters
then have to be joined into larger clusters in a way that represents a satisfying assignment to
Φ. The variable gadget basically consists of an even-length cycle of proto-clusters, connected by
P3s so that either odd or even pairs of proto-clusters on the cycle have to be merged. These two
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options represent a truth assignment. The construction of the variable gadget is more involved
than a simple cycle of proto-clusters, however, because of the connection to the clause gadgets:
We need to ensure that all vertex pairs between certain proto-clusters of a variable and clause
gadget are covered by P3s in H, so to be able to merge these clusters in the completeness proof.
The way in which we cover these vertex pairs imposes some constraints on the construction of
the variable gadgets, making the gadgets more complicated.

Variable Gadget

As mentioned, a variable will be represented by a cycle of proto-clusters such that any solution
needs to merge either each odd or each even pair of consecutive proto-clusters. These two options
represent the truth value assigned to the variable. In order to enable both associated solutions
with zero edits above the packing lower bound, we build an associated packing of P3s such that
all vertex pairs between consecutive proto-clusters are covered by a P3 in the packing. Since
we later on need to connect the variable gadgets to the clause gadgets, each proto-cluster will
contain five vertices, giving us enough attachment points for later.

Recall that mi denotes the number of clauses that contain the variable xi, i = 0, 1, . . . , n−1.
For each variable xi, i = 0, 1, . . . , n − 1, we create 4mi vertex-disjoint cliques with 5 vertices
each, namely Ki

0, . . . ,K
i
4mi−1. In each Ki

j , j = 0, 1, . . . , 4mi − 1, the vertices are vij,0, . . . , v
i
j,4.

For each j = 0, 2, . . . , 4mi−2, we create P3s connecting Ki
j ,K

i
j+1 and Ki

j+2 as we explain below
(here we identify Ki

0 as Ki
4mi

).
Throughout the construction, the cliques we have just introduced will remain proto-clusters,

that is, they contain a spanning tree of edges that are not covered by P3s in the packing H. We
now add pairwise modification-disjoint P3s so as to cover all edges between the cliques Ki

j we
have just introduced. Recall that F5 is the finite field of the integers modulo 5. We take three
consecutive cliques and add P3s with one vertex in each of the three cliques. To do this without
overlapping two P3s, we think about the cliques’ vertices as elements of F5 and add a P3 for
each possible arithmetic progression. That is, in each added P3 the difference of the first two
elements of the P3 is equal to the difference of the second two elements. In this way, each vertex
pair is contained in a single P3 since the third element is uniquely defined by the arithmetic
progression.

Formally, for every triple of elements p, q, r ∈ F5 satisfying the equality q − p = r − q over
F5, we add to the graph the edges vij,pv

i
j+1,q and vij+1,qv

i
j+2,r and we add to the packing H the

P3 given by vij,pv
i
j+1,qv

i
j+2,r. Note that in this manner the clique Ki

j+1 becomes fully adjacent
to Ki

j and to Ki
j+2 while Ki

j+1 stays anti-adjacent to all other cliques Ki
j′ .

Observe that the P3s given by vij,pv
i
j+1,qv

i
j+2,r for j = 0, 2, . . . , 4mi − 2 such that q − p =

r − q are pairwise modification-disjoint: For each j = 0, 2, . . . , 4mi − 2, an arbitrary edge just
introduced between Ki

j and K
i
j+1 has the form {vij,p, vij+1,q} for some p, q ∈ F5. It belongs to the

unique P3 given by vij,pv
i
j+1,qv

i
j+2,r, where r = 2q−p. Similarly, an arbitrary edge {vij+1,q, v

i
j+2,r}

for q, r ∈ F5 belongs to the unique P3 given by vij,2q−rv
i
j+1,qv

i
j+2,r and an arbitrary non-edge

{vij,p, vij+2,r} for p, r ∈ F5 belongs to the unique P3 given by vij,pv
i
j+1,(p+r)·2−1v

i
j+2,r, where 2−1

is the multiplicative inverse of 2 over F5, that is, 2−1 = 3.
After this construction, we set the modification-disjoint packing of the variable gadget to be

Hvar = {P3 given by vij,pv
i
j+1,qv

i
j+2,r | i = 0, . . . , n−1; j = 0, 2, . . . , 4mi−2; p, q, r ∈ F5; and q−p = r−q}.

This finishes the first stage of the construction. Notice that the cliquesKi
j form a cyclic structure.

Intuitively, every second pair of cliques needs to be merged into one cluster by any solution due
to the P3s we have introduced, and we will see that the two resulting solutions are in fact
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Figure 6.2: Skeleton of a clause gadget Γd = (xa∨¬xb∨¬xc). The white circles represent cliques.
The blue dotted lines inside Q2

d and Q3
d indicate that Q1

d, Q
2
d, Q

3
d and Q4

d are in one connected
component. A pair of incident brown thick lines indicates a set of four transferring P3s used to
connect a clause gadget to a variable gadget. The cycles made from cliques and gray thick lines
represent variable gadgets, where a dashed gray line indicates an omitted part of the cycle. The
cycle for variable xa is shown completely, where we assume that ma = 3, that is, variable xa is
in three clauses. Labels T and F on thick gray edges indicate the pairs of cliques that shall be
merged into one cluster if the variable is to be set to true or false, respectively.

the only ones. The truth values of the variable are then represented as follows. For every
variable xi, i = 0, . . . , n − 1, if Ki

j and Ki
j+1 are merged for j = 0, . . . , 4mi − 2, then this

represents the situation that we assign false to the variable xi. If Ki
j+1 and Ki

j+2 are merged for
j = 0, . . . , 4mi−2, then this represents variable xi being true. We will make minor modifications
to the variable gadgets and Hvar in the following section, so as to transmit the choice of truth
value to the clause gadgets.

Skeleton of the Clause Gadget

In order to introduce the construction of the clause gadget, we first give a description of the
skeleton of the clause gadget. The skeleton is a subgraph of the final construction that allows
us to prove the soundness. The final construction is given in the succeeding sections. We give
a picture of the skeleton in Fig. 6.2. The basic idea is as follows: A clause Γd is represented by
four proto-clusters (cliques), Qid, i = 1, . . . , 4, as in Fig. 6.2. The proto-clusters are connected
by a path P containing vertices of Q1

d, Q
2
d, Q

3
d, and Q4

d in that order. However, between Q1
d

and Q4
d there is a dividing non-edge, a non-edge that is not contained in any P3 in the packing,

meaning that every solution has to cut the path P by deleting all edges between Q1
d and Q2

d, or
between Q2

d and Q3
d, or between Q

3
d and Q4

d. We use this three-way choice to force the solution
to select a variable that satisfies the clause Γd.
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Main Gadget Formally, for each variable xi, i = 0, 1, . . . , n− 1, we fix an arbitrary ordering
of the clauses that contain xi. If a clause Γj contains xi, let π(i, j) ∈ {0, . . . ,mi − 1} denote
the position of the clause Γj in this ordering. Let initially Htra = ∅. For each clause Γd
(d = 0, . . . ,m−1) proceed as follows. We first introduce four cliques Q1

d, Q
2
d, Q

3
d and Q

4
d. Let Γd

contain the variables xa, xb and xc. We introduce the cliques T ad , T
b
d and T cd , called transferring

cliques. All of the cliques introduced are pairwise vertex disjoint and can be of different sizes.
We will give the exact sizes later.

Next, we introduce the following P3s:

• Introduce two P3s, P 1
d and P 2

d , both connecting T ad and Q2
d via Q1

d, such that P 1
d and P 2

d

share the same vertex in Q1
d.

• Introduce two P3s, P 3
d and P 4

d , both connecting T bd and Q2
d via Q3

d, such that P 3
d and P 4

d

share the same vertex in Q3
d.

• Introduce two P3s, P 5
d and P 6

d , both connecting T cd and Q3
d via Q4

d, such that P 5
d and P 6

d

share the same vertex in Q4
d.

All the P3s P id are pairwise vertex-disjoint except for the pairs sharing the center (as explicitly
mentioned in the description). We add each P id for i = 1, . . . , 6 to Htra. We call the P3s of Htra
transferring P3s.

Connection to the Variable Gadgets Next we connect the transferring cliques T ad , T
b
d ,

and T cd to the variable gadgets of xa, xb, and xc, respectively. To avoid additional notation,
we only explain the procedure for T ad and xa, the other pairs are connected analogously. We
connect T ad to the variable gadget of xa by a set of four modification-disjoint P3s as shown in
Fig. 6.3 and explained formally below. The centers of these P3s are in Ka

4π(a,d)+1. For each
of these four P3s, exactly one endpoint is an arbitrary distinct vertex in T ad which is different
from the endpoints of the P3s connecting T ad to Q1

d; we denote these endpoints as w1, w2, w3, w4.
The other endpoint is in Ka

4π(a,d)+2 if xa appears positively in Γd and the other endpoint is in
Ka

4π(a,d) otherwise. The precise centers and endpoints in the cliques Ka
4π(a,d)+2 or Ka

4π(a,d) are
specified below. Since these newly introduced P3s use edges that belong to some P3s in Hvar
that were introduced while constructing the variable gadgets, we will remove such P3s in the
variable gadget from Hvar, remove their corresponding edges from the graph, and add some new
P3s to Hvar as described below. As a result, the clique Ka

4π(a,d)+1 may no longer be fully adjacent
to Ka

4π(a,d) or K
a
4π(a,d)+2. We will however maintain the invariant that each vertex pair between

Ka
4π(a,d)+1 and Ka

4π(a,d) or K
a
4π(a,d)+2 is covered by a P3 in the packing and that all the P3s of

Hvar are pairwise modification-disjoint.
Formally, if xa appears positively in Γd, we denote:

v1 = va4π(a,d)+1,0 v2 = va4π(a,d)+1,1

v3 = va4π(a,d)+2,1 v4 = va4π(a,d)+2,2

v5 = va4π(a,d),0 v6 = va4π(a,d),1

v7 = va4π(a,d),3 v8 = va4π(a,d),4.

If xa appears negatively in Γd, we swap the roles of Ka
4π(a,d) and K

a
4π(a,d)+2, that is:

v1 = va4π(a,d)+1,0 v2 = va4π(a,d)+1,1

v3 = va4π(a,d),1 v4 = va4π(a,d),2

v5 = va4π(a,d)+2,0 v6 = va4π(a,d)+2,1

v7 = va4π(a,d)+2,3 v8 = va4π(a,d)+2,4.

51



v5
v1
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v2 v3

v4

v7

v8

w1 w2 w3 w4

Ka
4π(a,d)

Kp
4π(p,d)+1

Ka
4π(a,d)+2

T ad

Figure 6.3: Connection of a clause gadget with a variable gadget for a variable xa which appears
positively in the clause. White ellipses represent cliques. The vertices in the cliques in the
variable gadget are ordered from top to bottom according to the elements of F5 which they
represent. For example, the topmost vertex in Ka

4π(a,d) is va4π(a,d),0 (corresponding to 0 ∈ F5)
and the bottom-most is va4π(a,d),4 (corresponding to 4 ∈ F5). The gray lines adjacent to cliques in
the variable gadget represent some of the P3s that were introduced into the variable gadgets in
the beginning. (Some gray lines are super-seeded by edges of other colors.) The P3s represented
by the gray lines have the associated arithmetic progression “+0”, that is, q − p = r − q = 0
in the definition of the P3s. The P3s for the remaining arithmetic progressions are omitted for
clarity. In colors red, black, green, and blue we show the P3s that connect the transferring clique
T ad with the variable gadget of variable xa. Herein, dotted lines are non-edges and solid lines
are edges. Note that these connecting P3s supplant some of the edges of previously present P3s
in the variable gadget—the previously present P3s are then removed. For example the green P3

replaces the edge v2v3 of the P3 given by v6v2v3 that was previously present. To maintain that
each vertex pair between consecutive cliques in the variable gadget is covered by some P3 in the
packing, we add the brown P3s.
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As shown in Fig. 6.3, we remove P3s given by v8v1v3, v7v1v4, v6v2v3, v5v2v4 from Hvar and we
remove their corresponding edges from the graph. Then we add the P3s given by v5v6v2 and
v1v7v8 to the graph and to Hvar. Finally, we connect T ad via Ka

4π(a,d)+1 by adding the P3s given
by w1v1v3, w2v2v4, w3v2v3, and w4v1v4 to the graph and to Htra. Note that, indeed, each vertex
pair between Ka

4π(a,d)+1 and Ka
4π(a,d) and between Ka

4π(a,d)+1 and Ka
4π(a,d)+2 remains covered by

a P3 in the packing after replacing all P3s. This finishes the construction of the skeleton of the
clause gadgets.

The intuitive idea behind the connection to the variable gadget and how it is used in the
soundness proof is as follows. Recall from above that we need to delete at least one of three
sets of edges in the solution, namely the edges between Q1

d and Q2
d, the edges between Q2

d and
Q3
d, or the edges between Q3

d and Q4
d. Assume that the edges between Q1

d and Q2
d are deleted

and the variable xa appears positively in the clause Γd as in Fig. 6.2. Because of the constraints
imposed by the P3s P 1

d and P 2
d , cliques T

a
d and Q1

d have to be merged in the final cluster graph.
Since Ka

4π(a,d)+1 cannot be merged with Q1
d (there are no edges between Q1

d and Ka
4π(a,d)+1, and

no P3s connecting Q1
d and Ka

4π(a,d)+1), we have to separate T ad from Ka
4π(a,d)+1. Then, the P3s

connecting T ad with Ka
4π(a,d)+2 force Ka

4π(a,d)+1 and Ka
4π(a,d)+2 to merge. This means xa is true

and it satisfies the clause Γd.
The P3s added so far are indeed sufficient to conduct a soundness proof of the above reduction:

They ensure that there exists a satisfying assignment to the input formula provided that there
exists an appropriate cluster editing set. However, the completeness is much more difficult: We
need to add some more “padding” P3s to the packing (and edges to the graph between the cliques
that can be potentially merged) to ensure that a satisfying assignment can always be translated
into a cluster-editing set. In other words, if two cliques have the potential to be merged or
separated, because of the constraint that ` = 0, every edited edge or non-edge between the
vertices of the two cliques must belong to exactly one P3 in the packing H. The goal of the next
two sections is to develop a methodology of padding such cliques with P3s in the packing. The
padding will rely on the special structure of P3s that we have established above in the clause
gadget and connection between clause and variable gadget.

Merging Model of the Clause Gadget

In the sections above, we have defined all proto-clusters of the final constructed graph: As we will
see in the correctness proof, each clique will be a proto-cluster in the end. Thus, all solutions will
construct a cluster graph whose clusters represent a coarser partition than the partition given by
the proto-clusters, or cliques. What remains is to ensure that the proto-clusters indeed can be
merged as required to construct a solution from a satisfying assignment to Φ in the completeness
proof. To do this, we pad the proto-clusters with P3s (in the graph and packing H). To simplify
this task we now divide the set of proto-clusters into five levels L0, . . . , L4. Then, we will go
through the levels in increasing order and add padding P3s from proto-clusters the current level
to the proto-clusters of all lower levels if necessary.

There are two issues that we need to deal with when introducing the padding P3s. For the
padding, we will use a number-theoretic tool that we introduce in the following part which has
the limitation that, when padding a proto-cluster D with P3s to some sequence D1, . . . , Ds of
proto-clusters of lower level, we need to increase the number of vertices in D to be roughly
2 ·
∑s

i=1 |Di|. Hence, first, we need to make sure that the number of levels is constant since the
number of size increases of proto-clusters compounds exponentially with the number of levels.
Second, we aim for the property that each vertex is only in a constant number of P3s in H and
thus, we need to ensure that the number s of lower-level proto-clusters and their size is constant.

To achieve the above goals, we introduce an auxiliary undirected graph H, the merging
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Figure 6.4: Merging model of a clause Γd = (xa ∨ ¬xb ∨ ¬xc). The number i ∈ {0, 1, 2, 3, 4}
beside a vertex v denotes that v ∈ Li. The placement of vertices corresponds to the placement
of the cliques in Fig. 6.2. For example, the two vertices on level 1 on the top correspond to Q1

d

and Q4
d. We assume that ma = 3.

model, which will further guide the padding process. The merging model has as vertices the
cliques that were introduced before and an edge between two cliques if we want it to be possible
that they are merged by a solution. Formally,

V (H) := {Ki
j | i = 0, 1, . . . , n− 1 and j = 0, 1, . . . , 4mi − 1} ∪

{Q1
d, Q

2
d, Q

3
d, Q

4
d | d = 0, 1, . . . ,m− 1} ∪

{T as | variable xa occurs in clause Γs},

and the edge set, E(H), is defined as follows. See also Fig. 6.4. First, it shall be possible to
merge the cliques in the variable gadget in a cyclic fashion,1 that is, we add

{{Ki
j ,K

i
j+1} | i = 0, 1, . . . , n− 1 and j = 0, 1, . . . , 4mi − 1}

to E(H). Second, it shall be possible to merge transferring cliques of clause gadget to any of
the relevant cliques of the associated variable gadget, that is, we add to E(H) the set

{{T id,Ki
4π(i,d)}, {T

i
d,K

i
4π(i,d)+1}, {T

i
d,K

i
4π(i,d)+2} | variable xi occurs in clause Γd}.

Third, it shall be possible to merge subsets of {Q1
d, Q

2
d, Q

3
d, Q

4
d}, and hence we add to E(H) the

set
{{Q1

d, Q
2
d}, {Q1

d, Q
3
d}, {Q2

d, Q
3
d}, {Q2

d, Q
4
d}, {Q3

d, Q
4
d} | d = 0, 1, . . . ,m− 1}.

1Indeed, we have already ensured that this is possible. The edges introduced in the first step purely serve to
reinforce the intuition of the merging model.
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Finally, it shall be possible to merge the transferring cliques to subsets of {Q1
d, Q

2
d, Q

3
d, Q

4
d}.

Hence, we add to E(H) the set

{{T id, Qkd} | if variable xi occurs in Γd and T id is adjacent in G to Qkd with k ∈ {1, 4}} ∪
{{T id, Q3

d}, {T id, Q4
d} | if variable xi occurs in Γd and T id is adjacent in G to Q3

d}.

Note that this construction is slightly asymmetric (see Fig. 6.4). This finishes the definition of
the merging model H.

Now we define the levels L0 to L4 such that orienting the edges in H from higher to lower
level gives an acyclic orientation when ignoring the edges in level L0.

• L0 contains all cliques in variable gadgets.
• L1 contains Q1

d and Q4
d for each d = 0, . . . ,m− 1.

• L2 contains Q3
d for each d = 0, . . . ,m− 1.

• L3 contains Q2
d for each d = 0, . . . ,m− 1.

• L4 contains all transferring cliques.

Observe that, apart from edges in L0, all edges in H are between vertices of different levels and,
indeed, ignoring edges in L0, there are no cycles in G when orienting edges from higher to lower
level. In the following section, we will look at each clique R in levels L1 and higher and add P3s
to the packing H so as to cover all vertex pairs containing a vertex of R and a out-neighbor of
R in H.

Implementation of the Clause Gadget

In this section, we first introduce a number-theoretical construction (see Lemma 19) that serves
as a basic building block for “padding” P3s in the packing. Then we use this construction to
perform the actual padding of P3s.

The abstract process of padding P3s works as follows. It takes as input a clique R in H
(represented by W in the below Lemma 19), and a set of cliques that are out-neighbors of
R in H (represented by V ). Furthermore, it receives a set of vertex pairs between R and its
out-neighbors that have previously been covered (represented by F ). The goal is then to find a
packing of P3s that cover all vertex pairs except the previously covered pairs. The previously
covered vertex pairs have some special structure that we carefully selected so as to make covering
of all remaining vertex pairs possible in a general way: The construction so far was carried out
in such a way that the connected components induced by previously covered vertex pairs are
P3s or C8s.

In Lemma 19 we will indeed pack triangles instead of P3s because this is more convenient in
the proof. We will replace the triangles by P3s afterwards: Recall the intuition that P3s in the
packing H which have exactly one endpoint in one clique T and their remaining two vertices in
another clique R can accommodate both merging R and T or separating R and T without excess
edits. Hence, we will replace the triangles by such P3s. Recall that we aim for each clique to be
a proto-cluster in the final construction, that is, each clique contains a spanning tree of edges
which are not contained in P3s in H. Since putting the above kind of P3s into the packing H
allows in principle to delete edges within R, we need to ensure that R remains a proto-cluster.
We achieve this via the connectedness property in Lemma 19.

Number-Theoretic Padding Tool.

Lemma 19. Let p be a prime number with p ≥ 2. Let B = (V,W,E) be a complete bipartite
graph such that |V | = p and |W | = 2p. Let F ⊆ E be a set of edges such that each connected
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Figure 6.5: Left: The labels of a C8 in (V ∪W,F ). Right: The triangles in τ2F covering a C8.

component of (V ∪W,F ) is a either a singleton, a P3 with a center in V , or a C8. Then there
exists an edge-disjoint triangle packing τ in (V ∪W, (E \ F ) ∪

(
W
2

)
) which covers E \ F such

that every triangle in τ contains exactly one vertex of V and the graph (W,
(
W
2

)
\ E(

⋃
τ)) is

connected. Moreover, each vertex v ∈ V ∪W is in at most p triangles of τ , it is in at most
p− 1 triangles if v is in a connected component of (V ∪W,F ) that is a P3, and in at most p− 2
triangles if v is in connected component of (V ∪W,F ) that is a C8.

Proof. First, we divide W into two parts W1 and W2 of equal sizes such that if two vertices
w,w′ ∈ W are connected to the same vertex v ∈ V by edges in F , then w and w′ are in
different parts. Note that this is easy for a connected component of (V ∪ W,F ) if it is a
P3. For a connected component of (V ∪ W,F ) which is a C8, this is also doable as shown
in Fig. 6.5, where wi, wi+1, wi+2, wi+3 belong to W1, w′i, w

′
i+1, w

′
i+2, w

′
i+3 belong to W2, and

vi, vi+1, vi+2, vi+3 belong to V .
We now label the vertices by elements from the finite field Fp of size p (recall that Fp consists

of the elements {0, 1, . . . , p − 1} with addition and multiplication modulo p). To each vertex
v ∈ V , each vertex w ∈ W1, and each vertex w′ ∈ W2, we will assign a unique label vi, wj , and
w′k, respectively, with i, j, k ∈ Fp. In other words, we construct three bijections that map Fp to
V , W1, and W2, respectively.

First, we label the vertices from the connected components of (V ∪W,F ) (and some singleton
vertices) by going through the connected components one-by-one. For each yet-unlabeled con-
nected component of (V ∪W,F ) that is a P3 given by wvw′ such that v ∈ V,w ∈W1, w

′ ∈W2,
we label vertex w as wj , vertex v as vj and vertex w′ as w′j for the smallest j from Fp which
is not yet used in the labeling of vertices of V . For each yet-unlabeled connected component C
in (V ∪W,F ) that is a C8 we proceed as follows. By the way we have divided vertices from W
into W1 and W2, we can assign, to each such connected component C, four vertices which have
degree zero in (V ∪W,F ): two inW1 and two inW2; see also Fig. 6.5. We thus label the vertices
in C and the four degree-zero vertices assigned to C as in Fig. 6.5, for the smallest integer i
from Fp such that i, i+ 1, i+ 2 and i+ 3 are not used in the labeling of vertices of V .

Second, we label the remaining unlabeled vertices that are not in the connected components
of (V ∪W,F ). For an unlabeled vertex w ∈ W1, label it as wk for an arbitrary integer k from
Fp which is not used in the labeling of vertices in W1. Similarly, for an unlabeled vertex v ∈ V ,
we label it as vh for an arbitrary integer h from Fp which is not used in the labeling of vertices
in V and for an unlabeled vertex w′ ∈ W2, we label it as w′s for an arbitrary integer s from Fp
which is not used in the labeling of vertices in W2. After the labeling, the vertices in V,W1 and
W2 are v1, . . . , vp−1, w1, . . . , wp−1 and w′1, . . . , w′p−1, respectively.
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We now proceed to constructing the packing τ . First, let

τall = {uvw | uvw is a triangle in (V ∪W,E ∪
(
W

2

)
) such that u ∈ V, v ∈W1, w ∈W2}, and

τcover = {viwjw′k ∈ τall | i, j, k ∈ Fp and j − i = k − j over Fp}.

In the following, for any triangle packing τ , by E(τ) we will denote the union of the edge sets
of the triangles in τ .

We claim that the triangles in τcover are edge-disjoint and cover all edges of E. Consider an
arbitrary edge viwj ∈ E between V and W1 for i, j ∈ Fp. According to the definition of τcover,
each triangle viwjw′x ∈ τcover that covers edge viwj satisfies x = 2j − i (over Fp). Since Fp is a
field, there is thus exactly one such triangle. Similarly, each edge vhw′k ∈ E between V and W1

for some h, k ∈ Fp is covered by the unique triangle vhw(h+k)·2−1w′k ∈ τcover. Finally, each edge
wsw

′
t between W1 and W2 is covered by the unique triangle v2s−twsw′t ∈ τcover. Thus the claim

holds.
Let

τ1F = {vhwhw′h ∈ τall | vertices wh, vh, w′h induce a P3 in (V ∪W,F )}, and

τ2F = {vhwh+1w
′
h+2, vh+1wh+1w

′
h+1, vh+2wh+2w

′
h+2, vh+3wh+2w

′
h+1 ∈ τall |

vertices vh, w′h+2, vh+2, wh+2, vh+3, w
′
h+1, vh+1, wh+1 induce a C8 in (V ∪W,F )}.

Observe that τ1F , τ
2
F ⊆ τcover. For example, if we put vh+3wh+2w

′
h+1 = viwjw

′
k, then it follows

that j− i = p−1 = k−j over Fp, that is, vh+3wh+2w
′
h+1 satisfies the conditions in the definition

of τcover. Moreover, τ1F ∪ τ2F covers all edges of F . Furthermore, each edge in the edge set
E(τ1F ∪ τ2F ) of τ1F ∪ τ2F is either in F or between W1 and W2. (See also Fig. 6.5.) Thus, E \F has
an empty intersection with E(τ1F ∪ τ2F ). Let τ = τcover \ (τ1F ∪ τ2F ). It follows that τ covers all
edges of E \F . It remains only to show that τ satisfies the connectedness condition. Since τcover
does not cover any edge of

(
W1

2

)
or
(
W2

2

)
, it follows that (W1,

(
W1

2

)
\E(τ)) and (W2,

(
W2

2

)
\E(τ))

are cliques. Now observe that τ1F ∪ τ2F contains at most |V | = p edges of
(
W
2

)
, while W1 ×W2 is

of size p2 > p. Thus in the graph (W,
(
W
2

)
\ E(τ)) there is at least one edge {w1, w2} such that

w1 ∈ W1 and w2 ∈ W2. As a result, (W,
(
W
2

)
\ E(τ)) is connected. Finally, observe that each

vertex v ∈ V ∪W is in at most p triangles in τcover. If v is in a P3 of (V ∪W,F ), then at least
one of these triangles is removed from τcover to obtain τ . If v is in a C8 of (V ∪W,F ), then at
least two of the triangles in τcover that contain v are removed to obtain τ . This concludes the
proof.

The following corollary is slightly easier to apply than Lemma 19.

Corollary 2. Let p be a prime and let B = (V,W,E) be a complete bipartite graph with |V | ≤
p, |W | = 2p. Let F ⊆ E be a nonempty set of edges such that every connected component of
(V ∪W,F ) is a either a P3 with a center in V or a C8. Then there exists an edge-disjoint triangle
packing τ in (V ∪W,E \ F ∪

(
W
2

)
) which covers E \ F such that every triangle in τ contains

exactly one vertex of V and (W,
(
W
2

)
\E(τ)) is connected. Each vertex v ∈ V ∪W is in at most

p triangles of τ , at most p− 1 if v is in a connected component of (V ∪W,F ) that is a P3, and
at most p− 2 if v is in connected component of (V ∪W,F ) that is a C8.

Proof. Add extra p − |V | dummy vertices to V , obtaining a complete bipartite graph B′ =
(V ′,W,E), apply Lemma 19 to B′, p, and F , obtaining a packing τ ′, and return a sub-packing
τ ⊆ τ ′ containing only triangles with vertices in B. Since every triangle in τ ′ contains exactly
one vertex of V ′, τ satisfies all the required properties.
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Concluding the Construction. Equipped with Lemma 19 and Corollary 2, we can finish
the construction of the clause gadgets and indeed the whole instance (G,H, 0) of CEaMP. We
now specify the exact size of each clique introduced above and add padding P3s to G and H
so as to cover all vertex pairs between cliques that are adjacent in the merging model H. Put
initially the set Hpad of padding P3s to be Hpad = ∅. We start with levels 0 and 1. We do not
change the sizes of any clique on these two levels. That is, as shown in the variable gadget, there
are five vertices in every clique of level 0, and there is one vertex in every clique of level 1. Note
that no cliques of levels 0 and 1 are adjacent in the merging model H, that is, no two of them
need to be merged in the solution. Hence, it is not necessary to add padding P3s within these
levels.

Now we turn each level i, i ≥ 2, in order of increasing i. For each clique Q of level i, we
apply Corollary 2 in the following scenario. Let V be the union of all cliques of levels j < i that
are out-neighbors of Q in the merging model H. Let p be the smallest prime with p ≥ |V | and
2p ≥ |Q|. Introduce 2p− |Q| new vertices, put them into Q, and make Q a clique. Put W = Q
and let E = {{u, v} | u ∈ V, v ∈ W}. Let F be the set of vertex pairs that each contain one
vertex of W and one of V and that each are contained in the transferring P3s (the P3s in Htra)
between W and V . Note that Htra contains each edge that has been introduced into G so far
and that is between two cliques of which one is of level at least two.

We claim that Corollary 2 is applicable to p, graph B = (V,W,E), and F . To see this, we
need to show that each connected component in (V ∪W,F ) is either a P3 with center in V or
a C8. Indeed, if Q is not a transferring clique, that is, Q = Qjd for some d ∈ {0, 1, . . . ,m − 1}
and j ∈ {1, 2, 3, 4}, then each connected component in (V ∪W,F ) consists of two edges of two
different transferring P3s with the same center in V , as claimed (see also Fig. 6.4). If Q is a
transferring clique, then each connected component of (V ∪W,F ) consists either of two edges
of two different transferring P3s with the same center in some Qjd ⊆ V for some j ∈ {1, 3, 4},
or of some vertex pairs of transferring P3s between Q and the cliques of a variable gadget. In
the first case, the claim clearly holds. In the second case, observe that the edges and non-edges
between V and W in the transferring P3s are each incident with one of w1, w2, w3, w4 and one of
v1, v2, v3, v4 as defined when connecting variable and clause gadgets. These edges and nonedges
indeed induce a C8 given by v1w1v3w3v2w2v4w4v1 (see also Fig. 6.3). Thus, Corollary 2 applies.

Corollary 2 gives us an edge-disjoint triangle packing τ in (V ∪W,E\F∪
(
W
2

)
) which covers all

edges of E \F such that (W,
(
W
2

)
\E(τ)) is connected. Every triangle vw1w2 ∈ τ has one vertex

v ∈ V and two vertices w1, w2 ∈ W . For every triangle vw1w2 ∈ τ , we add a P3 to G by using
exactly two edges of the triangle in G; more precisely, we put {v, w1}, {w1, w2} ∈ E(G), vw2 /∈
E(G), and then add the P3 of G given by vw1w2 into Hpad. Finally, let H = Hvar ∪Htra ∪Hpad.
Note that H is a modification-disjoint packing of P3s: This is by construction for Hvar∪Htra and,
by Corollary 2, no P3 in Hpad shares a vertex pair with any P3 in Hvar ∪ Htra. This concludes
the construction of the CEaMP instance (G,H, 0).

To see that the construction takes polynomial time and to see that indeed each vertex is
in some constant number of P3s in H, let us now derive the precise sizes of each clique in the
construction. Recall that the cliques on level 0 are exactly those in the variable gadgets, and these
have exactly five vertices each. The cliques on level 1 are Q1

d and Q4
d for d ∈ {0, 1, . . . ,m− 1},

and they have 1 vertex each. On level 2 we have the cliques Q3
d, d ∈ {0, 1, . . . ,m− 1}, and since

the only out-neighbor in H of Q3
d is Q

4
d, our procedure sets p = 2 and thus Q3

d has 4 vertices. On
level 3 there are the cliques Q2

d, d ∈ {0, 1, . . . ,m− 1}, and we set p = 7 as |Q1
d ∪Q3

d ∪Q4
d| = 6.

Thus clique Q2
d has 14 vertices. For the clique T ad , we set p = 17 as |Q1

d ∪Ka
4π(a,d) ∪K

a
4π(a,d)+1 ∪

Ka
4π(a,d)+2| = 16. So the clique T ad has 2 · 17 = 34 vertices. Similarly, T cd has 34 vertices as well.

For the clique T bd , we set p = 23, as |Q3
d ∪Q4

d ∪Kb
4π(b,d) ∪K

b
4π(b,d)+1 ∪K

b
4π(b,d)+2| = 20. Thus T bd

is a clique of size 2 · 23 = 46. By the bounds on the number of triangles in the packing, each
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vertex is in at most 23 P3s of H. It also follows that construction takes overall polynomial time.

6.1.3 Correctness

We now prove the correctness of the reduction given in Section 6.1.2

Completeness

Now we show how to translate a satisfying assignment of Φ into a cluster editing set of size |H|
for the constructed instance.

Lemma 20. If the input formula Φ is satisfiable, then the constructed instance (G,H, ` = 0) is
a yes-instance.

Proof. Assume that there is a satisfying assignment α of the formula Φ. Recall that n is the
number of variables of Φ and m is the number of clauses of Φ. Instead of building the solution
directly, we build a partition P of V (G) into clusters. Then, we argue that the number of
edges between clusters and the number of non-edges inside clusters is at most |H|. Thus, the
partition P will induce a solution with the required number of edge edits.

The basic building blocks of our vertex partition P are the cliques in V (H). We will never
separate such a clique during building P, that is, P corresponds to a partition of V (H). We
build P by taking initially P = V (H) and then successively merging clusters in P, which means
to take the clusters out of P and replace them by their union. Since there are no non-edges
inside any of the cliques in V (H), below it suffices to consider edges and non-edges between
pairs of cliques in V (H) to determine the number of edits in the solution corresponding to P.

We start with the variable gadgets. Consider each variable xi, i = 0, 1, . . . , n−1. Call a pair
of cliques Ki

j , K
i
j+1 in xi’s variable gadget even if j is even and odd otherwise (indices are taken

modulo 4mi). If α(xi) = true, then merge each odd pair. If α(xi) = false, then merge each even
pair. We will not merge any further pair of cliques contained in variable gadgets.

Now consider each clause Γd, d = 0, . . . ,m − 1, in some arbitrary order. Let xa, xb, and
xc be the variables in Γd. We use the same notation as when defining the clause gadgets. See
Fig. 6.2 for the skeleton of the clause gadget of Γd, up to variables appearing positively instead
of negatively or vice versa. We choose an arbitrary variable that satisfies Γd. The basic idea is
to cut (that is, to not merge) the transferring clique and the cliques in the satisfying variable’s
gadget, cutting some edges of the transferring P3s. This is will induce at most one edit for each
transferring P3 since the remaining edge in a transferring P3 will be part of a cluster in P. Then
we cut from the clause gadget all transferring cliques belonging to variables that have not been
chosen. Since we do not spend edits inside of transferring P3s in this way, this allows us to
merge the transferring cliques to the variable gadgets regardless of whether the variable was set
to true or false.

Formally, we perform the following merges in P.

If we have chosen xa from the variables satisfying the clause Γd:

• Merge T ad with Q1
d.

• Merge the cliques Q2
d, Q

3
d and Q4

d.

If we have chosen xb:

• Merge the cliques Q1
d, Q

2
d.

• Merge the cliques T bd , Q
3
d, and Q

4
d.
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If we have chosen xc:

• Merge T cd with Q4
d.

• Merge the cliques Q1
d, Q

2
d and Q3

d.

Finally, let β ∈ {a, b, c} be the index of the chosen variable that satisfies Γd. For both γ ∈
{a, b, c} \ {β} do the following. If α(xγ) = true, then merge T γd with the cluster of P consisting
of Kγ

4π(γ,d)+1 and Kγ
4π(γ,d)+2. If α(xγ) = false, then merge T γd with the cluster of P consisting of

Kγ
4π(γ,d)+1 and Kγ

4π(γ,d). This concludes the definition of the vertex partition P. Let us denote
the corresponding cluster editing set by S. That is, S contains all edges in G between clusters
of P and all non-edges within clusters of P.

We claim that (c1) each edit in S is contained in a P3 of H and (c2) every P3 of H is edited
at most once by S. Note that the claim implies that S is a solution to (G,H, 0). We first prove
part (c1) of the claim. Note that each edit in S is between two cliques in V (H). There are
three types of edits in H: within a variable gadget, between a clause and a variable gadget, and
within a clause gadget.

Consider first the edits contained in the variable gadget of an arbitrary variable xi. Observe
that each such edit is contained in an odd or an even pair of x’s gadget. Such an edit is contained
in a P3 in H, because, by construction of the variable gadgets, all edges and non-edges between
the cliques of an odd or an even pair are covered by P3s in H.

For the edits in S which are not contained in variable gadgets, observe that between each
pair of cliques in a single level Ls, s > 0, there are no edges in G. Whenever we merge two or
more clusters during the construction of P, we either merge a clique on level L4 to two cliques
on level L0 or we merge cliques on pairwise different levels. Hence, each edit e ∈ S which is
not in a variable gadget is between two cliques on different levels. Moreover, observe that the
cliques containing the endpoints of e are adjacent in V (H). Thus, by the way we have defined
Hpad via Corollary 2, there is a P3 in Hpad containing e. We have thus shown that claim (c1)
holds.

For part (c2) of the claim, we first observe the following. Each P3 in H that intersects only
two cliques in V (H) contains at most one edit of S. Let P be such a P3 and let D1, D2 be the
two cliques in V (H) that intersect P . Note that Htra does not contain P3s that intersect only
two cliques in V (H) and thus either P ∈ Hvar or P ∈ Hpad. In both cases, there is exactly one
edge and one non-edge of P between D1 and D2: This is clear if P ∈ Hpad. If P ∈ Hvar then
P was introduced when connecting a clause gadget to a variable gadget. In the notation used
there, either P = v5v6v2 or P = v1v7v8, both of which have the required form. Thus, as D1 and
D2 are either merged or not in P, there is at most one edit in P .

To prove (c2) it remains to consider P3s in H that intersect three cliques in V (H). Let P
be such a P3. Note that P /∈ Hpad. If P ∈ Hvar, then it connects Ki

j to K
i
j+2 via Ki

j+1 for some
even j and some variable index i ∈ {0, 1, . . . , n − 1}. Since we merge either all odd or all even
pairs in xi’s variable gadget to obtain P, indeed exactly one edge of P is edited, as claimed. If
P ∈ Htra, then we distinguish two cases.

First, P does not contain a vertex of some variable-gadget clique. Then, P connects some
clique Qsd to some transferring clique T δd via Qs′d . According to the construction of P, either T δd
and Qs′d are in different clusters of P and Qs′d and Qsd are merged, or T δd and Qs′d are merged and
Qsd and Qs′d are in different clusters of P. In both cases, there is at most one edit of S in P .

Second, P contains a vertex of some variable-gadget clique. Then, by construction of G and
H, path P indeed contains two vertices of two variable-gadget cliques, say Ki

j and Ki
j+1 and

one vertex of a transferring clique, say T id. Assume that variable xi appears positively in clause
Γd, the other case is analogous. Then the center of P is Ki

j and moreover j is odd. If xi was
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not chosen among the variables satisfying clause Γd when constructing P, then T id and Ki
j is in

the same cluster Q of P. Furthermore Ki
j+1 is either in a cluster different from Q or also in Q.

In both cases, there is at most one edit from S in P . If xi was chosen among the the variables
satisfying clause Γd when constructing P, then T id is in a cluster in P which is different from the
one(s) containing Ki

j and Ki
j+1. However, since xi satisfies Γd, we have α(xi) = true and thus

Ki
j and K

i
j+1 are merged (recall that j is odd).

Thus, indeed, the claim holds, finishing the proof.

Soundness

Before we show how to translate a cluster editing set of size |H| for the constructed instance
into a satisfying assignment of Φ, we make some structural observations.

Recall the definition of a proto-cluster, a connected component of the subgraph of G whose
edge set contains precisely those edges of G which are not contained in any P3 in H.

Lemma 21. V (H) is precisely the set of proto-clusters of G and H.

Proof. By construction, all edges in G between two cliques in V (H) are in a P3 in H. Thus
each proto-cluster is contained in some clique in V (H). We claim that each clique C ∈ V (H)
contains a spanning tree of edges which are not contained in a P3 in H. If C ∈ L1, then this is
clear; such a C contains only a single vertex and a trivial spanning tree. If C ∈ L0, then there
are only two P3s in H that contain edges of C: The one given by v5v6v2 and the one given by
v1v7v8 as shown in Fig. 6.3 when connecting variable and clause gadgets. Since |C| = 5, indeed
C contains the required spanning tree. If C ∈ Li for i ≥ 2, then by the connectedness property
of Corollary 2, C has the required spanning tree.

Observe that each solution S to (G,H, 0) cannot remove any edge from G which is not
contained in a P3 in H. Thus, since V (H) is a vertex partition of G, each solution S generates
a cluster graph G4S whose clusters induce a coarser vertex partition than V (H). This leads to
the following.

Observation 4. For each solution S to (G,H, 0), each cluster in G4S is a disjoint union of
cliques in V (H).

In the following it will also be useful to define the notion of a dividing non-edge, which is a
non-edge which is not contained in any P3 inH. Using this and the above structural observations,
we are now ready to prove the soundness of the construction.

Lemma 22. If the constructed instance (G,H, ` = 0) is a yes-instance, then the formula Φ is
satisfiable.

Proof. Suppose that there exists a set of vertex pairs S ⊆
(
V
2

)
so that G∆S is a union of vertex-

disjoint cliques and |S| − |H| = 0. In other words, there exists a solution that transforms G into
a cluster graph G′ by editing exactly one edge or non-edge of every P3 of H. We will show that
there exists a satisfying assignment α : {x0, x1, . . . , xn−1} → {true, false} for the formula Φ.

By Observation 4, the set of clusters in G′ induces a partition of the cliques in V (H). Call
two cliques in V (H) merged if they are in the same cluster in G′ and divided otherwise.

We aim to define the assignment α. For this we need the following observation on the
solution. Consider variable xi and the cliques Ki

j , j = 0, 1, . . . , 4mi − 1, in xi’s variable gadget.
Call a pair Ki

j , K
i
j+1 even if j is even (where j + 1 is taken modulo 4mi) and call this pair odd

otherwise. We claim that either (i) each even pair is merged and each odd pair is divided, or (ii)
each odd pair is merged and each even pair is divided (and not both). Note that, for each even
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j, pair Ki
j , K

i
j+1 is merged or pair Ki

j+1, K
i
j+2 is merged, because there is a P3 in G containing

vertices in these cliques with center in Ki
j+1. To show the claim, it is thus enough to show that

not both an odd pair and an even pair is merged.

For the sake of contradiction, suppose that an odd pair is merged and an even pair is
merged. Then, there exists an index j ∈ {0, 1, . . . , 4mi − 1} and a cluster C in G′ such that
Ki
j ,K

i
j+1,K

i
j+2 ⊆ C, where here and below the indices are taken modulo 4mi. Observe that

there are no edges between Ki
j and Ki

j+2 in G. If j is odd, then all of these non-edges are
dividing, that is, they are not contained in any P3 in H. All of these non-edges are thus in S.
This is a contradiction to the fact that S contains at most |H| vertex pairs. Thus, j is even.

We now show that for each k ∈ N∪{0}, pair Ki
j+1+2k, K

i
j+2+2k is merged by induction on k.

Clearly, for k = 0, this holds by supposition. If k > 0 then, by construction, there are dividing
non-edges between Ki

j+2k−1 and Ki
j+2k+1. Combining this with the fact that Ki

j+1+2(k−1) =

Ki
j+2k−1 and Ki

j+2+2(k−1) = Ki
j+2k are merged by inductive assumption, it follows that Ki

j+2k

and Ki
j+2k+1 are divided. Since there is a P3 in G connecting Ki

j+2k, K
i
j+2k+1, and Ki

j+2k+2

with center in Ki
j+2k+1, it follows that K

i
j+2k+1, K

i
j+2k+2 are merged, as required.

It now follows in particular that Ki
j−1 and Ki

j are merged (recall that indices are taken
modulo 4mi). Since by assumption also Ki

j and K
i
j+1 are merged, we have that Ki

j′ , K
i
j′+1, and

Ki
j′+2 are contained in the same cluster in G′ for some odd j′. As already argued, this leads to

a contradiction. Thus the claim holds.

We define the assignment α as follows. For each variable xi, i = 0, 1, . . . , n−1, if in G′ all even
pairs Ki

2j , K
i
2j+1, j = 0, 1 . . . ,mi − 1, are merged, then α(xi) = false. Otherwise α(xi) = true.

We now show that α satisfies Φ. Consider an arbitrary clause Γd of Φ containing the three
variables xa, xb, and xc. We use the same notation as when defining the clause gadget and its
connection to the variable gadget. Since there are dividing non-edges between cliques Q1

d and
Q4
d, cliques Q

1
d and Q4

d must end up in different clusters in G′. In other words, Q1
d and Q4

d

are divided. Observe that there is a path in G consisting of vertices in Q1
d, Q

2
d, Q

3
d, and Q4

d

in this sequence. Since each of these four cliques is a proto-cluster (see Lemma 21), in order
to divide Q1

d and Q4
d, one of the following three cases must happen in the solution S: (i) The

edges between Q1
d and Q2

d are deleted. In other words, Q1
d and Q2

d are divided. (ii) Q2
d and Q3

d

are divided. (iii) Q3
d and Q4

d are divided. We now show that case (i), (ii), and (iii) imply that
variable xa, xb, and xc, respectively, is set by α so as to satisfy Γd. We only give the proof
showing that case (i) implies that xa is set accordingly. The other cases are analogous.

Assume that case (i) holds. Then, by the constraints imposed by the two transferring P3s P 1
d

and P 2
d , cliques T

a
d and Q1

d are merged. Since there are dividing non-edges between Ka
4π(a,d)+1

and Q1
d, it follows that Ka

4π(a,d)+1 and Q1
d are divided. Consider the case that xa appears

positively in Γd. Then, when connecting the variable gadget of xa to the clause gadget of Γd we
have introduced into G a P3 connecting T ad , K

a
4π(a,d)+1, and K

a
4π(a,d)+2 with center in Ka

4π(a,d)+1

(for example, the P3 given by w1v1v3). Since T ad and Ka
4π(a,d)+1 are divided, thus Ka

4π(a,d)+1
and Ka

4π(a,d)+2 are merged. There is thus at least one odd pair in xa’s variable gadget that is
merged and thus α(xa) = true. The case where xa appears negatively in Γd is similar: We have
introduced into G a P3 connecting T ad , K

a
4π(a,d)+1, and Ka

4π(a,d) with center in Ka
4π(a,d)+1 (for

example, the P3 given by w1v1v3). It follows that Ka
4π(a,d)+1, and K

a
4π(a,d) are merged, showing

that at least one even pair is merged in xa’s variable gadget. Thus, α(xa) = false.

Thus each clause Γd is satisfied, finishing the proof.
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Algorithm 1: Solve CEaTMP.
Input: An instance (G,H, `) of CEaTMP.
Output: Whether (G,H, `) is a yes-instance..

1 foreach `a = 0, 1, . . . , ` do
2 foreach `b = 0, 1, . . . , `− `a do
3 foreach set Sa of `a vertex pairs {u, v} ∈

(
V (G)
2

)
such that

∀P ∈ H : |{u, v} ∩ V (P )| ≤ 1 do
4 Ga ← G4SA
5 foreach set Hb of `b distinct P3s in H do
6 foreach set Sb containing for each P ∈ Hb at least two vertex pairs in

V (P ) do
7 if |Sa|+ |Sb| ≤ |Hb|+ ` then
8 Gb ← Ga4SB
9 H′ ← H \Hb

10 if Gb has a cluster-editing set with |H′| edits then /* Using
Theorem 15 */

11 accept and halt

12 reject

6.2 XP-algorithm for 2-restricted packings

In this section, we study CEaMP in the special setting where every vertex is incident with at
most two P3s of the packing H. More precisely, we consider the following variant of CEaMP.

Cluster Editing above two-restricted modification-disjoint P3 packing
(CEaTMP)
Input: A graph G = (V,E), a packing H of modification-disjoint induced P3s of G such
that every vertex v ∈ V (G) is incident with at most 2 P3s of H, and a nonnegative integer `.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2

)
so that G4S is

a union of disjoint cliques, with |S| − |H| ≤ `?

We give a polynomial-time algorithm to solve CEaTMP when ` is a fixed constant, in
contrast with the NP-hardness of the general version of CEaMP when ` = 0.

Theorem 14 (Restated). Cluster Editing above two-restricted modification-disjoint
P3 packing parameterized by the number ` of excess edits is in XP. It can be solved in O(n2`+O(1))
time, where n is the number of vertices in the input graph.

The main tool in proving Theorem 14 is a polynomial-time algorithm for the case where
` = 0:

Theorem 15 (Restated). Cluster Editing above two-restricted modification-disjoint
P3 packing can be solved in polynomial time when ` = 0, that is, when no excess edits are al-
lowed.

The proof of Theorem 15 will be given in 6.2.2. With this tool in hand, we can show
Theorem 14.
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Proof of Theorem 14. Let (G,H, `) be an instance of CEaTMP. The algorithm is given in
Theorem 1. Essentially, it guesses (by trying all possibilities) the number, `a, of excess edits
that are not contained in any P3 in H and guesses the concrete edits to be made (Lines 1-4).
Then it guesses the P3s in H that harbor the remaining excess edits and it guesses how these P3s
are resolved (Lines 5-9). Then it checks whether the remaining instance has a cluster-editing set
without excess edits over the remaining P3 packing H′ using the algorithm from Theorem 15.

For the running time, observe that there are at most n2`a choices for Sa. Since each vertex
is in at most two P3s in H and each P3 covers exactly three vertices, we have 3|H| ≤ 2n and
thus there are in total at most n P3s in H. Thus, there are O(n`b) choices for Hb. Since there
are four possibilities to select a set of at least two vertex-pairs in the vertex set of a P3, there
are O(4`b) possibilities for Sb in Line 6. Hence, overall the running time is O(4`bn2`a+`b+O(1)) ≤
O(n2`+O(1)).

It remains to prove the correctness. If the algorithm accepts, then there is a cluster-editing
set S0 for Gb with |H′| edits. Since S0 is contained in the vertex sets of the P3s in H′, set S0 is
disjoint from Sa and Sb. Thus, G4S? is a cluster graph where S? = Sa ∪ Sb ∪ S0. Moreover,
|S?| ≤ |H′|+ |Hb|+ ` = |H|+ `, and thus, (G,H, `) is a yes-instance.

Conversely, if (G,H, `) is a yes-instance, then there is a cluster-editing set S? of G with
|S?| ≤ |H|+ `. Let S?a be the subset of S? that contains precisely those edits in S? that are not
contained in P3s of H. In one of the iterations of Algorithm 1, `a = |S?a| and Sa = S?a. Now
let H?b be the subset of H that contains precisely those P3s P such that S? contains at least
two edits in V (P ). Observe that |H?b | ≤ ` − `a. Thus, in one of the iterations of Algorithm 1,
we have `b = |H?b | and Hb = H?b . Moreover, in one of the iterations Sb = S?b , where S

?
b is

the subset of S? that contains precisely those edits that are contained in the P3s in Hb. Let
S?0 = S? \ (S?a ∪ S?b ). Since each edit in S?0 is contained in a unique P3 in H \ H?b , we have
|Sa|+ |Sb| = |S?a|+ |S?b | ≤ |H?b |+ ` = |Hb|+ `. Thus, in that iteration the algorithm proceeds to
the if-condition in Line 10. Again since each edit in S?0 is contained in a unique P3 in H \ H?b ,
this set witnesses that (Gb,H′, 0) is a yes-instance and thus the algorithm accepts. Hence, the
algorithm is correct.

6.2.1 Reduction Rules for 2-restricted P3-packings

In this section we give reduction rules for CEaTMP when ` = 0. Again, we use the term
proto-clusters to denote the connected components of the graph obtained by removing the edges
of all packed P3s. We say a proto-cluster C is isolated from a proto-cluster D if there are no
edges between C and D. Since ` = 0 and the P3s of H are modification-disjoint, we have the
following observation.

Observation 5. A solution S to an instance of CEaTMP must edit exactly one edge or non-
edge of every P3 of H, and no non-packed edges or non-packed non-edges can be edited by S.

The intuition behind the polynomial-time algorithm is, with the constraint that every vertex
v ∈ V (G) is incident with at most two packed P3s, we cannot freely merge or separate two large
proto-clusters without excess edits as in the NP-hardness proof of Section 6.1, since the triangles
formed by the packed P3s cannot cover every vertex pair between two large proto-clusters. Thus
we can separate the large proto-clusters and deal with them separately. After some reduction
rules, we show that the instance can be reduced to an instance of 2-SAT, which is well-known
to be polynomial-time solvable.

We classify the P3s of H into four types. For an induced P3 xyz ∈ H, if x, y belong to
one proto-cluster and z belongs to another proto-cluster, or symmetrically y, z belong to one
proto-cluster and x belongs to another proto-cluster, then xyz is a type-α P3; if x, z belong
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to one proto-cluster and y belongs to another proto-cluster, then xyz is a type-β P3; if x, y, z
belong to three distinct proto-clusters respectively, then xyz is a type-γ P3; if x, y, z belong to
one proto-cluster then xyz is a type-δ P3. Note that none of the reduction rules increases or
decreases the parameter `. By removing the corresponding packed P3 from H, we mean that if
a packed P3 is edited by the reduction rules, then remove it from H.

Reduction Rule 1. For any proto-cluster C, if there are two vertices u, v ∈ V (C) such that
uv is a non-packed non-edge, i.e. uv is not covered by any P3 of H, then return NO.

Lemma 23. Reduction Rule 1 is safe.

Proof. Given an instance (G,H, ` = 0) of CEaTMP satisfying the condition of Reduction
Rule 1, suppose for contradiction that there is a solution S to this instance. Since u, v belong
to the same proto-cluster, there is a non-packed path P from u to v. By Observation 5, uv /∈ S
and none of the edges of P is edited by S. Thus G4S is not a cluster graph, contradicting that
the instance has a solution. This completes the proof for the lemma.

The second reduction rule handles type-β and type-δ P3s.

Reduction Rule 2. If there is a type-β or type-δ P3 xyz ∈ H, insert an edge to xz and remove
xyz from H.

Lemma 24. Reduction Rule 2 is safe.

Proof. Suppose that the given instance of CEaTMP is (G,H, ` = 0) such that there exists a
type-β P3 xyz in G. After inserting an edge to xz and removing xyz from H, we get an instance
(G′,H′, ` = 0). We claim that (G,H, ` = 0) is a YES-instance if and only if (G′,H′, ` = 0) is a
YES-instance. On one hand, suppose that (G′,H′, ` = 0) is a YES-instance and S′ is a cluster
editing set of G′ such that |S′| = |H′|. Obviously, S′ ∪ {xz} is a cluster editing set for G and
|S′ ∪ {xz}| = |H|. On the other hand, suppose that (G,H, ` = 0) is a YES-instance and S
is a cluster editing set of G such that |S| = |H|. We show that xz ∈ S and S \ {xz} is the
solution for (G′,H′, ` = 0). For contradiction, suppose this is not true. Then either xy ∈ S or
yz ∈ S holds. Without loss of generality we assume that xy ∈ S. Suppose that after deleting
xy from G and removing xyz from H, we get an instance (G′′,H′′, ` = 0). Since x, z belong to
one proto-cluster of G, there is a non-packed path P from x to z in G. Thus x, z belong to one
proto-cluster. Since xyz is removed from H, xz becomes a non-packed non-edge. By Reduction
Rule 1, (G′′,H′′, ` = 0) is a NO-instance, contradicting that S is a solution to (G,H, ` = 0).

A very similar analysis applies to the case that xyz ∈ H is a type-δ P3. This completes the
proof for the lemma.

After applying Reduction Rules 1 and 2 exhaustively, if the algorithm did not return NO,
then there is no type-β or type-δ P3s in the instance. Next reduction rule applies to the case in
which there is both a non-packed non-edge and a packed edge between two proto-clusters.

Reduction Rule 3. For any two proto-clusters A and B, if there is a non-packed non-edge
uv such that u ∈ V (A) and v ∈ V (B), and there is a packed edge xy such that x ∈ V (A) and
y ∈ V (B), then delete xy and remove the corresponding packed P3 from H.

Lemma 25. Reduction Rule 3 is safe.

Proof. Suppose that we have applied Reduction Rules 1 and 2 exhaustively. Since the algorithm
did not return NO, there are no type-β P3s in the instance. Thus xy is covered by either a
type-γ P3 or a type-α P3.
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Given an instance (G,H, ` = 0) of CEaTMP satisfying the condition of Reduction Rule 3
with xy covered by a type-γ P3 xyz (without loss of generality, we do not analyse the symmetrical
case of yxz′), we get an instance (G′,H′, ` = 0) of CEaTMP after deleting xy and removing
xyz from H. We claim that (G,H, ` = 0) is a YES-instance if and only if (G′,H′, ` = 0) is
a YES-instance. For completeness, assume that (G′,H′, ` = 0) is a YES-instance and S′ is a
cluster editing set of size |H′| for G′. Then obviously S′ ∪ {xy} is a solution to (G,H, ` = 0).
For soundness, assume that (G,H, ` = 0) is a YES-instance and S is a cluster editing set of size
|H| for G. We claim that xy ∈ S. Suppose for contradiction that xy /∈ S. Then xy becomes a
non-packed edge in G4S. Since u, x ∈ V (A) and v, y ∈ V (B), there is a non-packed path PA
from u to x and a non-packed path PB from v to y in G. By Observation 5, the edges of PA and
PB are not edited by S and uv /∈ S. Thus there is a non-packed path from u to v. Since uv is
a non-packed non-edge in G4S, G4S is not a cluster graph, contradicting that S is a solution
to (G,H, ` = 0).

A very similar analysis applies to the case in which xy is covered by a type-α P3 xyz (or the
symmetrical case of yxz′). This concludes the proof for the lemma.

Reduction Rule 4. If there is a connected component C in the graph of size at most 6, then
do brute force on C to check if there is a cluster editing set F for C such that |F | is equal to the
number of packed P3s incident with a vertex of C. If there is such a cluster editing set F , then
perform the operations of F to C and remove the corresponding packed P3s from H. Otherwise,
if there is no such cluster editing set F , return NO.

Lemma 26. Reduction Rule 4 is safe.

Proof. Given an instance (G,H, ` = 0) of CEaTMP such that there is a connected component
C in the graph of size at most 6, suppose that there is a cluster editing set F for C satisfying
the condition of Reduction Rule 4. After performing the operations of F , we get an instance
(G′,H′, ` = 0) of CEaTMP. We claim that (G,H, ` = 0) is a YES-instance if and only if
(G′,H′, ` = 0) is a YES-instance. On one hand, assume that (G′,H′, ` = 0) has a solution
S′. Obviously, S′ ∪ F is a cluster editing set for G and |S′ ∪ F | = |H|. On the other hand,
assume that (G,H, ` = 0) has a solution S. By Observation 5, no vertex pair between V (C) and
V (G) \ V (C) is edited by S. Let S1 ⊆ S be the set of vertex pairs which are edges or non-edges
of C. Then S \ S1 is a solution to (G′,H′, ` = 0).

Suppose that there is no such cluster editing set F for C. We claim that (G,H, ` = 0) is
a NO-instance. For contradiction, assume that (G,H, ` = 0) has a solution S. Let S1 ⊆ S be
the set of vertex pairs which are edges or non-edges of C. Then S1 is a cluster editing set for C
and |S1| is equal to the number of packed P3s incident with a vertex of C by Observation 5, a
contradiction. Thus (G,H, ` = 0) is a NO-instance.

The component C is of size at most 6 so we can do brute force in polynomial time. This
completes the proof for the lemma.

Reduction Rule 5. If there is a proto-cluster C which is an isolated clique, then remove C
from the graph.

Lemma 27. Reduction Rule 5 is safe.

Proof. Given an instance (G,H, ` = 0) of CEaTMP such that there is a proto-cluster C which
is an isolated clique, we remove C from G and get an instance (G′,H, ` = 0). We claim that
(G,H, ` = 0) is a YES-instance if and only if (G′,H, ` = 0) is a YES-instance. On one hand,
assume that (G′,H, ` = 0) is a YES-instance. Then obviously (G,H, ` = 0) is a YES-instance.
On the other hand, assume that (G,H, ` = 0) is a YES-instance and S is a solution. Since C is
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an isolated clique, by Observation 5, no edges of C or non-edges between V (C) and V (G)\V (C)
are edited by S. Thus S is also a solution to (G′,H, ` = 0). This completes the proof for the
lemma.

Lemma 28. After applying Reduction Rules 1 - 5 exhaustively, if the algorithm did not return
NO, then there is no proto-cluster of size at least 5.

Proof. Suppose for contradiction that there is a proto-cluster C of size at least 5. If C is a
proto-cluster which is isolated from other proto-clusters, then C must be a clique since otherwise
Reduction Rule 1 or Reduction Rule 2 can be applied, a contradiction. Then Reduction Rule 5
can be applied and C will be removed from the graph. Thus C is not an isolated proto-cluster.
Let D be a proto-cluster such that there is an edge uv between C and D, say u ∈ V (C) and
v ∈ V (D). If uv is covered by a type-β P3, then Reduction Rule 2 can be applied, a contradiction.
Thus we assume that uv is covered by a type-α or a type-γ P3. Since v is incident with at most
two packed P3s, there must be one vertex w ∈ V (C) such that wv is a non-packed non-edge.
Then Reduction Rule 3 can be applied, a contradiction. As a result, there is no proto-cluster of
size at least 5. This completes the proof for the lemma.

Next we focus on proto-clusters of size 4.

Lemma 29. After applying Reduction Rules 1 - 3 exhaustively, if there is a proto-cluster C of
size 4 which is not an isolated clique. Then there must be a proto-cluster D of size 1 such that
the vertex pairs between C and D are covered by two type-α P3s. In addition, V (C) ∪ V (D)
forms a connected component in the graph.

Proof. After applying Reduction Rules 1 - 3 exhaustively, let C be a proto-cluster of size 4 and
V (C) = {v1, v2, v3, v4}. Let w be a vertex such that there is an edge between w and V (C). If
the vertex pairs between V (C) and w are not covered by two type-α P3s, then Reduction Rule 2
or 3 can be applied, a contradiction. Without loss of generality, suppose that v1v2 and v3v4
are covered by these two type-α P3s. Assume for contradiction that there is another vertex u
such that u and (without loss of generality) v1 are adjacent, and uv1 is a packed edge (u can be
either in the same proto-cluster with w or in a different proto-cluster from w). Since we have
applied Reduction Rule 2 exhaustively, there are no type-β P3s in the graph. Thus uv1 must
be covered by a type-α or a type-γ P3. We claim that there must be a non-packed non-edge
from u to a vertex of C. For contradiction, suppose this is not true. Then either v1v4, v2v3 are
covered by two type-α P3s respectively, or v1v3, v2v4 are covered by two type-α P3s respectively.
In both cases, v1, v2, v3 and v4 are not in one proto-cluster anymore since after removing the
packed edges, v1, v2, v3 and v4 are not in one connected component, a contradiction. Thus there
must be a non-packed non-edge between V (C) and u. Since uv1 is a packed edge, Reduction
Rule 3 can be applied, a contradiction. Thus there are no edges between V (C) and any other
vertices except w. Suppose that w belongs to a clique of size at least two. Then Reduction
Rule 3 can be applied, a contradiction. Thus w belongs to a proto-cluster of size one and let
this proto-cluster be D. Since w is already incident with two packed P3s, w is isolated from any
other proto-clusters except C. Obviously, V (C) ∪ V (D) forms a connected component in the
graph. This completes the proof for the lemma.

Lemma 30. After applying Reduction Rules 1 - 5 exhaustively, there is no proto-cluster of size
4.

Proof. Suppose for contradiction that there is a proto-cluster C of size at least 4. If C is an
isolated proto-cluster, C must be a clique since otherwise Reduction Rule 1 or 2 can be applied,
a contradiction. Then Reduction Rule 5 can be applied and C will be removed from the graph.
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Thus C is not an isolated proto-cluster. By Lemma 29, there is a proto-cluster D of size 1 such
that V (C)∪V (D) forms a connected component of size 5 in the graph. Then Reduction Rule 4
can be applied, a contradiction. As a result, there is no proto-cluster of size at least 4. This
completes the proof for the lemma.

Next we focus on proto-clusters of size 3.

Lemma 31. After applying Reduction Rules 1 - 5 exhaustively, if there is a proto-cluster C of
size 3, then there must be a proto-cluster B of size 1 and a proto-cluster A of size 1, such that
the vertex pairs between C and B are covered by a type-α P3 and a type-γ P3, and the type-γ P3

connects C and A via B. In addition, C is isolated from any other proto-clusters except B, and
B is isolated from any other proto-clusters except A and C.

Proof. After applying Reduction Rules 1 - 5 exhaustively, let C be a proto-cluster of size 3. If C
is isolated from other proto-clusters, then C must be a clique since otherwise Reduction Rule 1
can be applied, a contradiction. Then Reduction Rule 5 can be applied, a contradiction. Thus
we assume that C is not an isolated proto-cluster. Let the three vertices of C be u1, u2 and u3.
Let v be a vertex such that there is an edge between v and V (C). If the vertex pairs between
V (C) and v are not covered by a type-α P3 and a type-γ P3, then Reduction Rule 2 or 3 can
be applied, a contradiction. Without loss of generality, suppose that u1, u3 and v belong to a
type-α P3. Assume for contradiction that there is another vertex w such that w is adjacent to
some vertex of V (C) (w can either belong to the same proto-cluster as v or belong to a different
proto-cluster from v). If the vertex pairs between V (C) and w are not covered by a type-α P3

and a type-γ P3, then Reduction Rule 2 or 3 can be applied, a contradiction. If the vertex pairs
between V (C) and u are covered by a type-α P3 and a type-γ P3, say u1, u2 and w belong to
the type-α P3, then u1, u2 and u3 are not in one proto-cluster, a contradiction. It follows that
there is no vertex adjacent to one of the vertices of V (C) except v. Let B be the proto-cluster
to which v belongs. Assume that |B| > 1 and there is another vertex y belonging to B. Then y
is not adjacent to any vertex of V (C). Thus Reduction Rule 3 can be applied, a contradiction.
It follows that |B| = 1 and C is isolated from any other proto-clusters except B. We have
assumed that u1, u3 and v belong to a type-α P3. Let u2vx be a type-γ P3 and x belongs to
a proto-cluster A. We claim that |A| = 1. Suppose for contradiction that |A| > 1 and there is
another vertex z ∈ V (A). Then vz must be a non-packed non-edge since v is already incident
with two packed P3s. Thus Reduction Rule 3 can be applied, a contradiction. It follows that
|A| = 1. This concludes the proof for the lemma.

Reduction Rule 6. After applying Reduction Rules 1 - 5 exhaustively, if there is a proto-cluster
C of size 3, a proto-cluster B of size 1 and a proto-cluster A of size 1 such that C is not isolated
from B, and a type-γ P3 connects A and C via B, then delete the packed edge between A and
B, insert an edge to the packed non-edge between C and B, and remove the corresponding P3s
from H.

Lemma 32. Reduction Rule 6 is safe.

Proof. Given an instance (G,H, ` = 0) of CEaTMP satisfying the condition of Reduction
Rule 6, let u1, u2 and u3 be the three vertices of C, let v be the vertex of B and w be the
vertex of A. Without loss of generality, let u1u3v and u2vw be two packed P3s. After applying
Reduction Rule 6, we get an instance (G′,H′, ` = 0) of CEaTMP. We claim that (G,H, ` = 0)
is a YES-instance if and only if (G′,H′, ` = 0) is a YES-instance. For completeness, suppose
that (G′,H′, ` = 0) is a YES-instance and S′ is a cluster editing set of G′ such that |S′| = |H′|.
Obviously S = S′ ∪ {u1v, vw} is a solution to (G,H, ` = 0). For soundness, suppose that
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C1

C3C2

Figure 6.6: An example of forming a clique of size 6 in G4S. The black edges are non-packed
edges. The vertex pairs of the same color which is not black belong to the same packed P3

and the dashed edges represent non-edges. The same rule of notation applies to the following
pictures.

(G,H, ` = 0) is a YES-instance and S is a cluster editing set of G such that |S| = |H|. If
{u1v, vw} ⊆ S, then S′ = S \ {u1v, vw} is a solution to (G′,H′, ` = 0). If vw /∈ S, then either
u2w ∈ S or u2v ∈ S. First, we assume that u2w ∈ S, and after inserting u2w and removing
u2vw from H we get an instance (G′′,H′′, ` = 0) of CEaTMP. Then u3u2w is a non-packed
path in G′′ and u3w is a non-packed non-edge. Thus Reduction Rule 1 can be applied and the
algorithm returns NO, contradicting that S is a solution to (G,H, ` = 0). Second, we assume
that u2v ∈ S. After deleting u2v and removing u2vw from H, u2v becomes a non-packed non-
edge. Thus Reduction Rule 3 can be applied. It’s not hard to see that u3v ∈ S since otherwise
S is not a solution to (G,H, ` = 0). By Lemma 31, C is isolated from any other proto-clusters
except B, and B is isolated from any other proto-clusters except A and C. It follows that in
G4S, u1, u2 and u3 form a clique of size 3 while v and w form a clique of size 2. Besides,
V (G) \ {u1, u2, u3, v, w} form a cluster graph in G4S. Let Ŝ = S \ {u2v, u3v} ∪ {vw, u1v}.
Obviously G4Ŝ is also a cluster graph and |Ŝ| = |H|. Thus Ŝ is also a solution to (G,H, ` = 0).
This completes the proof for the lemma.

Corollary 3. After applying Reduction Rules 1 - 6 exhaustively, there are no isolated cliques in
the instance and every proto-cluster of the instance is of size at most 2. Moreover, every packed
P3 is a type-γ P3.

After applying Reduction Rules 1 - 6 exhaustively, we have an instance (G,H, ` = 0) of
CEaTMP. Suppose that S is a solution to (G,H, ` = 0). Now we consider the cluster graph
G4S.

Lemma 33. After applying Reduction Rules 1 - 6 exhaustively, we have an instance (G,H, ` = 0)
of CEaTMP. Suppose that S is a solution to (G,H, ` = 0). Then there is no clique of size
larger than 6 in G4S.

Proof. Suppose for contradiction that A is a clique of size at least 7 in G4S and let u be a
vertex in A. Then there are at least 6 vertex pairs between {u} and V (A) \ {u}, which are
either non-packed edges or covered by packed P3s. Since u is incident with at most 2 packed
P3s, at most 4 vertex pairs between {u} and V (A) \ {u} are covered by a packed P3. Thus
at least 2 vertex pairs between {u} and V (A) \ {u} are non-packed edges. By Corollary 3,
every proto-cluster in G is of size at most 2, a contradiction. This completes the proof for the
lemma.

Lemma 34. Given an instance (G,H, ` = 0) of CEaTMP such that the size of every proto-
cluster in G is at most 2 and S is a solution to (G,H, ` = 0), suppose that A is a clique of size
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6 in G4S. Then the vertices of V (A) belong to three proto-clusters C1, C2 and C3 of size two
in G. In addition, every vertex pair between C1 and C2, between C1 and C3, between C2 and C3

is covered by some P3 of H. V (C1) ∪ V (C2) ∪ V (C3) forms a connected component C in G.

Proof. Suppose for contradiction that u ∈ V (A) belongs to a proto-cluster of size one in G.
Then there are 5 vertex pairs between {u} and V (A) \ {u}, which are covered by packed P3s.
Since u belongs to at most 2 packed P3s, at most 4 vertex pairs between {u} and V (A) \ {u}
are covered by a packed P3, a contradiction. Next we show that the vertices of V (A) belong to
three proto-clusters C1, C2 and C3 of size two in G as shown in Fig 6.6. We see that for every
vertex v ∈ V (A), four of the vertex pairs between {v} and V (A) \ {v} are covered by packed
P3s and the other one is a non-packed edge. Since every vertex v ∈ V (A) already belongs to two
packed P3s, the proto-cluster Ci is isolated from any other proto-clusters in G \ {C1, C2, C3} for
i = 1, 2, 3. Without loss of generality, suppose that xyz is a P3 such that x ∈ V (C1), y ∈ V (C2)
and z ∈ V (C3). Thus V (C1) ∪ V (C2) ∪ V (C3) forms a connected component. This completes
the proof for the lemma.

Lemma 35. After applying Reduction Rules 1 - 6 exhaustively, we have an instance (G,H, ` = 0)
of CEaTMP. Suppose that S is a solution to (G,H, ` = 0). Then there is no clique of size 6
in G4S.

Proof. Suppose for contradiction that A is a clique of size 6 in G4S. According to Lemma 34,
V (A) induces a connected component of size 6 in the input graph. Then Reduction Rule 4 and
Reduction Rule 5 can be applied, a contradiction. This completes the proof for the lemma.

Lemma 36. After applying Reduction Rules 1 - 3 exhaustively, let (G,H, ` = 0) be an instance
of CEaTMP such that the size of every proto-cluster in G is at most 2 and S is a solution to
(G,H, ` = 0). Suppose that A is a clique of size 5 in G4S. Then the vertices of V (A) belong
to three proto-clusters C1, C2 and C3 (or C2, C3 and C4) in G such that |C1| = |C4| = 1 and
|C2| = |C3| = 2. Every vertex pair between Ci and Cj (i, j ∈ {1, 2, 3, 4}, i 6= j) is covered by a
packed P3 except that the vertex pair between C1 and C4 is a non-packed non-edge. In addition,
V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4) forms a connected component C in G.

Proof. Suppose for contradiction that at least three vertices of V (A) belong to proto-clusters of
size one in G, say u, v, w ∈ V (A) belong to three distinct proto-clusters of size one respectively
and two vertices of V (A), say x, y ∈ V (A) belong to a proto-cluster of size two or belong to two
distinct proto-clusters of size one respectively. It follows that every vertex pair of

(
V (A)
2

)
is either

a non-packed edge or covered by some P3 of H. Without loss of generality, assume that u, v, x
belong to a packed P3 and w, v, y belong to another packed P3. Now uw, uy must be covered by
one packed P3, since u is already incident with one packed P3. However, the packed P3 covering
uw,wy is not modification-disjoint with the packed P3 covering vw, vy, a contradiction. Next
we show that V (A) belong to three proto-clusters C1, C2 and C3 (or C2, C3 and C4) in G such
that |C1| = |C4| = 1 and |C2| = |C3| = 2 as shown in Case (1) and Case (2) of Fig. 6.7. Let
V (C1) = {x}, V (C2) = {u1, u2} and V (C3) = {v1, v2}. Without loss of generality, let x, u1, v1
belong to a packed P3 and x, u2, v2 belong to another packed P3. Then u1v2 and u2v1 must be
covered by packed P3s since otherwise Reduction Rule 3 can be applied. Assume that there are
two vertices y1, y2 such that y1, u1, v2 belong to one packed P3 and y2, u2, v1 belong to another
packed P3. Then y1u2, y1v1 are non-packed non-edges since u2, v1 are already incident with two
packed P3s respectively. Thus Reduction Rule 3 can be applied, a contradiction. It follows that
there is a vertex y such that yu2v1, yu1v2 ∈ H. Let C4 be the proto-cluster to which y belongs.
If |C4| > 1, then there must be a non-packed non-edge between C4 and C2 and a non-packed
non-edge between C4 and C3. Thus Reduction Rule 3 can be applied, a contradiction. Thus
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|C4| = 1. Since u1, u2, v1, v2, x, y are all incident with two packed P3s, the subgraph induced
by V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4) is isolated from the other parts of the graph. Obviously,
V (C1)∪V (C2)∪V (C3)∪V (C4) forms a connected component C in G. This completes the proof
for the lemma.

C1

C4

C2 C3

(1)

C1

C4

C2 C3

(2)

C1

C4

C2 C3

(3)

C1

C4

C2 C3

(4)

Figure 6.7: Some examples of Lemma 36. In Case (1), C1 is separated from C2 and C3, and
C2, C3, C4 are merged into a clique of size 5 in G4S. In Case (2), C4 is separated from C2 and
C3, and C1, C2, C3 are merged into a clique of size 5 in G4S. In Case (3), C1, C2 are merged
into a clique of size 3 and C3, C4 are merged into a clique of size 3 such that these two cliques of
size 3 are separated from each other. In Case (4), the instance is a NO-instance. Case (3) and
Case (4) are not touched by Lemma 36 but they can be handled by Reduction Rule 4 and 5.

Lemma 37. After applying Reduction Rules 1 - 6 exhaustively, we have an instance (G,H, ` = 0)
of CEaTMP. Suppose that S is a solution to (G,H, ` = 0). Then there is no clique of size 5
in G4S.

Proof. Suppose for contradiction that A is a clique of size 5 in G4S. According to Lemma 36,
V (A) belong to a connected component of size 6 in the input graph. Then Reduction Rule 4 and
Reduction Rule 5 can be applied, a contradiction. This completes the proof for the lemma.

Lemma 38. After applying Reduction Rules 1 - 6 exhaustively, let (G,H, ` = 0) be an instance
of CEaTMP such that the size of every proto-cluster in G is at most 2 and S is a solution to
(G,H, ` = 0). Suppose that A is a clique of size 4 in G4S and V (A) = {x, y, z1, z2}. Then
three vertices of V (A), say x, y, z2 belong to one packed P3 in G, and one vertex of x, y, z2, say
z2, with z1 forms a proto-cluster C1 of size two in G while x and y form a proto-cluster C2 of
size one and a proto-cluster C3 of size one in G respectively. Moreover, there are two vertices u
and v such that x, u, z1 belong to a packed P3 in G, y, v, z1 belong to another packed P3 in G. u
and v form a proto-cluster C4 of size one and a proto-cluster C5 of size one in G respectively.

Proof. For contradiction, suppose that V (A) does not belong to one proto-cluster of size two
and two proto-clusters of size one in G. Then there are two cases: (i) two vertices of V (A), say
x1, x2, belong to a proto-cluster C2 of size two and the other two vertices of V (A), say y1, y2,
belong to a proto-cluster C3 of size two. (ii) four vertices x1, x2, y1, y2 of V (A) belong to four
distinct proto-clusters C1, C2, C3 and C4 respectively.

Case (i): Since C2 and C3 need to be fully-covered to form a clique of size four, without
loss of generality, assume that there is a vertex u such that u, x1 and y1 belong to a packed P3.
Suppose that there is another vertex u′ such that u′, x2 and y2 belong to a packed P3. Since
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z2

x
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v

Figure 6.8: An example of forming a clique of size 4 in G4S. Vertices z1, z2 form a proto-cluster
of size 2 and each vertex of u, v, x, y belongs to a proto-cluster of size 1.

neither u, x2, y1 nor u, x1, y2 could belong to a packed P3, one of the vertex pairs ux2 and uy2
must be a non-packed non-edge and Reduction Rule 3 can be applied, a contradiction. Thus
u, x2 and y2 belong to a packed P3. Similarly, we can show that there is another vertex v such
that v, x1, y2 belong to a packed P3 and v, x2, y1 belong to a packed P3. It follows that each
vertex of {x1, x2, y1, y2, u, v} is incident with two packed P3s. Assume that u and v belong to
two different proto-clusters, say C1 and C4 respectively. If |C1| > 1 or |C4| > 1, then Reduction
Rule 3 can be applied. Thus |C1| = |C4| = 1. It follows that V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4)
induces a connected component and Reduction Rule 4 can be applied, a contradiction. Assume
that u and v belong to one proto-cluster, say C1. If |C1| > 2, then Reduction Rule 3 can be
applied. Thus |C1| = 2 and V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4) induces a connected component.
It follows that Reduction Rule 4 can be applied, a contradiction. Therefore Case (i) does not
exist.

Case (ii): Since C1, C2, C3 and C4 need to be pairwise fully-covered to form a clique of size
four, without loss of generality, assume that x1, x2, y1 belong to a packed P3. Since x1y2 needs
to be covered by a packed P3, there is another vertex y3 such that x1, y2, y3 belong to a packed
P3. The vertex pairs x2y2 and y1y2 cannot be covered by one packed P3 since x2y1 is already
covered by a packed P3. Thus x2y2 and y1y2 need to be covered by two distinct P3s respectively.
However, y2 is incident with 3 packed P3s, a contradiction. Therefore Case (ii) does not exist.

Next we show that the statement of this lemma is true as in Fig 6.8. Suppose that A is
a clique of size 4 in G4S. Let V (A) = {x, y, z1, z2}. By the analysis above, we get that
two vertices of A belong to a proto-cluster of size two and the other two vertices of A belong
to two distinct proto-clusters of size one respectively. Without loss of generality, assume that
z1, z2 form a proto-cluster C1 of size two in G while x and y form a proto-cluster C2 of size
one and a proto-cluster C3 of size one in G respectively. Since there are three vertex pairs, i.e.
{xy, xz1, xz2} between x and V (A)\{x}, two of the three vertex pairs are covered by one packed
P3. Without loss of generality, let x, y, z2 belong to a packed P3. Thus there is another vertex u
such that x, u, z1 belong to a packed P3 in G. Also yz1 needs to be covered by a packed P3, so
there is another vertex v such that y, v, z1 belong to a packed P3. Suppose that u or v belongs
to one proto-cluster of size at least two. If uz1 or vz1 is a packed edge, Reduction Rule 3 can be
applied since either uz2 or vz2 must be a non-packed non-edge. If uz1 and vz1 are two packed
non-edges, ux and vy must be two packed edges. Since x and y are incident with two packed P3s
respectively, uy and vx are two non-packed non-edges. Thus Reduction Rule 3 can be applied,
a contradiction. It follows that u and v must belong to two distinct proto-clusters. Assume that
there is a vertex u′ such that u′ and u belong to one proto-cluster of size at least two. Since
x, z1 are already incident with two packed P3s respectively, u′x and z1x must be non-packed

72



non-edges. Then Reduction Rule 3 can be applied since ux or uz1 is a packed edge. It follows
that u belongs to a proto-cluster of size one, say C4. Similarly, we can show that v belongs to a
proto-cluster of size one, say C5. This completes the proof for the lemma.

z1

z2

y xv u

Item (1)

z1

z2

x

y uv w

Item (2)

z1
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y uv w

Item (3)

z1

z2

x

y uv w

Item (4)

z1

z2

x

y uv w

Item (5)

v a b c w

Figure 6.9: Examples of Reduction Rule 7. Vertices z1, z2 form a proto-cluster of size 2 and each
of the other vertices belongs to a proto-cluster of size 1.

Reduction Rule 7. After applying Reduction Rules 1 - 6 exhaustively, let C1, C2, C3, C4 and
C5 be five proto-clusters such that V (C1) = {z1, z2}, V (C2) = {x}, V (C3) = {y}, V (C4) =
{u}, V (C5) = {v} and x, y, z2 belong to a packed P3, x, u, z1 belong to a packed P3, y, v, z1 belong
to a packed P3. We list the following reduction approaches under different conditions.

If uz2 and vz2 are non-packed non-edges and uz1, vz1 are packed non-edges, then

(1) Delete the edges vy and ux, insert an edge to the packed non-edge of the P3 which covers
xy and remove the corresponding packed P3s from H.

Otherwise, if there is a vertex w such that u,w, z2 belong to a packed P3 and wz2, vz1 is a packed
non-edge, then we do reductions according to the following cases:

(2) xz1 and xz2 are packed non-edges. Return NO.
(3) xz1 is a packed non-edge and xz2 is a packed edge. Delete the edge uw, delete the edges

between y and {x, z1, z2}, and add an edge to the non-edge xz1. Remove the corresponding
packed P3s from H.

(4) xz1 is a packed edge and xz2 is a packed non-edge. Delete the edge vy, delete the edges
between u and {y, z1, z2}, and add an edge to the non-edge xz2. Remove the corresponding
packed P3s from H.

(5) xz1 and xz2 are packed edges. Replace the subgraph induced by {u, v, w, x, y, z1, z2} with two
P3s vab and bcw. Remove the four packed P3s incident with one vertex of {u, x, y, z1, z2}
from H, and add vab and bcw to H.

Otherwise, if there is a vertex w′ such that v, w′, z2 belong to a packed P3 and uz1, w
′z2 are

packed non-edges, then we do reductions according to the following cases:

(6) yz1 and yz2 are packed non-edges. Return NO.

73



(7) yz1 is a packed non-edge and yz2 is a packed edge. Delete the edge vw′, delete the edges
between x and {y, z1, z2}, and add an edge to the non-edge yz1. Remove the corresponding
packed P3s from H.

(8) yz1 is a packed edge and yz2 is a packed non-edge. Delete the edge ux, delete the edges
between v and {y, z1, z2}, and add an edge to the non-edge yz2. Remove the corresponding
packed P3s from H.

(9) yz1 and yz2 are packed edges. Replace the subgraph induced by {u, v, w′, x, y, z1, z2} with t-
wo P3s w′ab and bcu. Remove the four packed P3s incident with one vertex of {v, x, y, z1, z2}
from H, and add w′ab and bcu to H.

Lemma 39. Reduction Rule 7 is safe.

Proof. Suppose that (G,H, ` = 0) is an instance of CEaTMP satisfying the condition of Item (1)
of Reduction Rule 7. First, we claim that vz1 and uz1 must be packed non-edges. Suppose for
contradiction that uz1 or vz1 is a packed edge. Since vz2 and uz2 are non-packed non-edges
as in the assumption, Reduction Rule 3 can be applied, a contradiction. Let F be the set of
vertex pairs edited by Item (1) and we can check that F contains exactly one vertex pair of
each of the packed P3s incident with one of the vertices of {x, y, z1, z2}. After applying the
operations of Item (1) we get an instance (G′ = G4F,H′, ` = 0). We claim that (G,H, ` = 0)
is a YES-instance if and only if (G′,H′, ` = 0) is a YES-instance. On one hand, assume that
(G′,H′, ` = 0) has a solution S′. Then S = S′ ∪ F is a solution to (G,H, ` = 0). On the other
hand, assume that (G,H, ` = 0) has a solution S. Then G4S is a cluster graph. We claim that
z2 is not incident with any other packed P3s except the one covering xy. Suppose that there is
another vertex z3 such that z3z2 is a packed edge, then z3z1 is a non-packed non-edge since z1 is
already incident with two packed P3s. Then Reduction Rule 3 can be applied, a contradiction.
Thus z2 is not incident with any other packed P3s except the one covering xy. Let S1 ⊆ S
be the set of vertex pairs which are packed edges or packed non-edges of the subgraph of G
induced by {u, v, x, y, z1, z2}. We claim that Ŝ = S \ S1 ∪ F is also a solution to (G,H, ` = 0).
Since S is a solution to (G,H, ` = 0), S1 must contain exactly one vertex pair of each of the
packed P3s incident with one of the vertices of {x, y, z1, z2}. Since F ∩ (S \ S1) = ∅, S1 ⊆ S
and |F | = |S1|, we get that |Ŝ| = |S|. Since G4S is a cluster graph, the subgraph of G4S
induced by V (G) \ {x, y, z1, z2} is also a cluster graph G̃. It follows that G4Ŝ is a cluster graph
consisting of two isolated parts, i.e. G̃ and the clique of size four formed by {x, y, z1, z2}. It
follows that S \ S1 is a solution to (G′,H′, ` = 0). As a result, Item (1) is safe.

For the proof of the correctness of Items (2) - (5), we claim that vz1 and wz2 are packed
non-edges. Suppose for contradiction that vz1 or wz2 is a packed edge. Since z1, z2 are already
incident with two packed P3s, vz2 and wz1 must be non-packed non-edges. Then Reduction
Rule 3 can be applied, a contradiction. Thus vz1 and wz2 are packed non-edges. In a similar
way, for the proof of the correctness of Items (6) - (9), we can prove that uz1 and w′z2 are
packed non-edges.

For contradiction, suppose that an instance (G,H, ` = 0) of CEaTMP satisfying the condi-
tion of Item (2) of Reduction Rule 7 has a solution S. Since vx is a non-packed non-edge, at least
one packed edge of vy, xy belongs to S since otherwise Reduction Rule 1 can be applied. Sup-
pose that xy ∈ S. Then yz2 becomes a non-packed edge and yz1 /∈ S since otherwise Reduction
Rule 1 can be applied. If vz1 ∈ S, then Reduction Rule 1 can be applied. Thus vy ∈ S and the
subgraph induced by {y, z1, z2} is a proto-cluster now. Since uy is a non-packed non-edge and
uz1 is a packed edge, Reduction Rule 3 can be applied, which deletes uz1 and makes ux become
a non-packed edge. Now u, x form a proto-cluster of size two. Again by Reduction Rule 3, uz2
is deleted and uw becomes a non-packed edge. Then Reduction Rule 1 can be applied to the
proto-cluster formed by u,w, x, a contradiction. Suppose that vy ∈ S. Then yz1 becomes a
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non-packed edge, so yz2 /∈ S since otherwise Reduction Rule 1 can be applied. If xz2 ∈ S, then
xz1 ∈ S since otherwise Reduction Rule 1 can be applied. Then uz1 and ux become non-packed
edges. Since uy is a non-packed non-edge, Reduction Rule 1 can be applied to the proto-cluster
formed by u, x, y, z1, z2. Thus xz2 /∈ S and xy ∈ S. Then by Reduction Rule 3 uz1 is deleted
and ux becomes a non-packed edge. Now u, x form a proto-cluster of size two. Again by Re-
duction Rule 3, uz2 is deleted and uw becomes a non-packed edge. Then Reduction Rule 1 can
be applied to the proto-cluster formed by u,w, x, a contradiction. As a result, (G,H, ` = 0) is
a NO-instance and Item (2) is safe. Given an instance (Ĝ, Ĥ, ` = 0) of CEaTMP satisfying
the condition of Item (6) of Reduction Rule 7, we can check that the subgraph of Ĝ induced by
{u, v, w′, x, y, z1, z2} is isomorphic to the subgraph of G induced by {u, v, w, x, y, z1, z2}. Thus
by similar analysis, we can prove that Item (6) is safe.

Given an instance (G,H, ` = 0) of CEaTMP satisfying the condition of Item (3) of Re-
duction Rule 7, let F be the set of vertex pairs edited by Item (3) and we can check that F
contains exactly one vertex pair of each of the packed P3s incident with one of the vertices of
{u, x, y, z1, z2}. After applying the operations of Item (3) we get an instance (G′ = G4F,H′, ` =
0). We claim that (G,H, ` = 0) is a YES-instance if and only if (G′,H′, ` = 0) is a YES-instance.
On one hand, assume that (G′,H′, ` = 0) has a solution S′. Then S = S′ ∪ F is a solution to
(G,H, ` = 0). On the other hand, assume that (G,H, ` = 0) has a solution S. We claim that
F ⊆ S. Suppose for contradiction that xz1 /∈ S. Then there are two cases: (1) ux ∈ S and
(2) uz1 ∈ S. Case (1): If ux ∈ S, then uz1 becomes a non-packed edge and xz1 becomes a
non-packed non-edge. It follows that uz2 /∈ S and xz2 ∈ S since otherwise Reduction Rule 1
can be applied. Since wz1 is a non-packed non-edge, wz2 /∈ S. Thus uw ∈ S. Since u, z1 and
z2 form a proto-cluster of size 3 now, by Reduction Rule 3, xz2 ∈ S. If xy is a non-edge and
yz2 is an edge, yz2 becomes a non-packed edge after xz2 is deleted. Since uy is a non-packed
non-edge, Reduction Rule 1 can be applied, a contradiction. If yz2 is a non-edge and yx is an
edge, then y and x form a cluster of size two. Since yz1 is a packed edge and uy is a non-packed
non-edge, Reduction Rule 3 can be applied and yz1 ∈ S. Thus vy becomes a non-packed edge.
Since vx is a non-packed non-edge, Reduction Rule 1 can be applied, a contradiction. Case (2):
If uz1 ∈ S, then uz2 ∈ S since otherwise Reduction Rule 1 can be applied. Thus ux and uw
become non-packed edges after uz1 and uz2 are deleted. Since xw is a non-packed non-edge,
Reduction Rule 1 can be applied, a contradiction. It follows that xz1 ∈ S and xz2, uz2 /∈ F .
Thus uw ∈ S since otherwise Reduction Rule 1 can be applied. Now u, x, z1, z2 belong to one
proto-cluster. Then by Reduction Rule 3, yz1 ∈ S. u, x, z1, z2 are in one proto-cluster. Since
uy is a non-packed non-edge, if xy is an edge, xy ∈ S since otherwise Reduction Rule 1 can
be applied. Then by Reduction Rule 3, yz1 ∈ S. Similarly, If yz2 is an edge, yz2 ∈ S since
otherwise Reduction Rule 1 can be applied. Then by Reduction Rule 3, yz1 ∈ S. As a result,
F ⊆ S. We claim that Ŝ = S \ F is a solution to (G′,H′, ` = 0). Since u, x, y, z1, z2 are already
incident with two packed P3s, {u, x, y, z1, z2} are isolated from V (G) \ {u, v, w, x, y, z1, z2} in G.
It follows that in G4S, v, y belong to a clique of size two, u, x, z1, z2 belong to a clique of size
four and V (G) \ {u, v, x, y, z1, z2} induces a cluster graph such that there are no edges between
{u, v, x, y, z1, z2} and V (G)\{u, v, x, y, z1, z2}. Thus G′4Ŝ is a cluster graph and |Ŝ| = |H′|. As
a result, Item (3) is safe. By very similar approaches, we can prove that Items (4), (7) and (8)
are safe.

Let (G,H, ` = 0) be an instance of CEaTMP satisfying the condition of Item (5) of Reduc-
tion Rule 7. Since xz1, xz2 are packed edges, there are two packed edges between y and {x, z1, z2}
and let the set of the two packed edges be Wy. Also, there are two packed edges between u
and {x, z1, z2} and let the set of the two packed edges be Wu. After applying the operations of
Item (5) we get an instance (G′,H′, ` = 0). We claim that (G,H, ` = 0) is a YES-instance if
and only if (G′,H′, ` = 0) is a YES-instance. For completeness, suppose that (G′,H′, ` = 0) has
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a solution S′. Thus G′4S′ is a cluster graph. There are four possible cases: (1) {ab, cw} ⊆ S′.
Since G′4S′ is a cluster graph, the subgraph of G′4S′ induced by V (G) \ {b, c} is also a cluster
graph. Let S = S′ \ {ab, cw} ∪Wy ∪ {ux, uz1, uz2} \Wu ∪ {uw}. Then G4S is also a cluster
graph and |S| = |H|. Thus (G,H, ` = 0) is a YES-instance. (2) {va, bc} ⊆ S′. We can show
that (G,H, ` = 0) has a solution in a very similar way to that of Case (1). (3) {vb, bc} ⊆ S′.
Since vertices a, b and c are not adjacent to any vertex of V (G′) \ {a, b, c, v, w} in G′, {v, a, b}
induces a triangle which is a connected component and {c, w} induces a clique of size two which
is also a connected component in G′4S′. Let S = S′ \{vb, bc}∪Wu∪{yx, yz1, yz2}\Wy ∪{vy}.
It follows that G4S is a cluster graph and |S| = |H|. Thus (G,H, ` = 0) is a YES-instance.
(4) {ab, bw} ⊆ S′. We can show that (G,H, ` = 0) has a solution in a very similar way to
that of Case (3). This completes the proof for completeness. For soundness, suppose that
(G,H, ` = 0) has a solution S. We can check that there are only two possible cases: (1)
F1 = Wu ∪ {yx, yz1, yz2} \Wy ∪ {vy} ⊆ S. Since vertices u, x, y, z1, z2 are not adjacent to any
vertex of V (G) \ {u, v, w, x, y, z1, z2} in G, {x, y, z1, z2} induces a clique of size four which is a
connected component and {u,w} induces a clique of size two which is also a connected compo-
nent in G4S. Let S′ = S \F1∪{va, bc}. It follows that G′4S′ is a cluster graph and |S′| = |H′|.
Thus (G′,H′, ` = 0) is a YES-instance. (2) F2 = Wy∪{ux, uz1, uz2}\Wu∪{uw} ⊆ S. Since ver-
tices u, x, y, z1, z2 are not adjacent to any vertex of V (G)\{u, v, w, x, y, z1, z2} in G, {u, x, z1, z2}
induces a clique of size four which is a connected component and {v, y} induces a clique of size
two which is also a connected component in G4S. Let S′ = S \ F2 ∪ {ab, cw}. It follows that
G′4S′ is a cluster graph and |S′| = |H′|. Thus (G′,H′, ` = 0) is a YES-instance. As a result,
Item (5) is safe. In a very similar way, we can prove that Item (9) is safe.

As a result, Reduction Rule 7 is safe. This completes the proof for the lemma.

After applying Reduction Rule 7, Reduction Rule 5 can be applied to remove the isolated
cliques.

Lemma 40. After applying Reduction Rules 1 - 7 exhaustively, let (G,H, ` = 0) be an instance
of CEaTMP which has a solution S. Then there is no clique of size at least 4 in G4S.

Proof. By Lemma 33, 35 and 37, there is no clique of size at least 5 in G4S. Suppose for
contradiction that A is a clique of size 4 in G4S. Let V (A) = {x, y, z1, z2}. Then by Lemma 38,
three vertices of V (A), say x, y, z2 belong to one packed P3 in G, and one vertex of x, y, z2, say
z2, with z1 forms a proto-cluster C1 of size two in G while x and y form a proto-cluster C2 of
size one and a proto-cluster C3 of size one in G respectively. Moreover, there are two vertices u
and v such that x, u, z1 belong to a packed P3 in G, y, v, z1 belong to another packed P3 in G,
and u and v form a proto-cluster C4 of size one and C5 of size one in G respectively. There are
six cases: (1) uz2 and vz2 are non-packed non-edges. Then Item (1) of Reduction Rule 7 can
be applied. (2) uz2 is a packed edge and vz2 is a non-packed non-edge. Then one of Items (2)
- (5) can be applied. (3) uz2 is a packed non-edge and vz2 is a non-packed non-edge. Then
Reduction Rule 3 can be applied. (4) vz2 is a packed edge and uz2 is a non-packed non-edge.
Then one of Items (6) - (9) can be applied. (5) vz2 is a packed non-edge and uz2 is a non-packed
non-edge. Then Reduction Rule 3 can be applied. (6) u, v, z2 belong to a packed P3. Since
every vertex of {u, v, x, y, z1, z2} is already incident with two packed P3s, the subgraph induced
by {u, v, x, y, z1, z2} is isolated from other parts of the graph and it’s not hard to see that it is a
connected component. Thus Reduction Rule 4 can be applied. It follows that there is no clique
of size 4 in G4S. This completes the proof for the lemma.
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6.2.2 Polynomial-time Reduction to 2-SAT Problem

First, we introduce a new problem called Cluster Deletion above modification-disjoint
P3 packing. The formal definition is as follows:

Cluster Deletion above modification-disjoint P3 packing (CDaMP)
Input: A graph G = (V,E), a modification-disjoint packing H of induced P3s of G,
and a nonnegative integer `.
Question: Is there a cluster deletion set, i.e. a set of edges S ⊆ E so that G′ =
(V,E \ S) is a union of disjoint cliques, with |S| − |H| ≤ `?

Note that in the definition of CDaMP, the P3s of H are still modification-disjoint although
the solution to the problem contains only edge deletions.

Lemma 41. Given an instance (G,H, ` = 0) of CEaTMP, after applying Reduction Rules 1
- 7 exhaustively, we get an instance (G′,H′, ` = 0) of CEaTMP. Then (G,H, ` = 0) is a
YES-instance of CEaTMP if and only if (G′,H′, ` = 0) is a YES-instance of CDaMP.

Proof. (Completeness) Assume that (G′,H′, ` = 0) is a YES-instance of CDaMP and S′ is a
cluster deletion set of size |H′|. Obviously S′ is also a cluster editing set of G′. Thus (G′,H′, ` =
0) is a YES-instance of CEaTMP. It follows that (G,H, ` = 0) is a YES-instance of CEaTMP.

(Soundness) Assume that (G,H, ` = 0) is a YES-instance of CEaTMP. Then (G′,H′, ` = 0)
is a YES-instance of CEaTMP and let S′ be its solution. By Lemma 40, there is no clique of
size at least four in G′4S′. By Observation 5, every non-edge of S′ is a packed non-edge. Let
uw ∈ S′ be a non-edge of G′ which is covered by a P3 uvw of H′. Then in G′4S′, {u, v, w}
must induces a triangle which is a connected component. It follows that S′ \{uw}∪{uv} is also
a solution to (G′,H′, ` = 0). Let S1 ⊆ S′ be the set of non-edges of S′. Then there is a set S2
of packed edges of G′ such that S′ \ S1 ∪ S2 is a cluster deletion set for G′ of size |H′|. Thus
(G′,H′, ` = 0) is a YES-instance of CDaMP. This completes the proof for the lemma.

Given an instance (G,H, ` = 0) of CEaTMP, after applying Reduction Rules 1 - 7 exhaus-
tively, we get an instance (G′,H′, ` = 0) of CDaMP. Let Ec ⊆ E(G′) be the set of edges covered
by some P3 of H′ and let λ = 2|H′|. We fix an arbitrary ordering of the edges of Ec and label
these edges by e0, e1, ..., eλ−1 according to this ordering. We construct an instance of 2-SAT
with λ variables x0, x1, ..., xλ−1 as follows. First initialize the 2-SAT formula Φ = true. For
each induced P3 xyz ∈ H′, if ei = xy, ej = yz, then update Φ← Φ∧ (xi ∨xj)∧ (¬xi ∨¬xj). For
each induced P3 uvw in G′ such that uv and vw belong to two distinct P3s of H′ respectively,
if uv = ep and vw = eq, then update Φ← Φ∧ (xp ∨ xq). This completes the construction of the
2-SAT instance.

Lemma 42. Given an instance (G,H, ` = 0) of CEaTMP, after applying Reduction Rules 1
- 7 exhaustively, we get an instance (G′,H′, ` = 0) of CDaMP. We construct a 2-SAT formula
Φ as described above. Then (G,H, ` = 0) is a YES-instance if and only if Φ is satisfiable.

Proof. (Completeness) Assume that Φ is satisfiable and let α be a satisfying assignment to Φ.
Let S′ = {ei | α(xi) = true}. We will show that S′ is a cluster deletion set for G′ of size |H′|.
First we claim that for every induced P3 xyz ∈ H′, exactly one edge of xy and yz belongs to S′.
Assume that ei = xy and ej = yz for some i, j ∈ {0, ..., λ− 1}. Since (xi ∨ xj) and (¬xi ∨ ¬xj)
are two clauses of Φ and α is a satisfying assignment to Φ, either xi = false, xj = true or
xi = true, xj = false holds. Thus the claim is true and |S′| = |H′|. Then for every induced P3

uvw in G′ such that uv and vw belong to two distinct P3s of H′, let uv = ep and vw = eq for
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some p, q ∈ {0, ..., λ− 1}. By the construction, (xp ∨ xq) is a clause of Φ so it is satisfied by α.
Thus at least one edge of uvw belongs to S′.

We claim that there is no induced P3 xyz in G′4S′ such that both xy and yz are packed
edges in G′. Suppose for contradiction that there is an induced P3 xyz in G′4S′ such that both
xy and yz are packed edges in G′. Then xy and yz must be covered by two distinct packed P3s
since otherwise xy or yz belongs to S′ by the analysis of last paragraph. Besides, we claim that
xz must be a packed edge covered by another packed P3 in G′, i.e. xy, yz and xz are covered by
three distinct packed P3s in G′ since otherwise xyz is an induced P3 in G′ and xy or yz belongs
to S′ by the analysis of last paragraph. If xz is a non-packed edge in G′, then xz is an edge in
G′4S′ since xz cannot be deleted by the solution, a contradiction. Suppose that xz is a packed
edge and without loss of generality, xz is covered by uxz ∈ H′. Then ux, xy, yz /∈ S′. Since y is
already incident with two packed P3s, uy is either a non-packed non-edge in G′ or a non-packed
edge in G′. If uy is a non-packed non-edge in G′, then uxy is an induced P3 in G′. Let ux = ei
and xy = ej , then the clause (xi∨xj) of Φ is not satisfied, a contradiction. If uy is a non-packed
edge, then Reduction Rule 3, 4 or 7 can be applied, a contradiction.

By corollary 3, there is no proto-cluster of size at least three in G′. Thus there is no induced
P3 abc in G′4S′ such that ab and bc are non-packed edges in G′.

Finally, we claim that there is no induced P3 in G′4S′ such that one edge of this P3 is a
non-packed edge in G′ and the other edge is a packed edge in G′. Suppose for contradiction
that there is such a P3 uvw in G′4S′ such that uv is a non-packed edge and vw is a packed
edge in G′. Then there is another vertex x such that v, w, x belong to a packed P3 in G′. Since
Reduction Rule 3 cannot be applied to (G′,H′, ` = 0), then uw must be covered by a packed
P3 in G′, i.e. there is a vertex y such that u,w, y belong to a packed P3 in G′. Suppose that
wuy is a packed P3 in G′. Since Reduction Rule 3 cannot be applied, vy must be covered by a
packed P3, i.e. there is a vertex z such that v, y, z belong to a packed P3 in G′, then Reduction
Rule 3, 4 or 7 can be applied, a contradiction. It follows that uwy ∈ H′. Similarly, suppose that
wvx is a packed P3 in G′. Since Reduction Rule 3 cannot be applied, ux must be covered by
a packed P3, i.e. there is a vertex z′ such that u, x, z′ belong to a packed P3, then Reduction
Rule 3, 4 or 7 can be applied, a contradiction. It follows that that vwx ∈ H′. Since uvw is an
induced P3 in G′4S′, uw,wx ∈ S. If vy is a non-edge in G′, then vwy is an induced P3 in G′.
Assume that vw = ep and wy = eq. Then the assignment α cannot satisfy (xp ∨ xq) which is a
clause of Φ, contradicting that α is a satisfying assignment to Φ. Otherwise, suppose that vy is
a packed edge in G′. If there is a vertex a such that vya ∈ H′, then Reduction Rule 4 or 7 can
be applied. If there is a vertex a′ such that yva′ ∈ H′, then either ua′ is a non-packed non-edge,
which triggers Reduction Rule 3, or ua′ is covered by a packed P3, which triggers Reduction
Rule 3, 4 or 7. It follows that there is no induced P3 in G′4S′ such that one edge of this P3

is a non-packed edge in G′ and the other edge of this P3 is a packed edge in G′. As a result,
S′ is a solution to the instance (G′,H′, ` = 0) of CDaMP. By Lemma 41, (G,H, ` = 0) is a
YES-instance.

(Soundness) Assume that (G,H, ` = 0) is a YES-instance. By Lemma 41, (G′,H′, ` = 0) is
a YES-instance of CDaMP and let S′ be a cluster deletion set for G′ of size |H′|. Let α be an
assignment to Φ such that α(xi) = true if and only if ei ∈ S′ for i = 0, ..., λ− 1. We claim that
α is a satisfying assignment to Φ. Since |S′| = |H′| and the P3s of H′ are modification-disjoint,
S′ contains exactly one edge of every packed P3 of H′. It follows that for every P3 xyz ∈ H′
(xy = ei, yz = ej), the two clauses (xi ∨ xj) and (¬xi ∨¬xj) are satisfied. Since S′ is a solution
to (G′,H′, ` = 0), there is no induced P3 in G′4S′. Thus for every induced P3 uvw in G′ such
that uv and vw belong to two distinct packed P3s (uv = ep, vw = eq) respectively, at least one
edge of {uv, vw} belongs to S′ and the clause (xp ∨ xq) is satisfied. As a result, α is a satisfying
assignment to Φ. This concludes the proof for the lemma.
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Theorem 16 (Restated). Cluster Editing above two-restricted modification-disjoint
P3 packing can be solved in polynomial time when ` = 0, that is, when no excess edits are al-
lowed.

Proof. By Lemma 42, given an instance of (G,H, ` = 0) of CEaTMP, after applying Reduction
Rules 1 - 7 exhaustively, we reduce it to an equivalent instance of 2-SAT in polynomial time.
Then we can decide the 2-SAT instance by invoking the algorithm for 2-SAT. It is well-known
that 2-SAT can be solved in polynomial time. This completes the proof for the theorem.
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Chapter 7

Hardness of Metric Dimension in
Graphs of Constant Treewidth

In this chapter, we show that Metric Dimension is NP-hard on graphs of treewidth at most
24. Recall that the Metric Dimension problem asks for a minimum-sized resolving set in
a given (unweighted, undirected) graph G. Here, a set S ⊆ V (G) is resolving if for any two
distinct vertices u, v ∈ V (G), there exists a vertex w ∈ S such that distG(u,w) 6= distG(v, w).

Organization of this chapter. In Section 7.1, we present an NP-hardness reduction from
3-dimensional matching to n-Multicolored Resolving Set. In Section 4.2, we present a
polynomial-time reduction from an instance of n-Multicolored Resolving Set constructed
in Section 7.1 to an instance of Metric Dimension. Finally, we prove that Metric Dimension
is NP-hard on graphs of treewidth at most 24.

Additional notions for this chapter. We define the length of a path P to be the number of
edges on the path and denote it by |P |. For two vertices u, v ∈ V (G), let P (u, v) be a path from
u to v in G. Note that P (u, v) and P (v, u) denote the same path. We denote the neighbor of u
on P (u, v) by Nu(u, v) (or Nu(v, u)). Similarly, if there is a path which is named as, for example,
P h(i, j, x) such that u is one endpoint of P h(i, j, x), we denote the neighbor of u on P h(i, j, x)
by Nh

u (i, j, x). In an undirected graph G, sometimes we abuse the notation in the sense that for
a path P , we use P to denote the path or the vertex set of the path just for simplicity. The
meaning should be clear in the context. For two vertices u, v ∈ V (G), we define the distance
between u and v to be the length of any shortest path from u to v, denoted by distG(u, v). Note
that we use dist(u, v) to denote the distance between u and v mostly if the graph is clear in the
context. For a path P of even length with two endpoints u and v, let w be the vertex on P such
that the length of the subpath of P from u to w equals the length of the subpath of P from w
to v. Then we call w the middle vertex of P and denote it by mid(P ).

7.1 Reduction from 3-Dimensional Matching to Multicolored Re-
solving Set

Bonnet and Purohit introduced k-Multicolored Resolving Set as an intermediate problem
in order to show the W[1]-hardness of Metric Dimension parameterized by treewidth [17].
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k-Multicolored Resolving Set
Input: An undirected graph G = (V,E), an integer k, a set χ = {X1, ..., Xk} where
X1, ..., Xk are disjoint subsets of V (G) and a set P = {{x1, y1}, ..., {xh, yh}} where
{x1, y1}, ..., {xh, yh} are vertex pairs of G.
Question: Is there a set of k vertices S such that
(i) |S ∩Xi| = 1 for every i = 1, ..., k, and
(ii) for every ` ∈ {1, ..., h}, there exists a vertex v ∈ S such that dist(v,x`)6= dist(v,y`).

We show that this problem is NP-hard on graphs of constant treewidth. We make a reduction
from 3-dimensional matching, which is well-known to be NP-hard [76].

3-dimensional matching
Input: the universe U = {1, 2, 3} × [n] and a set F = {A1, ..., Am} of tuples such that for
every j ∈ [m], the tuple Aj = {(1, x), (2, y), (3, z)} where (1, x), (2, y), (3, z) ∈ U .

Question: are there n tuples Aj1 , ..., Ajn such that
n⋃
h=1

Ajh = U .

Given an instance (U,F) of 3-dimensional matching with the universe U = {1, 2, 3} ×
[n] and a set F of m tuples A1, ..., Am ⊆ U , we construct an instance (G,n, χ,P) of n-
Multicolored Resolving Set as follows. First, we create m vertices s1i , ..., s

m
i as Xi for each

i ∈ [n]. Let χ = {X1, ..., Xn} andX =
n⋃
i=1

Xi. Then we create n vertex pairs {u1r , v1r}, ..., {unr , vnr }

for each r ∈ {1, 2, 3} and let Pr = {{uir, vir}|i = 1, ..., n}. We create 3 vertices ar, br, cr and let
Wr = {ar, br, cr} for each r ∈ {1, 2, 3}. Let P = P1 ∪ P2 ∪ P3 and W = W1 ∪ W2 ∪ W3.
Finally, let M = 40(n + 1). For each tuple Aj = {(1, x), (2, y), (3, z)} (j ∈ [m], x, y, z ∈
[n]) of the given instance and each integer i ∈ [n], we link sji to a1, b1, c1 with three paths
P (sji , a1), P (sji , b1), P (sji , c1) of lengths M

2 + 10x, M2 + 5x + 1 and M
2 − 10x respectively, link

sji to a2, b2, c2 with three paths P (sji , a2), P (sji , b2), P (sji , c2) of lengths M
2 + 10y, M2 + 5y + 1

and M
2 − 10y respectively, and link sji to a3, b3, c3 with three paths P (sji , a3), P (sji , b3), P (sji , c3)

of lengths M
2 + 10z, M2 + 5z + 1 and M

2 − 10z respectively. For every vertex pair {upr , vpr}
(p ∈ [n], r ∈ {1, 2, 3}), we link upr to ar, br, cr with three paths P (upr , ar), P (upr , br), P (upr , cr) of
lengths M

2 − 10p, M2 − 5p− 1 and M
2 + 10p respectively, and link vpr to ar, br, cr with three paths

P (vpr , ar), P (vpr , br), P (vpr , cr) of lengths M
2 − 10p, M2 − 5p − 2 and M

2 + 10p respectively. This
finishes the construction.

Lemma 43. For an arbitrary vertex pair {uxr , vxr } ∈ P (r ∈ {1, 2, 3}, x ∈ [n]),{uxr , vxr } is resolved
by sji (i ∈ [n], j ∈ [m]) if and only if (r, x) ∈ Aj.

Proof. On one hand, suppose that (r, x) ∈ Aj . For an arbitrary i ∈ [n], the three paths from sji
to uxr via ar, br and cr have lengths M,M + 1 and M respectively. The three paths from sji to
vxr via ar, br and cr have lengths M,M − 1 and M respectively. Note that there could be other
paths from sji to v

x
r or uxr that go repeatedly between vertices in X and vertices in W . However,

the lengths of such paths are at least M − 20n+M − 10n > M . As a result, the shortest paths
from sji to u

x
r and vxr are of lengths M and M − 1 respectively. Thus {uxr , vxr } is resolved by sji .

On the other hand, for an arbitrary tuple Ai = {(1, p1), (2, p2), (3, p3)}, the paths from the
vertex sji (i ∈ [n]) to uxr (r ∈ {1, 2, 3}) via ar, br and cr have lengths M + 10(pr − x),M +

5(pr − x) + 1 and M − 10(pr − x) respectively. The paths from the vertex sji (i ∈ [n]) to vxr
(r ∈ {1, 2, 3}) via ar, br and cr have lengthsM+10(pr−x),M+5(pr−x)−1 andM−10(pr−x)
respectively. Note that the paths from sji to u

x
r (or vxr ) that go repeatedly between the vertices
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in X and the vertices in W have lengths at least M − 20n + M − 10n > M + 10n. They are
not the shortest paths from sji to uxr (or vxr ). If pr < x, the shortest paths from sji to uxr and
vxr both have lengths M + 10(pr − x). If pr > x, the shortest paths from sji to uxr and vxr both
have lengths M − 10(pr − x). If pr = x, the shortest paths from sji to uxr and vxr have lengths
M and M − 1 respectively. As a result, if {uxr , vxr } is resolved by sji , then pr = x. According to
the construction, (r, x) ∈ Aj .

Lemma 44. The constructed instance (G,n, χ,P) of n-Multicolored Resolving Set is a
yes-instance if and only if the given instance (U,F) of 3-dimensional matching is a yes-
instance.

Proof. (⇐) For an arbitrary tuple Ai = {(1, x), (2, y), (3, z)}, according to Lemma 43, pairs
{ux1 , vx1},{u

y
2, v

y
2} and {uz3, vz3} are all resolved by sji for every i ∈ [n]. Suppose that the given

instance of 3-dimensional matching is a yes-instance, that is, there exists Aj1 , ..., Ajn satis-

fying that
n⋃
h=1

Ajh = U . It follows that S = {sjhh : h ∈ [n]} is a solution for the constructed

instance of n-Multicolored Resolving Set.
(⇒) Let S = {sjhh : h ∈ [n]} be a solution for the constructed instance of n-Multicolored

Resolving Set. For an arbitrary pair {uxr , vxr }, since it is resolved by some sjh′h′ ∈ S, according
to Lemma 43, (r, x) ∈ Ajh′ . As a result, {Ajh : h ∈ [n]} is a solution for the instance of
3-dimensional matching.

It is well-known that the treewidth of a graph is bounded by the size of a minimum feedback
vertex set of the graph. We can easily observe that W is a feedback vertex set of size 9 for G.
It follows that the treewidth of G is at most 10. Then we have the following lemma.

Lemma 45. k-Multicolored Resolving Set is NP-hard even on graphs of treewidth at most 10.

7.2 Reduction from Multicolored Resolving Set to Metric Di-
mension

In this section, we create in polynomial time an instance (G′, k) of Metric Dimension which is
equivalent to the instance (G,n, χ,P) of n-Multicolored Resolving Set we created in last
section. Roughly speaking, the reduction consists in adding gadgets on base of the constructed
instance (G,n, χ,P) to solve the following two issues: (1) the solution for Metric Dimension
could contain vertices not in any set of χ or more than one vertex from some set of χ, which
could spoil the desired reduction; (2) we did not make sure that every pair of distinct vertices
are resolved by the solution in an instance of n-Multicolored Resolving Set. We find that
similar strategies to those in [17] can be used to solve these two issues. More specifically, we solve
the first issue by adding forced set gadgets. One such gadget contains two pairs of vertices such
that they are only resolved simultaneously by a vertex of Xi (where it is attached). We solve
the second issue by adding forced vertex gadgets. One such gadget contains a pair of pendant
neighboring vertices (false twins). Obviously one vertex of the false twins has to be chosen in
the solution. Thus the chosen vertices (forced vertices) are designed to resolve the remaining
unresolved vertex pairs. Besides, we need to add a number of extra paths and set appropriate
budget k to make sure that the reduction works as described above.

7.2.1 Construction of the forced set gadgets

Let (G,n, χ,P) be an instance of n-Multicolored Resolving Set that we created in last
section. For every Xi ∈ χ (i ∈ [n]), we add two pairs of isolated vertices {p1i , q1i } and {p2i , q2i }.
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Then we add two vertices π1i and π2i such that p1i , q
1
i are adjacent to π1i , p

2
i , q

2
i are adjacent to

π2i . The vertex triples p1i , q
1
i , π

1
i and p2i , q

2
i , π

2
i (i ∈ [n]) form a forced set gadget. Then we create

a path P (sji , p
1
i ) of length 20(n+ 1) from sji to p

1
i and create a path P (sji , p

2
i ) of length 20(n+ 1)

from sji to p2i for each i ∈ [n], j ∈ [m]. In order to make sure that a vertex can resolve p1i , q
1
i

and p2i , q
2
i simultaneously if and only if it belongs to Xi, we need to create 4 paths of length

20(n + 1) from π1i to N
sji

(sji , ar), from π1i to N
sji

(sji , br), from π1i to N
sji

(sji , cr) and from π1i

to N
sji

(sji , p
2
i ) respectively for each i ∈ [n], j ∈ [m] and r ∈ {1, 2, 3}. For simplicity, we name

the four paths as P 1(i, j, ar), P 1(i, j, br), P 1(i, j, cr) and P 1(i, j, p2i ) respectively. Symmetrically,
we need to create 4 paths of length 20(n + 1) from π2i to N

sji
(sji , ar), from π2i to N

sji
(sji , br),

from π2i to N
sji

(sji , cr) and from π2i to N
sji

(sji , p
1
i ) respectively for each i ∈ [n] and r ∈ {1, 2, 3}.

For simplicity, we name the four paths as P 2(i, j, ar), P 2(i, j, br), P 2(i, j, cr) and P 2(i, j, p1i )
respectively. Let Πh(i, j, r) = {P h(i, j, ar), P

h(i, j, br), P
h(i, j, cr), P

h(i, j, p3−hi )} for i ∈ [n], j ∈
[m], r ∈ {1, 2, 3}, h ∈ {1, 2}.

This completes the construction of the first phase.

7.2.2 Construction of the forced vertex gadgets

A forced vertex gadget consists of a triangle, namely three vertices such that each vertex is
adjacent to the other two vertices. Two vertices of the triangle are false twins whose degrees
are exactly 2 and we call the other vertex in the triangle the connecting vertex of the gadget.
When we say that we add a forced vertex gadget F to a vertex v, we mean that we create
a forced vertex gadget F such that v is identified with the connecting vertex of F . For each
i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, we add a forced vertex gadget F h(i, j, ar) to Nh

πh
(i, j, ar),

F h(i, j, br) to Nh
πh

(i, j, br), F h(i, j, cr) to Nh
πh

(i, j, cr) and F h(i, j, p3−hi ) to Nh
πh

(i, j, , p3−hi ).
In order to make sure that fh(i, j, br) for i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2} does not

resolve any vertex pair of P, we create a path P (πhi , ar) and a path P (πhi , cr) both of length
10(n+ 1) for i ∈ [n], h ∈ {1, 2} and r ∈ {1, 2, 3}.

For each i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, we add a forced vertex gadget F (πhi , ar) to
Nar(π

h
i , ar) and a forced vertex gadget F (πhi , cr) to Ncr(π

h
i , cr). For each i ∈ [n], j ∈ [m], r ∈

{1, 2, 3}, we add a forced vertex gadget F (sji , ar) to Nar(s
j
i , ar) and a forced vertex gadget

F (sji , cr) to Ncr(s
j
i , cr).

Let mid(P h(i, j, p3−hi )) be the middle vertex of P h(i, j, p3−hi ) for i ∈ [n], j ∈ [m], h ∈ {1, 2}.
In order to make sure that fh(i, j, p3−hi ) does not resolve the vertex pair {p3−hi , q3−hi }, create
a path P (qhi ,mid(P 3−h(i, j, phi ))) from qhi to mid(P 3−h(i, j, phi )) of length |P 3−h(i, j, phi )|/2 +

|P (sji , p
h
i )| − 1. Then add a forced vertex gadget Fmid(i, j, h) to mid(P h(i, j, p3−hi )).

For i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, add a forced vertex gadget F ecc(i, j, h, r) to the
vertex x ∈ P h(i, j, ar) such that dist(πhi , x) = 10(n+ 1) + 1.

For each i ∈ [n], r ∈ {1, 2, 3}, create two forced vertex gadgets F 1(uir, v
i
r) and F 2(uir, v

i
r) for

the vertex pair {uir, vir} ∈ Pr. Then create an edge from the connecting vertex of F 1(uir, v
i
r) to

uir, to vir, to Nuir
(ar, u

i
r) and to Nuir

(cr, u
i
r) respectively for i ∈ [n], r ∈ {1, 2, 3}. Create an edge

from the connecting vertex of F 2(uir, v
i
r) to uir, to vir, to the vertex x such that x ∈ P (ar, u

i
r) and

dist(x, uir) = 2, and to the vertex y such that y ∈ P (cr, u
i
r) and dist(y, uir) = 2. This completes

the construction of the second phase.
Finally, let G′ be the graph constructed by above two phases and set k = 34nm+ 19n. This

finishes constructing the instance (G′, k) of Metric Dimension. Figure 7.1 shows a part of G′.
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Figure 7.1: An example showing a part of G′. Triangles represent corresponding forced vertex
gadgets. For clarity, some forced vertex gadgets do not appear on the figure. Dotted or dashed
lines are used in order for cleanness of the figure.
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7.2.3 Soundness of the reduction

First, we define the vertex sets to be used in the following parts. For every i ∈ [n], r ∈
{1, 2, 3}, h ∈ {1, 2}, let

Uhi =
⋃
j∈[m]

P (sji , p
h
i ),

Hi,r =
⋃
j∈[m]

P (sji , ar) ∪ P (sji , br) ∪ P (sji , cr),

Shi =
⋃

r∈{1,2,3}

P (πhi , ar) ∪ P (πhi , cr),

Lhi =
⋃
j∈[m]

P (qhi ,mid(P 3−h(i, j, phi ))),

Rr =
⋃
i∈[n]

P (ar, u
i
r) ∪ P (ar, v

i
r) ∪ P (br, u

i
r) ∪ P (br, v

i
r) ∪ P (cr, u

i
r) ∪ P (cr, v

i
r), and

Πh(i, j, r) = P h(i, j, ar) ∪ P h(i, j, br) ∪ P h(i, j, cr) ∪ P h(i, j, p3−hi ).

For every i ∈ [n], let

Ui =
⋃

h∈{1,2}

Uhi Hi =
⋃

r∈{1,2,3}

Hi,r Si =
⋃

h∈{1,2}

Shi

Li =
⋃

h∈{1,2}

Lhi Πi =
⋃

j∈[m],r∈{1,2,3},h∈{1,2}

Πh(i, j, r).

Let F be the union of all forced vertex gadgets, i.e. F =
⋃
i∈[n],j∈[m],r∈{1,2,3},h∈{1,2}(F (sji , ar)∪

F (sji , cr)∪F (πhi , ar)∪F (πhi , cr)∪F h(uir, v
i
r)∪F h(i, j, ar)∪F h(i, j, br)∪F h(i, j, cr)∪F h(i, j, p3−hi )∪

Fmid(i, j, h) ∪ F ecc(i, j, h, r)).
Next we introduce a lemma about forced set gadgets and this lemma is important for the

correctness of the reduction.

Lemma 46. The following three statements are true for the instance (G′, k).

(a) The vertex sji for i ∈ [n], j ∈ [m] resolves both pairs {p1i , q1i } and {p2i , q2i }. Moreover, sji
does not resolve any vertex pair {phi′ , qhi′} such that i′ ∈ [n], h ∈ {1, 2} and i′ 6= i.

(b) The vertices of any forced vertex gadget do not resolve any vertex pair of {{phi , qhi } | i ∈
[n], h ∈ {1, 2}}.

(c) Any vertex v ∈ V (G′) \ (Xi ∪F) resolves at most one vertex pair of {{phi , qhi } | i ∈ [n], h ∈
{1, 2}}.

Proof. By the construction of G′, dist(sji , q
h
i ) = |P (sji , p

h
i )|+ 2 = 20(n+ 1) + 2 > dist(sji , p

h
i ) for

i ∈ [n], j ∈ [m] and h ∈ {1, 2}. Thus any vertex of Xi resolves both pairs {p1i , q1i } and {p2i , q2i }
for i ∈ [n]. For a vertex pair {ph′i′ , qh

′
i′ } such that i′ 6= i, there is a shortest path from sji to ph′i′

or qh′i′ going through cr′ and πh
′
i′ with some integer r′ ∈ {1, 2, 3}. Thus a vertex s ∈ Xi resolves

exactly two vertex pairs of {{phi , qhi } : i ∈ [n], h ∈ {1, 2}}.
First we claim that vertices of F do not resolve any vertex pair {ph′i′ , qh

′
i′ } for i′ ∈ [n], h′ ∈

{1, 2}. For any vertex v ∈ F h(uir, v
i
r) for i ∈ [n], r ∈ {1, 2, 3}, h ∈ {1, 2}, there is a shortest

path from v to ph′i′ or qh′i′ going through ar and πh
′
i′ . Thus v does not resolve any vertex pair

{ph′i′ , qh
′
i′ } for i′ ∈ [n], h′ ∈ {1, 2}. For any vertex v ∈ Fmid(i, j, h) ∪ F ecc(i, j, h, r) for i ∈

[n], j ∈ [m], h ∈ {1, 2}, r ∈ {1, 2, 3}, we can see that dist(v, ph′i′ ) = dist(v, qh′i′ ) with i′ = i.
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There is a shortest path from v to ph′i′ or qh′i′ going through πhi , ar and πh
′
i′ with i′ 6= i. Thus

v does not resolve any vertex pair {ph′i′ , qh
′
i′ } for i′ ∈ [n], h′ ∈ {1, 2}. For any vertex v ∈

F \
⋃
i∈[n],j∈[m],r∈{1,2,3},h∈{1,2}(F

h(uir, v
i
r)∪F ecc(i, j, h, r)∪Fmid(i, j, h)), there is a shortest path

from v to ph′i′ or qh′i′ going through πh′i′ with i′ = i. There is a shortest path from v to ph′i′ or qh′i′
going through cr (or ar) and πh

′
i′ with i′ 6= i. Thus v does not resolve any pair {ph′i′ , qh

′
i′ }. As a

result, vertices of F do not resolve any vertex pair {ph′i′ , qh
′
i′ } for i′ ∈ [n], h′ ∈ {1, 2}.

Then we show that any vertex v ∈ V (G′) \ (Xi∪F) resolves at most one pair of {p1i , q1i } and
{p2i , q2i }.

For a vertex v ∈ Uhi \ Xi for i ∈ [n], h ∈ {1, 2}, dist(v, phi ) = dist(v, qhi ) − 2 < dist(v, qhi ).
dist(v, q3−hi ) = dist(v,N

sji
(sji , p

h
i )) + |P 3−h(i, j, phi )| + 1 = dist(v, p3−hi ). For a vertex pair

{ph′i′ , qh
′
i′ } such that i′ 6= i, there is a shortest path from v to ph′i′ or qh′i′ going through πh′i′ . Thus

v ∈ Uhi \Xi for i ∈ [n], h ∈ {1, 2} resolves exactly one vertex pair of {{phi , qhi } : i ∈ [n], h ∈ {1, 2}}.
Let P (mid(P 3−h(i, j, phi )), N

sji
(sji , p

h
i )) be the subpath of P 3−h(i, j, phi ) from mid(P 3−h(i, j, phi ))

to N
sji

(sji , p
h
i ). Let Λhi = (

⋃
j∈[m] P (mid(P 3−h(i, j, phi )), N

sji
(sji , p

h
i ))) \ {mid(P 3−h(i, j, phi )) | j ∈

[m]}. For a vertex v ∈ Λhi for i ∈ [n], h ∈ {1, 2}, dist(v, phi ) = dist(v, qhi ) − 2 < dist(v, qhi ).
dist(v, q3−hi ) = dist(v, π3−hi ) + 1 = dist(v, p3−hi ). For a vertex pair {ph′i′ , qh

′
i′ } such that i′ 6= i,

there is a shortest path from v to ph′i′ or q
h′
i′ going through πh′i′ . Thus v ∈ Λhi for i ∈ [n], h ∈ {1, 2}

resolves exactly one vertex pair of {{phi , qhi } : i ∈ [n], h ∈ {1, 2}}.
For a vertex v ∈ Lhi \ {mid(P h(i, j, p3−hi )) | j ∈ [m]} for i ∈ [n], h ∈ {1, 2}, dist(v, qhi ) =

dist(v, phi )−2 < dist(v, phi ). There is a shortest path from v to p3−hi or q3−hi going through π3−hi .
For a vertex pair {ph′i′ , qh

′
i′ } such that i′ 6= i, there is a shortest path from v to ph′i′ or qh′i′ going

through πh′i′ . Thus v ∈ Lhi \ {mid(P h(i, j, p3−hi )) | j ∈ [m]} for i ∈ [n], h ∈ {1, 2} resolves exactly
one vertex pair of {{phi , qhi } : i ∈ [n], h ∈ {1, 2}}.

For a vertex v ∈ Πi ∪ Si ∪Hi \ (Xi ∪ Λ1
i ∪ Λ2

i ) for i ∈ [n], there is a shortest path from v to
ph
′
i′ or qh′i′ going through πh′i′ with i = i′, h′ ∈ {1, 2}. For a vertex pair {ph′i′ , qh

′
i′ } such that i′ 6= i,

there is a shortest path from v to ph′i′ or qh′i′ going through πh
′
i′ . Thus v does not resolve any

vertex pair of {{phi , qhi } : i ∈ [n], h ∈ {1, 2}}.
For a vertex v ∈ Rr for r ∈ {1, 2, 3}, there is a shortest path from v to phi or qhi for

i ∈ [n], h ∈ {1, 2} going through ar and πhi . Thus v does not resolve any vertex pair of {{phi , qhi } :
i ∈ [n], h ∈ {1, 2}}. This completes the proof for the lemma.

Lemma 47. The forced vertices do not resolve any vertex pair {uir, vir} ∈ P for r ∈ {1, 2, 3} and
i ∈ [n].

Proof. We fix arbitrary integers i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}. For the forced vertex
fh(i, j, ar), dist(fh(i, j, ar), u

i′
r′) = 2+|P (πhi , ar′)|+|P (ar′ , u

i′
r′)| = 2+|P (πhi , ar′)|+|P (ar′ , v

i′
r′)| =

dist(fh(i, j, ar), v
i′
r′) for i

′ ∈ [n], r′ ∈ {1, 2, 3}. Thus fh(i, j, ar) does not resolve any vertex pair of
P. Similarly, the forced vertices fh(i, j, br), fh(i, j, cr) and fh(i, j, p3−hi ) do not resolve any vertex
pair of P. For the forced vertex fmid(i, j, h), dist(fmid(i, j, h), ui

′
r′) = dist(fmid(i, j, h), vi

′
r′) =

|P h(i, j, p3−hi )|/2 + |P (πhi , ar′)|+ |P (ar′ , u
i′
r′)|. Thus fmid(i, j, h) does not resolve any vertex pair

of P. For the forced vertex fecc(i, j, h, r), dist(fecc(i, j, h, r), ui′r′) = dist(fecc(i, j, h, r), vi′r′) =
10(n+ 1) + 1 + |P (πhi , ar′)|+ |P (ar′ , u

i′
r′)|. Thus fecc(i, j, h, r) does not resolve any vertex pair

of P.
We fix arbitrary integers i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}. For the forced vertex f(sji , ar),

dist(f(sji , ar), u
i′
r ) = 2 + |P (ar, u

i′
r )| = 2 + |P (ar, v

i′
r )| = dist(f(sji , ar), v

i′
r ) for i′ ∈ [n]. For the

forced vertex f(sji , cr), dist(f(sji , cr), u
i′
r ) = 2 + |P (cr, u

i′
r )| = 2 + |P (cr, v

i′
r )| = dist(f(sji , cr), v

i′
r )

for i′ ∈ [n]. Thus f(sji , ar) and f(sji , cr) do not resolve any vertex pair of Pr. Similarly,
f(πhi , ar) and f(πhi , cr) for i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3} do not resolve any vertex pair of Pr.
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For vertex pairs of Pr′ with r′ ∈ {1, 2, 3} and r′ 6= r, dist(f(sji , ar), u
i′
r′) = 2 + |P (ar, π

1
i )| +

|P (ar′ , π
1
i )| + |P (ar′ , u

i′
r )| = 2 + |P (ar, π

1
i )| + |P (ar′ , π

1
i )| + |P (ar′ , v

i′
r )| = dist(f(sji , ar), v

i′
r′) for

i′ ∈ [n]. dist(f(sji , cr), u
i′
r′) = 2 + |P (cr, π

1
i )| + |P (ar′ , π

1
i )| + |P (ar′ , u

i′
r )| = 2 + |P (cr, π

1
i )| +

|P (ar′ , π
1
i )| + |P (ar′ , v

i′
r )| = dist(f(sji , ar), v

i′
r′) for i′ ∈ [n]. Thus f(sji , ar) and f(sji , cr) do not

resolve any vertex pair of Pr′ .
We fix arbitrary integers i ∈ [n], r ∈ {1, 2, 3}. For the forced vertex f1(uir, vir) or f2(uir, vir),

obviously it does not resolve the vertex pair {uir, vir}. For a vertex pair {ui′r , vi
′
r } with i′ ∈

[n] and i′ 6= i, dist(f1(uir, vir), ui
′
r ) = 2 + |P (ar, u

i
r)| − 1 + |P (ar, u

i′
r )| = 2 + |P (ar, u

i
r)| −

1 + |P (ar, v
i′
r )| = dist(f1(uir, vir), vi

′
r ). For a vertex pair {ui′r′ , vi

′
r′} with i′ ∈ [n] and r′ ∈

{1, 2, 3} and r′ 6= r, dist(f1(uir, vir), ui
′
r′) = 2 + |P (ar, u

i
r)| − 1 + |P (π1i , ar)| + |P (π1i , ar′)| +

|P (ar′ , u
i′
r′)| = dist(f1(uir, vir), vi

′
r′). As a result, f1(uir, vir) does not resolve any vertex pair of P.

For a vertex pair {ui′r , vi
′
r } with i′ ∈ [n] and i′ 6= i, dist(f2(uir, vir), ui

′
r ) = 2 + |P (ar, u

i
r)| − 2 +

|P (ar, u
i′
r )| = 2 + |P (ar, u

i
r)| − 2 + |P (ar, v

i′
r )| = dist(f2(uir, vir), vi

′
r ). For a vertex pair {ui′r′ , vi

′
r′}

with i′ ∈ [n], r′ ∈ {1, 2, 3} and r′ 6= r, dist(f2(uir, vir), ui
′
r′) = 2 + |P (ar, u

i
r)| − 2 + |P (π1i , ar)| +

|P (π1i , ar′)| + |P (ar′ , u
i′
r′)| = dist(f2(uir, vir), vi

′
r′). As a result, f2(uir, vir) does not resolve any

vertex pair of P. This completes the proof for the lemma.

Lemma 48. If G′ has a resolving set of size at most 34nm + 19n, then (G,n, χ,P) is a yes-
instance.

Proof. Suppose that S is a resolving set for G′ of size at most 34nm+ 19n. Let Ŝ = S ∩X. We
claim that Ŝ is solution for (G,n, χ,P). Note that for the false twins {u, u′} of a forced vertex
gadget, no vertex resolves the vertex pair {u, u′} except u (or u′). It follows that S contains
34nm + 18n forced vertices since there are 34nm + 18n forced vertex gadgets in G′. Since X
has no intersection with the vertex set of all forced vertex gadgets, |Ŝ| ≤ n. By Lemma 46, we
get that |Ŝ ∩Xi| = 1 for each i ∈ [n]. Thus |Ŝ| = n. By Lemma 47 and the assumption that
S is a resolving set for G′, Ŝ resolves every pair {uir, vir} in G′ for r ∈ {1, 2, 3} and i ∈ [n]. We
can check that the distance between sji and ui

′
r in G′ (and the distance between sji and vi

′
r in

G′) for i ∈ [n], j ∈ [m], i′ ∈ [n], r ∈ {1, 2, 3} is the same as that in G. Thus Ŝ is a solution for
(G,n, χ,P).

7.2.4 Treewidth bound of the graph

Since the completeness proof takes a large amount of space, before proceeding to that, we first
show that G′ is of constant treewidth. In fact, we will prove a slightly stronger statement that
G′ is of constant pathwidth by giving a search strategy with a constant number of searchers.

Lemma 49. The pathwidth of G′ is at most 24.

Proof. We give a search strategy with 25 searchers. First, we put 9 searchers on
⋃
r∈{1,2,3}{ar, br, cr}.

The 9 searchers remain there until the end of the whole search process. The search process con-
sists of two phases. We search the “left” part of G′ in the first phase and the “right” part of G′

in the second phase.
The first phase of the search process consists of n rounds. At the beginning of the i-th round

(i ∈ [n]), we put 6 searchers on
⋃
h∈{1,2}{phi , qhi , πhi }. Here when we say that we clean a path,

there are already two searchers guarding at the endpoints (or the neighbor of the endpoints)
of this path and we use 3 extra searchers x, y, z such that x, y move alternately from one end
of the path to the other end to clean the edges of the path. When a searcher, say x arrives
at the connecting point of a forced vertex gadget, we put y, z on the false twins of this forced
vertex gadget to clean the edges of this gadget and then after removing y, z, put y ahead of x
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to continue the alternating process if x does not reach the endpoint of this path. Then for each
j ∈ [m], we

• put 5 vertices on NG′(s
j
i ).

• put 2 vertices on mid(P h(i, j, p3−hi )) for h ∈ {1, 2}.
• use 3 extra searchers to clean the paths P (sji , p

h
i ) for h ∈ {1, 2}, the paths P (sji , ar),

P (sji , br), P (sji , cr) for r ∈ {1, 2, 3}, the paths P h(i, j, ar), P h(i, j, br), P h(i, j, cr), P h(i, j, p3−hi )
for h ∈ {1, 2}, r ∈ {1, 2, 3} successively (including all forced vertex gadgets attached to the
vertices on these paths).
• remove the above 10 searchers that are still on the graph.

At the end of the i-th round, we remove the 6 searchers on
⋃
h∈{1,2}{phi , qhi , πhi }.

The second phase of the search process consists of 3 rounds. During the r-th round (r ∈
{1, 2, 3}), we operate as follows. For each i ∈ [n], we

• put 4 searchers on uir, vir and the connecting point of F h(uir, v
i
r) for h ∈ {1, 2}.

• use 2 extra searchers to clean the paths P (ar, u
i
r), P (br, u

i
r), P (cr, u

i
r), P (ar, v

i
r), P (br, v

i
r)

and P (cr, v
i
r) (including the forced vertex gadgets F h(uir, v

i
r) for h ∈ {1, 2} and the edges

between F h(uir, v
i
r) and the paths listed above).

• remove the above 6 searchers that are still on the graph.

This completes the description of the the search strategy.
As a result, the node search number of G′ is at most 25. It follows that the pathwidth of G′

is bounded by 24.

7.2.5 Completeness of the reduction

For every forced vertex gadget of G′, we choose a vertex from the false twins arbitrarily as a
forced vertex and let the set of all chosen forced vertices be F . In this section, we show that if
(G,n, χ,P) has a solution S, then S′ = S ∪ F is a resolving set of size at most 34nm+ 19n for
G′. Formally, we will prove the following lemma.

Lemma 50. If (G,n, χ,P) is a yes-instance, then G′ has a resolving set of size at most 34nm+
19n.

To prove the above lemma, we need to show that every pair of distinct vertices of G′ is
resolved by some vertex of S′. First of all, We have the following claim.

Claim 5. Every vertex pair {ui′r , vi
′
r } in G′ for r ∈ {1, 2, 3}, i′ ∈ [n] is resolved by S′.

Proof. Since (G,n, χ,P) is a yes-instance, distG(sji , u
i′
r ) = distG′(s

j
i , u

i′
r ), distG(sji , v

i′
r ) = distG′(s

j
i , v

i′
r )

for i, i′ ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, every vertex pair {ui′r , vi
′
r } in G′ for r ∈ {1, 2, 3} and i′ ∈ [n]

is resolved by some vertex of S ⊂ S′.

Suppose that V (G′) = V1 ∪ V2 ∪ ... ∪ Vt. Our general method is to show that for each
i ∈ [t], every internal vertex pair of Vi is resolved by S′ and every vertex pair of Vi′ × Vi
for each i′ < i is resolved by S′. Note that when we mention the vertex pairs of Vi′ × Vi,
we ignore the vertex pairs with two identical vertices by default as it’s meaningless in our
problem. In the following parts, we give a series of lemmas to show that Lemma 50 is true. Let
U =

⋃
i∈[n] Ui,Π =

⋃
i∈[n] Πi, H =

⋃
i∈[n]Hi, S =

⋃
i∈[n] Si, L =

⋃
i∈[n] Li and R =

⋃
r∈{1,2,3}Rr.

Table 7.1 shows the indexes of the corresponding lemmas.

Lemma 51. Every pair of distinct vertices x, y ∈
⋃
i∈[n],h∈{1,2} U

h
i is resolved by S′.
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U Π S L H R

U 51 57 59 58 60 61
Π 54 64 63 62 65
S 53 67 69 70
L 55 66 68
H 52 71
R 56

Table 7.1: Indexes of the lemmas for the completeness of the reduction.

Proof. First, we show that every pair of distinct vertices x, y ∈
⋃
h∈{1,2} U

h
i for i ∈ [n] is resolved

by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m] and h ∈ {1, 2} such that j′ 6= j.
Suppose that x, x′ ∈ P (sji , p

h
i ). For a vertex x ∈ P (sji , p

h
i ), let P (sji , x) be the subpath of

P (sji , p
h
i ) from sji to x and |P (sji , x)| = `x. Since dist(fh(i, j′, a1), x) = 3 + 20(n + 1) − `x,

fh(i, j′, a1) resolves every pair {x, x′} such that `x 6= `x′ .
Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (sj

′

i , p
h
i ) such that j′ ∈ [m] and j′ 6= j. We define `x and

`y in a similar way to that of `x in the second paragraph. dist(fmid(i, j, 3−h), x) = 10(n+1)+`x
if `x ≥ 1 and dist(fmid(i, j, 3 − h), x) = 10(n + 1) + 2 if `x = 1. dist(fmid(i, j, 3 − h), y) =

min (2+|P 3−h(i, j, phi )|/2+|P (sj
′

i , p
3−h
i )|+`y, |P 3−h(i, j, phi )|/2+|P (sji , p

h
i )|+|P (sj

′

i , p
h
i )|−`y) =

min (2 + 30(n+ 1) + `y, 50(n+ 1)− `y) ≥ 30(n+ 1) ≥ dist(fmid(i, j, 3−h), x) and the equalities
hold if and only if x = y = phi . Thus every pair {x, y} is resolved by fmid(i, j, 3− h).

Suppose that x ∈ P (sji , p
h
i )\{sji} and y ∈ P (sji , p

3−h
i )\{sji}. We define `x and `y in a similar

way to that of `x in the second paragraph. Then dist(fh(i, j′, a1), x) = 3 + 20(n + 1) − `x ≤
2+20(n+1) and dist(fh(i, j′, a1), y) = min (1+|P h(i, j, p3−hi )|+`y, 3+|P (πhi , c1)|+|P (π3−hi , c1)|+
|P (sji , p

3−h
i )|− `y) = min (1+20(n+1)+ `y, 3+40(n+1)− `y) ≥ 2+20(n+1). We see from the

two equations that dist(fh(i, j, a1), x) 6= dist(fh(i, j, a1), y) unless `x = `y = 1. We can check
that fh(i, j, p3−hi ) resolves the pair {x, y} with `x = `y = 1. Thus every pair {x, y} is resolved
by fh(i, j′, a1) or fh(i, j, p3−hi ).

Suppose that x ∈ P (sji , p
h
i ) and y ∈ P (sj

′

i , p
3−h
i ). We define `x and `y in a similar way to

that of `x in the second paragraph. Then dist(fmid(i, j, h), x) = min (2 + |P h(i, j, p3−hi )|/2 +

`x, 2 + |P h(i, j, p3−hi )|/2 + |P (sji , p
h
i )| − `x) = min (2 + 10(n + 1) + `x, 2 + 30(n + 1) − `x) ≤

2 + 20(n + 1). dist(fmid(i, j, h), y) = min (|P h(i, j, p3−hi )|/2 + |P (sji , p
3−h
i )| + |P (sj

′

i , p
3−h
i )| −

`y, 2+|P h(i, j, p3−hi )|/2+|P (sj
′

i , p
h
i )|+`y) = min (50(n+1)−`y, 2+30(n+1)+`y) ≥ 2+30(n+1).

Thus every pair {x, y} is resolved by fmid(i, j, h).
Finally we show that every pair of distinct vertices {x, y} ∈

⋃
h∈{1,2} U

h
i ×

⋃
h′∈{1,2} U

h′
i′ with

i, i′ ∈ [n] and i 6= i′ is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m] and h, h′ ∈
{1, 2} such that i 6= i′. Let x ∈ P (sji , p

h
i ) and y ∈ P (sj

′

i′ , p
h′
i′ ). We define `x and `y in a similar way

to that of `x in the second paragraph. Then as we show in last paragraph, dist(fmid(i, j, h), x) =

min (2+10(n+1)+`x, 2+30(n+1)−`x) ≤ 2+20(n+1). dist(fmid(i, j, h), sj
′

i′ ) = minr∈{1,2,3}(1+

|P h(i, j, p3−hi )|/2+ |P (πhi , cr)|+ |P (cr, s
j′

i′ )|). dist(f
mid(i, j, h), y) = min (dist(fmid(i, j, h), sj

′

i′ )+

`y, 2 + |P h(i, j, p3−hi )|/2 + |P (πhi , c1)| + |P (πh
′
i′ , c1)| + |P (sj

′

i′ , p
h′
i′ )| − `y) > 1 + 30(n + 1) >

dist(fmid(i, j, h), x). Thus every pair {x, y} is resolved by fmid(i, j, h). This completes the
proof for the lemma.

Lemma 52. Every pair of distinct vertices x, y ∈
⋃
i∈[n],r∈{1,2,3}Hi,r is resolved by S′.

Proof. First we show that every vertex pair of Hi,r ×Hi′,r such that i′, i ∈ [n] and r ∈ {1, 2, 3}
is resolved by S′. We fix arbitrary integers i ∈ [n], j ∈ [m] and r ∈ {1, 2, 3}.
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Given two distinct vertices x1, x2 ∈ P (sji , ar), we can verify that f(π1i , ar) resolves the pair
{x1, x2}. Similarly, two distinct vertices x′1, x′2 ∈ P (sji , cr) are distinguished by f(π1i , cr). Sup-
pose that x ∈ P (sji , ar) \ {s

j
i}, y ∈ P (sji , br) \ {s

j
i} and z ∈ P (sji , cr) \ {s

j
i}. Let P (sji , x),

P (sji , y) and P (sji , z) be the subpath of P (sji , ar), P (sji , br) and P (sji , cr) respectively. Let
|P (sji , x)| = `x, |P (sji , y)| = `y and |P (sji , z)| = `z. Similarly, for a vertex y′ ∈ P (sji , br), we define
|P (sji , y

′)| = `y′ . Since dist(fmid(i, j, 1), y) = 2 + |P 1(i, j, p2i )|/2 + `y and dist(fmid(i, j, 1), y′) =
2+|P 1(i, j, p2i )|/2+`y′ , two distinct vertices y, y′ are distinguished by fmid(i, j, 1). dist(f(π1i , ar), x)

= 2+|P (sji , ar)|−`x. dist(f(π1i , ar), br) = minj′∈[m](2+|P (sj
′

i , ar)|+|P (sj
′

i , br)|) = 2+20(n+1)+

10+20(n+1)+5. dist(f(π1i , ar), y) = min (2+|P (sji , ar)|+`y, dist(f(π1i , ar), br)+|P (sji , br)|−`y).
For a vertex pair {x, y} such that dist(f(π1i , ar), y) = 2 + |P (sji , ar)| + `y, obviously the pair is
resolved by f(π1i , ar). For a vertex pair {x, y} such that dist(f(π1i , ar), y) = dist(f(π1i , ar), br) +

|P (sji , br)| − `y, dist(f(π1i , ar), y) ≥ 40(n + 1) + 17 > dist(f(π1i , ar), x). Thus every pair {x, y}
is resolved by f(π1i , ar). Similarly, every pair {y, z} is resolved by f(π1i , cr). For a vertex pair
{x, z}, dist(f(π1i , cr), z) = 2 + |P (sji , cr)| − `z < 20(n + 1) if z 6= cr and dist(f(π1i , cr), cr) = 2.
dist(f(π1i , cr), x) = min (2 + |P (sji , cr)| + `x, |P (π1i , cr)| + |P (π1i , ar)| + |P (sji , ar)| − `x) ≥ 2 +

|P (sji , cr)| > dist(f(π1i , cr), z). Thus every pair {x, z} is resolved by f(π1i , cr).
Let i′ ∈ [n], j′ ∈ [m] be integers such that i′ 6= i or j′ 6= j. Suppose that x ∈ P (sji , ar) \ {ar},

y ∈ P (sji , br) \ {br} and z ∈ P (sji , cr) \ {cr}. Suppose that x′ ∈ P (sj
′

i′ , ar) \ {ar}, y
′ ∈

P (sj
′

i′ , br) \ {br} and z′ ∈ P (sj
′

i′ , cr) \ {cr}. We define `x, `y, `z, `x′ , `y′ and `z′ in a simi-
lar way to that of `x in the second paragraph. For a pair {x, x′}, since dist(f(π1i , ar), x) =

2 + |P (sji , ar)| − `x and dist(f(π1i , ar), x
′) = 2 + |P (sj

′

i′ , ar)| − `x′ , f(π1i , ar) resolves every pair
{x, x′} such that |P (sji , ar)| − `x 6= |P (sj

′

i′ , ar)| − `x′ . Since dist(f(sji , ar), x) = |P (sji , ar)| − `x
and dist(f(sji , ar), x

′) = 2 + |P (sj
′

i′ , ar)| − `x′ , f(sji , ar) resolves every pair {x, x′} such that
|P (sji , ar)| − `x = |P (sj

′

i′ , ar)| − `x′ . As a result, every pair {x, x′} is resolved by f(π1i , ar) or
f(sji , ar). Similarly, every pair {z, z′} is resolved by f(π1i , cr) or f(sji , cr). For a pair {y, y′},
there are two cases. Case 1: i = i′ and j 6= j′. dist(fmid(i, j, 1), y) = 2 + |P 1(i, j, p2i )|/2 + `y.
dist(fmid(i, j, 1), y′) = min (2+|P 1(i, j, p2i )|/2+|P (sji , br)|+|P (sj

′

i′ , br)|−`y′ , 1+|P 1(i, j, p2i )|/2+

|P 1(i′, j′, br)| + `y′ − 1) if y′ 6= sj
′

i′ and dist(fmid(i, j, 1), sj
′

i′ ) = 2 + 30(n + 1). If a pair {y, y′}
satisfies that dist(fmid(i, j, 1), y′) = 2 + |P 1(i, j, p2i )|/2 + |P (sji , br)|+ |P (sj

′

i′ , br)| − `y′ , obviously
fmid(i, j, 1) resolves this pair. Thus if a pair {y, y′} is not resolved by fmid(i, j, 1), then we have
dist(fmid(i, j, 1), y) = 2 + 10(n+ 1) + `y = dist(fmid(i, j, 1), y′) = 30(n+ 1) + `y′ , i.e. `y − `y′ =
20(n+1)−2. For this pair, dist(fmid(i′, j′, 1), y′) = 2+10(n+1)+ `y′ < dist(fmid(i′, j′, 1), y) =

min (2 + 10(n + 1) + |P (sj
′

i′ , br)| + |P (sji , br)| − `y, 30(n + 1) + `y). Thus in this case, every
pair {y, y′} is resolved by fmid(i, j, 1) or fmid(i′, j′, 1). Case 2: i 6= i′. dist(fmid(i, j, 1), y) =

2 + |P 1(i, j, p2i )|/2 + `y. dist(fmid(i, j, 1), sj
′

i′ ) = 1 + |P 1(i, j, p2i )|/2 + minr′∈{1,2,3}(|P (π1i , cr′)|+
|P (sj

′

i′ , cr′)|). dist(f
mid(i, j, 1), y′) = min (2 + |P 1(i, j, p2i )|/2 + |P (sji , br)|+ |P (sj

′

i′ , br)| − `y′ ,
dist(fmid(i, j, 1), sj

′

i′ )+`y′). If a pair {y, y
′} satisfies that dist(fmid(i, j, 1), y′) = 2+|P 1(i, j, p2i )|/2+

|P (sji , br)| + |P (sj
′

i′ , br)| − `y′ , obviously fmid(i, j, 1) resolves this pair. Thus if a pair {y, y′}
is not resolved by fmid(i, j, 1), then we have dist(fmid(i, j, 1), y) = 2 + 10(n + 1) + `y =

dist(fmid(i, j, 1), y′) = dist(fmid(i, j, 1), sj
′

i′ ) + `y′ , i.e. `y − `y′ = dist(π1i , s
j′

i′ ) − 1. For this
pair, dist(fmid(i′, j′, 1), y′) = 2 + 10(n + 1) + `y′ < dist(fmid(i′, j′, 1), y) = min (2 + 10(n +

1) + |P (sj
′

i′ , br)| + |P (sji , br)| − `y, dist(fmid(i′, j′, 1), sji ) + `y). Thus in this case, every pair
{y, y′} is resolved by fmid(i, j, 1) or fmid(i′, j′, 1). It follows that every pair {y, y′} is resolved
by fmid(i, j, 1) or fmid(i′, j′, 1). For a pair {x, y′}, there are two cases. Case 1: |P (sji , ar)| >
20(n + 1) + 10 · 1 = minα∈[m] |P (sαi , ar)|. Then dist(f(π1i , ar), y

′) = min (2 + |P (sj
′

i′ , ar)| +
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`y′ , 2 + 20(n + 1) + 10 · 1 + 20(n + 1) + 5 · 1 + 1 + |P (sj
′

i′ , br)| − `y′) = dist(f(sji , ar), y
′) and

dist(f(π1i , ar), x) = 2 + |P (sji , ar)| − `x = dist(f(sji , ar), x) + 2. In this case, {x, y′} is resolved
by f(π1i , ar) or f(sji , ar). Case 2: |P (sji , ar)| = 20(n + 1) + 10 · 1 = minp∈[m] |P (spi , ar)|. Then
dist(f(sji , ar), x) ≤ 20(n + 1) + 10 < dist(f(sji , ar), y

′). Thus in this case, {x, y′} is resolved
by f(sji , ar). It follows that every pair {x, y′} is resolved by f(π1i , ar) or f(sji , ar). For a pair
{x, z′}, dist(f(π1i , ar), x) = 2 + |P (sji , ar)| − `x = dist(f(sji , ar), x) + 2, and dist(f(π1i , ar), z

′) =

min (2 + |P (sj
′

i′ , ar)|+ `z′ , |P (π1i , ar)|+ |P (π1i , cr)|+ |P (sj
′

i′ , cr)| − `z′) ≤ dist(f(sji , ar), z
′) =

min (2 + |P (sj
′

i′ , ar)|+ `z′ , 2 + |P (π1i , ar)|+ |P (π1i , cr)|+ |P (sj
′

i′ , cr)| − `z′). It follows that every
pair {x, z′} is resolved by f(π1i , ar) or f(sji , ar). For a pair {y, z′}, there are two cases. Case 1:
|P (sj

′

i′ , cr)|+|P (sj
′

i′ , br)| > 20(n+1)−10n+20(n+1)+5n+1 = minα∈[m] (|P (sαi′ , cr)|+ |P (sαi′ , br)|).
Then dist(f(π1i , cr), y) = min (2 + |P (sji , cr)| + `y, 3 + 40(n + 1) − 5n + |P (sji , br)| − `y) =

dist(f(sj
′

i′ , cr), y) and dist(f(π1i , cr), z
′) = 2 + |P (sj

′

i′ , cr)| − `z′ = dist(f(sj
′

i′ , cr), z
′) + 2. In this

case, {y, z′} is resolved by f(π1i , cr) or f(sj
′

i′ , cr). Case 2: |P (sj
′

i′ , cr)|+ |P (sj
′

i′ , br)| = 20(n+ 1)−
10n+ 20(n+ 1) + 5n+ 1. Then dist(f(sj

′

i′ , cr), y) ≥ 2 + 20(n+ 1)− 10n > dist(f(sj
′

i′ , cr), z
′). It

follows that every pair {y, z′} is resolved by f(π1i , cr) or f(sj
′

i′ , cr). This completes the proof to
show that every vertex pair of Hi,r×Hi′,r such that i′, i ∈ [n] and r ∈ {1, 2, 3} is resolved by S′.

Next we show that every vertex pair of Hi,r × Hi′,r′ such that i, i′ ∈ [n], r, r′ ∈ {1, 2, 3}
and r 6= r′ is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m] and r, r′ ∈ {1, 2, 3}
such that r 6= r′. Suppose that x ∈ P (sji , ar), y ∈ P (sji , br), z ∈ P (sji , cr), x

′ ∈ P (sj
′

i′ , ar′),
y′ ∈ P (sj

′

i′ , br′) and z′ ∈ P (sj
′

i′ , cr′). We define `x, `y, `z, `x′ , `y′ and `z′ in a similar way to that
of `x in the second paragraph. For a vertex pair {x, x′}, there are two cases. Case 1: i = i′ and
j = j′. Then dist(f(π1i , ar), x) = 2 + |P (sji , ar)| − `x, dist(f(π1i , ar), x

′) = min (2 + |P (sj
′

i′ , ar)|+
`x′ , |P (π1i , ar)| + |P (π1i , ar′)| + |P (sj

′

i′ , ar)| − `x′). dist(f(sji , ar), x) = |P (sji , ar)| − `x when
x 6= ar and dist(f(sji , ar), ar) = 1. dist(f(sji , ar), x

′) = min (|P (sji , ar)| + `x′ , 2 + |P (π1i , ar)| +
|P (π1i , ar′)|+|P (sji , ar′)|−`x′). Thus for the vertex pair {x, x′} which is not resolved by f(sji , ar),
i.e.,dist(f(sji , ar), x) = dist(f(sji , ar), x

′) = 2+|P (π1i , ar)|+|P (π1i , ar′)|+|P (sji , ar′)|−`x′ , it satis-
fies that dist(f(π1i , ar), x) > dist(f(sji , ar), x) and dist(f(π1i , ar), x

′) < dist(f(sji , ar), x
′). Thus in

this case, every pair every pair {x, x′} is resolved by f(sji , ar) or f(π1i , ar). Case 2: i 6= i′ or j 6= j′.
dist(f(sji , ar), x) = |P (sji , ar)| − `x when x 6= ar and dist(f(sji , ar), ar) = 1. dist(f(sji , ar), x

′) =

min (2 + |P (sj
′

i′ , ar)|+ `x′ , 2 + |P (π1i , ar)|+ |P (π1i , ar′)|+ |P (sj
′

i′ , ar′)| − `x′). For the vertex pair
{x, x′} which is not resolved by f(sji , ar), i.e., dist(f(sji , ar), x) = dist(f(sji , ar), x

′), it satisfies
that dist(f(π1i , ar), x) > dist(f(sji , ar), x) and dist(f(π1i , ar), x

′) ≤ dist(f(sji , ar), x
′). Thus in

this case, every pair every pair {x, x′} is resolved by f(sji , ar) or f(π1i , ar). It follows that every
pair {x, x′} is resolved by f(sji , ar) or f(π1i , ar). For a vertex pair {z, z′}, similarly it is resolved by
f(sji , cr) or f(π1i , cr). For a vertex pair {y, y′}, let {uirr , virr } be the vertex pair resolved by sji , i.e.
|P (sji , br)| = 20(n+1)+5ir+1. Then dist(f1(uirr , virr ), y) = 40(n+1)+1−`y = dist(f2(uirr , virr ), y)

when y 6= sji . We observe that there is a shortest path from fh(uirr , v
ir
r ) (h ∈ {1, 2}) to y′ which

either goes through one vertex of {ar, cr}, then goes through sj
′

i′ , finally reaches y′ or goes
through one vertex of {ar, cr}, then goes through some vertex sj

′′

i′′ (i
′′ ∈ [n], j′′ ∈ [m]), then goes

through br′ , finally reaches y′. Thus we get that dist(f1(uirr , virr ), y′) = dist(f2(uirr , virr ), y′) + 1.
Thus every vertex pair {y, y′} such that y 6= sji is resolved by f1(uirr , virr ) or f2(uirr , virr ). For a
pair {sji , y′}, obviously dist(fmid(i, j, 1), sji ) < dist(fmid(i, j, 1), y′). It follows that every vertex
pair {y, y′} is resolved by f1(uirr , v

ir
r ), f2(uirr , virr ) or fmid(i, j, 1). For a vertex pair {x, y′},

there are two cases. Case 1: i 6= i′ or j 6= j′. dist(f(π1i , ar), x) = 2 + |P (sji , ar)| − `x.
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dist(f(π1i , ar), br′) = 2 +minα∈[m](|P (sαi , ar)|+ |P (sαi , br′)|). Then dist(f(π1i , ar), y
′) = min (2 +

|P (sj
′

i′ , ar)| + `y′ , dist(f(π1i , ar), br′) + |P (sj
′

i′ , br′)| − `y′). dist(f(sji , ar), x) = |P (sji , ar)| − `x <
dist(f(π1i , ar), x) if x 6= ar and dist(f(sji , ar), ar) = 2. dist(f(sji , ar), y

′) = dist(f(π1i , ar), y
′).

Thus in this case, every pair {x, y′} is resolved by f(π1i , ar) or f(sji , ar). Case 2: i = i′ and
j = j′. dist(f(sji , ar), y

′) = min (|P (sji , ar)| + `y′ , dist(f(π1i , ar), br′) + |P (sj
′

i′ , br′)| − `y′). If
dist(f(sji , ar), y

′) = |P (sji , ar)| + `y′ , then {x, y′} is obviously resolved by f(sji , ar). Otherwise,
for a vertex pair {x, y′} which is not resolved by f(sji , ar), dist(f(sji , ar), x) = dist(f(sji , ar), y

′) =
dist(f(π1i , ar), y

′) < dist(f(π1i , ar), x). Thus in this case, every pair {x, y′} is resolved by f(π1i , ar)

or f(sji , ar). It follows that every pair {x, y′} is resolved by f(π1i , ar) or f(sji , ar). For a vertex
pair {y, z′}, similarly we can show that every pair {y, z′} is resolved by f(π1i , cr) or f(sji , cr).
For a vertex pair {x, z′}, there are two cases. Case 1: i 6= i′ or j 6= j′. dist(f(π1i , ar), x) =

2 + |P (sji , ar)| − `x > dist(f(sji , ar), x) if x 6= ar. dist(f(π1i , ar), z
′) = min (2 + |P (sj

′

i′ , ar)| +
`z′ , |P (π1i , ar)|+|P (π1i , cr′)|+|P (sj

′

i′ , cr′)|−`z′). dist(f(sji , ar), z
′) = min (2+|P (sj

′

i′ , ar)|+`z′ , 2+

|P (π1i , ar)| + |P (π1i , cr′)| + |P (sj
′

i′ , cr′)| − `z′) ≥ dist(f(π1i , ar), z
′). Thus in this case, every pair

{x, z′} is resolved by f(π1i , ar) or f(sji , ar). Case 2: i = i′ and j = j′. dist(f(sji , ar), z
′) =

min (|P (sji , ar)| + `z′ , 2 + |P (π1i , ar)| + |P (π1i , cr′)| + |P (sj
′

i′ , cr′)| − `z′). If dist(f(sji , ar), z
′) =

|P (sji , ar)| + `z′ Then {x, z′} (x 6= ar) is obviously resolved by f(sji , ar). Otherwise, for a
vertex pair {x, z′} which is not resolved by f(sji , ar), dist(f(π1i , ar), x) > dist(f(sji , ar), x) =

dist(f(sji , ar), z
′) > dist(f(π1i , ar), z

′). Thus every pair {x, z′} is resolved by f(π1i , ar) or f(sji , ar).
It follows that every pair {x, z′} is resolved by f(π1i , ar) or f(sji , ar). This completes the proof
for the lemma.

Lemma 53. Every pair of distinct vertices x, y ∈
⋃
i∈[n],h∈{1,2} S

h
i is resolved by S′.

Proof. Let x ∈ P (πhi , ar) for arbitrary integers i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3}. Let x′ ∈
P (πh

′
i′ , ar) for arbitrary integers i′ ∈ [n], h′ ∈ {1, 2}. We fix an arbitrary integer j ∈ [m].

Let P (x, ar) be the subpath of P (πhi , ar) and `x = |P (x, ar)|. Let P (x′, ar) be the subpath
of P (πh

′
i′ , ar) and `x′ = |P (x′, ar)|. For a vertex pair {x, x′}, dist(f(sji , ar), x) = 2 + `x and

dist(f(sji , ar), x
′) = 2 + `x′ . Then every vertex pair {x, x′} such that `x 6= `x′ is resolved by

f(sji , ar). Since dist(f(πhi , ar), x) = `x if x 6= ar and dist(f(πhi , ar), x
′) = 2 + `x′ if i 6= i′ or

h 6= h′, every vertex pair {x, x′} such that `x = `x′ is resolved by f(πhi , ar). It follows that every
vertex pair {x, x′} is resolved by f(πhi , ar) or f(sji , ar). Let y ∈ P (πhi , cr) for arbitrary integers
i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3}. Let y′ ∈ P (πh

′
i′ , cr) for arbitrary integers i′ ∈ [n], h′ ∈ {1, 2}.

Similarly, we can show that every vertex pair {y, y′} is resolved by f(πhi , cr) or f(sji , cr).
Let x1 ∈ P (πhi , ar) for arbitrary integers i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3}. Let x2 ∈ P (πh

′
i′ , ar′)

for arbitrary integers i′ ∈ [n], h′ ∈ {1, 2}, r′ ∈ {1, 2, 3}. We fix an arbitrary integer j ∈ [m].
We define `x1 and `x2 in a similar way to that of `x in the first paragraph. For a vertex pair
{x1, x2} such that r 6= r′, dist(f(sji , ar), x1) = 2 + `x1 and dist(f(sji , ar), x2) = 2 + |P (πh

′
i′ , ar)|+

|P (πh
′
i′ , ar′)| − `x2 = 2 + 20(n + 1) − `x2 > dist(f(sji , ar), x1) unless x1 = πhi , x2 = πh

′
i′ and

πhi 6= πh
′
i′ . The vertex pair {πhi , πh

′
i′ } is obviously resolved by fh(i, j, ar). Thus every vertex

pair {x1, x2} such that r 6= r′ is resolved by f(sji , ar) or fh(i, j, ar). Let y1 ∈ P (πhi , cr) for
arbitrary integers i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3}. Let y2 ∈ P (πh

′
i′ , cr′) for arbitrary integers

i′ ∈ [n], h′ ∈ {1, 2}, r′ ∈ {1, 2, 3} such that r 6= r′. We define `y1 and `y2 in a similar way to
that of `x in last paragraph. Similarly, we can show that every vertex pair {y1, y2} such that
r 6= r′ is resolved by f(sji , cr) or fh(i, j, ar). For a pair {x1, y2}, dist(f(sji , ar), x1) = 2 + `x1 and
dist(f(sji , ar), y2) = 2+ |P (πh

′
i′ , ar)|+ |P (πh

′
i′ , cr′)|− `y2 = 2+20(n+1)− `y2 > dist(f(sji , ar), x1)

unless x1 = πhi , y2 = πh
′
i′ and πhi 6= πh

′
i′ . The vertex pair {πhi , πh

′
i′ } is obviously resolved by
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fh(i, j, ar). Thus every vertex pair {x1, y2} is resolved by f(sji , ar) or f
h(i, j, ar). This completes

the proof for the lemma.

Lemma 54. Every pair of distinct vertices x, y ∈
⋃
i∈[n],h∈{1,2},j∈[m],r∈{1,2,3}Πh(i, j, r) is resolved

by S′.

Proof. Let x1, x2 ∈ P h(i, j, ar) be two distinct vertices for arbitrary integers i ∈ [n], j ∈ [m], h ∈
{1, 2}, r ∈ {1, 2, 3}. Let j′ ∈ [m] be an integer such that j 6= j′. Obviously the pair {x1, x2}
is resolved by fh(i, j′, ar). Similarly, the vertex pair {y1, y2} for two distinct vertices y1, y2 ∈
P h(i, j, br), the vertex pair {z1, z2} for two distinct vertices z1, z2 ∈ P h(i, j, cr), and the vertex
pair {w1, w2} for two distinct vertices w1, w2 ∈ P h(i, j, p3−hi ) are resolved by fh(i, j′, ar).

Let x ∈ P h(i, j, ar), y ∈ P h(i, j, br), z ∈ P h(i, j, cr) and w ∈ P h(i, j, p3−hi ) for arbitrary in-
tegers i ∈ [n], j ∈ [m], h ∈ {1, 2}, r ∈ {1, 2, 3}. Let x′ ∈ P h′(i′, j′, ar′), y′ ∈ P h

′
(i′, j′, br′), z

′ ∈
P h
′
(i′, j′, cr′) and w′ ∈ P h′(i′, j′, p3−h′i′ ) for arbitrary integers i′ ∈ [n], j′ ∈ [m], h′ ∈ {1, 2}, r′ ∈

{1, 2, 3}. We define `x = dist(x, πhi ). In a similar way, we define `y, `z, `w, `x′ , `y′ , `z′ , `w′ . For
a pair {x, y}, dist(fh(i, j, cr), x) = 2+`x and dist(fh(i, j, cr), y) = 2+`y. Thus fh(i, j, cr) resolves
every pair {x, y} such that `x 6= `y. Since dist(fh(i, j, ar), x) = `x if x 6= πhi , dist(f

h(i, j, ar), π
h
i ) =

2 and dist(fh(i, j, cr), y) = 2 + `y, fh(i, j, ar) resolves every pair {x, y} such that `x = `y.
Thus every pair {x, y} is resolved by fh(i, j, ar) or fh(i, j, cr). In a similar way, we can
show that two distinct vertices from

⋃
j∈[m],r∈{1,2,3}Πh(i, j, r) are distinguished by S′. For

a pair {x, y′} with i = i′ and h 6= h′, dist(fh(i, j, cr), x) = 2 + `x < dist(fh(i, j, cr), y
′) =

min (2+ |P (πhi , ar)|+ |P (πh
′
i , ar)|+`y′ , 2+ |P (πhi (i, j′, br′))|+ |P (πh

′
i (i, j′, br′)|−`y′). Thus every

pair {x, y′} with i = i′ and h 6= h′ is resolved by fh(i, j, cr). Similarly we can show that every
vertex pair of

⋃
j∈[m],r∈{1,2,3}Πh(i, j, r) ×

⋃
j∈[m],r∈{1,2,3}Π3−h(i, j, r) is resolved by S′. For a

pair {x, y′} with i 6= i′, dist(fh(i, j, cr), x) = 2 + `x. dist(fh(i, j, cr), s
j′

i′ ) = mind∈{1,2,3}(2 +

|P (πhi , cd)| + |P (sj
′

i′ , cd)|). Thus dist(fh(i, j, cr), y
′) = min (2 + |P (πhi , ar)| + |P (πh

′
i , ar)| +

`y′ , dist(fh(i, j, cr), s
j′

i′ )+1+|P h′(i′, j′, br′)|−`y′). We get dist(fh(i, j, cr), x) < dist(fh(i, j, cr), y
′)

unless `x = 20(n+1) and `y′ = 0. If `x = 20(n+1) and `y′ = 0, dist(fh(i, j, ar), y
′) = 2+20(n+

1) > dist(fh(i, j, ar), x) = 20(n+1). Thus every pair {x, y′} with i 6= i′ is resolved by fh(i, j, cr)
or fh(i, j, ar). Similarly we can show that every vertex pair of

⋃
j∈[m],r∈{1,2,3}Πh(i, j, r) ×⋃

j′∈[m],r′∈{1,2,3}Πh′(i′, j′, r′) with i 6= i′ is resolved by S′. This completes the proof for the
lemma.

Lemma 55. Every pair of distinct vertices x, y ∈
⋃
i∈[n],h∈{1,2} L

h
i is resolved by S′.

Proof. First we show that every vertex pair of Lhi ×Lhi is resolved by S′ for i ∈ [n], h ∈ {1, 2}. We
fix arbitrary integers i ∈ [n], j ∈ [m] and h ∈ {1, 2}. For a vertex x ∈ P (qhi ,mid(P 3−h(i, j, phi ))),
let P (qhi , x) be the subpath of P (qhi ,mid(P 3−h(i, j, phi ))) from qhi to x and let |P (qhi , x)| = `x.
For two distinct vertices x1, x2 ∈ P (qhi ,mid(P 3−h(i, j, phi ))), dist(fmid(i, j, 3 − h), x1) = 1 +
|P (qhi ,mid(P 3−h(i, j, phi )))| − `x1 = 30(n+ 1)− `x1 and dist(fmid(i, j, 3− h), x2) = 30(n+ 1)−
`x2 . Thus fmid(i, j, 3 − h) resolves every pair {x1, x2}. Let x ∈ P (qhi ,mid(P 3−h(i, j, phi ))) and
x′ ∈ P (qhi ,mid(P 3−h(i, j′, phi ))) with some integer j′ 6= j. dist(fh(i, j, a1), x) = 3 + `x and
dist(fh(i, j, a1), x

′) = 3 + `x′ . Thus fh(i, j, a1) resolves every pair {x, x′} such that `x 6= `x′ . For
a pair {x, x′} such that `x = `x′ , dist(fmid(i, j, 3− h), x) = 30(n+ 1)− `x and dist(fmid(i, j, 3−
h), x′) = min (1 + |P (qhi ,mid(P 3−h(i, j, phi )))|+ `x′ , 1 + |P 3−h(i, j, phi )|/2 + |P 3−h(i, j′, phi )|/2 +
|P (qhi ,mid(P 3−h(i, j′, phi )))|−`x′) = min (30(n+1)+`x′ , 50(n+1)−`x′). Thus dist(fmid(i, j, 3−
h), x) 6= dist(fmid(i, j, 3 − h), x′) and fmid(i, j, 3 − h) resolves this pair. It follows that every
pair {x, x′} is resolved by fmid(i, j, 3− h) or fh(i, j, a1).

Next we show that every vertex pair of Lhi ×L
3−h
i is resolved by S′ for i ∈ [n], h ∈ {1, 2}. We

fix arbitrary integers i ∈ [n], j ∈ [m] and h ∈ {1, 2}. Let x ∈ P (qhi ,mid(P 3−h(i, j, phi ))) and y ∈
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P (q3−hi ,mid(P h(i, j, p3−hi ))). We define `x and `y in a similar way to that of `x in last paragraph.
For a pair {x, y}, dist(fmid(i, j, 3−h), x) = 30(n+1)−`x and dist(fmid(i, j, 3−h), y) = min (2+
|P 3−h(i, j, phi )|/2 + `y, 3 + |P 3−h(i, j, phi )|/2 + |P h(i, j, p3−hi )|/2 + |P (q3−hi ,mid(P h(i, j, p3−hi )))|−
`y). For a pair {x, y} which is not resolved by fmid(i, j, 3 − h), there are two cases. Case 1:
dist(fmid(i, j, 3 − h), y) = 2 + |P 3−h(i, j, phi )|/2 + `y = 2 + 10(n + 1) + `y ≤ 2 + 50(n + 1) − `y
when `y ≤ 20(n + 1). We have dist(fmid(i, j, 3 − h), x) = 30(n + 1) − `x = dist(fmid(i, j, 3 −
h), y) = 2 + 10(n + 1) + `y, i.e. `x + `y = 20(n + 1) − 2. Case 2: dist(fmid(i, j, 3 − h), y) =
2 + 50(n + 1) − `y when `y > 20(n + 1). We have dist(fmid(i, j, 3 − h), x) = 30(n + 1) − `x =
dist(fmid(i, j, 3−h), y) = 2 + 50(n+ 1)− `y, i.e. `y− `x = 20(n+ 1) + 2. dist(f3−h(i, j, a1), y) =
3 + `y. dist(f3−h(i, j, a1), x) = 3 + |P (π3−hi , a1)| + |P (πhi , a1)| + `x when `x ≤ 10(n + 1) and
dist(f3−h(i, j, a1), x) = 2+ |P 3−h(i, j, phi )|/2+ |P (qhi ,mid(P 3−h(i, j, phi )))|−`x when `x > 10(n+
1). For a pair {x, y} which is not resolved by f3−h(i, j, a1), there are two cases. Case 1:
dist(f3−h(i, j, a1), y) = dist(f3−h(i, j, a1), x) when `x ≤ 10(n + 1), i.e. `y − `x = 3 + 20(n + 1).
Case 2: dist(f3−h(i, j, a1), y) = dist(f3−h(i, j, a1), x) when `x > 10(n + 1), i.e. `y + `x =
40(n + 1) − 2. Thus we see that if a pair {x, y} is not resolved by fmid(i, j, 3 − h), then it is
resolved by f3−h(i, j, a1). It follows that every pair {x, y} is resolved by fmid(i, j, 3 − h) and
f3−h(i, j, a1). Let x′ ∈ P (qhi ,mid(P 3−h(i, j′, phi ))) with some integer j′ ∈ [m] and j′ 6= j. Then
dist(fmid(i, j′, 3−h), x′) = 30(n+1)−`x′ and dist(fmid(i, j′, 3−h), y) = 2+ |P 3−h(i, j′, phi )|/2+
`y = 2 + 10(n+ 1) + `y. For a pair {x′, y} which is not resolved by fmid(i, j′, 3− h), it satisfies
that 30(n + 1) − `x′ = 2 + 10(n + 1) + `y, i.e. `x′ + `y = 20(n + 1) − 2. Similar to vertex x,
for vertex x′, dist(f3−h(i, j, a1), x

′) = 3 + |P (π3−hi , a1)|+ |P (πhi , a1)|+ `x′ when `x′ ≤ 10(n+ 1)
and dist(f3−h(i, j, a1), x

′) = 2 + |P 3−h(i, j′, phi )|/2 + |P (qhi ,mid(P 3−h(i, j′, phi )))| − `x′ when
`x′ > 10(n + 1). Thus for a pair {x′, y} which is not resolved by f3−h(i, j, a1), there are two
cases. Case 1: dist(f3−h(i, j, a1), y) = dist(f3−h(i, j, a1), x

′) when `x′ ≤ 10(n+ 1), i.e. `y− `x′ =
3 + 20(n + 1). Case 2: dist(f3−h(i, j, a1), y) = dist(f3−h(i, j, a1), x

′) when `x′ > 10(n + 1), i.e.
`y+`x′ = 40(n+1)−2. Thus we see that if a pair {x′, y} is not resolved by fmid(i, j′, 3−h), then
it is resolved by f3−h(i, j, a1). It follows that every pair {x′, y} is resolved by fmid(i, j′, 3 − h)
and f3−h(i, j, a1).

Finally we show that every vertex pair of Lhi ×Lh
′
i′ is resolved by S′ for i, i′ ∈ [n], h, h′ ∈ {1, 2}

and i 6= i′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m], h, h′ ∈ {1, 2} such that i 6= i′.
Let x ∈ P (qhi ,mid(P 3−h(i, j, phi ))) and y ∈ P (qh

′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ ))). We define `x and

`y in a similar way to that of `x in the first paragraph. For a pair {x, y}, dist(fmid(i, j, 3 −
h), x) = 30(n+1)−`x and dist(fmid(i, j, 3−h), y) = min (2+ |P 3−h(i, j, phi )|/2+ |P (π3−hi , a1)|+
|P (π3−h

′

i′ , a1)| + `y, 1 + |P 3−h(i, j, phi )|/2 + |P (π3−hi , a1)| + |P (π3−h
′

i′ , a1)| + |P 3−h′(i′, j′, ph
′
i′ )| +

|P (qh
′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ )))| − `y) ≥ 1 + 30(n + 1) > dist(fmid(i, j, 3 − h), x). It follows that

every pair {x, y} is resolved by fmid(i, j, 3− h). This completes the proof for the lemma.

Lemma 56. Every pair of distinct vertices x, y ∈
⋃
r∈{1,2,3}Rr is resolved by S′.

Proof. Let’s fix an arbitrary integer r ∈ {1, 2, 3}.
First, we show that every pair of distinct vertices of

⋃
i∈[n](P (ar, u

i
r) ∪ P (ar, v

i
r)) is resolved

by S′. Let’s fix an arbitrary integer i ∈ [n]. Let xu ∈ P (ar, u
i
r). Let P (ar, xu) be the subpath of

P (ar, u
i
r) from ar to xu and let `xu = |P (ar, xu)|. Since dist(f(π11, ar), xu) = 2 + `xu , obviously

two distinct vertices of P (ar, u
i
r) are distinguished by f(π11, ar). Let xv ∈ P (ar, v

i
r). Let P (ar, xv)

be the subpath of P (ar, v
i
r) from ar to xv and let `xv = |P (ar, xv)|. Since dist(f(π11, ar), xv) =

2 + `xv , obviously two distinct vertices of P (ar, v
i
r) are distinguished by f(π11, ar). For the pair

{xu, xv}, if `xu 6= `xv , then it is resolved by f(π11, ar). Otherwise, if `xu = `xv < |P (ar, u
i
r)|,

then dist(f1(uir, vir), xu) = 1 + |P (ar, u
i
r)| − `xu < dist(f1(uir, vir), xv) = 2 + |P (ar, v

i
r)| − `xv . By

Claim 5, the vertex pair {uir, vir} is resolved by S′. Thus every pair {xu, xv} is resolved by S′.
Let x′u ∈ P (ar, u

i′
r ) and x′v ∈ P (ar, v

i′
r ) for some integer i′ ∈ [n] such that i′ 6= i. We define
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`x′u and`x′v in a similar way to that of `xu and `xv . For a pair {xu, x′u}, dist(f1(uir, vir), xu) =
1 + |P (ar, u

i
r)| − `xu < dist(f1(uir, vir), x′u) = 1 + |P (ar, u

i
r)| + `x′u . Thus every pair {xu, x′u} is

resolved by f1(uir, vir). Similarly, we can show that every pair {xu, x′v}, {xv, x′v} is resolved by
f1(uir, v

i
r).

Then we show that every pair of distinct vertices of
⋃
i∈[n](P (cr, u

i
r) ∪ P (cr, v

i
r)) is resolved

by S′. Let’s fix arbitrary integers i, i′ ∈ [n] such that i 6= i′. Let zu ∈ P (cr, u
i
r), zv ∈ P (cr, v

i
r),

z′u ∈ P (cr, u
i′
r ) and z′v ∈ P (cr, v

i′
r ). We define `zu , `zv , `z′u and `z′v in a similar way to that of `xu

and `zv in last paragraph. Since dist(f(π11, cr), zu) = 2 + `zu , obviously two distinct vertices of
P (cr, u

i
r) are distinguished by f(π11, cr). Since dist(f(π11, cr), zv) = 2 + `zv , two distinct vertices

of P (cr, v
i
r) are distinguished by f(π11, cr). For a pair {zu, zv}, if `zu 6= `zv , then it is resolved by

f(π11, cr). Otherwise, if `zu = `zv < |P (cr, u
i
r)|, then dist(f1(uir, vir), zu) = 1 + |P (cr, u

i
r)| − `zu <

dist(f1(uir, vir), zv) = 2 + |P (cr, v
i
r)| − `zv . Thus every pair {zu, zv} is resolved by S′. For

a pair {zu, z′u}, if `zu 6= `z′u , then it is resolved by f(π11, cr). Otherwise if `zu = `z′u , then
dist(f1(uir, vir), z′u) = min (1+ |P (cr, u

i
r)|+`z′u , 1+ |P (ar, u

i
r)|+ |P (ar, u

i′
r )|+ |P (cr, u

i′
r )|−`z′u−2)

if |P (cr, u
i′
r )| − `z′u ≥ 2. dist(f1(uir, vir), z′u) = 1 + |P (ar, u

i
r)| + |P (ar, u

i′
r )| + |P (cr, u

i′
r )| − `z′u if

|P (cr, u
i′
r )| − `z′u < 2. If dist(f1(uir, vir), z′u) = 1 + |P (cr, u

i
r)| + `z′u , then {zu, z

′
u} is resolved by

f1(uir, v
i
r). Otherwise, if dist(f1(uir, vir), z′u) = 1 + |P (ar, u

i
r)| + |P (ar, u

i′
r )| + |P (cr, u

i′
r )| − `z′u ,

suppose that there is a pair {zu, z′u} which is not resolved by f1(uir, vir). We get that i = 2(n+1),
a contradiction. If dist(f1(uir, vir), z′u) = 1+|P (ar, u

i
r)|+|P (ar, u

i′
r )|+|P (cr, u

i′
r )|−`z′u−2, suppose

that there is a pair {zu, z′u} which is not resolved by f1(uir, vir). We get that 20i = 40(n+ 1)−2,
a contradiction. Thus every pair {zu, z′u} is resolved by f1(uir, vir) or f(π11, cr). Similarly, we can
show that every pair {zu, z′v} and {zv, z′v} is resolved by f1(uir, vir) or f(π11, cr).

Next we show that every pair of distinct vertices of
⋃
i∈[n](P (br, u

i
r) ∪ P (br, v

i
r)) is resolved

by S′. Let’s fix an arbitrary integer i, i′ ∈ [n] such that i′ 6= i Let yu ∈ P (br, u
i
r), yv ∈ P (br, v

i
r),

y′u ∈ P (br, u
i′
r ) and y′v ∈ P (br, v

i′
r ). We define `yu , `yv , `y′u and `y′v in a similar way to that

of `xu and `xv in the second paragraph. Since (G,n, χ,P) is a YES-instance, by Claim 5, the
pair {uir, vir} is resolved by some vertex of S, say sτη . Since dist(sτη , yu) = |P (sτη , br)| + `yu =
20(n + 1) + 5i + 1 + `yu , every vertex pair of P (br, u

i
r) is resolved by sτη . Since dist(sτη , yv) =

|P (sτη , br)|+ `yv = 20(n+ 1) + 5i+ 1 + `yv , every vertex pair of P (br, v
i
r) is resolved by sτη . For

a pair {yu, yv}, if `yu 6= `yv , then it is resolved by sτη . For a pair {yu, yv} such that `yu = `yv ,
dist(f1(uir, vir), yu) = 2 + |P (br, u

i
r)| − `yu = 1 + 20(n + 1) − 5i − `yu > dist(f1(uir, vir), yv) =

2+ |P (br, v
i
r)|−`yv = 20(n+1)−5i−`yv . Thus every pair {yu, yv} is resolved by sτη or f1(uir, vir).

For a pair {yu, y′u} such that yu 6= br and y′u 6= br, dist(f1(uir, vir), yu) = 1+20(n+1)−5i−`yu ≤
20(n + 1) − 5i. dist(f1(uir, vir), y′u) = min (2 + |P (br, v

i
r)| + `y′u , 1 + |P (ar, u

i
r)| + |P (ar, u

i′
r )| +

|P (br, u
i′
r )| − `y′u) > 20(n + 1) − 5i. Thus every pair {yu, y′u} such that yu 6= br and y′u 6= br is

resolved by f1(uir, vir). Similarly, every pair {yu, y′v} and {yv, y′v} is resolved by f1(uir, vir).
Then we show that every pair of distinct vertices of Rr is resolved by S′. Let’s fix arbitrary

integers i, i′ ∈ [n] such that i′ 6= i. Let xu ∈ P (ar, u
i
r), xv ∈ P (ar, v

i
r), yu ∈ P (br, u

i
r), yv ∈

P (br, v
i
r), zu ∈ P (cr, u

i
r) and zv ∈ P (cr, v

i
r). Let x′u ∈ P (ar, u

i′
r ), x′v ∈ P (ar, v

i′
r ), y′u ∈ P (br, u

i′
r ),

y′v ∈ P (br, v
i′
r ), z′u ∈ P (cr, u

i′
r ) and z′v ∈ P (cr, v

i′
r ). We define `xu , `xv , `yu , `yv , `zu , `zv , `x′u , `x′v , `y′u ,

`y′v , `z′u and `z′v in a similar way to that of `xu and `xv in the second paragraph. For a pair
{xu, yu}, dist(f(π11, ar), xu) = 2 + `xu < dist(f(π11, ar), yu) = 2 + |P (ar, u

i
r)| + |P (br, u

i
r)| −

`yu . Thus every pair {xu, yu} is resolved by f(π11, ar). Similarly, every pair {xu, yv}, {xv, yv}
and {xv, yu} are resolved by f(π11, ar). For a pair {xu, zu}, dist(f(π11, ar), xu) = 2 + `xu .
dist(f(π11, ar), zu) = min (2 + |P (ar, u

i
r)| + |P (cr, u

i
r)| − `zu − 2, |P (π11, ar)| + |P (π11, cr)| + `zu)

if |P (cr, u
i
r)| − `zu ≥ 2. dist(f(π11, ar), zu) = 2 + |P (ar, u

i
r)| + |P (cr, u

i
r)| − `zu if |P (cr, u

i
r)| −

`zu < 2. It follows that dist(f(π11, ar), xu) = 2 + `xu < dist(f(π11, ar), zu). Thus every pair
{xu, zu} is resolved by f(π11, ar). Similarly, every pair {xu, zv}, {xv, zv} and {xv, zu} are re-
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solved by f(π11, ar). For a pair {yu, zu}, dist(f(π11, cr), zu) = 2 + `zu . dist(f(π11, cr), br) =
minj∈[m](|P (cr, s

j
1)| + |P (sj1, br)|) = 35n + 41. dist(f(π11, cr), yu) = min (2 + |P (cr, u

i
r)| +

|P (br, u
i
r)|−`yu , dist(f(π11, cr), br)+`yu) > dist(f(π11, cr), zu). Thus every pair {yu, zu} is resolved

by f(π11, ar). Similarly, every pair {yu, zv}, {yv, zv} and {yv, zu} are resolved by f(π11, cr). For a
pair {xu, y′u}, dist(f1(uir, vir), xu) = 1 + |P (ar, u

i
r)| − `xu if xu 6= uir and dist(f1(uir, vir), uir) = 2.

dist(f1(uir, vir), y′u) = min (1 + |P (ar, u
i
r)| + |P (ar, u

i′
r )| + |P (br, u

i′
r )| − `y′u , 2 + |P (br, v

i
r)| +

`y′u) > dist(f1(uir, vir), xu). Thus every pair {xu, y′u} is resolved by f1(uir, v
i
r). Similarly, ev-

ery pair {xu, y′v}, {xv, y′v}, {xv, y′u}, {xu, z′u}, {xu, z′v}, {xv, z′v} and {xv, z′u} are resolved by
f1(uir, v

i
r). For a pair {yu, z′u}, dist(f1(uir, vir), yu) = 2 + |P (br, u

i
r)| − `yu if yu 6= br and

dist(f1(uir, vir), yu) = 1 + |P (br, u
i
r)| if yu = br. dist(f1(uir, vir), z′u) = min (1 + |P (ar, u

i
r)| +

|P (ar, u
i′
r )|+|P (cr, u

i′
r )|−2−`z′u , 1+|P (cr, u

i
r)|+`z′u) if |P (cr, u

i′
r )|−`z′u ≥ 2. dist(f1(uir, vir), z′u) =

min (1 + |P (ar, u
i
r)|+ |P (ar, u

i′
r )|+ |P (cr, u

i′
r )|− `z′u , 1 + |P (cr, u

i
r)|+ `z′u) if |P (cr, u

i′
r )|− `z′u < 2.

It follows that dist(f1(uir, vir), z′u) > 20(n + 1) > dist(f1(uir, vir), yu). Thus every pair {yu, z′u}
is resolved by f1(uir, v

i
r). Similarly, every pair {yu, z′v}, {yv, z′v} and {yv, z′u} are resolved by

f1(uir, v
i
r). As a result, every pair of distinct vertices of Rr is resolved by S′.

Finally, we show that every vertex pair of Rr ×Rr′ with r′ ∈ {1, 2, 3} and r′ 6= r is resolved
by S′. Let’s fix arbitrary integers i, i′ ∈ [n] and r′ ∈ {1, 2, 3} such that r′ 6= r. Let xu ∈
P (ar, u

i
r), xv ∈ P (ar, v

i
r), yu ∈ P (br, u

i
r), yv ∈ P (br, v

i
r), zu ∈ P (cr, u

i
r) and zv ∈ P (cr, v

i
r). Let

x′u ∈ P (ar′ , u
i′
r′), x

′
v ∈ P (ar′ , v

i′
r′), y

′
u ∈ P (br′ , u

i′
r′), y

′
v ∈ P (br′ , v

i′
r′), z

′
u ∈ P (cr′ , u

i′
r′) and z′v ∈

P (cr′ , v
i′
r′). We define `xu , `xv , `yu , `yv , `zu , `zv , `x′u , `x′v , `y′u , `y′v , `z′u and `z′v in a similar way to that

of `xu and `xv in the second paragraph. For a pair {xu, x′u}, dist(f(s11, ar), xu) = 2+`xu < 20(n+
1) < dist(f(s11, ar), x

′
u) = 2+ |P (π11, ar)|+ |P (π11, ar′)|+`x′u . Thus every pair {xu, x′u} is resolved

by f(s11, ar). Similarly, every pair {xu, x′v}, {xv, x′u} and {xv, x′v} are resolved by f(s11, ar). For a
pair {xu, z′u}, dist(f(s11, ar), xu) = 2+`xu < 20(n+1). dist(f(s11, ar), z

′
u) = min (2+|P (π11, ar)|+

|P (π11, cr′)|+`z′u , 2+|P (π11, ar)|+|P (π11, ar′)|+|P (ar′ , u
i′
r′)|−2+|P (cr′ , u

i′
r′)|−`z′u) if |P (cr′ , u

i′
r′)|−

`z′u ≥ 2. dist(f(s11, ar), z
′
u) = min (2+|P (π11, ar)|+|P (π11, cr′)|+`z′u , 2+|P (π11, ar)|+|P (π11, ar′)|+

|P (ar′ , u
i′
r′)|+|P (cr′ , u

i′
r′)|−`z′u) if |P (cr′ , u

i′
r′)|−`z′u < 2. It follows that dist(f(s11, ar), z

′
u) > 20(n+

1). Thus every pair {xu, z′u} is resolved by f(s11, ar). Similarly, every pair {xu, z′v}, {xv, z′u} and
{xv, z′v} are resolved by f(s11, ar). For a pair {xu, y′u} such that y′u 6= br′ , dist(f(π11, ar), xu) = 2+
`xu < 20(n+1). dist(f(π11, ar), br′) = 2+minj∈[m](|P (sj1, ar)|+|P (sj1, br′)|). dist(f(π11, ar), y

′
u) =

min (dist(f(π11, ar), br′)+`z′u , |P (π11, ar)|+|P (π11, ar′)|+|P (ar′ , u
i′
r′)|+|P (br′ , u

i′
r′)|−`y′u) > 20(n+

1). Thus every pair {xu, y′u} such that y′u 6= br′ is resolved by f(π11, ar). Similarly, every pair
{xv, y′u} such that y′u 6= br′ , every pair {xv, y′v} and {xu, y′v} are resolved by f(π11, ar). For
a pair {yu, y′u} such that yu 6= br, dist(f1(uir, vir), yu) = 2 + |P (br, u

i
r)| − `yu < 20(n + 1).

dist(f1(uir, vir), br′) = min (2 + |P (br, v
i
r)| + minj∈[m](|P (sj1, br)| + |P (sj1, br′)|), 1 + |P (ar, v

i
r)| +

minj′∈[m](|P (sj
′

1 , ar)| + |P (sj
′

1 , br′)|)). dist(f1(uir, vir), y′u) = min (dist(f1(uir, vir), br′) + `y′u , 1 +

|P (ar, v
i
r)| + |P (π11, ar)| + |P (π11, ar′)| + |P (ar′ , u

i′
r′)| + |P (br′ , u

i′
r′)| − `y′u) > 20(n + 1). Thus

every pair {yu, y′u} such that yu 6= br is resolved by f1(uir, vir). Similarly, every pair {yu, y′v}
such that yu 6= br, every pair {yv, y′v} and {yv, y′u} are resolved by f1(uir, v

i
r). For a pair

{yu, z′u}, dist(f1(uir, vir), yu) < 20(n+1). dist(f1(uir, vir), z′u) = min (1+|P (ar, u
i
r)|+|P (π11, ar)|+

|P (π11, cr′)|+ `z′u , 1 + |P (ar, u
i
r)|+ |P (π11, ar)|+ |P (π11, ar′)|+ |P (ar′ , u

i′
r′)|+ |P (cr′ , u

i′
r′)|− `z′u −2)

if |P (cr′ , u
i′
r′)| − `z′u ≥ 2. dist(f1(uir, vir), z′u) = min (1 + |P (ar, u

i
r)|+ |P (π11, ar)|+ |P (π11, cr′)|+

`z′u , 1+|P (ar, u
i
r)|+|P (π11, ar)|+|P (π11, ar′)|+|P (ar′ , u

i′
r′)|+|P (cr′ , u

i′
r′)|−`z′u) if |P (cr′ , u

i′
r′)|−`z′u <

2. It follows that dist(f1(uir, vir), z′u) > 30(n + 1). Thus every pair {yu, z′u} is resolved by
f1(uir, v

i
r). Similarly, every pair {yu, z′v}, {yv, z′u} and {yv, z′v} are resolved by f1(uir, vir). For a

pair {zu, z′u}, dist(f1(uir, vir), zu) = 1 + |P (cr, u
i
r)| − `zu if zu 6= uir and dist(f1(uir, vir), zu) = 2

if zu = uir. Thus dist(f1(uir, vir), zu) < 30(n + 1) < dist(f1(uir, vir), z′u) and every pair {zu, z′u}
is resolved by f1(uir, v

i
r). Similarly, every pair {zu, z′v}, {zv, z′u} and {zv, z′v} are resolved by
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f1(uir, v
i
r). As a result, every vertex pair of Rr ×Rr′ with r′ ∈ {1, 2, 3} and r′ 6= r is resolved by

S′. This completes the proof for the lemma.

Lemma 57. Every pair {x, y} ∈
⋃
i∈[n] Ui ×

⋃
i∈[n] Πi is resolved by S′.

Proof. First, we show that every pair {x, y} ∈ Uhi ×
⋃
j∈[m],r∈{1,2,3}Πh(i, j, r) for i ∈ [n], h ∈

{1, 2} is resolved by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}.
Suppose that x ∈ P (sji , p

h
i ) and y ∈ P h(i, j′, ar). For a vertex x ∈ P (sji , p

h
i ), let P (x, phi ) be the

subpath of P (sji , p
h
i ) from x to phi and |P (x, phi )| = `x. For a vertex y ∈ P h(i, j′, ar), let P (y, πhi )

be the subpath of P h(i, j′, ar) from y to πhi and |P (y, πhi )| = `y. Let j∗ ∈ [m] be an integer such
that j∗ 6= j and j∗ 6= j′. Then dist(fh(i, j∗, ar), x) = 3 + `x and dist(fh(i, j∗, ar), y) = 2 + `y.
Thus every pair {x, y} is resolved by fh(i, j∗, ar) unless `y − `x = 1. For the pair {x, y}
such that `y − `x = 1, there are two cases. Case 1: j = j′. Since dist(fh(i, j′, ar), x) =

3 + `x if x 6= sji , dist(f
h(i, j′, ar), s

j
i ) = 20(n + 1) + 1 and dist(fh(i, j′, ar), y) = `y if y 6= πhi ,

dist(fh(i, j′, ar), π
h
i ) = 2, every pair {x, y} such that `y − `x = 1 is resolved by fh(i, j′, ar).

Case 2: j 6= j′. Since dist(fh(i, j′, ar), x) = 3 + `x, dist(fh(i, j′, ar), y) = `y if y 6= πhi and
dist(fh(i, j′, ar), π

h
i ) = 2, every pair {x, y} such that `y − `x = 1 is resolved by fh(i, j′, ar).

It follows that every pair {x, y} is resolved by fh(i, j∗, ar) or fh(i, j′, ar). Similarly, we can
show that every vertex pair of P (sji , p

h
i ) × P h(i, j′, br), P (sji , p

h
i ) × P h(i, j′, cr) and P (sji , p

h
i ) ×

P h(i, j′, p3−hi ) are resolved by S′.
Next we show that every pair {x, y} ∈ Uhi ×

⋃
j∈[m],r∈{1,2,3}Π3−h(i, j, r) for i ∈ [n], h ∈ {1, 2}

is resolved by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}.
Suppose that x ∈ P (sji , p

h
i )\{sji} and y ∈ P 3−h(i, j′, ar). We define `x and `y in a similar way to

that of `x in the first paragraph. There are two cases. Case 1: j = j′. dist(f3−h(i, j′, ar), y) =
`y if y 6= πhi , dist(fh(i, j′, ar), π

h
i ) = 2. dist(f3−h(i, j′, ar), x) = min (|P 3−h(i, j, ar)| + 1 +

|P (sji , p
h
i )|−`x, 3+ |P (π3−hi , cr)|+ |P (cr, π

h
i )|+`x) = min (40(n+1)+1−`x, 20(n+1)+3+`x) ≥

20(n + 1) + 1 > dist(f3−h(i, j′, ar), y). Thus in this case, every pair {x, y} is resolved by
f3−h(i, j′, ar). Case 2: j 6= j′. dist(f3−h(i, j′, ar), y) = `y if y 6= πhi , dist(f

h(i, j′, ar), π
h
i ) = 2.

dist(f3−h(i, j′, ar), x) = min (3 + |P (sji , p
3−h
i )|+ |P (sji , p

h
i )|− `x, 3 + |P (π3−hi , cr)|+ |P (cr, π

h
i )|+

`x) = min (40(n + 1) + 3 − `x, 20(n + 1) + 3 + `x) ≥ 20(n + 1) + 3 > dist(f3−h(i, j′, ar), y).
Thus in this case, every pair {x, y} is resolved by f3−h(i, j′, ar). It follows that every pair
{x, y} is resolved by f3−h(i, j′, ar). Similarly, we can show that every vertex pair of P (sji , p

h
i )×

P 3−h(i, j′, br), P (sji , p
h
i )× P 3−h(i, j′, cr) and P (sji , p

h
i )× P 3−h(i, j′, phi ) are resolved by S′.

Finally we show that every pair {x, y} ∈ Uhi ×
⋃
j∈[m],r∈{1,2,3}Πh′(i′, j, r) for i, i′ ∈ [n], h, h′ ∈

{1, 2} such that i 6= i′ is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m],
h, h′ ∈ {1, 2} and r ∈ {1, 2, 3} such that i 6= i′. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P h′(i′, j′, ar).

We define `x and `y in a similar way to that of `x in the first paragraph. Let j∗ ∈ [m] be
an integer such that j∗ 6= j′. Then dist(fh′(i′, j∗, ar), y) = 2 + `y. dist(fh′(i′, j∗, ar), s

j
i ) =

minr′∈{1,2,3}(2+ |P (πh
′
i′ , cr′)|+ |P (sji , cr′)|). dist(fh

′
(i′, j∗, ar), x) = min (dist(fh′(i′, j∗, ar), s

j
i )+

|P (sji , π
h
i )| − `x, 3 + |P (πh

′
i′ , cr)|+ |P (πhi , cr)|+ `x) > 2 + 20(n+ 1) ≥ dist(fh′(i′, j∗, ar), y). Thus

every pair {x, y} is resolved by fh′(i′, j∗, ar). Similarly, we can show that every vertex pair of
P (sji , p

h
i ) × P h′(i′, j′, br), P (sji , p

h
i ) × P h′(i′, j′, cr) and P (sji , p

h
i ) × P h′(i′, j′, p3−h′i′ ) are resolved

by fh′(i′, j∗, ar). This completes the proof for the lemma.

Lemma 58. Every pair {x, y} ∈
⋃
i∈[n] Ui ×

⋃
i∈[n] Li is resolved by S′.

Proof. First, we show that every pair {x, y} ∈ P (sji , p
h
i ) × P (qhi ,mid(P 3−h(i, j, phi ))) for i ∈

[n], j ∈ [m] and h ∈ {1, 2} is resolved by S′. We fix arbitrary integers i ∈ [n], j ∈ [m] and
h ∈ {1, 2}. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (qhi ,mid(P 3−h(i, j, phi ))). For a vertex
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x ∈ P (sji , p
h
i ), let P (x, phi ) be the subpath of P (sji , p

h
i ) from x to phi and |P (x, phi )| = `x. For a

vertex y ∈ P (qhi ,mid(P 3−h(i, j, phi ))), let P (y, qhi ) be the subpath of P (qhi ,mid(P 3−h(i, j, phi )))
from y to qhi and |P (y, qhi )| = `y. Then dist(fh(i, j, a1), x) = 3 + `x. dist(fh(i, j, a1), y) = 3 + `y.
Thus every pair {x, y} is resolved by fh(i, j, a1) unless `x = `y. Suppose that S′ ∩Xi = {sj

∗

i }.
For the pair {x, y} such that `x = `y, there are two cases. Case 1: j∗ = j. Then dist(sj

∗

i , x) =

|P (sji , p
h
i )| − `x = 20(n+ 1)− `x. dist(sj

∗

i , y) = min (|P (sji , p
h
i )|+ 2 + `y, 1 + |P 3−h(i, j, phi )|/2 +

|P (qhi ,mid(P 3−h(i, j, phi )))| − `y) = min (20(n + 1) + 2 + `y, 40(n + 1) − `y) 6= 20(n + 1) − `y.
Thus in this case every pair {x, y} such that `x = `y is resolved by sj

∗

i . Case 2: j∗ 6= j.
dist(sj

∗

i , s
j
i ) = minr∈{1,2,3}(|P (sj

∗

i , cr)|+ |P (sji , cr)|) = 20(n+1)−10λ∗+20(n+1)−10λ for some
λ, λ∗ ∈ [n]. Then dist(sj

∗

i , x) = min(|P (sj
∗

i , p
h
i )|+`x, dist(sj

∗

i , s
j
i )+|P (sji , p

h
i )|−`x) = min(20(n+

1) + `x, 60(n+ 1)−10λ−10λ∗− `x). dist(sj
∗

i , y) = min (|P (sj
∗

i , p
h
i )|+ 2 + `y, |P (sj

∗

i , p
3−h
i )|+ 1 +

|P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `y) = min (20(n+ 1) + 2 + `y, 60(n+ 1)− `y).
Thus every pair {x, y} such that `x = `y is resolved by sj

∗

i . As a result, every pair {x, y} is
resolved by fh(i, j, a1) or sj

∗

i .
Next we show that every pair {x, y} ∈ P (sji , p

h
i )×P (qhi ,mid(P 3−h(i, j′, phi ))) for i ∈ [n], j, j′ ∈

[m] and h ∈ {1, 2} such that j 6= j′ is resolved by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m]
and h ∈ {1, 2} such that j 6= j′. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (qhi ,mid(P 3−h(i, j′, phi ))).

We define `x and `y in a similar way to that of `x and `y in the first paragraph. dist(fmid(i, j′, 3−
h), y) = 1+|P (qhi ,mid(P 3−h(i, j′, phi )))|−`y = 30(n+1)−`y. dist(fmid(i, j′, 3−h), x) = min (1+

|P 3−h(i, j′, phi )|/2+|P (sj
′

i , p
h
i )|−1+`x, 2+|P 3−h(i, j′, phi )|/2+|P (sj

′

i , p
3−h
i )|+|P (sj

′

i , p
h
i )|−`x) =

min (30(n+ 1) + `x, 2 + 50(n+ 1)− `x). Thus every pair {x, y} is resolved by fmid(i, j′, 3− h)
unless `x = `y = 0, i.e. except the pair {phi , qhi }. According to Lemma 46, {phi , qhi } is resolved
by S′. Thus every pair {x, y} is resolved by S′.

Then we show that every pair {x, y} ∈ P (sji , p
h
i ) × P (q3−hi ,mid(P h(i, j′, p3−hi ))) for i ∈

[n], j, j′ ∈ [m] and h ∈ {1, 2} is resolved by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m] and
h ∈ {1, 2}. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (q3−hi ,mid(P h(i, j′, p3−hi ))). We define `x and

`y in a similar way to that of `x and `y in the first paragraph. Let j∗ ∈ [m] be an integer such that
j∗ 6= j. Then dist(f3−h(i, j∗, a1), y) = 3+`y. dist(f3−h(i, j∗, a1), x) = min (1+ |P 3−h(i, j, a1)|+
|P (sji , p

h
i )|−`x, 3+|P (π3−hi , a1)|+|P (πhi , a1)|+`x) = min (40(n+1)+1−`x, 20(n+1)+3+`x) ≥

20(n+1)+2 if x 6= sji and dist(f3−h(i, j∗, a1), s
j
i ) = 3+20(n+1). Thus any pair {x, y} such that

`y < 20(n+1)−1 is resolved by f3−h(i, j∗, a1). For the pair {x, y} such that 20(n+1)−1 ≤ `y ≤
30(n+ 1)− 1, dist(fmid(i, j′, h), y) = 1 + |P (q3−hi ,mid(P h(i, j′, p3−hi )))| − `y = 30(n+ 1)− `y ≤
10(n + 1) + 1. If j′ = j, then dist(fmid(i, j′, h), x) = min (2 + |P h(i, j, p3−hi )|/2 + `x, 2 +

|P h(i, j, p3−hi )|/2+ |P (sji , p
h
i )|− `x) = min (2+10(n+1)+ `x, 2+30(n+1)− `x) ≥ 10(n+1)+2.

If j′ 6= j, then dist(fmid(i, j′, h), x) = 2 + |P h(i, j, p3−hi )|/2 + `x ≥ 10(n + 1) + 2. As a result,
every pair {x, y} is resolved by f3−h(i, j∗, a1) or fmid(i, j′, h).

Finally we show that every pair {x, y} ∈ P (sji , p
h
i )× P (qh

′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ ))) for i, i′ ∈

[n], j, j′ ∈ [m] and h, h′ ∈ {1, 2} such that i 6= i′ is resolved by S′. We fix arbitrary integers
i, i′ ∈ [n], j, j′ ∈ [m] and h, h′ ∈ {1, 2} such that i 6= i′. Suppose that x ∈ P (sji , p

h
i ) and y ∈

P (qh
′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ ))). We define `x and `y in a similar way to that of `x and `y in the first

paragraph. Then dist(fh(i, j, a1), x) = 3 + `x if x 6= sji and dist(fh(i, j, a1), s
j
i ) = 2 + 20(n+ 1).

dist(fh(i, j, a1), y) = min (3 + |P (πhi , a1)| + |P (πh
′
i′ , a1)| + `y, 2 + |P (πhi , a1)| + |P (π3−h

′

i′ , a1)| +
|P 3−h′(i′, j′, ph

′
i′ )|/2 + |P (qh

′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ )))| − `y) = min (3 + 20(n+ 1) + `y, 1 + 60(n+

1)− `y) ≥ 3 + 20(n+ 1) > dist(fh(i, j, a1), x). Thus every pair {x, y} is resolved by fh(i, j, a1).
This completes the proof for the lemma.

Lemma 59. Every pair {x, y} ∈
⋃
i∈[n] Ui ×

⋃
i∈[n] Si is resolved by S′.
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Proof. We show that every pair {x, y} ∈ P (sji , p
h
i ) × (P (πh

′
i′ , ar) ∪ P (πh

′
i′ , cr)) for i, i′ ∈ [n], j ∈

[m], h′ ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈
[m],h, h′ ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (πh

′
i′ , ar). For a vertex

x ∈ P (sji , p
h
i ), let P (x, phi ) be the subpath of P (sji , p

h
i ) from x to phi and |P (x, phi )| = `x. For a

vertex y ∈ P (πh
′
i′ , ar), let P (y, πh

′
i′ ) be the subpath of P (πh

′
i′ , ar) from y to πh′i′ and |P (y, πh

′
i′ )| = `y.

Then dist(f(sji , ar), y) = 2 + |P (πh
′
i′ , ar)| − `y. Suppose that |P (sji , ar)| = 20(n + 1) + 10p for

some p ∈ [n]. dist(f(sji , ar), x) = min (3 + |P (πhi , ar)| + `x, |P (sji , ar)| + |P (sji , p
h
i )| − `x) =

min (3 + 10(n + 1) + `x, 40(n + 1) + 10p − `x) ≥ 3 + 10(n + 1) > dist(f(sji , ar), y). Thus
every pair {x, y} is resolved by f(sji , ar). Similarly, we can show that every vertex pair of
P (sji , p

h
i )× P (πh

′
i′ , cr) for i, i′ ∈ [n], j ∈ [m], h′ ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by f(sji , cr).

This completes the proof for the lemma.

Lemma 60. Every pair {x, y} ∈
⋃
i∈[n] Ui ×

⋃
i∈[n]Hi is resolved by S′.

Proof. First we show that every pair {x, y} ∈ P (sji , p
h
i ) × (P (sji , ar) ∪ P (sji , cr)) for i ∈ [n], j ∈

[m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i ∈ [n], j ∈
[m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ) and y ∈ P (sji , ar). For a vertex

x ∈ P (sji , p
h
i ), let P (sji , x) be the subpath of P (sji , p

h
i ) from sji to x and |P (sji , x)| = `x. For a

vertex y ∈ P (sji , ar), let P (sji , y) be the subpath of P (sji , ar) from sji to y and |P (sji , y)| = `y. Let
|P (sji , ar)| = 20(n+ 1) + 10λ for some λ ∈ [n]. Then dist(f(sji , ar), x) = min (3 + |P (πhi , ar)|+
|P (sji , p

h
i )|−`x, |P (sji , ar)|+`x) = min (3+30(n+1)−`x, 20(n+1)+10λ+`x). dist(f(sji , ar), y) =

|P (sji , ar)| − `y = 20(n+ 1) + 10λ− `y. dist(f(πhi , ar), x) = min (1 + |P (πhi , ar)|+ |P (sji , p
h
i )| −

`x, 2 + |P (sji , ar)|+ `x) = min (1 + 30(n+ 1)− `x, 2 + 20(n+ 1) + 10λ+ `x). dist(f(πhi , ar), y) =

2 + |P (sji , ar)| − `y = 2 + 20(n + 1) + 10λ − `y. For the pair {x, y} which is not resolved by
f(sji , ar), it satisfies that dist(f(sji , ar), x) = dist(f(sji , ar), y) = 3+ |P (πhi , ar)|+ |P (sji , p

h
i )|− `x.

Thus dist(f(πhi , ar), x) < dist(f(sji , ar), x) = dist(f(sji , ar), y) < dist(f(πhi , ar), y). It follows
that every pair {x, y} is resolved by f(sji , ar) or f(πhi , ar). Similarly, we can show that every
vertex pair of P (sji , p

h
i )× P (sji , cr) is resolved by f(sji , cr) or f(πhi , cr).

Next we show that every vertex pair of P (sji , p
h
i ) × P (sji , br) for i ∈ [n], j ∈ [m], h ∈ {1, 2}

and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i ∈ [n], j ∈ [m], h ∈ {1, 2} and
r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ) \ {sji} and y ∈ P (sji , br) \ {s

j
i}. We define `x and `y

in a similar way to that of `x and `y in the first paragraph. Then dist(fmid(i, j, 3 − h), x) =
|P 3−h(i, j, phi )|/2 + `x = 10(n + 1) + `x and dist(fmid(i, j, 3 − h), y) = 2 + |P 3−h(i, j, phi )|/2 +
`y = 2 + 10(n + 1) + `y. For the vertex pair {x, y} which is not resolved by fmid(i, j, 3 − h),
i.e. `x = 2 + `y, dist(fmid(i, j, h), x) = 2 + |P h(i, j, p3−hi )|/2 + `x = 2 + 10(n + 1) + `x >
dist(fmid(i, j, h), y) = 2 + |P h(i, j, p3−hi )|/2 + `y = 10(n + 1) + 2 + `y = 10(n + 1) + `x. Thus
every pair {x, y} is resolved by fmid(i, j, 3− h) or fmid(i, j, h).

Then we show that every pair {x, y} ∈ P (sji , p
h
i )×(P (sj

′

i′ , ar)∪P (sj
′

i′ , cr)) for i, i
′ ∈ [n], j, j′ ∈

[m], h ∈ {1, 2} and r ∈ {1, 2, 3} such that i 6= i′ or j 6= j′ is resolved by S′. We fix arbitrary
integers i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} such that i 6= i′ or j 6= j′. Suppose
that x ∈ P (sji , p

h
i ) and y ∈ P (sj

′

i′ , ar). We define `x and `y in a similar way to that of `x and
`y in the first paragraph. Let |P (sji , ar)| = 20(n+ 1) + 10λ and |P (sj

′

i′ , ar)| = 20(n+ 1) + 10λ′

for some λ, λ′ ∈ [n]. Then dist(f(sj
′

i′ , ar), x) = dist(f(π3−hi′ , ar), x) = min (3 + |P (πhi , ar)| +
|P (sji , p

h
i )| − `x, 2 + |P (sji , ar)| + `x) = min (3 + 30(n + 1) − `x, 2 + 20(n + 1) + 10λ + `x).

dist(f(sj
′

i′ , ar), y) = dist(f(π3−hi′ , ar), y)− 2 = |P (sj
′

i′ , ar)| − `y if y 6= ar and dist(f(sj
′

i′ , ar), ar) =

dist(f(π3−hi′ , ar), ar) = 2. It follows that every pair {x, y} is resolved by f(sj
′

i′ , ar) or f(π3−hi′ , ar).
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Similarly, we can show that every vertex pair of P (sji , p
h
i )×P (sj

′

i′ , cr) is resolved by f(sj
′

i′ , cr) or
f(π3−hi′ , cr).

Finally we show that every vertex pair of P (sji , p
h
i )× P (sj

′

i′ , br) for i, i′ ∈ [n], j, j′ ∈ [m], h ∈
{1, 2} and r ∈ {1, 2, 3} such that i 6= i′ or j 6= j′ is resolved by S′. We fix arbitrary integers
i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} such that i 6= i′ or j 6= j′. Suppose that
x ∈ P (sji , p

h
i ) and y ∈ P (sj

′

i′ , br). We define `x and `y in a similar way to that of `x and `y in the
first paragraph. Let |P (sji , br)| = 20(n+ 1) + 5λ+ 1 and |P (sj

′

i′ , br)| = 20(n+ 1) + 5λ′ + 1 and
for some λ, λ′ ∈ [n]. There are two cases. Case 1: i = i′ and j 6= j′. dist(fmid(i, j, 3 − h), x) =
|P 3−h(i, j, phi )|/2 + `x = 10(n+ 1) + `x if x 6= sji and dist(fmid(i, j, 3− h), sji ) = 2 + 10(n+ 1).
dist(fmid(i, j, 3−h), y) = min (2 + |P 3−h(i, j, phi )|/2 + |P (sj

′

i′ , p
3−h
i )|+ `y, 2 + |P 3−h(i, j, phi )|/2 +

|P (sji , br)|+|P (sj
′

i′ , br)|−`y) = min (2+30(n+1)+`y, 4+50(n+1)+5λ+5λ′−`y) ≥ 2+30(n+1) >
dist(fmid(i, j, 3−h), x). Thus in this case, every pair {x, y} is resolved by fmid(i, j, 3−h). Case 2:
i 6= i′. dist(fmid(i, j, 3−h), sj

′

i′ ) = 1+ |P 3−h(i, j, phi )|/2+minr∈{1,2,3}(|P (π3−hi , cr)|+ |P (sj
′

i′ , cr)|).
dist(fmid(i, j, 3−h), y) = min (dist(fmid(i, j, 3−h), sj

′

i′ )+`y, 2+ |P 3−h(i, j, phi )|/2+ |P (sji , br)|+
|P (sj

′

i′ , br)|− `y) = min (1+40(n+1)−10λ′+ `y, 4+50(n+1)+5λ+5λ′− `y) > 30(n+1)+5 >
dist(fmid(i, j, 3 − h), x). Thus in this case, every pair {x, y} is resolved by fmid(i, j, 3 − h). It
follows that every pair {x, y} is resolved by fmid(i, j, 3 − h). This completes the proof for the
lemma.

Lemma 61. Every pair {x, y} ∈
⋃
i∈[n] Ui ×

⋃
r∈{1,2,3}Rr is resolved by S′.

Proof. First we show that every pair {x, y} ∈ P (sji , p
h
i )×(P (ui

′
r , ar)∪P (vi

′
r , ar)) for i, i′ ∈ [n], j ∈

[m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈
{1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ), y ∈ P (ui

′
r , ar). For a vertex x ∈ P (sji , p

h
i ), let

P (sji , x) be the subpath of P (sji , p
h
i ) from sji to x and |P (sji , x)| = `x. For a vertex y ∈ P (ar, u

i′
r ),

let P (ui
′
r , y) be the subpath of P (ar, u

i′
r ) from ui

′
r to y and |P (ui

′
r , y)| = `y. Let |P (sji , ar)| =

20(n+1)+10λ for some λ ∈ [n] and |P (ui
′
r , ar)| = 20(n+1)−10i′. There are two cases. Case 1:

λ ≤ i′. dist(f1(ui′r , vi
′
r ), x) = min (1+ |P (ar, u

i′
r )|+ |P (sji , ar)|+`x, 1+ |P (ar, u

i′
r )|+ |P (πhi , ar)|+

|P (sji , π
h
i )|−`x) = min (40(n+1)−10(i′−λ)+1+`x, 50(n+1)+1−10i′−`x). dist(f1(ui′r , vi

′
r ), y) =

1+`y if y 6= ui
′
r and dist(f1(ui′r , vi

′
r ), y) = 2 if y = ui

′
r . Thus dist(f1(ui

′
r , v

i′
r ), x) ≥ 30(n+1)−10i′+

1 > dist(f1(ui′r , vi
′
r ), y). Case 2: λ > i′. dist(f1(ui′r , vi

′
r ), x) = min (1 + |P (cr, u

i′
r )|+ |P (sji , cr)|+

`x, 1 + |P (ar, u
i′
r )|+ |P (πhi , ar)|+ |P (sji , π

h
i )| − `x) = min (40(n+ 1)− 10(λ− i′) + 1 + `x, 50(n+

1) + 1− 10i′ − `x). dist(f1(ui′r , vi
′
r ), y) = 1 + `y if y 6= ui

′
r and dist(f1(ui′r , vi

′
r ), y) = 2 if y = ui

′
r .

Thus dist(f1(ui′r , vi
′
r ), x) ≥ 30(n + 1) − 10i′ + 1 > dist(f1(ui′r , vi

′
r ), y). Thus every pair {x, y} is

resolved by f1(ui′r , vi
′
r ). Similarly, we can show that every vertex pair of P (sji , p

h
i )×P (vi

′
r , ar) is

resolved by f1(ui′r , vi
′
r ).

Next we show that every pair {x, y} ∈ P (sji , p
h
i ) × (P (ui

′
r , br) ∪ P (vi

′
r , br)) for i, i′ ∈ [n], j ∈

[m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈
[m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ), y ∈ P (ui

′
r , br). We define `x and

`y in a similar way to that of `x and `y in the first paragraph. Let |P (sji , ar)| = 20(n+ 1) + 10λ
for some λ ∈ [n] and |P (ui

′
r , ar)| = 20(n + 1) − 10i′. There are two cases. Case 1: λ ≤ i′.

dist(f1(ui′r , vi
′
r ), x) = min (1 + |P (ar, u

i′
r )| + |P (sji , ar)| + `x, 1 + |P (ar, u

i′
r )| + |P (πhi , ar)| +

|P (sji , π
h
i )| − `x). dist(f2(ui′r , vi

′
r ), x) = dist(f1(ui′r , vi

′
r ), x)− 1 = min (|P (ar, u

i′
r )|+ |P (sji , ar)|+

`x, |P (ar, u
i′
r )| + |P (πhi , ar)| + |P (sji , π

h
i )| − `x). dist(f1(ui′r , vi

′
r ), y) = dist(f2(ui′r , vi

′
r ), y) = 2 +

`y. In this case, for a pair {x, y} which is not resolved by f1(ui
′
r , v

i′
r ), dist(f2(ui′r , vi

′
r ), x) =

dist(f1(ui′r , vi
′
r ), x)−1 < dist(f1(ui′r , vi

′
r ), y) = dist(f2(ui′r , vi

′
r ), y). Case 2: λ > i′. dist(f1(ui′r , vi

′
r ), x)

= min (1 + |P (cr, u
i′
r )|+ |P (sji , cr)|+ `x, 1 + |P (ar, u

i′
r )|+ |P (πhi , ar)|+ |P (sji , π

h
i )| − `x).
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dist(f2(ui′r , vi
′
r ), x) = dist(f1(ui′r , vi

′
r ), x) − 1 = min (|P (cr, u

i′
r )| + |P (sji , cr)| + `x, |P (ar, u

i′
r )| +

|P (πhi , ar)| + |P (sji , π
h
i )| − `x). dist(f1(ui′r , vi

′
r ), y) = dist(f2(ui′r , vi

′
r ), y) = 2 + `y. Similar to

Case 1, in this case, for a pair {x, y} which is not resolved by f1(ui′r , vi
′
r ), dist(f2(ui′r , vi

′
r ), x) <

dist(f2(ui′r , vi
′
r ), y). Thus every pair {x, y} is resolved by f1(ui′r , vi

′
r ) or f2(ui′r , vi

′
r ). Similarly, we

can show that every vertex pair of P (sji , p
h
i )× P (vi

′
r , br) is resolved by f1(ui′r , vi

′
r ) or f2(ui′r , vi

′
r ).

Finally we show that every pair {x, y} ∈ P (sji , p
h
i )× (P (ui

′
r , cr)∪P (vi

′
r , cr)) for i, i′ ∈ [n], j ∈

[m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈
{1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (sji , p

h
i ), y ∈ P (ui

′
r , cr). We define `x and `y in a

similar way to that of `x and `y in the first paragraph. Let |P (sji , cr)| = 20(n + 1) − 10λ for
some λ ∈ [n] and |P (ui

′
r , cr)| = 20(n+ 1) + 10i′. Then dist(f(sji , cr), x) = min (3 + |P (πhi , cr)|+

|P (sji , p
h
i )|−`x, |P (sji , cr)|+`x) = min (3+30(n+1)−`x, 20(n+1)−10λ+`x). dist(f(πhi , cr), x) =

min (1 + |P (πhi , cr)|+ |P (sji , p
h
i )| − `x, 2 + |P (sji , cr)|+ `x) = min (1 + 30(n+ 1)− `x, 2 + 20(n+

1)−10λ+`x). dist(f(π3−hi , cr), x) = min (3+ |P (πhi , cr)|+ |P (sji , p
h
i )|−`x, 2+ |P (sji , cr)|+`x) =

min (3 + 30(n + 1) − `x, 2 + 20(n + 1) − 10λ + `x). dist(f(sji , cr), y) = dist(f(πhi , cr), y) =
dist(f(π3−hi , cr), y) = 2 + |P (cr, u

i′
r )| − `y = 2 + 20(n + 1) + 10i′ − `y. For a pair {x, y} which

is not resolved by f(sji , cr), either f(πhi , cr) or f(π3−hi , cr) resolves it. Thus every pair {x, y} is
resolved by f(sji , cr), f(πhi , cr) or f(π3−hi , cr). Similarly, we can show that every vertex pair of
P (sji , p

h
i )× P (vi

′
r , cr) is resolved by f(sji , cr), f(πhi , cr) or f(π3−hi , cr). This completes the proof

for the lemma.

Lemma 62. Every pair {x, y} ∈
⋃
i∈[n] Πi ×

⋃
i∈[n]Hi is resolved by S′.

Proof. We show that every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
(P (sj

′

i′ , ar′) ∪ P (sj
′

i′ , br′) ∪ P (sj
′

i′ , cr′)) for i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3} is
resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3}.
Suppose that x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) and x4 ∈ P h(i, j, p3−hi ).
Suppose that y1 ∈ P (sj

′

i′ , ar′), y2 ∈ P (sj
′

i′ , br′) and y3 ∈ P (sj
′

i′ , cr′). For a vertex xµ for
µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ). For a vertex yν for ν ∈ {1, 2, 3}, let `yν = dist(sji , yν).
Let |P (sji , ar′)| = 20(n + 1) + 10λ and |P (sj

′

i′ , ar′)| = 20(n + 1) + 10λ′ for some λ, λ′ ∈ [n].
There are three cases. Case 1: sji = sj

′

i′ and r′ = r. Then dist(f(sj
′

i′ , ar′), x1) = min (2 +

|P (πhi , ar)| + `x1 , |P (sji , ar)| + |P h(i, j, ar)| − 1 − `x1) = min (2 + 10(n + 1) + `x1 , 40(n + 1) +

10λ − 1 − `x1). dist(f(sj
′

i′ , ar′), y1) = |P (sji , ar)| − `y1 = 20(n + 1) + 10λ − `y1 if y1 6= ar and
dist(f(sj

′

i′ , ar′), ar) = 2. dist(f(π3−hi , ar′), x1) = min (2 + |P (πhi , ar)| + `x1 , 1 + |P (sji , ar)| +
|P h(i, j, ar)|− `x1) = min (2 +10(n+1) + `x1 , 40(n+1) +10λ+ 1− `x1). dist(f(π3−hi , ar′), y1) =

2 + |P (sji , ar)| − `y1 = 20(n + 1) + 10λ + 2 − `y1 . Let γ ∈ P h(i, j, ar) be the vertex such that
dist(γ, πhi ) = 20(n + 1) − 1. Obviously the pair {sji , γ} is resolved by fh(i, j, ar). For the pair
{x1, y1} which is not resolved by f(sj

′

i′ , ar′) and y1 6= sji , it satisfies that dist(f(sj
′

i′ , ar′), x1) =

dist(f(sj
′

i′ , ar′), y1) = dist(f(π3−hi , ar′), x1) < dist(f(π3−hi , ar′), y1). Thus in this case, every pair
{x1, y1} is resolved by f(sj

′

i′ , ar′), f(π3−hi , ar′) or fh(i, j, ar). Case 2: sji 6= sj
′

i′ and r′ = r.
Then dist(f(sj

′

i′ , ar′), x1) = min (2 + |P (πhi , ar′)| + `x1 , 1 + |P (sji , ar′)| + |P h(i, j, ar′)| − `x1) =

min (2 + 10(n + 1) + `x1 , 40(n + 1) + 10λ + 1 − `x1). dist(f(sj
′

i′ , ar′), y1) = |P (sj
′

i′ , ar′)| − `y1 =

20(n+ 1) + 10λ′ − `y1 if y1 6= ar′ and dist(f(sj
′

i′ , ar′), ar′) = 2. dist(f(π3−hi , ar′), x1) = min (2 +

|P (πhi , ar′)|+ `x1 , |P (sji , ar′)|+ |P h(i, j, ar′)|+ 1− `x1) = min (2 + 10(n+ 1) + `x1 , 40(n+ 1) +

10λ + 1 − `x1). dist(f(π3−hi , ar′), y1) = 2 + |P (sj
′

i′ , ar′)| − `y1 = 20(n + 1) + 10λ′ + 2 − `y1 .
For the pair {x1, y1} which is not resolved by f(sj

′

i′ , ar′), it satisfies that dist(f(sj
′

i′ , ar′), x1) =

dist(f(sj
′

i′ , ar′), y1) = dist(f(π3−hi , ar′), x1) < dist(f(π3−hi , ar′), y1). Thus in this case, every
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pair {x1, y1} is resolved by f(sj
′

i′ , ar′) or f(π3−hi , ar′). Case 3: sji 6= sj
′

i′ and r′ 6= r. Then
dist(f(sj

′

i′ , ar′), x1) = min (2 + |P (πhi , ar′)| + `x1 , 2 + |P (sji , ar′)| + 1 + |P h(i, j, ar′)| − `x1) =

min (2 + 10(n + 1) + `x1 , 40(n + 1) + 10λ + 3 − `x1). dist(f(sj
′

i′ , ar′), y1) = |P (sj
′

i′ , ar′)| − `y1 =

20(n+ 1) + 10λ′ − `y1 if y1 6= ar′ and dist(f(sj
′

i′ , ar′), ar′) = 2. dist(f(π3−hi , ar′), x1) = min (2 +

|P (πhi , ar′)| + `x1 , 2 + |P (sji , ar′)| + 1 + |P h(i, j, ar′)| − `x1) = min (2 + 10(n + 1) + `x1 , 40(n +

1) + 10λ+ 3− `x1). dist(f(π3−hi , ar′), y1) = 2 + |P (sj
′

i′ , ar′)| − `y1 = 20(n+ 1) + 10λ′ + 2− `y1 .
For the pair {x1, y1} which is not resolved by f(sj

′

i′ , ar′), it satisfies that dist(f(sj
′

i′ , ar′), x1) =

dist(f(sj
′

i′ , ar′), y1) = dist(f(π3−hi , ar′), x1) < dist(f(π3−hi , ar′), y1). Thus in this case, every
pair {x1, y1} is resolved by f(sj

′

i′ , ar′) or f(π3−hi , ar′). It follows that every pair {x1, y1} is
resolved by fh(i, j, ar), f(sj

′

i′ , ar′) or f(π3−hi , ar′). In a similar way, we can show that every
vertex pair {x2, y1}, {x3, y1} and {x4, y1} are resolved by S′. Also in a similar way, we can
show that every vertex pair {x1, y3}, {x2, y3}, {x3, y3} and {x4, y3} are resolved by f(sj

′

i′ , cr′),
f(π3−hi , cr′) or fh(i, j, cr). For a pair {x1, y2}, dist(fh(i, j, ar), x1) = `x1 if x1 6= πhi and
dist(fh(i, j, ar), π

h
i ) = 2. dist(fh(i, j, ar), br′) = 2 + |P (πhi , ar′)| + |P (ar′ , v

n
r′)| + |P (br′ , v

n
r′)| +

|P (sj
′

i′ , br′)| − `y2 . There are three cases. Case 1: i = i′ and j = j′. dist(fh(i, j, ar), y2) =

min (|P h(i, j, ar)| + 1 + `y2 , dist(fh(i, j, ar), br′) + |P (sj
′

i′ , br′)| − `y2) = min (20(n + 1) + 1 +
`y2 , 55n+ 5λ+ 71− `y2) > dist(fh(i, j, ar), x1). Thus in this case, every pair {x1, y2} is resolved
by fh(i, j, ar). Case 2: i′ = i and j 6= j′. Then dist(fh(i, j, ar), y2) = min (2 + |P h(i, j, br′)| +
`y2 − 1, dist(fh(i, j, ar), br′) + |P (sj

′

i′ , br′)| − `y2) = min (20(n+ 1) + 1 + `y2 , 55n+ 5λ+ 71− `y2)

if y2 6= sj
′

i′ and dist(fh(i, j, ar), s
j′

i′ ) = 3 + 20(n + 1). Thus dist(fh(i, j, ar), y2) ≥ 20(n + 1) +
2 > dist(fh(i, j, ar), x1). In this case, every pair {x1, y2} is resolved by fh(i, j, ar). Case 3:
i′ 6= i. dist(fh(i, j, ar), s

j′

i′ ) = mind∈{1,2,3}(2 + |P (πhi , cd)| + |P (sj
′

i′ , cd)|). dist(fh(i, j, ar), y2) =

min (dist(fh(i, j, ar), s
j′

i′ )+`y2 , dist(f
h(i, j, ar), br′)+|P (sj

′

i′ , br′)|−`y2) > 20(n+1) ≥ dist(fh(i, j, ar), x1).
Thus in this case, every pair {x1, y2} is resolved by fh(i, j, ar). In a similar way, we can show
that every vertex pair {x2, y2}, {x3, y2} and {x4, y2} are resolved by S′. This completes the
proof for the lemma.

Lemma 63. Every pair {x, y} ∈
⋃
i∈[n] Πi ×

⋃
i∈[n] Li is resolved by S′.

Proof. First we show every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
P (qhi ,mid(P 3−h(i, j′, phi ))) for i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by
S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that
x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) and x4 ∈ P h(i, j, p3−hi ). Suppose that y ∈
P (qhi ,mid(P 3−h(i, j′, phi ))). For a vertex xµ for µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ). For a ver-
tex y, let `y = dist(qhi , y). Then dist(fh(i, j, ar), x1) = `x1 if x1 6= πhi and dist(fh(i, j, ar), π

h
i ) =

2. dist(fh(i, j, ar), y) = dist(fh(i, j, br), y) = dist(fh(i, j, cr), y) = dist(fh(i, j, p3−hi ), y) = 3 + `y.
For the pair {x1, y} that is not resolved by fh(i, j, ar), dist(fh(i, j, br), y) = dist(fh(i, j, ar), y) =
dist(fh(i, j, ar), x1) = dist(fh(i, j, br), x1) − 2 < dist(fh(i, j, br), x1). Thus every pair {x1, y} is
resolved by fh(i, j, ar) or fh(i, j, br). In a similar way, we can show that every vertex pair {x2, y},
{x3, y} and {x4, y} are resolved by S′.

Next we show that every pair {x, y} ∈ P (q3−hi ,mid(P h(i, j′, p3−hi )))×(P h(i, j, ar)∪P h(i, j, br)∪
P h(i, j, cr) ∪ P h(i, j, p3−hi )) for i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved
by S′. We fix arbitrary integers i ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Sup-
pose that x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) x4 ∈ P h(i, j, p3−hi ) and y ∈
P (q3−hi ,mid(P h(i, j′, p3−hi ))). For a vertex xµ for µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ). For a
vertex y, let `y = dist(q3−hi , y). Then dist(fh(i, j, ar), x1) = `x1 if x1 6= πhi and dist(fh(i, j, ar), π

h
i )

= 2. dist(fh(i, j, ar), y) = dist(fh(i, j, br), y) = dist(fh(i, j, cr), y) = min (2+|P h(i, j′, p3−hi )|/2+

103



|P (q3−hi ,mid(P h(i, j′, p3−hi )))|−`y, 2+ |P (πhi , ar)|+ |P (π3−hi , ar)|+1+`y) = min (1+40(n+1)−
`y, 3+20(n+1)+`y). For the pair {x1, y} that is not resolved by fh(i, j, ar), dist(fh(i, j, br), y) =
dist(fh(i, j, ar), y) = dist(fh(i, j, ar), x1) = dist(fh(i, j, br), x1)− 2 < dist(fh(i, j, br), x1). Thus
every pair {x1, y} is resolved by fh(i, j, ar) or fh(i, j, br). In a similar way, we can show that
every vertex pair {x2, y} and {x3, y} are resolved by S′. For the pair {x4, y}, there are two
cases. Case 1: j′ 6= j. In this case, the analysis is similar to that of {x1, y} above and every pair
{x4, y} is resolved by fh(i, j, p3−hi ) or fh(i, j, ar). Case 2: j′ = j. dist(fh(i, j, p3−hi ), x4) = `x4
if x4 6= πhi and dist(fh(i, j, p3−hi ), πhi ) = 2. dist(fh(i, j, p3−hi ), y) = min (|P h(i, j′, p3−hi )|/2 +
|P (q3−hi ,mid(P h(i, j′, p3−hi )))| − `y, 2 + |P (πhi , ar)| + |P (π3−hi , ar)| + 1 + `y) = min (40(n +
1) − 1 − `y, 3 + 20(n + 1) + `y). For the pair {x4, y} which is not resolved by fh(i, j, p3−hi ),
it satisfies that dist(fh(i, j, p3−hi ), x4) = dist(fh(i, j, p3−hi ), y) = 40(n + 1) − 1 − `y = `x4 , i.e.
dist(fmid(i, j, h), x4) = dist(fmid(i, j, h), y) and 10(n+1) < `x4 ≤ 20(n+1), 20(n+1)−1 ≤ `y <
30(n+ 1)− 1. For such pairs, dist(fecc(i, j, 3−h, r), x4) = 2 + 30(n+ 1)− `x4 < 2 + 20(n+ 1) <
dist(fecc(i, j, 3− h, r), y) = 50(n+ 1) + 1− `y. Thus in this case, every pair {x4, y} is resolved
by fh(i, j, p3−hi ) or fecc(i, j, 3− h, r).

Finally we show that every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
P (qh

′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ ))) for i, i′ ∈ [n], j, j′ ∈ [m], h, h′ ∈ {1, 2} and r ∈ {1, 2, 3} such that

i 6= i′ is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j, j′ ∈ [m], h, h′ ∈ {1, 2} and
r ∈ {1, 2, 3} such that i 6= i′. Suppose that x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr)
and x4 ∈ P h(i, j, p3−hi ). Suppose that y ∈ P (q3−h

′

i′ ,mid(P h
′
(i′, j′, p3−h

′

i′ ))). For a vertex xµ for
µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ). For a vertex y, let `y = dist(q3−h

′

i′ , y). For the pair
{x1, y}, dist(fh(i, j, ar), x1) = `x1 if x1 6= πhi and dist(fh(i, j, ar), π

h
i ) = 2. dist(fh(i, j, ar), y) =

min (2+ |P (πhi , ar)|+ |P (πh
′
i′ , ar)|+1+`y, 2+ |P (πhi , ar)|+ |P (π3−h

′

i′ , ar)|+ |P 3−h′(i′, j′, ph
′
i′ )|/2+

|P (qh
′
i′ ,mid(P 3−h′(i′, j′, ph

′
i′ )))|−`y) = min (3+20(n+1)+`y, 1+60(n+1)−`y) ≥ 3+20(n+1) >

dist(fh(i, j, ar), x1). Thus every pair {x1, y} is resolved by fh(i, j, ar). Similarly, we can
show that every pair {x2, y}, {x3, y} and {x4, y} are resolved by fh(i, j, br), fh(i, j, cr) and
fh(i, j, p3−hi ) respectively. This completes the proof for the lemma.

Lemma 64. Every pair {x, y} ∈
⋃
i∈[n] Πi ×

⋃
i∈[n] Si is resolved by S′.

Proof. We show that every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
(P (πh

′
i′ , ar′) ∪ P (πh

′
i′ , cr′)) for i, i′ ∈ [n], j ∈ [m], h, h′ ∈ {1, 2} and r, r′ ∈ {1, 2, 3} is resolved

by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h, h′ ∈ {1, 2} and r, r′ ∈ {1, 2, 3}. Suppose
that x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) and x4 ∈ P h(i, j, p3−hi ). Suppose
that y1 ∈ P (πh

′
i′ , ar′) and y2 ∈ P (πh

′
i′ , cr′). For a vertex xµ for µ ∈ {1, 2, 3, 4}, let `xµ =

dist(πhi , xµ). For a vertex y1, let `y1 = dist(ar′ , y1). For a vertex y2, let `y2 = dist(cr′ , y2). Let
|P (sji , ar′)| = 20(n+ 1) + 10λ for some λ ∈ [n]. For a pair {x1, y1}, dist(f(sji , ar′), y1) = 2 + `y1 .
dist(f(sji , ar′), x1) = min (2 + |P (πhi , ar′)|+ `x1 , |P (sji , ar′)| − 1 + |P h(i, j, ar)| − `x1) = min (2 +

10(n+1)+`x1 , 40(n+1)+10λ−1−`x1) if r = r′ and dist(f(sji , ar′), x1) = min (2+ |P (πhi , ar′)|+
`x1 , |P (sji , ar′)|+ 1 + |P h(i, j, ar)| − `x1) = min (2 + 10(n+ 1) + `x1 , 40(n+ 1) + 10λ+ 1− `x1) ≥
2 + 10(n+ 1) ≥ dist(f(sji , ar′), y1) if r 6= r′. It follows that dist(f(sji , ar′), x1) ≥ 2 + 10(n+ 1) ≥
dist(f(sji , ar′), y1). dist(f(sji , ar′), x1) = dist(f(sji , ar′), y1) only when x1 = πhi and y1 = πh

′
i′ . If

i′ 6= i or h′ 6= h, obviously the pair {πhi , πh
′
i′ } is resolved by fh(i, j, ar). Thus every pair {x1, y1}

is resolved by f(sji , ar′) or fh(i, j, ar). In a similar way, we can show that every vertex pair
{x2, y1}, {x3, y1} and {x4, y1} are resolved by f(sji , ar′) or fh(i, j, ar). Also in a similar way, we
can show that every vertex pair {x1, y2}, {x2, y2}, {x3, y2} and {x4, y2} are resolved by f(sji , cr′)
or fh(i, j, ar). This completes the proof for the lemma.

Lemma 65. Every pair {x, y} ∈
⋃
i∈[n] Πi ×

⋃
r∈{1,2,3}Rr is resolved by S′.
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Proof. We show that every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
(P (ui

′
r′ , ar′) ∪ P (vi

′
r′ , ar′) ∪ P (ui

′
r′ , cr′) ∪ P (vi

′
r′ , cr′)) for i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈

{1, 2, 3} is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈
{1, 2, 3}. Suppose that x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) and x4 ∈ P h(i, j, p3−hi ).
Suppose that y1 ∈ P (ui

′
r′ , ar′), y2 ∈ P (vi

′
r′ , ar′), z1 ∈ P (ui

′
r′ , cr′) and z2 ∈ P (vi

′
r′ , cr′). For

a vertex xµ for µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ). For a vertex yν for ν ∈ {1, 2}, let
`yν = dist(ar′ , yν). For a vertex zη for η ∈ {1, 2}, let `yη = dist(cr′ , zη). Then |P (ui

′
r′ , ar′)| =

|P (vi
′
r′ , ar′)| = 20(n + 1) − 10i′ and |P (ui

′
r′ , cr′)| = |P (vi

′
r′ , cr′)| = 20(n + 1) + 10i′. For a

pair {x1, y1}, dist(fh(i, j, ar), x1) = `x1 and dist(fh(i, j, ar), π
h
i ) = 2. dist(fh(i, j, ar), y1) =

dist(fh(i, j, br), y1) = dist(fh(i, j, cr), y1) = dist(fh(i, j, p3−hi ), y1) = 2 + |P (πhi , ar′)| + `y1 =
2+10(n+1)+`y1 . For the pair {x1, y1} that is not resolved by fh(i, j, ar), dist(fh(i, j, ar), x1) =
dist(fh(i, j, ar), y1) = dist(fh(i, j, br), y1) = dist(fh(i, j, br), x1)− 2. Thus every pair {x1, y1} is
resolved by fh(i, j, ar) or fh(i, j, br). In a similar way, we can show that every vertex pair {xµ, yν}
for µ ∈ {1, 2, 3, 4}, ν ∈ {1, 2} is resolved by S′. For a pair {x1, z1}, dist(fh(i, j, ar), x1) = `x1
and dist(fh(i, j, ar), π

h
i ) = 2. dist(fh(i, j, ar), z1) = dist(fh(i, j, br), z1) = min (2+ |P (πhi , cr′)|+

`z1 , 2+|P (πhi , ar′)|+|P (ar′ , u
i′
r′)|+|P (cr′ , u

i′
r′)|−2−`z1) = min (2+10(n+1)+`z1 , 50(n+1)−`z1) if

|P (cr′ , u
i′
r′)|−`z1 ≥ 2. dist(fh(i, j, ar), z1) = dist(fh(i, j, br), z1) = 2+|P (πhi , ar′)|+|P (ar′ , u

i′
r′)|+

|P (cr′ , u
i′
r′)|−`z1 if |P (cr′ , u

i′
r′)|−`z1 < 2. For the pair {x1, z1} that is not resolved by fh(i, j, ar),

dist(fh(i, j, ar), x1) = dist(fh(i, j, ar), z1) = dist(fh(i, j, br), z1) = dist(fh(i, j, br), x1)− 2. Thus
every pair {x1, z1} is resolved by fh(i, j, ar) or fh(i, j, br). In a similar way, we can show that
every vertex pair {xµ, zν} for µ ∈ {1, 2, 3, 4}, ν ∈ {1, 2} is resolved by S′.

Then we show that every pair {x, y} ∈ (P h(i, j, ar)∪P h(i, j, br)∪P h(i, j, cr)∪P h(i, j, p3−hi ))×
(P (ui

′
r′ , br′) ∪ P (vi

′
r′ , br′)) for i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3} is resolved by S′.

We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3}. Suppose that
x1 ∈ P h(i, j, ar), x2 ∈ P h(i, j, br), x3 ∈ P h(i, j, cr) and x4 ∈ P h(i, j, p3−hi ). Suppose that
w1 ∈ P (ui

′
r′ , br′) and w2 ∈ P (vi

′
r′ , br′). For a vertex xµ for µ ∈ {1, 2, 3, 4}, let `xµ = dist(πhi , xµ).

For a vertex wν for ν ∈ {1, 2}, let `wν = dist(br′ , wν). Then let |P (sji , ar′)| = 20(n + 1) + 10λ
for some λ ∈ [n], |P (ui

′
r′ , br′)| = 20(n + 1) − 5i′ − 1 and |P (vi

′
r′ , br′)| = 20(n + 1) − 5i′ − 2.

For a pair {x1, w1}, dist(f1(ui
′
r′ , v

i′
r′), w1) = dist(f2(ui′r′ , v

i′
r′), w1) = 2 + |P (ui

′
r′ , br′)| − `w1 . For

the distance between fη(ui
′
r′ , v

i′
r′) and x1 for η ∈ {1, 2}, there are two cases. Case 1: λ ≤

i′. dist(f1(ui′r′ , v
i′
r′), x1) = dist(f2(ui′r′ , v

i′
r′), x1) + 1 = min (1 + |P (ar′ , u

i′
r′)| + |P (sji , ar′)| −

1 + |P h(i, j, ar)| − `x1 , 1 + |P (ar′ , u
i′
r′)| + |P (πhi , ar′)| + `x1) if r = r′. dist(f1(ui′r′ , v

i′
r′), x1) =

dist(f2(ui′r′ , v
i′
r′), x1) + 1 = min (1 + |P (ar′ , u

i′
r′)| + |P (sji , ar′)| + 1 + |P h(i, j, ar)| − `x1 , 1 +

|P (ar′ , u
i′
r′)| + |P (πhi , ar′)| + `x1) if r 6= r′. In this case, for the pair {x1, w1} which is not

resolved by f1(ui′r′ , v
i′
r′), dist(f

2(ui
′
r′ , v

i′
r′), x1) = dist(f1(ui′r′ , v

i′
r′), x1) − 1 < dist(f1(ui′r′ , v

i′
r′), y) =

dist(f2(ui′r′ , v
i′
r′), y). Case 2: λ > i′. dist(f1(ui′r′ , v

i′
r′), x1) = dist(f2(ui′r′ , v

i′
r′), x1) + 1 = min (1 +

|P (cr′ , u
i′
r′)| + |P (sji , cr′)| + 1 + |P h(i, j, ar)| − `x1 , 1 + |P (ar′ , u

i′
r′)| + |P (πhi , ar′)| + `x1). In

this case, for the pair {x1, w1} which is not resolved by f1(ui
′
r′ , v

i′
r′), dist(f2(ui′r′ , v

i′
r′), x1) =

dist(f1(ui′r′ , v
i′
r′), x1) − 1 < dist(f1(ui′r′ , v

i′
r′), y) = dist(f2(ui′r′ , v

i′
r′), y). In a similar way, we can

show that every vertex pair {xµ, wν} for µ ∈ {1, 2, 3, 4}, ν ∈ {1, 2} is resolved by S′. This
completes the proof for the lemma.

Lemma 66. Every pair {x, y} ∈
⋃
i∈[n] Li ×

⋃
i∈[n]Hi is resolved by S′.

Proof. First we show that every pair {x, y} ∈ P (qhi ,mid(P 3−h(i, j, phi )))×(P (sj
′

i′ , ar)∪P (sj
′

i′ , cr))
for i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers
i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (qhi ,mid(P 3−h(i, j, phi )))

and y ∈ P (sj
′

i′ , ar). For a vertex x ∈ P (qhi ,mid(P 3−h(i, j, phi ))), let P (qhi , x) be the subpath
of P (qhi ,mid(P 3−h(i, j, phi ))) from qhi to x and |P (qhi , x)| = `x. For a vertex y ∈ P (sj

′

i′ , ar), let
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P (ar, y) be the subpath of P (sj
′

i′ , ar) from ar to y and |P (ar, y)| = `y. Then dist(f(πhi , ar), x) =

min (|P (πhi , ar)|+1+`x, 2+|P (π3−hi , ar)|+|P 3−h(i, j, phi )|/2+|P (qhi ,mid(P 3−h(i, j, phi )))|−`x) =
min (10(n + 1) + 1 + `x, 50(n + 1) + 1 − `x). dist(f(π3−hi , ar), x) = min (2 + |P (πhi , ar)| +
1 + `x, |P (π3−hi , ar)|+ |P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `x) = min (10(n+ 1) +
3 + `x, 50(n + 1) − 1 − `x). dist(f(πhi , ar), y) = dist(f(π3−hi , ar), y) = 2 + `y. For a pair
{x, y} which is not resolved by f(πhi , ar), there are two cases. Case 1: dist(f(π3−hi , ar), x) =
dist(f(π3−hi , ar), y) = 10(n + 1) + 1 + `x = 2 + `y. In this case, dist(f(π3−hi , ar), x) = 10(n +
1) + 3 + `x > 2 + `y = dist(f(π3−hi , ar), y). Case 2: dist(f(π3−hi , ar), x) = dist(f(π3−hi , ar), y) =
50(n + 1) + 1 − `x = 2 + `y. In this case, dist(f(π3−hi , ar), x) = 50(n + 1) − 1 − `x < 2 + `y =
dist(f(π3−hi , ar), y). It follows that every pair {x, y} is resolved by f(πhi , ar) or f(π3−hi , ar).
Similarly we can show that every pair of P (qhi ,mid(P 3−h(i, j, phi ))) × P (sj

′

i′ , cr) is resolved by
f(πhi , cr) or f(π3−hi , cr).

Then we show that every pair {x, y} ∈ P (qhi ,mid(P 3−h(i, j, phi ))) × (P (sj
′

i′ , br) \ {s
j′

i′ }) for
i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers
i, i′ ∈ [n], j, j′ ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (qhi ,mid(P 3−h(i, j, phi )))

and y ∈ P (sj
′

i′ , br)\{s
j′

i′ }. We define `x and `y in a similar way to that of `x and `y in the first para-
graph. Suppose that sj

′

i′ resolves the pair {u
ir
r , v

ir
r } for some ir ∈ [n], i.e. |P (ar, u

ir
r )| = 20(n+1)−

10ir. Then dist(f1(uirr , virr ), x) = dist(f2(uirr , virr ), x) + 1 = min (1 + |P (ar, u
ir
r )|+ |P (πhi , ar)|+

1 + `x, 1 + |P (ar, u
ir
r )|+ |P (π3−hi , ar)|+ |P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `x) =

min (2+30(n+1)−10ir + `x, 70(n+1)−10ir− `x). dist(f1(uirr , virr ), y) = dist(f2(uirr , virr ), y) =
2 + |P (br, v

ir
r )|+ `y = 20(n+ 1)− 5ir + `y. Thus for a vertex pair {x, y} which is not resolved by

f1(uirr , v
ir
r ), dist(f1(uirr , virr ), x) = dist(f1(uirr , virr ), y) = dist(f2(uirr , virr ), y) > dist(f2(uirr , virr ), x).

It follows that every pair {x, y} is resolved by f1(uirr , virr ) or f2(uirr , virr ). This completes the
proof for the lemma.

Lemma 67. Every pair {x, y} ∈
⋃
i∈[n] Li ×

⋃
i∈[n] Si is resolved by S′.

Proof. We show that every pair {x, y} ∈ P (qhi ,mid(P 3−h(i, j, phi ))) × (P (πh
′
i′ , ar) ∪ P (πh

′
i′ , cr))

for i, i′ ∈ [n], j ∈ [m], h, h′ ∈ {1, 2} and r ∈ {1, 2, 3} is resolved by S′. We fix arbitrary integers
i, i′ ∈ [n], j ∈ [m], h, h′ ∈ {1, 2} and r ∈ {1, 2, 3}. Suppose that x ∈ P (qhi ,mid(P 3−h(i, j, phi )))
and y ∈ P (πh

′
i′ , ar). For a vertex x ∈ P (qhi ,mid(P 3−h(i, j, phi ))), let P (qhi , x) be the subpath

of P (qhi ,mid(P 3−h(i, j, phi ))) from qhi to x and |P (qhi , x)| = `x. For a vertex y ∈ P (πh
′
i′ , ar), let

P (ar, y) be the subpath of P (πh
′
i′ , ar) from ar to y and |P (ar, y)| = `y. Then dist(f(sji , ar), y) =

2 + `y ≤ 2 + 10(n + 1). dist(f(sji , ar), x) = min (2 + |P (πhi , ar)| + 1 + `x, 2 + |P (π3−hi , ar)| +
|P 3−h(i, j, phi )|/2+|P (qhi ,mid(P 3−h(i, j, phi )))|−`x) = min (10(n+1)+3+`x, 50(n+1)+1−`x) ≥
3 + 10(n + 1) > dist(f(sji , ar), x). Thus every pair {x, y} is resolved by f(sji , ar). Similarly we
can show that every pair of P (qhi ,mid(P 3−h(i, j, phi )))× P (πh

′
i′ , cr) is resolved by f(sji , cr). This

completes the proof for the lemma.

Lemma 68. Every pair {x, y} ∈
⋃
i∈[n] Li ×

⋃
r∈{1,2,3}Rr is resolved by S′.

Proof. We show that every pair {x, y} ∈ P (qhi ,mid(P 3−h(i, j, phi ))) × (P (ui
′
r , ar) ∪ P (vi

′
r , ar) ∪

P (ui
′
r , br) ∪ P (vi

′
r , br) ∪ P (ui

′
r , cr) ∪ P (vi

′
r , cr)) for i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}

is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r ∈ {1, 2, 3}.
Suppose that x ∈ P (qhi ,mid(P 3−h(i, j, phi ))), y1 ∈ P (ui

′
r , ar), y2 ∈ P (vi

′
r , ar), z1 ∈ P (ui

′
r , br),

z2 ∈ P (vi
′
r , br), w1 ∈ P (ui

′
r , cr), w2 ∈ P (vi

′
r , cr). For a vertex x ∈ P (qhi ,mid(P 3−h(i, j, phi ))),

let P (qhi , x) be the subpath of P (qhi ,mid(P 3−h(i, j, phi ))) from qhi to x and |P (qhi , x)| = `x.
For a vertex y1 ∈ P (ui

′
r , ar), let P (y1, u

i′
r ) be the subpath of P (ui

′
r , ar) from y1 to ui′r and let

|P (y1, u
i′
r )| = `y1 . For a vertex y2 ∈ P (vi

′
r , ar), let P (y2, v

i′
r ) be the subpath of P (vi

′
r , ar) from
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y2 to vi′r and let |P (y2, v
i′
r )| = `y2 . For a vertex z1 ∈ P (ui

′
r , br), let P (z1, u

i′
r ) be the subpath of

P (ui
′
r , br) from z1 to ui′r and let |P (z1, u

i′
r )| = `z1 . For a vertex z2 ∈ P (vi

′
r , br), let P (z2, v

i′
r ) be

the subpath of P (vi
′
r , br) from z2 to vi′r and let |P (z2, v

i′
r )| = `z2 . For a vertex w1 ∈ P (ui

′
r , cr),

let P (w1, u
i′
r ) be the subpath of P (ui

′
r , cr) from w1 to ui′r and let |P (w1, u

i′
r )| = `w1 . For a vertex

w2 ∈ P (vi
′
r , cr), let P (w2, v

i′
r ) be the subpath of P (vi

′
r , cr) from w2 to vi

′
r and let |P (w2, v

i′
r )| = `w2 .

For a pair {x, y1}, dist(f1(ui′r , vi
′
r ), y1) = 1 + `y1 if y1 6= ui

′
r and dist(f1(ui′r , vi

′
r ), ui

′
r ) = 2.

dist(f1(ui′r , vi
′
r ), x) = min (1 + |P (ar, u

i′
r )|+ |P (πhi , ar)|+ 1 + `x, 1 + |P (ar, u

i′
r )|+ |P (π3−hi , ar)|+

|P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `x) = min (2 + 30(n + 1) − 10i′ + `x, 70(n +
1) − 10i′ − `x) > 1 + 20(n + 1) − 10i′ ≥ dist(f1(ui′r , vi

′
r ), y1). Thus every pair {x, y1} is

resolved by f1(ui
′
r , v

i′
r ). Similarly, every pair {x, y2} is resolved by f1(ui

′
r , v

i′
r ). For a pair

{x, z1}, dist(f2(ui
′
r , v

i′
r ), x) = dist(f1(ui′r , vi

′
r ), x)−1. dist(f1(ui′r , vi

′
r ), z1) = dist(f2(ui′r , vi

′
r ), z1) =

2 + `z1 . Thus for a pair {x, z1} that is not resolved by f1(ui
′
r , v

i′
r ), dist(f1(ui′r , vi

′
r ), x) =

dist(f1(ui′r , vi
′
r ), z1) = dist(f2(ui′r , vi

′
r ), z1) > dist(f2(ui′r , vi

′
r ), x). It follows that every pair {x, z1}

is resolved by f1(ui′r , vi
′
r ) or f2(ui′r , vi

′
r ). Similarly, every pair {x, z2} is resolved by f1(ui′r , vi

′
r ) or

f2(ui
′
r , v

i′
r ). For a pair {x,w1}, dist(f(πhi , cr), w1) = dist(f(π3−hi , cr), w1) = dist(f(sji , cr), w1) =

2 + |P (cr, u
i′
r )| − `w1 = 2 + 20(n + 1) + 10i′ − `w1 . dist(f(πhi , cr), x) = min (|P (πhi , ar)| + 1 +

`x, 2 + |P (π3−hi , ar)|+ |P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `x) = min (10(n+ 1) +
1 + `x, 50(n+ 1) + 1− `x). dist(f(π3−hi , cr), x) = min (2 + |P (πhi , ar)|+ 1 + `x, |P (π3−hi , ar)|+
|P 3−h(i, j, phi )|/2 + |P (qhi ,mid(P 3−h(i, j, phi )))| − `x) = min (10(n+ 1) + 3 + `x, 50(n+ 1)− 1−
`x). dist(f(sji , cr), x) = min (2 + |P (πhi , ar)| + 1 + `x, 2 + |P (π3−hi , ar)| + |P 3−h(i, j, phi )|/2 +
|P (qhi ,mid(P 3−h(i, j, phi )))| − `x) = min (10(n + 1) + 3 + `x, 50(n + 1) + 1 − `x). For a pair
{x,w1} which is not resolved by f(sji , cr), either f(πhi , cr) or f(π3−hi , cr) resolves it. Thus every
pair {x,w1} is resolved by f(sji , cr), f(πhi , cr) or f(π3−hi , cr). Similarly, we can show that every
pair {x,w2} is resolved by f(sji , cr), f(πhi , cr) or f(π3−hi , cr). This completes the proof for the
lemma.

Lemma 69. Every pair {x, y} ∈
⋃
i∈[n] Si ×

⋃
i∈[n]Hi is resolved by S′.

Proof. We show that every pair {x, y} ∈ (P (πhi′ , ar′) ∪ P (πhi′ , cr′)) × (P (sji , ar) ∪ P (sji , br) ∪
P (sji , cr)) for i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3} is resolved by S′. We fix arbitrary
integers i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3}. Suppose that x1 ∈ P (πhi′ , ar′),
x2 ∈ P (πhi′ , cr′), y1 ∈ P (sji , ar), y2 ∈ P (sji , ar) and y3 ∈ P (sji , cr). For a vertex x1 ∈ P (πhi′ , ar′),
let P (πhi′ , x1) be the subpath of P (πhi′ , ar′) from πhi′ to x1 and let |P (πhi′ , x1)| = `x1 . For a vertex
x2 ∈ P (πhi′ , cr′), let P (πhi′ , x2) be the subpath of P (πhi′ , cr′) from πhi′ to x2 and let |P (πhi′ , x2)| = `x2 .
For a vertex y1 ∈ P (sji , ar), let P (sji , y1) be the subpath of P (sji , ar), from sji to y1 and let
|P (sji , y1)| = `y1 . For a vertex y2 ∈ P (sji , br) \ {s

j
i}, let P (sji , y2) be the subpath of P (sji , br),

from sji to y2 and let |P (sji , y2)| = `y2 . For a vertex y3 ∈ P (sji , cr), let P (sji , y3) be the subpath of
P (sji , cr), from sji to y3 and let |P (sji , y3)| = `y3 . Let |P (sji , ar)| = 20(n+1)+10λ for some λ ∈ [n].
For a vertex pair {x1, y1}, dist(fh(i′, j, ar), x1) = 2 + `x1 . For the distance between fh(i′, j, ar)
and y1, there are two cases. Case 1: i′ = i. Then dist(fh(i′, j, ar), y1) = min (|P h(i, j, ar)| +
`y1 − 1, 2 + |P (πhi , ar)|+ |P (sji , ar)| − `y1) = min (20(n+ 1) + `y1 − 1, 30(n+ 1) + 10λ+ 2− `y1)

if y1 6= sji and dist(fh(i′, j, ar), s
j
i ) = 20(n+ 1) + 1. Thus dist(fh(i′, j, ar), y1) ≥ 2 + 10(n+ 1) ≥

dist(fh(i′, j, ar), x1). fh(i′, j, ar) does not resolve {x1, y1} only when x1 = ar′ and y1 = ar
with r 6= r′. The pair {ar′ , ar} is resolved by f(πhi′ , ar′). Thus in this case, every pair {x1, y1} is
resolved by fh(i′, j, ar) or f(πhi′ , ar′). Case 2: i

′ 6= i. Then dist(fh(i′, j, ar), s
j
i ) = mind∈{1,2,3}(2+

|P (πhi′ , cd)|+ |P (sji , cd)|). dist(fh(i′, j, ar), y1) = min (dist(fh(i′, j, ar), s
j
i )+ `y1 , 2+ |P (πhi′ , ar)|+

|P (sji , ar)| − `y1) ≥ 2 + 10(n + 1) ≥ dist(fh(i′, j, ar), x1). fh(i′, j, ar) does not resolve {x1, y1}
only when x1 = ar′ and y1 = ar with r 6= r′.. The pair {ar′ , ar} is resolved by f(πhi′ , ar′). It
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follows that every pair {x1, y1} is resolved by fh(i′, j, ar) or f(πhi′ , ar′). In a similar way, we can
show that every pair {x2, y1}, {x1, y3} and {x2, y3} are resolved by S′. For a vertex pair {x1, y2},
dist(fh(i′, j, br), x1) = 2 + `x1 . For the distance between fh(i′, j, br) and y2, there are two cases.
Case 1: i′ = i. Then dist(fh(i′, j, br), y2) = min (|P h(i′, j, br)| + `y2 − 1, 2 + |P (πhi , ar)| +

|P (ar, v
n
r )| + |P (br, v

n
r )| + |P (sji , br)| − `y2) ≥ 20(n + 1) > dist(fh(i′, j, br), x1). Case 2: i′ 6= i.

Then dist(fh(i′, j, br), s
j
i ) = mind∈{1,2,3}(2 + |P (πhi′ , cd)| + |P (sji , cd)|). dist(fh(i′, j, br), y2) =

min (dist(fh(i′, j, br), s
j
i ) + `y2 , 2 + |P (πhi′ , ar)| + |P (ar, v

n
r )| + |P (br, v

n
r )| + |P (sji , br)| − `y2) >

20(n+1) > dist(fh(i′, j, br), x1). Thus in both cases, every pair {x1, y2} is resolved by fh(i′, j, br).
In a similar way, we can show that every pair {x2, y2} is resolved by fh(i′, j, br). This completes
the proof for the lemma.

Lemma 70. Every pair {x, y} ∈
⋃
i∈[n] Si ×

⋃
r∈{1,2,3}Rr is resolved by S′.

Proof. We show that every pair {x, y} ∈ (P (πhi , ar) ∪ P (πhi , cr)) × (P (ui
′
r′ , ar′) ∪ P (vi

′
r′ , ar′) ∪

P (ui
′
r′ , br′) ∪ P (vi

′
r′ , br′) ∪ P (ui

′
r′ , cr′) ∪ P (vi

′
r′ , cr′)) for i, i′ ∈ [n], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3}

is resolved by S′. We fix arbitrary integers i, i′ ∈ [n], j ∈ [m], h ∈ {1, 2} and r, r′ ∈ {1, 2, 3}.
Suppose that x1 ∈ P (πhi , ar), x2 ∈ P (πhi , cr), y1 ∈ P (ui

′
r′ , ar′), y2 ∈ P (vi

′
r′ , ar′), z1 ∈ P (ui

′
r′ , br′),

z2 ∈ P (vi
′
r′ , br′), w1 ∈ P (ui

′
r′ , cr′), w2 ∈ P (vi

′
r′ , cr′). For a vertex x1 ∈ P (πhi , ar), let P (πhi , x1)

be the subpath of P (πhi , ar) from πhi to x1 and let |P (πhi , x1)| = `x1 . For a vertex x2 ∈
P (πhi , cr), let P (πhi , x2) be the subpath of P (πhi , cr) from πhi to x2 and let |P (πhi , x2)| = `x2 .
Then dist(fh(i, j, ar), x1) = 2 + `x1 ≤ 2 + 10(n + 1) and dist(fh(i, j, ar), x2) = 2 + `x2 ≤
2 + 10(n+ 1). dist(fh(i, j, ar), ar′) = dist(fh(i, j, ar), cr′) = 2 + 10(n+ 1). dist(fh(i, j, ar), br′) =
2 + |P (πhi , ar′)|+ |P (ar′ , v

n
r′)|+ |P (br′ , v

n
r′)| > 2 + 10(n+ 1). We see that any shortest path from

fh(i, j, ar) to a vertex of {y1, y2, z1, z2, w1, w2} goes through ar′ , br′ or cr′ . Thus the distance
from fh(i, j, ar) to any vertex of {y1, y2, z1, z2, w1, w2} is at least 2 + 10(n+ 1) and the equality
holds only when y1 = y2 = ar′ or w1 = w2 = cr′ . Obviously f(πhi , ar) resolves the pairs {ar, ar′}
and {ar, cr′} and f(πhi , cr) resolves the pairs {cr, ar′} and {cr, cr′} with r 6= r′. As a result,
every vertex pair of

⋃
i∈[n] Si ×

⋃
r∈{1,2,3}Rr is resolved by fh(i, j, ar), f(πhi , ar) or f(πhi , cr).

This completes the proof for the lemma.

Lemma 71. Every pair {x, y} ∈
⋃
i∈[n]Hi ×

⋃
r∈{1,2,3}Rr is resolved by S′.

Proof. First we show that every pair {x, y} ∈ P (sji , ar)× (P (ui
′
r′ , ar′)∪P (vi

′
r′ , ar′)∪P (ui

′
r′ , br′)∪

P (vi
′
r′ , br′) ∪ P (ui

′
r′ , cr′) ∪ P (vi

′
r′ , cr′)) for i, i′ ∈ [n], j ∈ [m] and r, r′ ∈ {1, 2, 3} is resolved by

S′. We fix arbitrary integers i, i′ ∈ [n], h ∈ {1, 2}, j ∈ [m] and r, r′ ∈ {1, 2, 3}. Suppose that
x ∈ P (sji , ar), y1 ∈ P (ui

′
r′ , ar′), y2 ∈ P (vi

′
r′ , ar′), z1 ∈ P (ui

′
r′ , br′), z2 ∈ P (vi

′
r′ , br′), w1 ∈ P (ui

′
r′ , cr′),

w2 ∈ P (vi
′
r′ , cr′). For a vertex x ∈ P (sji , ar), let P (x, ar) be the subpath of P (sji , ar) from ar to x

and let |P (x, ar)| = `x. For a vertex y1 ∈ P (ui
′
r′ , ar′), let P (y1, u

i′
r′) be the subpath of P (ui

′
r′ , ar′)

from y1 to ui′r′ and let |P (y1, u
i′
r′)| = `y1 . For a vertex y2 ∈ P (vi

′
r′ , ar′), let P (y2, v

i′
r′) be the

subpath of P (vi
′
r′ , ar′) from y2 to vi′r′ and let |P (y2, v

i′
r′)| = `y2 . For a vertex z1 ∈ P (ui

′
r′ , br′), let

P (z1, u
i′
r′) be the subpath of P (ui

′
r′ , br′) from z1 to ui′r′ and let |P (z1, u

i′
r′)| = `z1 . For a vertex

z2 ∈ P (vi
′
r′ , br′), let P (z2, v

i′
r′) be the subpath of P (vi

′
r′ , br′) from z2 to vi

′
r′ and let |P (z2, v

i′
r′)| = `z2 .

For a vertex w1 ∈ P (ui
′
r′ , cr′), let P (w1, u

i′
r′) be the subpath of P (ui

′
r′ , cr′) from w1 to ui′r′ and

let |P (w1, u
i′
r′)| = `w1 . For a vertex w2 ∈ P (vi

′
r′ , cr′), let P (w2, v

i′
r′) be the subpath of P (vi

′
r′ , cr′)

from w2 to vi′r′ and let |P (w2, v
i′
r′)| = `w2 . Then dist(f(sji , ar), x) = dist(f(πhi , ar), x) − 2 = `x

if x 6= ar and dist(f(sji , ar), ar) = dist(f(πhi , ar), ar) = 2. For a vertex pair {x, y1}, there are
two cases. Case 1: r′ = r. dist(f(sji , ar), y1) = dist(f(πhi , ar), y1) = 2 + |P (ui

′
r′ , ar′)| − `y1 . For a

vertex pair {x, y1} that is not resolved by f(sji , ar), dist(f(sji , ar), x) = dist(f(sji , ar), y1) =
dist(f(πhi , ar), y1) < dist(f(πhi , ar), x). Thus in this case, every pair {x, y1} is resolved by
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f(sji , ar) or f(πhi , ar). Case 2: r′ 6= r. dist(f(sji , ar), y1) = dist(f(πhi , ar), y1) + 2 = 2 +
|P (πhi , ar)| + |P (πhi , ar′)| + |P (ui

′
r′ , ar′)| − `y1 . For a vertex pair {x, y1} that is not resolved

by f(sji , ar), dist(f(πhi , ar), x) > dist(f(sji , ar), x) = dist(f(sji , ar), y1) > dist(f(πhi , ar), y1).
Thus in this case, every pair {x, y1} is resolved by f(sji , ar) or f(πhi , ar). Similarly, every
pair {x, y2} is resolved by f(sji , ar) or f(πhi , ar). For a vertex pair {x, z1}, there are two cas-
es. Case 1: r′ = r. dist(f(sji , ar), z1) = dist(f(πhi , ar), z1) = min (2 + |P (ui

′
r′ , ar′)| + `z1 , 2 +

|P (unr′ , ar′)| + |P (unr′ , br′)| + |P (ui
′
r′ , br′)| − `z1). For a vertex pair {x, z1} that is not resolved

by f(sji , ar), dist(f(sji , ar), x) = dist(f(sji , ar), z1) = dist(f(πhi , ar), z1) < dist(f(πhi , ar), x).
Thus in this case, every pair {x, z1} is resolved by f(sji , ar) or f(πhi , ar). Case 2: r′ 6=
r. dist(f(πhi , ar), br′) = minα∈[m](2 + |P (sαi , ar)| + |P (sαi , br′)|). Then dist(f(πhi , ar), z1) =

min (|P (πhi , ar)| + |P (πhi , ar′)| + |P (ui
′
r′ , ar′)| + `z1 , dist(f(πhi , ar), br′) + |P (ui

′
r′ , br′)| − `z1) >

30(n + 1) > dist(f(πhi , ar), x). Thus in this case, every pair {x, z1} is resolved by f(πhi , ar).
Similarly, every pair {x, z2} is resolved by f(sji , ar) or f(πhi , ar). For a vertex pair {x,w1},
there are two cases. Case 1: r′ = r. dist(f(sji , ar), w1) = min (2 + |P (ui

′
r , ar′)| − 2 + `w1 , 2 +

|P (πhi , ar)|+ |P (πhi , cr)|+ |P (ui
′
r , cr)|−`w1) if `w1 ≥ 2. dist(f(sji , ar), w1) = 2+ |P (ui

′
r , ar′)|+`w1

if `w1 < 2. dist(f(πhi , ar), w1) = min (2 + |P (ui
′
r , ar′)| − 2 + `w1 , |P (πhi , ar)| + |P (πhi , cr)| +

|P (ui
′
r , cr)| − `w1) if `w1 ≥ 2. dist(f(πhi , ar), w1) = 2 + |P (ui

′
r , ar′)| + `w1 if `w1 < 2. It

follows that dist(f(sji , ar), w1) ≥ dist(f(πhi , ar), w1). For a pair {x,w1} that is not resolved
by f(sji , ar), dist(f(πhi , ar), x) > dist(f(sji , ar), x) = dist(f(sji , ar), w1) ≥ dist(f(πhi , ar), w1).
Thus in this case, every pair {x,w1} is resolved by f(sji , ar) or f(πhi , ar). Case 2: r′ 6= r.
dist(f(sji , ar), w1) = min (2 + |P (πhi , ar)|+ |P (πhi , ar′)|+ |P (ui

′
r′ , ar′)| − 2 + `w1 , 2 + |P (πhi , ar)|+

|P (πhi , cr′)|+ |P (ui
′
r′ , cr′)| − `w1) if `w1 ≥ 2. dist(f(sji , ar), w1) = 2 + |P (πhi , ar)|+ |P (πhi , ar′)|+

|P (ui
′
r′ , ar′)|+`w1 if `w1 < 2. dist(f(πhi , ar), w1) = min (|P (πhi , ar)|+ |P (πhi , ar′)|+ |P (ui

′
r′ , ar′)|+

`w1−2, |P (πhi , ar)|+|P (πhi , cr′)|+|P (ui
′
r′ , cr′)|−`w1) if `w1 ≥ 2. dist(f(πhi , ar), w1) = |P (πhi , ar)|+

|P (πhi , ar′)|+|P (ui
′
r′ , ar′)|+`w1 if `w1 < 2. It follows that dist(f(sji , ar), w1) > dist(f(πhi , ar), w1).

For a pair {x,w1} that is not resolved by f(sji , ar), dist(f(πhi , ar), x) > dist(f(sji , ar), x) =

dist(f(sji , ar), w1) > dist(f(πhi , ar), w1). Thus in this case, every pair {x,w1} is resolved by
f(sji , ar) or f(πhi , ar). Similarly, every pair {x,w2} is resolved by f(sji , ar) or f(πhi , ar).

Then we show that every pair {x, y} ∈ P (sji , cr) × (P (ui
′
r′ , ar′) ∪ P (vi

′
r′ , ar′) ∪ P (ui

′
r′ , br′) ∪

P (vi
′
r′ , br′) ∪ P (ui

′
r′ , cr′) ∪ P (vi

′
r′ , cr′)) for i, i′ ∈ [n], j ∈ [m] and r, r′ ∈ {1, 2, 3} is resolved

by S′. We fix arbitrary integers i, i′ ∈ [n], h ∈ {1, 2}, j ∈ [m] and r, r′ ∈ {1, 2, 3}. Sup-
pose that x ∈ P (sji , cr), y1 ∈ P (ui

′
r′ , ar′), y2 ∈ P (vi

′
r′ , ar′), z1 ∈ P (ui

′
r′ , br′), z2 ∈ P (vi

′
r′ , br′),

w1 ∈ P (ui
′
r′ , cr′), w2 ∈ P (vi

′
r′ , cr′). We define `x, `y1 , `y2 , `z1 , `z2 , `w1 and `w2 in a similar way

to that of `x, `y1 in the first paragraph. Then dist(f(sji , cr), x) = dist(f(πhi , cr), x) − 2 = `x
if x 6= cr and dist(f(sji , cr), cr) = dist(f(πhi , cr), cr) = 2. For a pair {x, y1}, there are two
cases. Case 1: r′ = r. dist(f(sji , cr), y1) = min (2 + |P (ui

′
r , cr′)| − 2 + `y1 , 2 + |P (πhi , cr)| +

|P (πhi , ar)| + |P (ui
′
r , ar)| − `y1) if `y1 ≥ 2. dist(f(sji , cr), y1) = 2 + |P (ui

′
r , cr′)| + `y1 if `y1 < 2.

dist(f(πhi , cr), y1) = min (2 + |P (ui
′
r , cr′)|−2 + `y1 , |P (πhi , cr)|+ |P (πhi , ar)|+ |P (ui

′
r , ar)|− `y1) if

`y1 ≥ 2. dist(f(πhi , cr), y1) = 2 + |P (ui
′
r , cr′)|+ `y1 if `y1 < 2. It follows that dist(f(sji , cr), y1) ≥

dist(f(πhi , cr), y1). For a pair {x, y1} that is not resolved by f(sji , cr), dist(f(πhi , cr), x) >

dist(f(sji , cr), x) = dist(f(sji , cr), y1) ≥ dist(f(πhi , cr), y1). Thus in this case, every pair {x, y1} is
resolved by f(sji , cr) or f(πhi , cr). Case 2: r

′ 6= r. dist(f(sji , cr), y1) = dist(f(πhi , cr), y1)+2 = 2+

|P (πhi , cr)|+|P (πhi , ar′)|+|P (ui
′
r′ , ar′)|−`y1 . It follows that dist(f(sji , cr), y1) > dist(f(πhi , cr), y1).

For a pair {x, y1} that is not resolved by f(sji , cr), dist(f(πhi , cr), x) > dist(f(sji , cr), x) =

dist(f(sji , cr), y1) > dist(f(πhi , cr), y1). Thus in this case, every pair {x, y1} is resolved by
f(sji , cr) or f(πhi , cr). Similarly, every pair {x, y2} is resolved by f(sji , cr) or f(πhi , cr). For
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a pair {x, z1}, there are two cases. Case 1: r′ = r. Let sj
∗

i be a vertex which resolves the
pair {unr , vnr }. Then |P (sj

∗

i , cr)| + |P (sj
∗

i , br)| = 40(n + 1) − 5n + 1. dist(f(πhi , cr), br) =

2 + |P (sj
∗

i , cr)|+ |P (sj
∗

i , br)| = 40(n+ 1)− 5n+ 3. dist(f(πhi , cr), z1) = min (2 + |P (ui
′
r , cr′)|+

`z1 , dist(f(πhi , cr), br) + |P (ui
′
r , br)| − `z1) > 20(n + 1) > dist(f(πhi , cr), x). Thus in this case,

every pair {x, z1} is resolved by f(πhi , cr). Case 2: r′ 6= r. dist(f(πhi , cr), br′) = minα∈[m](2 +

|P (sαi , cr)|+|P (sαi , br′)|). Then dist(f(πhi , cr), z1) = min (|P (πhi , cr)|+|P (πhi , ar′)|+|P (ui
′
r′ , ar′)|+

`z1 , dist(f(πhi , cr), br′) + |P (ui
′
r′ , br′)| − `z1) > 20(n + 1) > dist(f(πhi , cr), x). Thus in this

case, every pair {x, z1} is resolved by f(πhi , cr). Similarly, every pair {x, z2} is resolved by
f(πhi , cr). For a pair {x,w1}, there are two cases. Case 1: r′ = r. dist(f(sji , cr), w1) =
dist(f(πhi , cr), w1) = 2 + |P (ui

′
r′ , cr′)| − `w1 . For a vertex pair {x,w1} that is not resolved

by f(sji , cr), dist(f(sji , cr), x) = dist(f(sji , cr), w1) = dist(f(πhi , cr), w1) < dist(f(πhi , cr), x).
Thus in this case, every pair {x,w1} is resolved by f(sji , cr) or f(πhi , cr). Case 2: r′ 6= r.
dist(f(πhi , cr), w1) = min (|P (πhi , cr)|+|P (πhi , cr′)|+|P (ui

′
r′ , cr′)|−`w1 , |P (πhi , cr)|+|P (πhi , ar′)|+

|P (ui
′
r′ , ar′)|+`w1−2) if `w1 ≥ 2. dist(f(πhi , cr), w1) = |P (πhi , cr)|+|P (πhi , ar′)|+|P (ui

′
r′ , ar′)|+`w1

if `w1 < 2. Thus dist(f(πhi , cr), w1) ≥ 20(n+1) > dist(f(πhi , cr), x). Similarly, every pair {x,w2}
is resolved by f(sji , cr) or f(πhi , cr).

Finally we show that every pair {x, y} ∈ P (sji , br) × (P (ui
′
r′ , ar′) ∪ P (vi

′
r′ , ar′) ∪ P (ui

′
r′ , br′) ∪

P (vi
′
r′ , br′) ∪ P (ui

′
r′ , cr′) ∪ P (vi

′
r′ , cr′)) for i, i′ ∈ [n], j ∈ [m] and r, r′ ∈ {1, 2, 3} is resolved

by S′. We fix arbitrary integers i, i′ ∈ [n], h ∈ {1, 2}, j ∈ [m] and r, r′ ∈ {1, 2, 3}. Sup-
pose that x ∈ P (sji , br), y1 ∈ P (ui

′
r′ , ar′), y2 ∈ P (vi

′
r′ , ar′), z1 ∈ P (ui

′
r′ , br′), z2 ∈ P (vi

′
r′ , br′),

w1 ∈ P (ui
′
r′ , cr′), w2 ∈ P (vi

′
r′ , cr′). We define `x, `y1 , `y2 , `z1 , `z2 , `w1 and `w2 in a similar way to

that of `x, `y1 in the first paragraph. For a pair {x, y1}, there are two cases. Case 1: r = r′.
dist(f(πhi , ar), x) = min (2 + |P (sji , ar)| + |P (sji , br)| − `x, 2 + |P (ar, u

n
r )| + |P (br, u

n
r )| + `x) >

20(n + 1). dist(f(πhi , ar), y1) = |P (ar, u
i′
r )| − `y1 < 20(n + 1). Thus in this case, every

pair {x, y1} is resolved by f(πhi , ar). Similarly, every pair {x, y2} is resolved by f(πhi , ar).
Case 2: r 6= r′. dist(f1(ui′r′ , v

i′
r′), y1) = 1 + `y1 if y1 6= ui

′
r′ and dist(f1(ui′r′ , v

i′
r′), u

i′
r′) = 2.

dist(f1(ui′r′ , v
i′
r′), x) = min (dist(f1(ui′r′ , v

i′
r′), s

j
i ) + |P (sji , br)| − `x, dist(f1(ui

′
r′ , v

i′
r′), br) + `x) >

20(n+ 1) > dist(f1(ui′r′ , v
i′
r′), y1). Thus in this case, every pair {x, y1} is resolved by f1(ui′r′ , v

i′
r′).

Similarly, every pair {x, y2} is resolved by f1(ui′r′ , v
i′
r′). For a pair {x, z1}, there are two cases.

Suppose that P (sji , br) = 20(n+1)+5λ+1 for some λ ∈ [n]. Case 1: r = r′. dist(fmid(i, j, h), x) =

|P h(i, j, p3−hi )|/2+2+ |P (sji , br)|− `x = 30(n+1)+5λ+3− `x. dist(fmid(i, j, h), z1) = min (2+

|P h(i, j, p3−hi )|/2+ |P (sji , br)|+ |P (br, u
i′
r )|−`z1 , 1+ |P h(i, j, p3−hi )|/2+ |P (πhi , ar)|+ |P (ar, u

i′
r )|+

`z1) = min (50(n + 1) + 5λ + 2 − 5i′ − `z1 , 40(n + 1) + 1 − 10i′ + `z1). dist(fecc(i, j, h, r), x) =
|P h(i, j, ar)|/2+1+ |P (sji , br)|− `x = dist(fmid(i, j, h), x)−1. dist(fecc(i, j, h, r), z1) = min (1+

|P h(i, j, ar)|/2+|P (sji , br)|+|P (br, u
i′
r )|−`z1 , 2+|P h(i, j, ar)|/2+|P (πhi , ar)|+|P (ar, u

i′
r )|+`z1) =

min (50(n+ 1) + 5λ+ 1− 5i′ − `z1 , 40(n+ 1) + 2− 10i′ + `z1). For a vertex pair {x, z1} that is
not resolved by fmid(i, j, h), dist(fmid(i, j, h), x) = dist(fmid(i, j, h), z1) = 1+|P h(i, j, p3−hi )|/2+
|P (πhi , ar)|+|P (ar, u

i′
r )|+`z1 > dist(fecc(i, j, h, r), x). If dist(fecc(i, j, h, r), z1) = 1+|P h(i, j, ar)|/2

+ |P (sji , br)|+ |P (br, u
i′
r )| − `z1 , then obviously fecc(i, j, h, r) resolves this pair. Otherwise,

dist(fecc(i, j, h, r), z1) = 40(n+1)+2−10i′+`z1 > dist(fmid(i, j, h), z1) > dist(fecc(i, j, h, r), x).
It follows that every pair {x, z1} is resolved by fmid(i, j, h) or fecc(i, j, h, r). Similarly, every
pair {x, z2} is resolved by fmid(i, j, h) or fecc(i, j, h, r). Case 2: r 6= r′. dist(f1(ui′r′ , v

i′
r′), z1) =

2 + `z1 < 20(n+ 1). dist(f1(ui′r′ , v
i′
r′), x) = min (dist(f1(ui′r′ , v

i′
r′), s

j
i ) + |P (sji , br)| − `x,

dist(f1(ui′r′ , v
i′
r′), br) + `x) > 20(n + 1) > dist(f1(ui′r′ , v

i′
r′), z1). Thus in this case, every pair

{x, z1} is resolved by f1(ui′r′ , v
i′
r′). Similarly, every pair {x, z2} is resolved by f1(ui′r′ , v

i′
r′). For a

pair {x,w1}, there are two cases. Case 1: r = r′. dist(f(πhi , cr), br) = minα∈[m](2 + |P (sαi , cr)|+
|P (sαi , br)|) = 3+40(n+1)−5n > 30(n+1). dist(f(πhi , cr), x) = min (2+|P (sji , cr)|+|P (sji , br)|−
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`x, dist(f(πhi , cr), br)+`x). dist(f(sji , cr), x) = min (|P (sji , cr)|+|P (sji , br)|−`x, dist(f(πhi , cr), br)+

`x). dist(f(πhi , cr), w1) = dist(f(sji , cr), w1) = 2 + |P (cr, u
i′
r′)| − `w1 = 2 + 20(n + 1) + 10i′ −

`w1 < 30(n + 1). For a pair {x,w1} that is not resolved by f(πhi , cr), dist(f(πhi , cr), x) =

dist(f(πhi , cr), w1) = 2 + |P (sji , cr)| + |P (sji , br)| − `x = dist(f(sji , cr), w1) > dist(f(sji , cr), x) =

|P (sji , cr)| + |P (sji , br)| − `x. Thus in this case, every pair {x,w1} is resolved by f(πhi , cr) or
f(sji , cr). Case 2: r 6= r′. dist(f1(ui′r′ , v

i′
r′), w1) = 1+`w1 if w1 6= ui

′
r′ and dist(f1(ui′r′ , v

i′
r′), u

i′
r′) = 2.

dist(f1(ui′r′ , v
i′
r′), x) = min (dist(f1(ui′r′ , v

i′
r′), s

j
i ) + |P (sji , br)| − `x, dist(f1(ui

′
r′ , v

i′
r′), br) + `x) >

30(n+1) > dist(f1(ui′r′ , v
i′
r′), w1). Thus in this case, every pair {x,w1} is resolved by f1(ui′r′ , v

i′
r′).

Similarly, every pair {x,w2} is resolved by f1(ui′r′ , v
i′
r′). This completes the proof for the lem-

ma.

Lemma 72. For any vertex vf ∈ F , every vertex pair {x, y} ∈ {vf} × V (G′) \ {vf} is resolved
by S′.

Proof. Without loss of generality, suppose that v1, v2, vc ∈ F 1(uir, v
i
r) for some r ∈ {1, 2, 3}, i ∈

[n], where vc is the connecting vertex of F 1(uir, v
i
r), v1, v2 are the false twins and v1 ∈ S′.

Then obviously every vertex pair of {v1} × V (G′) \ {v1} is resolved by v1. Every vertex pair
of {v2} × V (G′) \ {v2} is resolved v1 except the vertex pair {v2, vc}. Let wf be an arbitrary
vertex of S′ \ F 1(uir, v

i
r). Then there is a shortest path from wf to v2 going through vc. Thus

dist(wf , v2) = dist(wf , vc) + 1 and {v2, vc} is resolved by wf . For any vertex u ∈ V (G′) \
F 1(uir, v

i
r), dist(v1, u) > dist(v1, vc) = 1. Then the correctness of the lemma follows.

With Lemmas 51- 72, we show that every pair of distinct vertices of G′ is resolved by some
vertex of S′. It follows that Lemma 50 is true and this proves the completeness of the reduction.

Finally, with Lemmas 44, 48, 50 and 49 in hand, we can prove the correctness of Theorem 8.
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