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Abstract

In this dissertation, we present decision bireducts, an extension of decision reducts in the theory
of rough sets, the emphasis of which is on both a subset of attributes which describes decisions and a
subset of objects for which that description is valid. We investigate their relationship with approximate
decision reducts which were developed to handle large and noisy data. Additionally, we demonstrate
how decision bireducts can be used as rule-based classifiers that provide greater flexibility in assigning
decision values to objects when compared to approximate decision reducts. Moreover, we present
theoretical results on the properties of decision bireducts as well as algorithms for their effective
computation. Furthermore, we show that obtaining optimal bireducts with respect to given criteria is
an NP-hard task.

In the dissertation we also investigate an important aspect of creating ensembles of decision
bireducts. Ensembles of classifiers based on different approximate decision reducts can repeatedly
misclassify the same data instances. In contrast, decision bireducts provide flexibility in selecting
objects whose decision values are accurately described by the given set of attributes. This flexibility
enables us to verify and potentially influence the creation of the ensemble, that assures avoidance of
repeating errors on the same areas of the training data.

One of the aspects of interpretability in machine learning, which is often required in practical
applications, is the ability to report the importance of particular attributes used in the prepared
models. Therefore we present decision bireducts ensembles ability to provide feature importance
scores. Moreover, to further increase the usefulness of such results, we introduce an approach to the
evaluation of attribute scores produced by any machine learning method.

The results presented in the dissertation are supported by examples, while the practical usefulness
of decision bireducts is demonstrated by the results of prepared experiments on both benchmark
and real-world data. We also comprehensively present a case study demonstrating the application of
decision bireducts ensembles to a decision problem encountered while developing a solution for an HR
company specializing in the recruitment of IT professionals.
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Streszczenie

W niniejszej rozprawie przedstawiamy pojęcie bireduktów decyzyjnych, które są rozszerzeniem
reduktów decyzyjnych z teorii zbiorów przybliżonych, gdzie nacisk położony jest zarówno na podzbiór
atrybutów opisujących decyzje jak i podzbiór obiektów, dla których ten opis jest prawidłowy. Badamy
związek bireduktów decyzyjnych z przybliżonymi reduktami decyzyjnymi, które zostały opracowane
na potrzeby przetwarzania dużych i zaszumionych danych. Pokazujemy, jak biredukty decyzyjne
mogą być użyte jako klasyfikatory regułowe, które zapewniają większą elastyczność w przypisywaniu
wartości decyzyjnych obiektom w porównaniu do metod bazujących na reduktach przybliżonych.
Przedstawiamy teoretyczne wyniki dotyczące własności bireduktów decyzyjnych, jak również algorytmy
służące ich efektywnemu obliczaniu. W szczególności pokazujemy, że zadanie szukania optymalnych
bireduktów przy zadanych kryteriach jest zadaniem NP-trudnym.

W rozprawie omawiamy także kwestię tworzenia zespołów klasyfikatorów wykorzystujących bire-
dukty decyzyjne. Przybliżone redukty decyzyjne wykorzystywane w zespole klasyfikatorów wspólnie
mogą błędnie klasyfikować pewne obiekty. Tymczasem, dzięki elastyczności bireduktów decyzyjnych
w kontekście wyboru obiektów, których wartości decyzyjne są prawidłowo opisywane przez dany
zbiór atrybutów, w trakcie tworzenia zespołu klasyfikatorów możemy unikać powtarzania błędów
popełnianych przez poszczególne klasyfikatory na tych samych obszarach danych treningowych.

Zespoły bireduktów decyzyjnych należy traktować jako zespoły klasyfikatorów interpretowalnych,
gdzie każdy biredukt utożsamia się ze zbiorem prostych reguł decyzyjnych wyznaczanych przez dany
podzbiór atrybutów. Jednym z istotnych aspektów interpretowalności w uczeniu maszynowym, który
jest obecnie często wymagany w praktycznych zastosowaniach, jest także możliwość określenia istot-
ności poszczególnych atrybutów wykorzystanych w przygotowywanych modelach. W związku z tym,
w rozprawie pokazujemy jak określić istotność atrybutów wykorzystywanych przez zespoły bireduk-
tów decyzyjnych. Ponadto, wprowadzamy nowe podejście do oceny i porównywania metod pomiaru
istotności atrybutów bazujących na dowolnych metodach uczenia maszynowego.

Dla rezultatów przedstawionych w rozprawie prezentujemy intuicyjne przykłady, a praktyczną
użyteczność bireduktów decyzyjnych pokazujemy w oparciu o wyniki eksperymentów przygotowanych
na danych referencyjnych, jak i danych rzeczywistych związanych z praktycznymi zastosowaniami.
Pokazujemy również kompleksowo studium przypadku, w którym zastosowane zostały zespoły bire-
duktów decyzyjnych do rozwiązania problemu decyzyjnego napotkanego podczas realizacji projektu
dla firmy HR specjalizującej się w rekrutacji ekspertów IT.
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Chapter 1

Introduction

The notion of decision bireducts is the key concept of this dissertation. It is a new extension
of the notion of decision reducts from the theory of rough sets proposed in [140] and further developed
in [117, 118, 119, 142, 59]. The notion is developed in order to provide a simple and interpretable con-
cept of data reduction that is in many ways more flexible and general than its classical counterparts.
The goal of this dissertation is to present the entirety of the results on this topic in a coherent and
clear way.

Nevertheless, we should start by showing the context from which decision bireducts originate.
The rough set theory, which is the extension of the classical set theory, is suitable for describing con-
cepts in presence of incomplete information [91]. The indiscernibility relation, which is an equivalence
relation, is the fundamental concept of this theory, using which one can group objects that cannot
be distinguished from each other based on a given subset of attributes. The relation partitions the
universe of objects into equivalence classes which can be used to handle imperfect knowledge about
objects and concepts using the notions of lower and upper approximations. In the theory the notion
of decision reducts is regarded as one of the fundamental concepts, and it is defined as a subset of at-
tributes that preserves the characteristic of the indiscernibility relation as it is available with respect
to the full set of attributes [95]. The notions analogous to decision reducts occur in many areas of
science, such as Markov blankets in probabilistic modeling or irreducible multi-valued dependencies
in relational databases [137]. Decision reducts have a range of applications in different domains includ-
ing attribute selection and knowledge discovery [20]. There is also a number of thorough theoretical
investigations [82] and software implementations allowing to better understand and apply decision
reducts in practice [53].

The concept of decision reduct is fundamental to the rough set theory and its applications. However,
in practical applications the data sets often involve large and noisy data. To address such challenges,
several generalizations of the notion of decision reducts have been proposed; among them the notions
of dynamic reducts [4] and approximate decision reducts [131] are a few to name.

An approximate decision reduct can be defined as an irreducible subset of attributes that, under
specified criterion, retains the decision-related information of a data table intact above a specified
threshold. For example, such a function can reflect a chance that a classifier, constructed using
a selected subset of attributes, does not misclassify considered objects. It is further expected that values
of such functions do not increase for smaller subsets of attributes, as classifiers based on less information
have limited possibilities to distinguish between objects supporting different decision classes. Using
such an approach, one can obtain subsets of attributes that are moderately less accurate than standard
decision reducts but could be preferred in real-world applications as they are usually more robust and
contain less number of attributes [93].

In [140], it was discussed that ensembles of classifiers based on different approximate decision
reducts can repeatedly misclassify the same data instances. This is because the above functions
evaluate the subsets of attributes by means of an overall summary of the data - without focusing on
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8 CHAPTER 1. INTRODUCTION

the particular objects. To address this issue, one might think about combining a process of searching for
ensembles of approximate decision reducts with popular machine learning techniques, such as boosting
or bagging [28].

Alternatively, the notion of decision bireduct is proposed as a new extension of the concept
of decision reduct having the focus on both the subset of attributes, which describes decisions,
as well as the subset of objects, for which that description is valid. A decision bireduct is repre-
sented as a pair, where a subset of attributes can be evaluated by means of a subset of objects for
which it assures good classification. A subset of objects provides far more explicit information about
the corresponding subset of attributes and its abilities to construct a good classifier than any evalua-
tion function. In particular, information about objects, for which decision values are validly described,
allows to verify whether the classifiers designed using different selected subsets of attributes do not re-
peat mistakes on the same areas of the training data. Decision bireducts serve as a connection between
several different views concerning the goals of knowledge discovery. Ensembles of information bireducts
were studied in [140] as a counterpart to the notion of concepts studied in the formal concept analysis
and item sets studied in the literature related to association rule mining. A concept in the formal
concept analysis is defined as a non-extendable subset of objects that behaves in the same way with
respect to a non-extendable subset of attributes [35], and consequently, concepts correspond to the
most regular areas of the data. Similarly, the item sets aim at describing a maximum number of
objects with the same values on a maximum number of attributes [87]. Contrary to that, information
bireducts correspond to non-extendable subsets of objects that can be said to be different using irre-
ducible subsets of attributes, thus, indicating the most diverse and, consequently, the most informative
segments of the data. In the dissertation, we aim at drawing analogies between decision bireducts and
other methods of representing dependencies in data. We compare decision bireducts with standard
and approximate decision reducts. We show correspondences between those notions and provide in-
terpretations, which work as a basis for algorithmic solutions to the problem of extracting the most
interesting as well as feasible decision bireducts from a given data. We pay special attention to the
interpretation of considered types of decision reducts and decision bireducts in terms of collections of
decision rules which are able to neglect potentially noisy instances and, therefore, are more likely to
remain robust when classifying new data.

In the dissertation, we focus on ensembles of classifiers, specifically exploring the cooperative ca-
pabilities of ensembles of decision bireducts in solving classification tasks. In general, there is a range
of approaches based on ensembles of classifiers in the areas of knowledge discovery and data classifi-
cation [28, 100]. Utilizing ensembles, we can count on the stability and robustness of the collective
model. Furthermore, it is expected that each component of an ensemble can be simpler than a single,
not ensemble-based decision model providing a similar level of accuracy. However, ensembles of mod-
els present inherent complexity, often making it difficult to establish effective cooperation among the
ensembles’ components. Moreover, a lot of computing power is needed to derive them from the data.

When it comes to methods for learning ensembles of classifiers, there are certain commonly accepted
goals. Each single classifier is expected to make mistakes, but for each training case, a majority of
models in the ensemble should be correct. Complementarity and diversification of components are
another very desirable feature for ensembles of classifiers. In case of rough-set-inspired approaches to
knowledge discovery, this refers to computation of diverse decision reducts. If we want to extend this
idea in the context of diversification of objects which are classified correctly/wrongly by particular
models, we can rely on the notion of ensembles of decision bireducts.

The rough set literature is a good reference point for considering formal optimization problems
related to construction of decision models. Starting from fundamental results on NP-hardness of the
problem of finding minimal decision reduct, a lot of attention is paid to develop mathematical and
algorithmic methods for operating with the simplest yet sufficiently accurate classifiers [95, 96]. In
the dissertation we want to extend these results with respect to ensembles. In particular, we propose
how to define the optimization problem related to searching for the simplest possible ensembles of
decision models that meet specific accuracy constraints. We are aware that there are numerous ways
to express constraints related to various aspects of an ensemble, including both the constraints of
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the ensemble as a whole and those regarding its individual components. Similarly, there are multiple
ways of understanding the simplicity of an ensemble. Nevertheless, we believe that the introduced
formulation, which focuses on collections of decision bireducts that include the minimal amounts of
attributes (i.e., the optimization goal) and at the same time appropriately cover all considered objects
using the corresponding decision rules (i.e., the accuracy constraint), can be a good starting point for
further investigations.

In contemporary machine learning applications, there is often a requirement to provide interpretable
decision models [32]. One aspect of interpretability involves the utilization of attributes that are
understandable by subject matter experts, and connecting those attributes in a comprehensible manner.
Consequently, reporting the importance of attributes used in a model often becomes an essential
aspect of interpretability. In some practical applications the ranking of attributes based on their
importance may become sometimes even more useful than the associated decision models themselves.
Therefore, by studying the classification capabilities of decision bireduct ensembles, we also strive for
their interpretability by designing a procedure to assess the attributes used by the ensembles. To
enhance the usefulness of such results even further, we also introduce an approach for evaluating the
importance scores of attributes generated by any machine learning method.

To validate our methods, both related to classification and interpretability, we used an experimental
approach on synthetic and benchmark data sets. Finally, we provide a comprehensive case study that
illustrates the practical application of decision bireducts ensembles. The case study pertains to a
decision problem encountered during the development of a solution for an HR company specializing in
the recruitment of IT experts.

1.1 Plan of the Dissertation
The dissertation is divided into eight chapters with supplement materials included in the appendices.
This introductory chapter provides an outline of the considered problem, presents the main contribu-
tions and aims to help the readers with navigation through the chapters. It also presents literature
review of related works.

Chapter 2 introduces the general notions used in subsequent chapters of the dissertation and
presents some basic relevant details about them. In Section 2.1, we present the standard notion of
decision tables that will be used throughout the dissertation to represent tabular data. In Section 2.2,
we define the fundamental concepts of classification task and classification model. Moreover, we briefly
review a selected part of the state-of-the-art and classical models that will serve as reference points
for the methods presented in the dissertation. In Section 2.3, we discuss the notion of performance of
classifiers, and we recall some of commonly used metrics. Furthermore, we discuss different validation
techniques for assessing classification models.

Chapter 3 aims to provide an introduction to the fundamental concepts of rough set theory. In Sec-
tion 3.1, we introduce basic concepts and fundamental building block of rough sets. In Section 3.2,
classical decision reducts with several variants are recalled. We present the correspondence between
decision reducts and decision rules and show how the task of searching decision reducts can be ex-
pressed in terms of Boolean formulae and prime implicants. In Section 3.3, we introduce approximate
decision reducts.

Chapter 4 presents the notion of decision bireducts and their variants, along with ensembles of
decision bireducts and their properties. In Section 4.1, we introduce decision bireducts, discuss their
main properties, and outline their utilization as rule-based classifiers. In Section 4.2, we introduce
a variant of decision bireducts called γ-decision bireducts, which are associated with the concept
of the positive region in rough set theory. We discuss the properties of γ-decision bireducts and
present intuitive insights into their relationship with standard decision bireducts. In Section 4.3, we
explore the classical rough set approach that involves defining a propositional formula, referred to as
the “discernibility function”. This formula represents the necessary conditions that must be satisfied
for all pairs of discernible objects. Consequently, the collection of decision reducts corresponds to
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the set of all prime implicants of the discernibility function. In the referenced section, we adapt
this general technique to develop suitable Boolean formulae that capture the essential constraints
associated with decision bireducts and γ-decision bireducts. Furthermore, we demonstrate how various
attribute reduction heuristics can be directly applied to the task of searching for decision bireducts,
following an appropriate transformation of the input data. In Section 4.4, we discuss optimization
criteria for decision bireducts. Additionally, we introduce the notions of decision ε-bireducts and
γ-decision ε-bireducts, which impose constraints on the proportion of covered objects. Furthermore,
we demonstrate the NP-hardness of the optimization problem of finding a minimal decision ε-bireduct.
In Section 4.5, we delve into the concept of ensembles of decision bireducts, examining their properties,
and providing illustrative examples. We also introduce the notion of a correct ensemble, which requires
that each training object is correctly recognized by more than half of the classifiers in the ensemble.
In Section 4.6, the concept of “simplicity” for ensembles of decision bireducts is discussed. Furthermore,
the NP-hardness of the optimization problem is presented when it comes to finding the simplest correct
ensemble of decision bireducts.

Chapter 5 shows a practical look at algorithms and heuristics for computing decision bireducts.
In Sections 5.1, 5.2 and 5.3, several algorithms for computing decision bireducts and γ-decision
bireducts are presented. In Section 5.4, the first experiments related to ensembles of decision bireducts
on benchmark data sets from the UCI repository are presented. In Section 5.5, we introduce a special
case of the notion of decision bireducts in the domain of data streams and investigate its utilization,
focusing on scenarios where the complete data set is not available during the computation process.
Instead, we consider situations where events are processed incrementally, with each event arriving one
at a time. In Section 5.6, we present the ideas and assumptions of a software library that is released
as a result of our research. In Section 5.7, we discuss a general solution implemented within our li-
brary that enables a structural way of defining algorithms, e.g., those related to computing decision
bireducts.

Chapter 6 comprehensively presents a case study demonstrating the application of decision bireducts
ensembles to a decision problem encountered while developing a solution for an HR company special-
izing in the recruitment of IT professionals.

Chapter 7 focuses on presenting the ability to provide feature importance scores by ensembles of
decision reducts and decision bireducts. In Section 7.1, we introduce methods for generating feature
importance scores using ensembles of approximate decision reducts. These importance scores are
then utilized in an experimental assessment, where they serve as input for feature selection and are
evaluated on both synthetic and microarray data sets. In Section 7.2, we introduce an approach
to evaluate attribute scores produced by any machine learning method and utilize it to compare
the attribute importance scores provided by ensembles of decision bireducts against the importance
scorings provided by XGBoost and correlation-based reference model.

Chapter 8 concludes the dissertation. Section 8.1 presents a summary of the overall content of the
dissertation and Section 8.2 lists a few directions for future research.

Supplementary materials consist of two types of resources. Appendix A includes comparisons and
detailed feature importance profiling views for the data sets and algorithms used in the dissertation
and Appendix B provides some examples of using the developed software library, given in a form of
Jupyter Notebooks.
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1.2 Main Contributions
Contributions made with regard to the notion of decision bireducts:

• Definition and Formalization: We defined decision bireduct as well as other variants, e.g., decision
ε-bireducts; or γ-decision bireducts related to the concept of positive region in the rough set
theory.

• Characterization and Properties: In the classical rough set approach, a propositional formula
called the “discernibility function” [115, 95] is formulated to represent the necessary conditions
that need to be satisfied for all pairs of discernible objects. As a result, the collection of decision
reducts corresponds to the set of all prime implicants of the discernibility function. We adapted
this general approach to develop suitable Boolean formulae that capture the essential constraints
related to decision bireducts and γ-decision bireducts.

• Evaluation and Comparison: We explored the connections between decision bireducts and clas-
sical constructs, namely decision reducts and approximate decision reducts.

• Computational Complexity: We demonstrated the NP-hardness of the optimization problem
of finding a minimal decision ε-bireduct.

• Algorithmic Approaches: We introduced a number of algorithms and heuristics that are designed
to efficiently search for decision bireducts and their variants.

• Generalizations and Extensions: We introduced a special case of the notion of decision bireducts
in the domain of data streams and investigated the utilization of it, focusing on such situa-
tions where the complete data set is not available during the process of computation. Instead,
we considered scenarios where events are processed incrementally, arriving one at a time.

Contributions made with regard to ensembles of decision bireducts:

• Definition and Formalization: We explored the concept of ensembles of decision bireducts and
examined their properties and characteristics.

• Computational Complexity: We demonstrated the NP-hardness of the optimization problem of
finding the simplest correct ensemble of decision bireducts. The concept of “simplicity” was
defined analogous to the approach presented in the study on generalized decision reducts [137],
where simplicity was determined based on the maximum cardinality among all subsets of at-
tributes involved.

• Evaluation and Comparison: We performed experiments on synthetic and benchmark data sets.

• Real-world Applications: We comprehensively present a case study demonstrating the application
of ensembles of decision bireducts to a decision problem encountered while developing a solution
for an HR company specializing in the recruitment of IT professionals.

• Interpretability: To enhance the interpretability of the model, we presented a method for assess-
ing the attributes employed in decision bireduct ensembles.

General contributions:

• Evaluation and Comparison: We proposed a general procedure for evaluating attribute impor-
tance methods.

• Implementation: A Python software library scikit-rough (https://github.com/sebov/scikit-rough),
hosted on GitHub platform, is released as a result of our research.

https://github.com/sebov/scikit-rough
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1.3 Related Work
The notion of decision bireducts, which is the main subject of this dissertation, is a relatively new
concept; however, we can already observe that it is gaining interest in various fields of research. In
[47] the authors applied bireducts in intuitionistic fuzzy framework that can be used for simultane-
ous reduction of instances and features and experimentally evaluated the approach in the challenging
domain of cancer treatment. In [89, 27, 90] the notion of fuzzy-rough bireducts was introduced for si-
multaneous reduction of data size and dimensionality. The authors examined the usability of bireducts
in data preprocessing stages and their performance as compact and robust classifiers. They developed
a heuristic strategy for the identification of fuzzy-rough bireducts basing on a music-inspired global
optimization algorithm, called harmony search, and they tested how bireducts perform on noisy data.
In [7] the use of bireducts was investigated in the context of data size reduction and inconsistencies
removal. In [24] the authors introduced decision reducts, decision bireducts and γ-decision bireducts in
covering approximation spaces. In [75] a concept of min-max attribute-object bireducts was introduced
and discussed. In [6, 8] the reducts and bireducts were studied in the classical environment of rough
set theory considering tolerance/similarity relations.

When discussing feature selection, it is important to highlight the close relationship between this
domain and rough set theory. Discovering redundancies and dependencies among attributes is one
of the fundamental and challenging problems in the philosophy of rough sets [92]. Since the early
days of rough sets, numerous researchers have investigated this problem [80, 135, 122, 144]. In a
standard rough set approach, subsets of attributes are chosen based on the concept of reducts. In [91],
it is demonstrated that a decision reduct can consist only of strongly and weakly relevant attributes
(understood as in [62]) if the available data sufficiently cover the universe. The concept of approximate
decision reducts, introduced in [131], is further expanded on this idea by considering reducts that may
not necessarily discern all objects but exhibit reduced sensitivity to random data disturbances.

On the other hand, when it comes to the more general aspect of feature selection methods, they
can be divided into two main categories, i.e., wrapper and filter methods [60, 62, 40, 13]. The first
approach involves ranking subsets of features based on the performance of a predictive model built
using those features. A higher score indicates a better quality for the subset of attributes. Because the
number of all possible subsets of attributes is exponentially large, various heuristics are employed to
explore the attribute space [123, 113, 46, 77]. While the wrapper approach generally produces superior
results compared to the filter approach, its computational complexity makes it difficult to apply for
extremely high dimensional data. Filter methods employ predefined scoring functions to generate
rankings of individual features or feature subsets. The ranking algorithms within this category can
be split into two groups: univariate and multivariate. The univariate rankers assess the importance
of individual attributes, without considering the dependencies between features. Within this group,
examples include simple correlation-based rankers [42], statistical tests [70], or rankers based on the
mutual information measure [98]. The multivariate attribute rankers aim to assess the relevance of
features in a broader context, taking into account their dependencies. They accomplish this by testing
the usefulness of features in groups, such as the relief algorithm [61], or by explicitly measuring the
relatedness of attribute pairs and applying the minimum-redundancy-maximum-relevance framework
[98, 29]. Another noteworthy example is Breiman’s relevance measure, which quantifies the average
increase in classification error resulting from the randomization of attributes used in constructing trees
by the Random Forest algorithm [14, 30].

A crucial aspect of feature selection using the filter approach is to determine the optimal number
of attributes to choose. The commonly employed method involves selecting a predetermined number
of the top-ranked attributes. However, in practical applications, even domain experts usually cannot
accurately estimate the appropriate number of attributes to be selected. To address this issue, vari-
ous techniques have been developed. One such method involves employing permutation tests [23] to
estimate the distribution of scores assigned to irrelevant attributes by the ranking algorithm. This
estimation enables to compute the probability that an attribute with a given score is indeed irrele-
vant. By utilizing this information, it becomes possible to determine a suitable value of the number
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of attributes based on a predefined risk threshold for selecting irrelevant features.
One of the most important directions in machine learning refers nowadays to the paradigms of

explainability [2] and interpretability [38]. When it comes to explainability, the goal is to provide some
insights on what can be expected from a decision model, even if the model itself may be considered a
black box. On the other hand, interpretable models are those which are self-explanatory such that they
do not need additional tools to understand how they work – this may include rule-based models [17]
or the models relying on simple statistical methods [139]. Interpretability of models is emphasized in
many practical applications, such as medicine and bioinformatics [36] or human resources [26]. There
are many approaches to explainability, either providing method for particular category of models [73]
or model-agnostic [109]. Moreover, the research often is extended toward the ensembles of decision
models [63, 43]. When there is a requirement for decision transparency, even highly performing models
like XGBoost [19] may need to be transformed into simpler and more transparent models that aim to
approximate the predictive performance of the trained model [111].

Quality assessment of attributes is a must-have for interpretable decision systems. The methods
for assessing the quality and importance of attributes can help in providing more insight into trained
models and a better understanding of decision domains under consideration. With regard to this,
multiple results based on various heuristics and quality measures are available [103, 126]. The ensemble
approaches that combine the outputs from multiple attribute importance rankings are also adopted
for the task of feature selection [112]. To verify the stability of such algorithms in the presence
of noisy attributes, one of several rank correlation statistics may be used [107]. Typically, when
comparing attribute importance ranking methods, wrapper approaches are commonly employed. These
approaches involve assessing the overall quality of the method by evaluating the accuracy of models
trained on subsets of top-ranked attributes [31, 108].

For the HR-related case study we present in the dissertation, the explainability of models is crucial
for the adoption machine learning solutions. The explainability not only makes a given machine
learning methodology more appealing to the recruiters but also may help in detecting and avoiding
the prejudicial bias of the job candidate scoring models [39]. Historically, recruitment support systems
originated from the area of recommender systems, where the explainability also plays an important role.
Examples of recommender systems, that were designed for the purpose of human resource matching
and online recruitment, can be found, e.g., in [79, 114, 127]. One more thing worth mentioning is
that the entire HR industry has undergone significant changes due to COVID-19 [18]. In particular,
many businesses have introduced or expanded the possibility of remote work [81]. This trend has also
impacted recruitment companies, especially those that perform recruitment tasks for other companies.
This is also the case for the company presented in the case study within the dissertation, where, prior
to COVID-19, the vast majority of orders were related to relocating employees to another country
where the job is offered. Therefore, the original goal discussed was to assess which candidates were
most likely to move to another country for a new job. However, in order to adapt to the post-pandemic
reality, the goals and assumptions may need to be revisited and stated differently; for example, in the
new context the concern of assessment could be more general, such as whether potential candidates
would be interested in changing their jobs.

The next important topic is feature engineering [12]. In the domain of machine learning, some
researchers claim that a separate phase of manual feature engineering is not needed because modern
approaches are able to learn efficient models directly from the raw data. However, when it comes to real-
world applications – often referred to as the realm of data science [88] – the construction of attributes,
using the involvement and knowledge of domain experts, may improve not only the interpretability
of models but also increase their accuracy. When it comes to the construction of attributes in HR
applications, it is worth mentioning numerous studies in the context of job recommendation processes
[69, 129]. More generally, feature engineering corresponds to the problem of searching for optimal
data representations, which may be especially useful for the data coming from different sources and
having different modalities [50]. Learning meaningful representations is also important if the data
items correspond to complex objects. In such a case, representations based on complex attributes and
hierarchical modeling [120] can be used.



14 CHAPTER 1. INTRODUCTION

1.4 Acknowledgments
I would like to thank my supervisor Prof. Dominik Ślęzak for guidance, infinite patience, and support
in writing this dissertation. I am immensely grateful for all the ideas, discussions, and visionary insights
regarding relationships and synergies between different topics.

I am deeply grateful to Prof. Andrzej Skowron for playing a significant role in shaping my academic
journey. From my student days to my current involvement in scientific research, his guidance and
support have been invaluable.

I would like to acknowledge: Andrzej Janusz for his advices and consultations in conducting the
experiments and many discussions held on the topics of decision reducts and bireducts – regarding
ideas as well as algorithmic nuances; Soma Dutta and Błażej Stawicki for editorial consultations and
linguistic corrections.

I would like to thank all my co-authors – Paweł Betliński, Agnieszka Chądzyńska-Krasowska,
Krzysztof Ciebiera, Michał Drewniak, Paweł Gora, Marek Grzegorowski, Kamil Herba, Andrzej Janusz,
Marcin Kowalski, Michał Kozielski, Adam Krasuski, Hung Son Nguyen, Sinh Hoa Nguyen, Tuan
Trung Nguyen, Przemysław Wiktor Pardel, Mariusz Rosiak, Marek Sikora, Krzysztof Stencel, Marcin
Szczuka, Dominik Ślęzak, Sebastian Widz, Mateusz Wnuk, Piotr Wojnarowski, Marcin Wojnarski,
Piotr Wojtas, Łukasz Wróbel, Jakub Wróblewski – whose ideas and commitment have been a great
motivation and inspiration to me.

My deepest gratitude goes to my family and friends. I want to thank my Brother for his sense
of humor and for always being someone I can rely on. Last but certainly not least, I wish to thank
my Mom and late Dad for their love and support throughout my entire life. None of the things that
I achieved would be possible without you. Thank You!

The research was supported by the grants N N516 368334, N N516 077837, 2011/01/B/ST6/03867,
and 2012/05/B/ST6/03215 from the Ministry of Science and Higher Education of the Republic of
Poland; by the National Centre for Research and Development under the grants SP/I/1/77065/10 and
PBS2/B9/20/2013; and by EU Smart Growth Operational Programme under the Innovation Voucher
project POIR.02.03.02-14-0009/15.



Chapter 2

Preliminaries

This chapter serves the purpose of introducing the fundamental notions and concepts that will be
referred to throughout the dissertation. We present the standard tabular data representation and
revisit key concepts associated with classification tasks, classification models, and evaluation metrics
used for their assessment. We also provide a brief overview of some commonly used algorithms and
classification methods, which will be later utilized in subsequent chapters for comparative analysis of
our proposed approaches.

2.1 Data Representation
In the dissertation, we use the standard representation of tabular data in a form of decision tables and
the basic concepts from the rough set theory [96, 95].

Definition 1 (decision table). A decision table is a pair A = (U,A ∪ {d}) of non-empty sets U and
A∪ {d}, where U is a universe of objects, and A∪ {d} is a set consisting of attributes such that every
a ∈ A ∪ {d} is a function a : U → Va, where Va denotes a’s codomain and is called the value set of a.
The distinguished attribute d, such that d /∈ A, is called a decision attribute and the elements of A are
called conditional attributes.

In practice, we usually deal with finite sets U of objects and A ∪ {d} of attributes. For the decision
attribute d, the values vd ∈ Vd correspond to decision classes that we want to describe using the values
of attributes in A, in order to utilize such descriptions in the process of classification of objects outside
U . To shorten the notation we will be sometimes referring to the elements of U using their ordinal
numbers i = 1, . . . , |U |, where |U | denotes the cardinality of U . The shorthand notation will also allow
for expressing the ranges of objects, e.g., J1, 4..6, 8, 9, 11..13K will be considered as equivalent to the
subset of objects {u1, u4, u5, u6, u8, u9, u11, u12, u13}.

2.2 Classification Task
Definition 2 (classification task). In machine learning, a classification task is a type of problem
where the goal is to assign a decision value (or label) to an input object based on its attributes. If there
are two mutually exclusive labels from which a choice must be made then the task is called a binary
classification task. Otherwise, if there are three or more labels available, we say it is a multi-class
classification task. If the goal is to assign zero or more labels for each input object then we say that it
is a multi-label classification task. Moreover, if we are interested in assigning a probability distribution
over a set of decision values, rather than getting the exact labels, then we say that it is a probabilistic
classification task.

15
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Definition 3 (classification model). A classification model is a type of machine learning model that
predicts a decision value (or decisions values) of a given input object. In other words, it is an imple-
mentation (or realization) of a given classification task. It can be represented as a kind of a function
that maps input data objects to predicted decisions d̂M : U → D, where U is a generally understood
universe of objects and D is a set of available decision values.

In general the input objects can take various forms, such as texts, images, video clips, numerical
data, or even can have multimodal representations. However, the focus of the dissertation will be on
tabular data. Therefore, for the remainder of the work, we assume that U is a universe of objects U
represented by means of attributes A, as described in Definition 1. Whereas, considering the decisions
D we assume that, depending on the context, it is either equal to Vd or it represents probability
estimates of an input object belonging to each of possible decision classes. Many machine learning
methods provide both options, i.e., in addition to returning the most likely decision class for a given
object, they can deliver also a probability distribution over all possible decision values.

Throughout the dissertation we will be looking for analogies and comparing the experimental results
of our methods to other solutions, including classical and state-of-the-art techniques. Let us recall the
existing algorithms that will be used later in the dissertation.

Logistic regression [22] is a classical, relatively simple and interpretable model commonly used in
machine learning. It is an algorithm used to model the probability of a binary decision based on a set
of input attributes using a sigmoid function. k-NN [21] is another classical algorithm. It is a method
where the classification procedure is based on plurality voting of the unseen object’s neighbors. In other
words, the algorithm chooses the most commonly represented decision value among the neighbors of the
given object. Next, we use the term “decision trees” to refer to hierarchical classification models that
make predictions by applying a set of simple decision rules, arranged in the form of a tree structure.
There are many algorithms available that can induce decision trees from data, e.g., ID3 [104], C4.5 [105],
and CART (Classification and Regression Trees) [15]. It is also important to mention Random Forest
[14] – a classical algorithm that uses a classifier ensemble. Each of its component is a decision tree built
using a random subset of objects and attributes. To make a prediction on it combines the predictions
from all individual trees.

XGBoost1, which stands for Extreme Gradient Boosting [19], is a notable algorithm representing
the state-of-the-art in machine learning. It is an ensemble machine learning algorithm implemented
within the gradient boosting framework. XGBoost is a very popular method that is widely used
by the data science community. The algorithm is known for its high performance, scalability and
flexibility. Like other algorithms in its category, it iteratively builds weak models and combines them
to form a strong final model. It can use several boosting strategies and different weak learners. The
gradient boosting is a sequential process in which every next weak learner is created depending on the
performance of the earlier ones. Such learners are supposed to compensate for the errors made by the
ensemble. XGBoost starts with a single leaf that represents an initial “guess” for the whole data set.
Then, each consecutive learner is firstly trained on objects corresponding to the intermediate errors of
the ensemble created up to the current point of time, and secondly, it is combined with that ensemble
in a way that minimizes the loss function.

2.3 Evaluation Metrics for Classification Models
In the dissertation we will be comparing the created classification models and for this reason we need
to define evaluation metrics that are commonly used to judge the performance of the model after the
training. The following definition, however quite informal, expresses the idea of very general concept
of evaluation metric family of functions:

1https://xgboost.readthedocs.io/

https://xgboost.readthedocs.io/
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Definition 4 (evaluation metric). An evaluation metric eval :
model︷ ︸︸ ︷
� ×

data table︷ ︸︸ ︷
� → R is a function

that quantifies the performance of a machine learning model M on a given data table A = (U,A ∪ {d}).
The application of the evaluation metric is constrained to the input arguments that are compatible with
each other, i.e., the model M must be able to recognize representation of objects in A and make
predictions on them.

Definition 5 (model outcomes). Let a binary classification task be defined on A = (U,A ∪ {d}) and
let a classification model M be given. We define the subset of objects in A with a distinguished decision
value vdrelevant ∈ Vd in A to be “relevant objects” or “relevant elements”. The whole set of objects U is
then partitioned into four disjoint subsets based on both the actual decision values in A and decisions
predicted by the model M . As “true positives” (TPM ,A) and “false negatives” (FNM ,A) we consider
objects among the relevant elements for which the model predicted correct and incorrect decision value,
respectively. Analogously, “true negatives” (TNM ,A) and “false positives” (FPM ,A) mean the non-
relevant objects correctly and incorrectly classified by the model, respectively. The above subsets can be
formally defined as follows:

TPM ,A = {u ∈ U : d(u) = vdrelevant ∧ d(u) = d̂M (u)} (2.1)

FNM ,A = {u ∈ U : d(u) = vdrelevant ∧ d(u) 6= d̂M (u)} (2.2)

TNM ,A = {u ∈ U : d(u) 6= vdrelevant ∧ d(u) = d̂M (u)} (2.3)

FPM ,A = {u ∈ U : d(u) 6= vdrelevant ∧ d(u) 6= d̂M (u)} (2.4)

If M and A are known from the context, we will be using just TP, FN, TN,FP for short.

Definition 6 (precision). Let a binary classification task be defined on A = (U,A ∪ {d}) and let a
classification model M be given. We say that “precision” is an evaluation metric expressing the fraction
of objects classified by the model M as relevant that are actually relevant in A. It is defined as follows:

precision(M ,A) =


|TP |

|TP |+|FP | if |TP |+ |FP | > 0

0 otherwise
(2.5)

Definition 7 (recall). Let a binary classification task be defined on A = (U,A ∪ {d}) and let a classi-
fication model M be given. We say that “recall” (or “sensitivity”, or “true positive rate” – TPR) is
an evaluation metric expressing the fraction of relevant objects correctly classified by the model M . It
is defined as follows:

recall(M ,A) = sensitivity(M ,A) = TPR(M ,A) =


|TP |

|TP |+|FN | if |TP |+ |FN | > 0

0 otherwise
(2.6)

Definition 8 (F1 score). Let a binary classification task be defined on A = (U,A ∪ {d}) and let a
classification model M be given. We say that “F1-score” is the harmonic mean of precision and recall
values. It is defined as follows:

F1-score(M ,A) =

 2 · precision(M ,A)·recall(M ,A)
precision(M ,A)+recall(M ,A) if precision(M ,A) + recall(M ,A) > 0

0 otherwise
(2.7)

Definition 9 (specificity). Let a binary classification task be defined on A = (U,A ∪ {d}) and let a
classification model M be given. We say that “specificity” (or “true negative rate” – TNR(M ,A)) is
an evaluation metric expressing the fraction of non-relevant objects correctly classified by the model
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M . It is defined as follows:

specificity(M ,A) = TNR(M ,A) =


|TN |

|TN |+|FP | if |TN |+ |FP | > 0

0 otherwise
(2.8)

It may be seen as a recall in case we switch the distinguished decision value indicating the relevant
objects.

Definition 10 (class-specific recall). Let a classification task be defined on A = (U,A ∪ {d}) and let a
classification model M be given. We say that “class-specific recall” (recallvd(M ,A)) is an evaluation
metric expressing the fraction of objects having the given decision value vd that are correctly classified
by the model M . It is defined as follows:

recallvd(M ,A) =


|{u∈U :d(u)=vd∧d(u)=d̂M (u)}|

|{u∈U :d(u)=vd}| if |{u ∈ U : d(u) = vd}| > 0

0 otherwise
(2.9)

It may be seen as a metric generalizing Definition 7 and Definition 9 for the case of multi-class
classification tasks.

Definition 11 (accuracy). Let a classification task be defined on A = (U,A ∪ {d}) and let a classifi-
cation model M be given. We say that “accuracy” is an evaluation metric expressing the fraction of
objects classified correctly by the model M . For a binary classification task it can be expressed using
the notions defined in Definition 5:

ACC(M ,A) = |TP |+ |TN |
|TP |+ |FN |+ |TN |+ |FP | (2.10)

Or in a more general form usable also in the case of multi-class classification tasks:

ACC(M ,A) = |{u ∈ U : d(u) = d̂M (u)}|
|U |

(2.11)

In an imbalanced data sets the number of objects in each decision class is not equal. In such case
the accuracy measure’s results may be misleading. For example in case of highly imbalanced data sets
the accuracy result achieved by a model always predicting the majority class may be very high; however
the model may not be useful in practical applications where the minority classes are important.

Definition 12 (balanced accuracy). Let a classification task be defined on A = (U,A ∪ {d}) and let a
classification model M be given. We say that “balanced accuracy” is an evaluation metric expressing
the average of class-specific recall values obtained on each decision value. For a binary classification
task it is can be expressed using the notions defined in Definition 7 and Definition 9:

BAC(M ,A) = TPR(M ,A) + TNR(M ,A)
2 (2.12)

Or in a more general form usable also in the case of multi-class classification tasks:

BAC(M ,A) =
∑
vd∈Vd recallvd(M ,A)

|Vd|
(2.13)

In the case of a binary classification task (though it can also be generalized to the multi-class
case) and probabilistic classification models, we receive the response from the model in the form of
a probability distribution for assigning a given object to the appropriate decision class. However, if
we need to transform the returned values to actual labels, a decision must be made regarding the
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threshold value which will allow us to state whether a given object belongs to one decision class or
the other. Furthermore, the estimated performance of the classifier may differ with different threshold
values. To address this issue, the receiver operating characteristic (ROC) curve [99, 78, 33], which
is a visualization technique, is commonly used to present the performance measurements at various
threshold settings. The AUC (area under the ROC curve) is a scalar value that aggregates the classifier
performance estimations over all possible threshold values, thus expressing how well the given model
is capable of separating the decision classes.

The primary objective of the classification task is to develop a model that can identify relationships
in the data and can generalize the discovered patterns to unseen objects. To achieve this, the most
basic approach is to split the available data into two separate sets – a training subset for inducing
(or training) a classifier, and a testing subset to asses the model’s performance on previously unseen
objects. In practical applications, it may not always be possible to have a designated large test set that
can properly estimate the performance of classifiers. To address this issue, the cross-validation [48, 121]
technique is commonly used in machine learning to evaluate the performance of a model splitting the
available data into multiple parts. One common variant of this technique is k-fold cross-validation,
where the data is divided into k subset of roughly equal size. The model is trained using k − 1 folds
as a training set, and the remaining one as a test set. Such a procedure is repeated k times, for each
fold being used once as a test set. Ultimately, the results from all runs are averaged to obtain the
final performance of the model. Various variants of cross-validation are available. Leave-one-out is a
special case of k-fold cross-validation, where k is equal to the number of objects in the data set and
the process is repeated for each sample from the data set by training on all but one of the samples
and tested on the one left out. Another example is leave-one-group-out, where the data set is split
based on arbitrary information defining the grouping of objects. The process is then repeated for each
group using training subsets consisting of all samples except those belonging to the given group, and
the model is tested on that specific group. We will be using such an approach in Chapter 6.
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Chapter 3

Foundations of Decision Reducts

The objective of this chapter is to provide an introduction to the fundamental concepts of rough
set theory, which will serve as the basis for the central study of the dissertation. We will recall
both standard and approximate decision reducts, along with their properties, enabling us to establish
analogies to these concepts in future chapters.

3.1 Basic Rough Set Concepts
The rough set theory is an extension of the classical set theory, suitable for describing concepts in
presence of incomplete information [91]. The rough sets handle imperfect knowledge about objects
and concepts using notions of lower and upper approximations. A basic information unit for the
rough sets is an indiscernibility class of an object u, which is a set of those u′ ∈ U that cannot be
distinguished from u using information available in a decision system A. Some indiscernibility classes
of objects from the same decision class can be aggregated to form information granules [116]. For
numeric data, this aggregation can be done using a greedy discretization heuristic that is based on a
discernibility measure [84].

Definition 13 (indiscernibility relation). Let A = (U,A ∪ {d}) be given. An attribute subset B ⊆
A ∪ {d} determines a binary relation IND(B) on U :

u IND(B) u′ ⇐⇒ ∀
a∈B

a(u) = a(u′) (3.1)

In such a case, we say that u and u′ are indiscernible by attributes of B.

Proposition 1. Let A = (U,A ∪ {d}) and an attribute subset B ⊆ A ∪ {d} be given. The indiscerni-
bility relation IND(B) is an equivalence relation.

Proof. The observation that IND(B) satisfies all the properties of the equivalence relation (that the
relation is reflexive, symmetric, and transitive) follows straightforwardly from Definition 13, that is,
from the equality of the values on all attributes from B.

The indiscernibility relation IND(B) as an equivalence relation partitions the universe of objects
U into a quotient set, i.e., a set of all equivalence classes determined by IND(B). The quotient set is
denoted by U/IND(B) or U/B for simplicity. An element of U/B that contains a given object u ∈ U
is denoted by [u]IND(B) (or [u]B for short).

In the dissertation, we will refer to the elements of a quotient set determined be the decision
attribute d as X〈1〉, . . . , X〈|Vd|〉 ∈ U/{d}, where |Vd| denotes the cardinality of the decision attribute’s
codomain and where the mapping {1, . . . , |Vd|} → Vd is arbitrarily chosen without loss of generality.
We will use a value based notation X〈d=vd〉 to denote a decision class containing objects with the given
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decision value vd ∈ Vd. In some places we will also use a simplified notation X〈d(u)〉 in order to denote
a decision class containing a given object u ∈ U , which is equivalent to X〈d=d(u)〉.

Definition 14 (discernibility relation). Let A = (U,A ∪ {d}) be given. An attribute subset B ⊆ A∪{d}
determines a binary relation DIS(B) on U defined as the complement of the relation IND(B), i.e.,

u DIS(B) u′ ⇐⇒ ¬(u IND(B) u′) ⇐⇒ ∃
a∈B

a(u) 6= a(u′) (3.2)

In such a case, we say that an attribute subset B discerns objects u, u′ ∈ U (or that u, u′ ∈ U are
discerned by B).

Definition 15 (approximations). Let A = (U,A ∪ {d}) and an attribute subset B ⊆ A be given. For
a subset of objects X ⊆ U we define lower and upper approximations of X induced by B as follows:

XB =
⋃
{[u]B ∈ U/B : [u]B ⊆ X} (lower approximation) (3.3)

XB =
⋃
{[u]B ∈ U/B : [u]B ∩X 6= ∅} (upper approximation) (3.4)

Table 3.1: Decision table A = (U,A ∪ {d}) with 14 objects in U , four attributes in A, and decision
attribute “Play” with two decision values “yes” and “no”.

Outlook Temperature Humidity Wind P lay
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Definition 16 (consistent decision table). Let A = (U,A ∪ {d}) be given. We say that A is consistent,
if and only if IND(A) ⊆ IND({d}). We say that A is inconsistent, if and only if it is not consistent.

The condition IND(A) ⊆ IND({d}) stated in the above definition can be expressed equivalently
as one of the following:

• The attribute subset A discerns all objects ui, uj ∈ U such that d(ui) 6= d(uj).

• All objects ui, uj that are indiscernible by attributes from A have the same value of the decision
attribute d(ui) = d(uj).

Let us also recall the widely used notion of decision rules. A typical decision rule consists of two
parts – a predecessor and a successor that are connected by the sign “⇒”. They are often referred to
as “if-then” rules. Following [96] let us introduce the notion formally.
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Definition 17 (formulae). Let decision table A = (U,A ∪ {d}) be given and let V =
⋃
a∈A∪{d} Va.

Atomic formulae over B ⊆ A ∪ {d} and V are expressions of the form a = v and called descriptors
(or selectors), where a ∈ B and v ∈ Va. The set F (B, V ) of formulae over B and V is the least set
containing all atomic formulae over B and V and closed with respect to the propositional operators
∧ (conjunction), ∨ (disjunction), ¬ (negation). By ‖ϕ‖A we denote the meaning of ϕ ∈ F (B, V ) in
the decision table A– we say it is the set of all objects in U with the property ϕ. The definition of ‖ · ‖A
is given as follows:

‖a = v‖A = {u ∈ U : a = v} (3.5)
‖ϕ ∧ ϕ′‖A = ‖ϕ‖A ∩ ‖ϕ′‖A (3.6)
‖ϕ ∨ ϕ′‖A = ‖ϕ‖A ∪ ‖ϕ′‖A (3.7)
‖¬ϕ‖A = U \ ‖ϕ‖A (3.8)

(3.9)

The formulae from F (A, V ), F ({d}, V ) are called condition formulae of A and decision formulae of
A, respectively.
Definition 18 (decision rule). Let decision table A = (U,A ∪ {d}) be given and let V =

⋃
a∈A∪{d} Va.

A decision rule for A is any expression of the form ϕ⇒ψ, where ϕ ∈ F (A, V ) and ψ ∈ F ({d}, V ).
Formulae ϕ and ψ are referred to as the predecessor and the successor of the decision rule, respectively.
A decision rule ϕ⇒ψ is true in A if and only if ‖ϕ‖A ⊆ ‖ψ‖A.
For a given A = (U,A ∪ {d}) an exemplary decision rule looks as follows:

(a1 = va1) ∧ . . . ∧ (am = vam)︸ ︷︷ ︸
predecessor

⇒(d = vd)︸ ︷︷ ︸
successor

(3.10)

where a1, . . . , am ∈ A are some of conditional attributes and each of the equalities a1 = va1 , . . .,
am = vam , d = vd is a basic descriptor (or selector), i.e., an atomic formula of the form a = va, for
a ∈ A ∪ {d} and va ∈ Va. Descriptor a = va is supported by objects u ∈ U for which the condition
a(u) = va holds. In the simplest form, the successor consists of a single descriptor. The rule’s
support takes a form of a set of objects matching all descriptors occurring in the rule’s predecessor and
successor, i.e., it is an intersection of the sets of objects supporting particular descriptors. Moreover,
we can associate a given rule with its confidence value, expressed as a ratio of the cardinality of the
support of the rule to the cardinality of the set of objects matching all descriptors from the rule’s
predecessor.

3.2 Decision Reducts
Definition 19 (decision reduct). [96] Let a consistent decision table A = (U,A ∪ {d}) be given. We
say that B ⊆ A is a decision reduct for A, if and only if it is an irreducible subset of attributes such
that

IND(B) ⊆ IND({d}). (3.11)
Equivalently, we may say that B ⊆ A is a decision reduct, if and only if it is an irreducible subset of
attributes such that each pair ui, uj ∈ U satisfying the inequality d(ui) 6= d(uj) is discerned by B.

It is worth noting that for inconsistent decision tables, the decision reducts defined as above do not
exist. However, with different defined criteria, we can still consider the process of reduction [138]. For
instance, we can focus on reducing attributes while preserving discernibility:
Definition 20 (discernibility-based decision reduct). Let A = (U,A ∪ {d}) be given. We say that
B ⊆ A is a discernibility-based decision reduct for A, if and only if it is an irreducible subset of
attributes such that it discerns the same pair of objects with different decision values as A:

∀u,u′∈U (u DIS(A) u′ ∧ d(u) 6= d(u′)) =⇒ (u DIS(B) u′) (3.12)
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Definition 21 (discernibility measure). Let A = (U,A ∪ {d}) be given. The discernibility measure
discA : 2A → N is defined as follows for B ⊆ A:

discA(B) = |{(u, u′) ∈ U × U : u DIS(B) u′ ∧ d(u) 6= d(u′)}| (3.13)

A general method for computing decision reducts was proposed using the Boolean formula con-
structs in [95]:

Proposition 2. Let a consistent decision table A = (U,A ∪ {d}) be given. Consider the following
Boolean formula with propositional variables a for a ∈ A:

τ =
∧
ui,uj∈U :i<j∧d(ui) 6=d(uj)

∨
a∈A:a(ui)6=a(uj) a (3.14)

An arbitrary subset B ⊆ A is a decision reduct, if and only if the Boolean formula
∧
a∈B a is a prime

implicant for τ .

Proof. See [115]

Definition 22 (minimal decision reduct). A decision reduct is called minimal if its cardinality is
minimum among all decision reducts.

One can easily notice that a decision reduct B ⊆ A has to determine decision values within A, i.e.,
it should be possible to cover U by decision rules with predecessors taking a form of conjunctions of
descriptors ai = vai for attributes ai ∈ B and successors d = vd. From this follows the concept of
functional dependency known from relational databases which can be equivalently introduced using
if-then rules and discernibility [76].

As an example, for the well-known data set in Table 3.1, there are two decision reducts: {Outlook,
Temperature, Wind} and {Outlook, Humidity, Wind} (or {O, T,W} and {O,H,W} for short). In
Table 3.2, decision rules generated on the base of {O, T,W} and {O,H,W} are presented.

For inconsistent decision tables, a number of extensions of Definition 19 have been proposed, basing
on such rough set related notions as positive regions [95], generalized decision functions [137] or rough
membership functions [131]. Let us concentrate on the notion of a positive region as an example.

Definition 23 (positive region). Let A = (U,A ∪ {d}) and B ⊆ A be given. By positive region
POSA(B) (or POS(B) for short) we mean the subset of U , consisting of all objects that can be
uniquely classified to the decision classes using attributes in B:

POS(B) = {u ∈ U : ∀u′∈[u]Bd(u′) = d(u)} (3.15)

The above can be written equivalently also by means of the equivalence classes induced by B as
follows:

POS(B) =
⋃
{E ∈ U/B : ∀u,u′∈Ed(u) = d(u′)} (3.16)

It means that POS(B) is a union of the equivalence classes induced by B within which the objects
have consistent decision value.

It is also useful to recall the following function γ : 2A → [0, 1] which is commonly used in the rough
set theory to express a degree of dependence between a subset of attributes and the decision [95]:

γ(B) = |POS(B)|
|U |

(3.17)

Definition 24 (γ-decision reduct). Let a decision table A = (U,A ∪ {d}) be given. We say that B ⊆ A
is a γ-decision reduct for A, if and only if it is an irreducible subset of attributes such that γ(B) = γ(A),
or POS(B) = POS(A) equivalently.
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Table 3.2: Decision rules generated from decision reducts {O, T,W} and {O,H,W} along with the
subsets of objects that support them.

decision reduct {O, T,W}
decision rules support
(O = overcast) ∧ (T = cool) ∧ (W = strong)⇒(d = yes) J7K
(O = overcast) ∧ (T = hot) ∧ (W = weak)⇒(d = yes) J3, 13K
(O = overcast) ∧ (T = mild) ∧ (W = strong)⇒(d = yes) J12K
(O = rain) ∧ (T = cool) ∧ (W = strong)⇒(d = no) J6K
(O = rain) ∧ (T = cool) ∧ (W = weak)⇒(d = yes) J5K
(O = rain) ∧ (T = mild) ∧ (W = strong)⇒(d = no) J14K
(O = rain) ∧ (T = mild) ∧ (W = weak)⇒(d = yes) J4, 10K
(O = sunny) ∧ (T = cool) ∧ (W = weak)⇒(d = yes) J9K
(O = sunny) ∧ (T = hot) ∧ (W = strong)⇒(d = no) J2K
(O = sunny) ∧ (T = hot) ∧ (W = weak)⇒(d = no) J1K
(O = sunny) ∧ (T = mild) ∧ (W = strong)⇒(d = yes) J11K
(O = sunny) ∧ (T = mild) ∧ (W = weak)⇒(d = no) J8K

decision reduct {O,H,W}
decision rules support
(O = overcast) ∧ (H = high) ∧ (W = strong)⇒(d = yes) J12K
(O = overcast) ∧ (H = high) ∧ (W = weak)⇒(d = yes) J3K
(O = overcast) ∧ (H = normal) ∧ (W = strong)⇒(d = yes) J7K
(O = overcast) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J13K
(O = rain) ∧ (H = high) ∧ (W = strong)⇒(d = no) J14K
(O = rain) ∧ (H = high) ∧ (W = weak)⇒(d = yes) J4K
(O = rain) ∧ (H = normal) ∧ (W = strong)⇒(d = no) J6K
(O = rain) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J5, 10K
(O = sunny) ∧ (H = high) ∧ (W = strong)⇒(d = no) J2K
(O = sunny) ∧ (H = high) ∧ (W = weak)⇒(d = no) J1, 8K
(O = sunny) ∧ (H = normal) ∧ (W = strong)⇒(d = yes) J11K
(O = sunny) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J9K
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The following is a well-known fact enabling to express γ-decision reducts in terms of decision
reducts over appropriately modified consistent decision tables. A decision table A = (U,A ∪ {d}) is
inconsistent (see Definition 16 and its equivalents), if there exist indiscernible objects with different
decision values and therefore these objects do not belong to POS(A). From Definition 24 we have that
a prerequisite for an attribute subset B ⊆ A to be a γ-decision reduct is to preserve the positive region
induced by the set of all attributes of A. We can modify the original decision attribute d by adding a
special decision value “~” as a common replacement of decisions for all of the conflicting indiscernible
(with respect to the set of all attributes A) objects with different decisions. The modified decision
table will be then consistent and moreover, a reduct for that table will be an explicit counterpart to
a γ-decision reduct for the original data set. Similar constructions, also for various other attribute
reductions criteria, were presented in [138].

Let us formalize the construction process, as it will be used further in the dissertation for arbitrary
subsets B ⊆ A. Let a decision table A = (U,A ∪ {d}) be given. For a given subset B ⊆ A we construct
a modified consistent decision table AγB = (U,B ∪ {dγB}) defining a new special value ~ /∈ Vd and
putting a decision attribute dγB : U → Vd ∪ {~} as follows:

dγB(u) =

~ if u /∈ POS(B)

d(u) otherwise
(3.18)

Examples of such modified tables are presented in Table 3.3. For the data set presented in Table 3.1,
the case of B = A would not be so interesting because this table is already consistent. However, if
one would like to search for γ-decision reducts in tables with smaller amount of attributes (like in
Table 3.3), then the above way of defining decision dγB turns out to be very useful.

Table 3.3: Examples of decision tables AγB = (U,B ∪ {dγB}) for attribute subsets B = {O, T,H} and
B = {T,H,W}. In the middle, the original decisions are given.

Outlook Temp. Humidity dγB
1 sunny hot high no
2 sunny hot high no
3 overcast hot high yes
4 rain mild high ~

5 rain cool normal ~

6 rain cool normal ~

7 overcast cool normal yes
8 sunny mild high no
9 sunny cool normal yes
10 rain mild normal yes
11 sunny mild normal yes
12 overcast mild high yes
13 overcast hot normal yes
14 rain mild high ~

Play
1 no
2 no
3 yes
4 yes
5 yes
6 no
7 yes
8 no
9 yes
10 yes
11 yes
12 yes
13 yes
14 no

Temp. Humidity Wind dγB
1 hot high weak ~

2 hot high strong no
3 hot high weak ~

4 mild high weak ~

5 cool normal weak yes
6 cool normal strong ~

7 cool normal strong ~

8 mild high weak ~

9 cool normal weak yes
10 mild normal weak yes
11 mild normal strong yes
12 mild high strong ~

13 hot normal weak yes
14 mild high strong ~

Positive region POS(B) can be interpreted in terms of decision rules generated from the combina-
tion of values of attributes in B for objects contained in it. Rules generated on the basis of such objects
are deterministic in terms of the confidence value equals to 1. Thus, the role of γ-decision reducts is
to use possibly small subsets of attributes to cover data with deterministic rules as thoroughly as it
would be possible when the whole set of attributes is considered.
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Table 3.4: Decision rules generated from γ-decision reducts obtained for the original decision table
limited to the attribute subsets {O, T,H} and {T,H,W} along with the sets of objects that support
them. In both cases γ-decision reducts consist of all attributes of the limited tables, i.e., {O, T,H}
and {T,H,W}, respectively.

γ-decision reduct {O, T,H}
decision rules support
(O = overcast) ∧ (T = cool) ∧ (H = normal)⇒(d = yes) J7K
(O = overcast) ∧ (T = hot) ∧ (H = high)⇒(d = yes) J3K
(O = overcast) ∧ (T = hot) ∧ (H = normal)⇒(d = yes) J13K
(O = overcast) ∧ (T = mild) ∧ (H = high)⇒(d = yes) J12K
(O = rain) ∧ (T = mild) ∧ (H = normal)⇒(d = yes) J10K
(O = sunny) ∧ (T = cool) ∧ (H = normal)⇒(d = yes) J9K
(O = sunny) ∧ (T = hot) ∧ (H = high)⇒(d = no) J1, 2K
(O = sunny) ∧ (T = mild) ∧ (H = high)⇒(d = no) J8K
(O = sunny) ∧ (T = mild) ∧ (H = normal)⇒(d = yes) J11K

γ-decision reduct {T,H,W}
decision rules support
(T = cool) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J5, 9K
(T = hot) ∧ (H = high) ∧ (W = strong)⇒(d = no) J2K
(T = hot) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J13K
(T = mild) ∧ (H = normal) ∧ (W = strong)⇒(d = yes) J11K
(T = mild) ∧ (H = normal) ∧ (W = weak)⇒(d = yes) J10K
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The approach and construction described above, i.e., a transformation of an inconsistent decision
table to its consistent counterpart, using an appropriate replacement of the decision attribute, is a well-
known mechanism in rough set literature [132, 85]. Moreover, as the interrelations between different
decision reduct (or superreduct) variants have been well-studied over a number of years [65, 138], this
allows us to formally express the intuitions presented above.

Proposition 3. Let an inconsistent decision table A = (U,A ∪ {d}) be given. An arbitrary subset
B ⊆ A is a γ-decision reduct in A, if and only if B is a decision reduct in AγA = (U,A ∪ {dγA}), where
dγA is defined as in Equation (3.18).

Proof. See [138].

Finally, one more formulation is worth noting in the context of γ-decision reducts. An appropriate
result expressing the existence of decision reducts in terms of a Boolean formula and its prime implicants
is already shown in Proposition 2. Below we present analogous result with respect to γ-decision reducts.

Proposition 4. Let A = (U,A ∪ {d}) be given. Consider the following Boolean formula with proposi-
tional variables a for a ∈ A:

τγ =
∧
ui∈POS(A)

∧
uj∈U :d(ui) 6=d(uj)

∨
a∈A:a(ui)6=a(uj) a (3.19)

An arbitrary subset B ⊆ A is a γ-decision reduct, if and only if the Boolean formula
∧
a∈B a is a prime

implicant for τγ .

Proof. See [115]

3.3 Approximate Decision Reducts
The concept of a decision reduct is fundamental to the rough set theory and its applications. However,
practical applications often involve large and noisy data sets. To address such challenges, several
generalizations of the decision reducts have been proposed, such as the dynamic reducts [4] and the
approximate decision reducts [131].

An approximate decision reduct can be defined as an irreducible subset of attributes that, under
specified criterion, retains the decision-related information above the specified threshold. Criteria for
calculating approximate decision reducts are usually based on some functions evaluating degrees of
decision information that are induced by subsets of attributes. The choice of a function may depend
on the nature of a data set and methods of inducing classifiers based on the attributes in reducts.
From this point of view, the rough set literature may be regarded as a source of evaluation functions
that link attribute subsets and rule based classifiers corresponding to those subsets in further steps of
data exploration.

Let us focus on the so-called F -decision ε-reducts, where F : 2A → [0, 1] is a function that can
represent the above-discussed decision information and ε ∈ [0, 1) decides how much of quality of
determining d we agree to lose when operating with smaller subsets B ⊆ A (and, as a consequence,
shorter rules). The following notion was used for several functions in the literature:

Definition 25 (relative approximate decision reduct). Let A = (U,A ∪ {d}) be given. Let 2A denote
the power set of the set A. Let ε ∈ [0, 1) and a nondecreasing monotone (with respect to the set
inclusion) function F : 2A → [0, 1] be given. We say that a subset B ⊆ A is a relative F -decision
ε-superreduct, if and only if the following holds:

F (B) ≥ (1− ε)F (A) (3.20)

A subset B ⊆ A is a relative F -decision ε-reduct, if and only if it satisfies the above inequality and
none of its proper subsets does it.
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We will also refer to a modified version of Definition 25. The basic idea is that, in the definition
below, subsets of attributes are evaluated straightforwardly rather than in relation to the whole set of
available attributes.

Definition 26 (approximate decision reduct). Let A = (U,A ∪ {d}) be given. Let ε ∈ [0, 1) and a
nondecreasing monotone (with respect to the set inclusion) function F : 2A → [0, 1] be given. We say
that a subset B ⊆ A is a F -decision ε-superreduct, if and only if the following holds:

F (B) ≥ 1− ε (3.21)

A subset B ⊆ A is a F -decision ε-reduct, if and only if it satisfies the above inequality and none of its
proper subsets does it.

The first comparison of approximate decision reducts and relative approximate decision reducts took
place in [86], for a function F : 2A → [0, 1] reflecting a degree of discernibility of objects belonging to
different decision classes. Over the years, the concept of a relative approximate decision reduct gained
popularity because of its ability to handle inconsistent decision tables. Consequently, various types of
relative approximate decision reducts are often referred to, simply, as approximate decision reducts.
However, in this dissertation we keep original terminology reflected by Definitions 25 and 26.

Let us consider some examples of measures that can play the role of F . Certainly, one can think
about function γ defined by Equation (3.17). Another example was introduced in [134] as a function
modeling the accuracy of a rule based classifier pointing at decisions which are most frequent within
particular indiscernibility classes induced by an evaluated subset of attributes:

Definition 27 (majority function). Let A = (U,A ∪ {d}) be given. The majority function M : 2A →
[0, 1] is defined as follows for B ⊆ A:

M(B) = 1
|U |

∑
E∈U/B

max
k=1,...,|Vd|

|E ∩X〈k〉| (3.22)

Yet another example of F refers to a Bayesian extension of the classical rough set model, where rules
induced by a given subset of attributes are pointing at the decision classes which become maximally
frequent comparing to their overall occurrence in the data [125]:

Definition 28 (relative gain function). Let A = (U,A ∪ {d}) be given. The relative gain function
R : 2A → [0, 1] is defined as follows for B ⊆ A:

R(B) = 1
|Vd|

∑
E∈U/B

max
k=1,...,|Vd|

|E ∩X〈k〉|
|X〈k〉|

(3.23)

For a consistent A = (U,A ∪ {d}), there is γ(A) = M(A) = R(A) = 1. Thus, for consistent
tables the notions of relative F -decision ε-reduct and F -decision ε-reduct are equivalent to each other
whenever F takes a form of γ, M or R. Also, for consistent tables, relative γ/M/R-decision 0-reducts
are all equivalent to standard decision reducts. On the other hand, for inconsistent tables, those notions
can be regarded as alternative ways to extend decision reducts, leading toward potentially different
subsets of attributes for the same data.

For F -decision ε-reducts the value of ε can be understood as a threshold for the allowed decrease
of classifier accuracy and can address the balance between simplicity and confidence of rules. For a
higher ε, F -decision ε-reducts usually contain fewer attributes and the generated decision rules become
shorter. Thus, by the cost of slight inconsistencies we gain higher simplicity and higher chance that
attribute values observed for previously unseen cases will match predecessors of some existing rules.
For a lower ε, generated F -decision ε-reducts contain more attributes and rules generated based on
those attributes are potentially more complex but also more accurate over A treated as the training
data.
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The way of generating decision rules on the basis of subsets B ⊆ A derived from the data as
M -decision ε-reducts and R-decision ε-reducts depends on the particular function M or R; that is,
successors of particular decision rules are related to the most frequent or relatively most frequent
decision classes, as implicitly assumed when using the mentioned functions. However, in case of
decision bireducts we will have no such limitation and the choice of objects can be more flexible. The
differences in the approaches – first undertaken in [117] – will be discussed more deeply in Section 4.1.
As for now, let us focus on the complexity characteristics related to the search of F -decision ε-reducts
for the above-discussed functions. The following results will be later useful to understand complexity
challenges behind some classes of decision bireducts. The propositions below follow the standard way
of proving NP-hardness, which involves using polynomial reduction to transform a selected problem
that is known to be NP-hard into a problem of finding a given type of minimal approximate reduct.
In particular, the problem stated in Proposition 9 has been already addressed in [134]. Nevertheless,
we partially recall the main ideas of its proof as the other problems are shown by means of analogous
constructions.

The following considerations are analogous to those presented in [134, 136] but we present them
here for completeness of the dissertation.

Definition 29 (graph). A graph is an ordered pair G = (V,E), where V is the set of vertices (also
nodes or points) and E ⊆ V × V is the set of edges (also arrows or links). We say that a graph is
non-directed if the relation E is symmetric.

Definition 30 (dominating set). Let a non-directed graph G = (V,E) be given. We say that subset
W ⊆ V is a dominating set for the graph G if and only if

CovG(W) = V

where
CovG(W) = W ∪ {v ∈ V : ∃w∈W (v, w) ∈ E}

is the set of vertices that either belong to W or are adjacent (in terms of the graph’s edges) to at least
one member of W.

Definition 31 (minimal dominating set problem). The Minimal Dominating Set Problem is an op-
timization problem of finding a minimal subset of vertices, which is a dominating set for a given
undirected graph G = (V,E).

Proposition 5. The Minimal Dominating Set Problem is NP-hard.

Proof. This is one of the most basic NP-hard problems, cf. [37].

Proposition 6. Let ε ∈ [0, 1) be given. The problem of finding a minimal relative γ-decision ε-reduct
for an input decision table is NP-hard.

Proof. Let ε ∈ [0, 1) be given. We will show a polynomial reduction of the NP-hard problem of finding
a minimal dominating set in a non-directed graph to the problem that we consider. Let us show a
polynomial transformation of G to a decision table AεG = (UεG, AεG ∪{dεG}) that will be an input for the
problem of finding a minimal relative γ-decision ε-reduct. The constructed decision table will have |V|
binary conditional attributes AεG = {a1, a2, . . . , a|V|} (one for each vertex in G). Formally,

aj(ui) =

 1 if i = j ∨ (vi, vj) ∈ E

0 otherwise
(3.24)

for i, j = 1, . . . , |V|. We also add another t(ε) = b |V|ε1−ε + 1c objects with all conditional attributes set
to 0, i.e., aj(ui) = 0, for j = 1, . . . , |V| and i = |V|+ 1, . . . , |V|+ t(ε). For objects that correspond to
graph’s vertices we set the value of dεG according to the following formula:
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dεG(ui) =

 0 if i ≤ |V|

1 otherwise
(3.25)

AεG is consistent, i.e., POS(AεG) = UεG. An example of construction of a decision table AεG corresponding
to a graph G can be seen in Figure 3.1.

The value t(ε) = b |V|ε1−ε + 1c is selected so to ensure that the relative γ-decision ε-superreduct
property, i.e., γ(B) ≥ (1−ε)γ(AεG) can be fulfilled, only if there is |POS(B)| > |V|. In other words, we
want to ensure that at least one of the objects {u|V|+1, . . . , u|V|+t(ε)} belongs to POS(B) for B ⊆ AεG.
Consequently, if one of them belongs to POS(B) then the others must also belong (as all are equal to
each other). Indeed, we have the following derivation:

γ(B) ≥ (1− ε)γ(AεG)
we know that γ(AεG) = 1

γ(B) ≥ (1− ε)
|POS(B)|/(|V|+ t(ε)) ≥ (1− ε)

|POS(B)| ≥ (1− ε)(|V|+ t(ε))

(3.26)

By transforming t(ε) = b |V|ε1−ε + 1c we get the following inequalities:

t(ε) > |V|ε
1−ε

t(ε)(1− ε) > |V|ε
(t(ε) + |V|)(1− ε) > |V|

(3.27)

Thus, we get that γ(B) ≥ (1− ε)γ(AεG) holds, if and only if:

|POS(B)| ≥ (1− ε)(|V|+ t(ε)) > |V| (3.28)

If |POS(B)| is greater than |V|, then it must include at least one object from {u|V|+1, . . . , u|V|+t(ε)}.
Since all such objects belong to decision class X〈dεG=1〉, then, for each ui ∈ X〈d

ε
G=0〉, there must

exist at least one attribute aj ∈ B that discerns ui from a considered object in X〈d
ε
G=1〉, i.e., there

must be aj(ui) = 1 for some aj ∈ B. Hence, because of the way in which attributes in AεG are
defined, the relative γ-decision ε-superreduct B induces a dominating set for the graph G, defined as
WB = {vj ∈ V : aj ∈ B}.

It remains to show that a subset B ⊆ A which is the solution of the problem of finding a minimap γ-
decision ε-reduct for decision table AεG corresponds to the smallest dominating setWB for the graph G.
By contrary, suppose that there exists a dominating setW′ ⊆ V for graph G such that |W′| < |WB |. Let
B′ = {aj ∈ AεG : vj ∈W′}. Because W′ is a dominating set, we have that for each ui ∈ {u1, . . . , u|V|}
either vi ∈W′ or (vi, vj) ∈ E for some vj ∈W′. In terms of the constructed decision table it means that
for each ui ∈ {u1, . . . , u|V|} there exists at least one attribute aj ∈ B′ such that aj(ui) = 1. So, the
attribute subset B′ discerns all objects {u1, . . . , u|V|} from all objects {u|V|+1, . . . , u|V|+t(ε)}. It means
that B′ is also a relative γ-decision ε-superreduct but with fewer elements. This means contradiction
because then there would be also a γ-decision ε-reduct with fewer attributes than B.

Proposition 7. Let ε ∈ [0, 1) be given. The problem of finding a minimal γ-decision ε-reduct for a
decision table A = (U,A ∪ {d}) is NP-hard.

Proof. The construction of AεG described in Proposition 6 gives a consistent decision table. As a
consequence, the inequality solved to obtain the proper value for t has the same form here. Therefore,
the proof for minimal γ-decision ε-reducts is the same as in Proposition 6.
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1 2

34

5 6

78

Aε
G︷ ︸︸ ︷

Uε
G a1 a2 a3 a4 a5 a6 a7 a8 dε

G
u1 1 1 0 1 1 0 0 0 0
u2 1 1 1 0 0 1 0 0 0
u3 0 1 1 1 0 0 1 0 0
u4 1 0 1 1 0 0 0 1 0
u5 1 0 0 0 1 1 0 1 0
u6 0 1 0 0 1 1 1 0 0
u7 0 0 1 0 0 1 1 1 0
u8 0 0 0 1 1 0 1 1 0
u8+1 0 0 0 0 0 0 0 0 1
u8+2 0 0 0 0 0 0 0 0 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

u8+t(ε) 0 0 0 0 0 0 0 0 1

Figure 3.1: Example of construction of decision table AεG for graph G = (V,E).

Aε∗
G︷ ︸︸ ︷

Uε∗
G a1 a2 a3 a4 a5 a6 a7 a8 dε∗

G

u1 1 1 1 1 1 1 1 1 1
u2 2 2 1 2 2 1 1 1 2
u3 3 3 1 3 3 1 1 1 3
u4 4 4 4 4 4 4 4 4 1
u5 5 5 5 4 4 5 4 4 2
u6 6 6 6 4 4 6 4 4 3
u7 7 7 7 7 7 7 7 7 1
u8 7 8 8 8 7 7 8 7 2
u9 7 9 9 9 7 7 9 7 3
u10 10 10 10 10 10 10 10 10 1
u11 11 10 11 11 10 10 10 11 2
u12 12 10 12 12 10 10 10 12 3
u13 13 13 13 13 13 13 13 13 1
u14 14 13 13 13 14 14 13 14 2
u15 15 13 13 13 15 15 13 15 3
u16 16 16 16 16 16 16 16 16 1
u17 16 17 16 16 17 17 17 16 2
u18 16 18 16 16 18 18 18 16 3
u19 19 19 19 19 19 19 19 19 1
u20 19 19 20 19 19 20 20 20 2
u21 19 19 21 19 19 21 21 21 3
u22 22 22 22 22 22 22 22 22 1
u23 22 22 22 23 23 22 23 23 2
u24 22 22 22 24 24 22 24 24 3

Figure 3.2: Example of transformation of graph G = (V,E) displayed in Figure 3.1 to decision table
Aε∗G for ε = 0.6.
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Definition 32 (α-dominating set). Let α ∈ (0, 1] and a non-directed graph G = (V,E) be given. We
say that subset W ⊆ V is an α-dominating set for the graph G if and only if

|CovG(W)|
|V|

≥ α

where CovG(W) is a set defined like in Definition 30.

Definition 33 (minimal α-dominating set problem). For any α ∈ (0, 1], a Minimal α-Dominating Set
Problem is an optimization problem of finding a minimal subset of vertices, which is an α-dominating
set for a given undirected graph G = (V,E).

Proposition 8. For any α ∈ (0, 1], the Minimal α-Dominating Set Problem is NP-hard.

Proof. See Appendices in [134].

Proposition 9. Let ε ∈ [0, 1) be given. The problem of finding a minimal relative M -decision ε-reduct
for a decision table A = (U,A ∪ {d}) is NP-hard.

Proof. The stated problem has been already addressed in [134]. For completeness of the dissertation
we recall the ideas that lay behind this result. A polynomial reduction of the problem of finding
a minimal α-dominating set in a graph G to the problem of finding a minimal relative M -decision
ε-reduct was shown.

Using the notation from Definition 32, we have the condition for an α-dominating setW defined as
|CovG(W)|/|V| ≥ α. The problem of finding a minimal α-dominating set was proved to be NP-hard
in [134], for an arbitrary α > 0.

For a given ε ∈ [0, 1), the formula for α(ε) ∈ (0, 1] can be constructed in such a way that for
each G = (V,E) being an input to the problem of finding a minimal α(ε)-dominating set we can
polynomially (with respect to the cardinality of V) construct a decision table with its minimal relative
M -decision ε-reduct equivalent to the minimal α(ε)-dominating set in G. Let us show a polynomial
graph transformation to Aε∗G = (Uε∗G , Aε∗G ∪ {dε∗G }) that will be an input for the problem of finding a
minimal relative M -decision ε-reduct.

The constructed table has conditional attributes Aε∗G = {a1, a2, . . . , a|V|} (one for each vertex in G)
and one decision attribute dε∗G . Let us define m(ε) = b(1−ε)−1 +1c. For each vertex from vi ∈ V, m(ε)
objects are added to Uε∗G , i.e., Uε∗G = {u1, . . . , um(ε)|V|}. Each aj ∈ Aε∗G takes integers from a certain
subset of {1, . . . ,m(ε)|V|}. The decision attribute dε∗G takes integers from the set {1, . . . ,m(ε)}. Let
us define chunk(i) = d i

m(ε)e. For any ui ∈ {u1, . . . , um(ε)|V|} let us put

dε∗G (ui) = i− (chunk(i)− 1)m(ε) (3.29)

and for each aj ∈ {a1, . . . , a|V|},

aj(ui) =

 i if chunk(i) = j ∨ (vchunk(i), vj) ∈ E

(chunk(i)− 1)m(ε) + 1 otherwise
(3.30)

It is important to notice that Aε∗G is a consistent decision table. An example of construction of
reduction of a graph G to a decision table Aε∗G can be seen in Figure 3.2. Just like in the case of
Proposition 6, let us put WB = {vj ∈ V : aj ∈ B}. In [134], it was shown that in the above decision
table Aε∗G = (Uε∗G , Aε∗G ∪ {dε∗G }), for any B ⊆ Aε∗G , the value of majority function M(B) satisfies the
following equation:

M(B) = |CovG(WB)|m(ε) + |V \ CovG(WB)|
|Uε∗G |

(3.31)

Let us now put:
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α(ε) = 1− ε

1−m(ε)−1 (3.32)

For ε ∈ [0, 1) it is quite easy to show that α(ε) ∈ (0, 1], so the problem of finding a minimal α(ε)-
dominating set is NP-hard. In [134], it was shown that the inequality |CovG(WB)|/|V| ≥ α(ε) holds
in G, if and only if we have M(B) ≥ (1− ε)M(Aε∗G ) in Aε∗G . Just like in the case of Proposition 6, we
can now show that the smallest M -decision ε-reduct in Aε∗G must yield the smallest α(ε)-dominating
set in G.

Proposition 10. Let ε ∈ [0, 1) be given. The problem of finding a minimal M -decision ε-reduct for a
decision table A = (U,A ∪ {d}) is NP-hard.

Proof. Let us recall the proof of Proposition 9, where the transformation from the representation of
the problem of finding a minimal α(ε)-dominating set for a given graph G to the representation of
the problem of finding a minimal relative M -decision ε-reduct was based on constructing consistent
decision table Aε∗G . Thus, as for consistent decision tables the conditions M(B) ≥ (1 − ε)M(A) and
M(B) ≥ 1 − ε are equivalent, the proof of NP-hardness for M -decision ε-reducts can be the same as
for relative M -decision ε-reducts.

Proposition 11. Let ε ∈ [0, 1) be given. The problem of finding a minimal relative R-decision ε-reduct
for a decision table A = (U,A ∪ {d}) is NP-hard.

Proof. To prove the proposition’s claim let us focus on the Proposition 9. The constructions and
calculations presented there, for the purposes of this proposition will remain unchanged. It is enough
to notice that in case of the constructed decision table Aε∗G that corresponds to a graph G, the use
of measure R from Definition 28 instead of the measure M does not change the proof. Namely, in
decision table Aε∗G , we have R(B) = M(B) for any B ⊆ Aε∗G .

Proposition 12. Let ε ∈ [0, 1) be given. The problem of finding a minimal R-decision ε-reduct for a
decision table A = (U,A ∪ {d}) is NP-hard.

Proof. It can be based on the same observation as in the proof of Proposition 10, but now for function
R instead of M .



Chapter 4

Foundations of Decision Bireducts

The aim of this chapter is to introduce and provide a comprehensive understanding of the notion
of decision bireducts, which can be seen as an extension of classical decision reducts. The notion
emphasizes on both a subset of attributes that describe decisions and a subset of objects for which
that description is valid. Decision bireducts offer a simple, flexible, and explicit approach to knowledge
representation. We explore other variants of this concept and highlight analogies and differences
compared to standard and approximate decision reducts from the theory of rough sets. Furthermore,
our focus also includes ensembles of decision bireducts, where we investigate their properties and define
optimization criteria.

4.1 Decision Bireducts
The first formulation of decision bireducts occurred in [140], where their Boolean characterization
was described and a simple randomized algorithm aimed at their heuristic extraction from data was
proposed by the analogy to classical decision reducts [3]. As mentioned in Chapter 1, the motivation to
introduce decision bireducts was to facilitate an explicit analysis whether a classifier ensemble designed
using different selected subsets of attributes do not repeat classification mistakes on the same objects
in the training data set. Experiments reported in [140, 119], showed that diversification of subsets of
attributes in this respect may be important in practice. This makes decision bireducts a clear and
simple rough-set-based counterpart of some ensemble methods used in machine learning. In particular
it was discussed in what sense ensembles of decision bireducts are better than ensembles of approximate
reducts, which – although quite useful in practice [124] – do not allow for explicit analysis whether
particular reducts repeat mistakes on the same objects.

Definition 34 (decision bireduct). Let A = (U,A ∪ {d}) and B ⊆ A, X ⊆ U be given. We say that
B determines d within X , further denoted as B VX d, if and only if B discerns all pairs ui, uj ∈ X
such that d(ui) 6= d(uj). Further, we say that the pair (X , B) is a decision bireduct, if and only if the
following holds:

1. There is B VX d,

2. There is no proper subset B′ ( B such that B′ VX d,

3. There is no proper superset X ′ ) X such that B VX ′ d.

We say that the objects in X are covered by the bireduct (X , B) and the objects in U \X are uncovered
by the bireduct (X , B).

A decision bireduct (X , B) can be regarded as the basis for an inexact functional dependency linking
the subset of attributes B with the decision d in a degree X , denoted as B VX d in Definition 34.

35
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Every decision bireduct (X , B) may be understood as a pair consisting of an irreducible subset of
attributes that can be evaluated by means of a non-extendable subset of objects for which it provides
good classification. It was shown in [119] that X is actually the set-theoretic sum of objects supporting
deterministic rules using the values of attributes in B to describe the values of d. Furthermore, the
objects in U \ X can be treated as outliers of B VX d.
Proposition 13. Let A = (U,A ∪ {d}) be given. The following two monotony properties hold:

1. Let B ⊆ B′ ⊆ A and X ⊆ U be given. If B VX d, then B′ VX d.

2. Let B ⊆ A and X ′ ⊆ X ⊆ U be given. If B VX d, then B VX ′ d.
Proof. (1.) Since there is B VX d, we know that B discerns all pairs ui, uj ∈ X for which d(ui) 6= d(uj).
It means that for each such pair there exists a ∈ B that discerns the objects, i.e., a(ui) 6= a(uj). As
B ⊆ B′, the same fact holds for B′ and therefore B′ VX d. (2.) We know that B discerns all
pairs ui, uj ∈ X such that d(ui) 6= d(uj). As X ′ ⊆ X , the same fact holds for X ′ which means that
B VX ′ d.

The following result illustrates that decision reducts recalled in Definition 19 can be embedded into
the space of decision bireducts.
Proposition 14. Let A = (U,A ∪ {d}) and B ⊆ A be given. B is a decision reduct, if and only if
(U,B) is a decision bireduct.
Proof. (⇒) If B is a decision reduct, then from Definition 19 we have that B is an irreducible subset
of attributes that discerns all pairs ui, uj ∈ U such that d(ui) 6= d(uj). Thus, (U,B) is a decision
bireduct. (⇐) If (U,B) is a decision bireduct, then from Definition 34 we know that B VU d and
there is no proper B′ ( B such that B′ VU d. Thus, B is a decision reduct.

On the other hand, decision bireducts can be represented using terminology of decision reducts as
follows:
Proposition 15. Let A = (U,A ∪ {d}) be given. For B ⊆ A and X ⊆ U , denote by ABX = (X , B ∪ {d})
the decision table obtained from A by removing objects outside X and attributes outside B. Then (X , B)
is a decision bireduct for A, if and only if both of the following conditions hold:

1. ABX is consistent and there is no X ′ ) X such that ABX ′ is consistent,

2. B is a decision reduct for ABX .
Proof. (⇒) If (X , B) is a decision bireduct, then from Definition 34 we have that B VX d and there
is no proper subset B′ ( B such that B′ VX d. Thus, B is a decision reduct for ABX . This implies
also that ABX is consistent. Finally, the fact that there is no proper superset X ′ ) X such that
B VX ′ d, implies that there is no X ′ ) X such that ABX ′ is consistent. (⇐) We need to check the three
properties that define a decision bireduct in Definition 34. If B is a decision reduct for ABX , then from
Definition 19 we know that B is irreducible subset of attributes that discern all pairs ui, uj ∈ X such
that d(ui) 6= d(uj). Thus, B VX d and there is no proper subset B′ ( B such that B′ VX d. Finally,
using the statement that there is no X ′ ) X such that ABX ′ is consistent we have the third property of
the decision bireduct definition, i.e., there is no proper superset X ′ ) X such that B VX ′ d.

The above results help to adapt algorithms developed for searching standard decision reducts for
the purpose of decision bireducts. Still, operating with decision bireducts provides wider possibilities
of discovering and representing relationships in data. Each decision bireduct (X , B) can be regarded
as the basis for an inexact functional dependency linking the subset of attributes B with the decision
d in a degree X . This means that B yields decision rules determining decision classes within X , but
possibly having counterexamples in U \ X . This is a different rule-related interpretation than in the
case of positive regions in Section 3.2, where only deterministic rules are considered. We can say
that the rules corresponding to a decision bireduct (X , B) are deterministic only when we restrict the
universe of objects to the subset X ⊆ U .
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Proposition 16. Let A = (U,A ∪ {d}) be given and (X , B) be a decision bireduct for A. The following
statements are true:

1. For each E ∈ U/B, all objects in X ∩ E have the same decision value, further denoted as
vd(X∩E) ∈ Vd,

2. For each E ∈ U/B, all objects in E which have value vd(X∩E) ∈ Vd on d are contained in X ,

3. X equals to the union of supports of the following set of decision rules:

Rules(X , B) =
{∧
a∈B

(a = a(u))⇒(d = d(u)) : u ∈ X
}

(4.1)

Proof. (1.) Suppose that X ∩ E contains objects from more than one decision class, i.e., there are
objects ui, uj ∈ X ∩ E such that d(ui) 6= d(uj). It would violate Definition 34 – if d(ui) 6= d(uj),
then there must exist a ∈ B such that a(ui) 6= a(uj), so ui and uj cannot belong to the same E. (2.)
Suppose that X ∩E contains objects with the same decision but there is also u ∈ E \X with the same
decision as objects in X ∩E. It would violate Definition 34 – there would exist a superset X ∪{u} ) X
such that B VX∪{u} d. (3.) Because each u ∈ X belongs to the support of its corresponding rule∧
a∈B(a = a(u))⇒(d = d(u)), we know that X is a subset of the considered union. Now, suppose that

there exists ui ∈ U \X which supports a rule in Rules(X , B). It would mean that there exists uj ∈ X
such that d(ui) = d(uj) and a(ui) = a(uj) for every a ∈ B. However, in such a case B VX d could be
actually extended toward B VX∪{ui} d, so (X , B) would not be a decision bireduct.

Proposition 16 was formulated to better illustrate how decision rules can be generated from deci-
sion bireducts. In other words, it shows in what sense decision bireducts (X , B) can be equivalently
represented by collections of decision rules with predecessors based on attributes in B and supporting
sets of objects summing up to X . We refer to Table 4.1 for some examples of decision bireducts and
their corresponding decision rules.
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Table 4.1: Decision rules generated from decision bireducts (J1..3, 6..9, 11..14K, {O,H}) and
(J1..4, 6..10, 12, 13K, {O, T}) along with the sets of objects that support them for the decision table
from Table 3.1.

decision bireduct (J1..3, 6..9, 11..14K, {O,H})
decision rules support
(O = overcast) ∧ (H = high)⇒(d = yes) J3, 12K
(O = overcast) ∧ (H = normal)⇒(d = yes) J7, 13K
(O = rain) ∧ (H = high)⇒(d = no) J14K
(O = rain) ∧ (H = normal)⇒(d = no) J6K
(O = sunny) ∧ (H = high)⇒(d = no) J1, 2, 8K
(O = sunny) ∧ (H = normal)⇒(d = yes) J9, 11K

decision bireduct (J1..4, 6..10, 12, 13K, {O, T})
decision rules support
(O = overcast) ∧ (T = cool)⇒(d = yes) J7K
(O = overcast) ∧ (T = hot)⇒(d = yes) J3, 13K
(O = overcast) ∧ (T = mild)⇒(d = yes) J12K
(O = rain) ∧ (T = cool)⇒(d = no) J6K
(O = rain) ∧ (T = mild)⇒(d = yes) J4, 10K
(O = sunny) ∧ (T = cool)⇒(d = yes) J9K
(O = sunny) ∧ (T = hot)⇒(d = no) J1, 2K
(O = sunny) ∧ (T = mild)⇒(d = no) J8K

4.2 γ-Decision Bireducts
In [140], the following modification of Definition 34 was also considered:

Definition 35 (γ-decision bireduct). Let A = (U,A ∪ {d}) and subsets X ⊆ U , B ⊆ A be given. We
say that B γ-determines d within X , further denoted as B Vγ

X d, if and only if B discerns all pairs
ui ∈ X , uj ∈ U such that d(ui) 6= d(uj). Further, we say that the pair (X , B) is a γ-decision bireduct,
if and only if the following holds:

1. There is B Vγ
X d,

2. There is no proper subset B′ ( B such that B′ Vγ
X d,

3. There is no proper superset X ′ ) X such that B Vγ
X ′ d.

We say that the objects in X are γ-covered by the γ-decision bireduct (X , B) and the objects in U \ X
are γ-uncovered by the γ-decision bireduct (X , B).

In contrary to decision bireducts it imposes the requirement that objects belonging to the γ-
decision bireduct should be discerned not only in a context of X but with respect to the entire U .
Basic properties of both considered versions of a decision bireduct remain similar to each other:

Proposition 17. Let A = (U,A ∪ {d}) be given. The following two monotony properties hold:

1. Let X ⊆ U and B ⊆ B′ ⊆ A be given. If B Vγ
X d, then B′ Vγ

X d.

2. Let X ′ ⊆ X ⊆ U and B ⊆ A be given. If B Vγ
X d, then B Vγ

X ′ d.

Proof. The proof is analogous to the proof of Proposition 13.
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Proposition 18. Let A = (U,A ∪ {d}) and B ⊆ A be given. B is a decision reduct, if and only if
(U,B) is a γ-decision bireduct.

Proof. (⇒) If B is a decision reduct, then from Definition 19 we have that B is an irreducible subset
of attributes that discerns all pairs ui, uj ∈ U such that d(ui) 6= d(uj). As a result, (U,B) is also
a γ-decision bireduct. (⇐) If (U,B) is a γ-decision bireduct, then from Definition 35 we know that
B Vγ

U d and there is no B′ ( B such that B′ Vγ
U d. It means that B is a decision reduct.

As before, a γ-decision bireduct (X , B) can be regarded as an inexact functional dependency linking
the subset of attributes B with the decision d in a degree X where γ in Vγ

X indicates a type of
dependence. The difference between the two mentioned kinds of decision bireducts lies in the scope of
considered objects. The latter type focuses on the discernibility on the whole set of objects, while the
former considers a local scope and ensures discernibility only among the objects covered by a given
decision bireduct. This may lead toward different ways of applying both versions of decision bireducts
in practice. For example, in [118] we considered incremental computation of decision bireducts over
data stream buffers. In such a case, U cannot be accessed as a whole, so the only way to proceed is
to adapt Definition 34. On the other hand, an advantage of γ-decision bireducts is their analogy to
positive regions. Indeed, in Definition 35, the object can be added to X , only if it belongs to POS(B).
This is actually why we use “γ” while talking about γ-decision bireducts.

Proposition 19. Let A = (U,A ∪ {d}) be given. Let subsets B ⊆ A and X ⊆ U be given. Then (X , B)
is a γ-decision bireduct, if and only if the following two properties hold:

1. X = POS(B),

2. There is no proper subset B′ ( B such that POS(B′) = POS(B).

Proof. (⇐) We need to check three requirements for a γ-decision bireduct. Let us first show that
B Vγ

POS(B) d holds. Suppose that B 6Vγ
POS(B) d. Following Definition 35 there would exist a pair of

objects ui ∈ POS(B), uj ∈ U which is not discerned by B and such that d(ui) 6= d(uj). However, this
would mean that uj ∈ [ui]B , so – according to Equation (3.15) – ui could not belong to POS(B). Let
us now proceed with the third requirement in Definition 35. If B Vγ

X d held for some X ) POS(B),
then POS(B) could be extended – a contradiction. Finally, consider the second requirement for (X , B)
to be a γ-decision bireduct. By following the same reasoning as above, we know that for any B′ ( B
we can have B′ 6Vγ

X ′ d only for subsets X ′ ⊆ POS(B′). Given POS(B′)  POS(B), we also know that
there is no B′ ( B such that B′ 6Vγ

POS(B) d holds. (⇒) Suppose that X 6= POS(B). This means that
either POS(B) \ X 6= ∅ or X \ POS(B) 6= ∅. In the first case, we would have u ∈ POS(B) \ X . From
Definition 23 we know that for u ∈ POS(B) all objects in [u]B have the same value for d. However, this
means that the whole [u]B should be included in X because, otherwise, X would not be non-extendable.
In the second case, we would have u ∈ X \ POS(B). It would mean that [u]B contains objects from
more than one decision class because otherwise it would be contained in POS(B). This also leads to
contradiction because we would then have at least one pair of objects ui = u ∈ X and uj ∈ U that
is not discerned by B, such that d(ui) 6= d(uj), thus violating the definition of a γ-decision bireduct.
Hence, X = POS(B). Now, suppose that there exists B′ ( B such that POS(B) = POS(B′). As we
have just shown above, we know that B′ Vγ

POS(B′) d. Therefore, because X = POS(B) = POS(B′),
we would have that B′ Vγ

X d. It would contradict with the requirement of irreducibility of B in
Definition 35.

Proposition 19 leads to several simple and useful observations. First of all, we can transform the
problem of searching for γ-decision bireducts in a decision table A = (U,A ∪ {d}) to the problem of
searching decision reducts in a modified decision table AγA = (U,A ∪ {dγA}) described in Section 3.2 as
the applied modification leaves the objects from the positive region in the original table unchanged
(see an example in Table 3.3).
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Also, as a consequence of the considered proposition, if (X , B) is a γ-decision bireduct for A, then
there is no other subset U ⊇ X ′ 6= X , such that (X ′, B) is also a γ-decision bireduct. In other words,
for a given B there can be at most one γ-decision bireduct with that attribute subset. The assumption
of the existence of such a subset U ⊇ X ′ 6= X such that (X ′, B) is a γ-decision bireduct will lead to a
contradiction. Without loss of generality let us assume that X ′ \X 6= ∅ and let u ∈ X ′ \X . There are
two possibilities either [u]B contains objects from exactly one decision class or more than one decision
class. If the former possibility holds, then (X , B) is not a γ-decision bireduct as its subset of objects
may be extended by [u]B . If the latter possibility holds, then we can show at least one pair of objects
ui = u ∈ X ′, uj ∈ [u]B not discerned by B, such that d(ui) 6= d(uj), thus also violating the definition
of γ-decision bireduct.

Table 4.2 presents decision bireducts and γ-decision bireducts for the data in Table 3.1. One can
notice that, unlike in the case of γ-decision bireducts, the same B ⊆ A can potentially occur as a
component of many decision bireducts, with different subsets of objects. Moreover, when comparing
the same subsets B ⊆ A, the corresponding subsets X ⊆ U are usually larger for decision bireducts
than for γ-decision bireducts. This is because the conditions for belonging to X are more restrictive
in Definition 35 than in Definition 34.

The last observation based on Proposition 19 is that γ-decision bireducts can be interpreted by
means of decision rules just like in the case of γ-decision reducts in Section 3.2. More precisely, it is
possible to formulate a statement analogous to Proposition 16, now for γ-decision bireducts. Certainly,
for a γ-decision bireduct (X , B), where X = POS(B), the rules with supports summing up to X will
be all deterministic with respect to the whole U . We can describe such rules as follows:

Rulesγ(POS(B), B) =
{∧
a∈B

(a = a(u))⇒(d = d(u)) : u ∈ POS(B)
}

(4.2)

In Table 4.3 one can find rules generated for sample γ-decision bireducts. The way of their for-
mulation and usage during classification of new cases is the same as for γ-decision reducts considered
in Section 3.2. In general, the support and confidence coefficients of decision rules generated from
decision bireducts and γ-decision bireducts can be utilized during the new case classification just like
in other rule based decision systems. In particular, when dealing with ensembles of decision bireducts
or γ-decision bireducts [140], we can use analogous voting mechanisms as those considered in other
rough set related approaches based on reducts and rules [143].
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Table 4.2: A complete list of decision bireducts and γ-decision bireducts for Table 3.1. It is presented
in a tabular form where each row corresponds to a subset of attributes B ⊆ A, while the cells in the
appropriate columns contain all possible subsets of objects X ⊆ U such that (X , B) forms a decision
bireduct or a γ-decision bireduct. The cells containing NA mean that for a given attribute subset, there
is no subset of objects such that they meet the criteria of Definition 34 or Definition 35, respectively.
Specifically, for {O, T,H,W} the results are not available because, due to the characteristics of the
decision table, there is redundancy in the whole set of attributes and hence the attributes irreducibility
condition is not satisfied for Definitions 34 and 35, respectively.

B ⊆ A X for decision bireducts (X , B) X for γ-decision bireduct (X , B)

∅ J1, 2, 6, 8, 14K; J3..5, 7, 9..13K ∅
{O} J1..5, 7, 8, 10, 12, 13K; J1..3, 6..8, 12..14K;

J3, 6, 7, 9, 11..14K
J3, 7, 12, 13K

{T} J1, 2, 4, 5, 7, 9..12K; J1, 2, 4, 6, 10..12K;
J1, 2, 5, 7..9, 14K; J3, 4, 6, 10..13K;
J3, 5, 7..9, 13, 14K; J3, 6, 8, 13, 14K

NA

{H} J1, 2, 5, 7..11, 13, 14K; J3, 4, 6, 12K NA
{W} J1, 7, 8, 11, 12K; J2..6, 9, 10, 13, 14K NA
{O, T} J1..5, 7..10, 12, 13K; J1..5, 7, 9..13K;

J1..4, 6..10, 12, 13K; J1..4, 6, 7, 9..13K;
J1..3, 5, 7..9, 12..14K; J1..3, 5, 7, 9, 11..14K;
J1..3, 6..9, 12..14K; J1..3, 6, 7, 9, 11..14K

J1..3, 7, 9, 12, 13K

{O,H} J1..5, 7..13K; J1..4, 6..9, 11..13K;
J1..3, 5, 7..14K; J1..3, 6..9, 11..14K;

J1..3, 7..9, 11..13K

{O,W} J1..8, 10, 12..14K; J1, 3..8, 10..14K;
J2..7, 9, 10, 12..14K; J3..7, 9..14K

J3..7, 10, 12..14K

{T,H} J1, 2, 4, 5, 7, 9..13K; J1, 2, 4, 6, 10..13K;
J1, 2, 6, 8, 10, 11, 13, 14K;
J3, 5, 7..11, 13, 14K; J3, 6, 8, 10, 11, 13, 14K

J10, 11, 13K

{T,W} J1, 2, 4..6, 9..12K; J1, 2, 4..6, 9, 10, 14K;
J1, 2, 4, 5, 7, 9, 10, 14K;
J1, 2, 5, 6, 8, 9, 11, 12K; J1, 2, 5, 6, 8, 9, 14K;
J1, 2, 5, 7..9, 11, 12K; J2..6, 9..13K;
J2..5, 7, 9..13K; J2..5, 7, 9, 10, 13, 14K;
J2, 3, 5, 6, 8, 9, 11..13K;
J2, 3, 5, 6, 8, 9, 13, 14K;
J2, 3, 5, 7..9, 11..13K; J2, 3, 5, 7..9, 13, 14K

J2, 5, 9K

{H,W} J1, 2, 5, 6, 8..10, 13, 14K;
J1, 5, 6, 8..10, 12, 13K; J1, 5, 7..13K;
J2..5, 7, 9..11, 13, 14K; J3..6, 9, 10, 12, 13K

J5, 9, 10, 13K

{O, T,H} J1..4, 6..13K; J1..3, 6..14K J1..3, 7..13K
{O, T,W} J1..14K J1..14K
{O,H,W} J1..14K J1..14K
{T,H,W} J1, 2, 4..6, 9..13K; J1, 2, 4..6, 9..11, 13, 14K;

J1, 2, 4, 5, 7, 9..11, 13, 14K;
J1, 2, 5, 6, 8..13K; J1, 2, 5, 6, 8..11, 13, 14K;
J1, 2, 5, 7..13K; J2..6, 9..11, 13, 14K;
J2, 3, 5, 6, 8..13K; J2, 3, 5, 6, 8..11, 13, 14K;
J2, 3, 5, 7..13K; J2, 3, 5, 7..11, 13, 14K

J2, 5, 9..11, 13K

{O, T,H,W} NA NA
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Table 4.3: Decision rules generated from γ-decision bireducts (J1..3, 7..9, 11..13K, {O,H}) and
(J1..3, 7, 9, 12, 13K, {O, T}) along with the sets of objects that support them.

γ-decision bireduct (J1..3, 7..9, 11..13K, {O,H})
decision rules support
(O = overcast) ∧ (H = high)⇒(d = yes) J3, 12K
(O = overcast) ∧ (H = normal)⇒(d = yes) J7, 13K
(O = sunny) ∧ (H = high)⇒(d = no) J1, 2, 8K
(O = sunny) ∧ (H = normal)⇒(d = yes) J9, 11K

γ-decision bireduct (J1..3, 7, 9, 12, 13K, {O, T})
decision rules support
(O = overcast) ∧ (T = cool)⇒(d = yes) J7K
(O = overcast) ∧ (T = hot)⇒(d = yes) J3, 13K
(O = overcast) ∧ (T = mild)⇒(d = yes) J12K
(O = sunny) ∧ (T = cool)⇒(d = yes) J9K
(O = sunny) ∧ (T = hot)⇒(d = no) J1, 2K

4.3 Heuristic Search for Decision Bireducts
There are a number of possible approaches to searching for decision bireducts. Let us recall and
extend some previously obtained results linking decision bireducts with prime implicants of Boolean
formulae representing discernibility in decision tables [140]. As we know, information regarding all
differences between objects from different decision classes in a table A = (U,A ∪ {d}) can be represented
(see Proposition 2) by a formula τ =

∧
ui,uj∈U :i<j∧d(ui) 6=d(uj)

∨
a∈A:a(ui)6=a(uj) a which encodes the

discernibility matrix of A. The set of all decision reducts of A can be constructed by considering
all prime implicants of τ [95]. By an analogy to this result, we can work with decision bireducts by
adapting some well-known Boolean techniques [16]. A similar approach was also taken by researchers
working on other methods related to rough sets, e.g., in the context of association rules [86]. One can
also refer to the methods presented in this subsection as algorithmic constructions which reformulate
the input data in order to harness previously developed attribute reduction heuristics directly to the
task of searching for decision bireducts. The first of such considered methods refers to the following
representation:

Proposition 20. Let A = (U,A ∪ {d}) be given. Consider the following Boolean formula with propo-
sitional variables i, for i = 1, . . . , |U |, and a for a ∈ A:

τbi =
∧
ui,uj∈U :i<j∧d(ui)6=d(uj)

(
i ∨ j ∨

∨
a∈A:a(ui)6=a(uj) a

)
(4.3)

An arbitrary pair (X , B), where X ⊆ U , B ⊆ A, is a decision bireduct, if and only if the Boolean
formula

∧
ui∈U\X i ∧

∧
a∈B a is a prime implicant for τbi.

Proof. A product term of literals P is an implicant of a Boolean formula τ , if the fact that P is
evaluated to true always implies that τ is evaluated to true as well. A prime implicant of a Boolean
formula is an implicant that is minimal with regard to inclusion, i.e., removing any of its literals causes
that it is no longer an implicant.

Let B ⊆ A and X ⊆ U be given. Consider P =
∧
ui∈U\X i ∧

∧
a∈B a. As a first step, we will show

that:

B VX d ⇐⇒ P is an implicant for τbi (4.4)
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(⇒) Suppose that P is not an implicant for τbi. Hence, there exists a valuation of propositional
variables for which P is true but τbi is false. Thus, there is at least one clause in the form of
fλ =

(
iλ ∨ jλ ∨

∨
a∈A:a(uiλ ) 6=a(ujλ ) a

)
, where uiλ , ujλ ∈ U and d(uiλ) 6= d(ujλ), which is false for the

considered valuation. As fλ is a disjunction of propositional variables, all of its elements have to be
assigned with false. Since P is true and both iλ and jλ are false, it means that neither iλ nor jλ are
a part of P and in a consequence, as P contains the variables that correspond to all objects in U \ X ,
we know that uiλ , ujλ ∈ X . We also know that P cannot contain the variables that correspond to
attributes for which uiλ and ujλ have different values, i.e., for all a ∈ A such that a(uiλ) 6= a(ujλ), we
know that a /∈ B. This means that there are at least two objects uiλ , ujλ ∈ X such that d(uiλ) 6= d(ujλ),
which are not discerned by B. Therefore, B VX d does not hold.
(⇐) Suppose that B VX d does not hold. This means that there exists at least one pair of objects
uiλ , ujλ ∈ X such that d(uiλ) 6= d(ujλ), which is not discerned by B. Consider the corresponding
clause fλ =

(
iλ ∨ jλ ∨

∨
a∈A,a(uiλ ) 6=a(ujλ ) a

)
. Let us as assign false to the variables in fλ and true to

all others. For such valuation, P is true because it does not share any elements with fλ. On the other
hand, τbi is false. Thus, P is not an implicant for τbi.
Now, using Equation (4.4), we show the desired equivalence:

(X , B) is a decision bireduct ⇐⇒ P is a prime implicant for τbi (4.5)

(⇒) Suppose that P is not a prime implicant for τbi. We have two possibilities. The first one is that P
is not an implicant – this is, however, immediately resolved by Equation (4.4). The second possibility
is that P is an implicant but not a prime implicant. This means that we can remove at least one
element of P while still preserving the property of being an implicant. There are two cases:

• A variable that can be removed from P corresponds to an object uiλ ∈ U \X . Then the Boolean
formula P ′ =

∧
ui∈U\(X∪{uiλ})

i ∧
∧
a∈B a is an implicant for τbi. From Equation (4.4) we know

that B VX∪{uiλ} d and therefore (X , B) is not a decision bireduct, since there exists a proper
superset X ∪{uiλ} ) X for which inexact functional dependency between attributes and decision
holds.

• A variable that can be removed from P corresponds to an attribute aλ ∈ B. Then the Boolean
formula P ′ =

∧
ui∈U\X i ∧

∧
a∈(B\{aλ}) a is an implicant for τbi. From Equation (4.4) we know

that B \ {aλ} VX d and therefore (X , B) is not a decision bireduct, since there exists a proper
subset B \ {aλ} ( B for which inexact functional dependency between attributes and decision
holds.

(⇐) Suppose that (X , B) is not a decision bireduct for A. We have three possibilities:

• There is B 6VX d. Then from Equation (4.4) we know that P =
∧
ui∈U\X i ∧

∧
a∈B a is not an

implicant.

• There exists a proper subset B′ ( B such that B′ VX d. Then from Equation (4.4) we have
that P ′ =

∧
ui∈U\X i ∧

∧
a∈B′ a is an implicant for τbi. Therefore, P is not a prime implicant.

• There exists a proper superset X ′ ) X such that B VX ′ d. Then from Equation (4.4) we know
that P ′ =

∧
ui∈U\X ′ i ∧

∧
a∈B a is an implicant for τbi. Therefore, P is not a prime implicant.

All the above steps together finish the proof.

Proposition 20 illustrates that the number of decision bireducts is usually far higher than the number
of standard decision reducts. For instance, as already mentioned, there are only two standard decision
reducts for the decision table illustrated in Table 3.1. On the other hand, following the fact that a
Boolean formula can be represented as a disjunction of all its prime implicants, we can represent the set
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of all decision bireducts for this particular example, using the following derivation. The initial CNF
(conjunctive normal form) formula encodes the pairs of objects with different decision values (such
as u1 and u3 that differ on attribute O, or u1 and u4 that differ on O and T ). Whereas the target
DNF (disjunctive normal form) formula encodes decision bireducts (such as decision bireduct with
attributes {O, T,W} and no uncovered objects – decoded to the actual bireduct (U, {O, T,W}), or
decision bireduct with attributes {O, T} and uncovered objects u4, u6, u10, u11 – thus decoding to the
actual bireduct ({u1, u2, u3, u5, u7, u8, u9, u12, u13, u14}, {O, T})). Complete CNF and DNF formulae
representing decision bireducts for the data set presented in Table 3.1 may be seen in Table 4.4.

Proposition 20 shows a way to utilize techniques known from Boolean reasoning to search for
decision bireducts as prime implicants [85]. It also illustrates that attributes and objects are to some
extent equally important while constructing decision bireducts, analogously to some other approaches
to deriving knowledge from data [35]. This intuition has led us to the observation that we can use
various attribute reduction heuristics directly to the task of searching for decision bireducts, after an
appropriate transformation of the input data:

Proposition 21. Let A = (U,A ∪ {d}) be given. Consider a new decision table A� = (U,A ∪A� ∪ {d}),
where the number of objects in U as well as their values for original attributes in A remain unchanged,
and where the new attributes A� = {a�1 , . . . , a

�
|U |} are defined as follows:

a�j (ui) =

 1 if i = j

0 otherwise
(4.6)

Then a pair (X , B), where B ⊆ A and X ⊆ U , is a decision bireduct for A, if and only if B ∪A�X , for
A�X = {a�i ∈ A� : ui /∈ X }, is a decision reduct for A�.

Proof. (⇒) Let a decision bireduct (X , B) for A be given. We need to show that for B∪A�X , where A�X
is defined as above, the decision reduct conditions for A� are met. First, we know that B discerns all
objects from X with different decision values and – because it is non-extendable – no other object from
U \ X can be added. Therefore, to ensure discernibility among all the objects with different decision
values in A�, we need to add some of the attributes from A�. One can see that a given a�i ∈ A�
discerns object ui from all other objects. Thus, it is enough to take B ∪ A�X to ensure discernibility
in A�. Secondly, we have to show that B ∪ A�X is irreducible. Using the above reasoning, we cannot
remove any attribute from A�X because – otherwise – some of the objects with different decision values
would become indiscernible in A�. We also cannot remove any attribute from B. If we could, i.e., if
there is B′ ( B such that B′ ∪ A�X discerns all objects with different decision values in A�, then we
would have B′ VX d and (X , B) would not be a decision bireduct.
(⇐) Let a decision reduct B∪A�X for A� be given. We need to show that (X , B) is a decision bireduct
in A. Clearly, there is B VX d. Suppose that B may be reduced, i.e., there is B′ ( B such that
B′ VX d. However, in such a case B′ ∪ A�X would discern all objects with different decision values
in A�, so B ∪ A�X would not be a decision reduct – a contradiction. Secondly, suppose that we can
extend X by some object ui ∈ U \ X , i.e., there is B VX∪{ui} d. However, it would imply that
B ∪ A�X is not a decision reduct because we would be able to reduce it by removing the attribute a�i
– a contradiction.

An illustrative example of the considered transformation can be seen in Table 4.5. Certainly, it
should be treated just as a starting point for developing more efficient algorithms, because decision
tables of the form A� = (U,A ∪A� ∪ {d}) cannot be explicitly materialized for large data. On the
other hand, this representation may be a kind of inspiration for adapting attribute clustering techniques
developed for high dimensional data [54, 55] to the problem of searching for ensembles of decision
bireducts.

Formulating a representation analogous to Proposition 21 for γ-decision bireducts is still a matter of
further research. However, we have the following Boolean representation analogous to Proposition 20.
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Table 4.4: CNF and DNF formulae which encode, respectively, all decision bireduct constraints for
decision table presented in Table 3.1 and a disjunction of all prime implicants corresponding to all
decision bireducts for that data set.

CNF

τbi =
(
1 ∨ 3 ∨O

)
∧
(
1 ∨ 4 ∨O ∨ T

)
∧
(
1 ∨ 5 ∨O ∨ T ∨H

)
∧
(
1 ∨ 7 ∨O ∨ T ∨H ∨W

)
∧(

1 ∨ 9 ∨ T ∨H
)
∧
(
1 ∨ 10 ∨O ∨ T ∨H

)
∧
(
1 ∨ 11 ∨ T ∨H ∨W

)
∧
(
1 ∨ 12 ∨O ∨ T ∨W

)
∧(

1 ∨ 13 ∨O ∨H
)
∧
(
2 ∨ 3 ∨O ∨W

)
∧
(
2 ∨ 4 ∨O ∨ T ∨W

)
∧
(
2 ∨ 5 ∨O ∨ T ∨H ∨W

)
∧(

2 ∨ 7 ∨O ∨ T ∨H
)
∧
(
2 ∨ 9 ∨ T ∨H ∨W

)
∧
(
2 ∨ 10 ∨O ∨ T ∨H ∨W

)
∧
(
2 ∨ 11 ∨ T ∨H

)
∧(

2 ∨ 12 ∨O ∨ T
)
∧
(
2 ∨ 13 ∨O ∨H ∨W

)
∧
(
3 ∨ 6 ∨O ∨ T ∨H ∨W

)
∧
(
3 ∨ 8 ∨O ∨ T

)
∧(

3 ∨ 14 ∨O ∨ T ∨W
)
∧
(
4 ∨ 6 ∨ T ∨H ∨W

)
∧
(
4 ∨ 8 ∨O

)
∧
(
4 ∨ 14 ∨W

)
∧
(
5 ∨ 6 ∨W

)
∧(

5 ∨ 8 ∨O ∨ T ∨H
)
∧
(
5 ∨ 14 ∨ T ∨H ∨W

)
∧
(
6 ∨ 7 ∨O

)
∧
(
6 ∨ 9 ∨O ∨W

)
∧(

6 ∨ 10 ∨ T ∨W
)
∧
(
6 ∨ 11 ∨O ∨ T

)
∧
(
6 ∨ 12 ∨O ∨ T ∨H

)
∧
(
6 ∨ 13 ∨O ∨ T ∨W

)
∧(

7 ∨ 8 ∨O ∨ T ∨H ∨W
)
∧
(
7 ∨ 14 ∨O ∨ T ∨H

)
∧
(
8 ∨ 9 ∨ T ∨H

)
∧
(
8 ∨ 10 ∨O ∨H

)
∧(

8 ∨ 11 ∨H ∨W
)
∧
(
8 ∨ 12 ∨O ∨W

)
∧
(
8 ∨ 13 ∨O ∨ T ∨H

)
∧
(
9 ∨ 14 ∨O ∨ T ∨H ∨W

)
∧(

10 ∨ 14 ∨H ∨W
)
∧
(
11 ∨ 14 ∨O ∨H

)
∧
(
12 ∨ 14 ∨O

)
∧
(
13 ∨ 14 ∨O ∨ T ∨H ∨W

)
DNF

τbi =
(
3 ∧ 4 ∧ 5 ∧ 7 ∧ 9 ∧ 10 ∧ 11 ∧ 12 ∧ 13

)
∨
(
1 ∧ 2 ∧ 6 ∧ 8 ∧ 14

)
∨
(
H ∧ 3 ∧ 4 ∧ 6 ∧ 12

)
∨(

H ∧ 1 ∧ 2 ∧ 5 ∧ 7 ∧ 8 ∧ 9 ∧ 10 ∧ 11 ∧ 13 ∧ 14
)
∨
(
H ∧W ∧ 3 ∧ 4 ∧ 7 ∧ 11 ∧ 12

)
∨(

H ∧W ∧ 2 ∧ 3 ∧ 4 ∧ 7 ∧ 11 ∧ 14
)
∨
(
H ∧W ∧ 2 ∧ 3 ∧ 4 ∧ 6 ∧ 14

)
∨
(
H ∧W ∧ 1 ∧ 6 ∧ 8 ∧ 12

)
∨(

H ∧W ∧ 1 ∧ 2 ∧ 7 ∧ 8 ∧ 11 ∧ 14
)
∨
(
O ∧ 6 ∧ 9 ∧ 11 ∧ 14

)
∨
(
O ∧ 4 ∧ 5 ∧ 9 ∧ 10 ∧ 11

)
∨(

O ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 8 ∧ 10
)
∨
(
O ∧H ∧ 6 ∧ 14

)
∨
(
O ∧H ∧ 5 ∧ 10 ∧ 14

)
∨
(
O ∧H ∧ 4 ∧ 6

)
∨(

O ∧H ∧ 4 ∧ 5 ∧ 10
)
∨
(
O ∧H ∧W

)
∨
(
O ∧ T ∧ 6 ∧ 11 ∧ 14

)
∨
(
O ∧ T ∧ 6 ∧ 8 ∧ 14

)
∨(

O ∧ T ∧ 5 ∧ 11 ∧ 14
)
∨
(
O ∧ T ∧ 5 ∧ 8 ∧ 14

)
∨
(
O ∧ T ∧ 4 ∧ 6 ∧ 10 ∧ 11

)
∨
(
O ∧ T ∧ 4 ∧ 6 ∧ 8 ∧ 10

)
∨(

O ∧ T ∧ 4 ∧ 5 ∧ 10 ∧ 11
)
∨
(
O ∧ T ∧ 4 ∧ 5 ∧ 8 ∧ 10

)
∨
(
O ∧ T ∧H ∧ 5 ∧ 14

)
∨(

O ∧ T ∧H ∧ 4 ∧ 5
)
∨
(
O ∧ T ∧W

)
∨
(
O ∧W ∧ 9 ∧ 11

)
∨
(
O ∧W ∧ 2 ∧ 9

)
∨
(
O ∧W ∧ 1 ∧ 8 ∧ 11

)
∨(

O ∧W ∧ 1 ∧ 2 ∧ 8
)
∨
(
T ∧ 3 ∧ 6 ∧ 8 ∧ 13 ∧ 14

)
∨
(
T ∧ 3 ∧ 5 ∧ 7 ∧ 8 ∧ 9 ∧ 13 ∧ 14

)
∨(

T ∧ 3 ∧ 4 ∧ 6 ∧ 10 ∧ 11 ∧ 12 ∧ 13
)
∨
(
T ∧ 1 ∧ 2 ∧ 5 ∧ 7 ∧ 8 ∧ 9 ∧ 14

)
∨(

T ∧ 1 ∧ 2 ∧ 4 ∧ 6 ∧ 10 ∧ 11 ∧ 12
)
∨
(
T ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 7 ∧ 9 ∧ 10 ∧ 11 ∧ 12

)
∨(

T ∧H ∧ 3 ∧ 6 ∧ 8 ∧ 14
)
∨
(
T ∧H ∧ 3 ∧ 5 ∧ 7 ∧ 8 ∧ 9 ∧ 14

)
∨
(
T ∧H ∧ 3 ∧ 4 ∧ 5 ∧ 7 ∧ 9 ∧ 12

)
∨(

T ∧H ∧ 1 ∧ 2 ∧ 4 ∧ 6 ∧ 12
)
∨
(
T ∧H ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 7 ∧ 9 ∧ 12

)
∨(

T ∧H ∧W ∧ 3 ∧ 7 ∧ 8 ∧ 14
)
∨
(
T ∧H ∧W ∧ 3 ∧ 7 ∧ 8 ∧ 12

)
∨
(
T ∧H ∧W ∧ 3 ∧ 6 ∧ 8 ∧ 12

)
∨(

T ∧H ∧W ∧ 3 ∧ 4 ∧ 7 ∧ 14
)
∨
(
T ∧H ∧W ∧ 3 ∧ 4 ∧ 7 ∧ 12

)
∨
(
T ∧H ∧W ∧ 3 ∧ 4 ∧ 6 ∧ 14

)
∨(

T ∧H ∧W ∧ 1 ∧ 7 ∧ 8 ∧ 12
)
∨
(
T ∧H ∧W ∧ 1 ∧ 4 ∧ 7 ∧ 14

)
∨
(
T ∧H ∧W ∧ 1 ∧ 4 ∧ 7 ∧ 12

)
∨(

T ∧H ∧W ∧ 1 ∧ 4 ∧ 6 ∧ 14
)
∨
(
T ∧H ∧W ∧ 1 ∧ 4 ∧ 6 ∧ 12

)
∨
(
T ∧W ∧ 3 ∧ 7 ∧ 8 ∧ 13 ∧ 14

)
∨(

T ∧W ∧ 3 ∧ 7 ∧ 8 ∧ 11 ∧ 12 ∧ 13
)
∨
(
T ∧W ∧ 3 ∧ 6 ∧ 8 ∧ 11 ∧ 12 ∧ 13

)
∨(

T ∧W ∧ 3 ∧ 4 ∧ 7 ∧ 10 ∧ 13 ∧ 14
)
∨
(
T ∧W ∧ 3 ∧ 4 ∧ 7 ∧ 10 ∧ 11 ∧ 12 ∧ 13

)
∨(

T ∧W ∧ 3 ∧ 4 ∧ 6 ∧ 10 ∧ 13 ∧ 14
)
∨
(
T ∧W ∧ 1 ∧ 7 ∧ 8 ∧ 14

)
∨
(
T ∧W ∧ 1 ∧ 6 ∧ 8 ∧ 14

)
∨(

T ∧W ∧ 1 ∧ 6 ∧ 8 ∧ 11 ∧ 12
)
∨
(
T ∧W ∧ 1 ∧ 4 ∧ 7 ∧ 10 ∧ 14

)
∨(

T ∧W ∧ 1 ∧ 4 ∧ 7 ∧ 10 ∧ 11 ∧ 12
)
∨
(
T ∧W ∧ 1 ∧ 4 ∧ 6 ∧ 10 ∧ 14

)
∨(

T ∧W ∧ 1 ∧ 4 ∧ 6 ∧ 10 ∧ 11 ∧ 12
)
∨
(
W ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 9 ∧ 10 ∧ 13 ∧ 14

)
∨(

W ∧ 1 ∧ 7 ∧ 8 ∧ 11 ∧ 12
)



46 CHAPTER 4. FOUNDATIONS OF DECISION BIREDUCTS

Table 4.5: A� = (U,A ∪A� ∪ {d}) which corresponds to A = (U,A ∪ {d}) in Table 3.1.

Outlook Temp. Humid. Wind a�
1 a�

2 a�
3 a�

4 a�
5 a�

6 a�
7 a�

8 a�
9 a�

10 a�
11 a�

12 a�
13 a�

14 Play

1 sunny hot high weak 1 0 0 0 0 0 0 0 0 0 0 0 0 0 no
2 sunny hot high strong 0 1 0 0 0 0 0 0 0 0 0 0 0 0 no
3 overcast hot high weak 0 0 1 0 0 0 0 0 0 0 0 0 0 0 yes
4 rain mild high weak 0 0 0 1 0 0 0 0 0 0 0 0 0 0 yes
5 rain cool normal weak 0 0 0 0 1 0 0 0 0 0 0 0 0 0 yes
6 rain cool normal strong 0 0 0 0 0 1 0 0 0 0 0 0 0 0 no
7 overcast cool normal strong 0 0 0 0 0 0 1 0 0 0 0 0 0 0 yes
8 sunny mild high weak 0 0 0 0 0 0 0 1 0 0 0 0 0 0 no
9 sunny cool normal weak 0 0 0 0 0 0 0 0 1 0 0 0 0 0 yes
10 rain mild normal weak 0 0 0 0 0 0 0 0 0 1 0 0 0 0 yes
11 sunny mild normal strong 0 0 0 0 0 0 0 0 0 0 1 0 0 0 yes
12 overcast mild high strong 0 0 0 0 0 0 0 0 0 0 0 1 0 0 yes
13 overcast hot normal weak 0 0 0 0 0 0 0 0 0 0 0 0 1 0 yes
14 rain mild high strong 0 0 0 0 0 0 0 0 0 0 0 0 0 1 no

This also shows that the γ-decision bireducts are more restrictive than the standard decision bireducts,
i.e., if there is no attribute selected that discerns given two objects, then none of those objects can be
contained in a γ-decision bireduct.

Proposition 22. Let A = (U,A ∪ {d}) be given. Consider the following Boolean formula with propo-
sitional variables i for i = 1, . . . , |U |, and a for a ∈ A:

τγbi =
∧
ui∈U

∧
uj∈U :d(ui)6=d(uj)

(
i ∨
∨
a∈A:a(ui)6=a(uj) a

)
(4.7)

An arbitrary pair (X , B), where X ⊆ U , B ⊆ A, is a γ-decision bireduct, if and only if the Boolean
formula

∧
ui∈U\X i ∧

∧
a∈B a is a prime implicant for τγbi.

Before we comment on the proof, let us mention about the following transformation of the above
expression that can give more insight on γ-decision bireducts:

τγbi =
∧
ui∈U

∧
uj∈U :d(ui) 6=d(uj)

(
i ∨
∨
a∈A:a(ui)6=a(uj) a

)
=
∧
ui∈U

(
i︸︷︷︸

ui /∈X

∨
∧

uj∈U :d(ui) 6=d(uj)

∨
a∈A:a(ui) 6=a(uj)

a︸ ︷︷ ︸
ui∈POS(A)

)
(4.8)

This means that, as we are interested in prime implicants, either an object belongs to the positive
region POS(A) and then it belongs to a γ-decision bireduct or, in other case, it is definitively excluded
from a γ-decision bireduct.

Proof. The proof is fully analogous to that presented for Proposition 20. At the first step, analogously
to the proof of Equation (4.4), the following can be shown for P γ =

∧
ui∈U\X i ∧

∧
a∈B a:

B Vγ
X d ⇐⇒ P γ is an implicant for τγbi (4.9)

At the second step, analogously to the proof of Equation (4.5), one can show that:

(X , B) is a γ-decision bireduct ⇐⇒ P γ is a prime implicant for τγbi (4.10)
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Complete CNF and DNF formulae representing γ-decision bireducts for the data set presented
in Table 3.1 may be seen in Table 4.6. Compared to the results presented in Table 4.4, the CNF
formula for γ-decision bireducts is longer and the DNF formula is shorter than their counterparts for
decision bireducts. The comparison of the formulae’s lengths can strengthen the intuition that because
γ-decision bireducts are more restricted by the established constraints there are fewer of them than
decision bireducts.

Table 4.6: CNF and DNF formulae which encode, respectively, all γ-decision bireduct constraints for
decision table presented in Table 3.1 and a disjunction of all prime implicants corresponding to all
γ-decision bireducts for that data set.

CNF

τγbi =
(
1 ∨O

)
∧
(
1 ∨O ∨ T

)
∧
(
1 ∨O ∨ T ∨H

)
∧
(
1 ∨O ∨ T ∨H ∨W

)
∧
(
1 ∨ T ∨H

)
∧(

1 ∨ T ∨H ∨W
)
∧
(
1 ∨O ∨ T ∨W

)
∧
(
1 ∨O ∨H

)
∧
(
2 ∨O ∨W

)
∧
(
2 ∨O ∨ T ∨W

)
∧(

2 ∨O ∨ T ∨H ∨W
)
∧
(
2 ∨O ∨ T ∨H

)
∧
(
2 ∨ T ∨H ∨W

)
∧
(
2 ∨ T ∨H

)
∧
(
2 ∨O ∨ T

)
∧(

2 ∨O ∨H ∨W
)
∧
(
3 ∨O

)
∧
(
3 ∨O ∨W

)
∧
(
3 ∨O ∨ T ∨H ∨W

)
∧
(
3 ∨O ∨ T

)
∧(

3 ∨O ∨ T ∨W
)
∧
(
4 ∨O ∨ T

)
∧
(
4 ∨O ∨ T ∨W

)
∧
(
4 ∨ T ∨H ∨W

)
∧
(
4 ∨O

)
∧
(
4 ∨W

)
∧(

5 ∨O ∨ T ∨H
)
∧
(
5 ∨O ∨ T ∨H ∨W

)
∧
(
5 ∨W

)
∧
(
5 ∨ T ∨H ∨W

)
∧
(
6 ∨O ∨ T ∨H ∨W

)
∧(

6 ∨ T ∨H ∨W
)
∧
(
6 ∨W

)
∧
(
6 ∨O

)
∧
(
6 ∨O ∨W

)
∧
(
6 ∨ T ∨W

)
∧
(
6 ∨O ∨ T

)
∧(

6 ∨O ∨ T ∨H
)
∧
(
6 ∨O ∨ T ∨W

)
∧
(
7 ∨O ∨ T ∨H ∨W

)
∧
(
7 ∨O ∨ T ∨H

)
∧
(
7 ∨O

)
∧(

8 ∨O ∨ T
)
∧
(
8 ∨O

)
∧
(
8 ∨O ∨ T ∨H

)
∧
(
8 ∨O ∨ T ∨H ∨W

)
∧
(
8 ∨ T ∨H

)
∧
(
8 ∨O ∨H

)
∧(

8 ∨H ∨W
)
∧
(
8 ∨O ∨W

)
∧
(
9 ∨ T ∨H

)
∧
(
9 ∨ T ∨H ∨W

)
∧
(
9 ∨O ∨W

)
∧(

9 ∨O ∨ T ∨H ∨W
)
∧
(
10 ∨O ∨ T ∨H

)
∧
(
10 ∨O ∨ T ∨H ∨W

)
∧
(
10 ∨ T ∨W

)
∧(

10 ∨O ∨H
)
∧
(
10 ∨H ∨W

)
∧
(
11 ∨ T ∨H ∨W

)
∧
(
11 ∨ T ∨H

)
∧
(
11 ∨O ∨ T

)
∧(

11 ∨H ∨W
)
∧
(
11 ∨O ∨H

)
∧
(
12 ∨O ∨ T ∨W

)
∧
(
12 ∨O ∨ T

)
∧
(
12 ∨O ∨ T ∨H

)
∧(

12 ∨O ∨W
)
∧
(
12 ∨O

)
∧
(
13 ∨O ∨H

)
∧
(
13 ∨O ∨H ∨W

)
∧
(
13 ∨O ∨ T ∨W

)
∧(

13 ∨O ∨ T ∨H
)
∧
(
13 ∨O ∨ T ∨H ∨W

)
∧
(
14 ∨O ∨ T ∨W

)
∧
(
14 ∨W

)
∧
(
14 ∨ T ∨H ∨W

)
∧(

14 ∨O ∨ T ∨H
)
∧
(
14 ∨O ∨ T ∨H ∨W

)
∧
(
14 ∨H ∨W

)
∧
(
14 ∨O ∨H

)
∧
(
14 ∨O

)
DNF

τγbi =
(
1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7 ∧ 8 ∧ 9 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ 14

)
∨(

H ∧W ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 6 ∧ 7 ∧ 8 ∧ 11 ∧ 12 ∧ 14
)
∨(

O ∧ 1 ∧ 2 ∧ 4 ∧ 5 ∧ 6 ∧ 8 ∧ 9 ∧ 10 ∧ 11 ∧ 14
)
∨
(
O ∧H ∧ 4 ∧ 5 ∧ 6 ∧ 10 ∧ 14

)
∨
(
O ∧H ∧W

)
∨(

O ∧ T ∧ 4 ∧ 5 ∧ 6 ∧ 8 ∧ 10 ∧ 11 ∧ 14
)
∨
(
O ∧ T ∧H ∧ 4 ∧ 5 ∧ 6 ∧ 14

)
∨
(
O ∧ T ∧W

)
∨(

O ∧W ∧ 1 ∧ 2 ∧ 8 ∧ 9 ∧ 11
)
∨
(
T ∧H ∧ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7 ∧ 8 ∧ 9 ∧ 12 ∧ 14

)
∨(

T ∧H ∧W ∧ 1 ∧ 3 ∧ 4 ∧ 6 ∧ 7 ∧ 8 ∧ 12 ∧ 14
)
∨(

T ∧W ∧ 1 ∧ 3 ∧ 4 ∧ 6 ∧ 7 ∧ 8 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ 14
)

4.4 Decision Bireduct Optimization
Some questions arise as to what is the best or optimal decision bireduct, or when we can say that
one decision bireduct is better than another. Following the idea from [140] it may be convenient to
describe decision bireducts in terms of their attributes and uncovered objects. An implicit assumption
is that decision bireducts shall minimize both those factors. Minimizing the size of the attribute subset
is quite intuitive as to its analogy with minimizing the size of decision reducts. The smaller the size,
the more general is the description of the decision table. The minimization of the size of the uncovered
set of objects is also an intuitive tendency to minimize the number of objects that do not fit to (or
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disturb) the description of the decision table contained in a decision bireduct. The minimization task
translates into maximization of the size of the objects contained in a decision bireduct. In case of
imbalanced data sets (with a large disproportion between a number of objects with a certain decision
value) the simplest form of measuring the size based on the cardinality of the subset of objects may be
insufficient. In such a case one should pay more attention to a specified subset of objects, e.g., objects
belonging to the minority decision classes.

There are a number of NP-hardness results related to extracting optimal decision reducts and
approximate reducts from data [82]. In the case of decision bireducts, one may think about quite
different optimization criteria with respect to a balance between the number of involved attributes and
objects. For example, in [140] the following function was minimized while evaluating decision bireducts
obtained from randomly generated permutations using Algorithm 1 (let us however emphasize that
this is just one of many possible ways of interpreting optimal decision bireducts):

DescLength((X , B)) = |B|
|A|

+ |U \ X |
|U |

(4.11)

The description length of a decision bireduct can be interpreted as the length of the Boolean formula
representing the corresponding prime implicant by means of the number of attributes in B and the
number of objects outside X , additionally normalized by |A| and |U |, respectively. Yet another aspect
of evaluation of decision bireducts may refer to their ensembles, where particular decision bireducts
are supposed to help each other while covering the whole U by the supports of decision rules that they
correspond to. We refer to the Section 4.5 for more details about this approach.

Regardless of the fact whether we use a single decision bireduct or their bigger ensemble, one can
formulate also some independent constraints guaranteeing, e.g., that each considered decision bireduct
cannot yield too many uncovered objects. Such form of a constraint for decision bireducts is somewhat
analogous to those studied for frequent item sets and patterns [87]. In some sense, it is related to
considering subsets of attributes that almost satisfy the constraints of decision reducts which makes it
analogous to constraints formulated for approximate decision reducts in Section 3.3. Such subsets can
be represented within the space of decision bireducts as well.

Definition 36 (decision ε-bireduct). Let ε ∈ [0, 1) be given. We say that a pair (X , B), where X ⊆ U
and B ⊆ A, is a decision ε-bireduct, if it is a decision bireduct and the following property holds:

|X | ≥ (1− ε)|U | (4.12)

An analogous definition for γ-decision ε-bireduct can be also formulated as follows:

Definition 37 (γ-decision ε-bireduct). Let ε ∈ [0, 1) be given. We say that a pair (X , B), where
B ⊆ A and X ⊆ U , is a γ-decision ε-bireduct, if it is a γ-decision bireduct and the following holds:

|X | ≥ (1− ε)|U | (4.13)

One can expect that a way of investigating the complexity of searching for decision ε-bireducts and
γ-decision ε-bireducts should have something in common with the way of approaching approximate
decision reducts. For γ-decision ε-bireducts it is obvious due to the following fact:

Proposition 23. Let ε ∈ [0, 1) be given. The following statements are true:

1. For every A = (U,A ∪ {d}), X ⊆ U and B ⊆ A, the pair (X , B) is a γ-decision ε-bireduct, if and
only if X = POS(B) and B is a γ-decision ε-reduct,

2. The problem of finding a γ-decision ε-bireduct with the minimum number of attributes is NP-hard.

Proof. Both above items are straightforward conclusions from the previous propositions.
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For decision ε-bireducts the problem is not so trivial, although the following connections seem to
be quite intuitive as well. Such connections were first studied in [117] by means of correspondence
between decision ε-bireducts and M -decision ε-reducts for function M : 2A → [0, 1] introduced in
Definition 27. The fact below is a kind of reformulation of the previously-known results but generally
it follows the same path as presented in [117].

Proposition 24. Let A = (U,A ∪ {d}) and B ⊆ A be given. B is the smallest M -decision ε-reduct in
A, if and only if there exists subset X ⊆ U such that the pair (X , B) is a decision ε-bireduct and there
are no other decision ε-bireducts with less attributes than the cardinality of B.

Proof. (⇒) Suppose that B ⊆ A is the smallest M -decision ε-reduct in A. In Definition 27 the
majority function M : 2A → [0, 1] is defined as a sum of fractions of the number of objects with the
most frequent decision to the number of all objects within the equivalence classes induced by a subset of
attributes. From Definition 26 we know that M(B) ≥ 1− ε. Hence, if we put X equals to the union of
the objects with the most frequent decision within each indiscernibility class induced by B, then (X , B)
is a decision ε-bireduct. This is because B cannot be reduced in the context of X – otherwise it could
be also reduced in the context of the M -decision ε-reduct. Also, X cannot be extended – otherwise, if
U \X is not empty, then extending X by any u ∈ U \X would violate the decision bireduct condition for
(X ∪{u}, B), as u has a different decision than objects from X that belong to the same indiscernibility
class induced by B. Let us continue the reasoning by a contradiction. Suppose that there exists a
decision ε-bireduct(X ′, B′) for which |B′| < |B|. Let us consider the indiscernibility classes induced by
B′ and the given X ′. Having no knowledge of the arrangement of the object belonging to X ′ within the
indiscernibility classes, we know that |X ′| ≥ (1− ε)|U |. If we replace the objects having not the most
common decision with those having the most frequent value within each indiscernibility class, then the
condition will also hold. This gives us that B′ is aM -decision ε-reduct that contains a smaller number
of attributes than B – a contradiction. (⇐) Suppose that (X , B) for X ⊆ U and B ⊆ A is a decision
ε-bireduct and there are no other decision ε-bireducts with less attributes than the cardinality of B.
Using the same line of reasoning as above we know that B is a M -decision ε-reduct in A. However,
suppose that it is not the smallest one and let B′ be a M -decision ε-reduct for which |B′| < |B|.
Using the argumentation from the beginning of the proof, we can show that there exists X ′ such that
(X ′, B′) is a decision ε-bireduct. This leads to a contradiction as (X ′, B′) is a decision ε-bireduct with
less attributes than in B.

In [117], some relationships between decision ε-bireducts and R-decision ε-reducts, for function
R : 2A → [0, 1] introduced in Definition 28, were considered as well. In particular, it turned out that
the subsets of attributes B ⊆ A in the outcomes (X , B) of the decision bireduct search algorithms
discussed in Section 5.1 are likely to correspond to R-decision ε-reducts, for ε u 1 − R(B)/R(A),
if – along the iterations of the algorithm – objects belonging to less frequent decision classes tend
to be added to subsets X ⊆ U relatively earlier than in the case of more frequent decisions. In this
subsection, let us however focus on studying relationships between decision ε-bireducts andM -decision
ε-reducts. Let us start by formulating the following simple corollary of Proposition 24.

Given the computational complexity results for approximate decision reducts from Section 3.3, we
are now ready to formulate an analogous result for decision ε-bireducts:

Definition 38 (minimal decision ε-bireduct problem). Let ε ∈ [0, 1) be given. By the Minimal Decision
ε-Bireduct Problem (MDεBP ) we mean a task of finding for a given decision table A = (U,A ∪ {d})
a decision ε-bireduct (X , B) with the lowest cardinality of B.

Proposition 25. For any ε ∈ [0, 1), the Minimal Decision ε-Bireduct Problem is NP-hard.

Proof. In Proposition 10, we have stated that, for each ε ∈ [0, 1) treated as a constant, the problem of
finding a minimal M -decision ε-reduct for an input decision table is NP-hard. Thus, we can propose a
straightforward reduction, where decision bireducts which are solutions for the considered optimization
problem yield the smallest M -decision ε-reducts for the same data sets. Namely, suppose that a pair
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(X , B) is a decision ε-bireduct with the lowest cardinality of B for a given table A = (U,A ∪ {d}).
Then, according to Proposition 24, the same B needs to be the smallest M -decision ε-reduct for the
same A.

To prove Proposition 25, we linked M -decision ε-reducts B ⊆ A with potentially most strongly
supported (by means of |X |) decision bireducts (X , B). This linkage was needed to set up the poly-
nomial reduction of the considered optimization problems. On the other hand, in practice, it is not
always the best idea to maximize |X |. It may turn out that some collections of decision ε-bireducts
(X , B) with relatively lower |X | – but still satisfying the constraint specified in Inequality 4.12 for a
predefined ε ∈ [0, 1) – will better “cooperate” with each other. In [140], as it can be seen also in the
next subsection, we were trying to express such cooperation by searching for ensembles of diversified
decision bireducts (X , B), with possibly different subsets X ⊆ U and B ⊆ A. Such a diversity can be
considered for both decision bireducts and γ-decision bireducts.

Let us consider an example based on the data set in Table 3.1 and focus on decision ε-bireducts.
There are 9 objects with the decision value ’yes’ and 5 objects with decision value ’no’. Without
performing any computations we can conclude that for ε ≥ 5

14 there will be only one M -decision
ε-reduct, i.e., an empty subset of attributes. For such an M -decision ε-reduct, in the decision rules
generation procedure, only one default rule pointing at the decision ’yes’ would be generated. From
the ensembles’ point of view, a smaller value ε = 4

14 for which the set of all M -decision ε-reducts
is no longer a singleton, would be far more interesting. A complete list of M -decision ε-reducts and
decision ε-bireducts for the chosen ε = 4

14 is presented in Table 4.7. We can observe that the number
of generated decision ε-bireducts is much greater than for M -decision ε-reducts.
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Table 4.7: A complete list of M -decision ε-reducts and decision ε-bireducts in Table 3.1 for ε = 4
14 .

It is presented in a tabular form where each row corresponds to a subset of attributes B ⊆ A. The
values in the second column indicate if the corresponding M -decision ε-reduct exists. Non-existence
comes from two reasons, either the value of M(B) is insufficient for ε = 4

14 (e.g., B = ∅ or B = {T})
or the subset B can be reduced (e.g., B = {O, T} where B = {O} is already a M -decision ε-reduct).
The third column contain subsets of objects X such that (X , B) form decision ε-bireducts. Comparing
with the list of all decision bireducts presented in Table 4.2 one can notice that here we have only
those with coverage |X | ≥ (1− ε)|U | = 10, cf. Definition 36.

B ⊆ A isM-decision ε-reduct value of X for decision ε-bireducts
(X , B)

∅ no NA
{O} yes J1..5, 7, 8, 10, 12, 13K
{T} no NA
{H} yes J1, 2, 5, 7..11, 13, 14K
{W} no NA

{O, T} no

J1..5, 7..10, 12, 13K, J1..5, 7, 9..13K,
J1..4, 6..10, 12, 13K, J1..4, 6, 7, 9..13K,
J1..3, 5, 7..9, 12..14K, J1..3, 5, 7, 9, 11..14K,
J1..3, 6..9, 12..14K, J1..3, 6, 7, 9, 11..14K

{O,H} no J1..5, 7..13K, J1..4, 6..9, 11..13K,
J1..3, 5, 7..14K, J1..3, 6..9, 11..14K

{O,W} no J1..8, 10, 12..14K, J1, 3..8, 10..14K,
J2..7, 9, 10, 12..14K, J3..7, 9..14K

{T,H} no J1, 2, 4, 5, 7, 9..13K
{T,W} yes J2..6, 9..13K, J2..5, 7, 9..13K
{H,W} no J2..5, 7, 9..11, 13, 14K
{O, T,H} no J1..4, 6..13K, J1..3, 6..14K
{O, T,W} no J1..14K
{O,H,W} no J1..14K

{T,H,W} no

J1, 2, 4..6, 9..13K, J1, 2, 4..6, 9..11, 13, 14K,
J1, 2, 4, 5, 7, 9..11, 13, 14K, J1, 2, 5, 6, 8..13K,
J1, 2, 5, 6, 8..11, 13, 14K, J1, 2, 5, 7..13K,
J2..6, 9..11, 13, 14K, J2, 3, 5, 6, 8..13K,
J2, 3, 5, 6, 8..11, 13, 14K, J2, 3, 5, 7..13K,
J2, 3, 5, 7..11, 13, 14K

{O, T,H,W} no NA
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4.5 Decision Bireduct Ensembles
The example outlined in Table 4.7 can give us an intuition that decision ε-bireducts may be more
flexible in construction of classifier ensembles than approximate decision reducts. In particular, such
ensembles would involve a smaller number of attributes while giving simpler and more general models.
In our example, for ε = 4

14 , the situation is even more intuitive. If we consider a task of searching
for an ensemble consisting of three components such that each object from the data set is covered
by at least two of them (i.e., any object from the training data is properly classified by at least two
of the classifiers), then it would be impossible to obtain such an ensemble for M -decision ε-reducts.
However, for decision ε-bireducts it can be accomplished in 637 (computed using a script) different
ways. Several examples are shown in Table 4.8.

In the above example, the considered ensemble of three decision ε-bireducts could enable valid
classification of the known objects and – because of simplicity of the corresponding decision rules
– could provide good classification accuracy also for the previously unseen cases. The validity of
classification on the training data is guaranteed by the fact that, in a simple voting, two out of three
rule based classifiers would be always correct while only one of them would make a mistake, if a given
object is out of the corresponding X ⊆ U .

Surely, there is also a question how to automatically extract such ensembles of decision ε-bireducts
from the data. Actually, a direct control over the approximation threshold ε ∈ [0, 1) in the algorithms
presented in Section 4.3 would require a deeper thought even for a single decision ε-bireducts. However,
even though the ratio parameter introduced in [140] does not allow to generate a decision ε-bireducts
with a specific value of ε, it can be helpful in guiding the computation process toward bireducts with
desired characteristics. The meaning of the ratio parameter, as well as its correlation with the support
of generated decision bireducts is further investigated in Section 5.4.

Figure 4.1 displays some decision bireducts derived for decision table A = (U,A ∪ {d}) with objects
U = {u1, . . . , u6} and conditional attributes A = {a1, a2, a3}. For instance, consider the pair B =
{a1, a2} and X = {u2, . . . , u6}. It corresponds to rules “if a1 = 0 and a2 = 0 then d = 0” (supported
by u2), “if a1 = 0 and a2 = 1 then d = 0” (supported by u3), “if a1 = 1 and a2 = 0 then d = 1”
(supported by u4 and u5) and “if a1 = 1 and a2 = 1 then d = 0” (supported by u6). Neither a1 nor a2
would be sufficient by itself to cover X with shorter rules. Moreover, u1 cannot be added to X because
it is inconsistent with the first rule.

The first algorithms aimed at deriving decision bireducts from the data were proposed in [140].
They were based on random generation of mixed orderings of attributes and objects – they will be
presented also later in the dissertation in Section 5.1. Such orderings were utilized to encode sequences
of attempts to remove attributes from B (starting with B = A) and add objects to X (starting with
X = ∅) in order to obtain pairs (X , B) such that B VX d, with possibly minimal B and maximal
X . By using an appropriate process of generation of families of diverse orderings, one could derive
collections of bireducts with quite different subsets of attributes and objects involved.

The notion of a decision bireduct allows us to operate with subsets of conditional attributes treated
as classification descriptions, and with the associated subsets of objects for which those descriptions are
valid. This gives us an elegant way to investigate complementarity of bireducts interpreted as classifiers
in the ensemble. For instance, the following formulation expresses the idea of majority voting between
ensemble components which – if properly tuned on the training data – gives us a chance of efficient
performance over new cases too.

Definition 39 (correct decision bireduct ensemble). Let A = (U,A ∪ {d}) and the ensemble of decision
bireducts B = {(X1, B1), . . . , (Xm, Bm)} be given. We say that B is correct if and only if

∀
u∈U
|{i ∈ {1, . . . ,m} : u ∈ Xi}| >

m

2 (4.14)

The above Inequality 4.14 means that more than 50% of decision rules triggered for u ∈ U point
at the valid decision d(u). Figure 4.1 illustrates a kind of hierarchy of correct bireduct ensembles for
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Table 4.8: Several examples of decision ε-bireduct 3-element ensembles. The listed ensembles cover all
objects from the data set by at least two of its elements. Noticeable is the fact that such a covering is
impossible to obtain using M -decision ε-reducts with the same value of ε. All ensemble elements used
in the example are decision ε-bireducts obtained for ε = 4

14 , cf. Table 4.7.

Decision ε-bireduct ensemble Covering

(J1, 2, 5, 7..11, 13, 14K, {H})
(J1..4, 6..9, 11..13K, {O,H})
(J1..8, 10, 12..14K, {O,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 3 3 2 2 2 2 3 3 2 2 2 2 3 2

(J1, 2, 5, 7..11, 13, 14K, {H})
(J1..14K, {O, T,W})
(J2..6, 9..13K, {T,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 2 3 2 2 3 2 2 2 3 3 3 2 3 2

(J1..5, 7, 8, 10, 12, 13K, {O})
(J1..3, 6..9, 11..14K, {O,H})
(J3..7, 9..14K, {O,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 2 2 3 2 2 2 3 2 2 2 2 3 3 2

(J2..5, 7, 9..11, 13, 14K, {H,W})
(J1..4, 6..9, 11..13K, {O,H})
(J1..8, 10, 12..14K, {O,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 2 3 3 3 2 2 3 2 2 2 2 2 3 2

(J1..5, 7, 8, 10, 12, 13K, {O})
(J1..14K, {O, T,W})
(J2, 3, 5, 6, 8..11, 13, 14K, {T,H,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 2 3 3 2 3 2 2 3 2 3 2 2 3 2

(J1..3, 5, 7..9, 12..14K, {O, T})
(J1, 3..8, 10..14K, {O,W})
(J2..6, 9..13K, {T,W})

object: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
count: 2 2 3 2 3 2 2 2 2 2 2 3 3 2
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Figure 4.1: Examples of decision bireducts for table A = ({u1, . . . , u6}, {a1, a2, a3} ∪ {d}). Bireducts
in the middle layer form a correct ensemble (each object is validly classified by at least two bireducts
out of three). For each “middle” bireduct treated as a new decision table, its corresponding correct
ensemble is provided in the lowest layer.

Figure 4.2: Examples of decision bireducts for table A = ({u1, . . . , u6}, {a1, a2, a3} ∪ {d}). Bireducts
in the lower layer form a correct ensemble (each object is validly classified by at least three bireducts
out of five).
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m = 3. Alternatively, one can work with a “flat” collection of decision bireducts that are supposed
to vote correctly on each of objects, even if some single bireducts are wrong for some single cases, cf.,
Figure 4.2 for m = 5.

Both, Figure 4.1 and Figure 4.2, implicitly suggest a top-down way of constructing correct ensem-
bles, whereby each ofm bireducts is derived in the same time, with an option of further decompositions
into even smaller pieces. Such algorithms have been already considered in [133] for another type of
(bi)reducts, i.e., so-called generalized decision reducts. On the other hand, one can proceed with the
aforementioned ordering-based methods [140], whereby – somewhat reflecting the mechanisms of bag-
ging and boosting – each consecutive ordering may take into account which objects were covered least
frequently by decision bireducts derived up to now.

4.6 Decision Bireduct Ensemble Optimization
The rough set literature provides a great number of theoretical works on computational complexity
of optimization problems focused on deriving the simplest possible decision models from the data
[95]. Let us refer to a recent comparative study reflecting both decision bireducts and the so-called
approximate reducts in this respect [119]. By “the simplest” one can mean (bi)reducts involving the
minimal amounts of attributes, generating minimal amounts of decision rules, having the minimal
information entropy, etc. However, all those formulations refer to single (bi)reducts which correspond
to single classifiers.

In other words, as it was emphasized in [96], simplicity is a crucial aspect of decision models,
in relation to paradigms such as Ockham’s Razor or the Minimum Description Length Principle.
However, there is no clear guidance how to understand simplicity of ensembles. Thus, if we want
to define optimization problems for ensembles, we need to know how to aggregate “complexities”
of particular ensemble components (e.g., the number of attributes in a single decision bireduct, the
number of leaves in a single decision tree, etc.).

Intuitively, in case of ensembles of decision bireducts, the corresponding optimization problem
should be stated by means of finding the smallest subsets of attributes B1, . . . , Bm that satisfy –
together with their counterparts for subsets of objects X1, . . . ,Xm – the constraints of Definition 39.
The question remains what we should mean by “the smallest” in case of a collection of subsets. In [137],
for the analogous task related to the already-mentioned generalized decision reducts, it was proposed
to look at it from the perspective of the maximum cardinality out of all involved subsets. For the
purpose of bireducts it can be phrased as follows:

Definition 40 (simpler bireduct ensemble). Let decision table A = (U,A ∪ {d}) and two correct
ensembles of decision bireducts B = {(X1, B1), . . . , (Xm, Bm)} and C = {(Y1, C1), . . . , (Yn, Cn)},
m,n ≥ 0, be given. We say that B is simpler than C , denoted as B ≺ C , if and only if they are
obtained by the following procedure:

1. Sort sequences of cardinalities of attribute subsets in a descending order.

2. Add one more item with the value −1 to the end of each of sequences.

3. Find the first position for which the sorted sequences differ from each other.

4. If the value in the above-found position is lower for B than for C , then B ≺ C .

The above procedure from Definition 40 – illustrated additionally by Figure 4.3 – induces a linear
order over ensembles of bireducts for a given A. We therefore propose to search through a space of all
correct ensembles B = {(X1, B1), . . . , (Xm, Bm)} for m ≥ 0, paying special attention to cardinalities
of their largest components along a kind of cardinality-based lexicographic order. This is because the
largest subsets of attributes correspond to the largest collections of the longest rules, i.e., they affect
complexity of the model more significantly than other subsets.

Let us formalize the optimization goal that is presented above:
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Figure 4.3: Illustration of the procedure in Definition 40.
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Figure 4.4: Illustration for the proof of Proposition 26.
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Definition 41 (simplest correct decision bireduct ensemble problem). By the Simplest Correct De-
cision Bireduct Ensemble Problem (SCDBEP) we mean the task of finding – for each input decision
table A = (U,A ∪ {d})– the correct ensemble of decision bireducts B such that there is no other correct
ensemble for A that would be simpler than B according to Definition 40.

Proposition 26. The Simplest Correct Decision Bireduct Ensemble Problem (SCDBEP) is NP-hard.

Before we present the proof, let us refer to Figure 4.4. The proof is based on polynomial reduction
of the problem of finding the smallest dominating sets in undirected graphs to SCDBEP. It requires
encoding of each input graph G to its corresponding decision table AG. This encoding is analogous to
those that were utilized for other (bi)reduct-related optimization problems [95, 119].

Figure 4.4 can also serve as one more illustration of creation of correct ensembles of decision
bireducts. It displays how to interpret those bireducts as rule-based classifiers. In particular, as it
could be already noticed earlier in Figure 4.1, some bireducts can correspond to empty sets of attributes.
We can interpret them as “dummy” classifiers which point always at the same decision class. They
may help to tune the majority voting mechanism in the ensemble.

Proof. As already stated, we intend to show NP-hardness of SCDBEP by polynomial reduction of the
minimal dominating set problem. Let us consider an undirected graph G = (V,E) and create decision
table AG = (UG ∪ {u∗}, AG ∪ {dG}), where av ∈ AG corresponding to v ∈ V takes 1 on uv′ ∈ UG
corresponding to v′ ∈ V, i.e., av(uv′) = 1, if and only if v = v′ or (v, v′) ∈ E, and where av(u∗) = 0.
Let us also put dG(uv′) = 0 and dG(u∗) = 1 (see Figure 4.4).

Clearly, any B ⊆ V is a dominating set in G if and only if it corresponds to a decision bireduct
(UG, BG). It is obvious that a single-element bireduct ensemble {(UG, BG)} is correct according to
Definition 39. However, we can (in terms of Definition 40) always construct a simpler (or equally
simple if BG is already a singleton) correct ensemble.

Assuming that BG = {av1 , av2 , . . . , avn}, let us define new subsets of attributes as BG,1 = {av1},
. . ., BG,n = {avn}, BG,n+1 = ∅, . . ., BG,2n−1 = ∅ and new subsets of objects as XG,1 = {u∗} ∪ {u ∈
UG : av1(u) = 1}, . . ., XG,n = {u∗} ∪ {u ∈ UG : avn(u) = 1}, XG,n+1 = UG, . . ., XG,2n−1 = UG. Then,
the proposed simpler ensemble would be equal to {(XG,1, BG,1), . . . , (XG,2n−1, BG,2n−1)} and it would
be still correct according to Definition 39 (see Figure 4.4 again).

The consequence of the above is that the simplest correct ensemble of decision bireducts corresponds
to the smallest dominating set in the graph G.



Chapter 5

Algorithms and First Experiments

In this chapter we introduce a number of possible algorithmic approaches to searching for decision
bireducts. In general, we follow the techniques introduced earlier for decision reducts; like following
what was done for permutation-based algorithms in [140], we extend the idea by considering the
orderings on mixed codes of attributes and objects, instead of only orderings on attributes. We also
attempt to translate some algorithms aiming at finding approximate decision reducts onto the case of
decision bireducts, basing on the connections between both the notions.

5.1 Ordering Algorithms
Let us begin by recalling Algorithm 1 which was introduced in [140] as an extension of classical algo-
rithms developed within the theory of rough sets for the search of standard decision reducts [3]. In
the case of decision reducts, the above-mentioned algorithms worked with randomly generated per-
mutations over the set of conditional attributes and needed to assure irreducibility of the produced
subsets B ⊆ A. The idea was to start with a full set A and remove its elements along an ordering
corresponding to a given permutation, unless removal of an attribute causes a violation of the con-
straints of keeping enough information about the decision. In case of the decision bireducts search we
need to do something analogous but now assuring both, irreducibility of the subsets of attributes and
non-extendability of the subsets of objects.

Algorithm 1 Decision Bireduct Ordering Algorithm
1: input: decision table A = (U,A ∪ {d}), σ – permutation of a set {1, . . . , |U |+ |A|}
2: X0 ← ∅, B0 ← A
3: for i = 1, . . . , |U |+ |A| do
4: Bi ← Bi−1
5: Xi ← Xi−1
6: if σ(i) ≤ |U | then
7: if Bi VXi∪{uσ(i)} d then
8: Xi ← Xi ∪ {uσ(i)}
9: else
10: if Bi \ {aσ(i)−|U |}VXi d then
11: Bi ← Bi \ {aσ(i)−|U |}
12: return (X|U |+|A|, B|U |+|A|)

Proposition 27. Let A = (U,A ∪ {d}) be given. For each permutation σ : {1, . . . , |U | + |A|} →
{1, . . . , |U |+|A|} the final outcome (X|U |+|A|, B|U |+|A|) of Algorithm 1 is a decision bireduct. Moreover,

59
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for each decision bireduct (X , B) there exists an input σ for which the algorithm’s output equals to
(X , B).

Proof. Let a permutation σ : {1, . . . , |U |+ |A|} → {1, . . . , |U |+ |A|} be given. The procedure listed in
Algorithm 1 initializes X0 ← ∅ and B0 ← A and therefore, at the beginning B0 VX0 d holds. Later,
in each step of the main loop, the action of removing an attribute or adding an object is performed
only under the condition of preserving the dependence for the new layout of Xi and Bi. Therefore, at
the end B|U |+|A| VX|U|+|A| d also holds. Now, to prove that the output pair (X|U |+|A|, B|U |+|A|) is a
decision bireduct, we need to show that neither X|U |+|A| can be extended nor B|U |+|A| can be reduced,
in a sense of conditions 2 and 3 in Definition 34. Let us prove this part by a contradiction. We
have two possibilities. (1.) Suppose that for the output pair (X|U |+|A|, B|U |+|A|) there exists proper
superset X ′ ) X|U |+|A| such that B|U |+|A| VX ′ d. Let us take uj ∈ X ′ \ X|U |+|A|. There exists
i ∈ {1, . . . , |U |+ |A|} such that σ(i) = j. Since the algorithm starts with X0 = ∅ and it can only extend
this set during its main loop, we know that at the i-th iteration there is Xi ⊆ X|U |+|A| ( X ′ and
from Proposition 13 for the set Xi ∪ {uj} ⊆ X ′ the dependence Bi VXi∪{uj} d is satisfied. Therefore,
at this step object uj is added to Xi and also as a consequence there must be uj ∈ X|U |+|A| – a
contradiction. (2.) Suppose that for the output pair (X|U |+|A|, B|U |+|A|) there exists B′ ( B|U |+|A|
such that B′ VX|U|+|A| d holds. Let us take aj ∈ B|U |+|A| \ B′. There exists i ∈ {1, . . . , |U |+ |A|} for
which σ(i) = j + |U |. Since the algorithm starts with B0 = A and it can only reduce it, we know that
at the i-th iteration of the algorithm’s loop there is Bi ⊇ B|U |+|A| ) B′ and from Proposition 13 the
set Bi \ {aj} ⊇ B′ satisfies Bi \ {aj} VXi d. Therefore, at this step aj is removed from Bi and as a
consequence it would not be present in the output attribute subset B|U |+|A|. Hence, aj /∈ B|U |+|A| \B′
– a contradiction. This shows that the algorithm’s output pair is a decision bireduct.

To finish the proof, we need to show that for each decision bireduct (X , B) there exists an input
permutation σ for which the algorithm outputs (X , B). Let us consider a permutation with the
following characteristics:

a. aσ(i)−|U | ∈ A \B for i ∈ {1, . . . , |A \B|},

b. uσ(i) ∈ X for i ∈ {|A \B|+ 1, . . . , |A \B|+ |X |},

c. aσ(i)−|U | ∈ B for i ∈ {|A \B|+ |X |+ 1, . . . , |X |+ |A|},

d. uσ(i) ∈ U \ X for i ∈ {|X |+ |A|+ 1, . . . , |U |+ |A|}.

Segment (a.) ensures that after the first |A \ B| steps of the algorithm’s loop B|A\B| = B which
is quite obvious because we start with X0 = ∅. Subsequently, because B|A\B| = B, segment (b.)
ensures that after another |X | steps we have X|A\B|+|X | = X , because the algorithm can at each step
extend Xi with the elements of X . Segments (c. and d.) are listed only for completeness of the
permutation construction. Indeed, within the last |B| + |U \ X | steps the state B|A\B|+|X | = B and
X|A\B|+|X | = X will not be changed as this pair already forms the decision bireduct, so the subsets of
attributes and objects cannot be further reduced and extended, respectively. Therefore, X|U |+|A| = X
and B|U |+|A| = B.

The method follows an idea of mixing the processes of reducing attributes and adding objects
during the construction of decision bireducts. For a consistent data set and a set of permutations
σ : {1, . . . , |U |+ |A|} → {1, . . . , |U |+ |A|} where all objects are added to X before removing attributes
from A, we obtain standard decision reducts. For inconsistent tables, the ordering of objects at the
beginning of permutation will decide which decision classes are going to be represented by X within
the particular indiscernibility classes generated by A.

In [140, 119] it was noted that it is difficult to control permutations σ : {1, . . . , |U | + |A|} →
{1, . . . , |U |+ |A|} in order to obtain decision bireducts (X , B) with any pre-specified level of |X |, |B|,
or any kind of proportion between |X | and |B|. On the other hand, the process of searching for
decision bireducts with desired properties (such as the average number of attributes and objects or
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Table 5.1: Examples of results of Algorithm 1: decision bireducts from a data set in Table 3.1 and
permutations that the algorithm followed while generating them. The values in the “permutation”
column correspond to the input arguments of Algorithm 1 and denote the order in which the algorithm
will handle either object or attributes from data table. A value at position i correspond to either
an object uσ(i) (if σ(i) ≤ |U |) or an attribute aσ(i)−|U | (if σ(i) > |U |). For convenience, in case
of σ(i) > |U | we add information in parentheses to which attribute the value corresponds. E.g.,
“15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)” means that the algorithm will process
the elements in the following order: Outlook, u8,Wind, u1, u4, u7, u2, u14, u10, u12, . . ., etc.

permutation decision bireduct
15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H) (J1, 2, 5, 7..11, 13, 14K, {H})
17(H) 13 16(T ) 8 18(W ) 6 11 3 14 10 15(O) 5 7 9 2 1 4 12 (J1..3, 6..8, 12..14K, {O})
3 8 16(T ) 1 18(W ) 11 9 15(O) 14 12 6 4 7 17(H) 10 13 2 5 (J1..3, 6..9, 11..14K, {O,H})
2 13 5 14 11 7 12 4 3 1 9 6 8 10 17(H) 15(O) 18(W ) 16(T ) (J1..14K, {O, T,W})
9 4 12 14 1 8 7 3 10 13 6 11 2 5 18(W ) 16(T ) 17(H) 15(O) (J1..14K, {O,H,W})
11 15(O) 2 17(H) 1 10 5 7 9 8 3 13 16(T ) 6 14 12 4 18(W ) (J1, 2, 4, 5, 7, 9..12K, {T})
16(T ) 2 5 17(H) 10 11 18(W ) 14 1 12 7 9 13 6 4 8 3 15(O) (J1..5, 7, 8, 10, 12, 13K, {O})
18(W ) 6 17(H) 15(O) 5 8 4 7 3 2 10 9 12 11 13 14 1 16(T ) (J3, 6, 8, 13, 14K, {T})
15(O) 2 3 13 1 17(H) 4 16(T ) 18(W ) 6 12 14 5 8 9 10 11 7 (J2..6, 9, 10, 13, 14K, {W})
15(O) 17(H) 14 1 10 7 4 3 12 13 5 18(W ) 9 16(T ) 11 8 2 6 (J1, 2, 4, 5, 7, 9, 10, 14K, {T,W})
6 5 10 9 17(H) 15(O) 12 16(T ) 8 18(W ) 4 2 13 3 7 1 14 11 (J2..6, 9..13K, {T,W})
11 14 9 13 3 7 8 2 5 1 12 18(W ) 6 4 10 17(H) 15(O) 16(T ) (J1..3, 5, 7..14K, {O,H})
13 8 6 17(H) 7 18(W ) 9 16(T ) 5 3 4 12 15(O) 2 10 14 11 1 (J1..4, 6..10, 12, 13K, {O, T})
9 17(H) 2 4 6 13 14 7 16(T ) 11 10 15(O) 18(W ) 3 5 1 8 12 (J2..7, 9, 10, 12..14K, {O,W})
18(W ) 5 3 15(O) 12 4 16(T ) 17(H) 7 2 13 11 10 6 8 1 14 9 (J3..5, 7, 9..13K, ∅)
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more sophisticated criteria) can at least partially modeled by a way the permutations are generated.
For example, we can consider a parameter that controls a likelihood of selecting an attribute in first
place rather than an object during the random generation of σ. Then, when σ contains relatively
more attributes at its beginning, a decision bireduct having a lower number of attributes but at the
same time a higher number of uncovered objects is likely to be obtained. In [140, 119], where such a
likelihood was called ratio, it was demonstrated how different values of this parameter influence the
number of selected attributes and the size of X in bireducts generated for a few benchmark data sets.
We will also discuss the subject more deeply in Section 5.4.

Algorithm 2 γ-Decision Bireduct Ordering Algorithm
1: input: decision table A = (U,A ∪ {d}), σ – permutation of a set {1, . . . , |U |+ |A|}
2: X0 ← ∅, B0 ← A
3: for i = 1, . . . , |U |+ |A| do
4: Bi ← Bi−1
5: Xi ← Xi−1
6: if σ(i) ≤ |U | then
7: if Bi Vγ

Xi∪{uσ(i)} d then
8: Xi ← Xi ∪ {uσ(i)}
9: else
10: if Bi \ {aσ(i)−|U |}Vγ

Xi d then
11: Bi ← Bi \ {aσ(i)−|U |}
12: return (X|U |+|A|, B|U |+|A|)

In the case of γ-decision bireduct the algorithm is almost the same as Algorithm 1. It is enough
to replace the inexact functional dependency VX by its counterpart from the definition of the γ-
decision bireduct, i.e., Vγ

X . For completeness of the dissertation we present the details of the ordering
algorithm for γ-decision bireducts in Algorithm 2.

Proposition 28. Let A = (U,A ∪ {d}) be given. For each given permutation σ : {1, . . . , |U |+ |A|} →
{1, . . . , |U |+ |A|} the final outcome (X|U |+|A|, B|U |+|A|) of Algorithm 2 is a γ-decision bireduct. More-
over, for each γ-decision bireduct (X , B) there exists an input permutation σ for which the algorithm’s
output equals to (X , B).

Proof. The proof is analogous to the proof of Proposition 27. In its first stage, we refer to Definition 35
and Proposition 17. In the second stage, we use exactly the same (a., b., c. and d.)-characteristic as
in the previous proof.

Tables 5.1 and 5.2 present exemplary results of the ordering decision bireducts algorithm (Algo-
rithm 1) and γ-decision bireducts algorithm (Algorithm 2) invoked for the same sample permutations,
whereas Figures 5.1 and 5.2 present in details the computation for one selected permutation.
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15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

(X0, B0) = (∅, {O, T,H,W})

(X1, B1) = (∅, {T,H,W})Does functional dependency B0 \ {O}VX0 d hold? YES

(X2, B2) = (J8K, {T,H,W})B1
?
VX1∪{u8} d YES

(X3, B3) = (J8K, {T,H})B2 \ {W}
?
VX2 d YES

(X4, B4) = (J1, 8K, {T,H})B3
?
VX3∪{u1} d YES

(X5, B5) = (J1, 8K, {T,H})B4
?
VX4∪{u4} d NO

(X6, B6) = (J1, 7, 8K, {T,H})B5
?
VX5∪{u7} d YES

(X7, B7) = (J1, 2, 7, 8K, {T,H})B6
?
VX6∪{u2} d YES

(X8, B8) = (J1, 2, 7, 8, 14K, {T,H})B7
?
VX7∪{u14} d YES

(X9, B9) = (J1, 2, 7, 8, 10, 14K, {T,H}) B8
?
VX8∪{u10} d YES

(X10, B10) = (J1, 2, 7, 8, 10, 14K, {T,H}) B9
?
VX9∪{u12} d NO

(X11, B11) = (J1, 2, 7..10, 14K, {T,H}) B10
?
VX10∪{u9} d YES

(X12, B12) = (J1, 2, 7..10, 14K, {H}) B11 \ {T}
?
VX11 d YES

(X13, B13) = (J1, 2, 7..10, 14K, {H}) B12
?
VX12∪{u6} d NO

(X14, B14) = (J1, 2, 7..10, 14K, {H}) B13
?
VX13∪{u3} d NO

(X15, B15) = (J1, 2, 7..10, 13, 14K, {H}) YES B14
?
VX14∪{u13} d

(X16, B16) = (J1, 2, 5, 7..10, 13, 14K, {H}) YES B15
?
VX15∪{u5} d

(X17, B17) = (J1, 2, 5, 7..11, 13, 14K, {H}) YES B16
?
VX16∪{u11} d

(X18, B18) = (J1, 2, 5, 7..11, 13, 14K, {H}) NO B17 \ {H}
?
VX17 d

Figure 5.1: Example of the ordering decision bireduct algorithm (Algorithm 1) computation for a data
set in Table 3.1. A permutation (visible in all rows) corresponds to the input argument of Algorithm 1
and should be understood in the same way as in Table 5.1. The rows represent the consecutive
iterations of the algorithm’s loop – the arrow points to an element being processed in a given iteration.
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15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H)

(X0, B0) = (∅, {O, T,H,W})

(X1, B1) = (∅, {T,H,W})Does functional dependency B0 \ {O}Vγ
X0
d hold? YES

(X2, B2) = (∅, {T,H,W})B1
?
V
γ

X1∪{u8} d NO

(X3, B3) = (∅, {T,H})B2 \ {W}
?
V
γ

X2
d YES

(X4, B4) = (∅, {T,H})B3
?
V
γ

X3∪{u1} d NO

(X5, B5) = (∅, {T,H})B4
?
V
γ

X4∪{u4} d NO

(X6, B6) = (∅, {T,H})B5
?
V
γ

X5∪{u7} d NO

(X7, B7) = (∅, {T,H})B6
?
V
γ

X6∪{u2} d NO

(X8, B8) = (∅, {T,H})B7
?
V
γ

X7∪{u14} d NO

(X9, B9) = ({10}, {T,H}) B8
?
V
γ

X8∪{u10} d YES

(X10, B10) = ({10}, {T,H}) B9
?
V
γ

X9∪{u12} d NO

(X11, B11) = ({10}, {T,H}) B10
?
V
γ

X10∪{u9} d NO

(X12, B12) = ({10}, {T,H}) B11 \ {T}
?
V
γ

X11
d NO

(X13, B13) = ({10}, {T,H}) B12
?
V
γ

X12∪{u6} d NO

(X14, B14) = ({10}, {T,H}) B13
?
V
γ

X13∪{u3} d NO

(X15, B15) = ({10, 13}, {T,H}) YES B14
?
V
γ

X14∪{u13} d

(X16, B16) = ({10, 13}, {T,H}) NO B15
?
V
γ

X15∪{u5} d

(X17, B17) = ({10, 11, 13}, {T,H}) YES B16
?
V
γ

X16∪{u11} d

(X18, B18) = ({10, 11, 13}, {T,H}) NO B17 \ {H}
?
V
γ

X17
d

Figure 5.2: Example of the ordering γ-decision bireduct algorithm (Algorithm 2) computation for
a data set in Table 3.1. A permutation (visible in all rows) corresponds to the input argument of
Algorithm 2 and should be understood in the same way as in Table 5.1. The rows represent consecutive
iterations of the algorithm’s loop – the arrow points to an element being processed in a given iteration.
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Table 5.2: Examples of results of Algorithm 2: γ-decision bireducts from a data set in Table 3.1 and
permutations that the algorithm followed while generating them. The values in the “permutation”
column correspond to the input arguments of Algorithm 2 and should be understood in the same way
as in Table 5.1.

permutation γ-decision bireduct
15(O) 8 18(W ) 1 4 7 2 14 10 12 9 16(T ) 6 3 13 5 11 17(H) (J10, 11, 13K, {T,H})
17(H) 13 16(T ) 8 18(W ) 6 11 3 14 10 15(O) 5 7 9 2 1 4 12 (J3, 7, 12, 13K, {O})
3 8 16(T ) 1 18(W ) 11 9 15(O) 14 12 6 4 7 17(H) 10 13 2 5 (J1..3, 7..9, 11..13K, {O,H})
2 13 5 14 11 7 12 4 3 1 9 6 8 10 17(H) 15(O) 18(W ) 16(T ) (J1..14K, {O, T,W})
9 4 12 14 1 8 7 3 10 13 6 11 2 5 18(W ) 16(T ) 17(H) 15(O) (J1..14K, {O,H,W})
11 15(O) 2 17(H) 1 10 5 7 9 8 3 13 16(T ) 6 14 12 4 18(W ) (J2, 5, 9..11, 13K, {T,H,W})
16(T ) 2 5 17(H) 10 11 18(W ) 14 1 12 7 9 13 6 4 8 3 15(O) (J1..14K, {O,H,W})
18(W ) 6 17(H) 15(O) 5 8 4 7 3 2 10 9 12 11 13 14 1 16(T ) (∅, ∅)
15(O) 2 3 13 1 17(H) 4 16(T ) 18(W ) 6 12 14 5 8 9 10 11 7 (J2, 5, 9..11, 13K, {T,H,W})
15(O) 17(H) 14 1 10 7 4 3 12 13 5 18(W ) 9 16(T ) 11 8 2 6 (J2, 5, 9K, {T,W})
6 5 10 9 17(H) 15(O) 12 16(T ) 8 18(W ) 4 2 13 3 7 1 14 11 (J1..14K, {O, T,W})
11 14 9 13 3 7 8 2 5 1 12 18(W ) 6 4 10 17(H) 15(O) 16(T ) (J1..14K, {O, T,W})
13 8 6 17(H) 7 18(W ) 9 16(T ) 5 3 4 12 15(O) 2 10 14 11 1 (J1..14K, {O, T,W})
9 17(H) 2 4 6 13 14 7 16(T ) 11 10 15(O) 18(W ) 3 5 1 8 12 (J1..14K, {O, T,W})
18(W ) 5 3 15(O) 12 4 16(T ) 17(H) 7 2 13 11 10 6 8 1 14 9 (J3, 7, 12, 13K, {O})

5.2 Sampling Algorithms
We recall one more method introduced in [118] which can be generally referred to sampling approaches
to attribute selection [64]. Its aim is to speed up the computation of the bireducts for high dimensional
data by combining a Monte Carlo searching method with classical reduct computation algorithms. It
can be also compared to well-known idea of bagging, i.e., inducing classifiers basing on randomly
selected subsets of the training data set [28], as well as other sampling techniques developed for
the search of approximate decision reducts [51], although in our case random selection of objects is
performed under different constraints and at a different stage of decision model induction.

Let us recall that X〈d(u�)〉 denotes a decision class which contains a given object u� ∈ U . Thus,
Algorithm 3, in particular its Line 9, has a lot in common with Proposition 16 and the way of summing
up the supports of Rules – the set of decision rules defined by Equation (4.1).

Proposition 29. Let the algorithm’s input arguments A = (U,A ∪ {d}) and A� ⊆ A, be given. Then
the outcome (X , B) of Algorithm 3 is a decision bireduct for A. Moreover, each decision bireduct for
A can be obtained as a result of Algorithm 3.

Proof. For A� ⊆ A, the decision table A� = (U�, A� ∪ {d}) is consistent. Due to the fact that we
construct the final (X , B) by taking those of the objects from U which have the same values on
attributes B∪{d} as objects in U�, we know that B VX d and that the attribute subset B is irreducible.
Furthermore, we have chosen one representative object from each indiscernibility class induced by A�.
Thus, for the decision reduct B ⊆ A� obtained for A�, we know that each indiscernibility class induced
by B has its representative object (at least one) in U� and all objects from the same class have the
same value for d. Hence, we cannot extend X obtained in Algorithm 3 with any other object u ∈ U \X
without violating the decision bireduct conditions. This is because u has a different decision value
than objects from X that belong to the same indiscernibility class induced by B.
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Algorithm 3 Decision Bireduct Sampling Algorithm
1: input: decision table A = (U,A ∪ {d})
2: U� ← ∅
3: X ← ∅
4: A� ← an attribute subset of A
5: . A� may be either passed as an input argument or chosen within the algorithm according to

a selected strategy, such as random selection
6: for all E ∈ U/A� do
7: u� ← a single object chosen from E
8: U� ← U� ∪ {u�}
9: X ← X ∪ (E ∩X〈d(u�)〉)
10: B ← arbitrary decision reduct B ⊆ A� for table A� = (U�, A� ∪ {d})
11: return (X , B)

Now, consider a decision bireduct (X , B). It can be built in at least one way as a result of execution
of Algorithm 3. For instance, let us put A� = B and let U� be formed by taking the representative
objects solely from X . Since (X , B) is a decision bireduct, X needs to have at least one object in
each indiscernibility class induced by B. As a consequence, U� has exactly one object from each
indiscernibility class induced by B. The third phase of the algorithm is to obtain a standard decision
reduct B for A�. Since B is irreducible for X , it is also irreducible for the chosen representative objects
U�. Hence, B is the only decision reduct for A�.

We illustrate the above procedure by Tables 5.3, 5.4 and 5.5. Let us note that the reduced decision
tables A� obtained in the third step of Algorithm 3 are compact representations of if-then rules gen-
erated by attributes in B, with their supports summing up to the overall support X ⊆ U . However,
successors of those rules are not necessarily chosen in a way aiming at maximizing |X |. Quite oppo-
sitely, when combined with appropriate mechanisms of sampling, this process can lead to ensembles
of decision bireducts based on possibly diversified subsets of attributes and objects, with the under-
lying if-then rules paying attention to the cases not covered by rules corresponding to other decision
bireducts rather than the cases that are easiest to describe.

The method outlined in Algorithm 3 could be also modeled within the framework presented in
Algorithm 1, by considering specific permutations σ : {1, . . . , |U |+ |A|} → {1, . . . , |U |+ |A|} with some
amount of attributes at their beginning, an ordering of all objects in their middle, and the remainder
of attributes at their very end. Indeed, in such a case, all attributes at the very beginning of σ would
be removed and then, within each indiscernibility class induced by the remaining attributes, objects
corresponding to only one of possible decision values would be added. It would be the decision value
of the first element of a given indiscernibility class occurring in σ. Finally, the algorithm would try to
remove each of the remaining attributes due to their ordering in σ, subject to the constraints imposed
by the previously added objects.

This analogy may help us in defining a parameter similar to ratio discussed for Algorithms 1
and 2 which would enable searching for bireducts with expected characteristics related to the size
of attribute and object sets. Such a parameter could correspond to an expected value of |A

�|
|A| . For

instance, if in Line 4 of Algorithm 3 we would have drawn a smaller set of attributes, then there would
be less indiscernibility classes, and thus a decision reduct of A� could also be much smaller. As a
result we would obtain a bireduct with a much smaller X described by a lower number of attributes.
In the opposite situation, when the selected A� would be relatively large, then the corresponding
indiscernibility classes would likely consist of single objects and the set B of a constructed bireduct
would likely correspond to a classical decision reduct.

One can easily formulate the representation analogous to Proposition 29, now for γ-decision bireducts
considered in Algorithm 4. Certainly, the case of γ-decision bireducts is easier to handle than for de-
cision bireducts.
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Table 5.3: Indiscernibility classes induced by at-
tributes A� = {T,H} for decision table Table 3.1
processed in Algorithm 3.

Temperature Humidity Play
1 hot high no
2 hot high no
3 hot high yes
13 hot normal yes
4 mild high yes
8 mild high no
12 mild high yes
14 mild high no
10 mild normal yes
11 mild normal yes
5 cool normal yes
6 cool normal no
7 cool normal yes
9 cool normal yes

Table 5.4: The decision table A� for
U� = J1, 6, 8, 10, 13K in Algorithm 3. Deci-
sion reduct {T,H} yields decision bireduct
(J1, 2, 6, 8, 10, 11, 13, 14K, {T,H}).

Temperature Humidity Play
1 hot high no
6 cool normal no
8 mild high no
10 mild normal yes
13 hot normal yes

Table 5.5: The decision table A� for
U� = J3, 6, 11, 12, 13K in Algorithm 3. De-
cision reduct {T} yields decision bireduct
(J3, 4, 6, 10, 11, 12, 13K, {T}).

Temperature Humidity Play
3 hot high yes
6 cool normal no
11 mild normal yes
12 mild high yes
13 hot normal yes

Algorithm 4 γ-Decision Bireduct Sampling Algorithm
1: input: decision table A = (U,A ∪ {d})
2: U� ← ∅
3: A� ← an attribute subset of A
4: . A� may be either passed as an input argument or chosen within the algorithm according to

a selected strategy, such as random selection
5: for all E ∈ U/A� do
6: u� ← a single object chosen from E
7: U� ← U� ∪ {u�}
8: B ← arbitrary decision reduct B ⊆ A� for table Aγ� = (U�, A� ∪ {dγA�})
9: return (POSA(B), B)
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Proposition 30. Let the algorithm’s input arguments A = (U,A ∪ {d}) and A� ⊆ A be given. Then
the outcome (X , B) of Algorithm 4 is a γ-decision bireduct for A. Moreover, each γ-decision bireduct
for A can be obtained as a result of Algorithm 4.

Proof. The proof is a simpler version of the proof of Proposition 29. It is based on observation that in
Algorithm 4, for a given A� ⊆ A, we actually construct a compact version of a γ-related table discussed
in Section 3.2, now choosing a single representative object out of each indiscernibility class E ∈ U/A�
and using the decision value according to Equation (3.18) for B = A�.

As previously, we illustrate the above procedure by presenting the intermediate steps in Table 5.6
and Table 5.7. Let us note that in the case of γ-decision bireducts, the selection of objects representing
each indiscernibility class has no impact on the result obtained. Regardless of how we choose the
representatives, the reduced decision table Aγ� will be the same (except to the numbers of the selected
objects).

Table 5.6: Indiscernibility classes induced by at-
tributes A� = {T,H} for decision table Table 3.1
processed in Algorithm 4.

Temperature Humidity Play
1 hot high no
2 hot high no
3 hot high yes
13 hot normal yes
4 mild high yes
8 mild high no
12 mild high yes
14 mild high no
10 mild normal yes
11 mild normal yes
5 cool normal yes
6 cool normal no
7 cool normal yes
9 cool normal yes

Table 5.7: Aγ� for U� = J1, 6, 8, 10, 13K in Algo-
rithm 4. Decision reduct {T,H} yields γ-decision
bireduct (J10, 11, 13K, {T,H}).

Temperature Humidity Play
1 hot high ~
6 cool normal ~
8 mild high ~
10 mild normal yes
13 hot normal yes

A comparison on computations of Algorithm 3 and Algorithm 4 for several exemplary input pa-
rameters is presented in Table 5.8. One of the main advantages of this approach in a comparison
to the previously discussed algorithms is their computational efficiency. For a given selection of
the attribute subset A�, it can be bounded in the worst case by O(|A�| · |U | + R), where R is
the complexity of the algorithm used for the computation of a reduct. For instance, if the greedy
heuristic is used [55], the overall computational complexity in the worst-case scenario would be
O(|A�| · |U | + |A�|2 · |U | · log(|U |)) = O(|A�|2 · |U | · log(|U |)). Of course, it is quite easy to select
the attribute set A� such that |U�| << |U | and in practice, the computational cost of Algorithm 3 and
Algorithm 4 would be considerably lower than the worst-case estimation – for small sets A� it will be
bounded by O(|A�| · |U |).
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Table 5.8: The results of Algorithms 3 and 4 which run for several exemplary input parameters. In this
example we assume that the algorithms use the ordering methods for obtaining the decision reducts
and γ-decision reducts, i.e., the attributes are given in a specific order in which they are tried to
be removed. In the presented example the input values consist of a subset of columns given as a
permutation for the ordering algorithms and a permutation of objects to determine in which order the
representative object will be chosen from the indiscernibility classes.

output from Algorithm 3 - decision bireduct output from Algorithm 4 - γ-decision bireduct

input: object order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [W ]
result: (J1, 2, 6, 8, 14K, ∅) result: (∅, ∅)

input: object order = [1, 3, 11, 6, 8, 9, 10, 13, 2, 4, 5, 7, 12, 14], attribute subset with order = [W ]
result: (J1, 7, 8, 11, 12K, {W}) result: (∅, ∅)

input: object order = [12, 14, 3, 6, 4, 11, 9, 13, 1, 8, 2, 5, 7, 8, 10], attribute subset with order = [W ]
result: (J3..5, 7, 9..13K, ∅) result: (∅, ∅)

input: objects order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [H,W ]
result: (J1, 2, 5, 6, 8..10, 13, 14K, {H,W}) result: (J5, 9, 10, 13K, {H,W})

input: objects order = [1, 3, 11, 6, 8, 9, 10, 13, 2, 4, 5, 7, 12, 14], attribute subset with order = [H,W ]
result: (J1, 2, 5, 7..11, 13, 14K, {H}) result: (J5, 9, 10, 13K, {H,W})

input: objects order = [12, 14, 3, 6, 4, 11, 9, 13, 1, 8, 2, 5, 7, 8, 10], attribute subset with order = [H,W ]
result: (J3..6, 9, 10, 12, 13K, {H,W}) result: (J5, 9, 10, 13K, {H,W})

input: objects order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [T,H]
result: (J1, 2, 4, 5, 7, 9..13K, {T,H}) result: (J10, 11, 13K, {T,H})

input: objects order = [1, 3, 11, 6, 8, 9, 10, 13, 2, 4, 5, 7, 12, 14], attribute subset with order = [T,H]
result: (J1, 2, 6, 8, 10, 11, 13, 14K, {T,H}) result: (J10, 11, 13K, {T,H})

input: objects order = [12, 14, 3, 6, 4, 11, 9, 13, 1, 8, 2, 5, 7, 8, 10], attribute subset with order = [T,H]
result: (J3, 4, 6, 10..13K, {T}) result: (J10, 11, 13K, {T,H})

input: objects order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [T,H,W ]
result: (J1, 2, 4..6, 9..13K, {T,H,W}) result: (J2, 5, 9..11, 13K, {T,H,W})

input: objects order = [1, 3, 11, 6, 8, 9, 10, 13, 2, 4, 5, 7, 12, 14], attribute subset with order = [T,H,W ]
result: (J1, 2, 5, 6, 8..13K, {T,H,W}) result: (J2, 5, 9..11, 13K, {T,H,W})

input: objects order = [12, 14, 3, 6, 4, 11, 9, 13, 1, 8, 2, 5, 7, 8, 10], attribute subset with order = [T,H,W ]
result: (J2..6, 9..13K, {T,W}) result: (J2, 5, 9..11, 13K, {T,H,W})

input: objects order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [O, T,H,W ]
result: (J1..14K, {O,H,W}) result: (J1..14K, {O,H,W})

input: objects order = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], attribute subset with order = [W,H, T,O]
result: (J1..14K, {O, T,W}) result: (J1..14K, {O, T,W})
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5.3 Dynamic Adjustment Heuristic
The sampling algorithm described in Section 5.2 can be summarized as consisting of the following
three general steps:

1. select a subset of attributes by following some kind of heuristic,

2. for each of partition blocks induced by the obtained subset of attributes over the set of training
objects, select a single representative (which practically means composing a decision rule by
assigning a single decision class to a given combination of attribute values),

3. for the data subset of representatives produced this way, run an additional rough-set-based
procedure of eliminating redundant attributes.

Flexibility of the approach let us adopt any heuristic searching for a proper subset of attributes at
the first phase of the above procedure, e.g., a plain greedy heuristic maximizing gain with respect to
the selected approximate function (see Definition 27 and eq. (3.23)) at each step or even more advanced
like the Dynamically Adjusted Approximate Reducts heuristic (DAAR) [56]. The latter is the one we
decided to implement and experiment with in [59]. The dynamic adjustment refers to the stopping
criterion. Namely, we interrupt the process of attribute selection when we notice that the best attribute
chosen from a randomly selected set of candidate attributes is not meaningful with high probability.
We estimate such meaningfulness using a standard permutation test (repeated for a specified number
of times), i.e., we create artificial attributes by shuffling the values of the considered candidate and we
verify whether those shuffled attributes are less informative than the original one. Such an approach
to randomizing attribute values in commonly employed in practical applications [14, 66].

It is worth mentioning that the DAAR-based strategy can be highly customized, e.g., we can
parametrize:

• the number of candidates from which the best one will be selected in each iteration,

• the number of permutation test performed to estimate the meaningfulness of an attribute,

• the meaningfulness level below which we terminate the procedure

One more novelty that we introduce at the algorithmic level is a parameter deciding about the
maximum number of attributes that can be selected at the first phase of the above process. This
parameter is triggered if the DAAR-based stopping criterion does not break that phase before.

All phases of decision bireduct generation are randomized with respect to the choices of attributes
and objects (representatives), whereby the corresponding randomizations are kept purposefully diver-
sified when it comes to the construction of multiple bireducts to form a classifier ensemble.

Ultimately, the DAAR-based algorithm is presented in Algorithm 5. In the pseudocode of the
algorithm, we can actually see the three steps mentioned at the beginning of this section marked
appropriately with rectangles. Indeed, the layout of the algorithm is identical to that of Algorithm 3
with respect to the steps (2) and (3), while in the step (1) we put the code implementing the DAAR
heuristic. Therefore, we can consider the algorithm to be just a specialized variant of Algorithm 3.
Moreover, we can look at the sampling algorithm as a general framework on which a whole family of
algorithms can be built – such the approach will be discussed later in Section 5.7.
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Algorithm 5 Decision Bireduct DAAR-based Algorithm
1: input: decision table A = (U,A ∪ {d})
2: input: N – maximum number of attributes
3: input: DAAR_params – parameters specific to the DAAR criterion
4: . iteratively select a subset of attributes using the DAAR stopping criterion
5: while |A�| < N do
6: a← the best attribute candidate chosen according to the selected informative gain heuristic
7: . the DAAR criterion – we interrupt the process of attribute selection when we notice that the

best attribute candidate is not meaningful with high probability
8: if a does not meet the DAAR criterion (computed for the given DAAR_params) then
9: break
10: A� ← A� ∪ {a}
11: . select representatives
12: for all E ∈ U/A� do
13: u� ← a single object chosen from E
14: U� ← U� ∪ {u�}
15: X ← X ∪ (E ∩X〈d(u�)〉)
16: . run a procedure of eliminating redundant attributes
17: B ← arbitrary decision reduct B ⊆ A� for table A� = (U�, A� ∪ {d})
18: . prepare the result
19: return (X , B)

5.4 Searching for Decision Bireduct Ensembles
The concept of decision bireducts has great potential for creating classifier ensembles [140, 119]. Such
an approach can be efficient especially when the individual classifiers used in the ensemble are different
from one another. For example, constructing ensembles of classifiers based on decision reducts that
include diversified subsets of attributes may increase stability of classification and improve the ability
to capture data interdependencies. However, the typical criteria for constructing approximate decision
reducts do not allow to control which parts of data are problematic for particular subsets of attributes.
For example, if we consider creating an ensemble consisted of approximate decision reducts that are
supposed to correctly classify at least 90% of the training objects, we cannot anticipate that all of the
resulting classifiers will have problems with the same 10% of objects.

In decision bireducts we have direct information about the set of uncovered objects. Therefore, we
may construct an ensemble of classifiers which use different parts of data while uniformly covering the
training cases. Moreover, an ensemble of decision bireducts or decision ε-bireducts (for a ε ∈ [0, 1)) can
yield a group of shorter decision rules which do not work perfectly but still sufficiently help each other.
We conducted a series of experiments to verify this claim, specifically investigating the usefulness of
decision bireduct ensembles for classification purposes. We used three popular benchmark data sets
from the UCI repository: zoo, lymphography and SPECT [71]. In our experiments we used decision
bireducts and ordering-based algorithms, cf. Algorithm 1, however, γ-decision bireducts or other
algorithms for searching decision bireducts could have been considered here too.

The generation of a decision bireduct ensemble with desired properties, such as the average number
of attributes or uncovered objects, can be influenced by the method used to generate permutations.
A special case is when all objects are at the beginning of σ : {1, . . . , |U | + |A|} → {1, . . . , |U | + |A|}
– then, after |U | steps of Algorithm 1, X becomes equal to U (or almost U , if A is inconsistent) and
the process becomes similar to the search for standard decision reducts. A modification of the process
leads to decision bireducts (X , B) with X being a bit smaller than U and B being significantly smaller
than A – it is enough to increase probability that some attributes will occur closer to beginning of a
permutation sequence. Let us introduce a ratio parameter that corresponds to the weight of attributes
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Figure 5.3: Quantiles and average values for the number of attributes (left) and the percentage of
uncovered objects ε (right) in decision bireducts obtained for three benchmark data sets, for different
values of the ratio parameter. Results for ratio = 0 correspond to standard decision reducts.
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Figure 5.4: Quantiles and average values for description length (left) and intersection size (right) for
decision bireducts of three benchmark data sets, for different values of the ratio parameter. Results
for ratio = 0 correspond to standard decision reducts.
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during the permutation construction – the higher the weight, the more attributes appear early in the
sequence. If ratio value is equal to |U |/|A|, it results in a uniform distribution of attributes and objects
within permutations. In experiments, we investigate the ratios spanning from 0 to 2 · |U ||A| . To facilitate
the comparison of results across various data sets, we further normalize the ratios to the interval of
[0, 1].

In our first experiment we compare decision bireducts with standard decision reducts in terms of
their size. For each data set we computed 1000 decision reducts and 14000 decision bireducts for 14
different values of the ratio parameter – 1000 decision bireducts for each value. Figure 5.3 summarizes
the number of attributes and the percentage of uncovered objects for different ratio values.

The average number of objects covered by a decision bireduct drops when the ratio is increased. In
Figure 5.3 we present this tendency by means of the growth of the minimum values of ε (the solid line
in the plots on the right) for which the obtained decision bireducts satisfy the properties of decision
ε-bireducts. However, these observations do not hold for the average number of attributes (the solid
line in the plots on the left) which slightly increases for small ratio values and then drops below the
average for the standard reducts.

To further investigate the relation between the number of attributes and objects in decision
bireducts we examined two indicators. The first one is the average decision bireduct description
length defined using Equation (4.11). The second one is related to the overlap of the pairs of decision
bireducts in an ensemble, defined as follows for a given pair (Xi, Bi) and (Xj , Bj):

OverlapSize((Xi, Bi), (Xj , Bj)) = |Bi ∩Bj |
|A|

· |Xi ∩ Xj |
|U |

(5.1)

The average overlap size is related to the diversity of the decision bireducts in an ensemble. Intu-
itively, if for a given set of decision bireducts the average overlap size is small, then this set is more
likely to cover a broader part of U . Figure 5.4 presents statistics for these two indicators, computed
for different ratio values.

We investigated also the influence of the ratio parameter and classifier aggregation methods on
the classification results. We carried out a total of 10 repetitions, where each repetition conssted
of a 5-fold cross-validation test for each data set and ratio value. Therefore, to conduct the whole
experiment and properly validate the results we computed 50000 decision reducts and 700000 decision
bireducts. Decision rule sets corresponding to indiscernibility classes within decision bireducts were
used as classifiers. To predict the decisions for objects in the test set, we employed two aggregation
methods – majority voting and balanced support weighted voting. Such weighting strategies are quite
popular in the machine learning literature, although we should emphasize that in the case of decision
bireducts (X , B) they are computed with respect to X instead of U .

Decision classes in the data sets are imbalanced, therefore to evaluate our classifiers, we used two
quality measures – mean accuracy and balanced accuracy. The mean accuracy is simply a percentage
of correctly classified objects. The balanced accuracy is the mean percentage of correctly classified
objects within each decision class. This measure is insensitive to imbalanced class distribution. The
balanced accuracy gives more weight to instances from minority classes, whereas the mean accuracy
treats all objects alike and usually favors the majority class.

The two different aggregation methods aim at maximizing different quality measures. The majority
voting scheme classifies a test object to the decision class indicated by the highest number of triggered
rules derived from decision bireducts in the ensemble. This voting scheme can be biased toward larger
decision classes and usually favors the mean accuracy measure. More voting strategies for rule-based
classifiers generated from decision reducts can be found, e.g., in [143, 125]. They can be adapted for
decision bireducts too.

The balanced support weighted voting scheme weights each vote by a support of the corresponding
rule. The class of an object is then decided by taking into account distribution of decisions in the
training data. This method is preferable for maximizing the balanced accuracy. Figures 5.5 and 5.6
present the mean accuracy and balanced accuracy results obtained for the majority and the balanced
support weighted voting schemes, respectively.
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Figure 5.5: Classification (left) and balanced (right) accuracies of decision bireduct ensembles acquired
by the majority voting, for different values of the ratio parameter. Results for ratio = 0 correspond
to standard decision reducts.
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Figure 5.6: Classification (left) and balanced (right) accuracies of decision bireduct ensembles acquired
by the balanced support weighted voting, for different values of the ratio parameter. Results for
ratio = 0 correspond to standard decision reducts.
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We also compared decision bireduct ensembles to other popular approaches in the machine learning
literature [34, 130]. In particular, Table 5.9 includes comparison of accuracy and balanced accuracy
results obtained for random forest (1000 trees, default settings from randomForest package of R System
[106]), bagged logistic model ensemble and decision bireduct ensembles (using default settings described
in [140]).

Table 5.9: A comparison of average results obtained for ensembles of decision bireducts and two other
ensemble-based classification techniques, i.e., random forest and bagged logistic regression models.
Mean and standard deviation of the results are given.

data set RF BaggedLog Decision Bireducts
Accuracies (ACC)

zoo 0.78± .01 0.96± .02 0.97± .01
lymphography 0.76± .02 0.81± .02 0.83± .02
SPECT 0.75± .01 0.82± .01 0.82± .01

Balanced Accuracies (BAC)
zoo 0.77± .01 0.90± .05 0.93± .03
lymphography 0.88± .01 0.72± .08 0.83± .01
SPECT 0.75± .01 0.70± .01 0.74± .01

To summarize, regardless of the aggregation method and the quality measure used, for low values
of the ratio parameter, the decision bireduct classifiers consistently outperformed the ensembles of
standard reducts (the ratio value set to 0). Moreover, when compared to other commonly used
classification algorithms, decision bireduct ensembles not only achieved comparable results but also,
in some cases, outperformed them. Surely, there are many other studies showing that approximate
attribute reduction and rough set decision models also lead toward efficient ensembles of rule-based
classifiers [51, 9]. Nevertheless, we believe that having a direct control over the set of covered objects
may allow us to develop better ensemble learning strategies in future.

5.5 Decision Bireducts in Data Streams
The main motivation for introducing decision bireducts in [140] was to establish a simple framework for
constructing rough-set-based classifier ensembles, as well as to extend capabilities of decision reducts
to model data dependencies. Going further, in [89] it was noticed that algorithms for extracting
meaningful bireducts from data could be utilized to integrate the tasks of attribute and instance
selection. Such a potential is also illustrated by Algorithm 3 and Proposition 29, where the objects in
U� selected as representatives of equivalence classes induced by the subset of attributes actually define
a classifier based on the resulting B ⊆ A. Therefore, one can partition X with respect to its elements’
values on B and treat combinations of values labeling partition classes as antecedents of rules pointing
at specific decision values, uniquely defined within X due to the bireduct properties.

Some areas of applications were also pointed out for other types of bireducts. In [58], so called
information bireducts were employed to model context-based object similarities in multi-dimensional
data sets. Information bireducts may be also able to approximate data complexity analogously to
some well-known mathematical tools [10]. Indeed, by investigating cardinalities of minimal subsets of
attributes discerning maximal subsets of objects we can attempt to express a potential of a data source
to define different concepts of interest.

In this section, we study one more potential application of bireducts. Let us consider a stream
of objects that is too large to be stored or represents data collected online [1]. For our purposes, let
us focus on a stream interpreted as a decision system A = (U,A ∪ {d}), where there is no possibility
to look at the entire U at any moment of processing time. Instead, given a natural order over U ,
we can access some buffered data intervals, i.e., the subsets of objects that occur consecutively in a
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stream. The question is how to design and efficiently conduct a process of attribute reduction in such
a dynamic situation.

One of the ways would be to fix the amount of objects in each data interval and compare decision
reducts obtained for such narrowed down decision systems, in a kind of sliding window fashion. How-
ever, an arbitrary choice of the interval length may significantly influence the results. Thus, it may be
more reasonable to adaptively adjust data intervals with respect to the currently observed attribute
dependencies. Moreover, if our goal is to search for stable subsets of attributes that remain decision
reducts for possibly wide areas of data, then we should tend to maximizing data intervals in parallel
to minimizing the amounts of attributes necessary to determine decision classes within them.

Definition 42. Let A = (U,A ∪ {d}) be given. Let U be naturally ordered with its elements indexed
by integers. Consider a pair (X , B), where B ⊆ A and X = {ui ∈ U |i ∈ {first..last}} is a subset of
objects consisting of a continuos range of objects (with respect to their natural order) starting from the
object ufirst ending with the object ulast – or, X = Jfirst..lastK for short. We say that (X , B) is a
temporal decision bireduct if and only if the following conditions hold:

• An inexact functional dependency B VX d holds;

• There is no C ( B such that C VX d;

• B VY d is not true for neither Y = J(first− 1)..lastK nor Y = Jfirst..(last+ 1)K.

The above modification of Definition 34 can serve as a background for producing bireducts (X , B)
with no gaps in X with respect to a given data flow, e.g., when we do not know the whole dataset
upfront or it does not fit in memory but can be handled as a form of a stream of objects appearing
one by one. Below we sketch an example of heuristic extraction of such bireducts from data. From
a technical point of view, it resembles Proposition 29 with respect to a random choice of a subset of
attributes to be analyzed. From a more strategic perspective, let us note that our goal is now to save
the identified temporal bireducts analogously to micro-clusters [128] or data blocks [141] constructed
within other applications for the purposes of further steps of online or offline analysis. This way of
data stream processing may open new opportunities for the task of scalable attribute subset selection.
For instance, basing on frequent occurrence of a given subset of attributes in the previously-found
temporal bireducts, one can reason about its ability to induce a robust decision model.

Consider (X , B), where X is a buffer of objects that occurred most recently in a data stream. If
the next u ∈ U is contradictory with X subject to B, we can remove the oldest contradictory objects
from X and/or add some attributes to B to be able to add u. If the next u can be added to X subject
to B, we can just extend X or we can decrease B in order to avoid too rapid growth of X , e.g., we have
a limited amount of space for a buffer storing the currently processed objects. The whole approach
allows for flexible customization of the data stream processing depending on what are the expected
properties of the temporal bireducts obtained as a result.

Proposition 31. Let A = (U,A ∪ {d}) be given. Let U be naturally ordered with its elements indexed
by integers. Select an arbitrary subset of attributes A′ ⊆ A and put X = ∅ and B = ∅. Consider the
following steps for each consecutive i-th object in U :

1. If B VX∪{ui} d, then add ui to X ;

2. Else, save (X , B), add ui to X , and proceed as follows:

(a) Put B = A′ and remove the oldest objects from X until there is B VX d;
(b) Heuristically reduce redundant attributes under the constraint B VX d.

Then, all pairs (X , B) saved during the above procedure are temporal bireducts for A. Moreover, each
temporal bireduct can be obtained as one of saved pairs (X , B) for some A′ ⊆ A, no matter what
method is used in the last step.
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Proof. Consider a pair (X , B), where X = Jfirst..lastK, which was saved in step (2). For such a case,
we know that B VJfirst..lastK d and B 6VJfirst..(last+1)K d. Also, there is B 6VJ(first−1)..lastK d because
the oldest object in X is removed only when the newly joined object cannot be handled together with
some elements of X even when using the whole A′. Therefore, X cannot be extended backwards beyond
object ufirst. Also, because of reduction of redundant attributes, B is irreducible for X . Hence, all
saved pairs (X , B) are temporal bireducts.

Now, consider a temporal bireduct (Jfirst..lastK, B) and put A′ = B. Consider the first buffer
including object ufirst, i.e., Jolder..firstK, where older ≤ first. Each next entry until object ulast will
be added with no need of removing ufirst (otherwise there would be no B VJfirst..lastK d). Moreover,
when adding ulast, all objects older than ufirst (if any of them are still present) will be erased from
the buffer (otherwise there would be B VJ(first−1)..lastK d). Finally, when adding object ulast+1 to
Jfirst..lastK, we will need to remove ufirst (otherwise there would be B VJfirst..(last+1)K d), which
results in saving (Jfirst..lastK, B).

In Proposition 31, subsets X ⊆ U are treated as the buffers of objects that appeared most recently
in a data stream, within which a currently considered B ⊆ A is sufficient to determine decision classes.

One needs to remember that the above algorithm describes just one of many possible techniques
of extracting bireducts from data streams. Both, strategies of retrieving the inexact functional de-
pendency and heuristic approaches used in Proposition 31, may vary depending on the data source or
desirable results, e.g., temporal bireducts of particular size or preferred ratio between cardinalities of
X and B.

As an illustration, consider the data set presented in Table 3.1 and assume that we receive ob-
jects from U = {u1, . . . , u14} one after the other. Let the i-th state of the process be denoted by
Si = (Xi, Bi), where i is the number of objects already received from U and Bi is a decision reduct for
the current buffer content Xi.

O T H d

1 sunny hot high no S1 = (J1..1K, ∅)
2 sunny hot high no S2 = (J1..2K, ∅)

[save S2]
3 overcast hot high yes S3 = (J1..3K, {O})
4 rain mild high yes S4 = (J1..4K, {O})
5 rain cool normal yes S5 = (J1..5K, {O})

[save S5]
6 rain cool normal no S6 = (J6..6K, ∅)

[save S6]
7 overcast cool normal yes S7 = (J6..7K, {O})
8 sunny mild high no S8 = (J6..8K, {O})

[save S8]
9 sunny cool normal yes S9 = (J6..9K, {O,H})

[save S9]
10 rain mild normal yes S10 = (J6..10K, {O, T})

[save S10]
11 sunny mild normal yes S11 = (J6..11K, {O, T,H})
12 overcast mild high yes S12 = (J6..12K, {O, T,H})
13 overcast hot normal yes S13 = (J6..13K, {O, T,H})
14 rain mild high no S14 = (J6..14K, {O, T,H})

T H W d

1 hot high weak no S1 = (J1..1K, ∅)
2 hot high strong no S2 = (J1..2K, ∅)

[save S2]
3 hot high weak yes S3 = (J2..3K, {W})
4 mild high weak yes S4 = (J2..4K, {W})
5 cool normal weak yes S5 = (J2..5K, {W})
6 cool normal strong no S6 = (J2..6K, {W})

[save S6]
7 cool normal strong yes S7 = (J7..7K, ∅)

[save S7]
8 mild high weak no S8 = (J7..8K, {W})

[save S8]
9 cool normal weak yes S9 = (J7..9K, {H})
10 mild normal weak yes S10 = (J7..10K, {H})
11 mild normal strong yes S11 = (J7..11K, {H})

[save S11]
12 mild high strong yes S12 = (J7..12K, {H,W})
13 hot normal weak yes S13 = (J7..13K, {H,W})

[save S13]
14 mild high strong no S14 = (J13..14K, {W})

Figure 5.7: Extraction of temporal bireducts from a data set in Table 3.1. The left/right-hand side
sequences correspond to subsets A′ = {O, T,H} and A′ = {T,H,W}, respectively.

Figure 5.7 presents two examples of arbitrarily chosen subsets of attributes. Let us concentrate
on A′ = {T,H,W} and refer one more time to the order-based characteristics of decision reducts
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outlined, e.g., in [3]. Namely, in the step (2b) of Proposition 31, we are going to reduce attributes
along σ = [T,H,W ]. In general, when following the same σ : {1, . . . , n′} → {1, . . . , n′}, n′ = |A′|,
from the very beginning of a data stream, we can count on smoother evolution of subsets Bi ⊆ A′ for
consecutive buffers. We can expect this because the fixed order of attributes used in the algorithm
for the whole run will naturally prefer some attributes over others. On the other hand, by working
with a larger family of diversified subsets A′ ⊆ A, we have a chance to witness the most representative
changes of the observed temporal bireducts in time.

Let us now take a closer look at A′ = {T,H,W}. The first two objects share the same decision.
Thus, there is S2 = (J1..2K, ∅). Further, since ∅ 6VJ1..3K d, we save the temporal bireduct (J1..2K, ∅) and
proceed with step (2) of the procedure from Proposition 31. As {T,H,W} is insufficient to discern
objects u1 and u3, we limit ourselves to J2..3K. Starting from B = A′ and given σ = [T,H,W ], we
reduce T and H, which results in the pair S3 = (J2..3K, {W}). The next three objects do not break
the dependency between {W} and d. However, object u7 forces all earlier entries to be removed. A
different situation can be observed when adding the next two objects. In both cases, A′ determines
decision values, so we can keep buffers J7..8K and then J7..9K. However, subsets of attributes generated
using the same σ will differ from each other. {W} is not able to determine d within J7..9K although
it was sufficient for J7..8K. As a consequence, we need to restart from B = A′. We are allowed to
remove T . Then, H turns out to be irreducible because of a need of keeping discernibility between
objects u8 and u9. Given the fact that H was not removed, W is not important any more, resulting
in S9 = (J7..9K, {H}). Another two objects cause no problems and S11 = (J7..11K, {H}). After u12
arrives we can see that {H} is insufficient to determine d within J7..12K, thus we need to start again
with step (2) of the procedure. As {T,H,W} is sufficient to determine d within J7..12K we do not need
to remove any objects at this point. Starting with B = A′, this time we can only reduce attribute
T , getting S12 = (J7..12K, {H,W}). The next object u13 does not cause conflicts and can be added
without issues. Finally, the last object from our example u14 conflicts with the object u12 (even using
the whole A′ = {T,H,W}), thus forcing removal of the oldest objects J7..12K. Once again we start with
B = A′ and we are able to remove T and H as the attribute W alone is sufficient to discern objects
u13 and u14 having different decision value. Our procedure finally ends with S14 = (J13..14K, {W}).

5.6 Software Library
A Python software library scikit-rough (https://github.com/sebov/scikit-rough) hosted on GitHub
platform is released as a result of our research. It is available to users under the permissive MIT license.
The library provides a range of functions and algorithms associated with rough set theory, encompass-
ing structures and methods for handling, analyzing, processing data, and enabling the application of
techniques related to machine learning.
To install the newest version available in PyPI repository 1 (as of this writing, this is 0.1.0), please
use the following command:

pip install scikit-rough

For the exact version referred above, please use:

pip install scikit-rough==0.1.0

The library is currently in a phase of development where interface stability is not its primary focus.
Instead, it is oriented toward introducing new features, experimentation, preparation of prototypes of
various solutions, including the framework for working with rough-set-based algorithms in a structural-
like pattern. If the actual instructions on the library usage were written here, they could quickly
become outdated, therefore, we suggest that readers to refer to the automatically generated online
documentation available at https://scikit-rough.readthedocs.io – for viewing the API reference

1https://pypi.org/ - The Python Package Index is a repository of software for the Python programming language

https://github.com/sebov/scikit-rough
https://scikit-rough.readthedocs.io
https://pypi.org/
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and examples. However, to demonstrate some functionalities of the library through examples, we have
included a few Jupyter Notebooks in Appendix B. Moreover, in Section 5.7 we present also a short
description of one of its functionalities, which allows employing a structural pattern to the construction
of algorithms.

We invite anyone who is interested to install the library, conduct experiments, review the source
code, and report any issue they may encounter. All contributions and feedback are welcome.

5.7 Multi-Stage Processing Framework
Based on our research and numerous discussions, we come to this conclusion that the algorithms we
use in various experiments related to decision reducts, approximate decision reducts, and decision
bireducts often share a similar pattern. Namely, in practical applications, for performance reasons, the
common steps were to obtain a superset of significant attributes (the “grow” phase) and at some point
to reduce it keeping the given criterion (the “shrink” phase). Sometimes, these were extended with
other intermediate steps, e.g., drawing objects in the process of generating decision bireducts. Similar
approaches, in different variants, we can observe in multiple situations:

• In the general form of the decision bireduct sampling algorithm, namely Algorithm 3 we can
distinguish the phases of obtaining an attribute subset and the reduction phase at the end.

• In Algorithm 4 we have similar situation but in the context of other reduction method.

• In Algorithms 1 and 2 we perform the “grow” phase for the subsets of objects and “shrink” phase
for the subsets of attributes simultaneously.

• We can notice similar operation scheme in the greedy heuristic for computing decision reducts
as well as in relation to the DAAR algorithm [56],

• In Algorithm 5 (DAAR-based) for computing decision bireducts which is presented in Section 5.3
the pattern is visible as well.

All of the above allow us to propose the following more general solution presented in Figure 5.8 and
implemented within the scikit-rough software library (see Section 5.6) as a structural framework for
constructing algorithms, e.g., those falling under the “grow-shrink” category. A Jupyter Notebook
example presenting the ideas on how to use the framework can be seen on page 178.

An algorithm expressed using the framework consists of the following elements, which are usually
optional and compositional (i.e., they can be assembled from the available or ad-hoc implemented hook
functions) placeholders:

• the initialization placeholder, in which one or more functions can be invoked to prepare the
internal state of the run, e.g., we can preprocess the data, prepare internal indexes, compute an
approximation threshold from data, etc.,

• zero or more stages, that may correspond to some larger subtasks (e.g., “grow” or “shrink” phases
mentioned above),

• the finalize placeholder, that may correspond to some operations preceding the preparation of
the result,

• the prepare-result placeholder, used to prepare the result of the given run, e.g., for decision-
reduct-based algorithm, it should be just a subset of attributes A, but for decision-bireduct-based
algorithms, this should be a pair (X , B).
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Going forward, each stage is implemented using two nested loops. The outer loop is just an infinite
loop that can only be interrupted by the occurrence of a defined stop condition. Within each iteration
we process some generally understood elements (e.g., representing attributes of a data set) obtaining
a certain set of elements relevant in a given iteration (e.g., the best attribute candidate, like in Algo-
rithm 5). Then, the inner loop processes those elements, updating the internal structures of the whole
run, e.g., extending the set of resulting attributes. Within each stage we can define the following,
usually optional and compositional, placeholders:

• the initialization placeholder, used to initialize a given stage run, e.g., generating an appropriate
permutation for Algorithm 1,

• the stop-check placeholder, defining an appropriate stop criterion, e.g., in “grow” phase we
reached a given maximum number of attributes, or the DAAR criterion does not hold for the
best candidate attribute, cf. Section 5.3,

• the pre-candidates placeholder, to define functions “producing” elements that will be processed
by the latter steps, e.g., to determine which attributes are still available for selection,

• the candidates placeholder, to define functions “pre-filtering” the elements, e.g., limiting the
number of candidate attributes to the given parameter, cf. the DAAR algorithm [56],

• the selected placeholder, to define functions “selecting” the best candidate elements, e.g., selecting
one or more attributes with the highest information gain,

• the filtered placeholder, to define functions “post-filtering” the best candidate elements, e.g.,
applying the DAAR criterion as described in Section 5.3,

• the inner-* placeholders, to define functions that process the elements which have survived all
earlier steps, e.g., adding the best attribute to the current set of selected attributes, or in the
context of the attribute reduction, the inner loop will be responsible for the removal of attributes
from the current set of resulting attributes and update of the internal structures,

• the finalize placeholder, to define functions updating the internal state at the end of the given
stage run.

Overall, the multi-stage processing approach should be understood in terms of a Proof of Concept. It
was prepared to demonstrate its feasibility and to verify if it has practical potential. On the one hand,
it may seem complicated and require some overhead when designing solutions. On the other hand, it
also has several advantages, i.e., reusability of individual hook functions as well as entire composed
stages. Moreover, the imposed structure allows for runtime inspection, visualization, documentation
and parameter verification based on its components – see a Jupyter notebook demonstrating a simple
usage example on page 178.
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Figure 5.8: Multi-stage processing approach.
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Chapter 6

Case Study Related to HR Industry

In this chapter our aim has been to apply the already developed ensembles of decision bireducts in
the context of a real life problem related to recruitment processes from HR industry. Our case study
refers to the data gathered in the system owned and used by the Toolbox for HR1 (tb4hr) which is
a recruitment process outsourcing company. The proposed system is responsible for continuous data
acquisition and analytics. We designed it in cooperation with tb4hr’s subject matter experts (SMEs),
both with respect to its functionality and the shape of the data. In such companies, the sourcers, i.e.,
people who search for job applicants and convince them to participate in a recruitment process, need
to contact hundreds of candidates in order to find only several who are likely to change their current
employer.

Some of the results presented in this chapter have already been published previously [52]. Moreover,
the further research from the continuation of this work, is submitted for publication [59].

6.1 Recruitment System
The system is deployed in a production environment with the task of scoring the likelihood that a given
person would change employment. There are two modes of the system’s work, namely external and
in-house. The in-house mode enables us to explore the historical data collected by tb4hr’s sourcers in
order to improve the efficiency of new recruitment processes. It is the basis for the following process
which takes place at tb4hr with respect to every new job offer:

1. deriving the most similar historical offers,

2. fetching the profiles of relevant candidates,

3. constructing a scoring model,

4. computing candidate profile scores.

The external mode is devoted to the external recruitment agencies which use the Chrome-browser-
extension-based service delivered by tb4hr. As such agencies are usually not willing to share descrip-
tions of their campaigns and especially job offers; the above process is simplified in this case.

The architecture of the tb4hr’s system is depicted in Figure 6.1 and it was discussed for the first
time in [52]. It is flexible and allows us to perform different types of data analyses. For instance, a
data analyst can easily use it to explore historical data in a search for meaningful dependencies, try
to select the most important attributes or visualize the data for the sourcers in the hope of providing
them with some practical insights. For the external mode, some parts of the architecture are not used
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Figure 6.1: The architecture and data flow in the described in-house RSS at tb4hr [52].

because of the above-mentioned reasons. Generally, the in-house functionalities assume scoring the
candidate-job pairs while the external mode delivers the ability to score the candidates only.

As explained in more detail in [52], the in-house mode of tb4hr’s system is built around the
Applicant Tracking System (ATS) called FERMI, which was developed by an external company for
the purpose of collecting information about potential job candidates from Internet CV databases and
professional networking sites visited by the sourcers. Its main function is to provide the sourcers
with convenient means for accessing and sharing candidate profiles. It also enables managing the
recruitment process at each of its stages.

We extended FERMI with the three modules which facilitate the analysis of the data collected by
the sourcers. The first module – called BIZON – is a Google Chrome plugin registered in Chrome
Web Store2. It downloads the HTML profiles visited by the sourcers. Such acquired raw data is then
persisted in the second module – SILO – which works in the client-server architecture of Google App
Engine Standard3. SILO also stores meta-data about the visited profiles, as well as job offers which
stand as a context for visiting particular candidate profiles by the sourcers. The final data extracted
from the original profiles are loaded into the third module – FARM – which is a relational database.
It also contains the dictionary data supplied by the HR experts.

The data flow in the tb4hr’s system is acyclic and incremental. The relevant webpages that have
been visited using a browser with the BIZON plugin installed are downloaded and stored in SILO.
Then, the corresponding information is extracted and augmented using scripts and the auxiliary data,
prepared either manually or obtained from external sources, e.g., GeoNames4. The final data is
archived in FARM, where it can be used for further analysis, attribute evaluation, and constructing
scoring models. The process is incremental since new web pages are processed independently from the
web pages already stored in the system. To achieve higher processing performance, the computations
can be also conducted for larger batches of the buffered web pages.

The above-discussed software components make it possible to support the employees of tb4hr in-
house. The system ingests online materials browsed manually by the sourcers and advises them on
particular candidates in the context of particular job offer campaigns. This makes the scoring task
more complex than the external mode which focuses on assessing the general likeliness of changing
employment by particular persons. In the in-house mode, the likeliness is just one of the ingredients

1http://tb4hr.com/
2https://chrome.google.com/webstore
3https://cloud.google.com/appengine/docs/standard
4GeoNames Gazetteer Data – https://www.geonames.org – licensed under CC BY 4.0

http://tb4hr.com/
https://chrome.google.com/webstore
https://cloud.google.com/appengine/docs/standard
https://www.geonames.org
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in the assessment of whether a given person might be interested in a particular new job opportunity.
Such a goal requires modeling more sophisticated data and as already mentioned, operating with the
feedback with respect to the pairs – a candidate and a job offer – not just a candidate.

6.2 Attribute Groups
A thorough domain-driven feature engineering process can help us in constructing interpretable scoring
models. This makes it important for both, in-house and external scenarios deployed at tb4hr. As
visible in Figure 6.1, after storing the augmented data representations in FARM, one can run additional
processes defined in the analytical script library, aiming, e.g., at deriving new characteristics describing
the pairs of profiles and job offers. We have defined 772 of such attributes in cooperation with the
tb4hr sourcers. They can be categorized into three groups: attributes of candidates, attributes of job
offers, and the relations between candidates and offers. This space of attributes goes far beyond the
one investigated in [52].

The candidate group can be divided into five subgroups representing different aspects of candidate
characteristics: g1: employment history (e.g., the number of jobs up to now, average time between
switching jobs), g2: skills (e.g., the number of certifications, keywords from a list of skills), g3: educa-
tion (e.g., academic degree, date of the latest education entry), g4: place of residence (e.g., country’s
GDP, population) and g5: current status (e.g., the current employment length). The candidate group
is suitable also in the external mode. Actually, the accuracy parameters that we are reporting at the
beginning of Section 6.3, for the task of scoring the likelihood that a person would change his/her job,
are obtained using machine learning models based on these attributes. All of them can be calculated
for a given profile once it is stored in FARM. Then we can pair them with any offer. After some time
the profiles may become outdated but the sourcers can refresh them via BIZON.

The g6: job offer group contains characteristics of particular positions. The attributes are derived
based only on information that can be revealed to potential candidates in the initial contact email.
They need to be computed only once for a given offer. This group includes attributes such as the
company name, position type, recruitment country, and city. We also store a short textual description
of the offer, which is utilized as outlined in Section 6.3.

The g7: person-offer relation group contains attributes that express how a given offer fits to a given
candidate. The items in g7 include an indicator of whether a candidate speaks the required language,
a geographical distance between a candidate’s city and the city from the offer, a Jaccard similarity
value between a short description of the candidate and a textual description of the offer, and many
others. Since information covered by those characteristics is relative to particular candidates and job
offers, it needs to be computed for every single candidate-offer pair. From a technical standpoint, the
derivation of such attributes is possible due to the augmentations of the data in FARM. The attributes
in g7 (e.g., similarity between a job offer description and candidate’s skill set) are particularly aimed
to build models easy to interpret by SMEs.

Figure 6.2 depicts a sample decision tree based on the above attributes. Its analysis can reveal
some interesting rules, e.g., “EU-based developers, who receive a remote work offer, and who follow
many companies in social media, are more likely to be interested in the offer”. This tree was induced
using the standard scikit-learn [97] over the data set which is significantly bigger than in our previous
studies. Besides the data acquired in Q45 of 2017 and analyzed in [52], we included also the profiles
uploaded to BIZON in Q1 of 2018. In total, we collected the data on 20,000 profiles corresponding to
202 tb4hr’s recruitment campaigns. (Our previous study was based on only 2,288 cases.) Each pair in
the data (i.e., each profile and the corresponding job offer) was labeled by a tag expressing whether a
candidate was interested in moving to a new job.

The distribution of classes in the considered data set is highly imbalanced, with only about 5%
of positive cases. This reflects a typical success rate of the sourcers, whereby only very few out of
contacted candidates are interested in the given offer. Accordingly, the above rule characterizing the

5Q1-Q4 denote four quarters of a year.
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EU-based developers triggers an over six times higher chance than the average, although we should keep
revisiting such rules and recalculating the underlying models because of, e.g., the COVID-19-related
reasons discussed in Section 1.3. Moreover, the decision trees such as the one in Figure 6.2, should
not be confused with the recently discussed popular trees which approximate complex models such as,
XGBoost [111]. Although such approximations may be useful for SMEs to understand the dynamics
of the models’ performance, they still require an insightful method for ranking attributes on the basis
of their importance.

To ensure transparency in our research, and with the pemission obtained from tb4hr, we are working
toward making the considered new data set publicly available at KnowledgePit.ai6 which is an online
platform for the data science competitions [57]. Until achieving this objective, we have established
a temporary link7 through which the data set can currently be accessed. This data set can be useful
to reproduce and extend the results presented in Sections 6.4 and 6.5. For the purpose of assuring
the privacy of candidates’ profiles, we could not disclose the attribute names. Precisely, we use the
real attribute names in the dissertation, but we tokenized them in the disclosed data set. However, we
indicated the respective membership of attributes from g1-g7 in the column names.

6https://knowledgepit.ai/
7https://tinyurl.com/tbdata

https://knowledgepit.ai/
https://tinyurl.com/tbdata
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Figure 6.2: An exemplary decision tree induced from the data set gathered by tb4hr in Q4 of 2017 and
Q1 of 2018. Features occurring in the tree belong to different groups. The first three tree layers are
defined using: the time which has past since the last job’s start (g1: the employment history feature
group); an indicator whether the word ’developer’ occurred in the candidate’s title(s) (g2: skills); the
continent (g4: place of residence); the amount of company profiles which are currently followed by a
candidate in social media (g5: current status); an indicator whether a job is remote (g6: job offer); and
a degree of similarity between job offer description and candidate’s title(s) (g7: person-offer relation).
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6.3 In-House Process
As already discussed, with respect to the complexity of data sets and the mechanisms that we needed
to develop to acquire those data sets, the external mode of the tb4hr’s system is simpler than the
in-house one. In the external mode, it was relatively easy for tb4hr to train models scoring candidate
profiles with respect to the likelihood that a given person is willing to change employment in the
next 18 months. The accuracy was tested on the set of 4,300,000 external profiles. The AUC value
of the best model was equal to 0.65, with F1-score 0.63, precision 0.57, and recall 0.71, whereby the
ground truth (the fact of changing a job) was derived from the profile histories. The task of learning
the analogous models for the in-house mode is harder. The process of collecting the data does not
concern the profiles generally available – it concerns the profiles considered in the context of specific
job campaigns conducted by tb4hr. Moreover, the ground truth is more tricky to build a model for
– it is not a general fact of changing a job but the fact of being interested in a particular offer. In
Section 6.4, we report our results obtained for this scenario.

When a new job offer campaign is started, it is natural for the HR experts to refer to the most similar
previous campaigns and design a new recruitment strategy based on the experience related to them. In
our design, we follow the same approach in order to meet the SMEs’ intuitions. From the perspective
of the scoring models, this idea could be expressed by the following sentence: “over similar cases, the
model has learned that if ... then ...”. The if-then part symbolizes that the considered machine learning
methods should generate models providing the sourcers with some logical, interpretable descriptions
over interpretable attributes. We should also consider how to understand similar cases, i.e., similar
job offer campaigns.

The similarity is an important aspect of recommender systems. Therein, due to the high-dimensional
nature of typical preference data, the most common choices to model similarity are Jaccard and cosine
measures [11]. One can also attempt to construct a custom similarity measure using expert knowledge
or employ methods capable of learning the similarity from the data [72]. Our solution needs to evaluate
the similarity between job offers and score the candidates with that respect. The offers are described
by short texts and a few simple attributes such as the city and country of the employer. One way to
represent this type of data is to combine the available attributes and a bag-of-words representation
of the text. Another way – the one we follow – is to compute the embeddings of the texts and the
available attribute values into a relatively low-dimensional vector space. It can be done using, e.g., the
neural probabilistic language models [5] or the techniques such as word2vec and its extensions [68].

In [52], we relied on the standard word2vec, i.e., we utilized the standard skip-gram method with
the Noise-Contrastive Estimation loss [68] to train the similarity model on descriptions of historical job
offers. The texts were divided into terms and common stop-words were removed. Different embedding
sizes between 10 to 100 were explored. As the number of distinct terms was relatively low (after
filtering out the most common phrases, less than 1,000 items were left in the dictionary), the final size
was set to 50. The embeddings of job offers were created from the embeddings of individual terms by
averaging vectors corresponding to keywords occurring in the descriptions.

In order to make sure that the obtained embeddings can indeed lead toward a reasonable process of
choosing the most similar job offer campaigns, we needed to investigate to what extent our embeddings
of offers can reflect their similarity perceived by the HR experts. This is indeed important from the
perspectives of both, making our overall approach work with high accuracy and avoiding the impression
that it is counter-intuitive for SMEs. Therefore, we asked the HR experts to manually divide job offers
into categories. They assigned each offer to one of 10 of such categories (e.g., BACKEND, BIG_DATA).
Then, we performed the leave-one-out classification using the 1-NN algorithm in the embedding space
to predict the category of a given offer based on the category of the closest neighbor. The average
accuracy of predictions is 77%, which seems to be a reasonably good result considering the relatively
high number of categories. Additionally, we visualized the embeddings in a two-dimensional space
using t-SNE [45]. Figure 6.3 shows that our simple embeddings can provide SMEs with an intuitive
tool for identifying relevant job offer campaigns.

Besides the main data comprising the rows corresponding to the job-candidate pairs, we disclose
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Figure 6.3: Visualization of job offers from our data using the t-SNE technique. The colors on the plot
correspond to different categories of the offered positions, which were manually assigned by experts.
The list of job offers significantly extends the one considered in [52].
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also the embeddings of job offers (see Section 6.2). For privacy reasons, we cannot provide the original
job descriptions. Still, their embeddings are useful to reproduce the outcomes of our research.

6.4 Experiments with Scoring Models

The in-house mode was deployed at tb4hr in Q4 of 2017. Following the outcomes of [52], we based
our solution initially on XGBoost [19]. However, the feedback from tb4hr made us conclude that the
analysts and recruitment process designers are interested not only in the efficiency of the scoring models
but also in identifying the most important attributes that can be crucial to optimize the real-world
interaction with job candidates. We decided to extend our research and focus on the comparison of
XGBoost and decision bireducts and we show that although the former method can guarantee slightly
better accuracy of the scoring model, the latter method is superior when it comes to producing the
trustworthy attribute importance rankings.

The above-discussed models are going to be used for scoring. Precisely, we will operate with two
types of evaluation measures for two types of decision problems. The first type refers to the measures
such as precision, recall, and F1-score, which are relevant to the binary classification problem. The
second type refers to the AUC (the area under the ROC curve) measure that examines the correctness
of sorting job candidates by means of probabilities that they are likely to accept a given job offer. Many
modern machine learning methods – like XGBoost – serve also as probabilistic classifiers. Therefore,
by analogy to XGBoost, we should discuss how to equip the ensembles of decision bireducts with
probability-based scorings.

As discussed in Chapter 4, each decision bireduct (X , B) induces a collection of rules associated
with the combinations of values on attributes in B and pointing at specific decision classes. Such
a rule-based classifier can perform prediction on any previously unseen object by either returning a
single decision triggered by a matching rule or answering with the “I-do-not-know” response in case
none of the rules match the object. For the ensembles of decision bireducts, we implemented a simple
aggregation scheme with two variants. For each object whose prediction is calculated, the actual votes
(without considering the “I-do-not-knows”) of bireducts in the ensemble are counted and normalized.
In the main variant each vote is equally important, while in the alternative approach, the votes are
weighted by cardinalities of X for particular bireducts (X , B). Such aggregation can be applied to
deliver the probability-based scores or it can serve as the means for voting in the standard case of
decision making.

The first step in the construction of our scoring models is the identification of historical recruitment
campaigns that are most similar to the offer at hand. We do it using the techniques described in
Section 6.3. In the second step, we collect all candidate records processed in those campaigns and we
fit models to recruitment results achieved in those campaigns.

In our experimental assessment of such a process, we divided the data set into chunks associated
with different offers. For each chunk, we constructed three prediction models using all the remaining
chunks as the training data and we tested them on the selected chunk. We call this method leave-
one-offer-out keeping analogy to the leave-one-group-out approach described in Section 2.3. Let us
note that if we would have used leave-one-out or, e.g., 10-fold cross-validation, we would not be able
to reflect a typical deployment scenario of the discussed system and would be likely to produce over-
optimistic estimations. Actually, AUC obtained for 10-fold cross-validation was nearly 20% higher
than for our leave-one-offer-out.

The three compared models are: 1) decision trees built with the aforementioned scikit-learn’s
decision tree classifier [97], 2) boosting models constructed using the XGBoost library [19], and 3)
ensembles of decision bireducts [119]. As for decision trees, they are included in our study to set up some
baseline expectations. It is also worth noting that in the case of our leave-one-offer-out experiment,
they may look different from the one visible in Figure 6.2, whereby the whole data set was used for
training. Decision trees were constructed with the minimum Gini impurity decrease parameter in the
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set {〈〈0.0〉〉8, 0.001, 0.01, 0.1} and the maximum depth parameter in the set {2, 3, 4, 〈〈5〉〉}. Gini impurity
was used also as the cut evaluation criterion. The number of boosting iterations in XGBoost and the
size of decision bireduct ensembles were both set to 1,000. Moreover, the hyperparameters for XGBoost
were obtained using a grid search over binary classification of decision trees with the maximum depths
taken from the set {2, 〈〈3〉〉, 4, 5, 10} and the learning rates taken from {〈〈0.001〉〉, 0.01, 0.1}. On the
other hand, each of decision bireducts was constructed using DAAR-based algorithm (see Algorithm 5
in Section 5.3) with the number of candidate attributes fixed to 100, the number of probes and the
allowed randomness (both used in the stopping criterion [56]) set to 100 and 0.05 (respectively), and
the maximum number of attributes either equal to 3 or to 〈〈unlimited〉〉. Furthermore, in order to
perform experiments with ensembles of decision bireducts, we employed an unsupervised quantile-
based approach to discretize every numeric attribute into 3 intervals.

Table 6.1 shows the results obtained by the above mentioned test methods. Due to the imbalanced
distribution of labels in the data, we evaluated the results using four different quality measures, namely
precision, recall, F1-score and AUC. In order to check the impact of the retrieval of the relevant training
data, we repeated this experiment with enabled filtering based on the similarity of the offers. At each
step of the leave-one-offer-out evaluation, the training data set was filtered before the construction of
a scoring model. Only the history of investigated candidate profiles corresponding to K most similar
offers to the tested one was used. The experiment was repeated for values of K between 10 and 202
(the case when no filtering is done) with a step of 10. Figure 6.4 illustrates the results obtained by the
tested algorithms for different values of K.

Table 6.1: Comparison of the scoring models using leave-one-offer-out. The values in the column
experts were computed based on the actual responses to emails sent by the sourcers. (We assume that
recall of the experts is 1.0.) The columns top 40 reflect the models constructed on the training data
filtered with respect to the similarity of offers (computed in the offer embedding space). The columns
same indicate results when the training data was limited to recruitments with the same CategoryID
(cf. Figure 6.3) of job offers as the tested one.

dec. tree all same top 40
Precision 0.131 0.124 0.141
Recall 0.551 0.352 0.362
F1-score 0.211 0.183 0.203
AUC 0.659 0.558 0.630

bireducts all same top 40
Precision 0.144 0.128 0.147
Recall 0.468 0.445 0.419
F1-score 0.220 0.199 0.217
AUC 0.671 0.630 0.668

XGBoost all same top 40
Precision 0.162 0.138 0.154
Recall 0.391 0.341 0.445
F1-score 0.229 0.197 0.229
AUC 0.679 0.622 0.682

experts
Precision 0.069
Recall 1.000
F1-score 0.131
AUC –

The results show that the best performance was achieved by XGBoost, with respect to both F1-
score and AUC. Filtering of the training data slightly increased the results achieved by XGBoost but
at the same time, the performance of bireducts slightly decreased. A significant change was visible
only for the simple decision tree, for which the model trained on the full data had AUC higher by
0.029 than the one that used only the 40 most similar campaigns. The highest result of XGBoost was
obtained for K = 40, whereas the best bireduct ensemble was trained for K = 190. In that case, we
achieved for bireducts AUC = 0.677, which is higher than 0.668 in Table 6.1.

For the sake of comparison, we also evaluated the algorithms in the scenario where the training
data is limited to recruitment processes that correspond to the same offer category as the tested
one. Then, the results were considerably lower than in the case when the filtering of the data was

8The optimal parameters found during grid search are marked using 〈〈.〉〉.
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conducted using the embeddings of textual descriptions of job offers. Nevertheless, in this specific
scenario bireducts turn out to provide more accurate scoring models than XGBoost. This is a useful
hint for those potential deployments of our approach, wherein the ability to rely on the historical job
offer campaigns would be limited. This might be also the case if tb4hr undertook a new campaign
which would be totally incomparable with the previous job offers.

For the purpose of providing an additional baseline to the above experimental results, we investi-
gated also the success rate of human sourcers. If we assume that they sent the offer to all potentially
relevant candidates, then their recall would equal 1.0. (Actually, it does not need to be true in prac-
tice.) We can estimate the precision of the sourcers by taking the percentage of positive examples
in our data set and thus, we can compute their F1-score. The result of the sourcers is shown in the
bottom-right fragment of Table 6.1.

The fact that the F1-score achieved by XGBoost is nearly 75% greater than that of humans clearly
shows the benefits which our system can bring to tb4hr. Interestingly, a simple decision tree model –
such as the one discussed in Section 6.2 and illustrated in Figure 6.2 – was able to achieve only a few
percent worse score than the boosting and bireduct ensemble approaches.

We also analyzed our scoring models against a subset of the data, corresponding only to the most
typical clients. Since tb4hr specializes in recruiting staff to technological startups, we measured the
performance only on their most representative recruitments. On this subset (≈ 80% of the data), our
best model achieved a slightly greater AUC than on the whole data (≈ 0.688).

In summary, when comparing to [52], the best models yielded better prediction results in terms of
both, AUC and F1-score. As for AUC, our best model improved by over 4%. It demonstrates how
much the extra data collected by the sourcers after the initial deployment of the data acquisition system
has impact on the performance of a model. However, we need to remember that besides utilizing more
training data, the methodology reported herein is based on a bigger set of attributes designed together
with the HR experts (772 compared to 374 in [52]).
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Figure 6.4: Results of the considered scoring algorithms evaluated using the leave-one-offer-out ap-
proach, when the model training is performed on the data corresponding toK most similar recruitment
processes (K between 10 and 200).
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6.5 Attribute Groups Contributions
To make our approach applicable in a range of different practical scenarios, we need to validate the
impact of particular groups of attributes outlined in Section 6.2. In practice, not all of those groups
could be available at the same time, or they may come with different costs of acquisition. Our trust
in the correctness of attribute values in different groups could also vary. As a corner case, some of
the attribute groups could be fully redundant (and therefore unnecessary to generate and maintain)
because the remaining ones still deliver the scoring models of sufficient quality. The analysis of the
impact of attributes from each group can be also important in order to provide HR experts with
insights into factors influencing the chances of finding good candidates for a job. Therefore, it is useful
for verifying the fairness of our models and detecting any undesired (e.g., social) biases [83].

Table 6.2: AUC computed for K = 40, with excluded attributes from the individual groups described
in Section 6.2. The column N indicates the number of attributes in the corresponding group. Such
a large number of attributes in the group ‘skills’ is due to the fact that this group includes one-hot
encoded skill names listed in candidate’s CV.

attribute group id / name N dec. tree bireducts XGBoost
g1: employment history 36 0.641 0.667 0.684
g2: skills 570 0.615 0.657 0.674
g3: education 17 0.630 0.662 0.682
g4: place of residence 48 0.618 0.636 0.658
g5: current status 29 0.636 0.651 0.664
g6: job offer 50 0.614 0.654 0.666
g7: person-offer relation 22 0.630 0.675 0.680

Accordingly, we repeated the evaluation of the previously tested models, as described in Section 6.4,
but this time with excluded attributes belonging to each indicated group. Table 6.2 shows that for
nearly all groups, the exclusion of respective attributes does not have a significant impact on the AUC
value. For XGBoost and bireducts, the most severe degradation in AUC is visible when attributes
related to the candidate’s place of residence (g4) are excluded (XGBoost: 0.682 −→ 0.658; bireducts:
0.668 −→ 0.636). For bireducts, this means nearly 5% reduction compared to the AUC of models
trained using all attributes. As for the decision trees, the most severe effect is observed in case of the
exclusion of attributes describing the job offer (0.630 −→ 0.614), which may in particular mean that
this is not a perfect choice for the external mode of tb4hr’s operations. Similar tendencies could be
observed for other settings, in particular for K 6= 40.

Interestingly, the exclusion of some groups had no effect or even slightly improved the performance
of the investigated models. Those results suggest a considerable redundancy in the information carried
on by the engineered attribute set. This might be actually an advantage in the case of potential
incompleteness of the data about job offers and candidates. Still, in Figure 6.2 one can see that the
individual elements of all attribute groups are used in a decision tree constructed for all available data.
This might suggest that attributes from all groups can work well together. In particular, all attribute
groups have at least one representative among the attributes used in the top four layers of the induced
decision tree, although one can also notice a kind of correspondence between the level of occurrence
of those elements in the tree structure and the importance of the corresponding groups, which can be
deduced from Table 6.2.

If all attributes are available, it might be reasonable to drop those belonging to g1: employment
history, g3: education, and g7: person-offer relation before the model construction as their removal does
not harm the performance of any of the investigated models. Figure 6.5 seems to provide an argument
supporting this hypothesis. The accumulated Shapley values [74] in each of those three groups are
nearly three times lower than the corresponding values for other attribute groups. Nevertheless, to
confirm this observation, a more detailed investigation of the importance of individual attributes
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is needed. More research is also needed to understand redundancies and interactions between the
considered groups using various measures of attribute importance and interchangeability.

Figure 6.5: The aggregated SHAP values of XGBoost for the elements of each feature group.
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Chapter 7

Feature Importance and Rankings

This chapter deals with different techniques of evaluating importance of attributes. Machine learn-
ing applications often require constructing interpretable decision models [32]. Interpretability means
using attributes that are understandable by the subject matter experts (SMEs) and connecting those
attributes in an understandable way within a model. One of the often considered aspects of inter-
pretability is the ability to report the importance of particular attributes in a model to SMEs. Such
information may help in better understanding what aspects of the data are crucial for the accuracy
of a model. SMEs can, e.g., express their concerns if they see some attributes being too important or
not sufficiently important from the perspective of their domain knowledge. The attribute importance
analysis is also useful for acquiring new knowledge about complex data dependencies and can provide
useful insights about the modeled problem. Such insights are beneficial for the experts who can an-
alyze the model and verify whether the chosen attributes do not contradict basic intuitions [112]. In
this context – since there are many methods of computing the importance of attributes – it is hard
to decide which one is more helpful, i.e., provides an importance ranking for attributes that enables
better identification of relevant attributes. In this regard we design attribute importance methods in
the context of approximate decision reducts, decision bireducts and present some experimental results
comparing usefulness of such methods.

7.1 Feature Selection Based on Approximate Decision Reducts
This section presents methods of attribute ranking that utilize the approximate decision reducts, to
measure relevance of individual attributes [51]. All of these methods are multivariate as they consider
attributes in the context of others and are able to detect dependencies between them. In our research,
we needed to adapt existing methods to better suit the task of selecting relevant attributes from high-
dimensional decision systems (≥ 1000). To generate approximate decision reducts we use an algorithm
described in [49] with a modified stopping criteria. This method makes use of random sampling of
the attribute set in order to discover reducts that capture diverse characteristics of data and reduce
the computation cost. It constructs reducts from numeric data using the maximum-discernibility
discretization heuristic [84].

Commonly used rough set feature ranking methods exploit the fact that the informative attributes
are usually able to discern more objects from different decision classes, and thus are more likely to
be present in an approximate decision reduct. We examine three modifications of frequency-based
approaches to attribute ranking. We test them in combination with approximate decision reducts and
compare their performances to our attribute ranking method.

Let us denote a finite set of approximate decision reducts of the decision table A = (U,A ∪ {d})
by ARED(A). Let |ARED(A)| = m and assume that each ARi ∈ ARED(A) was computed using a
subset of attributes Bi ⊆ A, i = 1, . . . ,m. The first and the simplest of the compared methods ranks
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attributes by counting how many times they appear in a given set of approximate decision reducts.
The method assigns the score to each attribute a ∈ A:

Score1(a) = |{AR ∈ ARED(A) : a ∈ AR}|. (7.1)

The second ranking method takes into account the fact that the reducts can be computed for different
subsets of attributes. It scales the attribute counts to express the probability that the attribute appears
in a reduct if it is present in the subset used for computation:

Score2(a) =


|{AR∈ARED(A):a∈AR}|
|{B∈{B1,B2,...,Bm}:a∈B}| if |{B ∈ {B1, B2, . . . , Bm} : a ∈ B}| > 0

0 otherwise,
(7.2)

where Bi ⊆ A is a set of attributes used for computation of ARi.
The third method considers a predictive potential of the reducts. In this approach each approximate
decision reduct AR is assigned with a score Scr(AR) which expresses its quality. This value is treated
as a weight during computation:

Score3(a) =


∑

AR∈ARED(A):a∈AR
Scr(AR)∑

AR∈ARED(A)
Scr(AR)

if
∑
AR∈ARED(A) Scr(AR) > 0

0 otherwise.
(7.3)

The value of Scr(ARi) could be computed using one of many heuristics. In the experiments we
assess a quality of the approximate decision reduct by direct application of the discernibility measure
to objects, which were removed from the training set during the approximate reduct assembling.

We propose also a more complex algorithm called Rough Attribute Ranker (RAR) that is an
extension to the methods described above. It uses a discernibility-based scoring function ScrAR to
examine how particular attributes from an approximate decision reduct influence the reduct’s quality.
The impact of a single attribute is estimated as an average difference in the score assigned to the reduct
after exchanging this attribute with a random permutation of the attribute’s values, thus retaining its
distribution. The value of ScrAR can be expressed as follows:

ScrGainAR(a)

 Scr(AR)−
∑K

i=1
Scr(AR′i)
K if a ∈ AR

0 otherwise,
(7.4)

where AR is an approximate decision reduct, K is a number of random probes used for the estimation,
and AR′i, for i = 1, . . . ,K are sets of attributes that were constructed from AR by replacing a with
its permutation. The final score given to an attribute a is determined by its average impact on the
quality of the reducts:

ScoreRAR(a) =


∑

AR∈ARED(A):a∈AR
ScrGainAR(a)

|{AR∈ARED(A):a∈AR}| if |{AR ∈ ARED(A) : a ∈ AR}| > 0

0 otherwise
(7.5)

This method may be seen as an analogy to the Breiman’s relevance measure [14, 30] for the random for-
est, which assesses the importance by examining how randomization of particular attributes influences
the error rate of trees.

The attribute ranking methods described above were empirically evaluated and compared to results
of several commonly used statistical feature rankers, i.e., a correlation-based ranker, a Wilcoxon test-
based ranker, the information gain and the relief algorithm. This comparison has been performed
using two different evaluation methods. All the experiments were implemented and executed in R
System [106].
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The first test was conducted on synthetic data. In this experiment a dataset containing 10000
objects described by 1000 numeric attributes was generated from normal distribution. Three different
decision attributes were constructed using the first 20 features so that each of the selected features
have the same impact on the decision values. We will refer to the data sets built from a combination of
the numeric attributes and the three decisions as synthetic1, synthetic2, and synthetic3, respectively.
The decision attributes are defined in the following way:

decision1(u) = 1⇔
20∑
i=1

ai(u) ≥ 0, (7.6)

decision2(u) = 1⇔ a1(u)a20(u) +
19∑
i=1

ai(u)ai+1(u) ≥ 0, (7.7)

decision3(u) = 1⇔
(
a1(u) ∈ [−δ, δ] ∧ a20(u) ∈ (−∞,−δ) ∪ (δ,∞)

)
∨ (7.8)∨

i=1,...,19

(
ai(u) ∈ [−δ, δ] ∧ ai+1(u) ∈ (−∞,−δ) ∪ (δ,∞)

)
.

The value of the parameter δ was adjusted to roughly equalize the sizes of decision classes. The
first decision is dependent linearly on the attribute values and as such might be seen as the easiest one,
whereas the respective dependencies of the second and the third decision attributes are not linear. In
order to better mimic a real-life situation an additional factor, namely noise was introduced to data.
For each of the decision attributes 20% of randomly selected values were rearranged by a random
permutation.

The compared ranking algorithms were used to select relevant features for each decision vector.
The number of attributes that each of the algorithms should choose was estimated using the random
probes test described in [41] and [23]. Quality of the selected sets of features was assessed using classic
measures, e.g., precision, recall and F1-score (see Definitions 6, 7 and 8), from the information retrieval
domain. Table 7.1 presents results achieved by the particular algorithms.

Table 7.1: Results of the attribute ranking methods on the synthetic data.

synthetic1 synthetic2 synthetic3
Ranker: N Prec. Recall Fscore N Prec. Recall Fscore N Prec. Recall Fscore
CorrRank 32 0.63 1.0 0.77 14 0.07 0.05 0.06 20 0.05 0.05 0.05
Wilcoxon 28 0.71 1.0 0.83 11 0.09 0.05 0.06 19 0.05 0.05 0.05
InfoGain 27 0.74 1.0 0.85 8 0.13 0.05 0.07 16 0.56 0.45 0.5
Relief 39 0.51 1.0 0.68 19 0.16 0.15 0.15 22 0.09 0.1 0.09
ARScore1 28 0.71 1.0 0.83 10 0.0 0.0 0.0 12 0.25 0.15 0.19
ARScore2 28 0.71 1.0 0.83 12 0.0 0.0 0.0 10 0.3 0.15 0.2
ARScore3 26 0.77 1.0 0.87 10 0.0 0.0 0.0 12 0.33 0.2 0.25
RAR 29 0.69 1.0 0.82 26 0.62 0.8 0.7 21 0.48 0.5 0.49

The second experiment was conducted on three microarray datasets related to different medi-
cal domains. The data was downloaded from a public genetic data repository ArrayExpress1. The
acuteLymphoblasticLeukemia dataset (ArrayExpress experiment accession number E-GEOD-13425,
190 samples, 22277 genes) describes 5 genetic subtypes of acute lymphoblastic leukemia, the hepati-
tisC data (E-GEOD-14323, 124 samples, 22277 genes) regards a role of chronic hepatitis C virus in the
pathogenesis of HCV-associated hepatocellular carcinoma and the skinPsoriatic dataset (E-GEOD-
13355, 180 samples, 54675 genes) contains profiles of genetic changes related to the skin psoriasis.

In this test, the compared methods were used to selected gene sets in a repeated 5-fold cross-
validation schema. A quality of each gene set was evaluated based on classification results achieved by
two prediction models, namely k-NN and random forest, which are commonly used in the microarray
experiments. Due to uneven sizes of the decision classes, the prediction accuracy was measured using

1www.ebi.ac.uk/arrayexpress
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the balanced accuracy score (see Definition 12). As in the experiment on synthetic data, the number
of genes selected in each fold of the cross-validation cycle was determined using the random probes
method. Table 7.2 summarizes the mean results achieved by each ranking algorithm after 10 executions
of 5-fold cross-validation tests.

Table 7.2: Results of the attribute ranking methods on the microarray data. The mean and standard
deviation of the number of selected genes and the balanced accuracy are given.

acuteLymphLeukemia hepatitisC skinPsoriatic
Ranker: N BAC : kNN BAC : RF N BAC : kNN BAC : RF N BAC : kNN BAC : RF
CorrRank 6880± 175 0.91± .01 0.75± .08 > 13K ± 630 0.86± .02 0.79± .04 > 30K ± 999 0.76± .02 0.81± .02
Wilcoxon 3538± 147 0.91± .01 0.75± .07 6348± 425 0.87± .01 0.77± .05 > 22K ± 737 0.76± .02 0.82± .01
InfoGain 5733± 163 0.91± .01 0.75± .08 > 12K ± 644 0.86± .02 0.78± .04 > 24K ± 798 0.76± .02 0.82± .02
Relief 12054± 327 0.92± .01 0.82± .07 2551± 999 0.89± .01 0.79± .02 4904± 897 0.76± .03 0.81± .02
ARScore1 1512± 233 0.91± .01 .82± .02 1471± 130 0.90± .01 0.80± .04 1492± 44 0.78± .03 0.83± .02
ARScore2 1965± 165 0.92± .01 0.81± .02 1699± 195 0.90± .01 0.79± .05 1793± 176 0.78± .02 0.83± .02
ARScore3 2021± 152 0.91± .02 0.81± .02 1696± 213 0.90± .01 0.80± .04 1993± 174 0.77± .02 0.84± .02
RAR 1953± 230 0.92± .01 0.81± .02 2068± 274 0.91± .02 0.80± .05 3186± 156 0.77± .03 0.84± .02

The reduct-based rankers outperformed the classic algorithms in both tests. For the synthetic
data only RAR method was able to reasonably select attributes which are relevant for the second
decision vector. Interestingly, it seems that the simplest frequency based attribute rankers may yield
better results if the relation between relevant features and the decision is not very complex. It is
also noticeable, especially for microarray data, that the frequency based approaches tend to select
less attributes than the RAR. In terms of classification accuracy, the RAR on average performed
slightly better than other algorithms but in cases of other reduct-based rankers the difference was not
statistically significant2.

7.2 Evaluation of Feature Importance Rankings
In Chapter 6 we performed classification experiments using XGBoost and decision-bireduct-based mod-
els on the real-world data related to the recruitment field. In this section we investigate the capabilities
of the XGBoost-based and decision-bireduct-based models in providing rankings for importance of at-
tributes. The XGBoost library has such rankings already implemented, while the analogous method
for decision bireducts needs to be designed. This task is crucial for the goals of this section because
XGBoost and decision bireducts will be the main “competitors” when it comes to how insightful their
methods for ranking attributes are.

In XGBoost, there are several metrics that determine the importance of attributes involved in the
ensemble. For the decision-tree-based weak learners, we outline the available options in Table 7.3. Let
us note that there are slight differences between the Python and R XGBoost implementations, either
in the set of values being returned or in the nomenclature that is followed. However, in all cases, the
total_gain parameter is the key point. It reflects heuristically estimated contribution of particular
attributes into the model’s adjustment to the data. For this purpose the Gini impurity or information
entropy measures (computed over the universe of objects, weighted in a boosting-based way) are used.

Factors cover and total_cover refer to the notion of coverage understood as the sum of weights of
objects supporting a given tree node. XGBoost uses quite advanced mathematical techniques to derive
those weights in relation to a given loss function and its properties. For the square loss function the
coverage of a tree node simply corresponds to the number of objects collected by the node. However,
this is not a general rule and for some other loss functions the value may not be even proportional to
the node’s size. Intuitively, the coverage of a node expresses recognition of a need for further splitting
that node during a decision tree construction. A high coverage value means that a potential split on
the corresponding subset of objects is more likely to be a valid split, which will generally improve the

2The significance was measured using the paired t-test at 0.95 confidence
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classifier’s quality. A low value indicates a potential risk of overfitting related to adding a split on the
given node in the tree.

Table 7.3: Several metrics that determine the attribute importance based on an XGBoost model.
A comparison of available options for the XGBoost implementations in Python and R.

metric Python R

weight
the number of times a given attribute
is used to split the data across all trees
in the model

not available

frequency not available

a relative (fractional) number of times
a given attribute is used to split the
data across all trees in the model; it
sums up to 1 and it equals to the
normalized weight

gain
the average gain across all splits of a
given attribute used in the model; it is
equal to the ratio of total_gainweight

a relative (fractional) attribute’s
contribution based on the total gain of
this attribute’s splits; it sums up to 1
and it equals to the normalized
total_gain

cover
the average coverage across all splits a
given attribute is used in the model; it
is equal to the ratio of total_coverweight

a relative (fractional) number of
objects related to this attribute; it
sums up to 1 and it equals to the
normalized total_cover

total_gain
the total gain for all decision tree
splits for which a given attribute is
used in the model

not available

total_cover the total coverage across all splits a
given attribute is used in the model not available

Table 7.4 shows the analogous metrics that we implemented for deriving the importance of at-
tributes from the ensembles of decision bireducts. For a single decision bireduct (X , B), the gain
for a ∈ B equals the difference between the applied heuristic measure (Gini impurity, entropy, etc.)
computed for B \ {a} and B. We implemented two approaches – called “objects scope” and “cover
weighting” – that can be used in various combinations to form different strategies for the computation
of attribute’s importance. For the “objects scope”, we have two options: either we compute the gain
value for the whole training data set (global variant) or we can take into account only the objects
in X (local variant). For the “cover weighting”, we have two options as well: either the computed
gain is taken as it is or it is weighted by the cardinality of X . That last option is referred to as
cover_weighted. We can clearly see a connection between some of the metrics defined for decision
bireduct ensembles and those defined for the approximate decision reduct ensembles in Section 7.1.

Having the attribute importance ranking methods available for the models under consideration,
let us now discuss a model-agnostic procedure to compare them. For a given A = (U,A ∪ {d}), let us
define its variant A� = (U,A ∪A� ∪ {d}), where A� is a set of shuffled attributes defined as follows:

a�i : U → Vai , a�i (uj) = ai(uδi(j)) (7.9)

where δi corresponds to a random permutation of U . The shuffled attributes preserve the original
distributions and they are created as random permutations of the original attributes’ values. This
approach to randomization subject to distribution preservation is quite popular in machine learning [14,
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Table 7.4: Metrics determining attribute importance based on an ensemble of decision bireducts.

metric description

count
the number of times a given attribute is used in the ensemble of
decision bireducts

global_gain
the total gain induced by a given attribute across all decision
bireducts in the ensemble when computing the gain value in
context of global variant of “objects scope”

global_gain_cover_weighted

the total gain induced by a given attribute across all decision
bireducts in the ensemble when computing the gain value in
context of global variant “objects scope” and weighting the
computed value for each decision bireduct by the ratio of the
objects it covers

avg_global_gain

the ratio of global_gain to the number of occurrences of a given
attribute in the ensemble, i.e., the value equals to the ratio of
global_gain

count

avg_global_gain_cover_weighted

global_gain_cover_weighted
count

local_gain
the total gain induced by a given attribute across all decision
bireducts in the ensemble when computing the gain value in the
context of local variant of “objects scope”

local_gain_cover_weighted

the total gain induced by a given attribute across all decision
bireducts in the ensemble when computing the gain value in the
context of local variant of “objects scope” and weighting the
computed value for each decision bireduct by the ratio of the
objects it covers

avg_local_gain
local_gain
count

avg_local_gain_cover_weighted
local_gain_cover_weighted

count
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67, 66]. Moreover, we use such an approach also in the internals of the aforementioned DAAR method
that was also adopted for the decision bireduct derivation procedure, cf. Section 5.3.

Our initial idea on how to design a procedure to compare methods of ranking was to use a Wilcoxon
rank-sum test. Let us assume that the algorithms for ranking importance of attributes score the
attributes from A�. We can use the statistical test to analyze the characteristics of the scores for the
original and the shuffled attributes with the expectation that those characteristics will significantly
differ. However, such a direct approach has a potential drawback – the comparison result is strongly
biased and unreliable if only a small fraction of attributes is distinguished by a ranking algorithm and
many attributes share the same rank.

In our experiments, we consider the two already-investigated methods, namely decision bireduct
ensembles and XGBoost, used in Section 6.4. As a reference, we check also a simple feature scoring
method based on the computation of absolute values of the Spearman correlation coefficients between
the elements of A (our 772 features) and the target attribute d. For XGBoost and the ensembles of
decision bireducts, we use the settings obtained by the grid search and described in detail in Section 6.4.
In particular, we keep the balance between 1,000 decision trees and 1,000 decision bireducts. However,
in order to make both methodologies even more comparable from the viewpoint of measuring the
attribute importance, we fix the maximum tree depth (XGBoost) as equal to 2 and the maximum
attribute number (decision bireducts) as equal to 3. This is because binary decision trees with the
depth 2 usually use three attributes internally. Moreover, to compare the rankings based on the scores
that can be interpreted similarly, we choose total_gain (Table 7.3) and global_gain (Table 7.4), as
they both represent the closest related concepts for XGBoost and decision bireducts.
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Figure 7.1: Visualization of the XGBoost-specific importance of individual attributes (top 20) obtained
using the normalized total_gain score values.
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Before we present the actual comparison of attribute importance ranking algorithms using the
described data table A�; let us first show the context of how these algorithms assess the attributes
from the original data table described in Section 6.2 (before adding the shuffled attributes).

The rankings of the top 20 attributes obtained for bireducts, XGBoost, and Spearman correlation
on the base data table are given in Figures 7.1, 7.2 and 7.3 (using normalized score values total_gain,
global_gain, correlation [actually, the absolute values]), respectively. Notably, all three rankings are
quite similar. In particular, among the top five attributes in the ranking obtained for XGBoost, there
are four that are also in the top five for bireduct ensemble and correlation.
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Figure 7.2: Visualization of the bireduct-specific importance of individual attributes (top 20) obtained
using the normalized global_gain score values.

Let us now proceed with the discussion on comparing algorithms for ranking attributes’ importance.
For each considered ranking method, we conducted a statistical test to check whether the rankings of
the original attributes from A and shuffled attributes from A� are significantly different. The Wilcoxon
rank-sum test’s null hypothesis is that two sets of values are drawn from the same distribution, whereby
we assume that the ties in the attribute importance rankings are handled straightforwardly, by assign-
ing the same rank to attributes with the same score. Table 7.5 presents the results for the chosen
attribute importance ranking methods. Clearly, we cannot reject the null hypothesis for XGBoost
(p-value > 0.05). It confirmed our expectations – although the attribute importance ranks returned
by XGBoost seem reasonable and consistent with the HR experts’ intuition, we cannot judge them
as sufficiently trustworthy insights. The observed situation is caused by the fact that XGBoost fo-
cuses on a small number of the most relevant attributes. As a result, during the model construction
many original attributes were not taken into account at all, therefore, they were considered on a par
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with the shuffled ones. In turn, it makes the XGBoost’s score distribution similar for attributes in
A and A�. Similarly to our approach in Section 6.4 for conducting experiments with ensembles of
decision bireducts, we employed a quantile-based approach to discretize the numeric attributes into 3
intervals.
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Figure 7.3: Visualization of the correlation-based importance of individual attributes (top 20) obtained
using the normalized absolute values of correlation.

For this reason, we argue that a ranking comparison procedure should take into consideration and
address the following two observations:

1. A good attribute importance ranking method should indeed distinguish between original and
shuffled attributes.

2. Not all original attributes need to be considered as worth comparing, e.g., some of them might
be irrelevant or noisy.

Thus, we propose to modify our initial approach by taking into account the ranks of only top_k top-
ranked attributes among the original and shuffled attributes. In practice, the value of this parameter
should reflect the expected (approximate) number of truly relevant features for the modeled prediction
problem. The ranks of the chosen attributes from A and A� are then averaged giving the final output
of two numbers – the average ranks of the top_k original and shuffled attributes. Such output can be
interpreted in the following way:

1. The smaller the first number, the lower the number of the shuffled attributes that occur before
the top_k original ones.
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Table 7.5: Results for the compared feature ranking methods. We report the average rank of the
original and shuffled attributes, and the p-value of the Wilcoxon rank-sum test.

average rankmethod
original attributes shuffled attributes

p-value

bireducts 709.27 835.73 2.5072e-08
XGBoost 767.00 778.00 6.2788e-01
correlation 642.58 902.42 2.3591e-30

2. The larger the second number, the lower the number of the original attributes that occur after
top_k shuffled ones.

3. The greater the difference between the two numbers, the better the attribute importance ranking
is in distinguishing between A and A�.

The above observations can be used as a quality criterion for the comparison of different attribute
ranking approaches. Since it does not depend on the type of the applied attribute scoring algorithm
(general or model-dependent) and does not require any additional evaluation data, it allows for an
objective assessment of the suitability of various attribute scoring methods to the given application.
We can call this quality the insightfulness of an attribute ranking. This is because the unwanted
results of the comparison between the elements of A and A� can indeed decrease the trust of SMEs
not only in the attribute importance rankings themselves but also in the underlying decision models
and machine learning methods applied to learn them.

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 548.70 5.50 778.00 5.50 149.50
20 10.50 694.10 353.40 778.00 10.50 181.45
30 15.50 742.57 494.93 778.00 15.50 201.17
50 25.50 781.34 608.16 778.00 25.52 230.94
100 50.55 810.42 693.08 778.00 50.80 296.93
all 709.27 835.73 767.00 778.00 642.58 902.42
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Figure 7.4: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the recruitment data table.
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Figure 7.4 shows the results of our improved procedure for the chosen attribute importance ranking
methods. Accordingly, we can reach following conclusions:

1. The bireducts and correlation methods are equally good at selecting large number of original
attributes and do not focus on a relatively small subset of the best attributes – in some applica-
tions, it is preferable to operate on a set of diverse attributes, even though not all of them are of
the highest quality.

2. The XGBoost algorithm tends to use only a small number of the most informative original
attributes, and thus, is unable to distinguish between the less relevant original attributes and
the shuffled ones.

3. The bireduct ensemble allows for much better distinguishing between the original and shuffled
attributes than the Spearman correlation values and the attribute importance values computed
using XGBoost.

4. The largest difference between the average ranks of top_k attributes, for nearly all investigated
k values, was achieved by the ranking induced by the ensemble of bireducts. The only exception
was for the smallest k – in that case, the highest difference was noted for XGBoost, however, the
result for our bireduct ensemble was only slightly worse.

Overall, these results show that the ranking obtained using decision bireducts is more reliable than
the one for XGBoost. The ensemble of bireducts distinguishes the importance scores of a much larger
set of attributes than XGBoost, and at the same time, avoids mixing the original attributes with their
shuffled counterparts as in the case of Spearman correlation-based ranking. This makes it more useful
to SMEs who are looking to gain more insights from their data.

In addition to the aggregated perspective presented in Figure 7.4, we can also examine each result
in detail separately. Such an approach can provide us with data for a deeper understanding of how
a particular algorithm (with its hyperparameter settings) behaves with respect to the given data set
in assessing the original and shuffled attributes. In Figures 7.5, 7.6 and 7.7 the appropriate (feature
importance profiling) views are presented for bireducts, XGBoost and correlation-based algorithms
assessing the attributes from A� = (U,A ∪A� ∪ {d}) prepared for our recruitment data table.

In Appendix A we also provide comprehensive results for all data used throughout the dissertation,
i.e., UCI data sets (zoo, lymphography, and SPECT ) used in Section 5.4 and synthetic (synthetic1,
synthetic2, and synthetic3 ) as well as microarray (acuteLymphoblasticLeukemia, hepatitisC, skinPso-
riatic) data sets from Section 7.1. For convenience, in Table 7.6 we present a summary of references
navigating to appropriate results related to the particular data sets.
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hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 106.33 g6_attr_714 172 0.27 1.00
allowed_randomness 0.05 5 3.00 257.90 g4_attr_641 149 0.23 2.00
attrs_max_count 3 7 4.00 424.07 g5_attr_691 176 0.23 3.00
candidates_count 100 10 5.50 548.70 g4_attr_640 141 0.19 4.00
chaos_fun gini_impurity 15 8.00 645.63 g2_attr_047 110 0.11 5.00
epsilon 0.00 20 10.50 694.10 g4_attr_668 113 0.10 6.00
n_bins 3 25 13.00 723.18 g5_attr_676 107 0.10 7.00
n_bireducts 1000 30 15.50 742.57 g2_attr_309 95 0.08 8.00
probes_count 100 all 709.27 835.73 g6_attr_730 90 0.07 9.00
model stats g4_attr_633 76 0.06 10.00
mean_attrs_size 3.00 g7_attr_756 76 0.06 11.00
mean_objs_size 17459.03 g6_attr_701 70 0.06 12.00
median_attrs_size 3.00 g6_attr_711 78 0.06 13.00
median_objs_size 18372.50 g4_attr_658 78 0.05 14.00

g4_attr_657 69 0.04 15.00
g2_attr_458 53 0.04 16.00
g7_attr_753 53 0.04 17.00
g6_attr_718 47 0.03 18.00
g7_attr_755 40 0.03 19.00
g7_attr_757 42 0.03 20.00
... ... ... ...

0 3 6 9 12 15 18 21 24
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

200

400

600

800

ra
nk

 v
al

ue

zoom in on the most important attributes
original attributes
shuffled attributes

0 100 200 300 400 500 600 700 800

0

200

400

600

800

ra
nk

 v
al

ue

all attributes

original attributes
shuffled attributes

0 150 300 450 600 750

0

200

400

600

800

ra
nk

 d
iff

er
en

ce

rank difference
(shuffled - original)

rank difference

Figure 7.5: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the recruitment data table.
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hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 778.00 g5_attr_691 668 29931.64 1.00
learning_rate 0.00 5 3.00 778.00 g6_attr_714 967 26953.38 2.00
max_depth 2 7 4.00 778.00 g4_attr_641 705 22653.10 3.00
num_boost_round 1000 10 5.50 778.00 g4_attr_640 95 4342.96 4.00
objective binary:logistic 15 211.87 778.00 g4_attr_638 156 3021.40 5.00

20 353.40 778.00 g6_attr_701 136 2798.05 6.00
25 438.32 778.00 g2_attr_182 110 1406.17 7.00
30 494.93 778.00 g4_attr_635 53 768.85 8.00
all 767.00 778.00 g1_attr_014 55 723.31 9.00

g4_attr_625 50 662.17 10.00
g4_attr_657 5 103.10 11.00
shuffled_g2_attr_250 0 0.00 778.00
shuffled_g2_attr_257 0 0.00 778.00
shuffled_g2_attr_262 0 0.00 778.00
shuffled_g2_attr_261 0 0.00 778.00
shuffled_g2_attr_260 0 0.00 778.00
shuffled_g2_attr_259 0 0.00 778.00
shuffled_g2_attr_258 0 0.00 778.00
shuffled_g2_attr_255 0 0.00 778.00
shuffled_g2_attr_256 0 0.00 778.00
... ... ... ...
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Figure 7.6: Detailed attribute importance profiling results obtained for XGBoost on the recruitment
data table.
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hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 114.00 g4_attr_641 0.11 1.00

5 3.00 122.60 g5_attr_691 0.11 2.00
7 4.00 136.14 g4_attr_640 0.10 3.00
10 5.50 149.50 g6_attr_714 0.10 4.00
15 8.00 166.67 g4_attr_668 0.09 5.00
20 10.50 181.45 g2_attr_047 0.08 6.00
25 13.10 191.96 g5_attr_676 0.08 7.00
30 15.50 201.17 g6_attr_730 0.08 8.00
all 642.58 902.42 g2_attr_309 0.07 9.00

g4_attr_658 0.07 10.00
g4_attr_657 0.07 11.00
g6_attr_711 0.07 12.00
g6_attr_701 0.07 13.00
g2_attr_458 0.07 14.00
g7_attr_766 0.06 15.00
g2_attr_130 0.06 16.00
g6_attr_718 0.06 17.00
g7_attr_765 0.06 18.50
g7_attr_763 0.06 18.50
g2_attr_374 0.06 20.00
... ... ...

0 3 6 9 12 15 18 21 24
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

50

100

150

200

250

ra
nk

 v
al

ue

zoom in on the most important attributes
original attributes
shuffled attributes

0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

1200

1400

1600

ra
nk

 v
al

ue

all attributes
original attributes
shuffled attributes

0 150 300 450 600 750

0

50

100

150

200

250

300

350

400

ra
nk

 d
iff

er
en

ce

rank difference
(shuffled - original)

rank difference

Figure 7.7: Detailed attribute importance profiling results obtained for the correlation-based model
on the recruitment data table.
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Table 7.6: A complete list of available feature importance profiling results.

data set name aggregate comparison algorithm detailed view
recruitment_data Figure 7.4 bireducts Figure 7.5

XGBoost Figure 7.6
correlation Figure 7.7

zoo Figure A.1 bireducts Figure A.2
XGBoost Figure A.3
correlation Figure A.4

lymphography Figure A.5 bireducts Figure A.6
XGBoost Figure A.7
correlation Figure A.8

SPECT Figure A.9 bireducts Figure A.10
XGBoost Figure A.11
correlation Figure A.12

synthetic1 Figure A.13 bireducts Figure A.14
XGBoost Figure A.15
correlation Figure A.16

synthetic2 Figure A.17 bireducts Figure A.18
XGBoost Figure A.19
correlation Figure A.20

synthetic3 Figure A.21 bireducts Figure A.22
XGBoost Figure A.23
correlation Figure A.24

acuteLymphoblasticLeukemia Figure A.25 bireducts Figure A.26
XGBoost Figure A.27
correlation Figure A.28

hepatitisC Figure A.29 bireducts Figure A.30
XGBoost Figure A.31
correlation Figure A.32

skinPsoriatic Figure A.33 bireducts Figure A.34
XGBoost Figure A.35
correlation Figure A.36
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Chapter 8

Concluding Remarks and Future
Work

8.1 Summary
In the dissertation, we introduced decision bireducts, which can be seen as an extension of decision
reducts in the theory of rough sets. The notion emphasizes on both a subset of attributes that
describes decisions and a subset of objects for which that description is valid. We showed that the
explicit attributes-objects duality utilized in decision bireducts provides a simple and flexible means
of knowledge representation. In addition to the main definition, we also introduced other variants
of the concept, such as the γ-decision bireduct related to the concept of positive region in rough set
theory, as well as decision ε-bireducts and γ-decision ε-bireducts that express constraints regarding
the proportion of covered objects.

From the theory of rough sets we revisited the notion of approximate decision reducts, which
is defined as an irreducible subset of attributes that, under a specified criterion, preserves decision-
related information of the entire attribute set above a specified threshold. Although the concept of
decision bireducts is conceptually different from approximate decision reducts, our study revealed the
presence of certain analogies. Furthermore, we explored the properties and relationships of both the
concepts. Additionally, we demonstrated how decision bireducts can be utilized as rule-based classifiers
that provide greater flexibility in assigning decision values to objects when compared to approximate
decision reducts.

In the classical rough set approach, a propositional formula, called as “discernibility function”,
[115, 95] was formulated to represent the necessary conditions that need to be satisfied for all pairs of
discernible objects. As a result, the collection of decision reducts corresponds to the set of all prime
implicants of the discernibility function. We adapted this general approach to develop suitable Boolean
formulae that capture the essential constraints related to decision bireducts and γ-decision bireducts.

We investigated the challenges associated with searching for decision bireducts in datasets and
discussed effective methods for their computation. Through our research, we gained valuable insights
into the practical applications of decision bireducts, highlighting their usefulness. For instance, we
introduced a specific case of decision bireducts in the context of data streams and explored its utiliza-
tion. Our focus was on scenarios where the complete dataset is not available during the computation
process. Instead, we examined situations where events are processed incrementally, with each event
arriving one at a time.

However, the primary focus of the dissertation was on ensembles of decision bireducts. We thor-
oughly examined their properties and characteristics. Moreover, we showed how decision bireducts
may be used in constructing diverse and robust ensembles of classifiers. We introduced the notion
of a correct ensemble which means that every object (training case) must be validly recognized us-

115
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ing the corresponding rules by more than half of the classifiers from the ensemble. NP-hardness of
the optimization problem was shown when it comes to finding the simplest correct ensemble of de-
cision bireducts. In this context, the concept of “simplicity” was defined in a manner analogous to
the approach presented in the study on generalized decision reducts [137]. Specifically, simplicity was
determined based on the maximum cardinality among all subsets of attributes involved.

We comprehensively present a case study demonstrating the application of decision bireducts en-
sembles to a decision problem encountered while developing a solution for an HR company specializing
in the recruitment of IT professionals. Moreover, we paid special attention to the interpretability of the
models. We proposed several attribute importance metrics designed for decision bireduct ensembles.
We also presented a general procedure for evaluating attribute importance methods. Furthermore,
we used the procedure to compare the attribute importance scores provided by ensembles of deci-
sion bireducts against the importance scorings provided by XGBoost and correlation-based models on
synthetic, benchmark, and real-life data sets.

Finally, as a result of our research, we have released a Python software library that provides a wide
range of functions and algorithms associated with rough set theory. The library encompasses structures
and methods for data processing and enables the application of techniques related to machine learning,
in particular, the use of decision bireducts and their ensembles.

8.2 Future Work
In future, we will continue our studies on other types of bireducts. We also look forward to experiment-
ing with various types of decision bireducts (e.g., decision bireducts for data streams – see Section 5.5)
and various ways of constructing their ensembles, as well as testing the corresponding classifiers on a
wider variety of benchmark data sets.

We would like to further investigate properties of bireducts in order to better utilize their advantages
for providing more intuitive ways of visualization and interactive exploration of complex data, looking
for inspiration, e.g., in the areas of formal concept analysis [35] or visual bi-clustering [44]. We also
want to pay more attention to further extensions of our previous algorithmic approaches [140, 119] to
deriving and applying decision bireducts for other examples of real-life data.

Regarding the theoretical computational complexity, it would be beneficial to utilize mathematical
aparatus developed in [82] to strenghten the complexity results towards inapproximability theorems.

Another task that can help extend the range of applications is the problem of searching for ensembles
of decision bireducts that would meet some more advanced criteria, e.g., how diversely an ensemble
covers a data set with respect to both attributes and objects. The future work in this direction
will concern theoretical basis of optimization criteria and computational complexity, as well as the
development of practical algorithms applying different approaches ranging from greedy, to randomized
or order-based solutions [137, 82].

Our great interest is also in induction of hierarchies of decision bireduct ensembles (see Figure 4.1).
Efficient algorithms need to be developed to facilitate the construction process of such hierarchies.
Moreover, the voting strategies used in such hierarchical classifiers may need to be researched for
their influence on the achieved results. For that purpose, we want to investigate classifier fusion
methods [110]. We can also draw inspiration from research related to conflict models and conflict
resolutions [94, 25]. Considering ensembles of decision bireducts, where each component of the ensemble
has its own local classification knowledge (represented by its subsets of attributes and objects), we can
also benefit from exploring ideas proposed for dispersed systems [101, 102].

The procedure for evaluating the attribute importance methods requires further research. There are
alternative approaches worth investigating. We can consider a decision problem of classifying the type
of an attribute, whether it is an original or a shuffled (see Section 7.2) attribute. For such a defined
task, we could utilize the methods from information retrieval domain, e.g., the receiver operating
characteristic (ROC) curve or area under the ROC curve (AUC). We can also apply more advanced
statistical-based approaches.
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Appendix A

Feature Importance Profiling

A.1 Feature Importance Profiling - zoo data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
3 2.00 16.67 2.00 10.67 2.00 13.00
5 3.00 17.80 3.00 14.20 3.00 14.80
7 4.00 18.86 4.00 17.29 4.00 16.14
10 5.50 20.75 5.90 19.60 5.50 18.20
15 8.07 23.33 10.47 21.40 9.53 21.47
20 9.34 23.66 11.38 21.62 10.88 22.12
all 9.34 23.66 11.38 21.62 10.88 22.12
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Figure A.1: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the zoo data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 16.67 legs 332 68.30 1.00
allowed_randomness 0.05 5 3.00 17.80 milk 285 64.77 2.00
attrs_max_count 3 7 4.00 18.86 eggs 258 52.55 3.00
candidates_count 5 10 5.50 20.75 toothed 259 42.22 4.00
chaos_fun gini_impurity all 9.34 23.66 hair 241 41.20 5.00
epsilon 0.00 feathers 236 33.62 6.00
n_bins 3 backbone 206 29.87 7.00
n_bireducts 1000 breathes 198 26.65 8.00
probes_count 100 fins 170 17.24 9.00
model stats tail 136 17.01 10.00
mean_attrs_size 2.78 airborne 137 13.40 11.00
mean_objs_size 71.45 aquatic 105 9.14 12.00
median_attrs_size 3.00 catsize 74 4.02 13.00
median_objs_size 75.00 venomous 41 1.55 14.00

shuffled_aquatic 25 0.92 15.00
predator 21 0.86 16.00
shuffled_domestic 15 0.49 17.00
shuffled_backbone 21 0.47 18.00
shuffled_legs 7 0.36 19.00
shuffled_catsize 7 0.17 20.00
... ... ... ...
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Figure A.2: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the zoo data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 10.67 milk 1000 32597.78 1.00
learning_rate 0.00 5 3.00 14.20 feathers 1000 24074.37 2.00
max_depth 2 7 4.00 17.29 fins 1131 14881.32 3.00
num_boost_round 1000 10 5.90 19.60 legs 1967 10906.16 4.00
objective multi:softmax all 11.38 21.62 backbone 1000 9445.51 5.00

airborne 1000 3237.11 6.00
eggs 552 2133.03 7.00
predator 1000 1327.39 8.00
shuffled_fins 735 894.04 9.00
shuffled_tail 1000 828.87 10.00
venomous 869 809.44 11.00
aquatic 488 479.76 12.00
shuffled_venomous 735 375.05 13.00
shuffled_aquatic 172 169.57 14.00
tail 199 160.73 15.00
toothed 71 55.02 16.00
catsize 78 0.02 17.00
shuffled_breathes 0 0.00 25.00
hair 0 0.00 25.00
shuffled_legs 0 0.00 25.00
... ... ... ...
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Figure A.3: Detailed attribute importance profiling results obtained for XGBoost on the zoo data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 13.00 milk 0.89 1.00

5 3.00 14.80 eggs 0.82 2.00
7 4.00 16.14 hair 0.73 3.00
10 5.50 18.20 backbone 0.69 4.00
all 10.88 22.12 catsize 0.58 5.00

breathes 0.54 6.00
toothed 0.54 7.00
tail 0.50 8.00
aquatic 0.38 9.00
venomous 0.32 10.00
shuffled_domestic 0.20 11.00
domestic 0.19 12.00
shuffled_catsize 0.17 13.00
fins 0.16 14.00
shuffled_toothed 0.16 15.00
airborne 0.14 16.00
shuffled_milk 0.11 17.00
shuffled_airborne 0.10 18.00
shuffled_predator 0.10 19.00
shuffled_venomous 0.07 20.00
... ... ...

0 2 4 6 8
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

5

10

15

20

25

ra
nk

 v
al

ue

zoom in on the most important attributes
original attributes
shuffled attributes

0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

ra
nk

 v
al

ue

all attributes
original attributes
shuffled attributes

0 3 6 9 12 15

0

5

10

15

20

25

ra
nk

 d
iff

er
en

ce

rank difference
(shuffled - original)

rank difference

Figure A.4: Detailed attribute importance profiling results obtained for the correlation-based model
on the zoo data set.
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A.2 Feature Importance Profiling - lymphography data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
3 2.00 16.67 2.00 15.17 2.00 15.00
5 3.00 18.80 3.00 18.90 3.00 17.00
7 4.00 21.21 4.00 20.50 4.00 18.57
10 5.50 24.00 5.70 21.70 5.50 20.50
15 8.13 26.17 11.97 22.63 8.40 23.33
20 10.11 26.89 14.06 22.94 11.89 25.11
all 10.11 26.89 14.06 22.94 11.89 25.11
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Figure A.5: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the lymphography data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 16.67 block_of_affere 323 35.43 1.00
allowed_randomness 0.05 5 3.00 18.80 no_of_nodes_in 293 26.78 2.00
attrs_max_count 3 7 4.00 21.21 special_forms 282 24.64 3.00
candidates_count 5 10 5.50 24.00 lymnodes_enlar 237 18.27 4.00
chaos_fun gini_impurity 15 8.13 26.17 early_uptake_in 220 13.58 5.00
epsilon 0.00 all 10.11 26.89 changes_in_stru 172 8.99 6.00
n_bins 3 changes_in_lym 160 8.50 7.00
n_bireducts 1000 lymnodes_dimin 144 5.61 8.00
probes_count 100 regeneration_of 122 4.92 9.00
model stats changes_in_node 99 3.87 10.00
mean_attrs_size 2.42 dislocation_of 80 2.84 11.00
mean_objs_size 92.43 exclusion_of_no 63 2.04 12.00
median_attrs_size 3.00 by_pass 43 1.87 13.00
median_objs_size 96.00 shuffled_lymphatics 44 1.68 14.00

lymphatics 47 1.56 15.00
bl_of_lymph_c 31 1.02 16.00
shuffled_changes_in_stru 17 0.75 17.00
extravasates 18 0.65 18.00
shuffled_exclusion_of_no 8 0.23 19.00
defect_in_node 8 0.14 20.00
... ... ... ...
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Figure A.6: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the lymphography data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 15.17 changes_in_node 1383 10324.98 1.00
learning_rate 0.00 5 3.00 18.90 block_of_affere 1437 8932.14 2.00
max_depth 2 7 4.00 20.50 no_of_nodes_in 1290 7846.27 3.00
num_boost_round 1000 10 5.70 21.70 special_forms 843 5964.19 4.00
objective multi:softmax 15 11.97 22.63 lymnodes_dimin 1489 4601.46 5.00

all 14.06 22.94 early_uptake_in 487 3522.22 6.00
defect_in_node 1000 2257.43 7.00
lymnodes_enlar 316 2195.74 8.00
changes_in_lym 151 197.51 9.00
shuffled_lymphatics 357 139.53 10.00
shuffled_block_of_affere 93 87.68 11.00
changes_in_stru 154 64.62 12.00
shuffled_changes_in_node 0 0.00 24.50
shuffled_regeneration_of 0 0.00 24.50
shuffled_changes_in_stru 0 0.00 24.50
shuffled_special_forms 0 0.00 24.50
shuffled_defect_in_node 0 0.00 24.50
shuffled_changes_in_lym 0 0.00 24.50
shuffled_dislocation_of 0 0.00 24.50
shuffled_exclusion_of_no 0 0.00 24.50
... ... ... ...
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Figure A.7: Detailed attribute importance profiling results obtained for XGBoost on the lymphography
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 15.00 no_of_nodes_in 0.54 1.00

5 3.00 17.00 special_forms 0.41 2.00
7 4.00 18.57 block_of_affere 0.40 3.00
10 5.50 20.50 regeneration_of 0.33 4.00
15 8.40 23.33 lymnodes_enlar 0.31 5.00
all 11.89 25.11 early_uptake_in 0.30 6.00

changes_in_stru 0.29 7.00
lymnodes_dimin 0.27 8.00
exclusion_of_no 0.24 9.00
dislocation_of 0.23 10.00
bl_of_lymph_s 0.17 11.00
changes_in_lym 0.16 12.00
shuffled_lymnodes_dimin 0.15 13.00
shuffled_dislocation_of 0.15 14.00
lymphatics 0.12 15.00
extravasates 0.10 16.00
defect_in_node 0.10 17.00
shuffled_lymnodes_enlar 0.09 18.00
shuffled_defect_in_node 0.09 19.00
bl_of_lymph_c 0.09 20.00
... ... ...

0 2 4 6 8
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

5

10

15

20

25

ra
nk

 v
al

ue

zoom in on the most important attributes
original attributes
shuffled attributes

0 3 6 9 12 15

0

5

10

15

20

25

30

35

ra
nk

 v
al

ue

all attributes
original attributes
shuffled attributes

0 3 6 9 12 15

0

5

10

15

20

25

ra
nk

 d
iff

er
en

ce

rank difference
(shuffled - original)

rank difference

Figure A.8: Detailed attribute importance profiling results obtained for the correlation-based model
on the lymphography data set.
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A.3 Feature Importance Profiling - SPECT data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
3 2.00 17.67 2.00 19.67 2.00 23.67
5 3.00 21.20 3.40 22.80 3.00 24.80
7 4.00 23.29 4.57 24.14 4.00 25.86
10 5.50 25.60 7.85 25.15 5.50 27.40
15 8.27 29.90 14.40 25.93 8.00 29.93
20 11.15 32.05 17.68 26.32 10.50 32.45
all 12.36 32.64 18.57 26.43 11.55 33.45
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Figure A.9: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the SPECT data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 17.67 F13 291 11.33 1.00
allowed_randomness 0.05 5 3.00 21.20 F8 241 6.05 2.00
attrs_max_count 3 7 4.00 23.29 F22 205 4.69 3.00
candidates_count 5 10 5.50 25.60 F16 207 4.50 4.00
chaos_fun gini_impurity 15 8.27 29.90 F21 191 4.08 5.00
epsilon 0.00 20 11.15 32.05 F10 146 2.94 6.00
n_bins 3 all 12.36 32.64 F1 141 2.75 7.00
n_bireducts 1000 F20 146 2.31 8.00
probes_count 100 F7 139 2.02 9.00
model stats F17 140 1.96 10.00
mean_attrs_size 2.80 F11 112 1.89 11.00
mean_objs_size 194.19 shuffled_F22 101 1.62 12.00
median_attrs_size 3.00 F2 87 1.09 13.00
median_objs_size 200.00 F3 106 1.05 14.00

F6 79 1.05 15.00
F4 74 0.95 16.00
F5 59 0.89 17.00
F12 69 0.84 18.00
shuffled_F21 51 0.64 19.00
F14 38 0.45 20.00
... ... ... ...
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Figure A.10: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the SPECT data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 19.67 F13 1000 12080.84 1.00
learning_rate 0.00 5 3.40 22.80 F1 223 1545.04 2.00
max_depth 2 7 4.57 24.14 F16 255 1467.72 3.00
num_boost_round 1000 10 7.85 25.15 shuffled_F3 212 1181.34 4.00
objective binary:logistic 15 14.40 25.93 F6 148 847.01 5.00

20 17.68 26.32 F20 100 520.51 6.00
all 18.57 26.43 F11 58 291.98 7.00

F22 560 89.14 8.00
F8 70 21.69 9.00
F7 4 18.66 10.00
shuffled_F13 0 0.00 27.50
shuffled_F8 0 0.00 27.50
shuffled_F9 0 0.00 27.50
shuffled_F10 0 0.00 27.50
shuffled_F11 0 0.00 27.50
shuffled_F12 0 0.00 27.50
shuffled_F15 0 0.00 27.50
shuffled_F14 0 0.00 27.50
shuffled_F6 0 0.00 27.50
shuffled_F16 0 0.00 27.50
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Figure A.11: Detailed attribute importance profiling results obtained for XGBoost on the SPECT
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 23.67 F13 0.37 1.00

5 3.00 24.80 F8 0.29 2.00
7 4.00 25.86 F21 0.29 3.00
10 5.50 27.40 F22 0.28 4.00
15 8.00 29.93 F16 0.26 5.00
20 10.50 32.45 F20 0.23 6.00
all 11.55 33.45 F3 0.22 7.00

F7 0.22 8.00
F12 0.21 9.00
F17 0.21 10.00
F10 0.21 11.00
F2 0.21 12.00
F11 0.20 13.00
F4 0.20 14.00
F18 0.20 15.00
F1 0.20 16.00
F6 0.20 17.00
F15 0.19 18.00
F14 0.17 19.00
F5 0.17 20.00
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Figure A.12: Detailed attribute importance profiling results obtained for the correlation-based model
on the SPECT data set.



A.4. FEATURE IMPORTANCE PROFILING - SYNTHETIC1 DATA SET 141

A.4 Feature Importance Profiling - synthetic1 data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 28.90 5.50 1010.00 5.50 33.20
20 10.50 36.00 60.00 1010.00 10.50 43.45
30 18.53 44.20 376.67 1010.00 16.70 56.07
50 39.04 63.22 630.00 1010.00 32.42 77.26
100 88.58 112.80 820.00 1010.00 77.60 124.57
all 1013.02 987.98 991.00 1010.00 997.14 1003.86

0

1000

2000

ra
nk

 v
al

ue

bireducts - original
bireducts - shuffled

0

1000

2000

ra
nk

 v
al

ue

XGBoost - original
XGBoost - shuffled

0 150 300 450 600 750 900
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

1000

2000

ra
nk

 v
al

ue

correlation - original
correlation - shuffled

Figure A.13: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the synthetic1 data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 22.33 a008 144 1.51 1.00
allowed_randomness 0.05 5 3.00 23.80 a012 124 1.38 2.00
attrs_max_count 3 7 4.00 26.29 a006 132 1.28 3.00
candidates_count 100 10 5.50 28.90 a016 127 1.27 4.00
chaos_fun gini_impurity 15 8.00 32.60 a007 114 1.14 5.00
epsilon 0.00 20 10.50 36.00 a003 108 1.03 6.00
n_bins 3 25 13.84 39.72 a002 96 0.91 7.00
n_bireducts 1000 30 18.53 44.20 a010 95 0.89 8.00
probes_count 100 all 1013.02 987.98 a015 93 0.87 9.00
model stats a014 91 0.84 10.00
mean_attrs_size 2.93 a001 85 0.77 11.00
mean_objs_size 5169.28 a013 85 0.74 12.00
median_attrs_size 3.00 a017 74 0.65 13.00
median_objs_size 5169.50 a005 79 0.65 14.00

a011 78 0.64 15.00
a000 71 0.59 16.00
a018 68 0.57 17.00
a004 66 0.53 18.00
a019 58 0.44 19.00
a009 58 0.41 20.00
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Figure A.14: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the synthetic1 data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 1010.00 a012 290 34774.16 1.00
learning_rate 0.00 5 3.00 1010.00 a016 203 26231.05 2.00
max_depth 2 7 4.00 1010.00 a008 248 23562.57 3.00
num_boost_round 1000 10 5.50 1010.00 a003 234 22505.47 4.00
objective binary:logistic 15 8.00 1010.00 a002 164 20598.32 5.00

20 60.00 1010.00 a010 185 19412.69 6.00
25 250.00 1010.00 a007 145 18339.68 7.00
30 376.67 1010.00 a014 133 17750.26 8.00
all 991.00 1010.00 a015 140 16021.95 9.00

a006 170 15038.38 10.00
a001 128 15037.23 11.00
a013 107 14544.72 12.00
a017 173 14202.34 13.00
a004 145 12793.78 14.00
a019 152 11914.64 15.00
a018 143 11870.74 16.00
a005 135 11818.54 17.00
a000 64 5619.57 18.00
a011 41 4274.31 19.00
shuffled_a334 0 0.00 1010.00
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Figure A.15: Detailed attribute importance profiling results obtained for XGBoost on the synthetic1
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 25.00 a012 0.15 1.00

5 3.00 26.40 a008 0.15 2.00
7 4.00 29.14 a016 0.15 3.00
10 5.50 33.20 a002 0.15 4.00
15 8.00 38.13 a003 0.15 5.00
20 10.50 43.45 a010 0.14 6.00
25 13.32 49.76 a007 0.14 7.00
30 16.70 56.07 a014 0.14 8.00
all 997.14 1003.86 a006 0.14 9.00

a015 0.14 10.00
a013 0.14 11.00
a001 0.14 12.00
a017 0.14 13.00
a000 0.13 14.00
a018 0.13 15.00
a005 0.13 16.00
a011 0.13 17.00
a004 0.13 18.00
a019 0.13 19.00
a009 0.12 20.00
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Figure A.16: Detailed attribute importance profiling results obtained for the correlation-based model
on the synthetic1 data set.
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A.5 Feature Importance Profiling - synthetic2 data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 17.60 6.30 6.80 19.00 13.20 8.20
20 26.35 15.00 13.80 28.20 25.85 17.20
30 35.13 25.93 24.20 38.10 37.73 25.27
50 51.66 49.98 138.63 266.37 57.92 43.82
100 95.64 106.16 590.57 654.43 108.86 92.17
all 992.44 1008.56 997.31 1003.69 999.06 1001.94
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Figure A.17: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the synthetic2 data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 9.33 2.00 shuffled_a906 95 0.23 1.00
allowed_randomness 0.05 5 11.80 3.20 shuffled_a786 86 0.21 2.00
attrs_max_count 3 7 14.57 4.43 shuffled_a382 68 0.16 3.00
candidates_count 100 10 17.60 6.30 shuffled_a096 65 0.15 4.00
chaos_fun gini_impurity 15 22.00 10.07 a390 56 0.13 5.00
epsilon 0.00 20 26.35 15.00 shuffled_a274 56 0.12 6.00
n_bins 3 25 30.84 20.32 shuffled_a391 48 0.12 7.00
n_bireducts 1000 30 35.13 25.93 shuffled_a450 50 0.11 8.00
probes_count 100 all 992.44 1008.56 shuffled_a642 44 0.10 9.00
model stats a351 40 0.09 10.00
mean_attrs_size 2.87 shuffled_a547 37 0.08 11.00
mean_objs_size 5035.03 shuffled_a721 34 0.08 12.00
median_attrs_size 3.00 a854 33 0.08 13.00
median_objs_size 5039.50 shuffled_a578 34 0.07 14.00

a979 34 0.07 15.00
a841 33 0.07 16.00
shuffled_a573 32 0.07 17.00
shuffled_a892 31 0.07 18.00
shuffled_a249 30 0.07 19.00
shuffled_a406 27 0.06 20.00
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Figure A.18: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the synthetic2 data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.67 8.00 a009 131 3759.01 1.00
learning_rate 0.00 5 3.80 12.20 shuffled_a090 165 2724.36 2.00
max_depth 2 7 5.00 15.14 a573 149 2328.73 3.00
num_boost_round 1000 10 6.80 19.00 a265 120 2026.15 4.00
objective binary:logistic 15 10.00 23.87 a047 127 1998.87 5.00

20 13.80 28.20 a854 101 1881.74 6.00
25 18.84 32.56 a658 115 1746.61 7.00
30 24.20 38.10 shuffled_a701 92 1683.46 8.00
all 997.31 1003.69 a352 85 1570.33 9.00

a128 80 1547.82 10.00
a291 92 1441.25 11.00
a011 32 1423.91 12.00
a157 80 1367.60 13.00
shuffled_a700 80 1214.07 14.00
a958 67 1135.83 15.00
a010 74 1073.52 16.00
a692 70 1004.06 17.00
shuffled_a494 48 979.18 18.00
shuffled_a919 65 952.84 19.00
shuffled_a530 64 924.55 20.00
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Figure A.19: Detailed attribute importance profiling results obtained for XGBoost on the synthetic2
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 5.33 2.33 shuffled_a525 0.04 1.00

5 8.00 4.00 shuffled_a872 0.04 2.00
7 10.14 5.57 a351 0.03 3.00
10 13.20 8.20 shuffled_a938 0.03 4.00
15 19.47 13.00 a047 0.03 5.00
20 25.85 17.20 shuffled_a217 0.03 6.00
25 31.84 21.16 shuffled_a238 0.03 7.00
30 37.73 25.27 a854 0.03 8.00
all 999.06 1001.94 shuffled_a738 0.03 9.00

shuffled_a023 0.03 10.00
a462 0.03 11.00
shuffled_a977 0.03 12.00
a457 0.03 13.00
shuffled_a057 0.03 14.00
a554 0.03 15.00
a446 0.03 16.00
shuffled_a698 0.03 17.00
a082 0.03 18.00
shuffled_a573 0.03 19.00
shuffled_a845 0.03 20.00
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Figure A.20: Detailed attribute importance profiling results obtained for the correlation-based model
on the synthetic2 data set.
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A.6 Feature Importance Profiling - synthetic3 data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 30.20 6.60 19.20 6.60 17.20
20 10.75 41.25 13.75 30.45 15.75 25.30
30 17.27 50.40 22.37 203.03 29.60 32.70
50 34.94 67.62 154.18 535.82 53.12 48.30
100 83.98 120.11 594.59 785.41 112.09 92.30
all 979.75 1021.25 990.96 1010.04 1000.14 1000.86

0

1000

2000

ra
nk

 v
al

ue

bireducts - original
bireducts - shuffled

0

1000

2000

ra
nk

 v
al

ue

XGBoost - original
XGBoost - shuffled

0 150 300 450 600 750 900
ordinal numbers of attributes relative to the descending value of the attribute importance metric

0

1000

2000

ra
nk

 v
al

ue

correlation - original
correlation - shuffled

Figure A.21: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the synthetic3 data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 21.33 a017 146 0.44 1.00
allowed_randomness 0.05 5 3.00 24.40 a009 128 0.39 2.00
attrs_max_count 3 7 4.00 27.29 a011 129 0.37 3.00
candidates_count 100 10 5.50 30.20 a001 110 0.29 4.00
chaos_fun gini_impurity 15 8.00 36.13 a005 102 0.26 5.00
epsilon 0.00 20 10.75 41.25 a019 103 0.24 6.00
n_bins 3 25 13.72 45.96 a004 101 0.24 7.00
n_bireducts 1000 30 17.27 50.40 a003 91 0.21 8.00
probes_count 100 all 979.75 1021.25 a007 86 0.21 9.00
model stats a010 84 0.20 10.00
mean_attrs_size 2.93 a015 74 0.17 11.00
mean_objs_size 5047.51 a000 75 0.17 12.00
median_attrs_size 3.00 a014 63 0.14 13.00
median_objs_size 5051.00 a018 57 0.12 14.00

a013 53 0.11 15.00
shuffled_a206 44 0.09 16.00
a887 43 0.09 17.00
a016 43 0.08 18.00
a012 37 0.08 19.00
a002 38 0.08 20.00
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Figure A.22: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the synthetic3 data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.33 9.33 a011 377 38736.11 1.00
learning_rate 0.00 5 3.60 13.40 a017 207 5942.99 2.00
max_depth 2 7 4.71 15.71 shuffled_a712 174 4327.80 3.00
num_boost_round 1000 10 6.60 19.20 a015 68 3031.16 4.00
objective binary:logistic 15 9.53 24.67 a127 159 2988.02 5.00

20 13.75 30.45 a009 149 2517.66 6.00
25 18.04 36.64 a012 44 2463.10 7.00
30 22.37 203.03 a010 30 1809.74 8.00
all 990.96 1010.04 shuffled_a395 99 1757.76 9.00

a185 97 1756.07 10.00
a605 55 1537.56 11.00
a862 84 1469.75 12.00
a928 81 1357.76 13.00
a424 67 1279.41 14.00
a002 72 1245.24 15.00
shuffled_a996 58 1152.80 16.00
a819 67 1094.58 17.00
a466 67 1091.70 18.00
shuffled_a371 82 906.33 19.00
shuffled_a250 50 903.83 20.00
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Figure A.23: Detailed attribute importance profiling results obtained for XGBoost on the synthetic3
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 9.00 a862 0.03 1.00

5 3.20 10.80 a725 0.03 2.00
7 4.43 13.86 a928 0.03 3.00
10 6.60 17.20 a300 0.03 4.00
15 10.40 21.53 shuffled_a061 0.03 5.00
20 15.75 25.30 a600 0.03 6.00
25 22.40 29.04 a127 0.03 7.00
30 29.60 32.70 a848 0.03 8.00
all 1000.14 1000.86 a819 0.03 9.00

shuffled_a087 0.03 10.00
a983 0.03 11.00
shuffled_a487 0.03 12.00
shuffled_a326 0.03 13.00
shuffled_a345 0.03 14.00
a608 0.03 15.00
a407 0.03 16.00
a033 0.03 17.00
a167 0.03 18.00
a871 0.03 19.00
a032 0.03 20.00
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Figure A.24: Detailed attribute importance profiling results obtained for the correlation-based model
on the synthetic3 data set.
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A.7 Feature Importance Profiling - acuteLymphoblasticLeukemia
data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 7675.10 5.50 39.40 5.50 3000.30
20 10.50 15307.55 10.75 59.80 10.50 3302.80
30 15.50 17851.70 16.10 75.80 15.50 3498.77
50 25.50 19887.02 28.80 7208.24 25.50 3802.06
100 50.50 21413.51 62.71 14780.12 50.50 4295.56
all 21621.85 22933.15 22236.99 22318.01 17871.52 26683.48
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Figure A.25: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the acuteLymphoblasticLeukemia data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 1043.00 X221748_s_at 13 2.44 1.00
allowed_randomness 0.05 5 3.00 1082.40 X218418_s_at 14 2.41 2.00
attrs_max_count 3 7 4.00 1133.00 X218625_at 11 2.27 3.00
candidates_count 100 10 5.50 7675.10 X221773_at 11 2.08 4.00
chaos_fun gini_impurity 15 8.00 12763.40 X204115_at 10 1.84 5.00
epsilon 0.00 20 10.50 15307.55 X209184_s_at 11 1.74 6.00
n_bins 3 25 13.00 16834.04 X212154_at 11 1.71 7.00
n_bireducts 1000 30 15.50 17851.70 X221349_at 8 1.66 8.00
probes_count 100 all 21621.85 22933.15 X219471_at 9 1.65 9.00
model stats X212956_at 10 1.65 10.00
mean_attrs_size 3.00 X221246_x_at 8 1.57 11.00
mean_objs_size 107.95 X219686_at 7 1.53 12.00
median_attrs_size 3.00 X202517_at 9 1.53 13.00
median_objs_size 108.00 X38269_at 9 1.53 14.00

X213394_at 9 1.51 15.00
X204914_s_at 9 1.51 16.00
X219866_at 8 1.50 17.00
X202853_s_at 8 1.46 18.00
X215001_s_at 9 1.45 19.00
X209604_s_at 8 1.45 20.00
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Figure A.26: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the acuteLymphoblasticLeukemia data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 26.00 X206231_at 1000 42521.44 1.00
learning_rate 0.00 5 3.00 30.20 X205456_at 1000 41606.96 2.00
max_depth 2 7 4.00 33.86 X201811_x_at 490 16045.94 3.00
num_boost_round 1000 10 5.50 39.40 X221932_s_at 1000 14230.27 4.00
objective multi:softmax 15 8.00 49.93 X201136_at 391 11138.38 5.00

20 10.75 59.80 X213394_at 396 9426.82 6.00
25 13.40 68.64 X202711_at 440 5459.08 7.00
30 16.10 75.80 X216620_s_at 390 3656.45 8.00
all 22236.99 22318.01 X202853_s_at 196 3519.00 9.00

X35974_at 821 3295.83 10.00
X201612_at 187 2982.84 11.00
X204793_at 262 2709.81 12.00
X201121_s_at 267 2571.88 13.00
X201443_s_at 119 2230.20 14.00
X217652_at 490 2159.33 15.00
shuffled_X220232_at 177 1751.82 16.00
X203372_s_at 141 1526.27 17.00
X203744_at 137 1476.40 18.00
X218668_s_at 153 1298.15 19.00
X215146_s_at 281 1025.35 20.00
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Figure A.27: Detailed attribute importance profiling results obtained for XGBoost on the acuteLym-
phoblasticLeukemia data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 2579.00 X221840_at 0.79 1.00

5 3.00 2751.00 X206001_at 0.70 2.00
7 4.00 2857.71 X213891_s_at 0.69 3.00
10 5.50 3000.30 X218418_s_at 0.68 4.00
15 8.00 3177.40 X222146_s_at 0.68 5.00
20 10.50 3302.80 X212386_at 0.67 6.00
25 13.00 3409.48 X212387_at 0.67 7.00
30 15.50 3498.77 X209604_s_at 0.67 8.00
all 17871.52 26683.48 X209568_s_at 0.67 9.00

X203753_at 0.66 10.00
X212385_at 0.65 11.00
X219157_at 0.65 12.00
X217436_x_at 0.65 13.00
X212382_at 0.64 14.00
X201720_s_at 0.63 15.00
X50221_at 0.63 16.00
X221773_at 0.63 17.00
X201015_s_at 0.63 18.00
X204806_x_at 0.63 19.00
X205067_at 0.63 20.00
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Figure A.28: Detailed attribute importance profiling results obtained for the correlation-based model
on the acuteLymphoblasticLeukemia data set.
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A.8 Feature Importance Profiling - hepatitisC data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 1512.40 5.50 8950.00 5.50 5551.50
20 10.50 11249.88 11.00 15637.25 10.50 5931.50
30 15.50 15211.75 16.63 17866.33 15.50 6291.08
50 25.50 18381.25 27.88 19649.60 25.50 6861.59
100 50.50 20758.38 2721.57 20987.05 50.50 7693.22
all 21430.17 23124.83 22236.50 22318.50 15062.49 29492.51
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Figure A.29: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the hepatitisC data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 1333.33 X65521_at 9 1.82 1.00
allowed_randomness 0.05 5 3.00 1421.40 X61874_at 6 1.82 2.00
attrs_max_count 3 7 4.00 1467.43 X217917_s_at 9 1.80 3.00
candidates_count 100 10 5.50 1512.40 X214313_s_at 9 1.75 4.00
chaos_fun gini_impurity 15 8.00 7288.00 X202286_s_at 9 1.75 5.00
epsilon 0.00 20 10.50 11249.88 X221817_at 8 1.69 6.00
n_bins 3 25 13.00 13627.00 X214842_s_at 8 1.60 7.00
n_bireducts 1000 30 15.50 15211.75 X213813_x_at 7 1.60 8.00
probes_count 100 all 21430.17 23124.83 X207057_at 7 1.58 9.00
model stats X51774_s_at 7 1.57 10.00
mean_attrs_size 3.00 X58900_at 8 1.56 11.00
mean_objs_size 91.12 X204061_at 8 1.54 12.00
median_attrs_size 3.00 X210596_at 8 1.51 13.00
median_objs_size 92.00 X216609_at 6 1.51 14.00

X208915_s_at 7 1.44 15.00
X213642_at 7 1.43 16.00
X214413_at 7 1.39 17.00
X49327_at 6 1.39 18.00
X214057_at 8 1.36 19.00
X213484_at 7 1.35 20.00
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Figure A.30: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the hepatitisC data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 20.67 X208306_x_at 1000 21218.46 1.00
learning_rate 0.00 5 3.00 29.60 X51774_s_at 774 20926.04 2.00
max_depth 2 7 4.00 3218.07 X216563_at 712 18114.08 3.00
num_boost_round 1000 10 5.50 8950.00 X213490_s_at 735 8040.81 4.00
objective multi:softmax 15 8.07 13408.17 X212649_at 288 8004.32 5.00

20 11.00 15637.25 X204454_at 989 5431.93 6.00
25 13.80 16974.70 X48030_i_at 226 3035.64 7.00
30 16.63 17866.33 X211109_at 495 2525.01 8.00
all 22236.50 22318.50 X1405_i_at 735 2405.13 9.00

X217912_at 238 1438.01 10.00
X205519_at 288 1406.15 11.00
X204301_at 324 1364.16 12.00
X211122_s_at 299 1194.54 13.00
X33646_g_at 288 1101.88 14.00
shuffled_X222255_at 238 745.86 15.00
X208984_x_at 226 532.62 16.00
X219937_at 121 487.52 17.00
shuffled_X208249_s_at 119 480.17 18.00
X211947_s_at 126 395.15 19.00
X217737_x_at 112 348.77 20.00
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Figure A.31: Detailed attribute importance profiling results obtained for XGBoost on the hepatitisC
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 4673.00 X216563_at 0.77 1.00

5 3.00 5065.00 X214305_s_at 0.75 2.00
7 4.00 5316.00 X201846_s_at 0.74 3.00
10 5.50 5551.50 X214056_at 0.74 4.00
15 8.00 5755.57 X201070_x_at 0.74 5.00
20 10.50 5931.50 X216450_x_at 0.73 6.00
25 13.00 6122.94 X219426_at 0.73 7.00
30 15.50 6291.08 X214422_at 0.73 8.00
all 15062.49 29492.51 X212649_at 0.73 9.00

X211317_s_at 0.72 10.00
X213813_x_at 0.72 11.00
X210717_at 0.71 12.00
X201844_s_at 0.71 13.00
X202082_s_at 0.71 14.00
X212451_at 0.71 15.00
X215992_s_at 0.71 16.00
X212212_s_at 0.70 17.00
X210755_at 0.70 18.00
X209226_s_at 0.70 19.00
X213850_s_at 0.70 20.00
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Figure A.32: Detailed attribute importance profiling results obtained for the correlation-based model
on the hepatitisC data set.
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A.9 Feature Importance Profiling - skinPsoriatic data set

avg rank value of the top_k attributes
bireducts XGBoost correlation

top_k original shuffled original shuffled original shuffled
10 5.50 740.10 5.50 34.00 5.50 16791.05
20 10.50 915.50 11.30 51.15 10.50 17775.90
30 15.50 1025.73 17.20 63.20 15.52 18405.58
50 25.50 1180.68 29.90 6634.26 25.50 19122.47
100 50.50 1403.09 16998.12 30683.13 50.51 20146.08
all 53702.89 55648.11 54662.99 54688.01 38626.78 70724.22
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Figure A.33: The average attribute importance ranks of the original (A) and shuffled (A�) attributes
computed for the compared ranking methods on the skinPsoriatic data set.
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Bireducts - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column count global_gain rank
algorithm bireducts 3 2.00 412.33 Aff[...].U133_Plus_2.205349_at 5 1.38 1.00
allowed_randomness 0.05 5 3.00 569.60 Aff[...]133_Plus_2.207121_s_at 5 1.18 2.00
attrs_max_count 3 7 4.00 650.29 Aff[...]133_Plus_2.202805_s_at 4 1.16 3.00
candidates_count 100 10 5.50 740.10 Aff[...].U133_Plus_2.209921_at 4 1.13 4.00
chaos_fun gini_impurity 15 8.00 844.20 Aff[...]133_Plus_2.218357_s_at 4 1.02 5.00
epsilon 0.00 20 10.50 915.50 Aff[...].U133_Plus_2.202338_at 5 0.99 6.00
n_bins 3 25 13.00 977.64 Aff[...].U133_Plus_2.231033_at 4 0.99 7.00
n_bireducts 1000 30 15.50 1025.73 Aff[...].U133_Plus_2.206149_at 4 0.97 8.00
probes_count 100 all 53702.89 55648.11 Aff[...]33_Plus_2.1557915_s_at 3 0.95 9.00
model stats Aff[...]133_Plus_2.201584_s_at 4 0.95 10.00
mean_attrs_size 3.00 Aff[...].U133_Plus_2.201577_at 3 0.92 11.00
mean_objs_size 135.15 Aff[...].U133_Plus_2.202804_at 5 0.91 12.00
median_attrs_size 3.00 Aff[...].U133_Plus_2.223541_at 3 0.91 13.00
median_objs_size 136.00 Aff[...].U133_Plus_2.206337_at 4 0.91 14.00

Aff[...].U133_Plus_2.217755_at 3 0.90 15.00
Aff[...]133_Plus_2.223032_x_at 4 0.86 16.00
Aff[...]133_Plus_2.208651_x_at 3 0.86 17.00
Aff[...].U133_Plus_2.202934_at 4 0.85 18.00
Aff[...]33_Plus_2.1554556_a_at 4 0.84 19.00
Aff[...]133_Plus_2.202070_s_at 3 0.82 20.00
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Figure A.34: Detailed attribute importance profiling results obtained for the bireduct-based ensembles
on the skinPsoriatic data set.
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XGBoost - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column weight total_gain rank
algorithm xgboost 3 2.00 16.67 Aff[...].U133_Plus_2.204698_at 1000 45768.19 1.00
learning_rate 0.00 5 3.00 23.00 Aff[...]133_Plus_2.233687_s_at 316 8542.27 2.00
max_depth 2 7 4.00 27.86 Aff[...]33_Plus_2.1555730_a_at 359 8069.96 3.00
num_boost_round 1000 10 5.50 34.00 Aff[...].U133_Plus_2.220528_at 315 6206.05 4.00
objective multi:softmax 15 8.33 44.13 Aff[...]133_Plus_2.224890_s_at 245 4931.53 5.00

20 11.30 51.15 Aff[...].U133_Plus_2.228360_at 245 3653.13 6.00
25 14.24 57.68 Aff[...]133_Plus_2.224329_s_at 128 3188.15 7.00
30 17.20 63.20 Aff[...].U133_Plus_2.222431_at 150 2996.40 8.00
all 54662.99 54688.01 Aff[...]133_Plus_2.217992_s_at 140 1939.88 9.00

Aff[...].U133_Plus_2.211958_at 161 1909.49 10.00
shu[...]U133_Plus_2.1554483_at 244 1701.35 11.00
Aff[...]133_Plus_2.214218_s_at 161 1434.62 12.00
Aff[...].U133_Plus_2.218611_at 315 1335.25 13.00
Aff[...].U133_Plus_2.243182_at 122 1326.11 14.00
Aff[...].U133_Plus_2.230949_at 148 1202.67 15.00
Aff[...].U133_Plus_2.226589_at 235 843.94 16.00
Aff[...]133_Plus_2.228279_s_at 75 831.58 17.00
Aff[...].U133_Plus_2.222491_at 93 828.17 18.00
shu[...]U133_Plus_2.1560475_at 105 811.55 19.00
shu[...].U133_Plus_2.216145_at 85 733.03 20.00
... ... ... ...
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Figure A.35: Detailed attribute importance profiling results obtained for XGBoost on the skinPsoriatic
data set.
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Correlation - detailed profile

hyperparameters avg ranks actual ranks
param value top_k original shuffled column correlation rank
algorithm correlation 3 2.00 15692.50 Aff[...]133_Plus_2.224890_s_at 0.81 1.00

5 3.00 16025.20 Aff[...].U133_Plus_2.226565_at 0.80 2.00
7 4.00 16268.50 Aff[...].U133_Plus_2.205568_at 0.78 3.00
10 5.50 16791.05 Aff[...]133_Plus_2.202805_s_at 0.78 4.00
15 8.00 17325.60 Aff[...]133_Plus_2.217917_s_at 0.77 5.00
20 10.50 17775.90 Aff[...]133_Plus_2.224013_s_at 0.77 6.00
25 13.00 18133.20 Aff[...].U133_Plus_2.217918_at 0.77 7.00
30 15.52 18405.58 Aff[...]133_Plus_2.224555_x_at 0.77 8.00
all 38626.78 70724.22 Aff[...].U133_Plus_2.228567_at 0.77 9.00

Aff[...]133_Plus_2.209293_x_at 0.77 10.00
Aff[...].U133_Plus_2.206149_at 0.77 11.50
Aff[...]133_Plus_2.200822_x_at 0.77 11.50
Aff[...].U133_Plus_2.221599_at 0.77 13.00
Aff[...].U133_Plus_2.201874_at 0.77 14.00
Aff[...]133_Plus_2.212442_s_at 0.76 15.00
Aff[...].U133_Plus_2.200693_at 0.76 16.00
Aff[...]133_Plus_2.202289_s_at 0.76 17.00
Aff[...].U133_Plus_2.228360_at 0.76 18.00
Aff[...].U133_Plus_2.202575_at 0.76 19.00
Aff[...]133_Plus_2.203573_s_at 0.76 20.00
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Figure A.36: Detailed attribute importance profiling results obtained for the correlation-based model
on the skinPsoriatic data set.
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Feature importance example

Dataset
Let's prepare a sample data set - "Play Golf Dataset".

In [1]: import pprint 

 

import more_itertools 

import numpy as np 

import pandas as pd 

 

from skrough.chaos_measures import conflicts_count, entropy, gini_impurity 

from skrough.chaos_score import get_chaos_score_for_data 

from skrough.dataprep import prepare_factorized_data 

from skrough.feature_importance import get_feature_importance 

In [2]: df = pd.DataFrame( 

    np.array( 

        [ 

            ["sunny", "hot", "high", "weak", "no"], 

            ["sunny", "hot", "high", "strong", "no"], 

            ["overcast", "hot", "high", "weak", "yes"], 

            ["rain", "mild", "high", "weak", "yes"], 

            ["rain", "cool", "normal", "weak", "yes"], 

            ["rain", "cool", "normal", "strong", "no"], 

            ["overcast", "cool", "normal", "strong", "yes"], 

            ["sunny", "mild", "high", "weak", "no"], 

            ["sunny", "cool", "normal", "weak", "yes"], 

            ["rain", "mild", "normal", "weak", "yes"], 

            ["sunny", "mild", "normal", "strong", "yes"], 

            ["overcast", "mild", "high", "strong", "yes"], 

            ["overcast", "hot", "normal", "weak", "yes"], 

            ["rain", "mild", "high", "strong", "no"], 

        ], 

        dtype=object, 

    ), 

    columns=["Outlook", "Temperature", "Humidity", "Wind", "Play"], 

) 

TARGET_COLUMN = "Play" 

df 
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Outlook Temperature Humidity Wind Play

0 sunny hot high weak no

1 sunny hot high strong no

2 overcast hot high weak yes

3 rain mild high weak yes

4 rain cool normal weak yes

5 rain cool normal strong no

6 overcast cool normal strong yes

7 sunny mild high weak no

8 sunny cool normal weak yes

9 rain mild normal weak yes

10 sunny mild normal strong yes

11 overcast mild high strong yes

12 overcast hot normal weak yes

13 rain mild high strong no

Prepare data
Factorize dataset and obtain the sizes of feature domains.

Out[2]:

In [3]: x, x_counts, y, y_count = prepare_factorized_data(df, TARGET_COLUMN) 

column_names = np.array([col for col in df.columns if col != TARGET_COLUMN])

 

print("Conditional data:") 

print(x) 

print() 

print("Conditional data feature domain sizes:") 

print(x_counts) 

print() 

print("Target data:") 

print(y) 

print() 

print("Target data feature domain size:") 

print(y_count) 
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Conditional data: 

[[0 0 0 0] 

 [0 0 0 1] 

 [1 0 0 0] 

 [2 1 0 0] 

 [2 2 1 0] 

 [2 2 1 1] 

 [1 2 1 1] 

 [0 1 0 0] 

 [0 2 1 0] 

 [2 1 1 0] 

 [0 1 1 1] 

 [1 1 0 1] 

 [1 0 1 0] 

 [2 1 0 1]] 

 

Conditional data feature domain sizes: 

[3 3 2 2] 

 

Target data: 

[0 0 1 1 1 0 1 0 1 1 1 1 1 0] 

 

Target data feature domain size: 

2 

Measure of disorder in the dataset - chaos score
In the context of the given dataset, a chaos score values is quantity that characterizes a
subset of features and, more or less, presents the disorder of decisions in the equivalence
classes induced by the subsets of features.

In most cases it is reasonable to assume that the chaos score function is monotonic with
respect to subset relation, i.e., for subsets of features , the chaos score for 
should be less or equal to that for .

Attributes are given by their ordinal numbers.

Let's try three standard approaches, i.e., conflicts_count , gini_impurity  and 
entropy .

A ⊆ B A

B

In [4]: for chaos_function in [conflicts_count, entropy, gini_impurity]: 

    print(chaos_function.__name__) 

    for attrs in [[0], [0, 1], [0, 1, 3], [0, 1, 2, 3]]: 

        print( 

            f"chaos score for attrs {attrs}({column_names[attrs]}) = ", 

            get_chaos_score_for_data( 

                x=x, 

                x_counts=x_counts, 

                y=y, 

                y_count=y_count, 

                chaos_fun=chaos_function, 

                attrs=attrs, 

            ), 
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conflicts_count 

chaos score for attrs [0](['Outlook']) =  12.0 

chaos score for attrs [0, 1](['Outlook' 'Temperature']) =  4.0 

chaos score for attrs [0, 1, 3](['Outlook' 'Temperature' 'Wind']) =  0.0 

chaos score for attrs [0, 1, 2, 3](['Outlook' 'Temperature' 'Humidity' 'Win

d']) =  0.0 

 

 

entropy 

chaos score for attrs [0](['Outlook']) =  0.6935361388961918 

chaos score for attrs [0, 1](['Outlook' 'Temperature']) =  0.4824919644402477 

chaos score for attrs [0, 1, 3](['Outlook' 'Temperature' 'Wind']) =  0.0 

chaos score for attrs [0, 1, 2, 3](['Outlook' 'Temperature' 'Humidity' 'Win

d']) =  0.0 

 

 

gini_impurity 

chaos score for attrs [0](['Outlook']) =  0.34285714285714286 

chaos score for attrs [0, 1](['Outlook' 'Temperature']) =  0.2380952380952380

8 

chaos score for attrs [0, 1, 3](['Outlook' 'Temperature' 'Wind']) =  0.0 

chaos score for attrs [0, 1, 2, 3](['Outlook' 'Temperature' 'Humidity' 'Win

d']) =  0.0 

 

 

Assessing feature importance
We can use the above chaos score functions for assessing the features, i.e., we can
observe the chaos score change if a given feature is removed.

To follow a more realistic example, we can use an enseble of feature subsets, i.e., a family
of subsets of all atributes, and not just a single subset of features, computing the total or
average chaos score change over several possible appearances of the attribute in the
ensemble elements.

        ) 

    print() 

    print() 

In [5]: attr_subset_ensemble = [ 

    [[0, 2], [0, 3], [0], [2, 3], [1, 2, 3]], 

    [[0], [0, 1], [1, 2]], 

    [list(elem) for elem in more_itertools.powerset(range(4))], 

] 

for chaos_function in [conflicts_count, entropy, gini_impurity]: 

    print(chaos_function.__name__) 

    for attr_subset in attr_subset_ensemble: 

        print("feature importance for attribute subset ensemble: ") 

        pprint.pprint(attr_subset, compact=True) 

        print( 

            get_feature_importance( 

                x, 
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                x_counts, 

                y, 

                y_count, 

                column_names, 

                attr_subset, 

                chaos_fun=chaos_function, 

            ) 

        ) 

        print() 

    print() 

    print() 
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conflicts_count 

feature importance for attribute subset ensemble:  

[[0, 2], [0, 3], [0], [2, 3], [1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    3.0         66.0        22.000000 

1  Temperature    1.0          4.0         4.000000 

2     Humidity    3.0         25.0         8.333333 

3         Wind    3.0         24.0         8.000000 

 

feature importance for attribute subset ensemble:  

[[0], [0, 1], [1, 2]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    2.0         44.0             22.0 

1  Temperature    2.0         17.0              8.5 

2     Humidity    1.0          6.0              6.0 

3         Wind    0.0          0.0              0.0 

 

feature importance for attribute subset ensemble:  

[[], [0], [1], [2], [3], [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3], 

 [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3], [0, 1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    8.0        103.0           12.875 

1  Temperature    8.0         69.0            8.625 

2     Humidity    8.0         63.0            7.875 

3         Wind    8.0         65.0            8.125 

 

 

 

entropy 

feature importance for attribute subset ensemble:  

[[0, 2], [0, 3], [0], [2, 3], [1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    3.0     1.248090         0.416030 

1  Temperature    1.0     0.107841         0.107841 

2     Humidity    3.0     0.728552         0.242851 

3         Wind    3.0     0.605939         0.201980 

 

feature importance for attribute subset ensemble:  

[[0], [0, 1], [1, 2]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    2.0     0.675321         0.337661 

1  Temperature    2.0     0.285209         0.142604 

2     Humidity    1.0     0.196778         0.196778 

3         Wind    0.0     0.000000         0.000000 

 

feature importance for attribute subset ensemble:  

[[], [0], [1], [2], [3], [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3], 

 [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3], [0, 1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    8.0     4.089121         0.511140 

1  Temperature    8.0     0.974797         0.121850 

2     Humidity    8.0     1.613578         0.201697 

3         Wind    8.0     1.939781         0.242473 
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gini_impurity 

feature importance for attribute subset ensemble:  

[[0, 2], [0, 3], [0], [2, 3], [1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    3.0     0.578912         0.192971 

1  Temperature    1.0     0.047619         0.047619 

2     Humidity    3.0     0.342857         0.114286 

3         Wind    3.0     0.269728         0.089909 

 

feature importance for attribute subset ensemble:  

[[0], [0, 1], [1, 2]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    2.0     0.318707         0.159354 

1  Temperature    2.0     0.126871         0.063435 

2     Humidity    1.0     0.095238         0.095238 

3         Wind    0.0     0.000000         0.000000 

 

feature importance for attribute subset ensemble:  

[[], [0], [1], [2], [3], [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3], 

 [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3], [0, 1, 2, 3]] 

        column  count  global_gain  avg_global_gain 

0      Outlook    8.0     1.959864         0.244983 

1  Temperature    8.0     0.455102         0.056888 

2     Humidity    8.0     0.791837         0.098980 

3         Wind    8.0     0.931293         0.116412 
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Rough Set check functions

Dataset
Let's prepare a sample data set - "Play Golf Dataset".

Data table consistency
Let's check if the data table is consistent:

check whole table

In [1]: import numpy as np 

import pandas as pd 

 

from skrough.chaos_measures import entropy 

from skrough.checks import ( 

    check_if_approx_reduct, 

    check_if_bireduct, 

    check_if_consistent_table, 

    check_if_functional_dependency, 

    check_if_reduct, 

) 

from skrough.dataprep import prepare_factorized_data 

In [2]: df = pd.DataFrame( 

    np.array( 

        [ 

            ["sunny", "hot", "high", "weak", "no"], 

            ["sunny", "hot", "high", "strong", "no"], 

            ["overcast", "hot", "high", "weak", "yes"], 

            ["rain", "mild", "high", "weak", "yes"], 

            ["rain", "cool", "normal", "weak", "yes"], 

            ["rain", "cool", "normal", "strong", "no"], 

            ["overcast", "cool", "normal", "strong", "yes"], 

            ["sunny", "mild", "high", "weak", "no"], 

            ["sunny", "cool", "normal", "weak", "yes"], 

            ["rain", "mild", "normal", "weak", "yes"], 

            ["sunny", "mild", "normal", "strong", "yes"], 

            ["overcast", "mild", "high", "strong", "yes"], 

            ["overcast", "hot", "normal", "weak", "yes"], 

            ["rain", "mild", "high", "strong", "no"], 

        ], 

        dtype=object, 

    ), 

    columns=["Outlook", "Temperature", "Humidity", "Wind", "Play"], 

) 

TARGET_COLUMN = "Play" 

x, x_counts, y, y_count = prepare_factorized_data(df, TARGET_COLUMN) 
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check using a given subset of attributes

True

False

Check functional dependency

True

True

False

True

Check reducts
For "Play Golf Dataset" there are only two reducts:

"Outlook", "Temperature", "Humidity" - attrs == [0, 1, 2]
"Outlook", "Humidity", "Wind" - attrs == [0, 2, 3]

True

True

In [3]: check_if_consistent_table(x, y) 

Out[3]:

In [4]: # check using only first two columns 

check_if_consistent_table(x[:, 0:2], y) 

Out[4]:

In [5]: # check functional dependency on all objects (using default: `None`) and all

# (using default: `None`) 

check_if_functional_dependency(x, y) 

Out[5]:

In [6]: # check on all objects (using default: `None`) and on attrs `0, 2, 3` 

check_if_functional_dependency(x, y, attrs=[0, 2, 3]) 

Out[6]:

In [7]: # check on all objects (using default: `None`) and on attrs `0, 1` 

check_if_functional_dependency(x, y, attrs=[0, 1]) 

Out[7]:

In [8]: # check on objects `0, 2, 5` and on attrs `0, 1` 

check_if_functional_dependency(x, y, objs=[0, 2, 5], attrs=[0, 1]) 

Out[8]:

In [9]: check_if_reduct(x, x_counts, y, y_count, attrs=[0, 2, 3]) 

Out[9]:

In [10]: check_if_reduct(x, x_counts, y, y_count, attrs=[0, 2, 3]) 

Out[10]:
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False

False

Check approximate reducts
Check if a given subset of attributes is an approximate reduct with a given approximation
level .

See that for the specified subset of attributes and lower values of  the answer is "no". After
reaching specific larger values, the subset become good enough to fulfill the approximation
condition. However, increasing the  value even further, the subset starts to
have redundant attributes (not needed to still fulfill the approximate condition) and therefore
the whole subset cannot be further considered as an approximate reduct.

is approximate reduct attrs=[0, 3] for eps=0.0 == False 

is approximate reduct attrs=[0, 3] for eps=0.1 == False 

is approximate reduct attrs=[0, 3] for eps=0.2 == False 

is approximate reduct attrs=[0, 3] for eps=0.3 == False 

is approximate reduct attrs=[0, 3] for eps=0.4 == True 

is approximate reduct attrs=[0, 3] for eps=0.5 == True 

is approximate reduct attrs=[0, 3] for eps=0.6 == True 

is approximate reduct attrs=[0, 3] for eps=0.7 == True 

is approximate reduct attrs=[0, 3] for eps=0.8 == False 

is approximate reduct attrs=[0, 3] for eps=0.9 == False 

Check bireducts
Check if a given pair of objects and attributes subsets constitutes a decision bireduct.

In [11]: # too few attributes ~ no functional dependency 

check_if_reduct(x, x_counts, y, y_count, attrs=[0, 1]) 

Out[11]:

In [12]: # too many attributes ~ some of them can be removed 

check_if_reduct(x, x_counts, y, y_count, attrs=[0, 1, 2, 3]) 

Out[12]:

ε

ε

varepsilon

In [13]: attrs = [0, 3] 

for eps in np.arange(0, 1, step=0.1): 

    is_approx_reduct = check_if_approx_reduct( 

        x, x_counts, y, y_count, attrs=attrs, chaos_fun=entropy, epsilon=eps

    ) 

    print(f"is approximate reduct {attrs=} for {eps=:.2} == {is_approx_reduc

In [14]: df.sort_values(["Temperature", "Humidity"]) 
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Outlook Temperature Humidity Wind Play

4 rain cool normal weak yes

5 rain cool normal strong no

6 overcast cool normal strong yes

8 sunny cool normal weak yes

0 sunny hot high weak no

1 sunny hot high strong no

2 overcast hot high weak yes

12 overcast hot normal weak yes

3 rain mild high weak yes

7 sunny mild high weak no

11 overcast mild high strong yes

13 rain mild high strong no

9 rain mild normal weak yes

10 sunny mild normal strong yes

True

False

False

False

True

Out[14]:

In [15]: check_if_bireduct( 

    x, x_counts, y, y_count, objs=[0, 1, 2, 5, 6, 7, 11, 12, 13], attrs=[0] 

) 

Out[15]:

In [16]: check_if_bireduct(x, x_counts, y, y_count, objs=[0, 1], attrs=[0]) 

Out[16]:

In [17]: check_if_bireduct(x, x_counts, y, y_count, objs=[0, 1, 5, 7, 13], attrs=[1])

Out[17]:

In [18]: # too few objects 

check_if_bireduct(x, x_counts, y, y_count, objs=[7, 9, 10, 12, 13], attrs=[1

Out[18]:

In [19]: check_if_bireduct(x, x_counts, y, y_count, objs=[2, 5, 7, 9, 10, 12, 13], at

Out[19]:

In [20]: check_if_bireduct( 

    x, 

    x_counts, 

    y, 

    y_count, 

    objs=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 
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True

False

    attrs=[0, 2, 3], 

) 

Out[20]:

In [21]: # all objects + all attrs - not a bireduct because some attrs are redundant 

check_if_bireduct( 

    x, 

    x_counts, 

    y, 

    y_count, 

    objs=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 

    attrs=[0, 1, 2, 3], 

) 

Out[21]:
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Multi-Stage processing

Dataset
Let's prepare a sample data set - "Play Golf Dataset".

In [1]: import pprint 

 

import numpy as np 

import pandas as pd 

from attrs import asdict 

 

from skrough.algorithms import hooks 

from skrough.algorithms.key_names import ( 

    CONFIG_CHAOS_FUN, 

    CONFIG_EPSILON, 

    CONFIG_SELECT_ATTRS_CHAOS_SCORE_BASED_MAX_COUNT, 

    INPUT_DATA_X, 

    INPUT_DATA_Y, 

) 

from skrough.algorithms.meta import describe, processing, stage 

from skrough.chaos_measures import entropy 

from skrough.checks import check_if_approx_reduct 

from skrough.dataprep import prepare_factorized_data 

from skrough.structs.attrs_subset import AttrsSubset 

In [2]: df = pd.DataFrame( 

    np.array( 

        [ 

            ["sunny", "hot", "high", "weak", "no"], 

            ["sunny", "hot", "high", "strong", "no"], 

            ["overcast", "hot", "high", "weak", "yes"], 

            ["rain", "mild", "high", "weak", "yes"], 

            ["rain", "cool", "normal", "weak", "yes"], 

            ["rain", "cool", "normal", "strong", "no"], 

            ["overcast", "cool", "normal", "strong", "yes"], 

            ["sunny", "mild", "high", "weak", "no"], 

            ["sunny", "cool", "normal", "weak", "yes"], 

            ["rain", "mild", "normal", "weak", "yes"], 

            ["sunny", "mild", "normal", "strong", "yes"], 

            ["overcast", "mild", "high", "strong", "yes"], 

            ["overcast", "hot", "normal", "weak", "yes"], 

            ["rain", "mild", "high", "strong", "no"], 

        ], 

        dtype=object, 

    ), 

    columns=["Outlook", "Temperature", "Humidity", "Wind", "Play"], 

) 

TARGET_COLUMN = "Play" 

x, x_counts, y, y_count = prepare_factorized_data(df, TARGET_COLUMN) 
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Approximate decision superreduct
Let's prepare a processing procedure to search for approximate decision superreduct.
Notice that despite of the ProcessingMultiStage  name, we create the processing with
only one stage, cf., the below grow_stage .

A greedy heuristic algorithm is implemented in the below example. Its brief description is as
follows:

initialization steps:
factorize the input data
initialize internal structures - group index and result subset of attributes
compute the approximation threshold, based on the data and the input
approximation level 

perform processing defined in stages (here just one processing stage):
grow_stage:

define stop criterion - reaching the approximation threshold
iteratively, until stop criterion

use all remaining attrs as pre-candidates
pass all pre-candidates as candidates
use greedy heuristic to choose the best attribute - maximizing the chaos
score gain
update internal structures

finalize the processing - prepare the actual return value

ε

In [3]: grow_stage = stage.Stage.from_hooks( 

    stop_hooks=[ 

        hooks.stop_hooks.stop_hook_approx_threshold, 

    ], 

    init_hooks=None, 

    pre_candidates_hooks=[ 

        hooks.pre_candidates_hooks.pre_candidates_hook_remaining_attrs, 

    ], 

    candidates_hooks=[ 

        hooks.common.process_elements.process_elements_hook_pass_everything,

    ], 

    select_hooks=[ 

        hooks.select_hooks.select_hook_attrs_chaos_score_based, 

    ], 

    filter_hooks=None, 

    inner_init_hooks=None, 

    inner_stop_hooks=hooks.inner_stop_hooks.inner_stop_hook_empty, 

    inner_process_hooks=hooks.inner_process_hooks.inner_process_hook_add_fir

    finalize_hooks=None, 

) 

 

get_approx_reduct = processing.ProcessingMultiStage.from_hooks( 

    init_multi_stage_hooks=[ 

        hooks.init_hooks.init_hook_factorize_data_x_y, 

B.3. MULTI-STAGE PROCESSING EXAMPLE 179



Processing procedure inspection
There are ways to inspect the prepared processing procedures, either for checking or
debugging purposes.

A structured representation can be obtained and further processed:

{'children': [{'children': [{'children': None, 

                             'config_keys': [], 

                             'input_keys': ['input_data_x', 'input_data_y'], 

                             'long_description': 'Factorize an input data ' 

                                                 'table representing ' 

                                                 'conditional ' 

                                                 'features/attributes and\n' 

                                                 'decision values for the ' 

                                                 'latter computations. It is 

' 

                                                 'assumed that that the input 

' 

                                                 'data\n' 

                                                 'array and decision values ' 

                                                 'are available in ' 

                                                 ':attr:`state.input_data` ' 

                                                 'under\n' 

                                                 ':const:`~skrough.algorithm

s.key_names.INPUT_DATA_X` ' 

                                                 'and\n' 

                                                 ':const:`~skrough.algorithm

s.key_names.INPUT_DATA_Y` ' 

                                                 'keys, respectively.\n' 

                                                 '\n' 

                                                 'The ' 

                 ... 

One can inspect "config"/"input"/"values" keys used within a processing procedure and its
descendant (nested) subprocedures:

        hooks.init_hooks.init_hook_single_group_index, 

        hooks.init_hooks.init_hook_result_attrs_empty, 

        hooks.init_hooks.init_hook_epsilon_approx_threshold, 

    ], 

    stages=[grow_stage], 

    finalize_hooks=None, 

    prepare_result_fun=hooks.prepare_result_hooks.prepare_result_hook_attrs_

) 

In [4]: description_graph = describe.describe(get_approx_reduct) 

print(pprint.pformat(asdict(description_graph))[:1500], "...") 

In [5]: print(f"config-keys: {describe.inspect_config_keys(get_approx_reduct)}") 

print(f"input-keys: {describe.inspect_input_data_keys(get_approx_reduct)}") 

print(f"values-keys: {describe.inspect_values_keys(get_approx_reduct)}") 
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config-keys: ['config_chaos_fun'] 

input-keys: ['input_data_x', 'input_data_y'] 

values-keys: ['values_chaos_score_approx_threshold', 'values_y_count', 'value

s_x', 'values_x_counts', 'values_result_attrs', 'values_y', 'values_group_ind

ex'] 

A visual representation using the sklearn framework/templates:

In [6]: get_approx_reduct 
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Out[6]: ▸ ProcessingMultiStage

▸ init_multi_stage: UpdateStateHooksAggregate + {"meta":

{"optional": true}}

▸ 0: init_hook_factorize_data_x_y

▸ 1: init_hook_single_group_index

▸ 2: init_hook_result_attrs_empty

▸ 3: init_hook_epsilon_approx_threshold

▸ init: UpdateStateHooksAggregate

▸ stages:

▸ 0: Stage

▸ init: UpdateStateHooksAggregate

▸ check_stop: StopHooksAggregate

▸ 0: stop_hook_approx_threshold

▸ outer_loop:

▸ pre_candidates: ProduceElementsHooksAggregate

▸ 0: pre_candidates_hook_remaining_attrs

▸ candidates: ProcessElementsHooksAggregate

▸ 0: process_elements_hook_pass_everything

▸ select: ProcessElementsHooksAggregate

▸ 0: select_hook_attrs_chaos_score_based

▸ filter: ChainProcessElementsHooksAggregate

▸ inner_init: ChainProcessElementsHooksAggregate

▸ inner_loop:

▸ inner_check_stop: InnerStopHooksAggregate

▸ 0: inner_stop_hook_empty

▸ inner_process: ChainProcessElementsHooksAggregate

▸ 0: inner_process_hook_add_first_attr
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Invoke the prepared procedure
Prepare appropriate config values and input data.

Sometimes it may be convenient to check if the given config and input data contain
necessary keys, appropriate for the processing element/algorithm. Currently, the feature is
limited to the presence of the appropriate key names (declared for the processing element
and its descendant subelements).

In [7]: eps = 0.4 

chaos_measure = entropy 

config = { 

    CONFIG_CHAOS_FUN: chaos_measure, 

    CONFIG_EPSILON: eps, 

    CONFIG_SELECT_ATTRS_CHAOS_SCORE_BASED_MAX_COUNT: 1, 

} 

input_data = { 

    INPUT_DATA_X: x, 

    INPUT_DATA_Y: y, 

} 

In [8]: print( 

    describe.check_compatibility( 

        get_approx_reduct, config=config, input_data=input_data 

    ) 

) 

print("---") 

insufficient_input_data = { 

    INPUT_DATA_X: x, 

} 

▸ check_stop: StopHooksAggregate

▸ 0: stop_hook_approx_threshold

▸ check_stop: StopHooksAggregate + {"meta": {"optional":

true}}

▸ 0: stop_hook_approx_threshold

▸ finalize: UpdateStateHooksAggregate

▸ finalize: UpdateStateHooksAggregate

▸ prepare_result: prepare_result_hook_attrs_subset
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True 

--- 

False 

--- 

(False, {'missing_input_data_keys': ['input_data_y']}) 

Invoke the prepared procedure (processing element) and get the result.

AttrsSubset(attrs=[0, 2])

Check if the obtained result is a decision approximate superreduct - as we expected that
designing the computing procedure appropriately.

True

print( 

    describe.check_compatibility( 

        get_approx_reduct, 

        config=config, 

        input_data=insufficient_input_data, 

    ) 

) 

print("---") 

print( 

    describe.check_compatibility( 

        get_approx_reduct, 

        config=config, 

        input_data=insufficient_input_data, 

        verbose=True, 

    ) 

) 

In [9]: result: AttrsSubset = get_approx_reduct( 

    config=config, 

    input_data=input_data, 

) 

result 

Out[9]:

In [10]: check_if_approx_reduct( 

    x, 

    x_counts, 

    y, 

    y_count, 

    attrs=result.attrs, 

    chaos_fun=chaos_measure, 

    epsilon=eps, 

    check_attrs_reduction=False, 

) 

Out[10]:
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