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Abstract

This dissertation revolves around smooth complex algebraic varieties equipped with a
holomorphic contact structure (usually called contact manifolds). We sketch the historical
motivation to study them coming from the Riemannian geometry along with the conjec-
ture of LeBrun and Salamon and present selected results concerning their classification.
In particular, we discuss classical works concerning the Mori theory of projective contact
manifolds and very recent results exploiting action of the torus. These theorems require
assuming that fundamental linear systems of some Fano varieties are big enough. Con-
sequently, we present state-of-the-art answers for the questions concerning dimensions of
such systems for mildly singular, high-index Fano varieties.

Then, we move to considerations concerning some natural generalizations of the notion
of a contact manifold. Our focus is on the case where we allow the variety to have some mild
singularities. This situation is parallel to the theory of symplectic singularities, so we define
our notion of a singular contact variety and study it having in mind the correspondence
between contact and symplectic manifolds.

Finally, we explain how contact structures arise in the theory of partial differential
equations. We focus on the case of a symplectic Monge-Ampère equation in dimension
3 over the field of complex numbers and show equivalence between the Hitchin moment
map and Kushner-Lychagin-Rubtsov invariant and how they determine the cocharacteristic
variety of the equation.

Keywords: Algebraic contact manifold, Fano variety, fundamental divisor, nonvan-
ishing, holomorphic contact structure, symplectic singularity, nilpotent orbit, Lagrangian
Grassmannian, Monge-Ampère equation

AMSMSC 2020 classification: 14M99, 14C20, 14C40, 14E15, 14E30, 14J30, 14J42,
14J45, 14M17, 35A30, 58J70, 58A20
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Streszczenie

Niniejsza rozprawa porusza problematykę gładkich zespolonych rozmaitości algebra-
icznych wyposażonych w holomorficzną strukturę kontaktową. Przedstawiamy historyczną
motywację do badania ich pochodzącą z geometrii riemannowskiej i hipotezę LeBruna-
Salamona oraz wybrane wyniki dotyczące klasyfikacji tych obiektów. W szczególności,
omawiamy teorię Mori rzutowych rozmaitości kontaktowych wraz z niedawno rozwiniętą
metodą wykorzystującą działanie na rozmaitości algebraicznego torusa. Zastosowanie tej
metody wymaga założeń dotyczących fundamentalnych systemów liniowych pewnych roz-
maitości Fano. Wobec tego, omawiamy aktualny stan wiedzy w dziedzinie badania takich
systemów dla osobliwych rozmaitości Fano o dużym indeksie.

W dalszej części rozważamy pewne uogólnienia pojęcia rozmaitości kontaktowej. Kon-
centrujemy się na sytuacji w której rozważana rozmaitość dopuszcza wymierne osobliwości
(osobliwe rozmaitości kontaktowe). Ta idea ma odpowiednik w klasycznej teorii osobliwo-
ści symplektycznych, wobec tego badamy podstawowe własności tych obiektów, mając na
uwadze odpowiedniość między rozmaitościami kontaktowymi i symplektycznymi.

Wreszcie omawiamy jak struktury kontaktowe pojawiają się w naturalny sposób w
teorii równań różniczkowych cząstkowych. Przedstawiamy bardziej szczegółowo przy-
padek równania Monge’a-Ampère’a w trzech wymiarach nad ciałem liczb zespolonych i
pokazujemy równoważność między odwzorowaniem momentu Hitchina i niezmiennikiem
Kushnera-Lychagina-Rubtsova i jak wyznaczają one rozmaitość kocharakterystyczną rów-
nania.

Słowa kluczowe: algebraiczna rozmaitość kontaktowa, rozmaitość Fano, dywizor fun-
damentalny, nieznikanie, holomorficzna struktura kontaktowa, osobliwość symplektyczna,
orbita nilpotentna, Lagranżowski grassmannian, równanie Monge-Ampère’a

Klasyfikacja AMS MSC 2020: 14M99, 14C20, 14C40, 14E15, 14E30, 14J30, 14J42,
14J45, 14M17, 35A30, 58J70, 58A20
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CHAPTER 1

Introduction

The study of smooth complex projective varieties equipped with a holomorphic contact
structure (from now on called simply projective contact manifolds) is a rich subject, utilizing
different tools, especially those developed for varieties of negative Kodaira dimension. In
particular, the seminal result in the theory [KPSW00, Thm 1.1] comes from an application
of the Mori theory, and a promising modern approach [BW22] relies on the methods
analysing actions of tori. Moreover, there exists a link between the contact and symplectic
geometry provided by the construction of the symplectization. Nevertheless, the problem
of the full classification of projective contact manifolds remains open in the Fano case,
which is the most interesting one. The only known – and conjecturally the only existing –
examples are homogeneous coadjoint varieties and this scarcity makes the study of contact
manifolds challenging.

The aforementioned methods exploiting torus actions use lower bounds on the di-
mension of the fundamental linear system for prime and smooth Fano manifolds (in this
particular case, this is the linear system of the ample generator of the Picard group). Com-
puting such bounds is an interesting problem on its own, and positive answers are of utmost
importance for the general theory of Fano varieties. Moreover, proving the nonemptiness
of this system can be seen as a particular case of the effective nonvanishing conjecture of
Kawamata and Ambro. As of today, we only have partial results obtained for the large
values of index, with the most recent being an original work of the author (Theorem 3.3.8).
It is enough to conclude that the nonvanishing conjecture holds for all Fano varieties of
dimension 5 or less, but in higher dimensional cases the problem remains open.

Taking a different point of view, adjoint varieties can be seen as a part of a bigger
geometric picture. They arise as projectivizations of minimal nilpotent orbits of the adjoint
action for a simple Lie group. Nilpotent orbits of semisimple Lie groups are a classical
object of study, in part because they constitute model examples of (singular) symplectic
varieties. On the other hand, their projectivizations and the contact structures on them
have not attracted a comparable interest of the community and there exist only a handful
of isolated results. Consequently, there is room to explore possible generalizations of the
notion of a contact manifold to some singular setting, using projectivized orbits as examples
and both the theory of symplectic varieties and contact manifolds as guides. The author
defines one such generalization that fits in the described picture (Definition 5.3.1) and
shows its basic properties, along with pointing out some obstacles that arise in the singular
setting. However, this constitutes only the first step on the way and there are numerous
questions that can be investigated.

1.1. Overview of this dissertation and some original results

Although complex contact structures constitute a major theme of the dissertation, we
begin our discussion in Section 1.3 by providing the historical context that comes from the
Riemannian geometry. Namely, we present the conjecture of LeBrun and Salamon [LS94]
and its link to Fano contact manifolds. As the author is by no means an expert in this field,
the role of this section – besides providing a background – is to motivate some additional
assumptions that appear in the theory.

9
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Chapter 2 serves as an extension of the introduction. Namely, it begins with a brief
discussion of basic classes of singularities and their properties that are used through the
dissertation. The main purpose of this chapter is to present the seminal results of the Mori
theory of projective contact manifolds and it does not contain any original results. The
main theorem of the chapter is the amalgam of the works of Druel [Dru99], Kebekus-
Peternell-Sommese-Wiśniewski [KPSW00] and Demailly [Dem02] that provides a full
classification of possible Mori contractions of projective contact manifolds along with a list
of all projective toric varieties that admit a contact structure (Theorem 2.3.2).

In Chapter 3 we make a brief detour from the contact structures and study linear
systems associated to some ample divisors on general Fano varieties, allowing mild sin-
gularities. Besides the anticanonical one, we are mainly interested in the linear system
associated to the fundamental divisor, i.e. an ample divisor L that is not divisible in the
Picard group and whose multiplicity is the anticanonical divisor, see Definition 3.1.6 for
a more precise discussion. We present methods and computations used to estimate the
dimension of such linear system (equivalently: the dimension of the space of sections of
the associated line bundle) and restrict possible singularities of a general element. Both of
those problems are open in full generality, but there are partial results in low dimensions
or for high value of index. First presented cases are classical or were obtained earlier by
other researchers, but we also show the following result that was proved by Höring and the
author [HŚ20]:

Theorem (3.3.7). Let Y be a Gorenstein-Fano variety of dimension 5 with canonical
singularities. Then we have h0(Y,−KY ) ≥ 4. If a general element D ∈ |−KY | is reduced,
then it has canonical singularities.

This theorem allows in particular to claim a corollary, whose usefulness is twofold: it
is a special case of the effective nonvanishing conjecture of Kawamata and Ambro, and it
can be used in the study of contact manifolds, as we explain in Chapter 4:

Corollary (3.3.6). Let Y be a Gorenstein-Fano variety of dimension at most 5 with
canonical singularities and L be its fundamental divisor. Then h0(Y,L) ≥ 2.

We also prove the following original result, that can be seen as a partial generalization
of the theorem obtained in collaboration with Höring:

Theorem (3.3.8). Let Y be a smooth Fano variety of dimension n and index iY = n−4
with Pic(Y ) = Z · L for L - ample. Then we have:

h0(Y, L) ≥ n− 1.

Consequently, presented results constitute the state of the art for the problem of ex-
istence of sections for the fundamental linear system and the intention of the author was
to give a presentation that would be explanatory for a non-expert. We also use discussed
results to give a slightly different proof showing the lower bound for the dimension of an
automorphism group of contact Fano manifolds in dimensions up to 9 (Corollary 3.5.1) that
was first proved by Buczyński, Weber and Wiśniewski [BW22, Thm 6.1]). We conclude
the chapter by proposing a variant of the effective non-vanishing conjecture for smooth
and prime Fano manifolds and discussing additional examples supporting it with arbitrary
index (Conjecture 4).

In Chapter 4 we discuss the role played by the estimates on the dimension of the
fundamental linear system in theory of contact manifolds. We concentrate on the methods
based on torus action, developed very recently by Buczyński, Occhetta, Romano, Solá
Conde, Weber and Wiśniewski in [BW22], [RW22] and [ORCW21], as they were the
original motivation for the author’s research reported in Chapter 3. Although the torus
action methods are interesting on their own, a full survey is beyond the scope of this
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dissertation. Instead, our goal is to show how the machinery developed in the works
mentioned above utilizes results discussed in Chapter 3 and how improving them would
strengthen the evidence for the LeBrun-Salamon conjecture. The fruit of our considerations
is the following theorem, whose formulation, but not the proof, is an original contribution
of the author.

Theorem (4.1.3). Let (X,L) be a Fano contact manifold of dimension 2n+1 ≥ 3 with
a reductive group of automorphisms G. Assume that:

• h0(X,L) 6= 0, i.e. the effective nonvanishing holds for X,
• for every smooth Fano variety Y of dimension at most n with b2(Y ) = 1 we have
h0(Y,L) ≥ 2, where L is the fundamental divisor on Y .

Then G is a simple group and either:
(1) X is the adjoint variety associated with G;
(2) G = SL(2), h0(X,L) = 3, the maximal torus C∗ ⊂ G acts on X in such a way

that the source and the sink of the action are isolated points and dim(X) ≥ 11.

On the other hand, Chapter 5 introduces singular contact varieties, a natural gener-
alization of the notion of the contact manifold that was proposed by the author. Conse-
quently, Chapter 5 presents original and not yet published results, with the exception of
introductory Section 5.2. It surveys some results from the theory of symplectic singulari-
ties that influenced and guided author’s research. Additionally, we discuss the exploration
of similar ideas in works of others, notably Campana-Flenner [CF02] and Fu [Fu06]. The
first original result in this chapter is the following correspondence:

Theorem (5.3.5). If X is a (singular) contact variety then there exists a principal C∗-
bundle over X having the structure of a symplectic variety with a homogeneous symplectic
form of weight 1. Going the other way around, if we have a principal C∗-bundle over some
base Z such that the total space has symplectic singularities and the symplectic form is
homogeneous of weight 1, then Z is a singular contact variety.

This correspondence can be used to prove an analogue of Kaledin’s stratification for
symplectic varieties:

Theorem (5.3.8). Let X be a contact variety. Then there exists a finite stratification
X = X0 ⊃ X1 ⊃ ... ⊃ Xk such that:

(1) Xi+1 is the singular part of Xi.
(2) The normalization of every irreducible component of each stratum is a contact

variety.

The author also studies finite quotients of contact varieties and uses a recent result
of Cao and Höring [CH22] to show that projective contact varieties are uniruled. Con-
cerning birational morphisms, the author discusses the relation between being crepant and
preserving the contact structure and in particular shows:

Theorem (5.3.10, 5.3.13). A birational morphism from a projective contact manifold
is necessarily crepant. A resolution of singularities of projective singular contact variety is
a contact manifold if it is crepant.

These general results are then applied to provide a classification of projective singular
contact threefolds:

Theorem (5.4.3, 5.4.4). Let (X,L) be a projective singular contact variety in dimen-
sion 3. Then X admits a crepant resolution f : P(TS) → X, where S is a ruled surface
over some smooth projective curve B. Going the other way around, if S is any ruled sur-
face over some smooth projective curve B, then we can associate to it a projective singular
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contact threefold X with ρ(X) = 2 that is a locally trivial bundle over B whose fibers are
cones over rational curves. X is constructed from P(TS) via the crepant contraction of the
image of a section σ : S → P(TS) onto a curve isomorphic to B.

Moreover, there exists a unique X with ρ(X) = 1. Such X is Fano and it is the
projectivized nilpotent cone in the algebra sl(2)× sl(2), obtained from P(T (P1×P1)) by the
crepant morphism contracting images of two sections onto two disjoint rational curves.

The author was motivated to study such generalizations, as the class of contact mani-
folds is not closed with respect to taking quotients or birational modifications, so in par-
ticular one cannot easily construct examples. However, these operations are conditionally
allowed in the framework proposed by the author.

Chapter 6 contains a presentation of elements of the geometric theory of partial differen-
tial equations and explains how contact structures (real analytic or complex holomorphic)
arise naturally in this context. It is an active field of research and our demonstration focuses
on some results that were obtained by Gutt, Manno, Moreno and the author [GMMŚ21]
that concern symplectic Monge-Ampère equations in 3 dimensions. In particular, we dis-
cuss how in our case the (co)characteristic variety is determined in terms of geometric
constructions. We can sum up original results presented in this chapter as follows:

Theorem (6.3.10, 6.3.12). For a symplectic Monge-Ampère equation Eη in dimen-
sion 3, which is a hyperplane section of the Lagrangian Grassmannian LGr(3, F ) for the
symplectic vector space F of dimension 6, and η ∈ P(Λ3

0(F ∗)), the projectivization of the
Kushner-Lychagin-Rubtsov invariant coincides with the Hitchin moment map. Moreover,
by the projective duality this invariant also determines the characteristic variety of Eη.

Both the KLR invariant and the Hitchin moment map can be considered as maps
from the space of (effective) 3-forms on 6 dimensional, symplectic vector space F to the
space of quadratic forms on F and were first defined and studied in the real case, whereas
[GMMŚ21] focuses on the complex case.

1.2. Contact manifolds

We begin by giving a precise definition of objects around which the dissertation re-
volves:

Definition 1.2.1. Let X be a holomorphic manifold of dimension 2n + 1 for n ≥ 0.
We say that it is a contact manifold if there exists a subbundle F of the tangent bundle of
rank 2n (i.e. the contact distribution) and a line bundle L fitting into the exact sequence:

(1) 0→ F → TX
ϑ−→ L→ 0,

such that the induced morphism dϑ : Λ2F → L is nowhere degenerate. Equivalently, one
can demand that ϑ∧ (dϑ)∧n as an element of H0(X,Ω2n+1

X ⊗Ln+1), where Ω2n+1
X is a sheaf

of 2n + 1 differential forms, has no zeroes. We will usually call L from the definition the
contact line bundle and ϑ the (twisted) contact form.

Remark 1.2.2. We make a deliberate decision to include the one dimensional case
in our considerations. Observe that on any smooth curve one may simply put L = TX,
ϑ = id and F = 0, so the existence of the contact structure does not give any information
on the underlying variety (besides its smoothness). For this reason, in many works it is
assumed (sometimes silently) that 2n+ 1 ≥ 3 and we will do so explicitly when necessary.
Our alternative convention is useful for a uniform formulation of statements concerning
contact subvarieties in bigger contact varieties (manifolds), in particular Theorem 5.3.8.

Remark 1.2.3. One can equally well define contact manifolds in real differentiable
or algebraic setting by replacing holomorphic manifold by smooth manifold or smooth
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algebraic variety. The only reason for our choice was to be consistent with the seminal
works of LeBrun and Salamon that are recalled in the next section. In fact, in the further
course of the dissertation we usually consider contact manifolds in the complex algebraic
category. These two are consistent in the projective case, on which we are focused.

1.3. Historical context and the LeBrun-Salamon conjecture

The researchers’ interest in holomorphic contact manifolds originated from the Rie-
mannian geometry, more precisely the study of holonomy groups. For a given connected
Riemannian manifold M and a point m ∈ M , the holonomy group Hm is a subgroup
of orthogonal transformations of TmM generated by parallel transport of tangent vectors
along smooth loops. One can consider Hm as a subgroup of O(n) for n = dim(M) and
then its conjugacy class does not depend on the choice of basis in TmM nor on the base-
point m. Moreover, by using only homotopically trivial loops in the definition one obtains
a restricted holonomy group H0 that is a subgroup of SO(n). It was shown by Berger
[Ber55] that, excluding locally reducible and locally symmetric manifolds, H0 has to be
one of the following groups:

dimension group geometry
n SO(n) general

2n ≥ 4 U(n) Kähler
2n ≥ 4 SU(n) Ricci-flat Kähler
4n ≥ 8 Sp(n) hyperkähler
4n ≥ 8 Sp(n) · Sp(1) quaternion-Kähler

7 G2 exceptional
8 Spin(7) exceptional

By Sp(n)·Sp(1) we mean the Lie group abstractly isomorphic to [Sp(n)×Sp(1)]/Z2, which is
obtained by combining left action of some quaternionic matrix Sp(n) ⊂ SO(4n) and right
action of unit-length quaternions Sp(1). Note that Berger’s list contains some natural
inclusions: every listed group is a subgroup of SO(n) and hyperkähler manifolds can be
considered as a subset of quaternion-Kähler manifolds. They are however usually excluded
from discussion by demanding the nonvanishing of the scalar curvature – quaternion-Kähler
manifold is hyperkähler if and only if its scalar curvature is zero.

The result of Berger brought natural questions about the existence of examples of
all geometries, the most interesting being non-symmetric manifolds. Such examples were
constructed for all possible H0, but in the case of (strictly) quaternion-Kähler manifolds
only for the negative scalar curvature. On the other hand, the positivity of the scalar
curvature and completeness force the manifold to be compact, and the only known examples
are symmetric spaces listed by Wolf [Wol65], corresponding to compact simple Lie groups.
Conjecturally, this list exhausts all possibilities:

Conjecture 1 (LeBrun-Salamon conjecture, differential version, [LS94]). The only
complete Riemannian manifolds with quaternion-Kähler holonomy and positive scalar cur-
vature are the symmetric Wolf spaces.

The link between a smooth complex variety X equipped with a holomorphic contact
structure and a quaternion-Kähler manifold M is provided by the following construction:

Construction 1.3.1 (The twistor space). For a given quaternion-Kähler manifold
M of (real) dimension 4n consider the bundle End(TM), whose fiber over m ∈ M is
End(TMm), i.e. the endomorphism bundle. Let us denote by H the space C2 equipped
with a standard representation of Sp(1) and an invariant and skew symmetric form ωH , so
that we can identify sp(1) with S2(H). Locally, although not necessarily globally, we can
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define an associated vector bundle S2H that can be considered as a coefficient bundle of
imaginary quaternions acting on the tangent space to M at each point. In particular, over
some open subset it embeds into End(TM). Moreover, ωH defines a norm on S2H, and
by restricting ourselves to elements with norm

√
2 we obtain a real 2-sphere bundle that is

globally defined, and we denote its total space by X. Any element j of X satisfies j2 = −1
as an endomorphism of the tangent bundle, so j defines an almost complex structure on
the tangent space that is compatible with Sp(n) · Sp(1)-structure of M . Salamon [Sal82,
Thm 4.1] showed that X is equipped with a natural complex structure, so it is a complex
manifold of dimension 2n+1, called the twistor space ofM . Moreover, the fibers ofX →M
are in fact complex rational curves and X has a holomorphic contact structure.

The positivity of the scalar curvature ofM implies that X is equipped with the Kähler-
Einstein metric of positive scalar curvature [Bes07, Thm 14.80]. It follows that c1(X) > 0,
so X is a Fano variety, i.e. the anticanonical class O(−KX) is ample and in particular X
is projective. Going the other way around, LeBrun [LeB95, Thm A] showed that if X is
a Fano contact manifold, then it is a twistor space of some quaternion-Kähler manifold of
positive scalar curvature if and only if it admits a Kähler-Einstein metric.

The twistor space of a Wolf space is also homogeneous, with the action of a corre-
sponding complex Lie group [Wol65, Thm 6.1]. More precisely, it is a projective coadjoint
variety, associated with an action of a simple Lie group (see Section 4.2.2 for a brief dis-
cussion). Therefore, we can formulate the following conjecture, which is stronger than
Conjecture 1 as we do not assume the existence of the Kähler-Einstein metric:

Conjecture 2 (LeBrun-Salamon conjecture, algebraic version, [LS94]). The only
complex contact Fano manifolds are the coadjoint varieties.

From now on, we will be interested in this version of the conjecture. As we do not
know any contact Fano manifolds not equipped with a Kähler-Einstein metric, one may
also conjecture that they always exist on such manifolds. Nevertheless, some of the known
results, in particular those in Chapter 4 assume the reductivity of the group of the auto-
morphisms of the variety, which can be deduced from the existence of the Kähler-Einstein
metric, as in [Mat57, Théorème 1]. We can wrap up different flavours of LeBrun-Salamon
conjecture and the relations between them using the following flowchart:

Conjectures in complex al-
gebraic geometry

Conjecture in Riemannian
geometry

Every contact Fano mani-
fold of dimension 2n + 1
(n ≥ 2) with a Kähler-
Einstein metric is coadjoint

⇐⇒ Every quaternion-Kähler
manifold of dimension 4n
(n ≥ 2) with a positive
scalar curvature is a Wolf
space

⇑
Every contact Fano mani-
fold of dimension 2n + 1
(n ≥ 1) with reductive
group of automorphisms is
coadjoint

⇑
Every contact Fano mani-
fold of dimension 2n + 1
(n ≥ 1) is coadjoint
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1.4. Notation and conventions

From Chapter 2 to Chapter 5 we work over the field of complex numbers C and our
focus is on algebraic varieties, often projective. In this text, an algebraic variety is in
particular irreducible, reduced and this convention encompasses varieties of dimension 1,
i.e. curves. Moreover, a rational curve is a curve birational to P1. Sometimes we note
that a particular object can be equally well defined in the complex holomorphic setting,
or use/reference a result that was originally stated in the analytical category but this is
indicated by the use of phrases like holomorphic manifold, Kähler space etc. Consequently,
in these chapters, the word manifold without any other adjectives means smooth algebraic
variety. We abandon this convention in Chapter 6, as the results presented therein are
motivated by the theory of partial differential equations.

We do not distinguish between vector bundles and associated locally free sheaves, unless
it is needed, and the same holds for line bundles and Cartier divisors. However, to make
a distinction between Weil and Cartier divisors, we use additive notation for the former
and multiplicative for the latter (but we often move freely between both descriptions if it
is allowed, for instance in case of smooth varieties). In particular, KY is a Weil canonical
divisor, and if it has a corresponding Cartier divisor, we will write O(KY ).

All projectivized vector bundles P(E) are taken in the sense of Grothendieck. For
consistency of the presentation we extend this convention also to projectivizations of vector
spaces.

The letter L always means a line bundle. In the context of Fano varieties, so in
particular in Chapter 3, it is used to denote the fundamental line bundle.

In the case of varieties, we reserve the letter X for those equipped with the contact
structure, possibly in some generalized sense (mind however that X and x can also denote
vectors or coordinates, in particular in Section 4.2 and Chapter 6). In the context of contact
structures, F always means the contact distribution, and ϑ is always the twisted form.
Moreover, in this context, the letter L denotes the contact line bundle. This convention
overrides the one for Fano varieties, if the considered variety is both Fano and contact and
a conflict arises (but in the smooth projective case this can happen only if X the projective
space, as shown in Theorem 2.3.2). Depending on which elements of contact structure we
want to emphasize, we will write either (X,F ) or (X,F,L) or (X,F,L, ϑ).

If Y denotes a variety, then we use Ỹ for its resolution of singularities.
For the k-th Veronese map we use the symbol vk.
G denotes an algebraic (Lie) group and g its associated Lie algebra.
The symbol ι with a subscript, i.e. ιv denotes a contraction of a differential form with a
(multi)vector v.

Finally, results described as folklore or well-known are the ones that – usually because
of their simplicity – were stated without reference nor explanation in the works consulted
by the author. However, the dissertation requires more detailed arguments than a research
paper. Therefore, the use of one of those descriptions means that the proof provided in
the dissertation cannot be attributed to the author.





CHAPTER 2

Mori theory of projective contact manifolds

2.1. Singularities and their basic properties

We will commence our discussion by recalling some terminology related to singular
varieties along with their basic properties that will be used throughout the dissertation.
For a more detailed survey see [KM98].

To begin with, we say that a commutative Noetherian local ring R is Cohen–Macaulay
if dim(R) = depth(R). Then, a variety (or a scheme) Y is Cohen–Macaulay (or CM) if
and only if the local ring OY,y is Cohen–Macaulay for any y ∈ Y .

The notion of being CM is quite technical, however it is important for us as a minimal
assumption under which Serre duality holds.

Theorem 2.1.1 (Serre duality, [Har77, Ch. III, Thm 7.6]). Let Y be a CM projective
scheme of pure dimension n. Then there exists a coherent sheaf ωoY , called the dualizing
sheaf, such that for any coherent sheaf E the natural maps:

ExtiY (E , ωoY )→ Hn−i(X, E)∗

are isomorphisms. In the case where E is a vector bundle, we can further identify

ExtiY (E , ωoY ) ' H i(Y, E∗ ⊗ ωoY ).

Now we are ready to define the class of varieties that will frequently appear in the
whole dissertation.

Definition 2.1.2. We say that a variety (or a scheme) Y is Gorenstein if and only
if it is CM and the dualizing sheaf ωoY is locally free and equal to the canonical sheaf
ωY =

∧dimY Ω1
Y , where Ω1

Y denotes the sheaf of Kähler differentials.

We will also need to define a class of singularities that are useful in conducting coho-
mological reasonings.

Definition 2.1.3. Let Y be a variety. We say that it has rational singularities if for
any resolution of singularities f : Ỹ → Y the following two conditions hold:

(1) f∗OỸ = OY (i.e. Y is normal by Stein Factorization Theorem [Har77, Ch. III,
Cor. 11.5]),

(2) Rif∗OỸ = 0 for i > 0.

In particular, a variety with rational singularities is CM by [KKMSD73, Ch. I, §3,
Proposition]. The importance of the notion of rationality lies in the following folklore
statement:

Proposition 2.1.4. Let Y be a projective variety with rational singularities. Then for
any vector bundle E on Y and any resolution of singularities f : Ỹ → Y we have:

hi(Ỹ , f∗E) = hi(Y, E).

Proof. The projection formula [Har77, Ch. III, Ex. 8.3] gives an isomorphism for
each i:

(Rif∗OỸ )⊗ E → Rif∗(f
∗E),

17
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from which we obtain E = f∗f
∗E and (Rif∗)f

∗E = 0 for i > 0. Consequently, the Leray
spectral sequence for the locally free sheaf f∗E on Ỹ is degenerate:

Epq2 = Hp(Y,Rqf∗(f
∗E)) =⇒ Hp+q(Ỹ , f∗E),

and we are done.
�

We note that the notion of a rational singularity, although important and useful, is
not well behaved. To be precise, a partial resolution of a rational singularity may not be
rational, even if it stays normal, as it may cease to be CM. An example of such behaviour
was given in [Cut90, Sect. III].

A collection of other notions emerged with the development of the Mori theory. These
definitions emphasize the relation between the canonical divisors of a given variety and its
(partial) resolution (so in particular we do not encounter the problem mentioned above)
and are usually expressed in terms of logarithmic pairs (Y,D). Such pair consists of a
normal variety Y and a formal sum D =

∑
i aiDi, where Di ⊂ Y are irreducible divisors

and ai ∈ Qi, ai > 0. This formal sum is sometimes called the boundary, and any notion
defined in the language of pairs can be applied to varieties by considering the pair (Y, 0).
We assume that the log canonical divisor KY + D is Q-Cartier, i.e. some multiple of it is
a Cartier divisor. Now consider a birational morphism from a normal variety f : Z → Y .
We can write

KZ = f∗(KY +D) +
∑
j

a(Ej , Y,D)Ej ,

where Ej can either be an irreducible divisor contained in the exceptional locus, or be
the birational transform of some Di, i.e. Ej = f−1

∗ Di and in this second case we put
a(Ej , Y,D) = −aj . The coefficients a are called discrepancies, and we define the discrep-
ancy of the pair (Y,D), denoted a(Y,D), to be the minimum of the aj over all possible
f : Z → Y .

Definition 2.1.5. We say that a pair (Y,D) is
• terminal if a(Y,D) > 0,
• canonical if a(Y,D) ≥ 0,
• Kawamata log terminal (klt) if a(Y,D) > −1 and bDc = 0,
• purely log terminal (plt) if a(Y,D) > −1,
• log canonical (lc) if a(Y,D) ≥ −1.

Moreover, a divisor E with discrepancy −1 is called a log canonical place, and its image
via f is a log canonical center (lc center for brevity). In the case of a canonical pair it can
happen that for some morphism all discrepancies vanish. Such morphism is called crepant.
An important example of a crepant morphism is a terminalization of a variety Y having
rational Gorenstein singularities: it is a birational and crepant morphism Y ′ → Y such
that (Y ′, 0) has only terminal singularities. The existence of a terminalization follows from
[BCHM10, Cor. 1.4.3] and we will utilize an important property of terminal varieties –
their singular locus has codimension at least 3 by [BS95, Lem. 1.3.1].

Frequently we will use the following relations between different classes of singularities:

Theorem 2.1.6 ([KM98, Thm 5.22]). Let (Y,D) be a klt pair. Then Y has rational
singularities.

Theorem 2.1.7 ([KM98, Cor. 5.24]). Let Y be normal with locally free canonical sheaf
ωY . Then Y having rational singularities is equivalent to the pair (Y, 0) being canonical.

Using the equivalence above, we are able to claim a very useful folklore lemma:
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Lemma 2.1.8. Let (Y, 0) be a canonical pair with a locally free canonical sheaf ωY
(i.e. Y is Gorenstein). Moreover let g : Y ′ → Y be its terminalization and f : Ỹ → Y any
resolution of singularities. Then for any vector bundle E on Y we have:

hi(Y, E) = hi(Y ′, g∗E) = hi(Ỹ , f∗E).

Proof. By Theorem 2.1.7 Y has rational singularities. Its terminalization Y ′ has ter-
minal, so in particular canonical singularities and ωY ′ = g∗ωY is locally free, so they remain
rational. Consequently, we may choose a common resolution of singularities g′ : Ỹ ′ → Y
for which by Proposition 2.1.4 we have:

hi(Y, E) = hi(Ỹ ′, g′∗E) = hi(Y ′, g∗E).

If f : Ỹ → Y is any other resolution of singularities, then we have hi(Y, E) = hi(Ỹ , f∗E),
so we are done. �

2.2. Mori cone and extremal contractions

When defining singularities in terms of discrepancies we have assumed that for a given
normal variety Y the log canonical divisor KY + D is Q-Cartier. There are two reasons
for this assumption. Namely, we use it to pull back the log canonical divisor and to define
its intersection with a given proper curve C contained in the same ambient variety Y . So,
if we have a Weil divisor D ⊂ Y such that qD is a Cartier divisor O(qD), we define the
intersection with C as:

C ·D =
1

q
C · O(qD),

where the intersection between C with a normalization η : C̃ → C ⊂ Y and a Cartier
divisor O(qD) is

C · O(qD) = deg
C̃
η∗(O(qD)).

This pairing can be extended to the real vector space spanned by formal linear combinations
of proper curves in Y . For a projective Y we define the space N1(Y ) as the quotient of this
linear space by numerically trivial combinations of curves (i.e. those that intersect trivially
with every divisor). The space N1(Y ) is finite dimensional by [BFG+06, Exp. XIII, Th.
5.1] and contains the cone of curves:

NE(Y ) = {
∑

ai[Ci] : ai ∈ R≥0, [Ci] is a class of a proper curve in Y }

Since it may be not closed, one usually considers its closure NE(Y ), that we will frequently
call the Mori cone. There also exists a dual space N1(Y ), spanned by the numerical
equivalence classes of Cartier divisors, that can be obtained as a quotient of Pic(Y )⊗R. It
contains the dual cone of NE(Y ), called the nef cone Nef(Y ). One can also obtain N1(Y )
by first defining the Neron-Severi group NS(Y ) = Pic(Y )/Pic0(Y ), i.e. the quotient of the
group of the line bundles on Y by its connected component of identity and then taking the
tensor product NS(Y )⊗ R.

The cornerstone of the Mori theory are theorems describing the structure of the cone
of curves and relating some of the subcones to the particular morphisms from Y , called
contractions.

Definition 2.2.1. A contraction f is a projective and surjective morphism between
normal projective varieties Y and Z such that f∗OY = OZ , which is equivalent to the
property that the inverse image of every point is connected ([Har77, Ch. III, Cor. 11.3]).

We are now ready to state the following theorem, that was proved in the smooth case
by Mori and later generalized to klt pairs by Kollar, Reid, Shokurov and others.
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Theorem 2.2.2 (Cone theorem, [KM98, Thm 3.7]). Let (Y,D) be a projective klt
pair with D effective. Then there exist countably many rational curves Ci such that 0 <
(−KY −D) · Ci ≤ 2 dimY and

NE(Y ) = NE(Y )(KY +D)≥0 +
∑

R+[Ci],

where NE(Y )(KY +D)≥0 denotes the part of the cone having a nonnegative intersection with
KY + D. The rays generated by Ci can only accumulate on the hyperplane perpendicular
to KY + D. In the particular case of (Y, 0) for smooth Y we have a better bound: 0 <
−KY · Ci ≤ dimY + 1.

Moreover, to each (KY + D)-negative extremal face F of NE(Y ) we can associate a
particular contraction contF from Y to some normal and projective variety Z such that for
every proper curve C ⊂ Y we have

contF (C) = pt ⇐⇒ [C] ∈ F.

Every contraction determined by a (KY + D)-negative extremal face is known as a Mori
contraction.

Remark 2.2.3. A Mori contraction determined by a 1-dimensional face, i.e. a ray of
the cone, is called elementary. Any Mori contraction can be decomposed into elementary
ones, and they satisfy b2(Y ) = b2(Z) + 1 by [KM98, Cor. 3.17].

Essentially, the cone theorem is useful for varieties whose canonical divisor is negative
in some sense. The minimal working assumption is thatKY is not nef, and in the particular
case of Fano varieties it follows that the cone NE(Y ) is polyhedral.

To study Mori contractions in greater detail it is necessary to introduce schemes
parametrizing rational curves. They can be constructed as a special case of schemes
Hom(Z, Y ) parametrizing morphisms between two projective schemes Z and Y . Hom(Z, Y )
can contain infinitely many connected components, however under some technical assump-
tions we can estimate its dimension at a given point:

Theorem 2.2.4 ([Kol96, Ch. I, Thm 2.16]). Suppose that Z and Y are projective
schemes without embedded points. For a morphism f : Z → Y suppose that the image of
every irreducible component of Z intersects the smooth locus of Y . Then there is a natural
isomorphism:

T[f ] Hom(Z, Y ) ' HomZ(f∗Ω1
Y ,OZ)

and the dimension of every irreducible component of Hom(Z, Y ) at [f ] is at least

dim HomZ(f∗Ω1
Y ,OZ)− dim Ext1

Z(f∗Ω1
Y ,OZ)

There also exists a variant of this construction for when we want to keep the image
of a subscheme B of Z fixed. Namely, for a fixed g : B → Y we can construct a scheme
Hom(Z, Y ; g) parametrizing morphisms f : Z → Y satisfying f |B = g and it is in fact a
subscheme of Hom(Z, Y ). If B is a finite set of points, then we have the following bound:

dim(Hom(Z, Y ))− dim(Hom(Z, Y ; g)) ≤ |B| · dim(Y ).

Now to obtain the scheme parametrizing rational curves on Y we construct the scheme
Hom(Z, Y ) for Z = P1. Moreover, we can parametrize rational curves through some fixed
set of points {y1, ..., yn} ⊂ Y by using the second construction for B = {p1, ..., pn} and g
such that g(pi) = yi. This scheme will usually be denoted by Hom(P1, Y ; pi 7→ yi).

The estimate coming from Theorem 2.2.4 take much simpler form if we moreover
assume that Y is smooth. In particular, we have:
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Theorem 2.2.5 ([Kol96, Ch. II, Thm 1.7]). Let Y be a smooth projective variety and
f a morphism from a smooth projective curve C to Y . Then:

dim Hom(C, Y ; p1 7→ x1, ..., pn 7→ xn) ≥
≥ h0(C, f∗TY )− h1(C, f∗TY )− n dimY =

= χ(C, f∗TY )− n dim(Y ) =

= −KY · f∗C + (1− g(C)− n) dimY

In applications, one usually considers an open subscheme of Hom(P1, Y ), denoted by
Hombir(P1, Y ) which parametrizes morphisms that are birational onto their image and
normalizes it to obtain Homn

bir(P1, Y ). Moreover, usually we do not need to distinguish
between morphisms from P1 to Y that differ by an automorphism of P1. To that end, we can
take the quotient of Homn

bir(P1, Y ) by Aut(P1) and obtain a normal scheme RatCurvesn(Y ).
Let u be the projection map:

u : Homn
bir(P1, Y )→ RatCurvesn(Y ).

Observe that u gives Homn
bir(P1, Y ) the structure of a Aut(P1)-bundle by [Kol96, Ch. II,

Thm 2.15].

Definition 2.2.6. Let V be a closed and irreducible subvariety of RatCurvesn(Y ) and
V ′ = u−1(V ). If V is proper over C then we call it an unsplit family of rational curves
(and in such situations we call V ′ an unsplit family of morphisms). Now let us consider a
map Π:

Π: V ′ → X ×C X Π(f) = [f(0), f(∞)].

We say that V is a generically unsplit family of rational curves (V ′ is a generically unsplit
family of morphisms), if the fiber over a generic point of im(Π) has dimension not bigger
than 1.

Intuitively, being unsplit means that elements in the family cannot be deformed to
cycles with multiple components. Being generically unsplit means that there is no positive
dimensional subfamily of curves passing through two generic points.

If we are given a subset V ′ ⊂ Hom(P1, Y ) and the evaluation map ev : P1×Hom(P1, Y )→
Y , then by locusV ′ we will mean the image ev(P1×V ′). Analogously, locus(V ′, y) denotes
the evaluation of the intersection V ′ ∩Hom(P1, Y, 0 7→ y).

We are now ready to state the last general result that we will need – a particular form of
a locus-fiber inequality. This is a powerful tool in the study of Mori contractions, however
it is only applicable to smooth varieties.

Theorem 2.2.7 ([Kol96, Ch IV, 2.6.1]). Let Y be a smooth and proper variety and
V ′ ⊂ Hombir(P1, Y ) a generically unsplit irreducible component. Then for a general y ∈
locus(V ′) and f ∈ V ′

dim(Y ) + deg(f∗(−KY )) ≤ dim locus(V ′) + dim locus(V ′, y) + 1.

Moreover, if the component is unsplit, then the inequality holds for any y ∈ locus(V ′).

2.3. Mori contractions of projective contact manifolds

As we have mentioned in the previous section, the Cone Theorem is useful for varieties
for which the canonical divisor is at least not nef. Projective contact manifolds satisfy even
stronger property.
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Theorem 2.3.1 ([Dem02, Main Theorem]). Let Y be a compact Kähler manifold with
a line bundle L whose dual L∗ is pseudoeffective. Assume that ϑ ∈ H0(Y,Ωp

Y ⊗ L) is a
nonzero holomorphic section (a twisted form). Let F ⊂ TY be a subsheaf defined by the
vector fields ξ for which the contraction with ϑ vanishes. Then F is integrable.

The immediate corollary of this theorem is that for a projective contact manifold
(X,F,L, ϑ) of dimension 2n + 1 ≥ 3 the dual of the contact line bundle L∗, so also the
canonical divisor KX , cannot be pseudoeffective, as F is not integrable ([Dem02, Cor. 2]).
Consequently, the Kodaira dimension of X is negative and KX is not nef, as the nef cone
is a subcone of the pseudoeffective cone [Laz04, I, Thm 2.2.24].

Therefore, by the Cone Theorem 2.2.2, X admits a rational curve that can be con-
tracted. The study of possible Mori contractions was conducted by Druel [Dru99] in the
toric case and by Kebekus-Peternell-Sommese-Wiśniewski [KPSW00] in the general case.
We can summarise their results as follows:

Theorem 2.3.2. Let X be a projective contact manifold of dimension 2n+1 ≥ 3. Then
either:

(1) b2(X) > 1 and (X,L) = (P(TY ),OP(TY )(1)) for some smooth variety Y of di-
mension n+ 1. In this case X is Fano only if Y = Pn+1.

(2) b2(X) = 1, X is necessarily a Fano manifold and it is either a projective space
P2n+1 with the contact line bundle L = O(2), or L is the ample generator of the
Picard group.

If moreover X has the structure of a toric variety, then for each possible dimension there
is exactly one representative in each family:

(1) the projectivization of the cotangent bundle of the product of n projective lines
P(T (P1 × ...× P1)),

(2) the projective space P2n+1.

Sketch of the proof. We utilize arguments from [Dru99] and [KPSW00]. To
begin with, let C be a KX -negative extremal curve C which satisfies

0 < −KX · C ≤ dim(X) + 1 = 2n+ 2

and whose existence is guaranteed by the Cone Theorem 2.2.2 and Theorem 2.3.1. Recall
from the Definition 1.2.1 that X is equipped with the contact line bundle L such that
L⊗n+1 = O(−KX) in Pic(X). It follows that C · L can be equal only to 1 or 2. In the
second case, if we denote by f the morphism P1 → C ⊂ X and by V the component of
Hombir(P1, X) containing f , then the locus inequality 2.2.7 gives us:

dimX + deg(f∗(−KX)) = 4n+ 3 ≤ dim locus(V ) + dim locus(V, x) + 1.

From that it follows that both locus(V ) and locus(V, x) are equal to the whole X, so the
contraction is onto a point. Since it was elementary, b2(X) = 1 and X is Fano. Then from
−KX · C = dimX + 1 it follows that X is a projective space by [Keb02, Thm 1.1].

Now suppose that L ·C = 1. In this case the proof is more involved and it will consist
of several steps.

(1) Observe that the irreducible component V ⊂ RatCurves(X) containing C is an
unsplit family: if it could be split then it would be possible to find a smaller family
W such that locus(W ) = locus(V ) and for any curve C ′ ∈W 0 < C ′ · L < C · L,
but this is not possible (reasoning as in [Kol96, IV, Thm 2.4]).

(2) Show that for any unsplit family of rational curves V containing C on X and
a point x ∈ X one has locus(V ) = X and dim locus(V, x) = n [KPSW00,
Prop. 2.9], so in particular projective contact manifolds do not admit birational
Mori contractions.



2.3. MORI CONTRACTIONS OF PROJECTIVE CONTACT MANIFOLDS 23

(3) Prove that if X admits a surjective morphism to a variety Y of lower, but positive
dimension such that the generic fiber Xη is Fano, then Xη ' Pn and Xη is a
Legendrian submanifold of X [KPSW00, Prop. 2.11]. Observe that it still can
happen that Y is a point and in such case X is a Fano manifold with b2(X) = 1
and L is not divisible in Pic(X), however this is not possible when X is toric.

(4) Use [Fuj87, Lemma 2.12] to show that if φ : X → Y is a Mori contraction onto a
variety Y of positive dimension, then Y is smooth and X = P(φ∗L).

(5) Show the isomorphism φ∗L ' TY [KPSW00, Thm 2.12].
(6) Observe that by [LS94, Cor. 4.2] if P(TY ) is Fano, then Y = Pn+1.
(7) To finish the proof in the toric case use [OM78, 7.6] to claim that a projectivized

bundle admits the structure of a toric variety if and only if it splits as a sum of
line bundles and show that the only smooth projective toric variety with a totally
decomposable tangent bundle is the product of projective lines [Dru99, Lemme
2].

�

In particular, as both P(TPn+1) and P2n+1 are coadjoint varieties for simple groups of
type An+1 and Cn+1 respectively (we list coadjoint varieties in Section 4.2.2), Conjecture 2
remains open only in the case of prime Fano manifolds for which the contact line bundle
generates the Picard group. A more detailed study of possible contractions was enough
for Ye and Druel to prove Conjecture 2 in dimensions 3 [Ye94, Thm 2] and 5 [Dru98,
Prop. 1] respectively (note that those results in fact precede the ones discussed here).
However, further progress was obtained by developing other methods. To be precise, the
conjecture in dimension 7 and 9 was proved by Buczyński, Wiśniewski and Weber [BW22,
Thm 1.2] under the additonal assumption on the reductivity of the automorphisms group.
We will discuss some aspects of this landmark result and its follow-ups and how they relate
to the author’s research in Chapter 4.





CHAPTER 3

Linear systems of Fano varieties

3.1. Fano varieties in the singular setting

In this chapter we will temporarily set aside contact structures and discuss complex
Fano varieties, sometimes in a singular setting. For the author, the problems discussed
in this Chapter first emerged as motivated by the study of contact manifolds, as we will
explain in Chapter 4. Nevertheless, they were classically considered on their own and for
this reason we do so in the dissertation.

The Fano condition (i.e. the condition that the anticanonical divisor is ample) makes
sense if we assume that a projective variety Y is normal and −KY is Q-Cartier (i.e. Y is
Q-Gorenstein). However, if we further restrict possible singularities, we can recreate some
well-known properties of smooth Fano varieties. There also exists a slightly more general
notion, that of a weak Fano variety, where we relax the assumption on the ampleness of the
anticanonical divisor and only demand that it is big and nef. Recall the following classical
vanishing theorem:

Theorem 3.1.1 (Kawamata-Viehweg vanishing, [KMM87, Thm 1-2-3]). Let Y be a
smooth projective variety. If L is a big and nef line bundle on Y , then for all i > 0 we
have:

H i(Y, L⊗O(KY )) = 0.

Consequently, for a big and nef line bundle L on a smooth Fano variety Y we have

H i(Y, L) = 0

for i > 0 (as L ⊗ O(−KY ) is still big and nef). There is a folklore and well-known to
experts generalization of this vanishing to the case of singular Fano varieties:

Theorem 3.1.2 (Singular Kawamata-Viehweg vanishing). Let Y be a Fano variety of
dimension n with rational Gorenstein singularities and L a big and nef line bundle on Y .
Then H i(Y,L⊗O(KY )) = 0 for i > 0. Consequently, H i(Y, L) = 0 for i > 0.

Proof. For a resolution of singularities f : Ỹ → Y we have:

H i(Y,L⊗O(KY )) = Hn−i(Y,L∗) = Hn−i(Ỹ , f∗L∗) = H i(Ỹ , f∗L⊗O(K
Ỹ

)) = 0.

First and third equality come from Theorem 2.1.1 (Serre duality for Y and Ỹ ), second from
Proposition 2.1.4 and the last one is Kawamata-Viehweg vanishing for a smooth variety
Ỹ , as the pullback of a big and nef line bundle is big and nef. As Y is Fano, the bundle
L⊗O(−KY ) is big and nef, which proves the second claim. �

It also follows that for the structure sheaf OY on a Fano variety Y with rational
Gorenstein singularities we have:

(2) χ(Y,OY ) = h0(Y,OY ) = 1.

The corollary of this equality on Todd genus χ(Y,OY ) is that log terminal Fano varieties
are simply connected [Zha06, Corollary 1], as they have rational singularities by Theo-
rem 2.1.6. This topological fact has a geometric consequence:

25
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Proposition 3.1.3 ([IP99, Prop. 2.1.2]). Let Y be a Fano variety with log terminal
singularities. Then the Picard group of Y is torsion free and the Picard number ρ(Y ) is
equal to the second Betti number b2(Y ).

Proof. The proof is a standard exercise in the theory of Fano manifolds, similar one
can be found in cited source and we present it for the completeness of our presentation. Re-
call that H1(Y,O∗Y ) ' Pic(Y ) and this cohomology group fits into the long exact sequence
coming from the exponential sequence:

H1(Y,OY )→ H1(Y,O∗Y )
c1−→ H2(Y,Z)→ H2(Y,OY ).

The leftmost and rightmost terms are 0 by Equation (2), so the map denoted by c1, which
associates to the class of a line bundle its first Chern class, is an isomorphism. Therefore,
to prove the statement on Pic(Y ) we need to check that H2(Y,Z) is torsion-free. From the
universal coefficient theorem we have a short exact sequence:

0→ Ext1
Z(H1(Y,Z),Z)→ H2(Y,Z)→ Hom(H2(Y,Z),Z)→ 0.

The Ext term is 0, as the first homology group of Y is the abelianization of its fundamental
group, which is trivial (recall [Zha06, Cor. 1]), therefore H2(Y,Z) is isomorphic to the
torsion-free Hom term.

To prove the equality between b2(Y ) = rk(H2(Y,Z)) and ρ(Y ) = rk(NS(Y )) recall
that we have defined the Neron-Severi group NS(Y ) as the quotient Pic(Y )/Pic0(Y ),
i.e. the group of connected components of Pic(Y ). As Pic(Y ) = H2(Y,Z), it is discrete, so
NS(Y ) = Pic(Y ) and we have b2(Y ) = ρ(Y ). �

The proposition above motivates the following definition:

Definition 3.1.4. We say that a Fano variety Y with log terminal singularities is
prime if b2(Y ) = ρ(Y ) = 1.

In the case of a Fano variety with a torsion-free Picard group (but not necessarily
prime) we can consider following notions:

Definition 3.1.5. The index of a Fano variety Y is the rational number i(Y ) such
that:

i(Y ) = max{q ∈ Q | O(−KY ) ∼Q L
⊗q, L is ample and Cartier}.

The coindex c(Y ) is equal to dim(Y ) − i(Y ). Observe that if Y is Gorenstein (i.e. −KY

corresponds to a Cartier divisor) then the index is a natural number.

Definition 3.1.6. For a Fano variety Y , the class of an ample Cartier divisor L
satisfying L⊗i(Y ) ∼Q O(−KY ) is called a fundamental class. Any representative of this
class is called a fundamental divisor.

The index is a fundamental invariant of Fano varieties, and those for which it is big
relative to dimension are well-researched. In particular, we will see that the higher the
index, the more we know about the fundamental linear system and in consequence about
the variety itself. Moreover, there is a relation between the index and the second Betti
number: there are only few examples of varieties having 2iY ≥ dimY and b2(Y ) > 1 and
they are classified in a collection of papers by Wiśniewski: [Wiś90], [Wiś91], [Wiś94].

3.2. Chern classes and Hirzebruch-Riemann-Roch theorem

Our goal is to study linear systems associated to an ample (or nef and big) divisor H on
a (weak) Fano variety Y and in particular estimate their dimensions. The state-of-the-art
method to do it is via Riemann-Roch type computations, i.e. calculations of χ(Y,H⊗t) in
terms of a polynomial in t with coefficients coming from intersection numbers and Chern
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classes. If we allow Y to have some kind of singularities, then reasonings and constructions
(e.g. of the Chern classes) require a bit of subtlety. In particular, we have the following
(this is well-known, see e.g. [Hör12, Section 2] for a discussion in codimension 2):

Construction 3.2.1. Let Y be a quasi-projective variety which is smooth in codi-
mension k and denote by Al(Y ) the abelian group of cycles of codimension l on Y modulo
rational equivalence. Then we can find a unique extension of every algebraic cycle of codi-
mension at most k from the smooth locus Ysm to the whole Y , so we have an isomorphism
Al(Ysm) ' Al(Y ) for l ≤ k. Consequently, for any coherent sheaf E on Y we can define
its Chern classes for l ≤ k by extending cl(E|Ysm) ∈ Al(Ysm) to Y . By a slight abuse of
notation, we will denote them by cl(E). In particular, if Y is smooth in codimension 2,
then there exists a uniquely defined class c2(TY ) ∈ A2(Y ), that we will also denote by
c2(Y ).

To formulate the Hirzebruch-Riemann-Roch theorem, we need to recall a few defi-
nitions. In particular, for a given nonsingular projective variety Y of dimension n and
a locally free sheaf E of rank r on Y with Chern classes ci(E), we can form the Chern
polynomial :

ct(E) = c0(E) + c1(E)t...+ cr(E)tr.

By the splitting principle ([Har77, App. A, Section 3, C3]) there exists an embedding
π∗ : A∗(Y ) → A∗(Y ′) for some variety Y ′ such that the Chern polynomial can be fully
decomposed: ct(π∗E) =

∏r
i=1(1 + ait), for some ai ∈ A1(Y ′)⊗Q. The embedding π∗ and

the functoriality of the Chern classes allows us to consider ai as formal symbols that are
added to A1(Y ) ⊗ Q to ensure the decomposability of the Chern polynomial. Then we
define the Chern character by:

ch(E) =

r∑
i=1

eai ,

where eai =
∑∞

k=1
aki
k! , so that in particular ch(E) ∈ A(Y )⊗Q. Analogously we can define

the Todd class by:

td(E) =
r∏
i=1

ai
1− e−ai

,

where we again use the power series expansion of the transcendental function x
1−e−x . Fi-

nally, for an element γ ∈ Ak(Y ) we denote by
∫
Z γ the natural pairing with a cycle Z of

dimension k, that can be extended to the case of rational coefficients. Now we are ready
to state:

Theorem 3.2.2 (Hirzebruch-Riemann-Roch theorem [Har77, App. A, Thm 4.1]). Let
E be a locally free sheaf on a nonsingular projective variety Y of dimension n. Then

χ(Y, E) =

∫
Y
ch(E) · td(TY ).

Observe that although the expression under the integral contains elements of Ak(Y )
for different k, only those from An(Y ) have a nonzero evaluation on Y . Now suppose that
we have a singular projective variety Y , such that singularities are rational. Recall that
by Proposition 2.1.4 for any line bundle L on Y we can compute its cohomology using f∗L
for any resolution of singularities f : Ỹ → Y . By the functoriality of the Chern character
and the projection formula we have:

f∗(td(T Ỹ ) · ch(f∗L)) = f∗(td(T Ỹ ) · f∗(ch(L)) = f∗(td(T Ỹ )) · ch(L) ∈ A∗(Y )⊗Q.
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This in particular allows us to deduce the highest coefficients of the Hilbert polynomial of
L (for brevity we identify line bundles and Weil divisors with their first Chern class):

(3) p(t) = χ(Y,L⊗t) =
Ln

n!
tn +

−KY · Ln−1

2(n− 1)!
tn−1 + r(t)

where r(t) is a polynomial of degree n − 2 such that r(0) = χ(Y,OY ). If moreover Y
is smooth in codimension two (for instance the singularities are terminal) then by the
argument from the beginning of the section, we can define the second Chern class of Y by
extending it from the smooth locus, and that gives us the next coefficient of the Hilbert
polynomial:

(4) p(t) = χ(Y,L⊗t) =
Ln

n!
tn +

−KY · Ln−1

2(n− 1)!
tn−1 +

((−KY )2 + c2(Y )) · Ln−2

12 · (n− 2)!
tn−2 + r(t),

where r(t) has degree n− 3 and r(0) = χ(Y,OY ).
For a variety Y which is Gorenstein and a line bundle L such that L⊗j = OY (−KY )

for some j ∈ N (e.g. Y is Gorenstein-Fano, L is the fundamental divisor and j = iY is the
index) we have the following (anti)symmetry of the Hilbert polynomial:

p(t) = χ(Y, L⊗t) =
dimY∑
i=0

(−1)ihi(Y,L⊗t) =

(5) =
dimY∑
i=0

(−1)ihdimY−i(Y, L⊗−t−j) = (−1)dimY p(−t− j).

This (anti)symmetry will allow us to express the whole Hilbert polynomial in terms of
lowest Chern classes. To make use of it, we still need to estimate the terms containing
c2(Y ). The most general result that we will use was proved by Ou:

Theorem 3.2.3. [Ou17, Corollary 1.5] Let Y be a normal projective variety of dimen-
sion n with Q-factorial log canonical singularities, smooth in codimension 2 and with the
anticanonical class −KY that is nef. Then for any nef divisors H1, H2, ...,Hn−2 we have:

(6) c2(Y ) ·H1 · ... ·Hn−2 ≥ 0.

For smooth varieties with semistable tangent bundles we have the following Bogo-
molov’s inequality:

Theorem 3.2.4. [Lan04, Thm 0.1] Let E be a semistable, torsion free sheaf on a
smooth projective variety Y of dimension n and L be an ample line bundle. Then:

(7) 2 rk(E)c2(E) · Ln−2 ≥ (rkE − 1)c2
1(E) · Ln−2.

Consequently, if we assume that E is the semistable tangent bundle of a Fano manifold,
we obtain a stronger bound on c2(TY ) than the one coming from inequality (6). However,
the semistability is known only in some cases. As smooth Fano varieties which allow
nontrivial Mori contractions can have unstable tangent bundles, one usually adds the
assumption that the second Betti number b2 is equal to 1. In particular, [PW95] and
[Hwa98] showed (semi)stability in dimensions up to 6. [Hwa01] proved stability in any
dimension n in the case where the index is high, i.e. iY > n+1

2 . On the other side of
the spectrum, [Rei78] showed the stability in the case of iY = 1. However, the folklore
conjecture on the semistability of tangent bundles for smooth and prime Fano varieties was
recently disproved by Kanemitsu [Kan21, Thm 0.4], who showed that some of two-orbit
varieties studied by Pasquier [Pas09, Thm 0.2] provide a counterexample.

The good news is that Liu proved a weaker inequality on c2 that holds even if we
cannot assume the semistability:
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Theorem 3.2.5. [Liu19, Thm 1.1.] Let Y be a smooth Fano variety having dimension
n ≥ 7, b2(Y ) = 1, index iY and fundamental divisor L.

• If iY = 2, then

c2(Y ) · Ln−2 ≥ 11n− 16

6n− 6
Ln.

• If 2 < iY ≤ n, then

c2(Y ) · Ln−2 ≥
(
iY (iY − 1)

2
+

2n(iY − 1)− i2Y
2(n− 1)(iY − 1)

)
Ln.

3.3. The existence of sections for Gorenstein-Fano varieties

The setting in this section is as follows: we start with Y , which is an n-dimensional
Fano variety with canonical Gorenstein singularities. Let L be the fundamental class of Y
and iY be the index. We can replace Y by its terminalization, that exists by [BCHM10,
Cor. 1.4.4]. By Lemma 2.1.8 this operation does not change the cohomology and we
may assume that Y is smooth in codimension 2, so that the Hilbert polynomial p(t) =
χ(Y, tL) has form as in Equation (4). The price for terminalizing Y is that O(−KY )
is no longer ample, but only big and nef, however this will not affect the computations.
Finally, let f : Ỹ → Y be a resolution of singularities. By the Vanishing Theorem 3.1.1,
Serre duality 2.1.1 and the rationality of singularities 2.1.4 we have for all j ∈ {0, ...n} and
t ∈ {1, ..., iY − 1}:

0 = Hj(Ỹ , f∗(L⊗t)⊗O(K
Ỹ

)) = Hn−j(Ỹ , f∗(L⊗−t)) = Hn−j(Y,L⊗−t).

It follows that p(t) = 0 for t ∈ {−1,−2, ...,−iY + 1}. As the degree of the Hilbert
polynomial p(t) is equal to n, it follows that the index is bounded by n + 1. We also can
see the following:

Observation 3.3.1. If the coindex n − iY is an even number, then the Hilbert poly-
nomial of L has an additional root, which is equal to −iY2 . In the case when n (iY ) is even,
it means that −iY2 is a double root.

Proof. Take the equality coming from Serre duality (5) and for odd n evaluate it at
−iY

2 to see that it must be a nonintegral root. For even n, evaluation at −iY2 + ε yields
that p(t) is symmetric around −iY2 , but in this case −iY2 is an integer greater than −iY + 1,
i.e. we know that p(−iY2 ) = 0, so the symmetry condition implies that it is an even root. �

This observation does not give any new information on the Hilbert polynomial – it is
implicit in the conditions imposed by the Serre duality, however it makes the considered
expressions easier to manage.

Now we will combine Equation (4) with the knowledge of some of the roots to calculate
the value of p at 1, which by Singular Vanishing Theorem 3.1.2 is equal to dimH0(Y,L).
Recall the following classical conjecture, attributed to Kawamata and Ambro:

Conjecture 3 ([Kaw00, Conj. 2.1], Effective non-vanishing). Let Z be a normal and
complete variety with an effective R-divisor ∆ such that the pair (Z,∆) is klt. Moreover,
let H be a nef Cartier divisor on Z such that H− (KZ +∆) is big and nef. Then H0(Z,H)
is nonzero.

This chapter is in essence a discussion of a special case of this general conjecture, where
we put Z = Y , ∆ = 0, H = L and our claim is that h0(Y, L) > 0 irrespectively of the
index. The method that we present utilizes Hilbert polynomial calculations, so it depends
mainly on the value of the index. Consequently, it is quite general, but it allows us to
obtain positive results only when this value is big enough. On the other hand, for special
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families of Fano varieties one can determine h0(Y,L) by other means, and in particular
there are examples of Fano varieties with h0(Y,L) 6= 0 with arbitrarily small value of the
index (we give some smooth examples in Section 3.6).

The computations for the first four considered cases are classical, and the results can
be found in [IP99, Cor. 2.1.14].

3.3.1. iY = dimY + 1. In that case we obtain the complete decomposition of the
Hilbert polynomial:

(8) p(t) =
Ln

n!
(t+ 1)(t+ 2)...(t+ n).

Moreover, the condition that p(0) = 1 translates to Ln = 1. We conclude that

(9) h0(Y,L) = p(1) = n+ 1.

3.3.2. iY = dimY . Now we start with one less root of the Hilbert polynomial, however
Observation 3.3.1 gives us a full decomposition:

(10) p(t) =
Ln

n!
(t+ 1)(t+ 2)...(t+

⌊n
2

⌋
)(t+

n

2
)(t+

⌊n
2

⌋
+ 1)...(t+ n− 1).

Again, the value of p(t) at 0 gives us Ln = 2 and in consequence:

(11) h0(Y,L) = p(1) = n+ 2.

Remark 3.3.2. In fact, we can say much more about Fano varieties with iY ≥ n,
as Fujita [Fuj90, Ch. I, Thm 5.10 and Thm 5.15] classified polarized pairs (V,L) (not
necessarily Fano) with ∆(V,L) = 0, where we put ∆(V,L) = dimV +LdimV −h0(V,L) (see
also [IP99, Thm 3.1.14] for a presentation focused on the Fano case). In particular, if V is
a smooth Fano variety, then it can be either a projective space or a smooth quadric, what
was also shown earlier by Kobayashi and Ochiai [KO73]. If we allow rational Gorenstein
singularities, then the only examples are provided by singular quadrics, i.e. cones over
smooth irreducible quadrics of lower dimensions.

3.3.3. iY = dimY − 1. We know n− 2 roots of the Hilbert polynomial:

(12) p(t) =
Ln

n!
(t+ 1)(t+ 2)...(t+ n− 2)(t2 + at+ b).

Again, we use Serre duality (5) and p(0) = 1 to obtain:

a = n− 1, b =
n(n− 1)

Ln
.

We conclude that:

(13) h0(Y,L) = p(1) = Ln + n− 1 ≥ n.
Remark 3.3.3. If we assume that Y is smooth then again we have a classification

provided by Fujita in a series of papers [Fuj80], [Fuj81], [Fuj84] according to the auxiliary
invariant Ln which is an integer between 1 and 8.

3.3.4. iY = dimY − 2. In this case we can write the Hilbert polynomial as:

(14) p(t) =
Ln

n!
(t+ 1)(t+ 2)...(t+ n− 3)(t3 + at2 + bt+ c)

As before, we can calculate the coefficients a, b, c via Serre duality and the evaluation at 0:

a =
3

2
(n− 2), b =

2n(n− 1)

Ln
+

(n− 2)2

2
, c =

n(n− 1)(n− 2)

Ln
.

It follows that:

(15) h0(Y,L) = p(1) = n+
Ln

2
≥ n+ 1.
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We obtained the desired inequality by observing that p(t) is an integer-valued polynomial,
so in particular Ln has to be an even number.

Remark 3.3.4. Again, Fano varieties having iY = n− 2 that are smooth are classified
by Mukai [Muk89], under an additional assumption on the fundamental linear system
proved by Mella [Mel99], we will briefly discuss it and analogous results in Section 3.4.

3.3.5. iY = dimY − 3. This case is where the classification is not available, and we
can only provide statements on the fundamental linear system. It requires dealing with
another (after the dimension and the top self-intersection Ln) invariant of a variety, namely
c2(Y ) ·Ln−2. The analysis of this case is thanks to Floris [Flo13], however in dimensions 6
and 7 an additional assumption on semistability was needed to conclude. Then Liu proved
his analogue of the Bogomolov’s inequality (Theorem 3.2.5) and was able to get rid of this
additional assumption, claiming Theorem 3.3.5.

As before, we decompose the Hilbert polynomial in known linear terms:

(16) p(t) =
Ln

n!
(t+ 1)(t+ 2)...(t+ n− 4)(t4 + at3 + bt2 + ct+ d).

On the other hand recall that we know the highest coefficients of p(t) in monomial basis
(4) and if we combine it with Serre duality and value of p(t) at 0 we obtain:

a = 2(n− 3),

b =
−n4 + 8n3 + 9n2 − 160n+ 264

24
+
n(n− 1)c2(Y ) · Ln−2

12Ln
,

c = (n− 3)(b− (n− 3)2),

d =
n(n− 1)(n− 2)(n− 3)

Ln
.

In consequence:

(17) h0(Y,L) = p(1) =
Ln

24
(−n2 + 7n− 8) +

c2(Y ) · Ln−2

12
+ n− 3

Observe that, contrary to the previous cases, we cannot claim the existence of sections
independently of dimension. Nevertheless, the polynomial −n2 + 7n − 8 takes positive
values for n = 4, 5, and the term with c2 is nonnegative by (6), so for these two dimensions
we have:

(18) h0(Y,L) ≥ n− 3 + 1 = n− 2.

We are ready to state and prove the following theorem:
Theorem 3.3.5 ([Liu19, Thm 1.2]). Let Y be a smooth Fano variety of dimension n

and index iY = n− 3. Then we have h0(Y,L) ≥ n− 2.
Proof. The proof that we present is essentially the same as in original expositions,

but we treat all of the cases together and do not skip the verification of all examples with
ρ(Y ) ≥ 2.
Case n ≥ 8. A Fano manifold of dimension at least 8 and index dim(Y ) − 3 has by the
result of Wiśniewski [Wiś90, Thm B] Picard number ρ(Y ) = 1 unless it is isomorphic to
P4×P4, and in that particular case a simple calculation yields (H denotes the class of the
hyperplane in the projective space):

h0(P4 × P4, L) = h0(P4, H)2 = 25 > n− 2 = 6.

If ρ(Y ) = 1 then by [Hwa01, Thm 2.11] the tangent bundle of Y is stable, as iY = n−3 >
n+1

2 , so we can use the inequality (7), which in this case becomes:

c2(Y ) · Ln−2 ≥ n− 1

2n
i2Y L

n.
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It follows that:

h0(Y,L) =
Ln

24
(−n2 + 7n− 8) +

c2(Y ) · Ln−2

12
+ n− 3

≥ Ln

24
(−n2 + 7n− 8 +

n− 1

n
(n− 3)2) + n− 3 =

=
Ln

24
· 7n− 9

n
+ n− 3.

Since the fraction is positive and h0(Y,L) is necessarily an integer, we obtain

h0(Y, L) ≥ n− 2.

Case n = 7. We cannot assume the semistability if ρ(Y ) = 1, however we can use Liu’s
Theorem 3.2.5 instead. It reads:

c2(Y )L5 ≥ 121

18
L7.

In consequence we get:

h0(Y,L) ≥ −L
7

3
+

121

216
L7 + 4 =

49

216
L7 + 4,

and therefore

h0(Y,L) ≥ 5,

so the claim follows. Now if ρ(Y ) ≥ 2, then [Wiś91, Theorem] has classified such varieties.
Each of them is a projectivization of a vector bundle E on a lower dimensional variety Z,
such that for the natural projection π : Y → Z we have E = π∗L, so that h0(Y,L) =
h0(Z, E). The list of possible cases is as follows (Qn denotes an n-dimensional quadric):

Z E h0(Y,L)
Q4 O(1)⊕4 24
P4 TP4 24
P4 O(2)⊕O(1)⊕3 30

As the claim holds in all possible cases, we are done.
Case n = 6. We argue as before: if ρ(Y ) = 1, then by [Hwa98, Thm 3] the tangent

bundle is semistable, so we have Bogomolov’s inequality (7):

c2(Y ) · L4 ≥ 15

4
· L6.

Then the expression for h0(Y,L) can be estimated by:

h0(Y,L) ≥ − 7

24
L6 +

15

48
L6 + 3 =

1

48
L6 + 3.

Consequently,
h0(Y,L) ≥ 4.

In the case where ρ(Y ) > 1 we again use existing classification results [Wiś94, Prop. 3.3]
and check case by case. The maximal possible value of ρ(Y ) is equal to 3, and it is attained
only if Y = P2 × P2 × P2. Then we have h0(Y,L) = 33. There are three families of six
dimensional Fano manifolds with index 3 and Picard number 2. In the simplest case, the
situation is analogous to dimension 7, i.e. Y is a projectivized bundle π : P(E)→ Z, where
Z is a lower dimensional variety with a locally free sheaf E equal to π∗L. Moreover, Z can
be either P4 or Q4 or Vd, i.e. a 4-dimensional del Pezzo manifold of degree d ∈ {1, ..., 5}.
The table below lists all representatives of the first family:
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Z E h0(Y, L)
Vd OVd(1)⊕3 3 · (d+ 2)
P4 O(2)⊕O(2)⊕O(1) 35
P4 O(3)⊕O(1)⊕O(1) 110
Q4 O(2)⊕O(1)⊕O(1) 32
Q4 S(1)⊕O(1) 10

By S we denote the spinor bundle over the quadric [Ott88, Def. 1.3].
The second family also consists of projectivized bundles P(E) over a smooth, lower

dimensional base Z, however this time E is not locally free, but there is a locally free
extension F of E by OZ , i.e. we have a short exact sequence:

0→ OZ → F → E → 0.

Moreover, Z is either P4 or Q4, so in particular it is a Fano manifold, and by the long exact
sequence in cohomology we have that h0(Z, E) = h0(Z,F)− 1, and both of those numbers
are equal to h0(Y, L). There are 4 such cases:

Z F h0(Y,L)
P4 TP4 23
P4 O(2)⊕O(1)⊕3 29
P4 G 20
Q4 O(1)⊕(4) 23

G is a spanned locally free sheaf such that −KP(G) = OP(G)(3) is nef and the map associated
to OP(G)(3) contracts a section of the projective bundle over a hyperplane in P4 to a point.

Finally, Y can have the structure of a quadric bundle over Z. It follows that Y is a
divisor of relative degree 2 in P(E) over Z, i.e. Y ∈ |OP(E)(2)⊗ π∗OZ(−KZ − det E)|. The
table below lists all possibilities:

Z E h0(Y,L)
P3 TP3 ⊕O(1)⊕2 23
P3 O ⊕O(1)⊕4 17
P3 O(1)⊕5 20
P3 O(2)⊕O(1)⊕4 26
Q3 O(1)⊕(5) 25

In all possible cases, the space of sections has dimension greater than 4, so we are done.
Case n = 4, 5. We have already observed that for the two smallest possible dimensions

of Y the estimate holds even in the Gorenstein-Fano case by inequality (18). �

3.3.6. iY = dimY − 4. The analysis of this value of the index is – according to
author’s knowledge – nonexistent in literature, with the exception of the particular case
where dimY = 5, which was earlier treated by Höring in a collaboration with the author
in [HŚ20].

Utilizing Observation 3.3.1, we write the Hilbert polynomial as:

p(t) =
Ln

n!
(t+ 1) (t+ 2) ... (t+ n− 5)

(
t+

n− 4

2

)(
t4 + at3 + bt2 + ct+ d

)
.
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Again, we use the value at 0, Serre duality and the expression (4) to find the unknown
coefficients:

a = 2(n− 4)

b =
n(n− 1) · c2(Y ) · Ln−2

12 · Ln
− 1

12
(n− 4)(n3 − 6n2 − 21n+ 114)

c = (n− 4)(b− (n− 4)2)

d =
2 · n!

Ln · (n− 4)!
.

Evaluation at 1 yields:

(19) p(1) = n− 2 +
c2(Y ) · Ln−2

24
− Ln

48
(n− 3)(n− 6),

which again is not enough to reach conclusion in all dimensions in full generality. The
term with c2 is nonnegative by Ou’s inequality (6) and the last term is positive for n = 5
and nonnegative for n = 6, so we have p(1) ≥ 4 for these dimensions. What we have
proven so far is enough to claim the following useful result, also observed in a weaker form
(nonvanishing) in [HŚ20, Cor. 1.3]:

Corollary 3.3.6. Let Y be a Gorenstein-Fano variety of dimension ≤ 5 with canonical
singularities that is different from a point. Then

h0(Y,L) ≥ 2.

Moreover, we are able to retrieve the first part of the main result of Höring and the
author [HŚ20, Thm 1.1a]:

Theorem 3.3.7. Let Y be a Gorenstein-Fano variety of dimension 5 with canonical
singularities. Then we have

h0(Y,−KY ) ≥ 4.

Proof. The dimension of H0(Y,−KY ) is equal to p(t) evaluated at iY for the suitable
Hilbert polynomial (notice that we need to consider Hilbert polynomials calculated for all
studied cases) and for n = 5. We have just done it for iY = 1. For iY = 2 take the
Equation (16) and expressions for the coefficients of the Hilbert polynomial and evaluate
at t = 2 to obtain:

p(2) = 3 +
8

45
L5 +

2

9
c2(Y ) · L3 ≥ 4.

Note that the considered expression is not an estimation, but a precise value, so in partic-
ular it is an integer. We conclude by the postivity of L5 and the nonnegativity of c2(Y ) ·L3

coming from Ou’s inequality (6).
Finally, if the index is greater than 2, then we know already that p(1) > 5 by Equa-

tions (9), (11), (13) or (15). To conclude, simply observe that in our setting the Hilbert
polynomial is an increasing function for positive integers. Indeed, if iY ≥ 5 then we have
the full decomposition into linear terms (Equation (8) and Equation (10)) and all the roots
are negative. If iY ∈ {3, 4} then the Hilbert polynomials (12) and (14) decompose into
some linear terms that correspond to negative roots and a quadratic or cubic term whose
coefficients are positive, so in both cases they are increasing for positive integers. �

Now we would like to have an analogue of Theorem 3.3.5, but we cannot claim the
nonvanishing in the case when b2(Y ) > 1, n = 7, iY = 3, as for such manifolds we do not
have sufficiently strong inequalities, nor are they classified. Nevertheless, we can prove the
following new result:
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Theorem 3.3.8. Let Y be a smooth Fano variety of dimension n and index iY = n−4
with b2(Y ) = 1. Then we have:

h0(Y, L) ≥ n− 1.

Proof. If n > 9 then the tangent bundle of Y is semistable by [Hwa01, Thm 2.11]
or [Hwa98, Thm 3], so we are able to use the Bogomolov’s inequality (7) to estimate:

p(1) ≥ n− 2 +
3n− 8

24n
· Ln,

and as p(t) in an integer valued polynomial and the fraction is positive, we obtain p(1) ≥
n− 1. If n ∈ {7, 8, 9} then we apply Liu’s inequality instead:

p(1) ≥ n− 2 +
3n2 − 14n− 6

(n− 5)(n− 1)
· L

n
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and we reach the conclusion by the same argument as before.
If n = 6, then recall from our earlier discussion that the tangent bundle is stable by

[Hwa98], so Bogomolov’s inequality implies the positivity of the second Chern class, and
the evaluation of Equation (19) yields the result.

Finally, in the case where n = 5 we apply Theorem 3.3.7. �

3.3.7. Low dimensional, log canonical Fano varieties. Up to this point, all re-
sults presented in Section 3.3 relied heavily on the rationality of singularities, so that we
were able to use the Hilbert polynomial and the Hirzebruch-Riemann-Roch theorem. In
the case when singularities are worse, for instance log canonical, the notion of the funda-
mental divisor is no longer meaningful as the Picard group may have a nontrivial torsion.
Nevertheless, one can still study the anticanonical linear system. In such a setting Höring
with the author ([HŚ20, Prop. 1.4]) proved the following:

Theorem 3.3.9. Let Y be a normal Gorenstein-Fano variety with log-canonical singu-
larities of dimension at most 5. Then H0(Y,−KY ) 6= 0.

We will make use of the following lemma:

Lemma 3.3.10 ([HŚ20, Prop. 2.1, Cor. 2.2]). Let Z be a normal projective threefold
such that (Z,∆) is klt and −(KZ + ∆) is pseudoeffective for some effective R-divisor ∆.
If D is a nef and big Cartier divisor on Z, then H0(Z,D) > 0.

Proof. The assumption on the log anticanonical divisor means that −KZ is numeri-
cally equivalent to a sum of an effective and a pseudoeffective divisor, so that it is generically
nef, i.e. we have −KZ ·H2 ≥ 0 for any nef Cartier divisor H. Moreover, we can assume
that Z is Q-factorial, as we can use the projection formula for the Q-factorial modifica-
tion [Kol13, Cor. 1.37]. By [Deb01, Thm 3.10] there are two families of varieties with a
generically nef anticanonical divisor: either they are uniruled or −KZ is in fact numerically
trivial.

In the first case, we use the Hilbert polynomial. To that end, observe that Z has rational
singularities by Theorem 2.1.6, so hi(Z,OZ) = hi(Z̃,O

Z̃
) for any resolution of singularities

Z̃. Z̃ is also uniruled, therefore by Serre duality 2.1.1 h3(Z̃,O
Z̃

) = h0(Z̃,O(K
Z̃

)) and the
canonical bundle of a uniruled variety does not have sections by [Kol96, Ch. IV, Cor. 1.11],
so h3(Z̃,O

Z̃
) = 0. Moreover, we can also assume that h1(Y,OZ) = 0, as otherwise the

lemma was proved in [Xie09, Cor. 4]. In consequence, we get that χ(Z,OZ) = h0(Z,OZ)+
h2(Z,OZ) ≥ 1.

Now consider the Hilbert polynomial:

p(t) = χ(Z, tD) =
D3

3!
(t3 + at2 + bt+ c)
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and observe that by a standard application of Kawamata-Viehweg vanishing 3.1.2 we have
χ(Z,D) = h0(Z,D). As D is a nef and big divisor on a variety with rational singularities,
cohomologies of −D, excluding the top ones, vanish, i.e. χ(Z,−D) = −h3(Z,−D) ≤ 0. In
effect, we can get rid of odd terms in the polynomial:

h0(Z,D) = χ(Z,D) ≥ χ(Z,D) + χ(Z,−D) =
D3

3
(a+ c).

To conclude, we need to show that a+c > 0, as D3 > 0. Recall the Riemann-Roch formula
(3) and compare it with our expression for the Hilbert polynomial of tD to obtain:

a
D3

3!
=
−KZ ·D2

4
> 0, c

D3

3!
= χ(Y,OZ) > 0.

Therefore, we conclude that h0(Z,D) > 0.
Now consider the second possibility, i.e. assume that KZ is numerically trivial. If the

singularities of Z are not canonical, then consider its canonical modification Z ′, existing
by [Kol13, Thm 1.31]. Then the divisor −KZ′ is numerically equivalent to a non-zero,
effective Q-divisor, so Z ′ is uniruled, and we may apply the reasoning above. Finally, if the
singularities of Z are canonical, then the nonvanishing was shown in [Kaw00, Prop. 4.1]
by the means of crepant blowups and Riemann-Roch computations. �

Proof of Theorem 3.3.9. We may assume that there exists a minimal (with re-
spect to inclusion) lc center Z of the pair (Y, 0), because otherwise singularities would be
canonical, as Y is Gorenstein. Y is normal of dimension at most 5, so its minimal lc center
Z is of dimension at most 3. The restriction map

H0(Y,−KY )→ H0(Z,−KY |Z)

is surjective by [Fuj11], as −KY −(KY +0) = −2KY is ample. Moreover, by the Kawamata
subadjunction [Kaw98, Thm 1] there exists an effective Q-divisor ∆Z such that the pair
(Z,∆Z) is klt and log Fano, as KZ + ∆Z ∼Q KY |Z . Therefore, it is enough to show the
nonvanishing of H0(Z,−KY |Z), and that follows from [Kaw00, Thm 3.1] if dimZ ≤ 2 and
Lemma 3.3.10 if dimZ = 3, as minimal lc centers are normal by [Amb99, Thm 1.6]. �

3.4. Structure of the general element

Suppose we are given a Fano variety Y with the prescribed index iY and the class of
singularities. Besides the dimension of the linear system, one can also ask if a general
element Z ∈ |L| is good, i.e. whether its singularities are not worse than those of the
ambient variety Y . If this condition is satisfied, then it can serve to construct a ladder:

Y = Y0 ⊃ Y1 ⊃ Y2 ⊃ ... ⊃ Yiy ,
where Yj+1 is an element in the fundamental linear system of Yj , and all Yj have equal
coindices and the same class of singularities. Such ladders can serve as a basis for induction
arguments. Although we will not use similar arguments in the next chapters, for the
completeness of the presentation we will discuss existing results concerning the goodness
of the fundamental divisor.

Alexeev [Ale91] proved the existence of a good divisor for log terminal Fano varieties
with index iY > dim(Y )−2. For the case of index iY = dim(Y )−2 it was shown by Mella
[Mel99], in the case of smooth and canonical variety. Floris [Flo13] proved the result for
canonical Fano varieties of index dim(Y )− 3 and this is the last general case. Höring with
the author [HŚ20, Thm 1.1.2] proved the following:

Theorem 3.4.1. Let Y be a Fano variety of dimension 5 with canonical Gorenstein
singularities. If a general element D ∈ |−KY | is reduced, then it has canonical singularities.
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We will now present a proof for this theorem. The results of Alexeev, Mella and Floris
mentioned above were proved using similar techniques (i.e. the inversion of adjunction and
the Kawamata subadjunction) and reasoning.

Proof. To prove that D has canonical singularities, we will use the inversion of ad-
junction [Kol97, Thm 7.5] and show that the pair (Y,D) is plt. Suppose that this is not
the case, i.e there exists a 0 < c ≤ 1 such that (Y, cD) is log canonical and not plt for
c = 1. The base locus of −KY contains a minimal lc center Z of (Y, cD) by [Amb99,
Lem. 5.1], so it follows that the map:

H0(Y,−KY )→ H0(Z,−KY |Z)

must be zero. Simultaneously it is surjective by [Fuj11, Thm 2.2], as the divisor class
−KY − (KY + cD) = (2− c)(−KY ) is ample. We conclude that H0(Z,−KY |Z) = 0.

To arrive at a contradiction, consider the klt pair (Z,∆Z), where ∆Z exists by the
Kawamata subadjunction [Kaw98]. We have:

KZ + ∆Z ∼Q (KY + cD)|Z ∼Q (1− c)KY |Z ,

so the pair (Z,∆Z) is either log Fano or log Calabi-Yau.
Now, the dimension of Z is at most 3, as none of the irreducible components of D can

be a minimal lc center for (Y, cD) as we have assumed that it is reduced. If dim(Z) = 3
then the nonvanishing showed in Lemma 3.3.10 yields the contradiction as the minimal lc
center is normal. If dim(Z) < 3, then we can use [Kaw00, Thm 3.1]. �

3.5. Contact Fano case

The goal of this section is to give a lower estimate on the dimension of h0(X,L) for X
which is a contact Fano manifold with a contact line bundle L generating Pic(X) and
of dimension up to 9. In fact, such estimates were obtained earlier by other researchers
(see [BW22, Thm 6.1] for dimensions 7 and 9), but we obtain them as a corollary of
the computations conducted throughout this chapter, so we do not use the stability of
the tangent bundle, nor the existence of the contact structure (besides the value of the
index). Therefore, our result is stated in a more general setting of a prime and smooth
Fano manifold Y of odd dimension 2n+ 1 and index n+ 1.

In the next chapter we will see that H0(X,L) is isomorphic to the Lie algebra of
contactomorphisms of X, and in conseqence the nonvanishing of H0(X,L) allows us to
claim that X has nontrivial automorphisms. We may also observe that our assumptions
do not exclude any interesting case: by Theorem 2.3.2 if a Fano contact manifold does
not satisfy our assumptions then it is either P2n+1 or P(TPn) and for both these cases the
fundamental line bundle is very ample. If dim(X) = 3 then by [Ye94, Thm 2] then the
only prime Fano contact manifold is P3.

Corollary 3.5.1. Let Y be a smooth and prime Fano manifold with fundamental
divisor L of dimension 2n + 1 and index n + 1 (e.g. Y = X is a contact Fano manifold
different from P2n+1 and P(TPn+1) with the contact line bundle L).

• If Y is of dimension 5, then h0(Y,L) ≥ 6.
• If Y is of dimension 7 then h0(Y, L) ≥ 5.
• If Y is of dimension 9 then h0(Y, L) ≥ 8.

Proof. As the index is equal to n + 1, we know n roots of the Hilbert polynomial
(and Observation 3.3.1 gives us one additional if n is even). Consequently, if dim(Y ) = 5
then i(Y ) = 3 and we apply Equation 15:

h0(Y,L) = 5 +
L3

2
≥ 6.
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If dim(Y ) = 7, then i(Y ) = 4 then it is enough to use Theorem 3.3.5 to obtain the desired
bound.

We are left with the last case, i.e. dim(Y ) = 9, for which we use Theorem 3.3.8 and
obtain h0(Y,L) ≥ 8. �

3.6. Conclusion and another conjecture

As we have seen in this chapter, there is some evidence for the nonemptiness of the
fundamental linear system of Fano varieties. This evidence encouraged the author to
consider the following conjecture:

Conjecture 4. Let Y be a smooth Fano variety of dimension n ≥ 1 with b2(Y ) = 1
and fundamental line bundle L. Then h0(Y, L) ≥ 2.

Clearly, this conjecture is essentially a variant of Conjecture 3 of Kawamata and Am-
bro, where we restrict ourselves to prime and smooth Fano varieties without the boundary
divisor, but on the other hand demand h0(Y,L) > 1 instead of h0(Y,L) > 0. The main
motivation for introducing such conjecture is that proving it would have tremendous con-
sequences for the LeBrun-Salamon conjecture, as we will show in the next chapter.

Besides the situation discussed in this chapter, i.e. when i(Y ) ≥ n− 4, the conjecture
also holds when the fundamental divisor is very ample. The most natural examples are
provided by the toric theory – any ample divisor on a smooth projective toric variety is very
ample [CLS11, Thm 6.1.15]. This is also the case for smooth projectivized orbit closures
– besides adjoint varieties we can mention two-orbit varieties studied by Pasquier [Pas09].
They are smooth and prime Fano varieties that decompose into precisely two orbits (open
and closed) under the natural action of the automorphism group and the same holds for
the blowup of such variety along the closed orbit. Their example is additionally interesting,
as the very ampleness holds irrespectively of the semistability of the tangent bundle or the
lack of it that we have mentioned earlier. In particular, the first family on Pasquier’s list,
denoted by (Bn, ωn−1, ωn), has dimension n(n+3)

2 , index n+2 and its tangent bundle is not
semistable. Consequently, as n grows, we obtain a family of examples where the difference
between dimension and index has quadratic order in n, the tangent bundle is unstable,
and yet the fundamental divisor has many sections.

Another rich source of computable examples is provided by complete intersections in
weighted projective spaces. In this case one has an explicit description of the cohomology
in terms of weights that allows to calculate the dimension of h0(Y,L). In particular,
Conjecture 4 holds also in this case, see [Ovc23, Prop. 2.40] and the references therein.



CHAPTER 4

Linear systems and projective contact manifolds

4.1. Introduction

We return now to projective contact manifolds and our goal is to discuss how the study
of linear systems of Fano varieties can be applied in the work on the LeBrun-Salamon
conjecture. In fact, the significance of having many sections of the contact line bundle was
already observed by Beauville in the form of the following theorem:

Theorem 4.1.1 ([Bea98, Thm 0.1]). Let (X,L) be a Fano contact manifold. If the
group of automorphisms of X is reductive and the rational map defined by the linear system
of L is generically finite, then X is the adjoint variety associated to a simple group.

As we have discussed in Section 1.3, the assumption on the reductivity of the group of
automorphisms is redundant if we are considering only contact Fano manifolds equipped
with a Kähler-Einstein metric, i.e. those coming from the twistor construction. However,
as we have seen in Chapter 3, known methods are not sufficient to claim that h0(X,L) is
big enough even in dimensions 7 and 9.

Nevertheless, the homogeneity was shown in dimension up to 9 (under the assump-
tion on the reductivity of the automorphisms group) by Buczyński, Weber and Wiśniewski
[BW22]. The methods proposed in [BW22], based on the analysis of the action of alge-
braic tori and BB decomposition, were extended by Occhetta, Romano, Solà Conde and
Wiśniewski, resulting in the following theorem:

Theorem 4.1.2 ([ORCW21, Thm 6.1]). Suppose (X,L) is a Fano contact manifold
of dimension 2n+ 1 with Pic(X) = Z · L and the group of automorphisms G such that its
identity component is reductive of rank r ≥ max(2, n−3

2 ). Then G is a simple group of type
Br (r ≥ 3), Dr (r ≥ 4), E6, E7, F4 or G2 and X is the associated adjoint variety.

If one analyzes thoroughly the proof of the theorem above, one finds that the bound on
r is directly related to known results on the dimension of the fundamental linear system of
a smooth Fano variety, and in particular Corollary 3.3.6. Therefore one may wonder what
is the dependence of this and related theorems on results concerning nonvanishing and how
improving them would influence our understanding of LeBrun-Salamon conjecture. The
author is able to provide an answer in the form of the following theorem:

Theorem 4.1.3. Let (X,L) be a Fano contact manifold of dimension 2n + 1 with a
reductive group of automorphisms G. Assume that:

• h0(X,L) 6= 0, i.e. the effective nonvanishing holds for X,
• Conjecture 4 holds up to dimension n, i.e. for every smooth Fano variety Y of
dimension at most n with b2(Y ) = 1 we have h0(Y,L) ≥ 2, where L is the funda-
mental divisor on Y .

Then G is a simple group and either:
(1) X is the adjoint variety associated with G;
(2) G = SL(2), h0(X,L) = 3, the maximal torus C∗ ⊂ G acts on X in such a way

that the source and the sink of the action are isolated points and dim(X) ≥ 11.

39
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We first note that the second case is the undesirable one, that – if one wants to prove
the conjecture of LeBrun and Salamon – should be somehow excluded. From the statement
itself we can see that to do it, it would be enough to show that it is not possible for a
contact Fano manifold of dimension at least 11 to have h0(X,L) = 3. Alternative way of
proceeding would be to take a closer look at the postulated SL(2) action.

We also note that although this theorem is an original contribution of the author and
may be of interest to the community, the proof contains no new ideas and just boils down
to verifying that numerous lemmas and propositions used to develop Theorem 4.1.2 work
with our assumptions. The goal of this chapter is therefore to show how the estimates
on the dimension of the fundamental linear system in the general and the contact Fano
case, in particular Corollary 3.3.6 and Corollary 3.5.1, are necessary for the proof of The-
orem 4.1.2 to work and how replacing them by our nonvanishing assumptions allows to
claim Theorem 4.1.3. As eventually we want to discuss homogeneous varieties, we first
take a brief detour to recall the fundamental notions of Lie theory for the purpose of fixing
notation and definitions for this and subsequent chapters.

4.2. Lie theory basics

4.2.1. Representations, weights and roots. The most general type of (complex)
Lie groups that we are be interested in are reductive Lie groups. As we are working in
the complex category, we can assume that a group being reductive means that any finite-
dimensional representation decomposes into a direct sum of irreducible ones.

Let G be a reductive group, g an associated Lie algebra and T a maximal torus of G.
The (reductive) rank r of the group is the dimension of T . Every representation of T
splits into the sum of 1 dimensional representations, which can be identified with elements
of Hom(T,C∗) (known as characters). The choice of coordinates on T allows further
identification of the group of characters Hom(T,C∗) with the lattice Zr, whose elements
are called weights, traditionally denoted by M .

In particular, for any G, if we denote the inner automorphism associated with g ∈ G
by Ψg then we can define adjoint representations of group and of algebra (X,Y ∈ g):

Ad: G→ GL(g), ad: g→ End(g)

Adg(X) = (dΨg)idX, adX(Y ) = [X,Y ].

If moreover we denote by g∗ the dual vector space of the algebra, we can also define
coadjoint representations (f ∈ g∗):

Ad∗ : G→ Aut(g∗), ad∗ : g→ End(g∗)

Ad∗g(f)(X) = f(Adg−1(X)), ad∗X f(Y ) = −f(adX Y )

The adjoint and coadjoint representation of a group induce the representation of the max-
imal torus, that in particular allows us to decompose the Lie algebra as:

g = t⊕
⊕
α∈Φ

gα,

where t is the part of the algebra having weight 0 (and being precisely the Lie algebra of
the torus, called the Cartan subalgebra) and the sum of 1-dimensional subspaces indexed
by the set of nonzero weights Φ called roots. We can pick a hyperplane dividing the set of
roots into two disjoint subsets, denoted Φ+ and Φ− (positive and negative roots), in such
a way that Φ− = {α ∈ Φ : −α ∈ Φ+}. Among positive roots, we can distinguish those
that are not a sum of any two other positive roots and call them simple. The convex hull
of Φ ⊂ M ⊗ R is called the root polytope, denoted by ∆(G). Its dimension is equal to the
number of simple roots, as they are linearly independent by [Hal03, Thm 8.16].
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Weights admit a partial ordering: we say that m1 is higher than m2 if m1 −m2 can
be expressed as a linear combination of positive roots with nonnegative coefficients. For
a given subset of weights we say that a weight m is the highest weight if it is higher than
any other weight. There is a bijective correspondence between isomorphism classes of
irreducible representations of semisimple complex Lie algebras and their highest weights
[FH91, Prop. 14.13]. Moreover, every weight that can arise as the highest weight of
a representation is a nonnegative, integral combination of fundamental weights [FH91,
Thm 14.18].

Example 4.2.1. For the sake of future use, we will work out one particular example
in detail. Namely, we start with a simple Lie group Sp(6) which acts naturally on F , a
symplectic vector space of dimension 6. We pick a base e1, ..., e6 of F and a dual base
x1, ..., x6 of F ∗ such that the symplectic form ω is equal to x1 ∧ x4 + x2 ∧ x5 + x3 ∧ x6

and Sp(6) consists of matrices preserving it. The maximal torus T has dimension 3 and
consists of matrices of the form diag(λ1, λ2, λ3,−λ1,−λ2,−λ3) where λi 6= 0 for all i.
Consider characters hi for i = 1, 2, 3 that act on t ∈ T by extracting (i, i)-th coordinate
of the matrix. By abuse of notation, we can think of hi as weights of the torus action.
Denote by Ei,j an elementary matrix having 1 in position i, j. Then the Lie algebra sp(6)
is spanned by:

• E1,4, E2,5, E3,6 that are eigenvectors associated to the long roots 2h1, 2h2 and
2h3 respectively;
• E1,2−E5,4, E2,3−E6,5, E1,3−E6,4 associated to the short roots h1− h2, h2− h3

and h1 − h3 respectively;
• E1,5 +E2,4, E2,6 +E3,5, E1,6 +E3,4 associated to the short roots h1 + h2, h2 + h3

and h1 + h3 respectively;
• the transposes of all of the above that correspond to the negatives of the roots;
• the elements from the Cartan subalgebra.

Consequently, we have made a choice of the set of the positive roots. It is generated by
three simple roots h1 − h2, h2 − h3 and 2h3. The root polytope is a regular octahedron
with vertices being the long roots.

The fundamental weights are h1, h1+h2 and h1+h2+h3 and there exists an irreducible
representation with the highest weight (a+ b+ c)h1 + (b+ c)h2 + ch3 for every a, b, c ∈ N,
denoted by W(a,b,c). In particular, W(1,0,0) = F and W(2,0,0) = sp(6) = S2F ∗. Moreover,
the symplectic form on F gives us an isomorphism S2F ∗ ' S2F .

4.2.2. Nilpotent orbits and their projectivizations. We can also think of g and
its dual as varieties equipped with an action of G. In this way, they can be decomposed
into orbits of this action, called adjoint and coadjoint orbits. The Killing form gives a G-
invariant isomorphism between these vector spaces, that allows us to identify both types
of orbits. In particular, we may say that a coadjoint orbit has some property, if only
corresponding adjoint orbit has it.

Among orbits of g we may distinguish orbits that are semisimple, nilpotent or neither
(sometimes called mixed). Recall that every endomorphism of a finite dimensional vector
space has a Jordan decomposition into the sum of semisimple and nilpotent part. We
say that an element X ∈ g is semisimple (nilpotent) if and only if the corresponding
endomorphism adX is. Then any adjoint orbit containing a semisimple (nilpotent) element
is called semisimple (nilpotent) and we may also define these types for coadjoint orbits via
the Killing form isomorphism.

On every coadjoint orbit we can construct a nondegenerate 2-form giving it the struc-
ture of a (smooth) symplectic variety. Namely, let f ∈ g∗ and denote by Of the orbit
through f , which can be identified with the quotient G/Gf , where Gf = {g ∈ G : Ad∗g(f) =
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f} is the stabilizer subgroup. Its Lie algebra is equal to gf = {X ∈ g : ad∗X(f) = 0}. Now
define a 2-form:

ωf : g× g 3 (X,Y ) 7→ f([X,Y ]) ∈ C.

It is degenerate precisely on gf and we can identify TfOf with g/gf . The resulting sym-
plectic form on Of is called the Kostant-Kirillov form ([Bea98, Section 2]), which in the
case of nilpotent orbits is homogeneous of weight 1 with respect to the natural action of C∗
([Bea98, Prop. 2.2]). Equivalently, we could observe that the Lie bracket on g defines the
structure of a holomorphic Poisson scheme on g∗ (see Section 5.2.3 for more detail) and
coadjoint orbits are symplectic leaves of this structure.

The set of (co)adjoint orbits is equipped with a partial ordering: O1 ≤ O2 ⇐⇒ O1 ⊂
O2. The minimal elements (i.e. closed orbits) are semisimple orbits and the zero orbit.
Nilpotent orbits can be characterized precisely as those orbits that are comparable with
the zero orbit in the closure ordering. Moreover, the set of nilpotent orbits posseses a
unique maximal element – called the regular or principal orbit. Then the structure gets
more complicated, however nilpotent orbits are finite in number and they can be classified
by combinatorial objects [CM93, Thm 3.5.4]. If we assume that the group G is simple
then we have two more unique orbits, namely the minimal that has only 0 in its boundary
and the subregular that is dominated only by the principal one.

Example 4.2.2. In the case of Sp(2n) nilpotent orbits correspond bijectively to parti-
tions of 2n where every odd part occurs with even multiplicity by [CM93, Thm 5.1.3]. For
2n = 6 we have the following diagram of nonzero nilpotent orbits as presented in [CM93,
Example 6.2.6] (we write O1 → O2 if O2 ≤ O1).

O[6] O[4,2] O[4,12] O[23] O[22,12] O[2,14]

O[32]

dim = 18 dim = 16 dim = 14 dim = 12 dim = 10 dim = 6

The significance of the minimal orbit becomes clear when we observe that every nilpo-
tent orbit is a cone, i.e. it is preserved by the natural action of the multiplicative group
on g (or equivalently g∗). Then the minimal orbit becomes the unique closed orbit in
P(g) (P(g∗)), i.e. a closed, homogeneous subvariety of the projective space, the (co)adjoint
variety. They are listed below:

G root system coadjoint variety X
SL(n+2) An+1 P(TPn+1)
SO(n+4) Bn+3

2
Grassmannian of projective lines on Qn+2

Sp(2n+2) Cn+1 v2(P2n+1)
SO(n+4) Dn+4

2
Grassmannian of projective lines on Qn+2

E6 group E6 E6 variety
E7 group E7 E7 variety
E8 group E8 E8 variety
F4 group F4 F4 variety
G2 group G2 Grassmannian of special lines on Q5

The algebraic version of the LeBrun-Salamon conjecture states precisely that the list above
contains all possible contact Fano manifolds.
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We may also observe that although all (projectivized) orbits are smooth, they are not
closed, and their closures are singular (they may even fail to be normal). This is a model
example of the symplectic/contact stratification presented in Section 5.2.3.

4.3. Fixed point components and polytopes

Even though our description of the machinery developed to prove Theorem 4.1.2 is
partial and focused on those elements of the reasoning that utilize the existence of sections,
we still need to discuss in greater detail fixed point components of a torus action and
introduce some combinatorial objects. We can do it in the setting of a smooth polarized
variety, i.e. a smooth projective variety Y equipped with a choice of an ample line bundle L.
We moreover assume that Y is equipped with an effective action of an algebraic torus
T ≈ (C∗)r of some rank r. Recall from Section 4.2 that we can associate to T a rank r
lattice M , whose elements are called weights. The will often use the following notion:

Definition 4.3.1. We say that a vector bundle E on a variety Y equipped with an
action of a group G is G-linearized (or simply linearized if the choice of the group is clear)
if there exists a lift of the action to the total space of E commuting with the projection
onto the base variety Y . Sometimes we will instead say that E is a G-vector bundle and
we will denote it by µ : E ×G→ E .

We are interested in a situation where the ample line bundle L admits a T -linearization,
so we always assume that it exists. Then, the vector space H0(Y,L) can be decomposed
into eigenspaces of the action of T , indexed by weights m, i.e.

H0(Y,L) =
⊕
m∈M

H0(Y,L)m.

Let Y T denote the set of fixed points. It has a finite number of connected components:
Y T = Z1t ...tZl. For each y ∈ Y T we have an action of T on the fiber Ly via some weight
µ(y) ∈ M , which is constant on every connected component, therefore we can consider
µ(Zi) ∈M , i.e. the weight associated to the fixed point component.

In the particular case of a rank 1 torus we can identify the set of weights with inte-
gers. In consequence, we have two distinguished fixed point components with minimal and
maximal weight, called the sink (Z+) and the source (Z−).

We are ready to define two lattice polytopes living in M :

Definition 4.3.2. Consider the set of the weights {µ(Zi)}, where Zi is the component
of Y T . The convex hull of this finite set will be denoted by ∆ and will be called the
polytope of fixed points. Observe that it depends on Y , L, T and µ and sometimes we will
indicate that dependence by notation ∆(Y, L, T, µ). Moreover, the components Zi whose
weights are vertices of ∆ will be called extremal components.

Definition 4.3.3. Consider the finite set of weights m ∈M such that for the eigende-
composition of H0(Y,L) we have H0(Y, L)m 6= 0. Its convex hull will be denoted by Γ and
will be called the polytope of sections. Again, sometimes we will point out the dependence
on the setting by using notation Γ(Y,L, T, µ).

These two polytopes are not unrelated – one can show that Γ(Y, L, T, µ) ⊂ ∆(Y,L, T, µ)
([BW22, Lem. 2.4]) and showing that they both coincide is a crucial step in the proof
of Theorem 4.1.2 and Theorem 4.1.3, that allows to claim the (semi)simplicity of the
automorphism group of the contact manifold.

Considering extremal fixed point components, we can sum up their properties that are
relevant to our discussion by the following lemma (although not explicitly stated in this
form, this is essentially a combination of arguments from [BW22, Lemma 3.4, Lemma 3.6,
Prop. 3.9]):
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Lemma 4.3.4. Let Y be a Fano manifold with the fundamental line bundle L that
generates the Picard group (i.e. b2(Y ) = 1) and T be a torus acting effectively on Y .
Let Z be an extremal fixed point component. Then Z is a Fano manifold with the Picard
group generated by the restriction of L, unless it is a point. In both cases, the restriction
H0(Y, L)→ H0(Z,L|Z) is surjective and in fact H0(Y, L)µ(Z) = H0(Z,L|Z).

Proof. The statement on Z was shown in the case of a C∗-action in [BW22, Lemma 3.4].
If the torus has rank r > 1, one can argue by a standard flag reasoning, frequently used
in the context of torus actions, see e.g. [BW22, Prop. 3.9]. To be precise, we pick a 1-
parameter subgroup Tr of T in such a way that its sink Zr contains Z and that the quotient
T/Tr is again a torus (of rank r− 1) . We apply [BW22, Lemma 3.4] to this 1-parameter
action and see that Zr is a prime Fano manifold with the fundamental line bundle equal
to the restriction of L and that it is acted upon by the quotient torus T/Tr. We can now
repeat the argument r times and obtain a strictly decreasing sequence of subvarieties of Y :

Zr ⊃ Zr−1 ⊃ ... ⊃ Z1 = Z,

such that every one of them is a prime Fano manifold and fundamental line bundles are
obtained by consequent restrictions.

Statements concerning global sections are proved in [BW22, Lemma 3.6]. �

4.4. Discussion of proofs

In this section we will describe main ideas leading to the proof of Theorem 4.1.2 and
Theorem 4.1.3.

Reduction to the prime and fundamental case. By Theorem 2.3.2 we may restrict
ourselves to the following setting: X is a contact Fano manifold with b2(X) = 1 and the
contact line bundle L that generates the Picard group. Moreover, we assume that G is the
group of automorphisms of X that is reductive.

Showing the relation between sections of L and contactomorphisms. The
significance of the space of sections of the fundamental divisor is first illustrated by the
following well-known lemma:

Lemma 4.4.1. Suppose that we have setting as above. Then the contact distribution F
on X is unique, so every automorphism of X preserves F . Moreover, we have Lie(G) '
H0(X,TX) ' H0(X,L) as representations of G = Aut(X).

Proof. The first statement is shown in [Keb01, Thm 4.4] and the second in [Bea98,
Thm 1.1]. �

In particular, the contact line bundle L is G-linearized, as a quotient of G-line bundles
TX and F . Recall that as the group G is reductive, it has a maximal torus T . In both
considered cases this torus is nontrivial: for the proof of Theorem 4.1.2 we explicitly assume
that T has rank r ≥ max(2, n−3

2 ). For Theorem 4.1.3, the nontriviality of G that follows
from the nonvanishing of h0(X,L) only allows us to claim that r ≥ 1. Consequently, in
both cases the action of T on X has extremal fixed points components Zi and we can
construct polytopes ∆(X,L, T, µ) and Γ(X,L, T, µ) using the linearization of the torus
action µ coming from the G-linearization.

Showing the equality of polytopes. The next step is to again use our knowledge of
fundamental linear systems, this time for extremal fixed point components and their lifting
to the ambient variety to show that the polytopes of sections, fixed points and roots are
all equal. To that end, recall that by Lemma 4.3.4 every extremal fixed point component
Zi is either a point or a prime Fano manifold with Pic(Zi) = Z · L|Zi . Moreover, by
[ORCW21, Lemma 4.6] it is an isotropic subvariety of X, so in particular dim(Zi) ≤ n.
Then, the second assumption of Theorem 4.1.3 says precisely that h0(Zi, L|Zi) ≥ 2 if Zi
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is different from a point (and the space of sections over a point has dimension 1). By
[ORCW21, Lemma 5.3] we obtain the desired equality ∆(X,L, T ) = Γ(X,L, T ) = ∆(G).
If we are instead in the situation of Theorem 4.1.2, then we cannot simply claim the
existence of sections if some Zi have positive dimension. This is where the assumption
on the reductive rank r of G comes into play: we demand that r ≥ n−3

2 > 0 in order to
ensure that ∀i dim(Zi) ≤ 5 via a flag argument. Then, by known results on fundamental
systems, i.e. Corollary 3.3.6 we again conclude that extremal fixed point components have
sections, we can distinguish points from nontrivial ones by the dimension of H0(Zi, L|Zi)
and that we have an equality of polytopes ∆(X,L, T ) = Γ(X,L, T ) = ∆(G). For details,
see [ORCW21, Lemma 6.4].

Proving the triviality of extremal fixed point components and the simplicity
of the group. The equality of three lattice polytopes has two immediate consequences:
first, it implies that extremal fixed point components are in fact points, as first argued in
[BW22, Lemma 4.7]. Second, it allows us to prove that the group G is in fact a semisimple
one [BW22, Lemma 4.6]. With more work, one can show that G cannot be a nontrivial
product, i.e. it is a simple group [BW22, Prop. 4.8].

Concluding both proofs. We can list all the possibilites for G and observe that
either its reductive rank r is at least 2 or it is a simple group of type A1, i.e. G = SL(2)
and r = 1. The second case is the odd one in Theorem 4.1.3, where the current state of
the art is not enough to show that the variety is adjoint. However, it is clear that one way
to exclude it would be to show that the contact line bundle admits even more sections,
i.e. that h0(X,L) ≥ 4, so in particular by Corollary 3.5.1 we see that this situation is not
possible in dimensions up to 9.

In both cases, we sweep most of the heavy lifting needed to finish proofs under the rug
by invoking the following theorem:

Theorem 4.4.2 ([ORCW21, Thm 5.1]). Let (X,L) be a projective contact manifold of
dimension 2n+ 1. Assume that X is a prime Fano variety with the Picard group generated
by the contact line bundle. Moreover, let G be the identity component of a reductive group
of automorphisms of X such that rkG ≥ 2 and the action of the maximal torus T ⊂ G has
only isolated points as extremal fixed point components. Then G is a simple group of type
Br (r ≥ 3), Dr (r ≥ 4), E6, E7, E8, F4 or G2 and X is the associated adjoint variety.

The theorem above concludes the proofs of both Theorem 4.1.2 and Theorem 4.1.3,
and so it closes the discussion conducted in this chapter. In particular, by Corollary 3.3.6
and Corollary 3.5.1 assumptions of both theorems are satisfied when X is a contact Fano
manifold of dimension at most 2n + 1 = 9 with a reductive group of automorphisms, so
Conjecture 1 holds in dimensions up to 4n = 16.





CHAPTER 5

Symplectic and contact varieties in the singular setting

5.1. Introduction

As we have seen in the previous chapters, projective manifolds admitting a contact
structure are quite rare. This lack of examples is expected, but it makes studying them
more difficult. In particular, neither birational nor finite maps preserve the contact struc-
ture. Therefore, it would be beneficial to develop less restrictive notions and study their
relations with usual contact manifolds. In this chapter we focus on one particular gener-
alization, that of a singular contact variety. It constitutes an original contribution of the
author and these results will be published separately [Śmi23], however we note the explo-
ration of similar ideas in works of others. Moreover, we observe that sometimes resolutions
of singularities of contact varieties produce manifolds that only admit contact structures
on some open subset. Such manifolds are called generically contact and they provide an
alternative approach to weakening the notion of a contact manifold.

5.2. Symplectic singularities and varieties

The starting point for our discussion is the following classical construction, that pro-
vides a link between symplectic and contact manifolds:

Construction 5.2.1 (Symplectization). For a given variety Y with a line bundle L
over it, we can consider the total space of L∗ and remove the image of zero section to
obtain a C∗-bundle over Y , that will be denoted by L•. If we apply this construction to
a contact manifold X with the contact line bundle L and the twisted form ϑ then the
resulting L• has the structure of a symplectic manifold with the 2-form coming from ϑ
([Buc09, Thm E.6]). In such situation, L• is called the symplectization of X.

This well-established relation, along with a widely accepted and researched generaliza-
tion of the notion of a symplectic manifold to a singular setting provide both an additional
motivation and the guide to explore analogous ideas in the contact case. Therefore, now
we present a short survey of some results from the singular symplectic theory that have
contact analogues provided by the author’s work.

5.2.1. Definitions and basic properties.

Definition 5.2.2. [Bea00, Def. 1.1] We say that a normal variety has a symplectic
singularity at a point p if there is an open neighbourhood U 3 p such that its smooth
part admits a symplectic 2-form ω and the pullback of that form to any resolution of
singularities extends to a holomorphic 2-form on the whole resolution.

Similarly, a normal variety equipped with a symplectic form on its smooth locus whose
pullback to any resolution extends to a holomorphic 2-form on the resolving variety is
called a symplectic variety.

It is easy to see that symplectic singularities are rational and Gorenstein, as the top
wedge power of the symplectic form ω is the trivializing section of the canonical bundle
over the smooth locus that can be extended to the whole variety by normality. The inverse
statement is a nontrivial theorem of Namikawa:

47
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Theorem 5.2.3. [Nam01, Thm 6] A normal variety is symplectic if and only if it
has rational Gorenstein singularities and its smooth part admits a holomorphic symplectic
form.

We may observe that in particular symplectic singularities are examples of canonical
singularities.

A natural question that can be asked is: are resolutions of singularities of symplectic
varieties symplectic manifolds? The answer is negative in general, however the following
folklore result gives a necessary and sufficient condition for that:

Proposition 5.2.4. For a symplectic variety Y equipped with a form ω and any reso-
lution of singularities f : Ỹ → Y the following are equivalent:

(1) f is a crepant morphism,
(2) Ỹ is a symplectic manifold (we say that the resolution f is symplectic).

Proof. We have already observed that the canonical divisor of Y is trivial. If f is
crepant, it means that Ỹ also has a trivial canonical divisor, which outside of the excep-
tional locus is trivialized by the top wedge power of f∗ω. This trivializing section extends
over the exceptional divisor and is nonzero there, but this means precisely that the top
power of f∗ω is nowhere degenerate, so Ỹ is symplectic.

Going the other way around, if both Ỹ and Y have symplectic structures, it means
that K

Ỹ
and KY are trivial, so the resolution is crepant. �

5.2.2. Examples of symplectic varieties. The fundamental family of examples of
symplectic varieties comes from the Lie theory. We have already explained in Section 4.2.2
that every (co)adjoint orbit for a semisimple group G is equipped with a symplectic form.
Closures of orbits may fail to be normal, but their normalizations are examples of symplec-
tic varieties, as [Pan91, Thm 1] observed that they have rational Gorenstein singularities.
Moreover, Beauville proved:

Theorem 5.2.5. [Bea00, Theorem, p. 1] Let Y be a symplectic variety with an isolated
singularity p such that its projective tangent cone is smooth. Then (Y, p) is analytically
isomorphic to the closure of the minimal nilpotent orbit for some simple complex Lie algebra
with the singular point being mapped to 0.

Having some examples we can construct new ones by taking quotients:

Proposition 5.2.6 ([Bea00, Prop. 2.4]). Let Y be a symplectic variety and G a finite
subgroup of symplectomorphisms (i.e. automorphisms of Y that preserve the symplectic
form). Then the quotient Y/G is a symplectic variety.

We will present the original proof of the proposition, so that the reader may later
compare it with an analogous result for contact varieties (Theorem 5.3.24), where the
twist of the form slightly complicates the situation. Before that, we will state and prove
the folklore result that appears without a reference in the original exposition.

Lemma 5.2.7. Let Y be a smooth symplectic variety equipped with a symplectic form ω
and G a finite group of symplectomorphisms. For g ∈ G \ {1G} let Fg denote the locus of
points fixed by it. Then every irreducible component Z of Fg is a symplectic subvariety.

Proof. Denote byH the subgroup of G generated by g. The symplectic form ω defines
an isomorphism between TY and Ω1

Y , which is G-equivariant. At every point z ∈ Z the
tangent bundle can be decomposed as TzZ⊕Nz and the first summand is equal to (TzY )H

by an easy consequence of the Luna slice theorem [Dré04, Thm 5.4]. We have an analogous
decomposition for the cotangent bundle (Ω1

Y )z = (Ω1
Z)z ⊕N∗z where again we can identify
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(Ω1
Z)z with ((Ω1

Y )z)
H . Therefore, the isomorphism defined by ω maps TzZ isomorphically

onto (Ω1
Z)z and consequently Z is symplectic. �

Proof of Proposition 5.2.6. First, we observe that the normality of Y implies the
normality of Y/G. Indeed, let (Y/G)n be the normalization. By the universal property
of the normalization, we have a map Y → (Y/G)n and it is G-invariant, so it factorizes
through the quotient map Y → Y/G. The resulting map Y/G→ (Y/G)n is the inverse of
the normalization, so it is an isomorphism.

To show the existence of a symplectic form on Y/G that pulls back to a resolution,
consider the commutative diagram:

Ỹ Y

Ỹ/G Y/G

π̃

φ

π

ψ

where Ỹ/G is a resolution of singularities of Y/G and Ỹ is a resolution for Y making the
diagram commutative. For any g ∈ G \ {1G} let Fg be the locus of points fixed by g
in Ysm. Fg is of codimension ≥ 2 in Ysm, as its every component is a symplectic subvariety
by Lemma 5.2.7. Define the open subset Y0 = Ysm\

⋃
g 6=1G

Fg. Over Y0 the symplectic form
descends to the quotient Y0/G, and can be extended to (Y/G)sm because the difference
(Y/G)sm \ (Y0/G) has codimension ≥ 2. Denote the symplectic form on Y/G by ω. To
finish the proof we need to show that the meromorphic form ψ∗ω is actually holomorphic,
but this follows as the form φ∗π∗ω is holomorphic by the symplecticity of Y and by the
commutativity of the diagram it is equal to π̃∗ψ∗ω. �

5.2.3. Kaledin’s stratification. To end our survey of relevant symplectic results,
we discuss the existence of the canonical stratification for symplectic varieties, proved by
Kaledin (see [Kal06] for a definitive reference on which this section is based). The reason
for presenting it in greater detail is that later we will want to show that the construction
behaves well with respect to a possible C∗-bundle structure on a symplectic variety. Kaledin
was aware of this possible modification of his theorems [Kal06, Remark 2.6], it also was
stated without proof for a particular case in [MOSC+15, Proposition 5.9].

The basic idea is to switch focus from the symplectic structure to the Poisson structure:

Definition 5.2.8. Let Y be a complex scheme. We say that it is Poisson if OY has the
structure of the Poisson algebra, i.e. it is equipped with the skew-linear Poisson bracket
{·, ·} : OY ×OY → OY such that:

{a, bc} ={a, b}c+ {a, c}b (Leibniz rule),
0 ={a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} (Jacobi identity)

for any a, b, c ∈ OY . An ideal I such that {a, i} ∈ I for any a ∈ OY and i ∈ I is called a
Poisson ideal. A subscheme locally defined by a Poisson ideal is a Poisson subscheme.

Observe that for any f ∈ OY {f, ·} is a vector field, which will be denoted by Hf and
called a Hamiltonian vector field. Any such vector field preserves Poisson subschemes. As
the Poisson bracket is a derivation in both arguments, we can define the Poisson bivector Θ,
i.e. a map:

Θ: Ω1
Y ∧ Ω1

Y → OY
{f, g} = Θ(df ∧ dg),

such that [Θ,Θ] = 0 for the induced bracket on multivector fields (this condition is equiv-
alent to the Jacobi identity).
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The classical proposition below relates a Poisson structure to a symplectic one. We
present its proof, as it illustrates how to define the Poisson bracket on a symplectic variety
and how to calculate weights in the situation of a C∗-action.

Proposition 5.2.9 ([Kal06, Discussion in Section 2], [Buc09, Lemma D.15]). A
symplectic variety Y has the structure of a Poisson scheme. If moreover Y is equipped
with a C∗ action for which the symplectic form ω is homogeneous of weight k, then the
Poisson bracket is homogeneous of weight −k.

Proof. We need to define the bracket for any two functions f, g ∈ OY . As Y is
necessarily normal, the codimension of the singular locus is at least 2, so it is enough to
define {f, g} on the smooth locus and its extension to Ysing will be unique.

On Ysm we have a nondegenerate 2-form ω giving an isomorphism Ω1
Ysm
' TYsm. This

identification in turn defines the bivector Θ. Now, Θ is a Poisson bivector if and only if
the bracket satisfies the Jacobi identity, and this is equivalent to ω being a closed form.

To prove the second statement, observe that we have df = ω(Hf , ·) and if we denote
weight by w, we have w(df) = w(f) = w(ω) + w(Hf ). We also have {f, g} = df(Hg) so
w({f, g}) = w(f) + w(g)− w(ω). �

We are now ready to state the main result:

Theorem 5.2.10 ([Kal06, Thm 2.3]). Let Y be a normal symplectic variety. Then it
admits a finite stratification Y = Y0 ⊃ Y1 ⊃ ... ⊃ Yk by Poisson subschemes such that:

(1) Yr+1 is the singular locus of Yr.
(2) The normalization of every irreducible component of each stratum is a symplectic

variety.
Moreover, the Poisson bracket that exists on Y allows to define Poisson structures on strata
that are compatible with the symplectic forms.

We will not present the proof of this theorem. Instead, we note that the switch to
Poisson structure is crucial and that in the original exposition the statement does not
contain the claim on the compatibility, however it is an essential part of the proof [Kal06,
Section 2.3, Step 2].

5.3. Singular contact varieties

Having surveyed all relevant results from the theory of symplectic singularities, we can
finally discuss the notion of a singular contact variety along with its various properties.
Both the definition and every presented result is a contribution of the author, although
the reader can compare our proofs with their symplectic analogues to see both similarities
and differences. Moreover, later we focus on the projective case, where we are able to
determine the Kodaira dimension of a projective contact variety and give a classification
result in dimension 3.

5.3.1. Definitions and basic properties.

Definition 5.3.1. A contact variety is an algebraic variety X of odd dimension 2n+1
(n ≥ 0) with rational singularities and a globally defined line bundle L such that on the
smooth locus Xsm we have an exact sequence of vector bundles:

0→ F → TXsm
ϑ−→ L|Xsm → 0

which defines the contact structure on Xsm, i.e. dϑ : Λ2F → L|Xsm is nowhere degenerate.
Equivalently, one can demand that ϑ ∧ (dϑ)∧n as an element of H0(Xsm,Ω

2n+1
|Xsm ⊗ L

n+1
|Xsm)

has no zeroes.
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Remark 5.3.2. We recall our discussion on the admissibility of the one dimensional
case conducted in Remark 1.2.2 and uphold the convention established therein, i.e. we allow
it. As singular contact varieties are normal, it follows one dimensional singular contact
varieties are in fact smooth, so they are the classical contact manifolds. In particular,
Definition 5.3.1 is satisfied by any smooth curve.

Immediately from the definition we obtain:

Proposition 5.3.3. For a (singular) contact variety X, −KX is a Cartier divisor and
we have O(−KX) = L⊗n+1 in Pic(X). Therefore, singularities of X are canonical and
Gorenstein.

Proof. ϑ ∧ (dϑ)∧n gives an equality of (n + 1)L|Xsm and −KXsm in the class group
of Xsm. Since X is normal as its singularities are rational, we can take unique closures of
both divisors and prolong considered equality to the whole X. As L is in fact a Cartier
divisor, the canonical class also is. Then the equivalence provided by Theorem 2.1.7 implies
that X has canonical singularities. Moreover, rational singularities are in particular CM by
[KKMSD73, Ch. I, §3, Proposition], so local freeness of ωX implies that X is Gorenstein.

�

Remark 5.3.4. The idea of defining and studying contact structures in the singular
complex setting first appeared in [CF02], where authors give the definition of a contact
singularity. Their definition is local and they only demand the existence of a 1-form ϑ (on
the regular locus) such that ϑ ∧ (dϑ)n is nonzero there. These assumptions are enough
to prove that the singularity is quasi-Gorenstein, i.e. the canonical sheaf is locally free
([CF02, Lemma 3.1]) and cannot be isolated ([CF02, Thm 3.5]). However, Campana and
Flenner do not demand in their definition that a contact form extends over a resolution,
only that it is normal. This is a stark difference with the notions proposed by Beauville
and by the author. We assume that singularities of our varieties are rational, which in
particular implies the extension property – we discuss it in Lemma 5.3.12. Moreover,
at the end of the chapter we will be sufficiently equipped to construct an example of a
threefold that has contact singularities in the sense of Campana and Flenner but does not
satisfy the definition proposed by the author, for details see Example 5.4.11.

Similar ideas were also explored by Namikawa in e.g. [Nam16, Section 2] in the form
of contact orbifolds, that were used to study symplectic varieties with a good C∗-action.
As the name indicates, they are varieties that can locally be presented as quotients by
finite and commutative groups and that admit contact structures on the smooth locus.
On the other hand, the assumption on the global existence of the line bundle is relaxed –
Namikawa only assumes the local existence in the orbifold charts, so that some multiple of
such orbifold line bundle is an honest line bundle.

Now recall that in Construction 5.2.1 we have sketched how to associate a symplectic
manifold to a given contact manifold. As we have already indicated, we have defined
contact varieties in such a way to be able to extend this classical construction:

Theorem 5.3.5. If X is a contact variety, then L• is a symplectic variety such that the
symplectic 2-form ω is homogeneous of weight 1 with respect to the C∗-action. Going the
other way around, if Y is a symplectic variety having the structure of a principal C∗-bundle
over some base Z such that the symplectic form ω is homogeneous of weight 1, then the
base space Z is a contact variety.

In fact, the presence of the singularities does not change the situation much and one
can quickly reduce the proof of the theorem to the smooth case. Nevertheless, it will be
useful for us to understand the relation between symplectic and contact forms, so we sketch
the classical reasoning.
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Proof. For both statements, let π denote the natural projection from the total space
of the principal bundle onto the base.

To prove that L• is symplectic, we use the characterization provided by Theorem 5.2.3.
As singularities of X are rational Gorenstein by Proposition 5.3.3, so are those of L• and
we just need to provide the symplectic form on the smooth locus of L•. Consider the
following composition of maps:

TL•sm π∗TXsm π∗L|Xsm OL•sm .
Dπ π∗ϑ ι

The rightmost arrow is an isomorphism coming from the pairing between L and L∗, and
the 1-form (not twisted) being the composition of all three maps will be denoted by ϑ•.
Then one can show that nondegeneracy of ϑ implies the nondegeneracy of dϑ•, for details
see [Buc09, Section C.5].

Now we will prove the second statement. On Z we have a line bundle L which is the dual
of a line bundle associated to the principal bundle Y . Now, to show the (local) existence
of a twisted 1-form on Zsm we consider some open subset of Zsm on which Y (and L) are
trivial. ω is closed, so we can assume that it is exact and of the form ω = d(zφ + fdz)
(we separate z – the coordinate on the fiber). Using the properties of the differentiation
operator we can write it as ω = d(z(φ−df)) and put ϑ = φ−df . It is a unique homogeneous
1-form of weight 0 such that locally ω = d(zϑ) and one can check that it glues to a global
twisted 1-form with values in L. To show that ϑ defined in such a way is nondegenerate,
we again reason precisely as in the smooth case, proved in [Buc09, Prop. C.16]. �

As our construction is a natural generalization of the classical one, we will call (L•, ω)
obtained from a contact variety (X,L, ϑ) the symplectization of X. Before presenting
its applications, we will discuss what happens if we additionally assume that there is a
group G acting on a possibly singular contact variety X. First, recall from the discussion
after Lemma 4.4.1 that we have already observed that in the smooth case the contact line
bundle is equipped with a canonical linearization. In the singular case we need a more
subtle argument:

Proposition 5.3.6. Let (X,F,L) be a singular contact variety and G a group of au-
tomorphisms preserving the contact distribution F . Then L is equipped with the canonical
G-linearization.

Proof. Consider the product G×X with two morphisms toX: α corresponding to the
action and π2 – projection from the product. Then by [Bri15, Lemma 2.9] the bundle L is
linearized if and only if π∗2L ' α∗L. On the smooth locus we have the canonical action of G
on L, as it is a quotient of TXsm by F there. Moreover, G acts on TXsm preserving F , so
we have the above-mentioned isomorphism of pullback bundles on Xsm. As the singular
locus has codimension at least 2 by normality, this isomorphism extends to the whole X.
Indeed, on any open U ⊂ X trivializing both bundles such isomorphism is given by a
nowhere vanishing regular function f defined on U ∩Xsm. Any such f can be extended to
a nowhere vanishing regular function on the whole U by the normality of X. The resulting
linearization is canonical, as the unique extension of the canonically defined linearization
on the smooth locus. �

We note that in our setting we immediately obtain the following lifting property:

Corollary 5.3.7. In the setting of Proposition 5.3.6, any action of a group preserv-
ing the contact distribution lifts to the symplectization. If moreover the contact form is
invariant with respect to the G-action, then the symplectic form is invariant with respect
to the lifted action.
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Proof. The symplectization of X was defined as the total space of the dual of L with
removed zero section, so the existence of the linearization clearly implies that we have
an action of G on L•. If we assume that ϑ is preserved by G, then ϑ• is G-invariant
as a composition of G-invariant maps. Indeed, any group element g acts on differential
forms via the pullback, which is commutative with taking the exterior derivative, so ω, a
derivative of ϑ•, is G-invariant. �

Unfortunately, this observation does not go both ways: starting from G-invariant ω one
does not necessarily obtain an invariant twisted form downstairs. As locally ω = d(zϑ), the
action on both the fiber coordinate z and ϑ can be nontrivial and yet give an invariant ω.

The first application of the symplectization is to show the existence of the stratification,
analogous to the one discussed for symplectic varieties in Theorem 5.2.10.

Theorem 5.3.8. Let (X,L, ϑ) be a contact variety. Then there exists a finite stratifi-
cation X = X0 ⊃ X1 ⊃ ... ⊃ Xk such that:

(1) Xi+1 is the singular part of Xi.
(2) The normalization of every irreducible component of each stratum is a contact

variety.

Proof. Let (L•, ω) be the symplectization of (X,L, ϑ) and denote by π the natural
projection. Consider the symplectic stratification of L• existing by Theorem 5.2.10. To
prove our theorem it is enough to show that all strata and their normalizations have a
structure of a principal C∗-bundle induced from the one on L• and that induced forms are
homogeneous of weight wt(ω).

First, observe that the singular locus of L• must necessarily be preserved by the C∗-
action, if Z is an irreducible component of L•sing, then it still admit the structure of a
principal C∗-bundle. Then, the action can be lifted to the normalization Zn. To see it,
consider the diagram:

C∗ × Zn Zn

C∗ × Z Z,

id×η η

where η is the normalization morphism and the lower horizontal arrow comes from the
action. The existence of the map denoted by the dashed arrow comes from the universal
property of the normalization and it defines the C∗-action on the normalization. More-
over, Zn also admits the structure of a principal C∗-bundle, as it is equal to the pullback
(via the normalization morphism of π(Z)) of the principal bundle on π(Z).

Now we need that induced forms have the same weight as ω. To that end, recall that
symplectic forms on components of strata come from the Poisson structure. If we start with
the symplectic form on Ysm which is homogeneous of weight k, then by Proposition 5.2.9 the
Poisson bracket is homogeneous of weight −k. Now, the bracket extends over the singular
locus and it is still homogeneous of weight −k, so the induced forms on components of
strata, which have to agree with the bracket, have weight k. �

The existence of the stratification will come in handy in Section 5.4, where we will
study projective contact threefolds. Moreover, we can immediately observe the following:

Corollary 5.3.9. Let X be a singular contact variety. Then any component of the
singular locus has even codimension in X.
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5.3.2. Birational morphisms. Now we will discuss some birational maps of contact
varieties and manifolds, in vein of Proposition 5.2.4. To begin with, it is well-known
that projective contact manifolds do not admit birational Mori contractions ([KPSW00,
Lem. 2.10], we have already mentioned it when sketching the proof of Theorem 2.3.2). This
result can be easily strengthened via an application of the negativity lemma:

Theorem 5.3.10. Let f : X̃ → X be a birational morphism from a projective contact
manifold X̃ to a variety X with canonical and Gorenstein singularities (for instance X is
a projective contact variety and X̃ a resolution by a contact manifold). Then f is crepant.

Proof. By the assumptions on X, we can write

K
X̃

= f∗KX +
∑
i

aiEi,

where ai ≥ 0. Then D =
∑
aiEi corresponds to an effective Cartier divisor and f∗(−D) =

0, so f∗(−D) is also effective. Suppose that D is f -nef. In such case we obtain by the
negativity lemma [KM98, Lem. 3.39] that −D is effective, so D = 0 and we are done.

Now assume that D is not f -nef, so there exists a curve C contracted by f that
intersects D negatively. We can write

K
X̃
· C = f∗KX · C +D · C = 0 +D · C.

It follows thatK
X̃
·C < 0. Then the morphism contracting C is a Mori contraction, however

by [KPSW00, Lem. 2.10] such maps cannot be birational. We reached a contradiction,
so D must necessarily be f -nef. As we have already shown, in this case D = 0 and it
means precisely that f is crepant. �

To provide a converse for this statement, we need to discuss the notion of sheaf re-
flexivity. A coherent sheaf is reflexive if it is isomorphic to its second dual. Hartshorne
showed ([Har80, Prop. 1.6]) that a sheaf F on a normal and integral scheme Y is reflexive
if and only if it is torsion free and satisfies the Barth normality condition, i.e. for any open
U ⊂ Y and closed Z ⊂ U of codimension at least 2 the restriction F(U) → F(U \ Z) is
bijective, that is every section defined outside of Z possesses a unique extension. To prove
our main theorem, we need the following result concerning the reflexivity of differentials:

Theorem 5.3.11 ([GKKP11, Thm 1.4]). Let Y be a quasi-projective variety with
canonical singularities and a resolution of singularities f : Ỹ → Y . Then the sheaf f∗Ω

p

Ỹ
is reflexive for p ≤ dimY .

We note an easy consequence of Theorem 5.3.11:

Lemma 5.3.12. Let Y be a quasi-projective variety with canonical singularities and a
resolution of singularities f : Ỹ → Y . Assume that Y is equipped with a line bundle L and
a twisted form θ with values in L defined on the smooth locus θ : TYsm → L|Ysm . Then
there exists a unique twisted form θ̃ on the whole Ỹ with values in f∗L extending θ.

Proof. Consider the sheaf (f∗Ω
1
Ỹ

) ⊗ L on Y . It is reflexive, as a product of the line
bundle L with a sheaf that is reflexive by Theorem 5.3.11. Moreover, by the projection
formula this product sheaf is isomorphic to the pushforward sheaf f∗(Ω1

Ỹ
⊗ f∗L). Now put

U = Ysm and let Z be the singular locus of Y , which has codimension at least 2. The
reflexivity of f∗(Ω1

Ỹ
⊗ f∗L) implies that any section defined on U extends to the whole Y .

As we may consider θ as a section of (f∗Ω
1
Ỹ

)⊗ L defined over U , it extends uniquely to a
globally defined section. Finally, recall that from the definition of the pushforward sheaf
we have f∗(Ω1

Ỹ
⊗ f∗L)(Y ) = (Ω1

Ỹ
⊗ f∗L)(f−1(Y )), i.e. we have a globally defined twisted

form on the resolution with values in f∗L. �
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We are now ready to state and prove the main result of this section:

Theorem 5.3.13. Let (X,F,L, ϑ) be a quasi-projective contact variety. Suppose that
f : X ′ → X is a birational and crepant morphism such that f(Exc(f)) ⊂ Xsing. Then X ′
is again a contact variety with the distribution F ′ such that f∗F ′ = F on the smooth locus
of X and the contact line bundle is f∗L. In particular, a terminalization of a contact variety
is contact and a crepant resolution of singularities produces a classical contact manifold.

Proof. Let g : X̃ → X ′ be a resolution of singularities of X ′, which composed with f
becomes a resolution of singularities of X. By Lemma 5.3.12 X̃ is equipped with a twisted
form ϑ̃ with values in (fg)∗L (note however that we cannot show that it is epimorphic nor
nondegenerate on X̃). As X̃ is a resolution of singularities of X ′, we have an isomorphism
X̃ \ Exc(g) ' X ′sm, which allows us to define ϑ′ on the smooth locus of X ′.

Now recall from Proposition 5.3.3 that ϑ ∧ (dϑ)∧n can be extended to the whole X
and it is a nowhere vanishing section of O(KX) ⊗ L⊗(n+1). We pull back this section
to X ′, where it defines an isomorphism between O(−KX′) and f∗L⊗(n+1). Moreover, on
the intersection of X ′sm and any open U ⊂ X ′ trivializing f∗L this section agrees with
ϑ′ ∧ (dϑ′)∧n.

Finally, observe that ϑ′ is surjective on X ′sm. If this were not the case at some point
x ∈ X ′sm, then ϑ′ ∧ (dϑ′)∧n would be zero at x, which is absurd. We define F ′ to be the
kernel of ϑ′ and we clearly have f∗F ′ = F on Xsm, as the exceptional locus of f is mapped
to Xsing. �

Corollary 5.3.14. Let X be a projective contact variety. Then its resolution of sin-
gularities is a contact manifold if and only if the resolution morphism is crepant.

Now it is natural to wonder how much is broken by noncrepant resolutions, for instance
whether a general resolution preserves the existence of the contact distribution or the
surjectivity of the contact form. In general, this is not the case, but to discuss it let us
first introduce a more general class of manifolds:

Definition 5.3.15. A smooth variety (or a holomorphic manifold) X of dimension
2n+ 1 equipped with an exact sequence of vector bundles:

(20) 0→ F → TX
ϑ−→ L→ 0

such that L is a line bundle is called a generically contact manifold if dϑ|F is nondegenerate
on some open dense subset U of X. Equivalently, one can demand that (dϑ)∧n ∧ ϑ ∈
H0(X,Ω2n+1

X ⊗ L⊗n+1) is nonzero on U . The locus along which dϑ|F is degenerate is
necessarily an effective divisor, called the degeneracy divisor.

Remark 5.3.16. The notion of a generically contact manifold is relatively unexplored
in literature – the author is only aware of the existence of two works dealing with it. To be
precise, authors of [BKK22] observed that some of their results concerning singular lines
on contact manifolds still hold if we only assume that the contact structure is nondegenerate
generically. Initial study of generically contact manifolds was conducted in an unpublished
MSc degree thesis [Mro18], where in particular some examples and nonexamples were
provided.

We can prove that the resolution of a contact variety is generically contact only in a
very special case, as in general the twisted form on the resolution needs not to be surjective.

Proposition 5.3.17. Let (X,L, ϑ) be a quasi-projective contact variety with the singu-
lar locus consisting of disjoint, smooth subvarieties Zi. Moreover, assume that the excep-
tional locus E of the resolution f : X̃ → X consists of disjoint, smooth varieties Ei, each
mapping onto corresponding Zi. Then X̃ is a generically contact manifold.
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Proof. By Lemma 5.3.12 X̃ is equipped with a twisted form ϑ̃ with values in f∗L.
To claim the surjectivity of ϑ̃, we observe that every Zi has the induced (smooth) contact
structure by Theorem 5.3.8, so in particular we have a surjection TZi � L|Zi for every Zi.
Consider the following diagram:

TEi f∗|EiTZi 0

f∗|Ei(L|Zi),

where the horizontal epimorphism comes from the relative tangent sequence. ϑ̃ is sur-
jective over any component of the exceptional locus as a composition of surjections. We
therefore define the contact distribution F̃ as the kernel of ϑ̃. To finish, observe that by
our assumptions dϑ̃|F̃ is nondegenerate outside of E. �

We will see one example of a projective contact variety whose resolution is generically
contact in Example 5.3.28. The same reasoning can be used to show that the blow-up of a
contact manifold along a smooth subvariety Z such that ϑ|TZ is surjective has a generically
contact structure1, so further blow-ups along such subvarieties are still generically contact.
It is also clear from the proof that blow-ups along isotropic subvarieties force the twisted
form to be zero on the exceptional divisor. Consequently, one can easily modify any
resolution of singularities by such blow-up, so that the resulting variety does not even
admit an exact sequence as in Definition 5.3.15 and consequently, there is no globally
defined contact distribution.

We finish our discussion by noting that the seemingly small relaxation given by allow-
ing dϑ to degenerate makes the notion of a generically contact manifold quite unwieldy.
To be precise, the simple relation between the anticanonical divisor and the contact line
bundle, O(−KX) = L⊗(n+1) that holds for both smooth contact manifolds and singular
contact varieties gets replaced by O(−KX) = L⊗(n+1) ⊗ O(−B), where by B we denote
the degeneracy divisor (that can have components and nontrivial positive multiplicities)
[Mro18, Stw. 1.6]. Consequently, we cannot argue on the positivity of the anticanonical
bundle from our knowledge of L. Therefore, the notion of a generically contact manifold
may be too weak to obtain interesting results.

5.3.3. Quotients. In this section we will consider an action of a (finite) group G on
a possibly singular contact variety X preserving the contact distribution and our purpose
is to prove an analogue of Proposition 5.2.6. Since we are interested in varieties equipped
with some special vector bundles, we need to discuss the behaviour of these objects with
respect to taking quotients by group actions. In particular, we introduce the notion of a
bundle descent:

Definition 5.3.18. Let Y be a G-variety with a good quotient π : Y → Y/G. The
pullback of any vector bundle on Y/G has a natural structure of a G-vector bundle on Y .
We say that a G-vector bundle E on Y descends if there exists a vector bundle E ′ on Y/G
such that we have a G-equivariant isomorphism E 'G π∗E ′. This vector bundle, if it exists,
is unique and equal to (π∗E)G. We will frequently call it the descent of E .

The question on the existence of the descent was completely answered by Kempf:

1This result appears in Mroczek’s thesis [Mro18] only as a conjecture supported by examples, although
according to our common advisor, it was also proved by her.
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Lemma 5.3.19 (Kempf’s lemma, [DN89, Théorème 2.3]). Let Y be an algebraic variety
equipped with an algebraic action of a reductive group G such that there exists a good
quotient π : Y → Y/G. Let E be a G-vector bundle. Then E descends to a vector bundle
on the quotient if and only if for all closed points y ∈ Y such that the orbit G · y is closed,
the stabilizer Gy of y acts trivially on the fiber Ey.

It will be useful to have estimates on the dimension of subschemes stabilized by some
group elements, analogous to Lemma 5.2.7:

Lemma 5.3.20. Let (X,F,L) be a smooth contact manifold of dimension 2n + 1 ≥ 3,
G a finite subgroup of automorphisms preserving the contact distribution F and Zg the
subscheme of points of X stabilized by some g ∈ G\{id} (it can have multiple components).
Then Zg does not have any divisorial component, i.e. its codimension in X is at least 2.

Proof. Let us pick a smooth point x in some component Y ⊂ Zg. From the Luna
slice theorem [Dré04, Thm 5.4] we have TxY ' (TxX)G, so to calculate the dimension
of Y at each point it is enough to determine the dimension of the invariant subspace of
the tangent space. To that end, define H to be the subgroup of G generated by g and
observe that (TxX)G ⊂ (TxX)H , so we will consider this bigger subspace. Denote by φg
the automorphism of TxX induced by g. By the definition of G we have φg(F ) ⊂ F and
the invertibility of φg implies that φg(F ) = F . The short exact sequence appearing in
Definition 1.2.1 implies the existence of a direct sum decomposition TxX = Lx ⊕ Fx that
in our case is in the category of G-modules. φg is an invertible linear map such that φkg = id
for some k ∈ Z>0, so by picking a diagonal base for F we obtain φg = diag(ξ0, ξ1, ..., ξ2n),
where ξi are roots of unity of degree dividing k and let ξ0 be the root acting on Lx. The
nondegeneracy of the contact form implies that there is an isomorphism F ' F ∗⊗L. This
isomorphism gives us the following equality of sets: {ξ1, ..., ξ2n} = {ξ−1

1 · ξ0, ..., ξ
−1
2n · ξ0}.

Now, if ξ0 6= 1 then it follows that it is not possible for all other roots to be equal to 1, so
(TxX)H has codimension at least 2 in TxX, so we conclude. If ξ0 = 1, then the equality of
sets above is not enough to conclude. Recall that we have OX(−KX) = L⊗(n+1), so in this
case the action of φg on OX(−KX)x is also trivial. But this implies that ξ0 ·ξ1 · ... ·ξ2n = 1,
so it is not possible that only one root differs from 1 and we conclude as before. �

From the proof above one can also deduce a statement on the singularities of the
quotient:

Corollary 5.3.21. In the setting of Lemma 5.3.20, if π : X → X/G is the quotient
map, then the variety X/G is singular along π(Zg) for every g ∈ G \ {id}.

Proof. Recall the classical theorem attributed to Chevalley-Shephard-Todd [Ben93,
Ch. 6]: the quotient is smooth if and only if the stabilizer of each point is generated by
pseudoreflections, that is elements that fix pointwise a codimension 1 subvariety contain-
ing x. But we have just seen in the proof of Lemma 5.3.20 that subvarieties preserved by
any element of G have codimension at least 2. Therefore, the image of any point with a
nontrivial stabilizer is singular. �

We understand now which smooth points of X become singular in the quotient, but it
is also possible that some singular points of X get mapped to smooth ones. Such situation
poses a significant obstacle, as then it is not clear how to define the contact distribution
on those unexpectedly smooth points. To avoid this difficulty, we will explicitly assume
π(Xsing) ⊂ (X/G)sing. Let us put X = Xsm \

⋃
g∈G\{id} Z

g and observe that with our
assumption X is precisely the preimage of (X/G)sm. Moreover, if we restrict ourselves
to X , then every G-linearized vector bundle on X has a descent (to a vector bundle on
(X/G)sm) and the morphism π is étale, i.e. flat and unramified. It follows that we have
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an isomorphism of tangent spaces TX ' π∗T (X/G)sm [Mil13, Ch. I, Prop. 2.9] and the
tangent bundle of X descends to the tangent bundle of (X/G)sm. This discussion guides
us to propose the following definition:

Definition 5.3.22. Let (X,F,L, ϑ) be a contact variety of dimension 2n+1 ≥ 3 and G
a finite group of automorphisms preserving F . Moreover, assume that the quotient map π
satisfies π(Xsing) ⊂ (X/G)sing. Let us take the contact exact sequence of X restricted to
X :

(21) 0→ F|X → TX
ϑ|X−−→ L|X → 0.

Consequently, we have a sequence of vector bundles on (X/G)sm:

(22) 0→ (π∗F|X )G → T (X/G)sm
ϑ′−→ (π∗L|X )G,

that is exact, as it comes from the application of two left exact functors, π∗ and (·)G. We
say that X/G has the induced contact structure if the above sequence of vector bundles on
(X/G)sm gives a contact structure on X/G. Precisely, we demand the surjectivity of ϑ′,
the existence of the line bundle L′, extending (π∗L|X )G and the nondegeneracy of dϑ′.

Our goal now is to discuss conditions that imply the existence of the induced contact
structure on the quotient. First observe that clearly the existence of the descent of L is a
necessary condition, however the following example illustrates that it is not sufficient:

Example 5.3.23. Let us consider C4 3 (x0, x1, x2, x3) with the symplectic form ω =
dx0 ∧ dx2 + dx1 ∧ dx3 and the action of Z2 with generator g, where g · (x0, x1, x2, x3) =
(x0, x1,−x2,−x3). Then the projective space P3 = P(C4) has the (standard) contact
structure (F,L, ϑ) and an action of Z2. The symplectic and contact forms are not fixed
by the action: in fact we have g · ω = −ω, g · ϑ = −ϑ. At the same time, the line bundle
O(−1) admits a linearization coming from the action on C4 and as a result, the action of
the stabilizer of any point x on Lx = O(2)x is trivial. Moreover, the kernel of ϑ, i.e. F is
preserved by the action. Consequently, the quotient P3/Z2 admits a globally defined line
bundle descended from L, a rank 2 distribution defined on its smooth locus that is induced
by F , yet they do not give the structure of a contact variety, as the map induced from ϑ
is 0.

We are now ready to state our criterion:

Theorem 5.3.24. Let (X,F,L, ϑ) be a contact variety of dimension 2n+ 1 ≥ 3 and G
a finite group of automorphisms preserving F . Suppose that the quotient map π satisfies
π(Xsing) ⊂ (X/G)sing. The quotient X/G has the induced contact structure (F ′, L′, ϑ′) if
the following two conditions are satisfied:

(1) ∀x∈Xsing Stab(x) acts trivially on Lx.
(2) ∀g∈G g∗ϑ = ϑ,

As the proof of the theorem above utilizes euclidean topology, the following folklore
argument will allow us to go back to the algebraic category:

Lemma 5.3.25. Let Y be a smooth algebraic variety and suppose that we have a mor-
phism of locally free sheaves

φ : T → L,
where L has rank 1 and T has rank r ≥ 1. Assume that on the analytification Y an (i.e. Y
equipped with the euclidean topology) the induced morphism φan is a surjection of sheaves.
Then φ also is a surjection of sheaves.
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Proof. The surjectivity of φan is equivalent to the surjectivity on the stalks. Conse-
quently, for any point y ∈ Y an we have a surjection:

φany : T any =
⊕
r

Oany,Y → Oany,Y = Lany .

Now let us consider the completion of the analytic local ring, Ôany,Y that remains local
and is canonically isomorphic to Ôy,Y . The map φany is determined by some holomorphic
function, so by taking its Taylor expansion we obtain the map:⊕

r

Ôy,Y → Ôy,Y

that is still surjective, as the completion functor is exact. Now we can take the quotient of
both local Ôy,Y -modules by the maximal ideal of Ôy,Y to obtain fibres of associated vector
bundles, that will be denoted by T (y) and L(y). We have the following commutative
diagram (note that this time the stalks are algebraic and y is a closed point):

Ty Ly

T (y) L(y).

The lower horizontal arrow is surjective, as it comes from a surjective map of modules, so
the basis element ` spanning L(y) has a preimage τ in T (y). By the Nakayama Lemma
we can lift τ to an element of Ty that gets mapped to a generator of Ly, so the map
of algebraic stalks over y is surjective for any closed point y ∈ Y . But Y is a smooth
algebraic variety, so in particular as a scheme it is noetherian and locally of finite type
over C, consequently any open subset of Y containing all closed points is the whole Y .
Therefore, we can conclude that surjection on stalks over closed points implies surjection
over stalks on any point by [AM69, Prop. 3.9]. �

Proof of Theorem 5.3.24. To begin with, we recall the result of Boutot [Bou87,
Corollaire, p.2] who showed that any quotient of a variety with rational singularities by a
reductive group still has rational singularities. Let π : X → X/G be the quotient map. As
before, Zg is the locus of points of Xsm fixed by g ∈ G \ {id} and let Z =

⋃
g∈G\{id} Z

g.
Any component of Z has codimension at least 2 by Lemma 5.3.20.

Observe now that the listed conditions imply that L descends to the quotient. Indeed,
let x ∈ X be any point with a nontrivial stabilizer Stab(x) ⊂ G. If x ∈ Xsm then the
invariance of the form implies that the action of Stab(x) on Lx is trivial. Indeed, we have a
direct sum decomposition of G-modules: TxX = Fx⊕Lx and ϑx is the projection onto the
second summand. If there were g ∈ Stab(x) acting nontrivially on Lx, then the projection
from TxX onto Lx (i.e. ϑ) would not commute with the action of g and this is not the case.

If x ∈ Xsing, then the triviality of the action of Stab(x) on Lx is directly assumed in
the first listed condition and we claim the existence of the descent by Lemma 5.3.19. The
resulting line bundle L′ will be the contact line bundle for X/G.

The second listed condition implies that the map of the descended bundles induced
from ϑ is an epimorphism. Recall that in our setting X is precisely the preimage of
(X/G)sm. To prove the surjectivity, it is enough to see that the map (π∗TX )G → (π∗L)G

is surjective on stalks over the points of (X/G)sm. First, we will show it in the analytic
category, where the stalk over x consists of pairs (s,G · U), where U is an open (in the
euclidean topology) subset of X, U contains some preimage of x and s is an invariant
section defined on G · U . Without losing generality, we can assume that U is connected
and G ·U is a disjoint union of |G| copies of U , each one containing a single preimage of x.
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Now if σ is a section of L defined on U , then g∗σ is a section of L defined on g · U
(recall that the action on sections is given by g∗ ·σ(x) = σ(g ·x)). Therefore, by translating
a given σ by every g ∈ G we obtain a G-invariant section of L defined on G ·U (note that
the finiteness of G is crucial for our construction to work). By a slight abuse of notation
we will denote such G-invariant section

∑
g∈G g

∗σ. Note that in this way we can obtain
every G-invariant section defined on U . By the surjectivity of ϑ, there is a section τ of TX
defined on U such that ϑ(τ) = σ. We construct an associated G-invariant section defined
on G ·U for τ , that we again denote by

∑
g∈G g

∗τ . By the invariance of ϑ it gets mapped to∑
g∈G g

∗σ, so ϑ′ is indeed surjective for the analytic topology. To move back to algebraic
category, apply Lemma 5.3.25.

To see that dϑ′ is nowhere degenerate on (X/G)sm, we use ideas that appeared in our
discussion of generically contact manifolds in the previous subsection. Namely, suppose
that ϑ′ is degenerate along some nontrivial degeneracy divisor B ≥ 0 (the effectiveness of B
is shown in [Mro18, Stw. 1.6]), then we have O(X/G)sm(−K(X/G)sm) = (L′|(X/Gsm))

⊗(n+1)⊗
O(X/G)sm(−B) in the Picard group of (X/G)sm. We pull back this relation to X , but it
can hold only if π∗O(X/G)sm(B) = OX , as X is a smooth subset of a contact variety, whose
complement has codimension at least 2. Triviality of pullback implies that O(X/G)sm(−B)
is a torsion element of the Picard group. To see it, observe that as π is finite and flat of
degree d (on X ), we can define a covariant map π∗ between Picard groups by:

π∗(L|X ) = (

d∧
π∗L|X )⊗ (

d∧
π∗OX )−1.

The composition π∗ ◦ π∗ is multiplication by d, so if an element of the Picard group of
the target is in the kernel of π∗, it is in the kernel of the multiplication, i.e. it is a torsion
element. But a nontrivial effective Weil divisor cannot give a torsion element in the Picard
group, so we must have B = 0. Consequently, dϑ′ is nowhere degenerate on the smooth
locus and the proof is concluded. �

This criterion will be used to construct two examples of contact varieties, namely
Example 5.3.27 and Example 5.3.28.

Remark 5.3.26. There are some differences between contact and symplectic cases.
First one is that Lemma 5.2.7 shows that components of loci stabilized by some group
element are symplectic, while Lemma 5.3.20 only shows that their codimension is big
enough. We discuss it a little further after showing additional examples in Remark 5.3.29.

The second stark difference is that to prove Theorem 5.3.24 it was not enough to assume
the invariance of the form and we needed an additional assumption on the triviality of the
action on the fibers over the singular locus. Clearly, we use it to see that the contact
line bundle descends to the quotient. One could hope that it is possible to get rid of
this assumption by the use of the stratification theorem, if the induced contact forms
on the strata were G-invariant. However, as we have explained in the discussion after
Corollary 5.3.7, there is no reason to believe that this is the case and the twist of the
contact form constitutes an unavoidable complication in the study of the contact varieties.

5.3.4. Examples – toric quotients and projectivized orbits.

Example 5.3.27. To see applications of the results just presented, we will work out in
detail one particular example which is especially accessible as it is toric (for the reference on
toric varieties see [CLS11]). Start with an affine space with fixed even dimension C2n+2

and a symplectic form: dx0 ∧ dxn+1 + ... + dxn ∧ dx2n+1. Consider the finite group Ĝ
of symplectomorphisms generated by ξi for i = 1, ..., n, where ξi acts on a vector by
multiplying its i-th and (i+ n+ 1)-th coordinate by (−1), i.e.:

ξi(x0, ..., x2n+1) = (x0, ..., xi−1,−xi, xi+1, ..., xi+n,−xi+n+1, xi+n+2, ..., x2n+1).
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Note that Ĝ is a subgroup of T 2n+2, the torus giving C2n+2 the structure of a toric variety.
Now take the associated projective space P2n+1 equipped with an induced contact form
ϑ =

∑n+1
i=0 (xidxi+n+1−xi+n+1dxi). Observe that the action of Ĝ descends to the projective

space, it is a subgroup of the torus T 2n+1 ⊂ P2n+1 and it preserves the twisted form. Denote
the resulting group of automorphisms of P2n+1 preserving the contact structure by G ' Zn2
and consider the quotient X = P2n+1/G. By Theorem 5.3.24 X is a contact variety, as for
all g ∈ G we have g∗ϑ = ϑ.

To describe X explicitly as a toric variety, let M = Hom(T 2n+1,C∗) be the lattice of
characters andN ' Z2n+1 the dual lattice spanned by e1, ..., e2n+1. Then P2n+1 is described
by Σ ⊂ NR. It is a complete fan having ρ1 = e1, ..., ρ2n+1 = e2n+1, ρ0 = −e1 − ...− e2n+1

as rays and such that every strict subset of rays spans a cone. Now, finite subgroups of
the torus correspond bijectively to finite index sublattices ι : M ′ ↪→M , so dually we have
an inclusion N → N ′ with a finite cokernel (equal to G), so that NR = N ′R. Therefore,
to obtain the fan Σ′ of the quotient variety, take the image of Σ via the adjoint π of the
inclusion ι. Our choice of generators of ι(M ′) will be: wi = e∗i + e∗i+n+1 and wn+i+1 =
e∗i − e∗i+n+1 for n = 1, ..., n and wn+1 = e∗n+1, so that the matrix of ι is symmetric and in
consequence it also describes π.

The fan of X is spanned by the following 2n+ 2 rays: ρ′i = ei + ei+n+1 and ρ′n+i+1 =
ei − ei+n+1 for n = 1, ..., n, ρ′n+1 = en+1 and ρ′0 = −2 · (e1 + ... + en) − en+1 and any
strict subset of rays forms a cone. We denote the cone of the form Cone(ρ′i, ρ

′
n+i+1) for

i = 0, ..., n (mind the case i = 0) by σi. Every such cone is singular as its generators cannot
be extended to a basis of the whole lattice, and it corresponds to a codimension 2 singular
subvariety of X, that is the image of P2n−1 = {[x0 : ... : x2n+1] | xi = xi+n+1 = 0} via
the quotient map. On the other hand, every cone that does not contain any of the σi as a
subcone is smooth. The columns of the matrix below are precisely rays of the fan of X for
dim(X) = 5. Observe that i-th and (i+ 3)-th column span the singular cone σi:


−2 1 0 0 1 0
−2 0 1 0 0 1
−1 0 0 1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

 .
Now we will describe a certain (non-standard) resolution of singularities of X. Toric
resolutions of singularities are provided by particular refinements of the fans that do not
change smooth cones and subdivide singular ones. Our resolution works in n+1 sequential
steps, indexed by i ∈ {0, ..., n}. Put Σ′−1 = Σ′ and X−1 = X. Suppose now we are
given a fan Σ′i−1. Define a new ray ρ′Ei = 1

2(ρ′i + ρ′i+n+1) (every such added ray will
be called exceptional) and refine Σ′i−1 by dividing σi onto two (smooth) cones: σ′i =
Cone(ρ′i, ρ

′
Ei

) and σ′′i = Cone(ρ′n+i+1, ρ
′
Ei

). Analogously, divide every cone that contained
σi into two new cones. The fan that we have obtained by this refinement is Σ′i and the
corresponding toric variety isXi. Such an operation is a particular example of a generalized
star subdivision (see [CLS11, §11.1] for details) and in particular it corresponds to a
projective morphism [CLS11, Prop. 11.1.6]. By construction, this morphism is birational
and it is an isomorphism on the smooth locus of Xi−1.

Now observe that the final fan Σ′n is smooth, as we have divided every singular cone
of Σ′ into subcones that are eventually smooth. Columns of the matrix below are rays
of the resolution for dim(X) = 5, where exceptional rays are in the last columns of the
matrix. By the construction, cones of the fan are formed by any subset of rays, subject to
two rules:
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(1) there are no cones containing both ρ′i and ρ
′
n+i+1 for any i (as they were divided

in some step),
(2) if a cone contains an exceptional ray ρ′Ei then it must contain either ρ′i or ρ

′
i+n+1.

−2 1 0 0 1 0 1 0 −1
−2 0 1 0 0 1 0 1 −1
−1 0 0 1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0


We remark that this resolution of singularities is not standard: the algorithm described for
example in [CLS11, Thm 11.1.9] in each step picks and divides the cone with the biggest
multiplicity. In our case, it would be one of the higher dimensional cones, containing all
but one σi. However such resolution, that blows up centers of higher codimension first,
would not be crepant.

To see how the (anti)canonical divisor behaves with respect to our resolution, recall
first that for any toric variety given by a fan, the class of the anticanonical divisor is equal
to the class of the sum of all torus-invariant divisors (corresponding to rays) by [CLS11,
Thm 8.2.3]. In our case, −KX is Cartier and can be described in terms of a support
function φ whose domain is N ′R and that is linear on each cone [CLS11, Thm 4.2.11]. In
the case of the anticanonical, the value of φ on each ray generator is −1. Pulling back
this support function to any Σ′i we see that it takes value −1 also on the generator of
any exceptional ray. This however implies that it is equal to the support function of the
anticanonical of Xi, i.e. the maps Xi → X are all crepant and so are Xi → Xj for i > j.

Now, by Theorem 2.3.2 and Theorem 5.3.13 Xn has to be isomorphic to P(T (P1× ...×
P1)). It can also be seen directly, as described in [OM78, Prop. 7.3 and (7.6’)]. We take
the lattice N ′ and project it by restricting to last n + 1 coordinates. Then the image of
Σ′n is the product fan for n + 1 copies of P1, so Xn is equipped with the projection onto
P1 × ... × P1. The kernel of the lattice projection contains the standard fan of Pn, and
this is the fiber of this projection. Toric computations show that this bundle is in fact
the projectivization of O(2, 0, ..., 0) × ... × O(0, ..., 0, 2) = TP1 × ... × TP1. The diagram
below ilustrates our example: the vertical map is the finite quotient and horizontal ones
are sequential blow-ups.

P2n+1

P(T (P1 × ...× P1)) = Xn Xn−1 ... X0 X

The significance of this example comes from the fact that it allows us to provide a link
between P2n+1 and P(T (P1× ...×P1)), i.e. two distinct families of contact manifolds via the
quotient operation and a carefully chosen resolution, such that the intermediate varieties
are contact in the sense of our Definition 5.3.1. It is an interesting question whether other
contact manifolds can be linked similarly.

Example 5.3.28. Now take X = P5 with the contact and toric structure as described
in the previous example and let ξ be the generator of Z2. Assume that Z2 acts on X by:
ξ · [x0 : x1 : x2 : x3 : x4 : x5] = [x0 : −x1 : x2 : x3 : −x4 : x5] and consider the quotient
of X by this action. By Theorem 5.3.24 it is a contact variety. The fixed point locus has
two connected components, described by x1 = x4 = 0 (P3) and x0 = x2 = x3 = x5 = 0
(P1), which get mapped isomorphically onto two components of the singular locus in the
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quotient. The (toric) resolution is provided by two disjoint blow-ups centered at those
components. One can check that the resulting smooth variety has no chance of being
contact, as its canonical divisor is not divisible by 3 in the class group. Nevertheless,
the partial resolution obtained by blowing up just the bigger component is crepant, so it
is another projective contact variety, call it X ′. Now, assumptions of Proposition 5.3.17
are satisfied, as the resolution of X ′ is provided by a blow-up along the singular locus
isomorphic to P1. Consequently, the resulting variety is generically contact in the sense of
Definition 5.3.15.

Remark 5.3.29. In both of those examples, as in earlier Example 5.3.23, every compo-
nent Y of the locus of points stabilized by some nontrivial g (denoted by Zg) is a contact
submanifold of some projective space. Indeed, in all three cases the group action is first
defined on the affine space, so we have a linearization of O(−1). Moreover, every group
element has order 2, so the stabilizers necessarily act trivially on respective fibers of O(2).
Consequently, at each point y ∈ Y we have Ly ⊂ TY Y and the restriction of the twisted
form to Y gives it a contact structure.

It is equally easy to give an example of the action for which components of Zg are
isotropic. To that end, take C4 with the symplectic form as before and let Z4 act on it via
(x0, x1, x2, x3) 7→ (i ·x0,−i ·x1, i ·x2,−i ·x3). The resulting projective space with an action
of Z2 is isomorphic as a G-variety (without taking into account the contact structure) to
the one described in Example 5.3.27 with n = 1. However, the linearization is different,
and for instance if Y is given by x1 = x3 = 0, then the stabilizer of each point y ∈ Y
acts nontrivially on Ly = O(2)y. Consequently, TY ⊂ F and Y is an isotropic subvariety.
Note that the quotient by this action does not result in a variety with the induced contact
structure, as O(2) does not descend (and the contact form is not G-invariant).

However, in general we cannot claim that components of the locus stabilized by some
g ∈ G are isotropic or contact, as we are dealing with finite groups and our reasonings are
pointwise.

As in the case of symplectic varieties, the second source of examples after quotients of
known objects are (projectivized) orbits.

Proposition 5.3.30. For a semisimple group G with a Lie algebra g consider a nilpo-
tent orbit O ⊂ g∗ and its projectivization P(O) ⊂ P(g∗). Then the normalization of its
closure P(O)

n
is a contact variety.

Proof. As we have already seen in Section 5.2.2, the normalization of a nilpotent orbit
closure is a symplectic variety. Moreover, the natural C∗-action lifts to the normalization
and the Kostant-Kirillov form is homogeneous of weight 1. As the normalization commutes
with the projectivization, we conclude by the Symplectization Theorem 5.3.5. Note that
the contact line bundle comes from the restriction of OP(g∗)(1). �

The idea of studying projectivizations of closures of nilpotent orbits already appeared
in the literature, we mention in particular the unpublished preprint [Fu06], whose author
proves some properties of their resolutions. Let us also point out that contrary to the
smooth case, where for each type of a simple group we only have one manifold, corre-
sponding to the projectivization of the minimal nilpotent orbit, we can obtain singular
examples from any nilpotent orbit for a semisimple group, so even those specific examples
are more frequent.

Remark 5.3.31. The language of nilpotent orbits allows us to give an alternate de-
scription of both described examples. To begin with, consider the simple group SL(2). Its
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Lie algebra sl(2) is 3 dimensional and has the 2-dimensional nilpotent cone:

N =

{[
x y
z −x

]
| x2 + yz = 0

}
= SL(2) · E1,2,

that – when we pass to the projectivization of the algebra – gets mapped to P1, that is
simultaneously the minimal and the principal orbit. Now take a product of (n+ 1) copies
of SL(2). It is a semisimple group whose algebra is a direct sum of (n+ 1) copies of sl(2)
and the adjoint action is component-wise. In particular, the nilpotent cone is the sum
of nilpotent cones of the components. Every nilpotent orbit has generator of the form
(m0,m1, ...,mn) where each mi is either the zero matrix or the elementary matrix E1,2.
Clearly, the element (E1,2, ..., E1,2) belongs to the principal orbit. Moreover, for an orbit
given by a generator we can obtain generators of orbits lying in its closure by replacing
some nonzero mi’s by zero matrices.

To see that the projectivization of the nilpotent cone coincides with the toric quotient
variety described in Example 5.3.27, let us define a map:

C2n+2 → sl(2)⊕ ...⊕ sl(2),

(x0, x1, ..., x2n+1) 7→
([
x0 · xn+1 x2

0

−x2
n+1 −x0 · xn+1

]
, ...,

[
xn · x2n+1 x2

n

−x2
2n+1 −xn · x2n+1

])
.

Now observe that the image of the affine space is precisely the nilpotent cone and that
the map descends to the morphism between the projectivizations (of the affine space and
of the algebra). Moreover, recall that in Example 5.3.27 we have defined an action of the
group Z2× ...×Z2 on P2n+1 and we see that the projectivization of our map is constant on
orbits of this action. Finally, by a direct computation we may verify that the symplectic
forms agree and in this way we rediscover our toric quotient as a projectivized nilpotent
cone. Moreover, the resolution that we have described is the projectivized version of the
Springer resolution (see [Gin98, Section 6] or [Fu03] for a reference).

Example 5.3.28 is a union of 3 orbits in the projectivization of the algebra sp(4)⊕sl(2).
Recall from Section 4.2.2 that for the symplectic group the adjoint variety is the projective
space, embedded via the Veronese map. We put:

C6 → sp(4)⊕ sl(2),

(x0, x1, x2, x3, x4, x5) 7→



x0x5 x0x3 x2

0 x0x2

x2x5 x2x3 x0x2 x2
2

x2
3 x3x5 −x0x5 −x2x5

x3x5 x2
5 −x0x3 −x2x3

 , [x1x4 x2
1

−x2
4 −x1x4

] .

One can see that the 4 × 4 matrix is indeed an element of the algebra sp(4): the off-
diagonal 2×2 blocks are symmetric and the lower diagonal block is the negative transpose
of the upper diagonal block. Moreover, it is traceless and of rank 1, so it is nilpotent and
more precisely belongs to the minimal (nilpotent) orbit O[2,1,1]. As before, we pass to the
map between projective spaces and observe that it is constant on Z2-orbits to conclude.
The two components of the singular locus described in Example 5.3.28 are precisely the
projectivizations of the two minimal orbits of sp(4) and sl(2).

5.3.5. Existence of rational curves. It would be desirable to have the full clas-
sification of possible Mori contractions for singular contact varieties, analogous to Theo-
rem 2.3.2. Unfortunately, it is currently out of reach, but we can recreate initial steps. To
begin with, Theorem 2.3.1 of Demailly was very recently generalized by Cao and Höring,
so that we can claim:

Proposition 5.3.32. Let (X,F,L, ϑ) be a projective contact variety. Then L∗ is not
pseudoeffective. Consequently, X is uniruled and it admits a Mori contraction.
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Proof. We first need to verify that we are indeed in the setting of [CH22, Thm 1.2],
i.e. that X is a normal compact Kähler space (in the sense of [Uen83, Def. 1.1]) with klt
singularities and that L∗ is a reflexive sheaf of rank 1. The second claim is clear, as locally
free sheaves are reflexive. X is clearly compact and has klt (in fact canonical) singularities.

To see that X is a Kähler space, observe that it has an embedding in a projective space
PN and we may consider the (1, 1) form ω coming from the restriction of the curvature of
the Fubini-Study metric on OPN (1). The form ω gives a Kähler metric on Xsm. Moreover,
the local embeddings from the definition of the Kähler space are provided by the global
embedding X ↪→ PN .

Consequently, we may apply [CH22] and observe that if L∗ were pseudoeffective, then
the kernel F of the twisted form ϑ ∈ H0(X, (Ω1

X)∗∗ ⊗L) would define a foliation, but it is
absurd, as F is non-integrable.

Now, as L∗ is not pseudoeffective, the same thing holds for O(KX) and for O(K
X̃

),
where X̃ is a resolution of singularities (we use the fact that X has canonical singularities).
Consequently, [BDPP13, Thm 2.2] implies that X̃ admits a moving family of rational
curves intersecting negatively with K

X̃
, so in particular the Mori cone has a nontrivial

K
X̃
-negative part. The images (via the resolution map) of curves from this family cover

X and they intersect negatively with KX . �

In the singular case the Cone Theorem 2.2.2 states that any curve C spanning an
extremal ray has bounded intersection with −KX . It can be translated to the condition
that L · C ∈ {1, 2, 3} for the contact line bundle L. Unfortunately we cannot further
mimic the proof of Theorem 2.3.2 as for the rational curves on singular varieties we cannot
present the bound on dimension of the space of morphisms from Theorem 2.2.4 in terms
of cohomology. Consequently, the locus-fiber inequality from Theorem 2.2.7 does not take
an easily computable form, so we cannot compute the dimension of fibers, nor claim that
there are no birational Mori contractions. The situation is clearer in the cases where the
projective contact variety X admits a crepant resolution.

Proposition 5.3.33. Let (X,L) be a singular projective contact variety admiting a
crepant resolution. Then it has a unique KX-negative ray in its Mori cone and the rational
curve C generating it satisfies L ·C = 1. Moreover, the induced contraction is of fiber type
(i.e. it is onto a variety of lower dimension).

Proof. Let f : X̃ → X be the resolution morphism. By Theorem 5.3.13 and Theo-
rem 2.3.2 we have (X̃, f∗L) = (P(TM),OP(TM)(1)) for some manifold M and there is a
unique KP(TM)-negative ray in the Mori cone of P(TM), generated by the rational curve `
in the fiber of the natural contraction P(TM) → M . Moreover, OP(TM)(1) · ` = 1. The
morphism f is crepant and surjective, therefore the induced map f∗ on 1-cycles is surjec-
tive and for any 1-cycle γ on P(TM) we have γ · KP(TM) = f∗γ · KX , so we also have
γ · f∗L = f∗γ · L. Therefore, the curve f∗` generates the unique KX -negative ray and
f∗` · L = 1. Finally, the surjectivity of f implies that the locus of the contraction associ-
ated to f∗` is the whole X. �

The stark difference with the smooth case is that we cannot determine the dimension
of the variety obtained via the Mori contraction. We can illustrate it using the diagram of
commuting contractions coming from Example 5.3.27 for dim(X) = 5:
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P(T (P1 × P1 × P1)) X1 X0 X

P1 × P1 × P1 P1 × P1 P1 ∗

Upper horizontal arrows are crepant blow-ups, while the vertical ones are Mori contrac-
tions: even though the dimesions of contact varieties do not change, they get mapped onto
varieties of decrementally smaller dimensions.

On the other hand, even though the variety described in Example 5.3.28 does not admit
a crepant resolution of singularities, it is also a Fano variety with b2(X) = 1. Consequently,
its only Mori contraction is onto a point.

5.4. Projective singular contact threefolds

As a conclusion of our study we give the full classification of strictly singular projective
threefolds equipped with the contact structure. It turns out that they all can be constructed
from ruled surfaces, therefore we begin with fixing the notation.

Setting 5.4.1. In this section S denotes a ruled surface in the sense of [Har77, V.2],
i.e. a smooth projective surface equipped with a surjective morphism p : S → B to a smooth
projective curve B of genus g such that every fiber is isomorphic to P1. We will denote
(any) such fiber by `, remembering that it can also be considered as an effective divisor
on S. With these assumptions, there exists a (non-unique) locally free sheaf E of rank 2
on B such that S ' P(E) [Har77, V, Prop. 2.2]. Moreover, to normalize the construction,
one can demand that H0(B, E) 6= 0 but H0(B, E ⊗ L) = 0 for any line bundle L on B of
negative degree. Then e = −deg E is an invariant of S and there exists a section s : B → S
such that the (divisor) class of its image, B0 is equal to OP(E)(1) [Har77, V, Prop. 2.8].
The space N1(S) as well as N1(S) is spanned by the classes of ` and B0.

In the particular case when B = P1, there are countably many isomorphism classes
of ruled surfaces, determined by the integer e ≥ 1, that will be denoted by He :=
P(OP1 ⊕ OP1(−e)). They are known as the Hirzebruch surfaces. Every Hirzebruch surface
admits a divisorial contraction of the section B0 (it is called the minimal section, as any
other section has larger self-intersection) and the resulting variety is a cone that we will
denote by Ce.

Finally, we will consider the projectivized tangent bundle P(TS) over S, along with
the natural projection π : P(TS) → S and the fiber Cπ. For the brevity of notation, we
will sometimes denote by ξ the class of OP(TS)(1). In our setting, N1(P(TS)) is spanned
by classes of ξ, π∗` and π∗C0 [Har77, II, Ex. 7.9]. Note that although in general TS
could also be twisted by some line bundle and the resulting projectivized bundle would be
isomorphic to P(TS), we do not do it, as we want to keep the natural surjective morphism
π∗TS → OP(TS)(1).

Remark 5.4.2. There exists a unique ruled surface admitting two distinct rulings,
namely P1 × P1. It will provide a special case in our classification and it will require some
additional care in our reasonings.

Our goal is to prove the following two theorems:

Theorem 5.4.3. Notation as in Setting 5.4.1. Let (X,L) be a singular contact variety
in dimension 3 that is projective. Then X admits a crepant resolution f : P(TS)→ X for
some S. Going the other way around, every P(TS) (over a base curve B) admits a section
σ : S → P(TS) and a crepant morphism onto a singular contact threefold X. This crepant
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morphism contracts the image of σ onto a curve isomorphic to B. Moreover, if X is not
Fano, then ρ(X) = 2 and X is a locally trivial bundle over B, whose fibers are cones C2.
In this case, we have the following commutative diagram of contractions and sections:

P(TS) X

S B.

f

π π′

p

σ

s

Theorem 5.4.4. There exists a unique singular projective Fano contact variety X in
dimension 3. It has ρ(X) = 1 and is resolved by P(T (P1 × P1)). The resolution morphism
is given by the contraction associated to the linear system | − bKP(T (P1×P1))| for b >> 0.
Moreover, it coincides with the variety described in Example 5.3.27 and Remark 5.3.31 for
dimension 3, i.e. it can be described either as a quotient of P3 by Z2 or as a projectivization
of the nilpotent cone of sl(2)× sl(2).

Remark 5.4.5. Note that contact manifolds of the form P(TS) may admit different
contact forms, and in fact we have a bijection ([KPSW00, Prop. 2.14]):

H0(S,End(Ω1
S))→ H0(P(TS),Ω1

P(TS)(1))

between automorphisms of Ω1
S and contact forms on P(TS). In light of this identification,

we should not expect that the contact structure on X is unique.

We split the proofs of both theorems into a few auxiliaries. First, we will show that
our threefolds can always be resolved by a projective contact manifold.

Proposition 5.4.6. Let (X,L) be a projective singular contact threefold. Then X has
a crepant resolution of singularities by the projective contact manifold (P(TS),OP(TS)(1))
for some S as in Setting 5.4.1. Moreover, a ruling on S is given by the image (via π) of
the rational curve contracted by the resolution morphism.

Proof. To begin with, we show that X admits a crepant resolution of singularities.
Indeed, let us denote by f : X̃ → X the crepant terminalization of X, that exists by
[BCHM10, Cor. 1.4.4] (the assumption are satisfied by Proposition 5.3.3). It is a contact
variety by Theorem 5.3.13. The singular locus of a terminal variety has codimension at
least 3 by [BS95, Lem. 1.3.1], but on the other hand by Corollary 5.3.9 its codimension
must be even, therefore it is empty and f already resolves all singularities and is crepant.
Moreover, Corollary 5.3.9 shows that the singular locus consists of disjoint, smooth curves.
As X̃ is a projective contact manifold that is not Fano (it admits a crepant contraction),
it must be isomorphic to P(TΣ) with the contact line bundle O

X̃
(1) for some smooth

projective surface Σ by Theorem 2.3.2 and moreover f∗L = O
X̃

(1).
Now we will show that Σ has to be a ruled surface. To that end, recall that every

fiber of f is covered by rational curves by [HM07, Cor. 1.6]. Denote by E an irreducible
(divisorial) component of the exceptional locus of f that gets mapped onto some curve CX
in the singular locus of X. We have a rational curve CE ⊂ E such that CE · OX̃(1) = 0,
as the morphism contracting CE is crepant and O

X̃
(−K

X̃
) = O

X̃
(2) by Proposition 5.3.3.

Denote by γ : P1 → CE ⊂ P(TΣ) the normalization of CE . Consider the relative Euler
sequence ([KPSW00, Lem. 2.5]):

0→ Ω1
P(TΣ)/Σ ⊗OX̃(1)→ π∗TΣ→ O

X̃
(1)→ 0

and pull it back via γ, remembering that every vector bundle on P1 splits and that O
X̃

(1)
is trivial on CE . We obtain:

0→ OP1(b)→ OP1(a1)⊕OP1(a2)→ OP1 → 0,
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where we know that a1 ≥ 2 by [Kol96, II, Lemma 3.13]. Consequently, the map OP1(a1)→
OP1 must be trivial, so we have a2 = 0. It follows that there exists a free rational curve
on Σ, so it is uniruled. Moreover, the numerical class of CE belongs to a KP(TΣ)-trivial
extremal ray in the Mori cone of P(TS), so π(CE) belongs to a KΣ-negative extremal ray
in the Mori cone of Σ. Let C be a rational curve on Σ spanning the latter ray. By the
Cone Theorem 2.2.2 we have −KΣ ·C ∈ {1, 2, 3}, so via the adjunction formula we obtain
C2 ∈ {−1, 0, 1}. By [KM98, Thm 1.28] these three possible self intersections correspond
to three different contractions:

• If C2 = −1, then C is a smooth contractible (−1)-curve and it particular it does
not move,
• if C2 = 0, then Σ is a ruled surface S and C is its fiber `,
• if C2 = 1, then Σ ' P2.

We easily exclude the last possibility, as we already know that P(TP2) is a homogeneous
Fano manifold, so in particular it does not admit any curves intersecting trivially with the
anticanonical, consequently CE could not exist in this case.

To see that the first case is also impossible, observe that if C does not move, then we
necessarily have π(E) = C, so E is a ruled surface P(TΣ|C) over C. Now consider two
maps from E, namely π|E onto C and f|E onto CX . Note that both have connected fibers
and by the Rigidity Lemma [KM98, Lem. 1.6] no fiber of π|E gets contracted to a point
by f|E and vice versa. In particular, rational curves that are fibers of π|E are mapped onto
CX , so we have CX ' P1. But this means that E is a trivial ruled surface over C ' P1,
so TΣ|C ' OC ⊕OC . We have reached a contradiction, as we have −KΣ · C = 1 6= 0. We
conclude that Σ is indeed a ruled surface S.

The last statement is clear: the resolution morphism contracts CE and we have just
argued that π(CE) is the curve whose numerical class is a multiple of a ruling on S. �

Now we will establish the existence of section for π and show some consequences of it.

Proposition 5.4.7. Notation as in Setting 5.4.1. A ruling p : S → B induces a section
σ : S → P(TS) that in particular allows us to embed N1(S) in N1(P(TS)). We have the
following intersection table:

· σ∗[`] σ∗[B0] [Cπ]
π∗` 0 1 0
π∗B0 1 −e 0

OP(TS)(1) 0 2− 2g 1
Consequently, the classes of curves σ∗[`], σ∗[C0], [Cπ] form a basis of the vector space
N1(P(TS)).

Proof. The map p : S → B induces an epimorphism TS � p∗TB that corresponds
to the section σ by [Har77, II, Prop. 7.12] and it holds that π ◦ σ = idS . In consequence,
we have the following maps of vector spaces:

N1(S) N1(P(TS)) N1(S)

N1(S) N1(P(TS)) N1(S),

σ∗ π∗

π∗ σ∗

where both compositions are identity.
To compute two first rows of the intersection table, simply use the projection formula,

remembering that on S we have ` · ` = 0, ` ·B0 = 1 and B0 ·B0 = −e (the last equality is
shown in [Har77, Ch. V, Prop. 2.9]). Moreover, π∗[Cπ] = 0, so Cπ necessarily intersects
trivially with divisors pulled back from S.
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Now we will consider the last row. We have OP(TS)(1) · Cπ = 1 by definition. If C
is any curve on S, then to compute its intersection with OP(TS)(1) we again employ the
projection formula, this time for the morphism σ:

σ∗[C] · OP(TS)(1) = [C] · σ∗(OP(TS)(1)) = [C] · p∗TB,

where the last equality comes from [Har77, II, Prop. 7.12]. In particular, we have [`] ·
p∗TB = 0 and [B0] · p∗TB = 2 − 2g. Recall from our earlier discussion in Setting 5.4.1
that OP(TS)(2) = O(−KP(TS)), so the morphism contracting σ∗[`] – if exists – is crepant.

Moreover, note that if g = 0 then the curve σ∗[B0] intersect the anticanonical positively,
but by [KPSW00, Prop. 2.13] the coneNE(P(TS)) admits no other −K-positive extremal
rays other than [Cπ]. Therefore, either σ∗[B0] lies in the interior of the Mori cone, or inside
of the two-dimensional wall, bounded by [Cπ]. The first possibility can be discarded as we
have assumed in Setting 5.4.1 that S is normalized, so in particular [B0] is a ray bounding
the cone NE(S) and σ∗[B0] gets mapped onto this ray by π∗. We conclude that σ∗[B0]
lies in a two-dimensional wall and we deduce that the class of σ∗[B0] − 2[Cπ] must lie
in NE(P(TS)). In fact, one can directly show the existence of a curve in this class by
considering the ruled surface P(TS|B0

), but we won’t need it.
For the last claim, the space N1(P(TS)) is of dimension 3 as a dual of N1(P(TS)) for

which we have already picked a base (in Setting 5.4.1). The computations of the intersection
table show clearly that picked representatives are linearly independent in N1(P(TS)), so
they form a base. �

We also need to determine two intersection numbers:

Lemma 5.4.8. Notation as in Setting 5.4.1. We have:

ξ3 = 4(1− g),

ξ2 · π∗` = 2.

Proof. To begin with, recall that the pullback of cocycles π∗ gives the Chow ring
A(P(TS)) the structure of a free A(S)-module with a basis 1, ξ ([Har77, App. A, 2.A.11]),
where ξ is the class of OP(TS)(1), so that 2ξ is the class of −KP(TS). Moreover, we have
the following relation ([Har77, App. A, 3, Definition on p. 429]):

(23) ξ2 − ξ · π∗c1(TS) + π∗c2(TS) = 0.

Our task is to compute:

ξ3 = ·ξ · ξ2 = ξ(ξ · π∗c1(TS)− π∗c2(TS)) =

= (π∗c1(TS))2 − π∗c1(TS) · π∗c2(TS)− ξ · π∗c2(TS) =

= ξ · (π∗c1(TS))2 − ξ · π∗c2(TS),

(−KP(TS))
2 · π∗` = ξ2 · π∗` = ξ · π∗` · π∗c1(TS)− π∗c2(TS) · π∗` =

= ξ · π∗` · π∗c1(TS).

Although c1(TS) is dependent on E ([Har77, IV, Lem. 2.10]), its square depends only on
the genus g of the base curve B and we have c1(TS)2 = 8(1 − g) [Har77, V, Cor. 2.11].
Moreover, as [`] · [`] = 0 and [`] · [C0] = 1 we obtain that:

π∗` · π∗c1(TS) = [`] · c1(TS) = 2.

Recall the Riemann-Roch formula for surfaces [Har77, V, Remark 1.6.1]

12(1 + pa) = c1(TS)2 + c2(TS),
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where pa is the arithmetic genus that is equal to −g [Har77, V, Cor. 2.5]. It allows us
to compute that c2(TS) = 4(1− g) and consequently we easily obtain desired intersection
numbers ([x] denotes the class of a point):

ξ3 = ξ · 4(1− g)π∗[x] = 4(1− g)

ξ2 · π∗` = 2.

�

Now we will determine a nef divisor that will serve as the supporting divisor of the
contraction.

Lemma 5.4.9. Notation as in Setting 5.4.1. For any P(TS), let us consider a family
of divisors Da,b := a · π∗` + b · ξ, where a, b are positive integers and ξ is the Weil divisor
corresponding to OP(TS)(1), so that 2ξ = −KP(TS). For any fixed positive value of b, if
a ≥ b ·max{e, 2g − 2}, then Da,b is nef.

Proof. First note that if a divisorD is nef, then so ism·D for anym ∈ Z>0, as nefness
is a convex condition. Consequently, if we find an integer a guaranteeing the nefness of
Da,1, then Db·a,b is also nef. Therefore, it is enough to fix b = 1 and find an integer a for
this particular value.

In fact, it will be much easier to argue using the generalization of the notion of being
nef to vector bundles2 (see [CP91] or [Laz04, Part II] for a discussion). Namely, to show
that Da,1 = a · π∗` + ξ is nef it is enough to prove that the vector bundle TS ⊗OS(a · `)
is nef. Indeed, its pullback via π maps epimorphically onto OP(TS)(1)⊗π∗OS(a · `) that is
the line bundle corresponding to the divisor Da,1, and the quotient of a nef vector bundle
is nef by [CP91, Prop. 1.2.(4)].

The considered vector bundle sits in the middle of a twisted relative tangent short
exact sequence:

0→ TS/B ⊗OS(a · `)→ TS ⊗OS(a · `)→ p∗TB ⊗OS(a · `)→ 0,

and to show its nefness, it is enough by [CP91, Prop. 1.2.(5)] to prove that two other
terms in the short exact sequence are nef. From the relative Euler sequence for S = P(E):

0→ OS → p∗(E∗)⊗OS(1)→ TS/B → 0

we obtain TS/B ' p∗(det E∗) ⊗ OS(2), so numerically we have TS/B ≡ 2B0 + e · ` and
p∗TB ≡ (2 − 2g) · `. Therefore, it is enough to twist both bundles by OS(a · `) for any
a ≥ max{e, 2g − 2} to ensure that both are nef and the nefness of Da,1 follows, so we are
done. �

We are ready to prove the existence of the contraction:
Proposition 5.4.10. Notation as in Setting 5.4.1. For any P(TS) and a positive

integer a large enough, the linear system of some positive multiple of the divisor Da,1 =
a ·π∗`+ ξ gives a crepant and birational morphism, contracting precisely the class σ∗[`]. If
S ' P1×P1 then the linear system of some positive multiple of −KP(T (P1×P1)) gives another
crepant and birational morphism, that contracts the 2-dimensional wall of the Mori cone
of P(T (P1 × P1) lying on the hyperplane KP(T (P1×P1)) = 0.

Proof. To prove that the linear system of a divisor D′ gives a birational morphism,
we need to show that D′ is nef, big and semiample. Such morphism contracts precisely
those curves that intersect D′ trivially. Moreover, if the anticanonical class is trivial on
any contracted curve, then the morphism is crepant. By Lemma 5.4.9, if we have a positive
integer a ≥ 3 ·max{e, 2g − 2}, then both Da,1 and Da,3 = Da,1 −KP(TS) are nef.

2The author is grateful to the anonymous referee of [Śmi23] for this argument, that is clearer than
the one provided originally by the author.
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−KP(TS) = 0

π∗` = 0
π∗B0 = 0

Da,1 = 0

[Cπ]

σ∗[`]

−KP(TS) > 0

Figure 1. Hyperplane section of the (part of the) Mori cone of P(TS).

Now we need to argue that curves in the class of σ∗[`] are the only ones intersectingDa,1

trivially. The picture above is obtained by intersecting the part of the Mori cone of P(TS)
that we have determined in Proposition 5.4.7 with any hyperplane corresponding to an
ample divisor. The thick lines denote (parts of) walls lying in the K-negative part of the
space N1(P(TS)) and the shaded part is always in the interior (but there might be more).
The picture does not contain σ∗[B0] as its intersection with the anticanonical divisor can
be positive (case g = 0), trivial (for g = 1) or negative (for g ≥ 2). We have Da,b ·σ∗[`] = 0
for any a, b > 0 by Proposition 5.4.7.

Observe that for the family of divisors Da,b, if we increase b relatively to a, then we
rotate clockwise the hyperplane determined by Da,b along the axis given by σ∗[`]. So in
particular there can be no other curve than σ(`) intersecting Da,1 trivially, as we have
picked such a that already Da,3 is nef.

In the special case when S = P1×P1, we see that −KP(T (P1×P1)) is nef, as both classes
of effective curves coming from S give a ruling, so they intersect the anticanonical trivially.

To prove that a nef divisor is big, it is enough to show that the top self-intersection is
positive. Observe that (π∗`)2 = 0, so we have:

(24) D3
a,1 = ξ3 + 3a · ξ2 · π∗`

(25) D3
a,3 = 27ξ3 + 27a · ξ2 · π∗`.

We have calculated these intersection numbers in Lemma 5.4.8, so plug them into Equa-
tion (24) and Equation (25):

D3
a,1 = 4(1− g) + 6a,

D3
a,3 = 108(1− g) + 54a.

If g ≤ 1 then we are done, as both numbers are positive, so Da,3 and Da,1 are big. If
the base curve is of general type, then recall that we have demanded in particular that
a ≥ 6g − 6, so that both self-intersections are positive and we again reach the desired
conclusion. In particular, the map defined by the linear system of some multiple of Da,1 is
birational.

To prove that the contraction is a morphism we need to show the semiampleness of its
defining divisor. To that end, simply invoke the Shokurov’s Theorem [KM98, Thm 3.3]:
a divisor D′ on a variety Y is semiample if it is nef and c ·D′−KY is nef and big for some
c > 0. We have just verified that in our case these assumptions hold (and we can even take
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c = 1), so we have shown that the map defined by the linear system of some multiple of
Da,1 is a crepant and birational morphism, contracting precisely curves in the class σ∗[`].

Using the same argument we can also show that in the special case S = P1 × P1,
the map given by the linear system of some multiple of the anticanonical divisor is also
a morphism that is clearly crepant. But in this particular case S admits two rulings
(denote them by `1 and `2), so there are two surjections from T (P1 × P1), and π admits
two sections that we denote by σ1 and σ2. Again, from Proposition 5.4.7 it is clear that
we have σ2(`2) · KP(T (P1×P1)) = 0, so the morphism defined by the linear system of the
anticanonical divisor contracts both sections along the chosen rulings.

�

We are ready to finish proofs of both main theorems, starting from Theorem 5.4.4.
To do it quickly, we will use the classical notion of a Campana-Peternell manifold. A
projective manifold M is Campana-Peternell (CP) if it has nef tangent bundle (i.e. such
that OP(TM)(1) is nef). Conjecturally, in the Fano case CP manifolds are rational homoge-
neous spaces, a characterization extending the one proved by Mori for the projective space.
Moreover, all CP surfaces were classified in [CP91, Thm 3.1]. In particular, for a ruled
surface S over B, OP(TS)(1) is nef if and only if S = P1 × P1 or B is an elliptic curve and
the vector bundle E is semistable.

Proof of Theorem 5.4.4. Let X be a contact Fano variety of dimension 3 with a
nonempty singular locus. By Proposition 5.4.6 it admits a crepant resolution of singularities
by P(TS) for some S. The anticanonical divisor −KX is ample by definition, so −KP(TS) =
f∗(−KX) is nef and moreover we may take −KP(TS) to be the supporting divisor for the
contraction f , as it is the pullback of an ample divisor from the target. The nefness of
O(−KP(TS)) = OP(TS)(2) implies that S is Campana-Peternell and in particular B is either
a projective line or an elliptic curve. By Lemma 5.4.8, the anticanonical linear system gives
a birational map only if the genus g(B) = 0, so we conclude that S = P1 × P1. Moreover,
as we have already observed in Proposition 5.4.10, the linear system | − b · KP(TS)| for
b >> 0 does indeed define a birational morphism that contracts two sections of π along
their chosen rulings.

To see that ρ(X) = 1 it is enough to observe that the Mori cone of P(T (P1 × P1)) is
spanned by three rays, namely [Cπ], [σ1(`1)] and [σ2(`2)] and the two latter are contracted
by f .

The prove the last claim simply observe that the variety described in Example 5.3.27
is Fano for every possible dimension (it can be done either by a direct toric computation or
invoking adequate result from the theory of nilpotent orbits) and has a nonempty singular
locus (we have already described it). �

Proof of Theorem 5.4.3. Let X be a projective singular contact variety of dimen-
sion 3. By Proposition 5.4.6 it has a crepant resolution of singularities of the form P(TS)
and the resolution morphism contracts the class of a rational curve C such that π∗[C] = [`].
If S = P1×P1 and ρ(X) = 1, then X is Fano, so we may exclude this case from our current
reasoning, as it was discussed in Theorem 5.4.4. In particular, it means that C distinguishes
one ruling if S admits two, that in turn determines the section σ : S → P(TS). Then Propo-
sition 5.4.7 shows that we can identify the ray spanned by [C] with the one spanned by
σ∗[`], as both lie in the intersection of the hyperplanes KP(TS) = 0 and π∗` = 0. In Propo-
sition 5.4.10 we have proven that the birational morphism contracting σ∗[`] is given by the
linear system of some positive multiple of Da,1 = a · π∗`+ ξ for some integer a > 0.

Now we want to prove that for every P(TS) we can contract the section σ and obtain a
contact variety. To that end, let us denote by φ the morphism given by |b ·Da,1| for b >> 0
and by Y the target variety. We need to show that there exists a commutative square of
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contractions, Y is a locally trivial bundle of cones with ρ(Y ) = 2 and that it admits a
contact structure. First, let us observe that there are two distinct classes of curves on Y ,
whose representatives are φ(Cπ) and φ(σ(B0)), so in particular ρ(Y ) = 2. The morphism
φ is crepant, so we have KY · φ∗[Cπ] = φ∗KY · [Cπ] = KP(TS) · [Cπ] < 0 and we conclude
that the extremal ray φ∗[Cπ] gives a Mori contraction. It is necessarily of fiber type, as so
is [Cπ] in P(TS). We denote it by π′. It is clear that p ◦ π = π′ ◦ φ, as both compositions
are elementary contractions that differ only in the order.

S is a locally trivial P1-bundle over B, so we may consider P(TS) as a locally trivial
bundle over B with fibers H2. Observe that σ(`) ⊂ H2 is precisely the minimal section of
H2. If not, then the class of the minimal section of H2 would be σ∗[`]−m · [Cπ] for m > 0,
but the existence of a curve in such class contradicts the nefness of Da,1 for any a > 0.
Consequently, the morphism φ restricted to any fiber of P(TS) → B is the contraction
onto a cone C2, so we conclude that Y is a C2-bundle over B.

To verify that the resulting variety Y is a contact variety, we need to check that there
exists a globally defined contact line bundle L and that the singularities are rational. For
the first claim simply observe that OP(TS)(1) is trivial on any contracted curve σ(`), as we
have σ(`) · OP(TS)(1) = 0 by Proposition 5.4.7 and σ(`) is rational. Consequently, local
trivialization of the sheaf OP(TS)(1) induces a local trivialization of the sheaf π∗OP(TS)(1).
Therefore, the latter is a line bundle that is the contact line bundle on Y .

Concerning the class of singularities, consider the situation fiberwise. Over every b ∈ B
we have φ|π−1(b) : H2 → C2 and this map is a resolution of singularities of a surface C2. The
exceptional divisor E of φ|π−1(b) is a rational curve, so in particular H1(E,OE) = 0. By
[Rei97, Cor. 4.9] it implies that R1(φ|S)∗OS = 0, so the singularity is rational and we are
done by the local triviality of Y . Consequently, Y is a projective singular contact threefold
and φ is its crepant resolution of singularities, so using the notation from the formulation
of the theorem, we have Y = X and φ = f . �

We have therefore settled the situation in dimension 3. Unfortunately, to give classi-
fication in higher dimensions, one needs more refined arguments: in higher dimensions a
resolution of singularities may not produce a projective contact manifold. In the particu-
lar case when dim(X) = 5 the terminalization produces a contact variety whose singular
locus consists of disjoint, smooth curves by Theorem 5.3.8 and resolving them destroys the
contact structure as illustrated by Example 5.3.28.

Interestingly enough, in dimension 3 smooth examples are more frequent than singular
ones: every smooth projective surface Σ produces a projective contact manifold of the
form P(TΣ), while as we have just seen, singular contact threefolds essentially correspond to
ruled surfaces. On the other hand, just as in the smooth case, the only Fano example comes
from the projectivized orbit closure. Nevertheless, the author does not dare to hypothesize
that in higher dimensions such singular analogue of LeBrun-Salamon conjecture holds.

Finally, as a byproduct of our reasoning, we are able to construct a variety whose
singularities are contact in the sense of [CF02], but that does not satisfy Definition 5.3.1:

Example 5.4.11. [Threefold à la Campana-Flenner] This time let S be the trivial
ruled surface over an elliptic curve E given by the rank 2 vector bundle OE ⊕ OE , that
in particular is semistable and has invariant e = 0. Any section of the Mori cone of
P(TS) is triangular with two rays lying on the hyperplane KP(TS) = 0. As we have just
discussed, the contraction of the ray σ∗[`] (recall that σ by Propostion 5.4.7 corresponds
to the surjection TS → TE) gives us a singular contact threefold. Instead of that, let us
contract the other crepant ray, i.e. given by σ∗[E0], where E0 = E×{p} for any p ∈ P1 = `.
By a reasoning analogous to the one conducted in this section one can show that the divisor
D := π∗E0 + π∗`−KP(TS) is big, nef and semiample, so the linear system of some positive
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multiple of it gives a crepant and birational morphism that will be denoted by h. This
morphism contracts σ∗[E0], as it is the only class intersected trivially by D.

We can construct (via the pushforward) the contact structure on the resulting variety
Y from the one on P(TS), however there is one subtlety. Namely, for a contact form
to be defined around a singular point x, we need the contact bundle to be trivial on
some neighbourhood of x. In our case, we demand OP(TS)(1) (the contact bundle on the
resolution) to be trivial on σ(E0). By the projection formula and the definition of O(1),
this is equivalent to the triviality of pullback of TE to E0, but it clearly holds as E is
elliptic. Consequently, Y has contact singularities in the sense of Campana and Flenner
[CF02].

However, this variety does not satisfy Definition 5.3.1, as the singularities are not
rational. It can be checked directly: Y has a resolution of singularities h : P(TS)→ Y . If
we restrict ourselves to S := P(TS|E0

), then h becomes a contraction from a ruled surface
S over E onto a cone C (over E). In particular, the exceptional divisor is isomorphic to
E, so it has h1(E,OE) = 1. The hyperplane exact sequence for the exceptional divisor
in S gives a surjective homomorphism R1(h∗)|SOS → H1(E,OE), as shown in [Rei97,
Section 4.8], so in particular R1h∗OP(TS) 6= 0 and the singularities are not rational.

Finally, let us note another peculiarity of this example. Namely, even though the
singularities are not rational, the contact form clearly extends to the resolution, a property
that in light of known results on extension of differential forms should not be expected.

5.5. Some open problems

We end Chapter 5 by listing a few open problems that can serve as a basis for the
future work on contact varieties.

• Give an example of a singular Fano contact variety that is not the
closure of a projectivized nilpotent orbit. As we have just seen, there are
no such examples in dimension 3 and our quotient examples can be shown to be
isomorphic to orbit closures, therefore this interesting question remains open.
• Relation between the group of automorphisms of a contact variety X
and H0(X,L). In the smooth case we have an isomorphism between the algebra of
automorphisms of X preserving the contact structure and the cohomology group
H0(X,L), discussed in Lemma 4.4.1. We do not have yet an analogous result for
singular contact varieties. Moreover, as we have seen in Section 5.3.3 the situation
in the singular case is more subtle, and in many situations we need to take into
account not just the action on the contact distribution, but also the contact form
and the linearization at points with nontrivial stabilizers, so it is possible that the
sought relation is more complicated.
• Parametrizing different contact structures on a given variety. As we
should not expect that the contact structure is unique, there is a natural question
on enumerating different contact structures on a given variety.
• Examples with L · C > 1. In all of the examples that we have presented the
intersection of the contact line bundle with the minimal rational curve giving a
Mori contraction is equal to 1, however as we have discussed in Section 5.3.5,
larger intersection numbers are allowed by the Cone Theorem 2.2.2. There is a
closely related question whether L can be divisible in the Picard group.
• Application of linear systems in classification in higher dimensions. As
we have discussed in Chapter 3, we have sufficiently strong results to estimate
the dimension of the fundamental (or anticanonical) linear system for rational
Gorenstein-Fano varieties of dimension 5, so in particular for singular contact
Fano fivefolds. The method that we used in the study of threefolds cannot be
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applied as easily in higher dimensions, therefore the additional information given
by estimation h0(X,L) could turn out to be helpful in the Fano case.
• Better undestanding of a terminalization. So far, we have only used the
existence of a terminalization as a tool. In the setting of nilpotent orbit closures,
recent work by Namikawa has shown that there can exist multiple nonisomorphic
terminalizations and related them to chambers in the movable cone. Therefore it
would be worthwhile to pursuit similar ideas in the singular contact setting.
• Links between distinct families of contact manifolds. By the means of
Example 5.3.27 we have shown that a particular quotient of P2n+1 results in a
contact variety whose (carefully chosen) crepant resolution is P(T (P1× ...× P1)).
It would be interesting to provide some other links between distinct families of
contact manifolds or show that this was an exceptional case.





CHAPTER 6

The geometry of Monge-Ampère equations

6.1. Introduction

In this chapter we will see how contact structures and other algebro-geometric objects
arise naturally in the study of partial differential equations (PDEs). The geometric the-
ory of PDEs is a rich and multifaceted subject (see e.g. [KLR07] for an introduction),
so our presentation is focused on showing selected statements that were obtained in a
collaboration between Gutt, Manno, Moreno and the author [GMMŚ21]. In particular,
in Section 6.2 we begin by introducing the setting of jet spaces Jk and their compactifi-
cations for k = 1, 2 that is useful for geometric theory of PDEs and in particular allows
us to consider PDEs as hypersurfaces in those spaces. Then we restrict our attention to
a particular class of PDEs, that is 3-dimensional symplectic Monge-Ampère equations in
complex setting. They admit a remarkably simple geometric description as hyperplane
sections of the Lagrangian Grassmannian LGr(3, F ) for a 6-dimensional symplectic vec-
tor space F . For that reason, in Section 6.3.1 we discuss classical results concerning the
minimal projective embedding of LGr(3, F ) along with the Sp(F )-orbit structure of the
ambient projective space. Its dual space – whose elements are projective classes of 3-forms
on F – parametrizing hyperplane sections of LGr(3, F ) (and consequently Monge-Ampère
equations) has an analogous structure and different orbits give non-isomorphic hyperplane
sections (resp. different classes of equations). Finally, in Section 6.3.2 we are able to present
aforementioned results from [GMMŚ21]. We discuss how one can identify the Hitchin’s
moment map for 3-forms [Hit00, Section 3] with the invariant quadratic form associated
to a Monge-Ampère equation by Kushner, Lychagin and Rubtsov in [KLR07, Section 8.1].
We moreover show that this common invariant determines the characteristic variety of the
equation that plays a crucial role in determining the existence of solutions.

As both the description in terms of jet spaces and the notion of the symplectic Monge-
Ampère equation are equally valid in the real analytic and complex holomorphic setting,
we initially denote the base field by K. Later, when describing the minimal projective
embedding of LGr(3, F ) and its hyperplane sections we abandon this ambiguity and focus
on the complex projective setting. Thanks to that, we are able to utilize classical descrip-
tions of subvarieties of Lagrangian Grassmannian, the representation theory of complex
Lie groups and the Borel-Weil-Bott theorem.

6.2. Jet spaces and Grassmannians

For an introduction to matters presented in this section see [IL16, Section 1.9] or
[EMMS18].

Definition 6.2.1. Let f : U ⊂ Kn → K be a smooth/holomorphic function defined on
some Euclidean open domain U , which for simplicity we assume to be simply connected.
We can define its k-jet at point y as its Taylor expansion in y up to order k and denote
it by jkyf . The jet space Jk(U) is then the set of k-jets of smooth/holomorphic functions
defined on U .

77
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As we will not consider the change of domain, we will usually omit the dependence on
U in the notation. Moreover, we follow the convention that J0 = U ×K.

In our setting, the space of k-jets has a coordinate system, that will be denoted by
(y1, ..., yn, u, u1, ..., un, u11, u12, ..., unn, ..., un...n) (yi correspond to coordinates on U , u to
the value of the function and ui1...ik to the derivative with respect to yi1 , ..., yik). We have
natural morphisms (projections) πm,l : Jm → Jl for any m ≥ l, that give Jm the structure
of an affine space bundle over Jl.

Now consider a scalar partial differential equation (PDE) of order k:

(26) φ

(
yi, u,

∂u

∂yi
, ...,

∂ku

∂yi1 ...∂yik

)
= 0.

It can be considered as a subset (hypersurface) E of Jk. From now on, we put k = 2,
i.e. we will focus on the PDEs of second order.

The space J1 admits a natural contact structure, defined by the 1-form:

ϑ = du−
∑
i

uidyi.

Observe that every vector of the form ∂ui or ∂yi +ui∂u for i = 1, ..., n is killed by ϑ, so the
contact distibution F is the span of {∂u1 , ..., ∂un , ∂y1 +u1∂u, ..., ∂yn +un∂u}. Note however,
that J1 is not even compact (nor is any other J i), but it can be embedded as an open and
dense subset into a fiber bundle over J0 with compact fibers. Namely, a 1-jet of a function
determines a hyperplane in TJ0 via the tangent space to its graph, so a point in P(TJ0)
(recall that we still use Grothendieck’s convention, which is highly nonstandard in the
setting of PDEs), which is well-known to admit a contact structure agreeing with that of
J1 both in the real analytic and holomorphic setting. Observe that it can also be thought
of as a (trivial) Grassmannian bundle. Moreover, points that do not lie in the image of
the embedding J1 ↪→ P(TJ0) correspond to functions having undefined differential at the
projection of this point to U . It is also possible to cover P(TJ0) by open sets isomorphic to
J1 by some change of coordinates among independent and dependent variables. Therefore,
from now on we will consider P(TJ0) instead of J1 – sometimes in literature it is taken as
a definition of the first jet space.

In a similar fashion, one can describe compactifications of fibers of J2 (both over J1

and P(TJ0)):

Definition 6.2.2. For any j2
yf let Lj2yf be the subspace of TJ0 spanned by elements

D
(2)
i = ∂yi + ui∂u +

∑
i≤j uij∂uj for i = 1, ..., n (truncated total derivative operators)

evaluated at j2
yf . Lj2yf is an isotropic subspace, as all tangent vectors of the form D

(2)
i

are annihilated by the contact form, and as it has the maximal possible dimension, it
is a Lagrangian subspace. Consequently, the correspondence j2

yf → Lj2yf gives an open
embedding of the fiber of J2 → J1 at j1

y into the Lagrangian Grassmannian LGr(Fj1y ).

The embedding that we have defined allows us to consider the bundle of Lagrangian
Grassmanians over P(TJ0) instead of a trivial vector bundle J2 → J1. As in the case of
J1, the points not in the image of the embedding can be interpreted in terms of undefined
second derivative and a change of coordinates provides a covering. Again, from now on we
will focus on this particular compactification of our bundle and in particular consider E as
its subset. Initial conditions for a PDE can also be defined in this geometric picture, using
the notion of a prolongation.

Definition 6.2.3. Let us pick a point j1
yf ∈ J1 and let J2

j1yf
be the fiber of the jet

bundle J2 → J1 over it. For any l dimensional subspace Hj1yf
⊂ Fj1yf (l ≤ n) we can define
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a submanifold H(1)
j1yf

of J2
j1yf

in the following way:

H
(1)
j1yf

= {j2
yf ∈ J2

j1yf
| Lj2yf ⊃ Hj1yf

}.

This submanifold is called a prolongation of Hj1yf
.

Definition 6.2.4. The Cauchy datum for a second order PDE E ⊂ J2 is an (n − 1)-
dimensional submanifold M ⊂ J1 isotropic with respect to the contact distribution F . We
call it characteristic at a point j2

yf ∈ J2 if the prolongation (Tj1yfM)(1) is tangent to Ej1yf
at that point.

In the theory of PDEs characteristics play a crucial role in the study of the initial-value
problems and are responsible for the existence of solutions or the non-existence thereof. In
particular, a nowhere characteristic Cauchy datum allows to construct a unique solution
via so-called method of characteristics [IL16, §6.1], [EMMS18, §7]. For a more detailed
discussion of characteristic Cauchy data, also in the jet formulation, and its relation with
singularities of solutions see [Vit14].

6.3. Symplectic Monge-Ampère equations

In this section we present two important classes of PDEs for which the geometric
picture that we have just described is simpler.

Definition 6.3.1. A second order PDE φ = 0 is called symplectic if φ depends only
on second derivatives and not on coordinates yi of U , nor on u or its derivatives ui.

For the discussion of examples of symplectic equations and their utility, see e.g. [FHK09]
(note that authors use the term dispersionless Hirota type for what we call a symplectic
equation).

Remark 6.3.2. We note that the notion of symplecticity only makes sense when the
Lagrangian Grassmannian bundle is trivial and this is why we have restricted ourselves to
only considering simply connected domains U ⊂ Kn. On the other hand, one can define jet
spaces and compactify them also over more complicated subsets of Kn or even over smooth
(holomorphic) manifolds, but at the price of losing global triviality of considered bundles.

Definition 6.3.3. A second order PDE φ that can be expressed as a linear combination
of minors of the Hessian with coefficients being smooth (holomorphic) functions on J1 is
called a Monge-Ampère equation. It is symplectic if the coefficients are constant.

From the geometric point of view, i.e. when we consider the bundle of Lagrangian
Grassmanians, being symplectic means that restrictions of E to different fibers of this
bundle are analytically isomorphic, therefore such equation is determined by a subset of
a fixed Lagrangian Grassmannian. Moreover, if the equation is Monge-Ampère then this
subset is a hyperplane section. This observation motivates the study of the Lagrangian
Grassmannian along with its minimal projective embedding and hyperplane sections that
will be conducted in the next section.

We should mention that the discussion of the topic of Monge-Ampère equations and
their applications can easily reach the size of a long monograph. The definitive reference
that uses the geometric approach and presents concrete applications in acoustics, thermal
conductivity or fluid dynamics is [KLR07]. A more classical perspective along with the
discussion of the utilization of Monge-Ampère equations in the problem of prescribed
curvature or the optimal transport can be found in [Fig17]. We also have the following
conjecture:
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Conjecture 5 (Ferapontov’s conjecture, [DF10, §1, Conjecture]). Every non-degenerate,
integrable symplectic equation in dimension n ≥ 4 is Monge-Ampère.

The work of Ferapontov and collaborators on this conjecture [DF10], [FHK09] has
led them to the geometric approach that we present in this chapter.

6.3.1. The minimal projective embedding of a Lagrangian Grassmannian.
From now on, we work in the complex holomorphic category.

Any Grassmann variety embeds into a projective space via the Plücker embedding
(note that we are still following Grothendieck’s convention for projectivizations):

Grass(k, V )→ P(ΛkV ∗),

W = span{v1, ..., vk} 7→ [v1 ∧ ... ∧ vk].
However, in the case of Lagrangian Grassmannians, there is a smaller subspace containing
it: assume that we have a symplectic space (F, ω) of dimension 2n with a standard basis
e1, ..., e2n, then ΛnF is a representation of Sp(2n), which is usually not irreducible. The
vector e1∧ ...∧en is the highest weight vector for an irreducible representation that will be
denoted by Fλn [FH91, §17.2] and its projective class lies in the image of the Lagrangian
Grassmannian LGr(n, F ). We will usually denote this representation by Λn0F . If n = 2, 3
then this representation coincides with the kernel of the map:

ιω : ΛnF → Λn−2F,

that is a contraction of a multivector with the symplectic form. In conclusion, we have an
embedding:

LGr(n, F ) ↪→ P(F ∗λn) = P(Λn0F
∗).

We have already discussed how we can identify an n-dimensional Monge-Ampère equation
with a hyperplane section of LGr(n, F ). Now, having an embedding of LGr(n, F ) into
P(Λn0F

∗) we can further identify hyperplane sections with elements of P(Λn0F ). Observe
that the symplectic form ω on F gives a Sp(2n)-module isomorphism ΛkF ' ΛkF ∗ for
all k > 0. In consequence, points η ∈ P(Λn0F ) lying in the same orbit of Sp(2n) give
isomorphic hyperplane sections.

Now we will present a more detailed description of the situation for n = 3. First,
recall Example 4.2.1 and the notation therein. We may moreover introduce symbols eijk =
ei ∧ ej ∧ ek for 1 ≤ i < j < k ≤ 6 forming a basis of Λ3F . The dual basis consists of
xijk = xi∧xj∧xk. Now pick a decomposition of F into a pair of Lagrangian subspaces: F =

V0 ⊕ V1, V0 = span(e1, e2, e3), V1 = span(e4, e5, e6), so that F ∗ = V ⊥0 ⊕ V ⊥1 , where V ⊥0 =
span(x4, x5, x6) and V ⊥1 = span(x1, x2, x3). Consequently, we obtain a decomposition of
Λ3F ∗:

(27) Λ3F ∗ = ΛV ⊥1 ⊕ (Λ2V ⊥1 ⊗ V ⊥0 )⊕ (V ⊥1 ⊗ Λ2V ⊥0 )⊕ Λ3V ⊥0 .

Now, interpreting the basis of Λ3F as coordinates on Λ3F ∗, we can write a 3-form η ∈ Λ3F ∗

using the matrices:

u∗ = e123, X∗ =

e234 −e134 e124

e235 −e135 e125

e236 −e136 e126

 , Y ∗ =

e156 −e146 e145

e256 −e246 e245

e356 −e346 e345

 , z∗ = e456.(28)

By a direct computation we can verify that η ∈ Λ3
0F
∗ if and only ifX∗ and Y ∗ are symmetric.

Note that Λ3F admits a dual description, for which we will use the notation w = (u,X, Y, z).

Theorem 6.3.4 ([LM01, Section 5.3], [IR05, Thm 2.3.2]). For a 6 dimensional sym-
plectic vector space F , let Σ = LGr(3, F ) be the Lagrangian Grassmannian embedded in
P(Λ3

0F
∗) = P13. Then the Sp(6) action on P(Λ3

0F
∗) has four orbits:
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(1) the open orbit O = P13 \ H, where H is a hypersurface of degree 4 which is
isomorphic to the projective dual of Σ,

(2) H \ Ω, where Ω is the singular locus of H that has dimension 9 and degree 21,
(3) Ω \ Σ, where Σ is the Lagrangian Grassmannian,
(4) Σ, which is the only closed orbit.

Moreover, H is described by the polynomial equation

(29) f(w) = (uz − tr(XY ))2 + 4udetY + 4z detX − 4
∑
i,j

det(Xij) det(Yij),

where Xij (resp. Yij) is the matrix X (resp. Y ) with crossed out i-th row and j-th column.
Consequently, Ω is defined by the Jacobian ideal of f .

The dual projective space P(Λ3
0F ) admits an analogous description coming from the

Sp(F )-equivariant isomorphism. We will use the notationH∨,Ω∨,Σ∨ for the corresponding
closures of orbits.

Theorem 6.3.5 ([LM01, Prop. 8.2], [IR05, Prop. 2.5.1]). Let η ∈ P(Λ3
0F ) and Eη =

ker η∩LGr(3, F ) be the corresponding hyperplane section of the Lagrangian Grassmannian.

(1) If η belongs to the open orbit, then Eη is nonsingular.
(2) If η ∈ H∨ \ Ω∨ then Eη has a unique isolated quadratic singularity.
(3) If η ∈ Ω∨ \ Σ∨ then the singular locus of an associated hyperplane section is

a smooth quadric surface, isomorphic to a Schubert cycle in LGr(2, 4) and the
singularities are quadratic.

(4) If η ∈ Σ∨ then Eη is singular along a projective cone over a Veronese surface.

Remark 6.3.6. The 4 orbit closures of P(Λ3
0F ) correspond to 4 types of Monge-Ampère

equations [GMMŚ21, §8.2.1], [FHK09, Rmk 3]:

Orbit equation type
open general
H∨ linearizable
Ω∨ Goursat
Σ∨ parabolic

In particular, representing a Monge-Ampère equation as a hyperplane section determined
by an element η ∈ P(Λ3

0F ) provides a simple criterion for the linearizability: it is enough
to check whether η satisfies the polynomial equation defining H∨.

Definition 6.3.7. Let η ∈ Λ3
0F
∗ be a 3-form whose class is associated to some sym-

plectic Monge-Ampère equation in dimension 3. If we denote by Θ ∈ Λ2F the bivector
corresponding to the symplectic form ω, then we can define the following Sp(F )-equivariant
quadratic form qη ∈ S2F ∗:

qη(v) = −1

4
ι2Θ(ιvη)2,

which is called the Kushner-Lychagin-Rubtsov (KLR) invariant.

Definition 6.3.8. The zero locus of the homogeneous quadratic polynomial qη in
P(F ∗) is known as the cocharacteristic variety of the corresponding Monge-Ampère equa-
tion in dimension 3.

In the next sections we will see how the objects that we have just introduced can be
defined using more geometric language.
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6.3.2. The Hitchin moment map and the KLR invariant. As before, let F be
a 6 dimensional symplectic vector space with a form ω. The algebra gl(F ) can be regarded
as the linear part of the algebra X(F ) of polynomial vector fields on F . In this way, we
obtain an embedding:

(30) j : sp(F ) ↪→ X(F ).

Then, there exists a unique, Sp(F )-equivariant moment map µ : F → sp(F )∗ such that
d〈µ,X〉 = ιj(X)(ω) for every X ∈ sp(F ). Moreover, there exists a commutative diagram:

S2(F ) sp(F )∗

F

φ

v2
µ

where the map φ is an isomorphism of representations of Sp(F ) and v2 is the natural
(Veronese) embedding. Observe that it allows us to compute µ as the composition φ ◦ v2.
Similarly, we can construct the following diagram

S2(Λ3
0(F ∗)) S2(F )

Λ3
0(F ∗).

pr

v2
µ

This time, the horizontal arrow is no longer an isomorphism, but a Sp(F )-equivariant
projection S2(Λ3

0(F ∗)) = W(2,0,0) ⊕W(0,0,2) → W(2,0,0) = S2(F ) (recall that S2F ' S2F ∗

as representations of Sp(F )) and the map denoted (by an abuse of notation) µ is known
as the Hitchin moment map [Hit00, Section 3]. Now, we can take projectivizations of
considered vector spaces to obtain a rational map:

(31) µ̃ : P(Λ3
0(F )) 99K P(sp(F )).

Our goal is to determine the image of this map and to this end observe that it is Sp(F )-
equivariant, as µ is a composition of maps with this property. Consequently, it is enough
to pick a representative for each orbit of P(Λ3

0F ) and compute its image via µ̃.

Proposition 6.3.9 ([GMMŚ21, Prop. 8.1-8.4]). Let µ̃ be the map defined above.
(1) The locus of indeterminacy of the map µ̃ is precisely Σ∨.
(2) The image of Ω∨ is P(O[2,14]), the projectivization of the minimal nilpotent orbit of

sp(F ). The fiber over it is equal to P4 \LGr(2, V ) for a particular V ⊂ F ∗, a sym-
plectic subspace of dimension 4. Moreover, this embedding induces an embedding
of Lagrangian Grassmannians: LGr(2, V ) ⊂ Ω∨.

(3) The image of H∨ is P(O[23]), the projectivization of the 12 dimensional nilpotent
orbit of sp(F ) and the fiber over it is equal to C that can be compactified to P1 by
a point lying in Σ∨.

(4) The image of the open orbit consists of a 1 parameter family of semisimple orbits
containing diag(a, a, a,−a,−a,−a) for each a ∈ C \ {0}. The fiber over it is C∗
that can be compactified to P1 by two points from Σ∨.

Proof. First observe that for any [y] = µ̃([x]) the fiber over [y] is acted upon in a
transitive way by Stab([y]) ⊂ Sp(6). To determine images of chosen representatives, we
will employ computations of weights. In particular, x123 corresponds to (the dual of) the
Lagrangian plane, so for its projective class we have [x123] ∈ Σ∨. Its symmetric square,
which we will denote by x2

123 for brevity, has weight 2h1 + 2h2 + 2h3, so it is the highest
weight vector for W(0,0,2). Consequently, it gets mapped to 0 by the affine projection
S2(Λ3

0(F ∗))→W(2,0,0), and the map µ̃ is not defined on this orbit.
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For the second statement we can pick [x163 + x125] as a representative of Ω∨. Its
symmetric square has weight 2h1 and the weight space S2(Λ3

0(F ∗))2h1 has dimension 3,
spanned by the square of the chosen representative along with x123�x156 and x153�x126.
On the one hand, the highest weight vector ofW(2,0,0) is annihilated by all primitive positive
root vectors. On the other, images of elements with weights 2h1 + 2h3 and 2h1 + h2 − h3

via negative root vectors belong to W(0,0,2). Consequently, we obtain:

(W(2,0,0))2h1 = span((x163 + x125)2 − 4x123 � x156 + 4x153 � x126)

(W(0,0,2))2h1 = span(x123 � x156 + x153 � x126, (x163 + x125)2 + 2x126 � x153).

By computing the coordinates of the square of the chosen representative we deduce that
it projects nontrivially onto (W(2,0,0))2h1 . It is spanned by E1,4, which clearly is a nilpo-
tent matrix having a unique nonzero Jordan block of size 2, so µ̃(Ω∨ \ Σ∨) = P(O[2,14]).
To determine the fiber, observe that Stab([E1,4]) = Sp(V ) for V = span(x2, x3, x5, x6),
therefore it is enough to determine the Sp(V )-orbit of [x63 +x25] in P(Λ2

0(V )) ' P4. There
are two such orbits: the closed one which is the Lagrangian Grassmannian realised as a
hypersurface and its complement. As x63 + x25 is not a decomposable 2-form, we have
[x63 +x25] /∈ LGr(2, V ). Moreover, the wedge product of a 2-form representing Lagrangian
subspace in V with x1 maps it to a Lagrangian subspace of F .

For the third claim, consider a line [x423 + x126 + x153 + k · x123] and observe that for
every k ∈ C it belongs to H∨ \ Ω∨, however the point in infinity lies in Σ∨. Symmetric
squares of elements with k ∈ C have components with weights ±2h1 ± 2h2 ± 2h3 (pure
squares), 2hi+2hj (mixed squares with k ·x123) and those with 2hi (other mixed squares).
First two types get killed by the projection and for the mixed squares without k we can
check as before that they project nontrivially onto (W(2,0,0))2h1 . Consequently, the whole
affine line [x423 + x126 + x153 + k · x123] gets mapped onto [E1,4 +E2,5 +E3,6], which is an
element of P(O[23]). To see that the fiber does not contain any other component besides
the described line, consider the stabilizer subgroup:

Stab([E1,4 + E2,5 + E3,6]) =

{(
A B
0 a ·A

)
|a ∈ C∗, a ·A ·AT = I3, A

T ·B = BT ·A
}
.

The presence of the parameter a allows the determinant of A to take any nonzero complex
value, so the stabilizer group is connected and consequently the fiber over [E1,4+E2,5+E3,6]
does not contain other components.

Finally, for the open orbit we can choose a family of representatives given by [x123 +
k · x456] for k ∈ C∗. Observe that both [x123] and [x456] belong to Σ∨. For the symmetric
square of any representative, only the mixed term component 2k · x123 � x456 can project
nontrivially ontoW(2,0,0) and then it lives in the Cartan algebra, i.e. it gets mapped to some
element of the form ah1 +bh2 +ch3. To see that the projection is indeed nonzero, compute
how weight vectors Xhi act upon 2k · x123 � x456: in all cases Xhi · (2k · x123 � x456) has a
component in W(2,0,0). Moreover, we have Xhi−hj ·X2hj2k · x123� x456 = Xhj−hi ·X2hi2k ·
x123�x456, so a = b = c and we obtain that µ̃([x123 +k ·x456]) = [diag(1, 1, 1,−1,−1,−1)].
To determine whether the fiber contains any component other than C∗, again we consider
the stabilizer:

Stab([h1 + h2 + h3]) =

{(
A B
C D

)
∈ Sp(6) |

(
A −B
C −D

)
=

(
aA aB
−aC −aD

)
, a ∈ C∗

}
.

This time it has two connected components, so we cannot argue as before, however we
can immediately see that for any g in the stabilizer we have g · [x123 + x456] = [(detA +
detB)x123 + (detC + detD)x456], so there are no other components in the fiber. �
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Proposition 6.3.10 ([GMMŚ21, Thm 8.1]). The map µ̃ : P(Λ3
0(F ∗)) 99K P(sp(F ))

is equal to the map coming from the projectivization of the KLR invariant P(Λ3
0(F ∗)) 99K

P(S2F ) composed with the isomorphism P(sp(F )) ' P(S2F ).

Proof. In light of Sp(F )-equivariance of both maps it follows from direct computation
of KLR invariant on chosen representatives of 4 orbits. For details, see cited reference. �

6.3.3. The cocharacteristic variety. As before, we let Σ be the Lagrangian Grass-
mannian LGr(3, F ) embedded via the Plücker map in P(Λ3

0F
∗), i.e. if V is a Lagrangian

subspace spanned by v1, v2, v3 then its image is [v1 ∧ v2 ∧ v3]. Now, for an element
h ∈ S2(V ∗) ⊂ Hom(V, F ) we can define a curve:

γh(t) = [(v1 + t · h(v1)) ∧ (v2 + t · h(v2)) ∧ (v3 + t · h(v3))], t ∈ C.

We have γh(0) = V and the fact that h ∈ S2(V ∗) implies that γh(t) ∈ LGr(3, F ). By
varying h we obtain a family of curves γh(t) that can be used to define a map:

τ : S2(V ∗)→TV Σ

τ(h) 7→γ̇h(0).

Observe that the contraction

S2(V ∗)→Λ3F

h 7→ιh(v1 ∧ v2 ∧ v3) = h(v1) ∧ v2 ∧ v3 + v1 ∧ h(v2) ∧ v3 + v1 ∧ v2 ∧ h(v3)

is a monomorphism, so consequently τ is injective. As both vector spaces have dimension
6, τ is an isomorphism. Now let V be a smooth point of a Monge-Ampère equation
understood as a hyperplane section Eη of LGr(3, F ) determined by η ∈ Λ3

0F
∗. The curve

γh is tangent to Eη if and only if η(ιh(v1 ∧ v2 ∧ v3)) = 0. We can express it in terms of a
linear map:

ηV : TV Σ = S2V ∗ → Λ3V ∗

h 7→ η(ιh(·)).

Namely, we have TV Eη = ker(ηV ).
If we denote the tautological bundle over LGr(3, F ) by V, then this pointwise reason-
ing results in a global isomorphism TΣ ' S2(V∗). Moreover, we can define a section
η ∈ H0((Eη)sm, S2(V ⊗ Λ3(V∗))) such that its value at V is ηV . We are ready to define
the variety parametrizing characteristics of the equation, that were introduced in Defini-
tion 6.2.4.

Definition 6.3.11. The characteristic variety of a Monge-Ampère equation Eη is the
subvariety σ ⊂ P(V|(Eη)sm) defined by the equation η = 0, where by an abuse of notation we
regard η as a map from P(V|(Eη)sm) to P(((V ⊗Λ3(V∗))|Eη)∗). σ∨, the projective dual of σ,
is called the cocharacteristic variety. It is a subvariety of P(V∗) and the natural embedding
of any Lagrangian subspace V into F allows us to consider σ∨ as a subvariety in P(F ∗).

One can show that Λ2(η) is in fact a section of S2(V∗), and when considered as a map
V → V∗ its projectivized zero locus is precisely σ∨ ⊂ P(V∗). With such perspective, it is
possible to see that the cocharacteristic variety is actually defined by the moment map.
Namely, we have:

Theorem 6.3.12 ([GMMŚ21, Section 9.5, Prop. 11.1]). There exists a commutative,
Sp(F )-equivariant diagram:



6.3. SYMPLECTIC MONGE-AMPÈRE EQUATIONS 85

P(Λ3
0F )

P(S2(F )) P(Γ((Eη)sm, S2(V))).

µ̃
Λ2(·)

s

Moreover, the map s is an isomorphism induced by the morphism of sheaves S2(O ⊗
F ∗)|Eη

p−→ S2(V∗)|Eη on Eη. The spaces of sections of both sheaves are isomorphic, irre-
ducible Sp(F ) representations with the fundamental weight (2, 0, 0), i.e. S2(F ∗) ' S2(F ).

Before presenting the proof, we will recall the crucial tool – the Borel-Weil-Bott theo-
rem.

Theorem 6.3.13 ([OR06, Thm 4.1]). Assume that Y = G/P is a rational homoge-
neous variety for a complex semisimple group G and a parabolic subgroup P determined by
a simple root αk, i.e. P = P (αk). Let D = {

∑
aiλi | ai ≥ 0, λi is a fundamental weight}

be the fundamental Weyl chamber and put δ =
∑
λi. Denote by Dk the fundamental Weyl

chamber of the reductive part of P , Dk = {
∑
aiλi | ai ≥ 0 for i 6= k}. For the Weyl group

W of G define a subset W k = {w ∈ W | wD ⊂ D}. Recall that for any w ∈ W there
exists an integer l(w) equal to the length of the minimal presentation in terms of reflections
generating W . Finally, let Eλ be a G-homogeneous vector bundle on Y associated to an
irreducible representation Wλ of P with the highest weight λ. Then:

(1) If λ ∈ Dk then there exists a unique w ∈W such that w−1 ∈W k and w(λ+δ) ∈ D.
(2) If w(λ+δ) in the interior of D then for ν = w(λ+δ)−δ one has H l(w)(Eλ) = Wν

and other cohomology groups vanish. In the particular case when λ ∈ D one has
H0(Eλ) = Wλ and H i(Eλ) = 0 for i > 0.

(3) If w(λ + δ) ∈ ∂D then H i(Eλ) = 0 for all i (we say that Eλ is cohomologically
trivial or immaculate).

Proof of Theorem 6.3.12. The commutativity of the diagram follows from direct
computation on orbit representatives, as every arrow is Sp(6)-invariant. For details see
[GMMŚ21, Section 9.5]. For the claim on s, we will construct a diagram of sheaves with
exact rows and columns. We start with the tautological exact sequence for the Lagrangian
Grassmannian:

(32) 0→ V → O ⊗ F → Q→ 0.

Dualize it and take the second symmetric power to obtain:

(33) 0→ Q∗ · F ∗ → S2(O ⊗ F ∗)→ S2(V∗)→ 0.

The leftmost nontrivial sheaf is usually defined as the cokernel of the inclusion Λ2Q∗ ↪→
Q∗ ⊗ F ∗. Combine this with the hyperplane short exact sequence on Σ to obtain the
following diagram of coherent sheaves on Σ with exact rows and columns:
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0 0 0

0 Q∗ · F ∗(−1) Q∗ · F ∗ (Q∗ · F ∗)|Eη 0

0 S2(O ⊗ F ∗)(−1) S2(O ⊗ F ∗) S2(O ⊗ F ∗)|Eη 0

0 S2(V∗)(−1) S2(V∗) S2(V∗)|Eη 0

0 0 0.

Now we will compute the associated long exact sequences in cohomology for each row and
column of this diagram. Observe that for LGr(3, F ) we have V ' Q∗ and this bundle
is Sp(F )-homogeneous, as is OΣ(−1). Therefore, to compute the cohomology, one can
determine weights and employ the Borel-Weil-Bott theorem. In the case of V, the weights
are −h1,−h2,−h3 (the minus sign comes from the fact that one acts on the fiber of the
associated bundle by the inverse). The highest among them is −h3. For the OΣ(−1) the
highest weight is −h1 − h2 − h3. Then we can write down highest weights associated with
some products, namely for S2(V∗) we have 2h1, for S2(V∗)(−1) we obtain h1 − h2 − h3,
for Λ2(Q∗) we get −h2 − h3 and finally Λ2(Q∗)(−1) is associated to −h1 − 2h2 − 2h3.

Recall from Example 4.2.1 that the fundamental weights of Sp(6) are h1+h2+h3, h1+h2

and h1, so in the setting of Theorem 6.3.13 we have the auxiliary weight δ = 3h1 +2h2 +h3.
The fundamental Weyl chamber D is a cone spanned by the fundamental weights and one
easily sees that the highest weights for V, Λ2(Q∗), S2(V∗)(−1), S2(O ⊗ F ∗)(−1), Q∗(−1)
and Λ2(Q∗)(−1) belong to the boundary ∂D, therefore these bundles are immaculate by
Theorem 6.3.13. From the long exact sequence associated to the short exact sequence 33
twisted by O(−1) it follows that (Q∗ · F ∗)(−1) is immaculate. Now consider

0→ Λ2Q∗ → Q∗ ⊗ F ∗ → Q∗ · F ∗ → 0,

i.e. the sequence defining Q∗ · F ∗. We have already observed that the leftmost term is
immaculate, and so is the middle, as a tensor product of an immaculate line bundle with a
trivial one, so for the rightmost sheaf we also have H i = 0 for all i. Finally, we obtain that
S2(O ⊗ F ∗)(−1) and (Q∗ · F ∗)|Eη are cohomologically trivial by an analogous argument.

Consequently, from the diagram above it follows that for all i we have H i(Σ, S2(V∗)) =
H i(Σ, S2(O⊗F ∗)) = H i(Eη, S2(O⊗F ∗)) = H i(Eη, S2(V∗)). To finish the proof it is enough
to observe that S2(O⊗F ∗) is a trivial vector bundle, so its only nonvanishing cohomology
group is H0, and we have H0(Σ, S2(O ⊗ F ∗)) = S2(F ∗) = W(2,0,0). �

The theorem above allows us to determine the (co)characteristic varieties for all 4
classes of complex symplectic Monge-Ampère equations in 3 dimensions via the moment
map. In particular, we have the following:

Corollary 6.3.14 ([GMMŚ21, Cor. 9.1]). Let η ∈ P(Λ3
0F ) be a Monge-Ampère

equation. Then:
(1) if η belongs to the open orbit then σ∨ is an irreducible, nondegenerate, nonsingular

quadric,
(2) if η ∈ H∨ \ Ω∨ then σ∨ is an irreducible and degenerate (rank 3) quadric,
(3) if η ∈ Ω∨ \ Σ∨ then σ∨ is a reducible and degenerate (rank 1) quadric,
(4) if η ∈ Σ∨ then σ∨ = P(F ∗), i.e. σ∨ is trivial.
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Proof. In light of the isomorphism sp(F ) ' S2F ∗ and Theorem 6.3.12 it is enough to
determine what are the images of chosen representatives from Proposition 6.3.9 in S2F ∗.
For details see cited reference. �
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