
Calculation of optima and

equilibria in dynamic resource

extraction problems

A thesis

submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

in Mathematics

submitted by

Rajani Singh

Under the Supervision of

Dr hab. Agnieszka Wiszniewska-Matyszkiel

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw, Poland

(October 15, 2018)





University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Rajani Singh

Calculation of optima and equilibria in

dynamic resource extraction problems

PhD dissertation

Supervisor

Dr hab. Agnieszka Wiszniewska-Matyszkiel

Institute of Applied Mathematics,

University of Warsaw

October 2018

iii



Author’s declaration:

I hereby declare that this dissertation is my own work.

October 15, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rajani Singh

Supervisor’s declaration:

The dissertation is ready to be reviewed

October 15, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr hab. Agnieszka Wiszniewska-Matyszkiel



ACKNOWLEDGMENTS

The happiness of success lies in sharing it with all those who have helped and

inspired me to achieve it. I want to express my gratitude to all people whose constant

guidance and encouragement served as a beacon of light.

I feel privileged to express my heartiest thanks and a deep sense of gratitude to

my supervisor Dr hab. Agnieszka Wiszniewska-Matyszkiel, Institute of applied math-

ematics, University of Warsaw, Poland, for her wisdom, vision, expertise, guidance,

enthusiastic involvement and persistent encouragement during the planning and de-

velopment of this research work. I also gratefully acknowledge her painstaking efforts

in thoroughly going through and improving the manuscripts without which this work

could not have been completed. I will always be indebted to her for affectionate sup-

port and care she provided me academically and personally. It was not easy for me

to survive in a different country with a different culture. She always helped me as a

guardian.

I am obliged to Prof. Dr hab. Piotr Rybka, Chairman of Doctoral commission

and Dr hab. Pawe Traczyk, Director of PhD studies, Faculty of Mathematics, Infor-

matics and Mechanics, University of Warsaw, for providing all the facilities, help and

encouragement for carrying out the research work.

I am highly obliged to Prof. Ravindra Dhar, Prof. Suresh Chandra and Dr. hab.

Pawel Morawiecki for their invaluable advice at every critical juncture of my academic

and personal life. I will forever be thankful to them for their constant encouragement,

care and most importantly, teaching me how to live a life of gratitude. Their blessings

are always precious.

I wish to express my appreciation to my friends Pratima Singh, Rachna Mourya

and Maria Khodos and grateful thanks to research fellows at department for their help

and motivation throughout my research work. I also would like to express my deep

and sincere thanks to my friends and all other persons whose names do not appear

here, for helping me either directly or indirectly in all even and odd times.

Also I would like to thank the National Science Centre, Krakow, Poland for provid-

ing me financial assistance by awarding me research fellowship for my Ph. D. research

work. I am also thankful to the anonymous reviewers of my research publications.

Their comments and suggestions were very helpful in shaping my research work.

Above all, no words are enough to pay my gratitude to the Godlike person in my

life, Ashutosh Dhar Dwivedi for his patience, care, sacrifice, love and encouragement

during this journey. A special thanks to my closest pal, Ayush, for always being very

v



caring and supportive and so good to me. Thank you my sweetest adorable nice, Piku,

for cherishing and loving me.

Last but not least, I would like to thank my family and friends.

(Rajani Singh)

vi



ABSTRACT

Exploitation or extraction of common-property renewable resources is one of the

biggest challenges in society. It encompasses a wide range of various problems among

other things, the phenomenon known as the tragedy of the commons. Most impor-

tantly, the extraction and consumption of common natural renewable resources have

a strong impact on the quality of life and well-being of both, the current and future

generations. From the mathematical point of view, the only tool to deal with the

whole spectrum of phenomena arising in such types of problems, in which there are at

least two independent decision makers in a common resource extraction problem, are

dynamic games, since both dynamic optimization methods and static games encom-

pass only fractions of aspects of those problems.

In the dissertation, we propose several models of dynamic games and dynamic optimi-

sation problems, modelling the exploitation of common renewable resources by taking

into account various aspects of the problem:

• Many players in commons. Increasing number of players regarded as decom-

position of the decision making structures. To be more specific, if we consider

the same mass of individuals, decomposed into units of decreasing size: from

consumers, through North and South, actual countries, regions etc. and finally

actual decision makers.

• Relation between the Nash equilibria and the social optima and ways of solving

the tragedy of the commons by Pigovian taxation or a tax-subsidy system.

• Taking into account information: feedback form, closed loop, delayed information.

• Self-enforcing environmental agreements with a delay in observation of defection.

• Completing and correcting previous results in this research field or finding coun-

terexamples to common beliefs and methodological simplifications.

In dynamic games, the strategy of a player is a function which defines his/her be-

haviour at each time instant in the time interval considered in the game. Therefore,

calculation of both, the social optima and the Nash equilibria requires solving the

dynamic optimisation problems.

However, finding a Nash equilibrium in dynamic games requires solving a set of dy-

namic optimisation problems, coupled by finding a fixed point of the resulting best

response correspondence in some functional space of the profiles of strategies. Due to
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this coupling, the problem becomes much more complicated than the analogous dy-

namic optimisation problems. There are quite a few results in nonzero-sum dynamic

games, and if the constraints appear (which is natural in real life problems, especially

resource extraction problems), then the results are very rare. Therefore, unexpected

behaviour of the solution may appear (irregularity, discontinuity, the nonexistence of

equilibria of a certain type, existence of many equilibria, lack of convergence). So,

we try to fill in the gaps in the simplifications of dynamic games. The dissertation

also contains counterexamples to some methods and hypotheses that are regarded as

correct and used to solve dynamic games.

With the strong motivation behind the chosen problems, in Chapter 1, we intro-

duce the game and some preliminary knowledge of game theory, brief literature review

and the mathematical optimisation tools that are used to solve the game models in

the dissertation.

In Chapter 2, we present a discrete time, infinite horizon, a linear-quadratic

dynamic game model with many players and with linear state-dependent constraints

on decisions of players. In this model, players can be regarded as countries or firms.

There are either finitely many players or a continuum of players. The model has an

obvious application in a common fishery extraction problem where the players sell

their catch at a common market.

We solve the social optimum problem for n-players and for the continuum of players.

When it comes to the Nash equilibrium problem, we are only able to solve it for the

continuum of players case. For n-players case, we are not able to calculate it for n ≥ 2,

only negative results can be proven: that the Nash equilibrium strategies and the value

functions are not of assumed regularity with respect to the state variable and showing

that presence of even a very simple and obvious constraints on strategies may result in

a very complicated form of the value functions and the Nash equilibria. While looking

for Nash equilibria, the social optima, we have also found a very simple counterexample

to the correctness of a procedure often used in dynamic game theory literature. We

also calculate the enforcement of a social optimum profile by various type of Pigouvian

tax or a tax-subsidy system, both for n-players and for the continuum of players.

Non-existence of a symmetric feedback Nash equilibrium of assumed regularity in

the linear-quadratic problem considered in Chapter 2 seems to be inherited from the

finite time horizon truncations of the game, so in Chapter 3, we solve a feedback

Nash equilibrium problem in a very simple 2-stage, 2-player linear-quadratic dynamic

game being a truncation of the model which was studied in Chapter 2 with the infinite

time horizon. As a result, we found that the presence of simple linear state-dependent

constraints results in the nonexistence of a continuous symmetric feedback Nash equi-
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libria, whereas the existence of the continuum of discontinuous symmetric feedback

Nash equilibria. Our result is counter-intuitive to the common belief in the continuity

of Nash equilibria for linear-quadratic dynamic games with concave payoffs.

While previous two Chapters deal with the specific value of the discount factor β,

given by the so called golden rule, in Chapter 4, we solve the social optimum problem

from Chapter 2 for more general class of linear-quadratic dynamic games with only

one player, called social planner and for more general β instead of the golden rule β.

So, we consider a discrete time linear-quadratic dynamic optimisation problem with

linear state-dependent constraints. We solve the problem in the infinite time horizon

and its finite horizon truncations. Although it seems simple in its linear-quadratic

form, calculation of the optimal control is nontrivial.

In Chapter 5, we study a general class of dynamic optimization problems. We

derive general rules stating what kind of errors in calculation or computation of the

value function does not lead to errors in calculation or computation of optimal control.

This general result concerns not only errors resulting from using the numerical methods

but also errors resulting from some preliminary assumptions related to constraints on

the value functions. The results are illustrated by a motivating example of discrete

time Fish Wars model, proposed by Levhari and Mirman, with singularities in payoffs.

In Chapter 6, we study a continuous time version of the Fish Wars model with the

infinite time horizon, linear state equation and state-dependent linear constraints on

controls. We calculate the social optimum and a Nash equilibrium which always leads

to the depletion of the resource even if the social optimum results in its sustainability.

We propose two ways of solving the problems of enforcing social optimality: either

by a tax-subsidy system or by an environmental agreement even if we assume that it

takes time to detect any defection of a player. We also propose a general algorithm for

finding the financial incentives enforcing the socially optimal profile in a large class of

differential games.
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Chapter 1

Introduction

1.1 Historical perspective and a brief review of game

theory literature

Game theory is a formal way of examining the situations of conflict and cooperation.

Game is a mathematical tool to describe any situation in which there are at least two

independent decision makers (called players), each of them has their own aim or objec-

tive (mathematically described as a maximisation of a certain function called payoff ),

while there is a certain interdependence between them (mathematically described as

dependence of the payoff function on choices of all the players). The formal definition

of game is given in Def. 1 of Section 1.2.

Formally, beginning of the game theory is dated on 1944, when the seminal book

of a great mathematician Von Neumann and an economist Morgenstern [1] Theory

of Games and Economic Behavior appeared. The book consider the cooperative and

non-cooperative games of finitely many players.

Nevertheless, history of the game theory has been started even earlier in 1838,

although the term game was not used, it appeared in the paper of Cournot [2], where

a concept of equilibrium, equivalent to Nash equilibrium was introduced.

In 1921− 1927, Borel published a series of papers (e.g., [3–5]), that firstly defined

the games of strategy. In 1925, Steinhaus [6] worked on a more complicated concept

of the game theory, called later the differential game.

However, the mathematical discipline of game theory was founded mainly by Von

Neumann in 1928 (e.g., [7] where he proved the minimax theorem for the zero-sum

games). Later, he extended his work to the application of game theory to economics.

In 1949, Nobel laureate John Forbes Nash wrote his doctoral dissertation named

Non-Cooperative Games, where he introduced the concept of equilibrium point also

known as Nash equilibrium and he proved that such equilibrium point exists. The

concept of Nash equilibrium was the breakthrough in the non-cooperative non-zero-

sum game theory as it was the only solution to such games extending some properties

of John Von-Neumann’s minimax strategies. It was published in 1950 in [8].

In 1953, another Nobel laureate Shapley provides the solution of the cooperative
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game theory called Shapley value [9], and he extended his work by introducing the

stochastic game — a dynamic game with probabilistic transitions [10].

In 1954, the game in continuous time called the differential game was introduced

by the famous game theorist Rufus Philip Isaacs [11]. It is quite probable that the dis-

cipline of differential games had been developed earlier secretly (e.g., [12,13]) because

of its potential applicability in the air and the sea combat. Similarly, similar research

must have been carried out in the Union of Soviet Socialist Republics (USSR) with

some of the results possibly unknown to the broader scientific audience. The book [11]

consisted of quite a large study in RAND, while most of Isaacs works were classified

and therefore, unknown.

Beginning 1949, Bellman, an American applied mathematician, worked for many

years at RAND corporation [14, 15] and during that time he developed the dynamic

programming techniques and founded its applications in numerous fields from eco-

nomics to the aerospace engineering.

The term dynamic programming was firstly used in the 1957s by Bellman [16]

to describe the process of solving problems backwards in order to find the optimal

decision. Later, he redefined it to the modern sense — decomposing the larger decision

problems into the smaller decision problems. The word dynamic represents the time-

varying aspect of the optimisation problems, while the word programming referred to

the use of the method to find an optimal program. So, dynamic programming is both

a mathematical optimisation method as well as a computer programming method.

Therefore, the Bellman equation is also known as a dynamic programming equation.

From 1948−1950, David Blackwell jointly worked with Bellman in RAND [14,15,17]

on the dynamic programming techniques and given the most significant contribution

to this field [18–20].

Dynamic games are the games of a special structure with dependence on time and

decision made in multiple time instants. They may be of a very complicated form, and

they may be with complete or incomplete information. The more formal definition of

Dynamic game is defined in Subsection 1.4.1 of Section 1.4. Dynamic games are the

only appropriate tool to model decision-making problems by independent but coupled

players in an external environment changing in response to their decisions.

The dynamic game which we mainly considered in the dissertation belongs to the

class of linear-quadratic dynamic games with constraints. Linear-quadratic dynamic

games seems to be the best researched class of games (e.g., Hämäläinen [21, 22] Jank

and Abou-Kandil [23], Olsder et. al [24]). Both in finite and the infinite horizon, both

in discrete and continuous time, Nash equilibria can be determined analytically, and

the formulae are now a textbook material (e.g., Haurie et al. [25], Başar, Olsder [26]
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or Dockner et al. [27]), and there are in-depth monographs (e.g., Linear-quadratic

dynamic games by Engwerda [28,29]).

However, after imposing even a simple linear constraint, it turns out that none of

those well-known results can be applied. In the latest research in the linear-quadratic

dynamic game, Reddy and Zaccour [30, 31] considered the constraints in their model,

and they proved two types of existence results.

Literature of the dynamic game theory can be classified into the following divisions:

• Differential games: are the dynamic games with continuous time. Starting

from Steinhaus [6] and Isaacs [12], some of the important research work includes

Başar et. al [32], Petrosyan and Zaccour [33], Carlson et. al [34], Zeeuw and Van

Der Ploeg [35].

Dockner et. al [27], Jørgensen and Zaccour [36], Balbus et. al [37, 38] work on

the applications of differential games in economics.

• Stochastic games: are the dynamic games with probabilistic transitions of the

state variable dependent on players’ strategies — given a profile of strategies,

the behaviour of the state variable is a stochastic process, generally with the

incomplete information. Most current review of research wise Jaśkiewicz and

Nowak [39, 40] and Balbus et. al [41, 42]. Genc and Zaccour [43] worked on the

application of Stochastic games to economics.

• Stopping games: are the dynamic games with the possibility of quitting the

game at any time instant, usually also stochastic games, also known as a gen-

eralisation of optimal stopping problems (e.g., Szajowski [44], Ramsey and Sza-

jowski [45–47], Ferenstein [48]).

Evolutionary game theory: originated as an application of the mathematical

theory of the dynamic game to biological contexts (e.g., Weibull1 [49]). This

is one of the recent development of the dynamic game theory. Starting from

Fisher [50], there are many researches working on it (e.g., Ramsey [51,52], Broom

and Křivan [53], Cressman and Apaloo [54]).

• Games with a continuum of players: are dynamic games with a nonatomic

measure space of players (e.g., Aumann and Shapley [55], Mas-Colell [56]). In

this simplest approach, the [0, 1] interval with the Lebesgue measure. In the

continuum of the players game, a decision is made by the players in very large

populations of small interacting players. Since the problem is more complex

than the dynamic game with finitely many players, quite a few scientists are
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working on it (e.g., Wiszniewska-Matyszkiel [57–61], Ekes [62], Wieczorek and

Wiszniewska-Matyszkiel [63]).

• Mean field game theory: is the study of strategic decision making in very

large populations of small interacting players (e.g., Caines et al. [64]). This is

also one of the most recent developments of the game theory.

The real-life problems that are solved by using the tools of dynamic games and/or

dynamic optimisation in the dissertation are the model of extraction of common prop-

erty, renewable resource. Exploitation of an interdependent or a common-property

renewable resources is one of the significant challenges of contemporaneity. This chal-

lenge encompasses a wide range of various problems, among other things the phe-

nomenon called the tragedy of the commons. The term firstly originated in 1833, in

an essay [65], written by a British economist Lloyd but become common knowledge to

the general audience in 1968, when American philosopher and ecologist Hardin wrote

an article [66] The tragedy of the commons. In this seminal paper, The Tragedy of

the Commons, the commons is a natural resource shared by many individuals. In this

context, shared means that each individual does not have a claim to any part of the

resource, but rather to the use of a portion of it for his/her benefit. The tragedy means

that, in the absence of regulation, each individual will tend to exploit or extract the

commons to his/her advantage, typically without any limit. Under this state of affairs,

the commons is depleted and eventually ruined.

The problem of extraction or common resource is investigated by many scientists

including Amir and Nannerup [67], Antoniadou et. al [68], Bailey et. al [69], Long

survey [70–72], Kaitala and Lindroos [73], Clemhout and Wan [74], Doyen et. al

[75], Dutta and Sundaram [76], Koulovatianos [77], Başar and Olsder [26] coursebook,

Dockner et. al [27], Başar et. al [78], Wiszniewska-Matyszkiel [79] and Ehtamo and

Hamalainen [80,81].

1.2 Game in normal form

1.2.1 Standard approach

Definition 1 A game in normal or strategic form G = {I, {Si}i∈I, {Ji}i∈I} consists of:

1. A set of at least two players I. For finitely many players I = {1, . . . , n}.

2. A set of strategies Si that are available to player i. If si ∈ Si denotes the strategy

chosen by player i, then s = (s1, s2 . . . , sn) is called a strategy profile.
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We denote the set of all strategy profiles by Σ = S1 × S2 × · · · × Sn.

3. A set of payoff functions J = (J1, J2, . . . , Jn), where Ji : Σ → R is called the

payoff function of player i.

Notational convention:

For a game with a set of players I and given a strategy si of player i, we introduce

the notation [si, s∼i] for a profile of strategies s = (s1, . . . , sn), where s∼i denotes the

strategy of the remaining players. So, for a strategy σ ∈ Si and a profile s̃ ∈ Σ, the

symbol (σ, s̃∼i) denotes the profile s̃ with i-th coordinate replaced by σ.

The most important solution concept of the non-cooperative game theory is the

Nash equilibrium.

A profile is called a Nash equilibrium if no player can benefit from unilateral devi-

ation from it. Formally, it can be defined as follows:

Definition 2 A strategy profile s̄ is a Nash equilibrium iff for every player i ∈ I
and for every strategy si ∈ Si of player i,

Ji ([si, s̄∼i]) ≤ Ji ([s̄i, s̄∼i]) .

An essential property of a strategy profile, which is rarely fulfiled by Nash equilibria

but considered as one of the most important properties in the case when it is assumed

that the players can make the decision together, is Pareto-optimality.

A profile is called Pareto-optimal if there is no other profile that makes every player

at least as well off and at least one player strictly better off. More formally:

Definition 3 A strategy profile s̄ is Pareto-optimal if there is no profile such that

Ji(s) ≥ Ji(s̄) for all i ∈ I and Ji(s) > Ji(s̄) for some i.

Following many papers (e.g., Levhari-Mirman [82], Singh and Wiszniewska-Matyszkiel

[83, 84]), in this dissertation, we are especially interested in a special Pareto-optimal

profile called the social optimum.

Definition 4 A strategy profile s̄ is the social optimum in a game with n-players

iff

s̄ ∈ Argmax
s∈Σ

n∑
i=1

Ji(s).
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1.2.2 Continuum of players

If the number of players in a real-life game theoretic application is sufficiently large,

they start behaving in such a way that is best described by the games with a continuum

of players.

To define the game in normal form for a continuum of players, we need the addi-

tional measurabilty assumptions.

Definition 5 A game in normal form G = {I,L, λ, (S,S), {Si}i∈I, {Ji}i∈I} for the

continuum of players consists of:

1. The continuum of players is the set of players I = [0, 1] with the Lebesgue measure

λ on the σ-field of its Lebesgue measurable subsets L. Thus, the space of players

is the measure space (I,L, λ) instead of only the set I.

2. Sets of available strategies of player i, Si are all subsets of a certain set S on

which σ- field of its measurable subsets S, its measurability is considered, denoted

by S. We assume that Si ∈ S.

For a function s : I → S with si ∈ Si (for uniformity of notation, we write si

instead of s(i)), we call strategy profiles only such measurable function.

As before, Σ denotes the set of all strategy profiles but now obviously the defini-

tion of profile encompasses measurability.

3. Payoff functions of player i, Ji : Σ → R. In majority of applications Ji are of

specific form:

Ji(s) = Pi (si, us) for a measurable function for some Pi : S × ConvS → R̄ and

us =
∫
I sjdλ(j), usually called the aggregate of s, where Conv S denotes the

convex hull of a set S.

Definition of the Nash equilibrium and the Pareto optimal profile for continuum of

players case are analogous to Def. 2 and Def. 3 with ”every i” is replaced by ”almost

every i” and ”some i” by ”i in a set of non-zero measure”.

Definition 6 A strategy profile s̄ is a social optimum in the continuum of players

game iff

s̄ ∈ Argmax
s∈Σ

∫
[0,1]

Ji(s) · dλ(i).

Simplifying convention:

If in a specific application, the modelled functions are independent of some argu-

ments, we omit them in notation.
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1.3 The optimal control theory and the dynamic

programming method

In this section, we introduce various types of dynamic optimisation problems that we

study in the dissertation and tools to solve them. Consider the following:

1. A time set T, either discrete or continuous with t0 representing the initial time.

For continuous time, in most of the cases, we consider T = [0, T ] for a finite

time horizon T and T = [0,+∞) for the infinite time horizon. For discrete time,

we consider T = {0, 1, 2, ..., T} for the finite time horizon T and T = N for the

infinite time horizon.

2. A set of states of the system (state set for short) X ⊆ Rn. The system is

characterized at each time by a state variable x ∈ X.

3. A potential trajectory X of the state of the system is defined as X : T∪{T+1} →
X for discrete time with the finite time horizon T , otherwise X : T→ X with an

initial state of the system X(t0) = x0 ∈ X.

4. A set of control parameters U ⊆ Rm.

5. There is a state dependent constraint given by the correspondence D : X ( U
with D(x) ⊆ U, called the correspondence of available control parameters.

Information structure

6. A control is a function that defines which control parameter u to choose at each

stage, dependent on available information about the game so, it can be defined in

various ways. We are interested in the form of controls which are U : T×X→ U
and they are measurable in the case of continuous time. These are called in

various papers closed loop, closed loop no-memory, feedback or Markovian.

It is worth mentioning that the exact meanings of closed loop and feedback are

different in various works, especially in the research on optimal control problems

versus dynamic games.

In some specific cases, we consider U : X→ U, with the same ambiguous termi-

nology.

We use the latter form of controls only in the infinite time horizon case when

the functions and the correspondences stated in the problem are not directly

dependent on time.

7



Throughout the dissertation, we will use the term feedback (prevalent in most

recent dynamic games theory literature). For the continuous time, there is an

additional requirement, to be defined later.

7. Behaviour or evolution of the state variable is described by:

a first order difference equation in a discrete time

X(t+ 1) = φ (t,X(t), U(t,X(t))) ;X(t0) = x0, (1.3.1)

for the state transition function φ : T× X× U→ X.

a differential equation in the continuous time

Ẋ(t) = φ (t,X(t), U(t,X(t))) ;X(t0) = x0, (1.3.2)

for almost every t and for the state transition function φ : T× X× U→ Rn.

In the continuous time, some regularity assumption is additionally needed, guar-

anteeing that

∀(t0, x0) ∈ T×X, u ∈ U,∃a unique absolutely continuous X which fulfils Eq. (1.3.2).

(1.3.3)

Obviously, this assumption encompasses joint measurability.

Generally, in many applications, it cannot be a priori assumed that U is locally

Lipschitz with respect to X since even discontinuous controls are often optimal.

So, in order to have a general model, we do not constrain the set beside measur-

ability and condition (1.3.4).

The unique trajectory which solves Eq. (1.3.1) or Eq. (1.3.2) with U is called the

trajectory corresponding to U . If we want to emphasise that X is corresponding

to U , we write XU . If we also want to emphasise the dependency on the initial

condition, we write XU
t0,x0

or XU
x0

.

8. A set of admissible controls U . In discrete time, it is the set of functions U :

T×X→ U which fulfil U(t, x) ∈ D(x) while in continuous time it is a set of all

measurable functions U : T× X→ U which fulfil U(t, x) ∈ D(x) and

such that Eq. (1.3.2) has a unique absolutely continuous solution on the set T∩[t0,+∞).

(1.3.4)

The set of trajectories corresponding to all U ∈ U is called the set of admissible

trajectories and it is denoted by X.
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9. A current or instantaneous payoff function P : T×X×U→ R∪{−∞}, P (t, x, u)

defines a reward that the controller obtains when the system receives the control

input u at time t and state x.

There is also a terminal payoff function G∗ : X→ R∪{−∞}, for the finite time

horizon.

10. We consider the discounting of the payoffs by a discount factor β ∈ (0, 1). For

discrete time, β = 1
1+r

, while for continuous time, β = e−r, for r > 0, called the

interest rate in economic applications.

11. A payoff function (or performance criterion) J : T× X× U→ R̄ can be defined

as follows:

The payoff function in discrete time fulfils:

J(t0, x0, U) =
T∑
t=t0

βt−t0P (t,X(t), U(t,X(t))) + βT+1−t0G∗(X(T + 1)) (1.3.5a)

for the finite time horizon T

J(t0, x0, U) =
∞∑
t=t0

βt−t0P (t,X(t), U(t,X(t))) (1.3.5b)

for the infinite time horizon

for X given by Eq. (1.3.1).

The payoff function in continuous time fulfils:

J(t0, x0, U) =

T∫
t=t0

βt−t0P (t,X(t), U(t,X(t))) dt+ βT+1−t0G∗(X(T + 1))

(1.3.6a)

for the finite time horizon T

J(t0, x0, U) =

∞∫
t=t0

βt−t0P (t,X(t), U(t,X(t))) dt (1.3.6b)

for the infinite time horizon

for X given by Eq. (1.3.2), where we consider the Lebesgue integral.

We assume that the functions P , φ and G∗ are measurable on T × X × U and

φ(t, ·, ·) is Lipschtiz in (x, u).
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We do not impose other direct constraints on sets or functions defined before,

but we assume that J(t0, x0, U) is always well defined.

We look for the optimal controls in the set U of admissible controls here.

Definition 7 Given (t0, x0) ∈ T × X and for the payoff function defined either by

Eq. (1.3.5) for discrete time or by Eq. (1.3.6) for continuous time, the dynamic

optimization problem is

”find U ∈ U maximising J(t0, x0, U)”.

Definition 8 (a) A control variable Ū ∈ U is called an optimal control in the dynamic

optimization problem defined by Def. 7, if it fulfils

Ū ∈ Argmax
U∈U

J(t0, x0, U).

(b) A control variable Ū ∈ U is called an optimal control (for feedback information

structure) for the whole class of dynamic optimization problems defined by Def. 7, if

it fulfils

Ū ∈ Argmax
U∈U

J(t, x, U) for every (t, x) ∈ T× X.

Definition 9 A function V̄ : T × X → R̄ is called the value function or the current-

value function of a dynamic optimization problem given by Def. 7, if for all x ∈ X,

t ∈ T,

V̄ (t, x) = sup
U∈U

J(t, x, U).

1.3.1 Principle of Optimality: Necessary condition

One of the most standard and useful tools for solving the dynamic optimisation prob-

lems is the Bellman equation and the Bellman’s optimality principle.

The philosophy behind the Bellman equation and the value function is that instead

of solving the optimal control problems given some fixed (t0, x0), we solve it for all

(t, x). So, we solve the whole class of problems instead of one, and this generalisation

leads to a simplification: a dynamic optimisation problem is reduced to a sequence of

static optimisation problems coupled by a difference or differential equation.

The Bellman Principle of Optimality was formulated by Bellman in [16]: An opti-

mal policy has the property that whatever the initial state and the initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state re-

sulting from the first decision”. In discrete time, it can be formalised as the following

necessary condition.
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Theorem 1 Necessary condition

Consider an arbitrary dynamic optimization problem in discrete time either for a

finite or the infinite time horizon, given by Def. 7 i.e., maximisation of J(t, x, U) over

U in the set of admissible controls U and for every t ∈ T, x ∈ X.

Let Ū be an optimal control for the whole class of dynamic optimization problems

and V̄ be the value function. Then for every t ∈ T, x ∈ X,

V̄ (t, x) = max
u∈D(x)

P (t, x, u) + βV̄ (t+ 1, φ(t, x, u)), (1.3.7)

called the Bellman equation (BE), while Ū fulfils the Bellman inclusion

Ū(t, x) ∈ Argmax
u∈D(x)

P (t, x, u) + βV̄ (t+ 1, φ(t, x, u)). (1.3.8)

Additionally, for a finite time horizon T ,

V (T + 1, x) = G∗(x) for all x ∈ X. (1.3.9)

1.3.2 Sufficient conditions

Here we present the theorems on the sufficient condition for the feedback controls.

A sufficient condition for discrete time

Finite time horizon

The immediate sufficient condition, which is a standard textbook result is as follows:

Theorem 2 Consider a finite time horizon T . If a function V̄ : T×R→ R̄, satisfies

the Bellman equation (BE) (1.3.7) and Ū ∈ U fulfils the Bellman inclusion (1.3.8)

and assume the terminal condition or transversality condition Eq. (1.3.9) holds, then

V̄ is the value function while Ū is an optimal control for the whole class of dynamic

optimization problems.

In a finite time horizon, the dynamic programming technique defined by Theorem

2 returns the value function by backwards induction and consequently the optimal

control.

Infinite time horizon

This version of a sufficient condition for the infinite time horizon is equivalent to that

proved in Stokey, Lucas and Prescott [85], Theorem 4.3 changed because of the different
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formulation of the optimal control problem (Stokey, Lucas and Prescott considered

current and next stage state instead of current state and control in definition of the

optimal control problem), it is also an immediate consequence of Theorem 4.

Theorem 3 Consider the infinite time horizon problem. If for a function V̄ : T×X→
R, the Bellman Eq. (1.3.7) together with the Bellman inclusion (1.3.8) is fulfilled and

the following standard terminal condition

lim sup
t→∞

V (t,X(t)) · βt = 0,∀X ∈ X, (1.3.10)

holds, then V̄ is the value function while Ū is an optimal control for the whole class of

dynamic optimization problems.

The following sufficient condition is an immediate consequence of the main result of

Wiszniewska-Matyszkiel [86].

Theorem 4 Consider the infinite time horizon problem. If for a function V̄ : T×X→
R, the Bellman Eq. (1.3.7) together with the Bellman inclusion (1.3.8) is fulfilled and

the following weaker terminal condition

(i) lim sup
t→∞

V (t,X(t)) · βt ≤ 0,∀X ∈ X, (1.3.11a)

(ii) lim sup
t→∞

V (t,X(t)) · βt < 0⇒ J(t, x, U) = −∞, (1.3.11b)

holds for all U such that X = XU
t,x, then V̄ is the value function while Ū is an optimal

control for the whole class of dynamic optimization problems.

A sufficient condition for continuous time

This is a standard textbook result (equivalent to Zabczyk [87] Theorem 1.1 for a finite

time horizon and Theorem 1.2 for the infinite time).

Finite time horizon

Theorem 5 Consider a finite time horizon T . If a continuously differentiable func-

tion V̄ : T× X→ R, fulfils the Hamilton-Jacobi-Bellman (HJB) equation

rV̄ (t, x)− ∂V̄ (t, x)

∂t
= max

u∈D(x)

(
P (t, x, u) + 〈∇xV̄ (t, x), φ (t, x, u)〉

)
, (1.3.12)

there exist Ū ∈ U such that it fulfils the inclusion

Ū(t, x) ∈ Argmax
u∈D(x)

(
P (t, x, u) + 〈∇xV̄ (t, x), φ (t, x, u)〉

)
(1.3.13)
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and if the following terminal condition holds

V̄ (T, x) = G∗(x) for all x, (1.3.14)

then V̄ is the value function, while Ū is an optimal control.

Infinite time horizon

Theorem 6 Consider the infinite time horizon. If for a continuously differentiable

functions V̄ : T × X → R, the HJB Eq. (1.3.12) together with inclusion (1.3.13) is

fulfilled and the following terminal condition

lim sup
t→∞

V̄ (t,X(t))βt = 0 for every admissible trajectory X ∈ X, (1.3.15)

holds, then V̄ is the value function, while Ū is an optimal control.

Infinite time horizon, an autonomous problem

If P and φ are independent of time t, then Ū and V̄ are also independent of t. So, we

can skip t.

Theorem 7 Consider the infinite time horizon. If a continuously differentiable func-

tions V̄ : X→ R fulfils the HJB equation

rV̄ (x) = max
u∈D(x)

(
P (x, u) + 〈∇V̄ (x) · φ (x, u)〉

)
, (1.3.16)

there exists Ū ∈ U such that it fulfils the inclusion

Ū(x) ∈ Argmax
u∈D(x)

(
P (x, u) + 〈∇V̄ (x), φ (x, u)〉

)
(1.3.17)

and if the following terminal condition

lim sup
t→∞

V̄ (X(t))βt = 0 for every admissible trajectory X ∈ X, (1.3.18)

holds, then V̄ is the value function while Ū is an optimal control.

1.4 Dynamic games or multistage game

Dynamic games are the games played over a time interval in which, given strategies

of the remaining players, each player faces a dynamic optimisation problem.
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However, dynamic games differ from the dynamic optimization problems: In a dy-

namic game, controls are distributed among the set of players unlike in the optimal

control problems, having only one controller. Here, each player’s objective is to opti-

mize his/her individual payoff and a fixed point of best responses is needed to find a

Nash equilibrium.

1.4.1 For finitely many players

A dynamic game with n-players consists of the following:

1. A set of finitely many players I = {1, . . . , n}.

2. A time set T : either discrete T = {0, 1, . . . , T} for a finite time horizon T and

T = {0, 1, 2, . . . } for the infinite time horizon or continuous T = [0, T ] for a finite

time horizon and T = [0,∞) for the infinite time horizon. We denote the initial

time by t0.

3. A set of possible states of the system (state set for short) X ⊆ Rn. A system is

characterized at each time by a state variable x ∈ X.

4. A potential trajectory X of the state of the system is defined as X : T∪{T+1} →
X for discrete time with finite time horizon T , X : T → X otherwise, with an

initial state of the system X(t0) = x0 ∈ X.

5. The equivalent of the control parameter in dynamic game is called the decision

or action of player i ∈ I at time t and is denoted by si.

6. A set of decisions of player i is Di ⊆ Rmi (with strategies being the set of functions

Si : T× X→ Di, to be defined later).

Preliminary set of all decision profiles is denoted by ∆ = D1 × D2 × · · · × Dn.

7. There is a state dependent constraint on decisions or actions of player i, given

by the correspondence Di : X ( Di with Di(x) ⊆ Di, called the correspondence

of currently available decisions.

8. A decision profile s ∈ ∆ available at state x, with si ∈ Di(x) is defined as

s = (s1, . . . , sn).

Information Structure

Strategies that are available to players may have different information structure.

Unlike in dynamic optimisation problems, it is very important to be very precise

about the information structure.
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We are interested in the form of strategies Si : T×X→ Di that are measurable

in the case of continuous time and fulfil one more condition, to be defined later.

These are called in various papers closed loop, closed loop no-memory, feedback

or Markovian.

In some specific cases, Si : X→ Di, with the same ambiguous terminology.

We use the later form of strategies only in the infinite time horizon case and when

the functions and the correspondences stated in the problem are not directly

dependent on time.

Throughout the dissertation, we will use the term feedback (prevalent in most

recent dynamic games literature).

9. Behaviour and evolution of the state variable, given functions Si : T × X → Di

and a strategy profile S = (S1, . . . , Sn) is described by the following equation:

a first order difference equation in discrete time

X(t+ 1) = φ (t,X(t), S(t,X(t))) ;X(t0) = x0, (1.4.1)

for the state transition function φ : T× X×∆→ X.

a differential equation in continuous time

Ẋ(t) = φ (t,X(t), S(t,X(t))) ;X(t0) = x0, (1.4.2)

for almost every t and for a state transition function φ : T× X×∆→ Rn.

In continuous time, some regularity assumption is additionally needed for S (e.g.,

jointly measurable and Lipschitz in X×∆ for almost every t), guaranteeing that

∀ (t0, x0) ∈ T× X ∃ a unique X which fulfils Eq. (1.4.2). (1.4.3)

The unique trajectory which solves Eq. (1.4.1) or Eq. (1.4.2) for given S :

T×X→ ∆ is called the trajectory corresponding to S. If we want to emphasise

that X is corresponding to S, we write XS. If we also want to emphasise the

dependency on the initial condition we write XS
t0,x0

or XS
x0

.

Generally, it cannot be a priori assumed that S is Lipschitz with respect to X,

since discontinuous strategies may appear at Nash equilibria, so we just have the

condition (1.4.4).

10. In discrete time, the set of profiles of strategies is of the form Σ = S1×· · ·×Sn (Si
being the set of functions Si : T×X→ Di, called the sets of strategies of player
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i) and it is a certain set of functions S : T×X→ ∆ which fulfil Si(t, x) ∈ Di(x),

while in continuous time it is a set of all measurable function S : T × X → ∆

which fulfils Si(t, x) ∈ Di(x) and

such that Eq. (1.4.2) has a unique absolutely continuous solution on T∩[t0,+∞).

(1.4.4)

If Σ fulfils Σ = S1× · · ·×Sn, then the set of trajectories corresponding to S ∈ Σ

is called the set of admissible trajectories and is denoted by X.

11. Instantaneous or current payoff is a function P : I×T×X×∆→ R∪{−∞}. We

denote the function P (i, ·, ·, ·) by Pi and it is called the current or instantaneous

payoff of player i.

For a finite time horizon T , we also consider the terminal payoffs G∗i : X →
R ∪ {−∞}.

12. We consider the discounting of the payoffs by a discount factor β ∈ (0, 1). For

discrete time, β = 1
1+r

, while for continuous time, β = e−r, for r > 0, called the

interest rate in economics.

13. A payoff function Ji : T × X × Σ → R ∪ {−∞} of player i is equal to his/her

instantaneous payoffs, discounted and summed over time.

For a profile S, the payoff function in discrete time fulfils:

Ji(t0, x0, S) =
T∑
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) + βT+1−t0G∗i (X(T + 1)) (1.4.5a)

for the finite time horizon T

Ji(t0, x0, S) =
∞∑
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) (1.4.5b)

for the infinite time horizon

for X given by Eq. (1.4.1).
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For a profile S, the payoff function in continuous time fulfils:

Ji(t0, x0, S) =

T∫
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) dt+ βT+1−t0G∗i (X(T + 1))

(1.4.6a)

for the finite time horizon T

Ji(t0, x0, U) =

∞∫
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) dt (1.4.6b)

for the infinite time horizon

for X given by Eq. (1.4.2).

We assume that the functions Pi, φ, G∗i are measurable on T×X×∆ and φ(t, ·, ·)
is Lipschitz continuous in X× U.

We do not impose other direct constraints on the sets or the functions defined

before, but we assume that Ji(t0, x0, S) is always well defined.

1.4.2 Discounted dynamic games with continuum of players

In the dissertation, only autonomous discrete-time dynamic games with a continuum

of players and infinite time horizon are being considered so, and we define only such

games. In those games, we are interested only in strategies which are not directly

dependent on time t.

Definition of dynamic games for the continuum of players are similar to Subsection

1.4.1 with the following changes:

1. The space of players (I,L, λ) for a set of players I = [0, 1] with a Lebesgue

measure λ on the σ-field of its Lebesgue measurable subsets L.

2. The set of decisions of player i, Di is D measurable subsets of a measurable

space (D,D).

3. Currently available decisions are Di(x) for Di : X ( Di with Di(x) ∈ D.

4. A profile of decisions available at state x is any measurable function s : I → D
with si ∈ Di(x). For uniformity of notation, we write si instead of s(i). The set

of all profiles of decision is denoted by ∆.

5. The time set is R+
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6. Current payoffs Pi(t,X(t), s) are of specific form. They can be written as

Pi(x, si, us), for some Pi : X× D× Conv D→ R̄, where us =
∫
I sjdλ(j), usually

called the aggregate of s and Conv D denotes the convex hull of the set D.

7. The trajectory of the state variable corresponding to a profile of strategies S is

XS(t + 1) = ϕ(XS(t), uS(t)) for a function ϕ : X × Conv D → X and uS(t) =

uS(X(t)) with the initial condition X(0) = x0.

8. For a given profile S, the payoff function of player i is

Ji(x0, S) =
∞∑
t=0

βtPi
(
X(t), Si(X(t), uS(t))

)
.

1.4.3 Decomposition theorem for games with a continuum of

players

Here, we cite a theorem concerning the dynamic games with a continuum of players

which we use in the thesis — decomposition theorem from Wiszniewska-Matyszkiel

[79].

We use a slightly reduced form of Theorem 3.2 from [79] because of the high

complexity of the games considered in [79] and we cite the result restricted to the

infinite time horizon case only.

To state the main theorem, we need to first define the following:

Definition 10 Given time t and state x, the static game played at (t, x) is a game with

set of players I, set of strategies equal to the set Di(x) of currently available decisions

and the current payoff function Pi(x, ·, ·).

Definition 11 Static equilibrium is a Nash equilibrium in the static game — a solution

of a static game.

Definition 12 The continuous images of Borel sets, are called analytic sets or Souslin

sets (e.g., Kuratowski [88]).

Theorem 8 (Wiszniewska-Matyszkiel [79] Theorem 3.2)

(a) If S is a profile of strategies and for all t, the profiles of decisions

S(XS(t)) are equilibria in the corresponding one stage games — at time t and state of

the system XS(t), then S is a Nash equilibrium.

(b) Let the space of decisions D be such that the set {(d, d) : d ∈ D} is

D ⊗ D-measurable and D is a measurable image of a measurable space (Z,Z) that is
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an analytic subspace of a separable compact topological space W (with the σ-field of

Borel subsets). Assume that, for almost every i and every x, the function Pi(X(t), ·, ·)
is upper semi-continuous, for almost every i, the function Pi is such that the inverse

images of measurable sets are X ⊗ D ⊗ B(U)-analytic and the correspondence Di has

an X ⊗D-analytic graph and compact values. Every Nash equilibrium S such that, for

almost every player i, the payoff Ji(x0, S) is finite, satisfies the following condition:

for all t, static profiles S(XS(t)) are static equilibria at the state of the system XS(t).

1.5 Organization of the thesis

The methodology of the dissertation is based on the game theory, more specifically

dynamic games and the optimal control theory. Chapter 2-5 deal with the dynamic

games or a dynamic optimization problems in discrete time and Chapter 6 with contin-

uous time. The research work presented in this dissertation is organised and structured

in the form of seven Chapters, which are briefly described as follows:

• Chapter 2 describes a linear-quadratic dynamic game model of a resource ex-

traction problem in the infinite time horizon. In the model, there are linear

state-dependent constraints on controls which makes the problem more com-

plicated. The dynamic game is investigated for n-players and a continuum of

players.

• Chapter 3 provides a comprehensive review of a truncation of the linear-

quadratic dynamic game model considered in Chapter 2 for 2-players and 2-

stages. As a very important result, the existence of a continuum of discontinuous

symmetric feedback Nash equilibria and non-existence of a continuous symmetric

feedback Nash equilibria is proven.

• Chapter 4 presents a dynamic optimisation problem for a more general class of

linear-quadratic games with linear state-dependent constraints and more general

value of the discount factor β. The problem is analysed both for the infinite time

horizon and its finite time truncations.

• Chapter 5 deals with the important theoretical aspects of the dynamic game

theory. With the motivating example of Fish Wars model of Levhari and Mirman,

analysed by analytical and numerical methods, the formulation of general rules

when under or over-estimation of the value function results in correct optimal

trajectory and the optimal strategy along with it for the dynamic optimisation

problems is established.
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• Chapter 6 presents a Fish Wars model in continuous time. Besides calculating

and comparing the optima and equilibria, two type of enforcement of the social

optimality is analysed — a tax-subsidy system and self-enforcing environmental

agreement with the assumption that there is a time delay in the observation of

a default.

• Chapter 7 concludes the thesis and the scope for future work is also mentioned.

20



Chapter 2

A linear-quadratic dynamic game with

linear state-dependent constraints

modelling exploitation of a common

fishery

This chapter is mostly taken from the research article [83]. However, the results are

extended to encompass interesting properties which were noticed after the publication.

We consider a discrete time linear-quadratic (LQ) dynamic game with the infinite

time horizon. It is a model of extraction of a common renewable resource — a fishery

— with many players — countries or firms — which sell their catch at a common

market.

This LQ dynamic game model constitutes a counterexample to a simplification of

the standard methodology which is regarded as correct and widely used in applied

papers on dynamic games and dynamic optimization problems.

The research done in this chapter has two objectives:

1. Theoretical — Investigate LQ dynamic games in the case when there are linear

state-dependent constraints on the players’ decisions.

2. Applicational — Analyzing a common renewable resource problem with many

players. By many players, we understand the results of a decomposition of

the decision-making structure of the same mass of consumers of the resource.

We also introduce a Pigouvian tax or a tax-subsidy system enforcing the social

optimality.

2.1 Formulation

We consider a linear-quadratic dynamic game of exploitation of one common renewable

resource — a fishery — with many players. The renewable resource that we consider

is one species of fish, uniformly dispersed in a marine or deep lake fishery, equally

partitioned between the players. The dynamic game considered here consists of:
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1. A set of players: Either finite I = {1, 2 . . . , n} or a continuum {I,L, λ} with

I = [0, 1].

2. A time set : Discrete and infinite time horizon T = {0, 1, 2, . . . } with the initial

time t0 = 0. Subsequent t represents the subsequent periods (divided by the

spawning stage).

3. The state of the resource: x ∈ X = R+, denoting the biomass of fish. To make

it more clear, we assume it at the beginning of time period (e.g., year after

spawning).

4. The average/aggregate extraction of s: For n player dynamic game

us =
n∑
i=1

si
n
. (2.1.1)

Here, we use division by n, in order to be able to compare the dynamic games

with various n treated as decomposing the same set of individuals into decisive

units of decreasing size (e.g., the global population decomposed into continents,

countries, regions etc). At the maximal level of decomposition we have a limit

game with a continuum of players for which

us =

∫
[0,1]

sj · dλ(j), (2.1.2)

as in Subsection 1.4.2.

5. The catch is sold at a common market at s dependent only on us. We define the

price by a linear function (known as inverse demand function in economics),

A− us,

Players face a quadratic cost of fishing, identical for every player and equal to

fsi +
s2
i

2
.

So, the current or instantaneous payoff function of every player is equal to their

revenue minus cost

Pi(s) = (A− us)si − fsi +
s2
i

2
.

In economic applications, A is substantially greater than f , so, we assume A > f .

22



6. Notational convention: Using the aggregate us ∈ R+, we will use the simpli-

fying notation Pi(s) = P(si, u
s) to emphasize both the decision of player i and

the aggregate also for finitely-many-players case i.e.,

P (si, u
s) = (A− us)si − fsi +

s2
i

2
.

7. Strategies: Here, we consider the special form of the feedback strategies, depen-

dent only on the state variable, Si : X→ Di.

8. The trajectory X of the state variable: We also use the simplifying notation with

us. Given a strategy profile S,

X(t+ 1) = ϕ
(
X(t), uS(X(t))

)
;X(0) = x0, (2.1.3)

where the state transition function is

ϕ
(
X(t), uS(X(t))

)
= (1 + ξ)X(t)− uS(X(t)). (2.1.4)

9. Linear state dependent constraints on decisions: Di(x) = [0, cx].

To make the depletion or extinction possible, we consider c = (1 + ξ), where

ξ > 0 is the regeneration rate of the resource — natural net growth rate of the

biomass of fish without fishing.

10. Total payoff function of player i: For choosing a strategy profile S, Eq. (1.4.5

(b)) becomes

Ji(x0, S) =
∞∑
t=0

βt ·
((
A− uS(X(t))

)
Si(X(t))−

(
fSi(X(t)) +

S2
i (X(t))

2

))
(2.1.5)

The discount factor β from Eq. (2.1.5) measures the players’ patience. From the

economical point of view, more interesting solutions are the Nash equilibria at

which the rates of growth of both assets — the resource and the money — are

identical. When applied to renewable resources extraction, it is known as the

golden rule (e.g., [89]). Therefore, in this chapter, we consider

β =
1

1 + ξ
, (2.1.6)

that is r = ξ.

23



2.2 Social Optima

In the social optimum problem, n-players jointly maximize their payoffs. So, for this

problem the Bellman Eq. (1.3.7) is

V̄ (x) = max
si∈[0,cx]n

n∑
i=1

(
(A− us) si −

(
fsi +

s2
i

2

))
+ βV̄ ((1 + ξ)x− us), (2.2.1)

the Bellman inclusion (1.3.8) is

S̄(x) ∈ Argmax
si∈[0,cx]n

n∑
i=1

(
(A− us) si −

(
fsi +

s2
i

2

))
+ βV̄ ((1 + ξ)x− us) . (2.2.2)

We are going to extend the previously defined game by considering also single player

case i.e., a dynamic optimization problem.

Lemma 9 Consider the social optimum problem for the n-players. If the value func-

tion V̄ : R+ → R fulfiling the Bellman Eq. (2.2.1) is differentiable, then the optimal

solution is symmetric.

Proof: Apply the Karush-Kuhn-Tucker first order necessary conditions to the max-

imum in the right hand side of Eq. (2.2.1), for given x. The constraints are:

si ≥ 0, ∀i = 1 . . . , n; (2.2.3a)

(1 + ξ)x− sj ≥ 0, ∀i = 1 . . . , n. (2.2.3b)

Define the adjoint variables µ = (µ1, . . . , µn) ≥ 0 for the constraints (2.2.3a) and

ν = (ν1, . . . , νn) ≥ 0 for the constraints (2.2.3b) respectively.

Consider the Lagrangian L(x, s, µ, ν) =

n∑
i=1

(
(A− us)si −

(
fsi +

s2
i

2

)
+ βV ((1 + ξ)x− us)

)
+

n∑
i=1

µisi+
n∑
i=1

νi ((1 + ξ)x− si).

To find a candidate for optimal control, calculate the point of zero derivative of the

Lagrangian L(x, s, µ, ν) with respect to si,

(A− us)− si
n
− (f + si)−

(
β

n

)
V ′ ((1 + ξ)x− us) + µi − νi = 0. (2.2.4)

Similarly, for j 6= i, ∂L(x,s,µ,ν)
∂sj

= 0 yields

(A− us)− sj
n
− (f + sj)−

(
β

n

)
V ′ ((1 + ξ)x− us) + µj − νj = 0. (2.2.5)
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Consider the following cases:

case 1. If both µi, µj = 0 and νi, νj = 0, then by Eq. (2.2.4) and (2.2.5),

si = sj, thus, the strategies are symmetric.

case 2. Assume two asymmetric boundary points, si = 0 and sj = (1 + ξ)x with

µi 6= 0 and νj 6= 0. Substitute si = 0 into Eq. (2.2.4) and sj = (1+ξ)x into Eq. (2.2.5)

and solve for µi and νj, to get µi + νj +
(
1 + 1

n

)
(1 + ξ)x = 0. This is a contradiction,

since both µi, νj ≥ 0.

case 3. If si = 0 (so that si 6= (1 + ξ)x =⇒ νi = 0 and sj 6= 0 =⇒ µj = 0),

then, by solving Eq. (2.2.4) and (2.2.5) for µi and νj, to get, sj
(
1 + 1

n

)
+ µj + νi = 0.

This is again a contradiction.

case 4. If si = (1+ξ)x =⇒ µi = 0 and sj 6= (1+ξ)x =⇒ νj = 0, then by solving

Eq. (2.2.4) and (2.2.5) for µi and νj, to get,
(
1 + 1

n

)
((1 + ξ)x− sj)+µj +νi = 0. This

is a contradiction, since sj < (1 + ξ)x.

Therefore, the strategies are symmetric.

Theorem 10 Consider the social optimum problem. For β = 1
1+ξ

, corresponding to

the golden rule interest rate

(a) The value function for n-players with n ≥ 1 is,

V̄ SO(x) =

ĝ · x+ ĥ
2
· x2, if 0 < x < x̃,

k̃, if x ≥ x̃,
(2.2.6)

for ŝ = A−f
3

, x̃ = ŝ
ξ
, ĥ = −3nξ (1 + ξ) , ĝ = n(A− f)(1 + ξ), and k̃ = (A−f)2(1+ξ)n

6ξ
.

(b) The value function of player i for n-players with n ≥ 1 is V̄ SO
i (x) = V̄ SO(x)

n
, and

it is independent of number of players n.

(c) The value function for the continuum of players is the same as the value function

of player i for n-players i.e., V̄ SO
i (x).

(d) The unique social optimum both for the n-players and the continuum of players is

S̄SO
i (x) =

ξx, if 0 < x < x̃,

ŝ, if x ≥ x̃
(2.2.7)

The results of Theorem 10 are presented in Fig. 2.1a and 2.1b, for the specific values

of the parameters A = 1000, f = 9 and ξ = 0.02.
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Figure 2.1: Social optimum problem for arbitrary number of players

Proof:

The theorem can be easily proved just by substituting V̄ SO and V̄ SO to the Bellman

Eq. (2.2.1) and the Bellman inclusion (2.2.2). Nevertheless, it is not the way in which

such results are obtained. Therefore, we present the whole path which leads us to a

solution.

(a) By Lemma 9, if V fulfiling the Bellman Eq. (2.2.1) and terminal condition

is differentiable, then the optimal solution is symmetric. We can easily check that

the function V̄ SO is differentiable, with derivative at x̃ equal to 0. So, for simplicity,

consider symmetry a priori and assume Si ≡ S to maximize

n
∞∑
t=0

(A− S(X(t))S(X(t))−
(
fS(X(t)) +

S2(X(t))

2
)

)
βt

over the set of feedback controls.

The Bellman Eq. (2.2.1) reduces to

V̄ (x) = max
s∈[0,(1+ξ)x]

n

[
(A− s) s−

(
fs+

s2

2

)]
+ βV̄ ((1 + ξ)x− s) . (2.2.8)

Assume that the value function V̄ (x) is of quadratic form: V̄ (x) = k + gx + hx2

2
and

look for a solution of the Eq. (2.2.8) in this class of functions.

The first order condition for s to be the optimal solution is

s =
−n (1 + ξ) (A− f) + g + h(1 + ξ)x

(h− 3n(1 + ξ))
. (2.2.9)

Substitute this s into the Bellman Eq. (2.2.8) to calculate the values of the constants

for which Eq. (2.2.9) is fulfilled. Obtained sets of values of the constants are as follows,
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ĥ = −3nξ(1 + ξ), ĝ = n(1 + ξ)(A− f), k̂ = 0; (2.2.10a)

g = h = 0, k̃ =
n(A− f)2

6(1− β)
; (2.2.10b)

h = 0, arbitrary g 6= 0, k(g) =
(n(A− f)− βg)2

6n(1− β)
. (2.2.10c)

Notice that h ≤ 0 for all such sets of constants. So, the maximized function is strictly

concave, which implies that s from Eq. (2.2.9), is the unique global maximizer if

s ∈ [0, cx]. Consider the following cases.

case 1 If k, g and h are as in (2.2.10a).

Then the zero derivative point is ξx, which is less than cx. Therefore, it defines

the unique maximizer in this case. However, the function

V̄1(x) = ĝx+
ĥx2

2
(2.2.11)

does not fulfil the terminal condition (1.3.10), since lim
t→+∞

βtV̄1(X0(t)) = −∞, where

X0 is the trajectory corresponding to the profile S ≡ 0.

Now, consider the weaker terminal condition from Eq. (1.3.11). It also does not

solve the problem as the payoff for S ≡ 0 is 0. This means that the sufficient condition

is not fulfiled, so at this stage of the proof, it cannot be checked whether V̄1 is the

value function or not.

case 2 If k and h are as in (2.2.10b), then the candidate for the value function is

V̄2(x) = k̃ (2.2.12)

and the terminal condition is obviously fulfilled, since V̄2 is constant. The Bellman

Eq. (2.2.1) has the form V̄2(x) = max
s∈[0,cx]n

n∑
i=1

Pi(s) + βk̃.

Therefore, the candidate for the optimal strategy of each player is ŝ = A−f
3

, which

is independent of x.

Note that for x close to 0, ŝ > (1 + ξ)x, so, ŝ cannot be the social optimum for

these x and the Bellman Eq. (2.2.1) is not fulfilled. Hence, V̄2(x) = k̃ cannot be the

value function of the problem, since Eq. (2.2.8) is also a necessary condition.

case 3 If k, g and h are as in (2.2.10c).

Then, lim
t→+∞

βt (gX(t) + k(g)) 6= 0 for the trajectory X0 which violated the termi-
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nal condition in case 1. Besides, k 6== 0, the candidate for optimal s, given by Eq.

(2.2.9) is constant. So, either S ≡ 0 or S(0) 6= 0. In the first case V ≡ 0, which is

not true. In the second case S(0) ∈ [0, c · 0]. So, such function cannot be the value

function for our model.

case 4 Consider case 1 and case 2 together.

Consider the only continuous combination of V̄1 and V̄2 which makes sense, i.e.,

with V̄ (0) = 0 with one switching point and continuous. Then the candidate for the

value function is

V̄ (x) =

V̄1(x), if 0 ≤ x ≤ x̃,

V̄2(x), if x > x̃.

for V̄1(x) and V̄2(x) from Eq. (2.2.11)–(2.2.12). So, V̄ (x) = V̄ SO(x).

Note that V̄ SO is continuous as well as differentiable. The corresponding candidate

for the optimal profile is S̄SO(x).

After finding the candidates for the value function and the optimal profile, it is also

needed to be proved that the Bellman Eq. (2.2.8) is really fulfilled by this piecewise

defined function.

For brevity of notations, given a state x and a decision s (by symmetry, the aggre-

gate extraction will be also equal to s), denote the next stage state by xnext(x, s),

xnext(x, s) = (1 + ξ)x− s.

The set of s for which xnext(x, s) ≤ x̃, is denoted by SI and it is written as

SI = [sBd, (1 + ξ)x],

while the set of the remaining s,

SII = [0, sBd),

where sBd denotes s for which xnext(x, s) = x̃, i.e., x̃ = (1 + ξ)x − sBd whenever it is

non-negative, otherwise take sBd = 0 (this holds for some x < x̃; then SII = ∅).

If for some x, sBd = 0, which may hold only for x ≤ x̃, then for this x, the Bellman

Eq. (2.2.8) reduces to V̄1(x) = max
s∈[0,(1+ξ)x]

n∑
i=1

(P(s, s)) + βV̄1 (xnext(x, s)), which was

solved during the calculation of constants in case 1.

So, consider sBd > 0, then SI 6= ∅ and SII 6= ∅. This situation can be decomposed

into two cases.
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(I) For x ≤ x̃, the Bellman Eq. (2.2.8) can be rewritten as

V̄1(x) = max{max
s∈SI

nP(s, s) + βV̄1(xnext(x, s)),max
s∈SII

nP(s, s) + βV̄2(xnext(x, s))}.

Since max
s∈SI

nP(s, s)+βV̄1(xnext(x, s)) is attained at ξx ∈ SI, while max
s∈SII

nP(s, s) + βV̄2(xnext(x, s))

is attained at sBd ∈ SI, but not to SII, and sBd does not optimize nP(s, s) + βV2(xnext(x, s))

on SI, the Bellman Eq. (2.2.8) is fulfilled.

(II) If x > x̃, then the Bellman Eq. (2.2.8) can be rewritten as

V̄2(x) = max{max
s∈SI

nP(s, s) + βV̄1 (xnext(x, s)) ,max
s∈SII

nP(s, s) + βV̄2 (xnext(x, s))}. First,

consider the optimization over SI.

The first order condition for maximization of ∂(nP(s,s)+βV̄1(xnext(x,s))
∂s

= 0, is attained

at ξx 6∈ SI. So, the supremum over SI is attained at sBd ∈ Closure (SII).

Since nP(s, s)+βV̄2 (xnext(x, s)) is strictly concave and A−f
3

is its only global maxi-

mum, P
(
A−f

3
, A−f

3

)
> P (sBd, sBd). Since V is continuous, A−f

3
is the global maximum

over [0, (1 + ξ)x].

Therefore, in case 4, the Bellman Eq. (2.2.8) is fulfilled.

The terminal condition given by Eq. (1.3.9) is obvious, since V̄ SO is bounded.

(b) Immediate.

(c) For the continuum of players, the social optimum is defined by the inclusion,

S̄ ∈ Argmax
S∈Σ

1∫
0

∞∑
t=0

βtP
(
Si(X(t)), uS(X(t))

)
dλ(i).

Notice that along the optimal profile S̄, P is non-negative, since, otherwise, at

t for which P
(
S̄i(X(t)), uS̄(X(t))

)
is negative, replace S̄i(X(t)) by 0 and increase the

aggregate payoff.

Since S̄ is a profile, S̄(X(t)) is measurable, so, βtP
(
S̄i(X(t)), uS̄(X(t))

)
is integrable.

As P is bounded on the set on which it is non-negative, along the optimal profile, the

series is absolutely convergent, so,
1∫
0

∞∑
t=0

βtP
(
S̄i(X(t)), uS̄(X(t))

)
dλ(i) =

∞∑
t=0

βt
1∫
0

P
(
S̄i(X(t)), uS̄(X(t))

)
dλ(i).

Since P(si, u) is concave in si, by the Jensen inequality

∞∑
t=0

βt
1∫

0

P
(
S̄i(X(t)), uS̄(X(t))

)
dλ(i) ≤

∞∑
t=0

βtP

 1∫
0

S̄i(X(t))dλ(i), uS̄(X(t))

 .

The right hand side of this expression is equal to,

max
S∈Σ

∞∑
t=0

βtP
(
uS(X(t)), uS(X(t))

)
= max

S∈S

∞∑
t=0

βtP (S(X(t)), S(X(t))),
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which reduces the continuum of players problem to the social optimum problem for

n-players with n = 1.

(d) The function V̄ SO(x) is the value function, so, the function S̄SO is the social

optimum for any finite n ≥ 1. The result for the continuum of players case is imme-

diate, by reduction of the social optimum problem to the social optimization problem

for n = 1.

Therefore, the social optimum both for n players and the continuum of players is

the profile S̄SO
i defined by Eq. (2.2.7) . Moreover, the optimal profile is unique, since

maximisation of the Bellman equation is also the necessary condition for a control to

be optimal by (Theorem 1).

Corollary 11 The value function for the social optimum problem is continuous, dif-

ferentiable and strictly increasing for x < x̃, non-decreasing globally, while the social

optimum leads to the sustainability of the resource.

Remark 1 The result is independent of the number of players which implies that our

game properly models the situation in which increasing the number of players repre-

sents considering a more decomposed decision-making structure without introducing

additional fishermen as new players.

Corollary 12 (a) The value function and the social optimum do not change if we

change the dynamics for x ≥ x̃ and consider the state transition equation

X(t+ 1) = ϕ(X(t), uS(X(t))) with X(0) = x0, (2.2.13)

for the function ϕ(x, u) = (1 + ξ)x − u for x < x̃ and such that the interval [x̃,+∞)

is invariant under Eq. (2.2.13) given S = S̄SO.

(b) If we replace the golden rule β by any β ∈ (0, 1), then the social optimum

remains unchanged at [x̃,+∞), while the value function on this interval is (A−f)2n
6(1−β)

.

Proof: In both cases, for x > x̃ we have the unconstrained global maximum at ŝ

(since, the discounted sum of global maxima at each time instant), which is feasible

in those cases.

The value function in (b) is, therefore, equal to P(ŝ,ŝ)
1−β .
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2.2.1 A counterexample — a general conclusion for solving

the dynamic optimisation and a Nash equilibrium prob-

lem in dynamic games

While proving Theorem 10, we have obtained the following result which can be used as

a counterexample for a common simplification used in the calculation of the optimal

controls and the Nash equilibria in infinite time horizon problems.

Corollary 13 The unique quadratic solution of the Bellman Eq. (2.2.1) is V̄1 given

by Eq. (2.2.11). For this V̄1 ∃! S fulfiling the Bellman inclusion (2.2.2) with V̄1 and it

is linear and the corresponding trajectory is constant.

Nevertheless, the function V̄1 is not the value function for the social optimum

problem, while this unique S is not the social optimum.

Proof: The value function V̄ SO 6= V̄1 and the unique social optimum S̄SO 6= S.

This result is a simple counterexample showing that skipping checking the termi-

nal condition while looking for the optimal control in the feedback form or a feedback

Nash equilibrium, which often appears in literature (e.g., most of the papers in the

Fish Wars thread; terminal condition in the infinite time horizon is sometimes also

omitted in the textbooks), may lead to finding the wrong results. Although we are

conscious that some counterexamples already exist (e.g., [90] ) they are very elaborate,

while this problem is simple and well motivated by its applicability and the fact that

the existence of a quadratic value function for a linear-quadratic dynamic game or a

dynamic optimization problems is a kind of folk theory in the field.

This misleading belief obviously comes from unconstrained problems. So, an au-

thor who is not checking the terminal condition is likely to regard the unique quadratic

solution of the Bellman Eq. as an obvious candidate for the value function.

Moreover, this is also a counterexample for the uniqueness of the solution of the

Bellman Eq. (2.2.8) in such a simple class of dynamic optimisation problems.

2.3 Nash equilibria

2.3.1 Nash Equilibria for the Continuum of Players Case

Next, we solve the problem of Nash equilibrium. We start from the game with a

continuum of players.
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Theorem 14 Consider the game with a continuum of players (I,L, λ) with I = [0, 1].

(a) The only feedback Nash equilibrium profile (up to equivalence almost every-

where) is

S̄NE
i (x) =

(1 + ξ)x, if x ≤ x̂1,

A−f
2
, otherwise,

for x̂1 = A−f
2(1+ξ)

.

(b) The value function of the considered problem is

V̄ NE
i (x) =


Pdepl(x) := P ((1 + ξ)x, (1 + ξ)x) , if x ≤ x̂1

N∑
k=1

(A−f)2βk−1

8
+ βNPdepl

(
(1 + ξ)Nx− (A−f)

2

N∑
k=1

(1 + ξ)k−1

)
, if x̂N < x < x̂N+1

(A−f)2

8(1−β)
, otherwise,

where Pdepl(x) =
(
A− f − 3

2
(1 + ξ)x

)
(1 + ξ)x is the payoff resulting from immediate

depletion of the resource and x̂N =
N∑
k=1

A−f
2(1+ξ)k−1 for N ≥ 1.

(c) For x ∈ (x̂N , x̂N+1] with x̂0 = 0, the resource will be depleted in N + 1 stages,

while for x ≥ x̂∞ = lim
N→∞

x̂N , the resource will never be depleted.

The results of Theorem 14 are illustrated in Fig. 2.2a-2.3b for A = 1000, f = 9, ξ =

0.02. Because drawing a piecewise continuous function with infinitely many pieces

is impossible, we draw the accurate graph of V̄ NE
i over x ∈ [o, xN ] and [x̃,+∞) for

N = 1000.
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Figure 2.2: Nash equilibrium problem for the continuum of players — The value
function
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Figure 2.3: Nash equilibrium problem for the continuum of players–the strategy and
time to resource exhausion

Proof: (a) By Theorem 8, for a dynamic game with the continuum of players,

a profile is a Nash equilibrium if and only if it is a sequence of Nash equilibria in one

stage games. So, for such games, at each stage with state x, the Nash equilibrium is a

profile of decisions s̄ such that for almost every i,

s̄i ∈ Argmax
si∈[0,(1+ξ)x]

P(si, u
s̄).

Consider any us̄ and note that the influence of any single player on us̄ is negligible.

Since for given us̄, every player faces the same decision making problem with unique

solution, all the profiles are symmetric. So, us̄ = si. Consider

S̄NE(x) =

(1 + ξ)x, if x ≤ x̂1,

(A−f)
2

, otherwise.

Now, assume that in the static game considered, for some x, a static profile at x gives

some other aggregate u 6= S(x).

case 1 If x ≤ x̂1 and u < (1 + ξ)x, then the best response of every player i is

(1 + ξ)x =⇒ us > u, which is a contradiction.

case 2 If x > x̂1 and u < A−f
2

, then the best response of every player i is

si >
A−f

2
=⇒ us > u, a contradiction.

case 3 If x > x̂1 and u > A−f
2

, then the best response of every player i is
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si <
A−f

2
=⇒ us < u, again a contradiction.

case 4 Consider that u = S̄NE(x).

(i) If X(t) = x ≤ x̂1, then at this stage, ∀ i, Argmax
si∈[0,(1+ξ)x]

P(si, u) = (1 + ξ)x.

At the next stage, X(t+ 1) = 0.

(ii) If X(t) = x > x̂1, then at this stage, ∀ i, Argmax
si∈[0,(1+ξ)x]

P(si, u) = A−f
2

.

Therefore, for every state x, S̄NE(x) is the static Nash equilibrium at x.

(b) and (c) are proved together. Consider the following cases.

case 1 If x ≤ x̂1, then the optimal decision is (1 + ξ)x, meaning that the resource

depletes immediately. The value function is given by

V NE
i (x) = Pdepl(x) :=

(
A− f − 3

2
(1 + ξ)x

)
(1 + ξ)x.

case 2 If x̂1 < x < x̂∞, then the optimal choice for every player is A−f
2

.

Define x̂2 such that x̂1 = (1 + ξ)x̂2− A−f
2

, then ∀ x ∈ (x̂1, x̂2], the state in the next

stage belongs to (0, x̂1]. Further, prove recursively and assume that x̂N+1 such that

x̂N = (1 + ξ)x̂N+1 − A−f
2

and ∀ x ∈ (x̂N , x̂N+1], the state in the next stage belongs to

(x̂N−1, x̂N ]. Moreover, assume the resource will be depleted in N stages.

Solve above recurrence equation for x̂N+1, to get x̂N+1 = x̂N
1+ξ

+ A−f
2(1+ξ)

=
N∑
k=1

A−f
2(1+ξ)k−1 .

For N ≥ 1 and ∀ x ∈ (x̂N+1, x̂N+2], the resource will be depleted in N + 2 stages.

The limit x̂∞ of the sequence x̂N is

x̂∞ = lim
N→∞

x̂N =

(
A− f

2ξ

)
.

Since for all x ≥ x̂∞, (1 + ξ)x− A−f
2

> x, the resource will never be depleted.

For all x ∈ (x̂1, x̂∞), the recurrence equation of the value function is

V̄ NE
i (x) = P(A−f

2
, A−f

2
) + βV̄ NE

i

(
(1 + ξ)x− A−f

2

)
.

For X(t) ∈ (x̂1, x̂2], at the next stage, X(t + 1) ∈ [0, x̂1] =⇒ X(t + 2) = 0. So, the

value function is V̄ NE
i (x) = P

(
A−f

2
, A−f

2

)
+ βPdepl

(
(1 + ξ)x− A−f

2

)
,∀ x ∈ (x̂1, x̂2].

Proceed inductively in the same manner to get,

V̄ NE
i (x) =

N∑
k=1

(A−f)2βk−1

8
+βNPdepl

(1 + ξ)Nx−
(A−f)

N∑
k=1

(1+ξ)k−1

2

 ,∀ x ∈ [x̂N , x̂N+1].

case 3 Finally, if x ≥ x̂∞, then V̄ NE
i (x) =

∞∑
t=0

βtP
(
A−f

2
, A−f

2

)
= (A−f)2(1+ξ)

8ξ
.
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Remark 2 The form of the value function in Theorem 14 is very unusual for linear-

quadratic games, and this strange shape appears because of the constraints and the

possibility of extinction of the exploited species.

Corollary 15 Let us change the dynamics for x ≥ x̂∞ and consider the state trajec-

tory

X(t+ 1) = ϕ(X(t), uS(X(t))); X(0) = x0, (2.3.1)

for ϕ(x, u) = (1+ξ)x−u and for x < x̂∞ while for x ≥ x̂∞ any t such that the interval

[x̂∞,+∞) is invariant under Eq. (2.3.1) given S = S̄NE, the value function and the

Nash equilbrium profile will not change.

Proof: For x > x̃, for each player i, given the strategies of the other players S̄NE
∼i ,

S̄NE is the unconstrained global maximum (as the discounted sum of global maxima

at each time instant), which is feasible.

Corollary 16 The value function for the Nash equilibrium in the case of the contin-

uum of players is continuous, but not differentiable. For some values of the constants,

it is also not monotone.

Proof: Immediate for x < x̂∞.

For x ≥ x̂∞, lim
x→x−∞

V̄ NE
i (x) = lim

N→∞
βNPdepl

(1 + ξ)Nx−
(A−f)

N∑
k=1

(1+ξ)k−1

2


+

N∑
k=1

βkP
(
A−f

2
, A−f

2

)
= 0 + (A−f)2

8(1−β)
= V̄ NE

i (x∞) = lim
x→x+∞

V̄ NE
i (x).

Corollary 17 For every x > 0 and almost every i ∈ I,
(a) V̄ SO(x)

n
> V̄ NE

i (x).

(b) S̄SO
i (x) < S̄NEi (x).

Proof: Immediate by comparison of the calculated results.

2.3.2 Nash equilibria for finitely many players

In this subsection, the problem of finding the Nash equilibrium for n-players is solved.

Moreover, it is not possible to calculate the Nash equilibrium either by using the

undetermined coefficient method/ (Ansatz method) with assuming the quadratic form

of the value function or by the decomposition method specific to the large games.

Theorem 18 Consider the n player Nash equilibrium problem for the golden rule

β = 1
1+ξ

. For n ≥ 2, if there exists a symmetric feedback Nash equilibria, then the

symmetric feedback Nash equilibrium strategy is not piecewise linear with the quadratic

value function for less than three intervals of the constant coefficients.

35



Proof: From the necessary condition (given by Theorem 1) given from the Eq.(1.3.7)–

(1.3.8) for the unbounded payoffs.

The Bellman Eq. (1.3.7) for player i, given the strategies of the others S∼i(x) is

V̄i(x) = max
si∈[0,cx]

Pi(si, S∼i(x)) + βV̄i

(1 + ξ)x− si
n
−

∑
j 6=i

Sj(x)

n

 , (2.3.2)

the Bellman inclusion (1.3.8) is

Si(x) ∈ Argmax
si∈[0,cx]

Pi(si, S∼i(x)) + βV̄i

(1 + ξ)x− si
n
−

∑
j 6=i

Sj(x)

n

 . (2.3.3)

To calculate the piecewise linear Nash equilibria, assume that the strategies of the

others are of the form S∼i(x) = (ax+ b, . . . , ax+ b).

Note that, if the strategies of all the players are linear, then the payoff of player i

is quadratic which implies that the right-hand side of the Bellman Eq. (2.3.2) is also

quadratic.

So, assume that at the Nash equilibrium, the value function of player i has the

quadratic form: k + gx+ hx2

2
, while the Nash equilibrium strategy of player i has the

linear form in the state variable.

First order condition for si to be optimal is

si =
−n2(1 + ξ)(A− f − ax− b)2 + n ((h− a)x− b)ξ + ((1− a)h− a)x− b− hb+ g) + h(ax+ b)

h− (n2 + 2n)(1 + ξ)
.

For the symmetry assumption, substitute si = ax+ b, to get

a =
h(1 + ξ)

h− (2n+ 1)(1 + ξ)
, b =

g − n(1 + ξ)(A− f)

h− (2n+ 1)(1 + ξ)
.

Substitute the values of a, b and s into the Bellman Eq. (2.3.2) in order to calculate

the coefficients h, g and k by equating the both side coefficients at x2, x and the

constants. There are three possible values of h: positive h+, negative h− and 0.

h+ = 1/2

(
−3 ξ + 4n− 1 + 4

√
(1 + ξ)

(
9

16
ξ + (n− 1/4)2

))
(1 + ξ) ,

h− = −1/2

(
3 ξ − 4n+ 1 + 4

√
(1 + ξ)

(
9

16
ξ + (n− 1/4)2

))
(1 + ξ) .
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The corresponding value of g is

g =
(1 + ξ) ((−1− 2n2) ξ − 1− 2n2 + h) (A− f)

((1− 4n)ξ + h− 4n+ 1)
,

whenever h 6= 0, otherwise g is arbitrary. For given h and g, value of the real constant

k is unique.

For h− and the resultant g−, the value of the constant k = 0.

For h+, the right hand side of the Bellman Eq. (2.3.2) is strictly convex, so the zero

derivative point is not a maximizer. Therefore, consider the cases of negative h− and

h = 0. After substitution, unique value of a and b can be obtained, for each of those

sets of constants.

Exclude the case h = 0 and g 6= 0. In this case, the resultant value of si, which solves

the Bellman Eq. (2.3.2), is constant and for this si the candidate for the value function

is also a constant with g = 0, which is a contradiction.

Therefore, at this moment, only the necessary condition for the value function of

each of the players at any symmetric Nash equilibrium has been proven. The analysis

of the problem is without solving the Nash equilibrium problem explicitly.

Lemma 19 At a symmetric feedback Nash equilibrium, the value function V̄i of player

i fulfils

(a) V̄i(0) = 0.

(b) V̄i(x) ≥ 0, ∀x.

(c) V̄i(x) ≤ V̄ SOi (x)

n
, ∀x 6= 0.

Proof: (a) Immediate.

(b) Since 0 strategy is always available to player i.

(c) The value function for the social optimum problem is V̄ SO(x) = max
S∈Sn

n∑
i=1

Ji(x, S),

while for Nash equilibrium problem, V̄i(x) = max
Si∈S

Ji(x, S); i = 1, . . . , n.

It can be easily checked that the social optimum profile S̄SO is not a Nash equilib-

rium.

Since V̄ SO(x)
n

= 1
n

max
S∈Sn

n∑
j=1

Jj(x, S) ≥ 1
n

n∑
j=1

Jj(x, S), ∀S with strict inequality whenever

S 6= S̄SO, which holds for a symmetric social optimum profile. Analogously, for a

symmetric Nash equilibrium, 1
n

n∑
j=1

Jj(x, S) = 1
n

n∑
j=1

V̄j(x).

Since by the symmetry, all Jj(x, S) are equal, so, V̄i(x) = 1
n

n∑
j=1

V̄j(x) < V̄ SO(x)
n

.

Note that none of the obtained functions k + gx + 1
2
hx2, fulfils both (a) and (b),

so consider the combination of both.
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The only such combination which fulfils (a) and (b) is

V̄i
cand1

=

g−x+ h−x2

2
, if x ≤ x̄,

k̃, otherwise,

where k̃ =
(A−f− 3ŝ

2 )ŝ
1−β is the positive real constant while h = 0 and g = 0, ŝ = (A−f)n

(2n+1)

(equal to the Nash equilibrium in a one stage game) and for some x̄ > 0 (since

otherwise, the Bellman Eq. (2.3.2) does not hold). The resultant candidate for the

Nash equilibrium strategy is

S̄cand1
i =

ax+ b, if x ≤ x̄,

ŝ, otherwise.

However, whether ax + b ≤ (1 + ξ)x, remains to be checked. It does not hold for

x close to 0, since b > 0.

Denote the point at which ax+ b = (1 + ξ)x by x̃. Then x̃ ∈ (0, n(A−f)
(2n+1)ξ

).

For x ≤ x̃, the calculated ax + b > (1 + ξ)x. So, if x̃ < x̄, then the candidate for

symmetric feedback Nash equilibrium strategy has at least three pieces:

S̄cand2
i =


(1 + ξ)x, if x ≤ x̃,

ax+ b, if x̃ < x ≤ x̄,

ŝ, otherwise,

and the corresponding candidate for the value function is

V̄ cand2
i =


(
A− f − 3

2
(1 + ξ)x

)
(1 + ξ)x, if x ≤ x̃,

g−x+ h−x2

2
, if x̃ < x ≤ x̄,

k̃, otherwise.

Note that, for x = x̃+ ε for small ε > 0, the Bellman Eq. (2.3.2) does not hold, since

(1 + ξ)x− (ax+ b) < x̃.

If x̃ ≥ x̄, then

S̄cand3
i =

(1 + ξ)x, if x ≤ x̄,

ŝ, otherwise,
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and the corresponding candidate for the value function is

V̄ cand3
i =


(
A− f − 3

2
(1 + ξ)x

)
(1 + ξ)x, x ≤ x̄,

k̃, otherwise.

Note that for x > ŝ(n−1)
n(1+ξ)

, (1 + ξ)x is not the best response to S∼i(x) ≡ (1 + ξ)x.

So, if x̄ ≤ ŝ(n−1)
n(1+ξ)

, then x̄ < ŝ
ξ

— the critical value below which the constant ŝ is not

feasible. Thus, the value function cannot be k̃ for x ∈ [x̄,∞). Therefore, in this case

the necessary conditions (2.3.2) and (2.3.3) are not fulfilled.

Remark 3 The non-existence of a Nash equilibrium of assumed regularity seems to

be inherited from the finite time horizon truncations of the game, which are studied in

the next chapter.

2.4 Enforcing social optimality by a tax system

In this section, enforcement of the social optimum profile by a Pigouvian tax system has

been studied. Formally, introduction of a tax or a tax-subsidy system is a modification

of the game by changing the current payoffs. To be more specific, we consider a

function T R+ × R+ → R called a tax-subsidy system. When T (si, x) ≥ 0 for every

(si, x) then we call it a tax system. A tax-subsidy system is substracted from the

current payoff. So, the current payoff of player i in the modified game becomes

Pi(si, us)− T (si, x). (2.4.1)

The first function we consider is a tax-subsidy system linear in player’s strategy:

T (si, x) = τ(x)si + τ0. In such a case τ(x) is called the tax rate.

Definition 13 A tax system or a tax-subsidy system enforces a profile S̄ if S̄ is the

Nash equilibrium in the game modified by a tax-subsidy system with payoff defined by

Eq. (2.4.1).

For the continuum of players game, it is not possible to enforce the social optimality

for all states by τ constant in x. However, such a constant τ can be calculated for

x ≥ A−f
3ξ

.

Consider the variable tax rate τ(x), in order to enforce the social optimum profile

for all levels of the biomass of fish.

Proposition 20 Consider the game with the continuum of players.
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(a) The tax-rate enforcing the socially optimal profile S̄SO from Theorem 10d) is

τ(x) =

A− f − 2ξx, if x ≤ A−f
3ξ
,

A−f
3
, otherwise,

(2.4.2)

while τ0 is arbitrary. (b) The tax-rate given in (a) enforces the socially optimal profile

S̄SO from Theorem 10d) for any β ∈ (0, 1). Moreover, it guarantees the sustainability

of the resource.
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Figure 2.4: Problem of enforcing S̄SO and guaranteeing sustainability for the contin-
uum of players

Proof: (a) To calculate a linear tax enforcing the social optimum profile with

the tax-rate τ , modify the current payoff function by subtracting τ(x)si and then

equate the Nash equilibrium of this modified game with the social optimum of the

original game.

Note that the result of introducing a linear tax of rate τ(x) is mathematically

equivalent to increasing the constant f by τ(x).

case 1 If x > A−f
3ξ

then S̄SO(x) = A−f
3

. So,

(
A− f

3

)
=

(
A− f − τ(x)

2

)
.

Solve this expression for τ(x) to get τ(x) = A−f
3

.

case 2 If x ≤ A−f
3ξ

then S̄SO(x) = ξx.

Put the new Nash equilibrium strategy equal to ξx to get,

ξx =

(
A− f − τ(x)

2

)
,
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Solve this expression for τ(x) to get τ(x) = A− f − 2ξx.

(b) Analogously, only without using the social optimality of the profile S̄SO. Sus-

tainability of S̄SO has already been noticed in Corollary 11.

Enforcement of the social optimum profile problem can also be solved by using the

different types of tax or tax-subsidy systems.

Proposition 21 (i) Consider the game with a continuum of player and a tax-subsidy

system with

T (si, x) = τ(x)(si − SSO),

then the results are equivalent. Moreover, the tax rate τ given by Proposition 20 en-

forces the profile SSO
i , but there is no tax to be paid (i.e., the tax is purely regulatory).

(ii) Consider the tax rate τ from Proposition 20 but the tax is introduced only for

over-exploiting the resource over the S̄SO
i constraint, i.e.,

T (si, x) = τ(x)(si − S̄SO
i )

+
,

then τ(x) enforces the social optimal profile for every number of players including

finitely many players n.

Proof: (i) Immediate.

(ii) For continuum of players immediate.

For n players, the Bellman Eq. (1.3.7) for player i, given strategies S̄j of the other

players is

V̄i(x) = max
si∈[0,cx]

P(si, S∼i(x))− τ(x)
(
si − S̄SO

i

)+
+ βV̄i

(1 + ξ)x− si
n
−

∑
j 6=i

S̄j(x)

n

 ,

(2.4.3)

the inclusion (1.3.8) is

S̄i(x) ∈ Argmax
si∈[0,cx]

P(si, S∼i(x))− τ(x)
(
si − S̄SO

i

)+
+ βV̄i

(1 + ξ)x− si
n
−

∑
j 6=i

S̄j(x)

n

 .

(2.4.4)

The proof is immediate by substituting Si = S̄SO
i and Vi = V̄ SO

n
for S̄SO

i from Eq.

(2.2.7) and V̄ SO from Eq. (2.2.6) into the Bellman Eq. (2.4.3) in the modified game.

It is worth emphasizing that in the n player game, we were not able to find a

Nash equilibrium, we have only proved that it is not in a certain class of functions,
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but calculation of a tax system which enforces the social optimum profile is relatively

simple, and we are able to find the Nash equilibrium of the resultant modified game.

So, the results for the abstract concept of the game with a continuum of players turned

out to be useful in usual n player games.
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Chapter 3

A counterexample to common belief of

regularity of Nash equilibrium in

linear-quadratic games considered in

Chapter 2

The results of this chapter appeared in paper [91], however, here we give additional

reasoning and explanations which make the proofs and the results easier to understand.

In [91], we have obtained non-existence of continuous symmetric feedback Nash

equilibrium, while the existence of a continuum of discontinuous symmetric feedback

Nash equilibria in a finite horizon truncation of a linear-quadratic game with linear

state-dependent constraints, being a truncation of the game of Chapter 2.

We want to describe the history of this research slightly, including same previous

directions which turned out to be the dead ends.

In all the research, we have looked for symmetric feedback Nash equilibria, since

open loop equilibria are less realistic and usually they do not coincide with the feedback

Nash equilibria. We were interested only in symmetric solutions which seems obvious in

this class of games with concave payoffs, linear dynamics and symmetric players. The

research ending by this result was the continuation of the research from our paper [83],

more specifically, the n-players Nash equilibrium problem.

First, we have checked different possible candidates for Nash equilibria, expecting

some irregularity at the points where the number of time instant to extinction changes,

but initially expecting continuity.

We have noticed that it is impossible to have both Si and Vi continuous at those

points. First, we have relaxed the assumption of continuity of Si, then we have tried

various assumptions.

• Si discontinuous but Vi continuous.

• Si continuous but Vi discontinuous is impossible, so, we have rejected it.

• We have switched to the continuity of some functions related to the dynamics of

the system, allowing both Si and Vi to be discontinuous.
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All of those attempts have been unsuccessful. Finally, we have noticed that the

irregularity is inherited from the finite time truncations of the game. Therefore, in

this chapter, we study a simple 2-player and 2-stage linear-quadratic dynamic game

with linear state-dependent constraints.

3.1 The model

To simplify the complex calculations, we slightly change the dynamic game. The game

studied here is equivalent to the game from Chapter 2 with the time set T = {1, 2}
and f = 0, or if we introduce A of this chapter as the A− f from the Chapter 2.

We again consider the golden rule β = 1
1+ξ

.

For this 2-player and 2-stage game model, we simplify the notation and introduce

a simpler term of writing the current payoff :

P (si, s∼i) := Pi(s) =

(
A− si + s∼i

2

)
si −

s2
i

2
. (3.1.1)

Therefore, the Bellman Eq. (1.3.7) becomes

V̄ (t, x) = max
si∈[0,(1+ξ)x]

P (si, s∼i) + βV̄

(
(1 + ξ)x− (si + s∼i)

2

)
, (3.1.2)

the Bellman inclusion (1.3.8) becomes

S̄(t, x) ∈ Argmax
si∈[0,(1+ξ)x]

P (si, s∼i) + βV̄

(
(1 + ξ)x− (si + s∼i)

2

)
, (3.1.3)

and since the game is a two stage truncation with no terminal payoff, the terminal

condition (1.3.9) becomes

V̄i(3, x) = 0. (3.1.4)

3.2 Calculation of the feedback Nash equilibrium

To calculate the Nash equilibrium profile, we solve the game backwards from the

terminal time. From Eq. (3.1.2)–(3.1.3), if the state at t = 2 is x, then the best

choice of a player at t = 2 given a strategy of their opponent depends only on the

current opponent’s decision and state, whatever the previous decisions were. So, we

can consider a static game that is played at time 2.

Theorem 22 Consider the Nash equilibrium problem in the one stage game played at

time 2 for given x.
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The unique Nash equilibrium strategy profile (s̄1, s̄2) at terminal time t = 2 is given by

s̄i = S̄i(2, x) :=

(1 + ξ)x, if x ≤ x̂1,

ŝ, if x ≥ x̂1,
(3.2.1)

for i ∈ {1, 2} and

ŝ =
2A

5
, x̂1 =

ŝ

1 + ξ
. (3.2.2)

For every Nash equilibrium, for the original two stage game, at terminal time 2, play-

ers’ strategies fulfil

Si(2, x) = S̄i(2, x)

for S̄i(2, x) from Eq. (3.2.1), while the value functions at t = 2, given the opponent’s

strategy S̄∼i(2, x), are given by

V̄i(2, x) :=


(
A− 3

2
(1 + ξ)x

)
(1 + ξ)x, if x ≤ x̂1,(

A− 3
2
ŝ
)
ŝ, if x ≥ x̂1.

(3.2.3)

(a) The value function at stage 2, depending
on the initial state

(b) A Nash equilibrium strategy at
stage 2, depending on the initial state

Figure 3.1: Nash equilibrium problem for 2 players

Proof: Since the Nash equilibrium strategy of player i has to fulfil Eq. (3.1.3).

Calculate the zero derivative point of the right hand side of Eq. (3.1.2) with respect

to si to get the first order condition, si = 2A−s∼i
4

.

Note that if 2A−s∼i
4
≥ (1 + ξ)x, then the maximum of the right hand side of Eq.

(3.1.2) is attained at (1 + ξ)x.

Therefore, the unique symmetric feedback Nash equilibrium profile and the players’

value functions are given by Eq. (3.2.1) and Eq. (3.2.3).
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Corollary 23 S̄i(2, x) is non-decreasing, while V̄i(2, x) is not concave, non-monotone

and not differentiable at x̂1. V̄i(2, x) is increasing at the interval [0, A
3(1+ξ)

].

Proof: Immediate. Since (A − 3(1+ξ)x
2

)(1 + ξ)x is concave and its maximum is

attained at A
3(1+ξ)

< x̂1.

Now, given Nash equilibrium strategies and the value functions at time 2 from

Theorem 22, proceed backwards in order to solve the problem at time t = 1.

Lemma 24 Consider x ≥ 0 in the game with t = 1 and the terminal payoff V̄i(2, x)

from Eq. (3.2.3). With notation

xnext(x, si, s∼i) = (1 + ξ)x− (si + s∼i)

2
, (3.2.4)

denote by sBd(s∼i), the point s at which xnext(x, si, s∼i) = x̂1 for x̂1 from Eq. (3.2.2).

(a) Given s∼i, the best response of player i belongs to the set

{0, dI(s∼i), dII(s∼i), sBd(s∼i), (1 + ξ)x}

for dI(s∼i) =
6(1 + ξ)2x+ 2A− s∼i(5 + 3ξ)

11 + 3ξ
, (3.2.5a)

dII(s∼i) =
2A− s∼i

4
, (3.2.5b)

sBd(s∼i) = 2(1 + ξ)x− 2x̂1 − s∼i. (3.2.6)

Moreover, the best response is at most A
2

.

(b) For every symmetric feedback Nash equilibrium and for every x, the feedback Nash

equilibrium strategy belongs to the set {(1 + ξ)x, sI(x), ŝ, ssym
Bd (x)}, for

sI(x) =
A+ 3(1 + ξ)2x

8 + 3ξ
, ŝ from Eq. (3.2.2) and (3.2.7)

ssym
Bd (x) = (1 + ξ)x− x̂1. (3.2.8)

Proof: (a) Consider the state x, a fixed player i and their opponent’s strategy

s∼i. For brevity of notation, given a strategy profile (si, s∼i) and state x, abbreviate

further xnext(x, si, s∼i) from Eq. (3.2.4) as xnext, whenever it does not lead to confusion.
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So, for t = 1, given x and s∼i, the Bellman Eq. (3.2.11) becomes

V̄i(1, x) = max
si∈[0,(1+ξ)x]

RBE(si), (3.2.9)

where

RBE(si) :=


(
A− s∼i

2
− si

)
si + βŝ

(
A− 3

2
ŝ
)
, if xnext ≥ x̂1,(

A− s∼i
2
− si

)
si +

(
A− 3(1+ξ)xnext

2

)
xnext, if 0 ≤ xnext ≤ x̂1,

(3.2.10)

while the Nash equilibrium strategy has to fulfil

S̄i(1, x) ∈ Argmax
si∈[0,(1+ξ)x]

RBE(si). (3.2.11)

Calculate the point of zero derivative points to get dI(x) and dII(x). It cannot be

a priori excluded that the maximum can also be attained at the boundary points:

either 0 or (1 + ξ)x or at the switching point sBd(s∼i), at which the function is non-

differentiable. Those are all the possible candidates.

dII(s∼i) is always less than A
2

since dII(s∼i) ≤ dII(0) = A
2
. So, if dII(s∼i) is the best

response then the best response is at most A
2
.

Next, consider the case when dI(s∼i) is the best response and show that it has to

fulfil dI(s∼i) ≤ A
2
.

dI(s∼i) can be the best response only if xnext(x, dI(s∼i), s∼i) ≤ x̂1, which implies

that xnext(x, dI(s∼i), s∼i) ≤ A
3(1+ξ)

. So, V (2, ·) is strictly increasing in a neighbourhood

of xnext(x, dI(s∼i), s∼i).

Now assume that the best response si is equal to dI(s∼i) and that it is greater than
A
2
. Note that, the global maximum of P (·, s∼i) is attained at si = A

2
− s∼i

4
≤ A

2
. Since

the function V (2, ·) is strictly increasing in a neighbourhood of xnext(x, dI(s∼i), s∼i),

player i can increase their current payoff by reducing si by ε and the other component

of RBE(si) from Eq. (3.2.10) does not decrease, which contradicts that si is a best

response.

sBd(s∼i) can be the best response only if dI(s∼i) ≤ sBd(s∼i) and dII(s∼i) ≥ sBd(s∼i).

So, sBd(s∼i) ≤ dII(s∼i) ≤ A
2
.

(1 + ξ)x is the best response iff (1 + ξ)x ≤ dI(x) and xnext(x, (1 + ξ)x, s∼i) ≤ x̂1, so

a reasoning analogous to that for dI(s∼i) applies.

(b) Since, for a symmetric Nash equilibrium, the strategy of player i has to be

equal to the best response to it.

So, by (a), possible candidates for the symmetric optimal strategy of player i are:
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{0, (1 + ξ), sI(x), sII(x), ssym
Bd (x)} where,

sI(x) : dI(s) = s, ŝ : dII(s) = s, ssym
Bd (x) : sBd(s) = s.

For 0, the best response is greater than 0.

Lemma 25 Consider the game from Lemma 24. For any state x and a strategy

s∗∼i ∈ {sI(x), ŝ, ssym
Bd (x), (1 + ξ)x} ∩ [0, A

2
], the best response fulfils

BRi(s
∗
∼i) ⊆



{(1 + ξ)x} if x ≤ ŷ1(s∗∼i),

{dI(s
∗
∼i)} if ŷ1(s∗∼i) < x ≤ x̂2(s∗∼i),

{dI(s
∗
∼i), dII(s

∗
∼i)} if x̂2(s∗∼i) < x < ŷ2(s∗∼i),

{dII(s
∗
∼i)} if x ≥ ŷ2(s∗∼i),

(3.2.12)

for dI, dII from Eq. (3.2.5) and

ŷ1(s∗∼i) =
2A− s∗∼i(5 + 3ξ)

5 + 2ξ − 3ξ2
, (3.2.13)

x̂2(s∗∼i) =
(15(1 + ξ)s∗∼i + 2A(13 + 5ξ))

40(1 + ξ)2
, (3.2.14)

ŷ2(s∗∼i) =
(15(1 + ξ)s∗∼i + A(27 + 11ξ))

40(1 + ξ)2 . (3.2.15)

Proof: Note that the function RBE(si) from Eq. (3.2.10) is piecewise concave

with at most two pieces. The switching points ŷ1, ŷ2 and x̂2 are defined as x for which,

ŷ1 is such that dI(s
∗
∼i) = (1 + ξ)x,

ŷ2 is such that dI(s
∗
∼i) = sBd(s∗∼i),

x̂2 is such that dII(s
∗
∼i) = sBd(s∗∼i).

For given s∗∼i and x, the optimization problem from Eq. (3.2.9) can be decomposed

into two optimization problems of strictly concave and differentiable functions:

RBE1 over the interval [sBd(s∗∼i), (1+ξ)x]∩ [0, (1+ξ)x] and RBE2 over the interval

[0, sBd(s∗∼i)] ∩ [0, (1 + ξ)x] for RBE1 and RBE2 defined as follows:

RBE1(si) :=

(
A− s∗∼i

2
− si

)
si + βŝ

(
A− 3

2
ŝ

)
, (3.2.16)
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RBE2(si) :=

(
A− s∗∼i

2
− si

)
si + xnext

(
A− 3(1 + ξ)xnext

2

)
. (3.2.17)

By Lemma 24 (a), the maximum of RBE(si) from Eq. (3.2.10) can be attained at one

of the points: 0, (1 + ξ)x, sBd(s∗∼i), dI(s
∗
∼i), dII(s

∗
∼i).

If s∗∼i ≤ A
2
, then dI(s

∗
∼i) > 0 and dII(s

∗
∼i) > 0, so 0 is not the best response.

Since the maximised function is strictly concave, the fact whether the zero deriva-

tive point is within the interval considered, left or right to it determines the global

maximum on this interval.

By calculating partial derivatives and checking their signs, observe that for all

x, at any s∗∼i which can appear at a symmetric Nash equilibrium i.e., for every

s∗∼i ∈ {sI(x), ŝ, ssym
Bd (x), (1 + ξ)x}, all the functions dII(s

∗
∼i) − sBd(s∗∼i), dI(s

∗
∼i) −

sBd(s∗∼i), dII(s
∗
∼i)− (1 + ξ)x, dI(s

∗
∼i)− (1 + ξ)x and −sBd(s∗∼i) are strictly decreasing

in x. So, to prove that e.g., dII(s
∗
∼i) ≥ sBd(s∗∼i) on some interval of state variables, it

is enough to check it at the upper bound of the interval only. Similarly, the function

(1 + ξ)x − sBd(s∗∼i) is either strictly decreasing in x for s∗∼i = sI(x) and s∗∼i = ŝ or it

is a positive constant for s∗∼i = (1 + ξ)x and s∗∼i = ssym
Bd (x).

For brevity, write sBd instead of sBd(s∼i) from Eq. (3.2.6) and consider the following

four cases for the division of the state set.

case 1: If x ≤ ŷ1(s∗∼i), then dI ≥ (1 + ξ)x and dII > sBd. So, the maximum of

(3.2.17) over [0, sBd] (if it is non-empty) is at sBd while (3.2.16) is strictly increasing

on [sBd, (1 + ξ)x]. So, the maximum of RBE(si) is attained at (1 + ξ)x.

Also note that for x = ŷ1(s∗∼i), dI(s
∗
∼i) = (1 + ξ)x.

Figure 3.2: case 1: The maximized function for x ≤ ŷ1(s∗∼i), the sets denoted by I
and II are the set on which RBE equals RBE1 and RBE2 respectively

case 2: If x̂2(s∗∼i) < x < ŷ2(s∗∼i), then both dI(s
∗
∼i) ∈ (sBd, (1+ξ)x] and dII(s

∗
∼i) ∈

(0, sBd) and sBd ∈ (0, (1 + ξ)x). Therefore, the supremum of (3.2.17) on [0, sBd] is
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attained at dII(s
∗
∼i), while the supremum of (3.2.16) on [sBd, (1 + ξ)x] is attained at

dI(s
∗
∼i). So, the supremum of RBE(si) can be attained either at dI(s

∗
∼i) or dII(s

∗
∼i),

depending on whether RBE1(dI(s
∗
i )) or RBE2(dII(s

∗
i )) is greater. So, only dI(s

∗
∼i) and

dII(s
∗
∼i) can be in the best response.

Figure 3.3: case 2: The maximized function for x ∈ [x̂2((s∗∼i)), ŷ2((s∗∼i)] normal and
zoomed view

case 3: If ŷ1(s∗∼i) < x ≤ x̂2(s∗∼i), then dII(s
∗
∼i) ≥ sBd and sBd ∈ [0, (1 + ξ)x]. So,

the supremum of (3.2.17) on [0, sBd] is attained at sBd. Since the zero derivative point

of (3.2.16), dI(s
∗
∼i) ∈ [sBd, (1 + ξ)x], the maximum of RBE(si) is attained at dI(s

∗
∼i).

So, dI(s
∗
∼i) is the unique best response.

Figure 3.4: case 3: The maximized function for ŷ1(s∗∼i) < x < x̂2(s∗∼i)

case 4: If x ≥ ŷ2(s∗∼i), then dI(s
∗
∼i) ≤ sBd while dII(s

∗
∼i) ∈ [0,min{sBd, (1 + ξ)x}].

So, the maximum of (3.2.16) on [sBd, (1 + ξ)x)] is either at sBd and sBd is not the

maximum of (3.2.17) on [0, sBd], or the interval [sBd, (1 + ξ)x] is empty. Therefore,
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the maximum of RBE(si) over [0, (1 + ξ)x] is attained at dII(s
∗
∼i). So, dII(s

∗
∼i) is the

unique best response.

Figure 3.5: case 4: The maximized function for x > ŷ2(s∗∼i)

It is worth emphasizing that Fig. 3.2–3.5 for cases 1− 4 studied in the proof are

not only illustrations for some values of parameter — the inequalities between dI or

dII and sBd , 0, and (1 + ξ)x remain unchanged as long as s∗∼i ≤ A
2
.

The only thing not exactly illustrated in Figures are sub-case of case 4. In this

case, for large x and small s∗∼i, sBd can be larger than (1+ξ)x, but this does not change

the substantial fact that dII ≤ min{(1 + ξ)x, sBd}.

Lemma 26 Consider any x ≥ 0 in the game from Lemma 25.

The best response correspondence BRi : [0, (1 + ξ)x] → [0, (1 + ξ)x], restricted to

the strategies s∗∼i ∈ {sI(x), ŝ, ssym
Bd (x), (1 + ξ)x} with s∗∼i ≤ A

2
is given by

BRi(s
∗
∼i) =



{(1 + ξ)x} if x ≤ ŷ1(s∗∼i),

{dI(s
∗
∼i)} if ŷ1(s∗∼i) < x < ybd(s∗∼i),

{dI(s
∗
∼i), dII(s

∗
∼i)} if x = ybd(s∗∼i),

{dII(s
∗
∼i)} if x > ybd(s∗∼i)

(3.2.18)

where, besides the constants from Lemma 25,

ybd(s∗∼i) =
45(1 + ξ)s∗∼i + 2A(35 + 15ξ +

√
2(11 + 3ξ))

120(1 + ξ)2
. (3.2.19)

Proof: First, the best response is non-empty (as a maximum of a continuous func-

tion over a compact set). By Lemma 25, the best response is known besides the interval

[x̂2(s∗∼i), ŷ2(s∗∼i)].

So, consider x ∈ [x̂2(s∗∼i), ŷ2(s∗∼i)]. If x < ybd(s∗∼i), then RBE(dI(s
∗
∼i)) > RBE(dII(s

∗
∼i)),
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while if x > ybd(s∗∼i), then RBE(dII(s
∗
∼i)) > RBE(dI(s

∗
∼i)). Finally , if x = ybd(s∗∼i),

then RBE(dI(s
∗
∼i)) = RBE(dII(s

∗
∼i)).

3.3 Multiple discontinuous symmetric feedback Nash

equilibria

Theorem 27 Consider any profile S with Si(1, x) = S̄L
i (1, x) or Si(1, x) = S̄R

i (1, x),

where

S̄L
i (1, x) =


(1 + ξ)x if x ≤ Y1,

sI(x) Y1 < x ≤ Y2,

ŝ if x > Y2,

(3.3.1)

S̄R
i (1, x) =


(1 + ξ)x if x ≤ Y1,

sI(x) Y1 < x < Y2,

ŝ if x > Y2,

(3.3.2)

for Y1 being the unique solution of equation ŷ1((1 + ξ)x) = ŷ1(sI(x)) and an arbitrary

Y2 ∈ [ybd(ŝ), ybd(sI(Z))] for Z being the unique solution of ybd(sI(Z)) = Z and for

Si(2, x) = S̄i(2, x) from Eq. (3.2.1). Then S is a symmetric feedback Nash equilibrium

profile for 2 player 2 stage LQ dynamic game and only such profiles can be symmetric

feedback Nash equilibria.

Fig. 3.6–3.7 are for the values of the parameters: A = 10000 and ξ = 0.02.

Figure 3.6: Two symmetric Nash equilibria — the decision at stage 1 depending on
the initial state
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Figure 3.7: The value functions at stage 1 for Nash equilibria from Fig. 3.6, depend-
ing on the initial state

Proof: (of Theorem 27) By Corollary 23, for every Nash equilibrium, its profile

of decisions at time 2 coincides with the Nash equilibrium of one stage game with

identical Bellman equations. So, the value functions for Nash equilibria at stage 2 are

equal to V̄i(2, x). Hence, the Nash equilibrium problem at stage 1 is equivalent to the

Nash equilibrium problem in a one stage game from Lemmas 24 and 26.

The maximal set of x on which a symmetric feedback Nash equilibrium can be

equal to (1 + ξ)x is [0, Y1].

The maximal set of x on which a symmetric feedback Nash equilibrium can be

equal to sI(x) is [Y1, ybd(sI(x))].

The maximal set of x on which a symmetric feedback Nash equilibrium can be

equal to ŝ is [ybd(ŝ),+∞).

Note that ybd(sI(x)) > ybd(ŝ), since sI(x) > ŝ for x ≥ ybd(ŝ). Consider any Y2 ∈
[ybd(ŝ), ybd(sI(Z))] and a profile S with Si(2, x) = S̄i(2, x) and Si(1, x) = S̄L

i (1, x). The

Bellman equation and the Bellman inclusion at stage 2 has been checked in Theorem

22, is fulfilled and for every x, S̄L
i (1, x) ∈ BRi(S̄

L
i (1, x)).

Analogously, it can be proved for Si(1, x) = S̄R
i (1, x).

Corollary 28 For the considered 2-player, 2-stage linear-quadratic dynamic game,

there is a continuum of discontinuous symmetric feedback Nash equilibria, whereas no

continuous symmetric feedback Nash equilibrium with respect to x. These equilibria are

functions differing by the state Y2 at which the jump appears at stage 1 and whether

the function is left or right continuous.

The value functions corresponding to these symmetric feedback Nash equilibria are

also discontinuous at stage 1 at the same points Y2.
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Chapter 4

A linear-quadratic dynamic optimization

problem with linear state dependent

constraints in discrete time

The idea behind this chapter is to investigate the social optimum problem from Chapter

2 for n = 1, but for more general β instead of the golden rule β only.

In this chapter, we consider a discrete time linear-quadratic dynamic optimisation

problem with more general payoff function and with linear state-dependent constraints.

Our problem is equivalent to the social optimum problem considered in Chapter 2, but

only with single social planner i.e., n = 1. We study the optimisation problem in the

infinite time horizon and finite time truncations of the problem with the horizon T .

Our model is similar to the model considered before in chapter 2, but with slightly

modified current payoff function

P (s) =

(
A− Bs

2

)
s

for the constants A > 0 and B > 0 and the discount factor β = 1
1+ξ
− ε for the

constant ε ∈
(

0, 1
1+ξ

)
. In the infinite horizon, we study also the golden rule β = 1

1+ξ

for comparison.

For consistency of notations with the previous Chapters, we denote the social

optimum Ū from Chapter 2 by S̄.

Therefore, for our dynamic optimization problem, the Bellman Eq. (1.3.7) is

V̄ (t, x) = sup
s∈[0,(1+ξ)x]

((
A− Bs

2

)
s+ βV̄ (t+ 1, (1 + ξ)x− s)

)
, (4.0.1)

while the Bellman inclusion (1.3.8) is

S̄(t, x) ∈ Argmax
s∈[0,(1+ξ)x]

((
A− Bs

2

)
s+ βV̄ (t+ 1, (1 + ξ)x− s)

)
. (4.0.2)

and the terminal condition for finite time horizon is

V (T + 1, x) = 0, (4.0.3)
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while lim sup
t→∞

V (t,X(t))βt = 0 ∀ admissible trajectory X. Generally, in dynamic pro-

gramming techniques (based on the Bellman Equation), the optimal solution is cal-

culated by backwards induction in finite horizon optimisation problems, while for the

infinite time horizon, it is usually calculated by the undetermined coefficient or Ansatz

method assuming a regular form of the value function. However, our model turned

out to be a counterexample to such a way of solving infinite time horizon optimisa-

tion problems. Therefore, we choose a different approach to solve the problem in the

infinite time.

4.1 Finite horizon truncations of the initial dynamic

optimization problem

In this section, we consider truncations of the dynamic optimization problem with

horizon N , and for brevity of notation, we denote the optimal control Ū by SN , the

value function V̄ by V N , the total payoff J by JN and it is defined by

JN(t0, x0, S) =
N∑
t=t0

βt−t0P (S(t,X(t)), t). (4.1.1)

So, the terminal condition (4.0.3) becomes

V N(N + 1) = 0. (4.1.2)

Theorem 29 Consider the following functions

V N(0, x) :=



V0(x) := K0 +G0x+ H0

2
x2 if x̂0 ≤ x < x̂1,

...

VN−1(x) := KN−1 +GN−1x+ HN−1

2
x2 if ˆxN−1 ≤ x < x̂N ,

VN(x) := KN +GNx+ HN
2
x2 if x̂N ≤ x < ŷN ,

UN(x) :=
N∑
i=0

βiP (ŝ) if x ≥ ŷN ;

(4.1.3)

with V N(t, x) = V N−t(0, x) for t ≤ N and V N(N, x) = 0, where the constants are

H0 = −B(1 + ξ)2, G0 = A(1 + ξ), K0 = 0, x̂0 = 0 and

ŷN =
ŝ

(1 + ξ)

N−1∑
i=0

1

(1 + ξ)i
. (4.1.4)
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The number i corresponds to time to resource exhaustion for x̂i−1 < x < x̂i. So, Vi

corresponds to time to resource exhaustion i+ 1.

SN(0, x) =



S0(x) := a0x+ b0 if x̂0 ≤ x < x̂1,
...

SN−1(x) := aN−1x+ bN−1 if ˆxN−1 ≤ x < x̂N ,

SN(x) := aNx+ bN if x̂N ≤ x < ŷN ,

ŝ = A
B

if x ≥ ŷN

(4.1.5)

with SN(t, x) = SN−t(0, x) for t ≤ N .

Values of the constants in Eq. (4.1.3)-(4.1.5) are given by the recurrence equations,

Hi+1 =
βBHi(1 + ξ)2

B − βHi

, Gi+1 =
β(1 + ξ) (BGi − AHi)

B − βHi

, Ki+1 = βKi +
(A− βGi)

2

2(B − βHi)
(4.1.6)

ai+1 =
−βHi(1 + ξ)

B − βHi

, bi+1 =
A− βGi

B − βHi

, x̂i+1 =
bi − bi+1

ai+1 − ai
, ŷi+1 =

ŷi + ŝ

1 + ξ
. (4.1.7)

Equivalently, ai and bi can be rewritten as

ai = − Hi

B(1 + ξ)
, bi =

A(1 + ξ)−Gi

B(1 + ξ)
. (4.1.8)

The function V N is the value function, while SN is the optimal control for N time

horizon truncations of the initial problem.

(a) The optimal control (b) The value function

Figure 4.1
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The figures are for the values of the parameters: A = 1000, B = 1, ξ = 0.02, ε =

0.01 and T = 100.

To prove Theorem 29, the following sequence of Lemmata are needed.

Lemma 30 (a) For every i, the constants Hi < 0 and Hi+1 > Hi.

(b) For every i, the constant (1 + ξ)x ≥ ai > 0 and ai+1 < ai.

(c) For every i, the constant Gi > 0.

Proof: (a) It can be easily verified that |H1| > |H2| with H0, H1 < 0.

Now, assume that Hi < 0, and Hi−1 < 0 with |Hi| < |Hi−1|.
It is immediate from the definition that Hi+1 < 0.

Now consider |Hi+1|
|Hi| = |Hi|

|Hi−1|
|B−βHi−1|
|B−βHi| < 1. Since both the numerator and denomi-

nator are positive so,(
B−βHi−1

B−βHi

)
< 1

(
B−βHi
B−βHi

)
= 1, which gives |Hi+1| < |Hi|.

(b) Consider, ai = Hi
B(1+ξ

from Eq. (4.1.8). The proof is immediate by (a) as the sign

of ai is opposite to Hi.

(c) It can be easily verified that G0, G1 > 0.

Now, assume that Gi > 0. By (a), Hi < 0 for all i. So, it is immediate from the

definition that Gi+1 > 0.

Lemma 31 Define the constant Fi := Gi
Hi

.

Fi is given by the recurrence relation

Fi+1 =
Fi

(1 + ξ)
− A

B(1 + ξ)
, (4.1.9)

and for every i, Fi < 0. Moreover, Fi+1 < Fi.

Proof: Consider the recurrence equation Fi+1 = Gi+1

Hi+1
.

Fi < 0 for all i is an immediate consequence of Lemma 30.

It can be easily verified that F0 > F1.

Now, assume that Fi−1 > Fi and check for i+ 1.

Consider Fi+1 − Fi = Fi−Fi−1

(1+ξ)
, which gives Fi > Fi+1.

Lemma 32 Define xnext as

xnext (x, S) = (1 + ξ)x− S. (4.1.10)

For all i < N , x̂i fulfils

x̂i = xnext (x̂i+1, Si+1) (4.1.11)
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Proof: It can be easily verified that x̂0 = xnext (x̂1, S1).

Now assume it for i, x̂i−1 = (1 + ξ)x̂i + S2(x̂i), which gives

x̂i =
x̂i−1(βHi−1 − 3) + βGi−1 − A

−3(1 + ξ)
. (4.1.12)

Check for x̂i+1 = x̂i+bi+1

1+ξ−ai+1
.

Substitute x̂i from Eq. (4.1.12) to get x̂i+1 = x̂i(βHi−3)+βGi−A
−3(1+ξ)

.

Lemma 33 (a) For every i, ŷi+1 > ŷi.

(b) ŷi = −Fi.

Proof: (a) It can be easily checked that ŷ1 > ŷ0.

Now assume that ŷi > ŷi−1.

To check for i+ 1, consider ŷi+1 − ŷi = yi+ŝ
1+ξ
− yi−1+ŝ

1+ξ
.

Simplify further and use the fact that ŷi > ŷi−1, to get ŷi+1 − ŷi > 0.

(b) It can be easily checked that ŷ0 = −F0.

Now assume that ŷi = −Fi.
To check for i + 1, consider ŷi+1 = yi+ŝ

1+ξ
. Substitute ŷi = −Fi and simplify to get

ŷi+1 = −Fi+1.

Lemma 34 The function SN(0, x) is continuous, i.e., its components fulfil

(a) For all 1 ≤ i ≤ N , Si−1(x̂i) = Si(x̂i).

(b) SN(ŷN) = ŝ.

Figure 4.2: The optimal control for various time horizons

Proof: (a) Since S0(x̂1) = S1(x̂1), so, SN(0, x) is continuous in x at x̂1.

Now, assume that SN(0, x) is continuous in x at x̂i.
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So, x̂i is a root of Si(x)− Si−1(x) = 0 i.e.,

Si(x̂i)− Si−1(x̂i) = 0. (4.1.13)

Next, check that this holds for i+1. Consider the left hand side: Si+1(x̂i+1)−Si(x̂i+1) =

(ai+1 − ai)x̂i+1 + (bi+1 − bi).
Substitute x̂i+1 = bi−bi+1

ai+1−ai and simplify further to get

(ai+1 − ai)x̂i+1 + (bi+1 − bi) = 0, equivalently, Si+1(x̂i+1)− Si(x̂i+1) = 0.

Therefore, SN(0, x) is continuous in x at x̂i+1.

(b) It can be easily verified that S0(ŷ0) = ŝ.

Now, assume that Si(ŷi) = ŝ and check for i+ 1.

Consider the left hand side limit: it is Si+1(ŷi+1) = ai+1ŷi+1 + bi+1 .

By Lemma 33 (b), ŷi+1 = −Fi+1. Substitute ai+1, bi+1 from Eq. (4.1.8) and

simplify further to get ai+1ŷi+1 + bi+1 = ŝ.

Lemma 35 (a) xnext(x, SN) is non-increasing in x for all N and strictly increasing

in x for N > 1.

(b) If x ≥ x̂N−1, then xnext(x, SN) ≥ x̂N−2 and if x ≤ x̂N , then xnext(x, SN) ≤ x̂N−1.

Proof: (a) Since, xnext(x, SN) = ((1 + ξ) − aN)x − bN , it is true by the fact that

aN ≤ (1 + ξ) and aN < (1 + ξ) for N > 1 resulting from Lemma 30 (b).

(b) By the fact that xnext (x̂N , SN) = x̂N−1 (Lemma 32 (a)), continuity and mono-

tonicity of SN(0, x) in x (Lemma 34 (a)).

Lemma 36 The function V N(0, x) is continuous, i.e.,

(a) For all 2 ≤ i ≤ N , Vi−1(x̂i) = Vi(x̂i).

(b) VN(ŷN) = UN .

Figure 4.3: The value function for various time horizons
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Proof: (a) Since V0(x̂1) = V1(x̂1), so, V N(0, x) is continuous in x at x̂1.

Now, assume that V N(0, x) is continuous in x at x̂i i.e.,

Vi−1(x̂i) = Vi(x̂i). (4.1.14)

By Lemma 35, if x ∈ [x̂i+1, x̂i+2], then xnext(x, S
N) ∈ [x̂i, x̂i+1]

To check for i+ 1, consider the left-hand side limit

lim
δ→0−

Vi(x̂i+1 + δ) = lim
δ→0−

P (Si(x̂i+1 + δ)) + βVi−1 (xnext(x̂i+1 + δ, si)).

By Lemma 34 and continuity of Vi−1 and Si, lim
δ→0−

Vi(x̂i+1 + δ) = P (Si(x̂i+1)) +

βVi−1(x̂i)

Now, consider the right-hand side limit

lim
δ→0+

Vi+1(x̂i+1 + δ) = lim
δ→0+

P (Si+1(x̂i+1 + δ)) + βVi (xnext(x̂i+1 + δ, si+1)).

By Lemmas 34 – 32, continuity of Vi and Si+1 and by using Eq. (4.1.14),

lim
δ→0+

Vi+1(x̂i+1 + δ) = P (Si+1(x̂i+1)) + βVi (x̂i−1) = lim
δ→0−

Vi(x̂i+1 + δ), which shows

that V N(x, 0) is continuous in x at x̂i+1.

Therefore, V N(0, x) is continuous in x at x̂i for all i ≤ N .

(b) It can be easily verified that V0(ŷ0) = U0(ŷ0).

Now, assume that Vi(ŷi) = Ui(ŷi).

To check for i+ 1, consider the left-hand side limit

lim
δ→0−

Vi+1(ŷi+1 + δ) = lim
δ→0−

P (Si+1(ŷi+1 + δ)) + βVi (xnext(ŷi+1 + δ, si+1)).

By Lemma 34 (b), lim
δ→0−

Vi+1(ŷi+1 + δ) = P (Si+1(ŷi+1)) + βVi(ŷi).

By Eq. (4.1.7) and since Vi(ŷi) = Ui(ŷi),

so lim
δ→0−

Vi+1(ŷi+1 + δ) = P (ŝ) + βUi(ŷi) = Ui+1(ŷi+1).

Now, consider the right-hand side limit

lim
δ→0+

Vi+1(ŷi+1 + δ) = lim
δ→0+

P (Si+1(ŷi+1 + δ)) + βVi (xnext(ŷi+1 + δ, Si+1).

From Lemma 32 and 34 (b), and since Vi(ŷi) = Ui(ŷi), so

lim
δ→0+

Vi+1(ŷi+1 + δ) = P (Si+1(ŷi+1)) + βVi (ŷi) = Ui+1(ŷi+1).

Therefore, Vi+1(ŷi+1) = Ui+1(ŷi+1).

Lemma 37 (a) The function V N(0, x) is differentiable in x for x < ŷN and for all i,

its derivative is continuous at x = x̂i, i.e., V ′i−1(x̂i) = V ′i (x̂i).

(b) V N(x, 0) is differentiable at ŷN and V ′N(ŷN) = 0.

Proof: (a) Since V ′0(x̂1) = V ′1(x̂1), V N(x, 0) is differentiable in x at x = x̂1 and the

derivative is continuous.

Now, assume that V N(0, x) is differentiable in x at x̂ and the derivative is contin-

uous which implies that

Gi −Gi−1 + (Hi −Hi−1)x̂i = 0. (4.1.15)
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To check for i+ 1, consider V ′i+1(x̂i+1)−V ′i (x̂i+1) = 0 or equivalently, (Gi+1−Gi) +

(Hi+1 −Hi)x̂i+1 = 0.

Rewrite Eq. (4.1.8) for i+ 1 and i and subtract to get,

Gi+1 −Gi = β(1 + ξ) (bi+1 − bi) and Hi+1 −Hi = −B(1 + ξ)(ai+1 − ai).
Notice that Gi+1−Gi

Hi+1−Hi = − bi+1−bi
ai+1−ai = x̂i+1, implies that x̂i+1 is a root of the equation

V ′i+1(x)− V ′i (x) = 0. So, V N(x, 0) is differentiable in x at x̂i+1.

(b) It can be easily verified that V ′0(ŷ0) = 0,

Now assume that V ′i (ŷi) = 0.

To check for i+ 1, consider V ′i+1(ŷi+1) = Gi+1 + ŷi+1Hi+1.

Use Lemma 31 and 33 (b) and simplify to get, V ′i+1(ŷi+1) = 0.

Lemma 38 For all x, V N is concave in x and it is strictly concave for x < ŷN and it

is differentiable for all x.

Proof: Since by Lemma 30, Hi < 0, Vi are strictly concave and differentiable. Note

that Ui is constant for every i, so, it is also concave.

Since Vi is strictly concave and by Lemma 36 (a), V N is continuous, ∂Vi
∂x

is strictly

decreasing and, since by Lemma 37, V ′i (x̂i) = V ′i+1(x̂i), so, V N(·, 0) is differentiable for

x < ŷN and its derivative is strictly decreasing on (0, ŷN).

Since, ∂V N (0,·)
∂x

is strictly decreasing for x ≤ ŷN , V N(·, 0) is strictly concave on the

interval [0, ŷN).

Since by Lemma 37 (b), ∂VN (ŷN )
∂x

= 0 = ∂UN (ŷN )
∂x

, ∂V N (0,x)
∂x

= 0 for x ≥ yN .

Since ∂V N (0,·)
∂x

is non-increasing, V N(0, ·) is concave on the whole domain.

Lemma 39 (a) For any N , P (s) +βV N ((1 + ξ)x− s) is strictly concave and differ-

entiable in S and the supremum in the right hand side of the Bellman Eq. (4.0.1) is

attained.

(b) If for some s ∈ [0, (1+ξ)x], ∂(P (s)+βV N (xnext(x,s))
∂s

= 0, then s is the unique optimum

of the right hand side of Bellman equation.

Proof: (a) Immediately by Lemma 38 and boundedness of P and V N .

(b) Note that for x > ŷN , the function is strictly decreasing, so, zero derivative cannot

be attained for x > ŷN . If a point fulfils first order condition for optimization of a

strictly concave function then it is the unique optimum.

Proof: (of Theorem 29)

The proof will be done inductively in two ways: by forward induction with respect

to the horizon N and within the fixed horizon N , by backward induction corresponding

to the dynamic programming techniques, which is rewritten to forward induction with

respect to time to resource exhaustion.
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For N = 0 it can be easily verified that the value function

V 0(0, x) =

V0(x) := (A− B
2

(1 + ξ)x)(1 + ξ)x x̂0 < x < ŷ0,

U0(x) := A2

2B
x ≥ ŷ0,

fulfils the Bellman Eq. (4.0.1) and there is a unique optimal control

S0(0, x) =

S0(x) := (1 + ξ)x x̂0 < x < ŷ0,

ŝ x ≥ ŷ0,

which fulfils the Bellman inclusion (4.0.2).

Assume that the value function and the optimal control are given by Eq. (4.1.5)–

(4.1.3) for N and prove it for N + 1.

The Bellman Eq. (4.0.1) has the form

V N+1(t, x) = sup
s∈[0,(1+ξ)x]

P (s) + βV N+1 (t+ 1, xnext(x, s)) for all t ≤ N, (4.1.16)

while the Bellman inclusion — necessary and sufficient condition for a control to be

optimal is

SN+1(t, x) ∈ Argmax
s∈[0,(1+ξ)x]

P (s) + βV N+1 (t+ 1, xnext(x, s)) for all t ≤ N. (4.1.17)

By the Bellman principle of optimality, at time t + 1, the solution has to coincide

with the optimal solution of the N horizon problem with the state resulting from the

first decision. Since the only dependence on time in the functions of the model is

by discounting, so, V N+1(1, x) = V N(0, x) and SN+1(1, x) = SN(0, x). By analogous

reasoning, V N+1(t + 1, x) = V N(t, x) and SN+1(t + 1, x) = SN(t, x) for all t ≤ N .

Thus, Eq. (4.1.16)–(4.1.17) is needed to be checked only for t = 0.

Eq. (4.1.16)–(4.1.17) can be rewritten as

V N+1(0, x) = sup
s∈[0,(1+ξ)x]

P (s) + βV N (0, xnext(x, s)) for all t ≤ N, (4.1.18)

SN+1(0, x) ∈ Argmax
s∈[0,(1+ξ)x]

P (s) + βV N (0, xnext(x, s)) for all t ≤ N. (4.1.19)

The maximum of the right hand side of Eq. (4.1.18) exists, it is unique by Lemma 39

and whenever there exists a point in [0, (1 + ξ)x] at which the derivative of the right

hand side of Eq. (4.1.18) is 0, it is the maximum, while if this zero derivative point is
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greater than (1 + ξ)x, the maximum is attained at (1 + ξ)x.

Now find the maximum depending on the interval in which x belongs to. If x ∈
[x0, x1], then xnext(x, S0) = 0, so V N (xnext(x, S0)) = 0.

By Lemma 35, if x ∈ [x̂k+1, x̂k+2), then V N
(
0, xnext(x, S

N)
)

= Vk (xnext(x, Sk+1)).

So, if Sk+1(x) maximizes the right hand side of

Vk+1(x) = sup
s∈[0,(1+ξ)x]

P (s) + βVk(xnext(x, s)), (4.1.20)

then for this x, Eq. (4.1.18) reduces to Eq. (4.1.20). So, what remains to be proven

is the fact that Sk+1 is really the maximizer of the right hand side of Eq. (4.1.20) and

that this equation is fulfilled. It is done by induction with respect to k.

For k = 0 it is immediate by substituting the auxiliary V−1 ≡ 0. Now assume that

it is fulfilled for k and prove it for k + 1.

The first order condition for s to be optimal is

A−Bs− βGk − βHk((1 + ξ)x− s) = 0

Solve this equation for s to get the optimal Sk+1

Sk+1(x) = ak+1x+ bk+1 =
βHk(1 + ξ)x+ βGk − A

βHk − 3
(4.1.21)

with the constants ak+1 = βHk(1+ξ)
βHk−B

and bk+1 = βGk−A
βHk−B

.

Substitute this Sk+1(x) into Eq. (4.1.20), to get Vk+1(x) = Kk+1 +Gk+1x+ Hk+1

2
x2,

with the recurrence equation for the constants as in Eq. (4.1.6).

So, two cases remains to be proven: x ∈ [x̂N+1, ŷN+1) and x ≥ ŷN+1.

In the latter case obviously xnext(x, SN+1) ≥ ŷN , the Bellman Eq. (4.1.18) reduces

to UN+1(x) = sup
s∈[0,(1+ξ)x]

P (s) + βUN((x, s)) and it is fulfilled with S(x) = ŝ.

In the former case there are two sub-cases:

(i) If xnext(x, SN+1) ∈ [x̂N , ŷN), then the Bellman Eq. (4.1.18) reduces to

VN+1(x) = sup
s∈[0,(1+ξ)x]

P (s) + βVN(xnext(x, s)), then the reasoning is the same as for

x ∈ [x̂k, x̂k+1) for k < N .

(ii) If xnext(x, SN+1) ≥ ŷN , then the Bellman Eq. (4.1.18) reduces to

VN+1(x) = sup
s∈[0,(1+ξ)x]

P (s) + βUN(xnext(x, s)) and it is fulfilled with S(x) = ŝ.
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4.2 Limit properties of the finite horizon trunca-

tions of the problem

Proposition 40 (a) The limit of Hi is given by

lim
i→∞

Hi =


B(1−β(1+ξ)2)

β
for β(1 + ξ)2 > 1,

0 for β(1 + ξ)2 ≤ 1.

(b) The limit of ai is given by

lim
i→∞

ai =


β(1+ξ)2−1
β(1+ξ)

for β(1 + ξ)2 > 1,

0 for β(1 + ξ)2 ≤ 1.

Proof: (a) Consider the recurrence relation for Hi given by Eq. (4.1.6).

Calculate the fixed point to get the values: 0 and B(1−β(1+ξ)2)
β

.

By Lemma 30, Hi is increasing and bounded from above by 0. So the limit exists,

and it is non-positive. Consider the following cases.

case 1 If β(1 + ξ)2 > 1, then H1 <
B(1−β(1+ξ)2)

β
.

Consider any auxiliary sequence given by Eq. (4.1.6) without predetermined initial

condition and denote it by {hi}.
This hi is increasing if h1 <

B(1−β(1+ξ)2)
β

and decreasing if
B(1−β(1+ξ)2)

β
< h1 < 0.

So, 0 cannot be the limit of Hi. Therefore, in this case lim
i→∞

Hi = B(1−β(1+ξ)2)
β

.

case 2 If β(1 + ξ)2 ≤ 1, then
B(1−β(1+ξ)2)

β
≥ 0.

So, either the limit is positive, and hence it cannot be the limit of Hi, or it is 0.

Therefore, in this case lim
i→∞

Hi = 0.

(b) Immediate by substitution of the limit of Hi from (a) into ai = −Hi
B(1+ξ)

.

Proposition 41 (a) The limit of Fi is given by lim
i→∞

Fi = − A
Bξ

.

(b) The limit of Gi is given by

lim
i→∞

Gi =


A(β(1+ξ)2−1)

βξ
, for β(1 + ξ)2 > 1,

0, for β(1 + ξ)2 ≤ 1.

Proof: (a) Calculate the fixed point of Fi which is −ŝ
ξ

. By Lemma 31, Fi is

decreasing.
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Now consider any sequence given by Eq. (4.1.9) without predetermined initial

condition and denote it by {fi}.
If f1 >

−ŝ
ξ

, then fi is decreasing, while if f1 <
−ŝ
ξ

, then fi is increasing.

Therefore lim
i→∞

Fi = −ŝ
ξ

.

(b) lim
i→∞

Gi =
(

lim
i→∞

Hi

)
·
(

lim
i→∞

Fi

)
since both Hi and Fi are convergent, it is immediate

by Prop. 41 (a) and 40 (a).

Proposition 42 For every i, lim
i→∞

ŷi = lim
i→∞

x̂i = ŝ
ξ

:= x̃.

Proof: Immediate by the definition of ŷi given in Eq. (4.1.4).

4.3 The infinite time horizon

In this subsection we solve the infinite horizon problem.

Theorem 43 Consider β = 1
1+ξ

, for ε = 0. The value function is

V̄ (x) =

Ĝ · x+ Ĥ
2
· x2 if x ∈ (0, x̃),

k̃ otherwise,

for ŝ = A
B

, x̃ = ŝ
ξ
, Ĥ = −B ξ (1 + ξ) , Ĝ = A(1+ ξ), and k̃ = A2(1+ξ)

2Bξ
, while the unique

optimal control is given by,

Ū(x) =

ξx, for x ∈ (0, x̃),

ŝ otherwise.
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Figure 4.4: Optimal control and the vallue function for golden rule β
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Proof: The proof follow the same lines as in Theorem 2.2 from Chapter 2 with

substituting n = 1.

Theorem 44 Consider β = 1
1+ξ
− ε. The value function is given by,

V̄ (x) =

k̃ if x ≥ x̃,

VN(x) x̂N ≤ x < x̂N+1,
(4.3.1)

for k̃ = P (ŝ)
1−β , x̂0 = 0 and x̂N defined by Eq. (4.1.7) and VN is given by Eq. (4.1.3),

while the optimal control is

S̄(x) =

ŝ if x > x̃,

SN(x) x̂N ≤ x < x̂N+1,
(4.3.2)

where SN are given by Eq. (4.1.5).

(a) Optimal control (b) Value function

Figure 4.5: Optimal control and the value function for dynamic optimization problem
with infinite time horizon

The figures are drawn for the values of the parameters: T = 1000, ε = 0.01, A =

1000 B = 1, ξ = 0.02. Proof: First, check the interval [x̃,+∞). For x in this

interval, the global optimum ŝ of the objective function P (s) is available and the

resulting next stage state remains in this interval, so, the control S ≡ ŝ, being the

global maximizer of J(x, ·) is available. So, S ≡ ŝ is the optimal control and V̄ (x) = k̃.

V̄ is continuous, differentiable and concave. By Prop. 42, x̂N and ŷN converge to

x̃. So, the right hand side of the Bellman Eq. (4.0.1) has a unique solution given by

the zero derivative point or equal on s = (1 + ξ)x. It has already been checked that
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when x ∈ [xN , xN+1), then the zero derivative point is SN , while proving the Theorem

44. If x > x̃, then it is at ŝ. So, V̄ fulfils the Bellman Eq. (4.0.1), while S̄ fulfils

the inclusion (4.0.2). The terminal condition (4.1.2) is obviously fulfilled, since V̄ is

bounded. Therefore, V̄ is the value function while S̄ is the optimal control.

Corollary 45 ∀x < x̃, ∃N such that V̄ = V̄ N(x, 0).

∀x < x̃, ∃Nx∀N > Nx such that V̄ N(x, 0) = V̄ (x).

Corollary 46 For each N , V̄ |[0,x̂N ] = V N(x, 0) and S̄|[0,x̂N ] = SN(x, 0). So, for any

x < x̃, the solution of the infinite horizon problem coincides with the solution of its

finite horizon truncation.

4.4 An important methodological issue — how not

to solve the infinite horizon problem

If we try to solve the infinite horizon problem for ε > 0, by the undetermined coefficient

method/ Ansatz method, starting from writing a quadratic value function and finding

s which fulfils them, we obtain, two candidates for h: negative or 0, and the unique

g and k for each h, then the Bellman Eq. (4.0.1) and inclusion (4.0.2) are fulfilled

besides a small interval [0, xmin(ε)] with lim
ε→0

xmin(ε)→ 0.

So, for arbitrary small η > 0, there exists a ε > 0 such that the sufficient condition

for the infinite time horizon optimisation problem for β = 1
1+ξ
− ε is fulfilled besides

an interval of length less than η.

The consequence of this error on such a small interval is the fact that the value

function and the optimal control is incorrectly calculated on the whole interval
(

0, ŝ
ξ

)
.

Proposition 47 Consider a function

SFalse =

aFx+ bF for x < x̃,

ŝ for x ≥ x̃,

for aF =
((1+ξ)2ε−ξ)

(1+ξ)ε−1
, bF = −Aε(1+ξ)

Bξ((1+ξ)ε−1)
and

V False =

hFx2

2
+ gFx+ kF for x < x̃,

k̃ for x ≥ x̃,

for hF =
−B(1+ξ)((1+ξ)2ε−ξ)

((1+ξ)ε−1)
, gF =

A(1+ξ)((1+ξ)2ε−ξ)
ξ((1+ξ)ε−1)

, kF = −A2ε2(1+ξ)4

2Bξ2((1+ξ)ε−1)((1+ξ)ε+ξ)
, then

V False fulfils the Bellman Eq. (4.0.1) while SFalse fulfils the Bellman inclusion (4.0.2)

on the set [xmin,+∞) for xmin = Aε(1+ξ)
Bξ

. The terminal condition is also fulfilled.
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Such V False is the only function that fulfils the Bellman Eq. (4.0.1) and terminal

condition (4.1.2) on [xmin,+∞) in the class of piecewise quadratic functions with at

most two pieces.

(a) Optimal control (b) Value function

Figure 4.6: The actual optimal control and value function for the infinite horizon
compared to the result of the Anstaz method restricted to [xmin,+∞)

Proof: The proof follows the same lines as the proof of Theorem 10 from Chapter

2, although the function is different and here the Bellman Eq. (4.0.1) is fulfilled for

x ≥ xmin. The terminal condition (4.1.2) holds since the function is bounded.
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Chapter 5

Can using inaccurate methods of

calculation of value functions result in

correct optima and equilibria?

Most of the results of this chapter are from Wiszniewska-Matyszkiel and Singh [92].

In most of the real-life decision-making problems of resource extraction, either

simple dynamic optimisation problems or more compound dynamic games, the most

important question is what to do in a specific time instant, i.e., the optimal control or

the Nash equilibrium strategy at the corresponding trajectory.

One of the most extensively studied models of extraction of a common renew-

able resource is the fish wars model by Levhari and Mirman and its extensions with

singularities in payoffs.

Although the solution of Levhari and Mirman model can be calculated analytically,

this does not have to be true for its modifications. In such a case, numerical or

approximated solution may be considered instead. The objective of the research done

in this chapter is an answer the question whether at least the most important question

stated before — what to do in a specific time instant can be answered approximately

correctly for reasonable initial conditions in spite of the singularities in payoffs, and

consequently, possibility of substantial errors in the value functions. As a motivating

example, we consider Levhari and Mirman fish wars model in discrete time with finite

time horizon.

We found that in spite of the substantial error in the calculation of the value

function on some sets, we have obtained very high accuracy of social optimum and

Nash equilibrium along the optimal trajectory.

5.1 Formulation of the motivating Levhari-Mirman

Fish Wars model

The dynamic game considered in this chapter as a motivating example consists of:

1. A set of finitely many players I = {1, 2 . . . , n}.
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2. A time set T is discrete with finite time horizon T and the initial time t0 = 0.

3. The state of the resource is x ∈ X = [0, 1], denoting the biomass of fish.

4. At each time instant, country i extracts or consume si := cix, where si denotes

the catch or consumption for ci being the catch rate or consumption coefficient.

5. We assume that the fish is uniformly distributed over the sea and each country

can fish only in its Exclusive Economic Zone, identical for each country. So, at

state x, si(t, x) ∈ Di(x) for Di(x) = [0, x
n
].

6. The current or instantaneous payoff function of country i for given si is Pi(t, x, s) =

ln si with ln(0) = −∞.

7. The terminal payoff is ln(x)
n

, which implies that countries divide the remaining

biomass equally after termination of the game.

8. Payoffs are discounted by a discount factor β ∈ (0, 1).

9. We are interested in calculating the feedback strategies, Si : T × X → Di for

Si(t,X(t)) := Ci(t,X(t))X(t).

10. The trajectory X of the state variable given a strategy profile S is

X(t+ 1) = φ (t,X(t), S(t,X(t))) ; X(0) = x0, (5.1.1)

for some constant α ∈ (0, 1) and for the state transition function

φ (t,X(t), S(t,X(t))) =

(
X(t)−

n∑
i=1

Si(t,X(t))

)α

. (5.1.2)

11. The total payoff function of player i given strategy profile S in the game is

Ji (t0, x0, S) =
T∑
t=t0

β(t−t0) ln (Si(t,X(t)) + β(T+1−t0) ln

(
X(T + 1)

n

)
. (5.1.3)

5.1.1 Analytic solutions

Calculation of social optimum

For the social optimum problem, the Bellman Eq. (1.3.7) is

V̄ (t, x) = max
s∈[0, x

n
]n

n∑
i=1

ln si + βV̄

(
t+ 1,

(
x−

n∑
i=1

si

)α)
, (5.1.4)
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the Bellman inclusion (1.3.8) is,

S̄(t, x) ∈ Argmax
s∈[0, xn ]

n

n∑
i=1

ln si + βV̄

(
t+ 1,

(
x−

n∑
i=1

si

)α)
, (5.1.5)

while the terminal condition (1.3.9) is

V (T + 1, x) = n ln
(x
n

)
. (5.1.6)

Proposition 48 Consider the social optimum problem for n-players.

The unique feedback social optimum profile SSO is given by

SSO
i (t, x) = cSO

t x, for cSO
t =

1

nBSO
t

, (5.1.7)

where BSO
t =

N+1∑
i=0

(αβ)i for N = T − t,

while the value function at social optimum is given by

V SO(t, x) = n(ASO
t +BSO

t lnx), (5.1.8)

for ASO
t = βN+1 ln 1

n
+

N∑
i=0

βN−i
[
(BSO

T−i − 1) ln
(
BSO
T−i−1

BSO
T−i

)
+ ln

(
1

nBSO
T−i

)]
.

Proof: The proof follows the backward induction with respect to time t.

It can be easily verified for t = T + 1 that the value function and social optimum

strategy are as assumed.

Now, assume that the value function and social optimum strategy are as assumed

for t = k + 1 ≤ T + 1 and check for time t = k.

At time t = k, the value function has to fulfil the Bellman Eq. (5.1.4). Calculate

the derivative of the right hand side of Bellman Eq. (5.1.4) with respect to si and

substitute V SO

(
k + 1, (x−

n∑
i=1

si)
α
)

= n

(
ASO
k+1 +BSO

k+1 ln

((
x−

n∑
i=1

si

)α))
to get,

1

si
−
nαβBSO

k+1

x−
n∑
j=1

sj

= 0, (5.1.9)

This is identical for all i, which implies that the optimal si is unique and symmetric

for all i. So, solve Eq. (5.1.9) for the symmetric strategy si = s to get

SSO
i (k, x) =

x

n(1 + αβBSO
k+1)

=
x

nBSO
k

, (5.1.10)
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x− nSSO
i =

(
x(BSO

k − 1)

BSO
k

)
. (5.1.11)

Substitute the values from Eq. (5.1.10)–(5.1.11) into Eq. (5.1.4) to get, V SO(k, x) =

n(ASO
k +BSO

k lnx), for the constants BSO
k and ASO

k as assumed.

Calculation of Nash equilibrium

Consider the Nash equilibrium problem. Note that the best response, instead of being

a function of s̄∼i, can be reduced to best response to its sum O(t, x) =
∑
j 6=i

sj(t, x) only.

For the Nash equilibrium problem, given the sum of other player’s strategies O(t, x),

the Bellman Eq. (1.3.7) is

Vi(t, x) = max
si∈[0, xn ]

ln si + βVi (t+ 1, (x− si −O(t, x))α) , (5.1.12)

the Bellman inclusion (1.3.8) is

Si(t, x) ∈ Argmax
si∈[0, xn ]

ln si + βVi (t+ 1, (x− si −O(t, x))α) , (5.1.13)

while the terminal condition (1.3.9) is

Vi(T + 1, x) = ln
(x
n

)
. (5.1.14)

Proposition 49 Consider the Nash equilibrium problem for n-players.

The unique feedback Nash equilibrium profile SNE is given by

SNE
i (t, x) = cNE

t x, for cNE
t =

1

n+BNE
t

, (5.1.15)

where BNE
t =

N+1∑
i=1

(αβ)i for N = T − t,

while the value function at a Nash equilibrium is given by

V NE
i (t, x) = ANE

t +
(
BNE
t + 1

)
lnx, (5.1.16)

for ANE
t = βN+1 ln

(
1
n

)
+

N∑
i=0

βN−i
[
BNE
T−i ln

(
BNE
T−i

n+BNE
T−i

)
+ ln

(
1

n+BNE
T−i

)]
.

Proof: The proof follows backward induction with respect to time t and by finding

the fixed point — a profile S such that each Si is in the best response to
∑
j 6=i

Sj := o.
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It can be easily verified for t = T + 1 that the value function and Nash equilibrium

strategies are as assumed.

Now, assume that the value functions and and Nash equilibrium strategies are as

assumed for t = k + 1 ≤ T and check for time t = k.

Given the current value of the strategy of the others, define an auxiliary function

of the value function for a player i as V B
i (t, x, o) for o = O(t, x) and assume that the

other players will always use their Nash equilibrium strategies.

Then, V NE
i (k, x) = V B

i (t, x,
∑
j 6=i

SNE
j (k, x)). So, the Bellman Eq. (5.1.12) becomes

V B
i (k, x, o) = max

si∈[0, xn ]
ln si + βV NE

i (k + 1, (x− si − o)α), (5.1.17)

Since at time t = k, the value function has to fulfil the Bellman Eq. (5.1.17). Calculate

the point of zero derivative of the right hand side of Bellman Eq. (5.1.17) with respect

to si and substitute V NE
i (k + 1, (x− si − o)α) = ANE

k+1 + (BNE
k+1 + 1) ln (x− si − o)α to

get,
1

s i
−
αβ(BNE

k+1 + 1)

x− si − o
= 0, (5.1.18)

which simplifies to

BN
k si = x−

n∑
j=1

sj. (5.1.19)

This is identical for all players, which implies that si is unique and symmetric for all

i. So, solve Eq. (5.1.19) for symmetric si with o = (n− 1)si to get,

SNE
i (k, x) ≡ x

n+BNE
k

(5.1.20)

x− nSNE
i ≡ xBNE

k

n+BNE
k

. (5.1.21)

Substitute the values from Eq. (5.1.20)–(5.1.21) into Eq. (5.1.17) to get,

V N
i (k, x) = ANE

k + (BNE
k + 1) lnx, for the constants BNE

k and ANE
k as assumed.

5.1.2 Numerical solutions

Generally, the same method of dynamic programming or Bellman equation is used both

in analytic and numerical approaches. However, in numerical analysis, we restrict a

priori to symmetric solutions only.

In the numerical approach, like in the analytic approach, we use the Bellman

equation to find the value function first, then the optimal solution using it either in
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the social optimum or the best response to the other players’ strategies for the Nash

equilibrium, starting from terminal time T . We do it recursively stage by stage.

Purposely, we do not use any information that the value function has a particular

form (in the opposite case, it is enough to find the value of unknown coefficients numer-

ically). We assume some theoretical assumptions in solving the problem numerically a

priori that the unique solution exists, and it is symmetric. For the Nash equilibrium,

we also assume monotonicity of the best responses.

For computing Nash equilibrium, starting from the terminal time, we first calculate

an approximate of the value function of a player for optimization given the sum of

decisions of the remaining players at this stage — which simplifies to knowing the

sum of current decisions of the other players o and the best response to o, then we

look for a fixed point at this stage. Subsequently, with the fixed point and the value

function for the equilibrium at this stage, we switch to the previous period. This

reduces the complexity. However, any method of finding a Nash equilibrium using

Bellman equation is costly, since it requires solving the Bellman equation given the

strategies of the others at each time instant at least the whole set of the values of the

state variable that can be reached from the initial state. So, any further constraining

of this set which does not spoil the solution is very welcome.

In the calculation of the value function for each stage, we approximate the con-

tinuous state space by a finite grid. In the case of calculation of equilibrium, we also

need a grid for consumption of the other players o, which is also continuous.

From the fact that the value function tends to −∞ as x tends to 0, as well as

instantaneous payoff tends to −∞ as s tends to 0, a finer grid for o is needed for small

x. So, s in the social optimisation and both c and o in the computation of the Nash

equilibrium are written in a form cx.

Optimization is taken for c over fixed interval
[
0, 1

n

]
or
[
0, n−1

n

]
, respectively.

Computation of social optimum

To reduce the complexity of computation, assume that all ci are identical a priori,

which reduces the computation of the maximum at each stage to one dimensional.

So, Eq. (5.1.4) and (5.1.5) reduces to

V (t, x) = max
c∈[0, 1n ]

n ln(cx) + βV (t+ 1, (x− ncx)α) , (5.1.22)

Ci(t, x) := C(t, x) ∈ Argmax
c∈[0, 1n ]

n ln(cx) + βV (t+ 1, (x− ncx)α) . (5.1.23)
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Take a grid for the state variable x ∈ [0, 1]. The grid is not uniform — it is refined

on an sub-interval and same applies to a Nash equilibrium case. The algorithm is as

follows:

• From Eq. (5.1.4), compute V SO(T + 1, x) for all x in the grid of x.

• Starting from t = T backwards to t = 1, compute V SO(t, x) from Eq. (5.1.4)

and CSO
i (t, x) from Eq. (5.1.5) for all the grid points of x, using computed

V SO(t+ 1, ·).

• Since (x− nxci)α is usually not a grid point of x, use interpolation: cubic (prefer-

able) or linear. Those two are calculated in the same operation, using fminbnd

function in Matlab.

• Using computed CSO(t, x), starting from t = 1 to T , calculateX(t) and CSO(t,X(t)).

Computation of Nash equilibria

Consider the symmetric equilibria only, which reduced the problem to one V and one

ci := c for all players and finding c being the best response to o chosen by the others.

So, Eq. (5.1.12)–(5.1.13) reduces to

V (t, x) = max
c∈[0, 1n ]

ln(cx) + βV (t+ 1, (x− cx− o)α) , (5.1.24)

C(t, x) ∈ Argmax
c∈[0, 1n ]

ln(cx) + βV (t+ 1, (x− cx− o)α) . (5.1.25)

Besides grid for the state variable, a grid for the sum of decisions of the other players

o ∈
[
0, n−1

n

]
, is needed. The initial grid for o is not very fine, as its size is the main

component of the cost — refine it only on small subsets. The algorithm is as below:

• From Eq. (5.1.14), compute V NE(T + 1, x) for all x in the grid of x.

• Starting from t = T backwards to t = 1 for every grid point of x

1. Compute an auxiliary V B(t, x, o) from Eq. (5.1.24) and CB(t, x, o) from Eq.

(5.1.25). Do it for all grid points of o, using computed V NE(t+ 1, ·, o).

2. Since (x− cx− o)α is usually not a grid point of x, use interpolation: cubic

(preferable, since more accurate) or linear. Those two are calculated in the

same operation, using fminbnd function in Matlab.

3. Find ô in the grid minimizing | o− CB(t, x, o)(n− 1) |.
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4. Take the interval of two neighbouring points of ô unless ô is the first or the

last point of the grid — in this case, take the interval with the end in ô and

its neighbour in the grid. This is the new set of possible o. Divide it into a

finer grid and repeat step 1 and 3 on this grid. Repeat step 1–4 with the

refined grid on the new set until the distance of points in the sub-grid is of

required accuracy.

5. Substitute V NE(t, x) = V B(t, x, ô) and CNE(t, x) = CB(t, x, ô).

• By using the computed CNE(t, x), starting from t = 1 to T , calculate X(t) and

CNE(t,X(t)).

5.1.3 Comparison of analytic and numerical results

Here we compare the actual results, calculated in Section 5.1.1 with the results of

numerical computation according to the algorithms given in Subsection 5.1.2.

Figures are for the values of the parameters: n = 2, α = 0.6, β = 1
1.02

, T = 10,

t0 = 1, x0 = 0.025x∗, for x∗ = (αβ)
α

1−α being the steady state of the infinite horizon

social optimum problem. However, due to the reduction of the initial problem to

Eq. (5.1.22)–(5.1.23) for the social optimum problem and to Eq. (5.1.24)–(5.1.25) for

the Nash equilibrium problem, increasing n increases neither the complexity, nor the

errors.

We compare the actual results to the numerical results with initial uniform grid

for x of 100 points refined on the interval
[
0, 1

2

]
to about 104 points. For the Nash

equilibrium, the number of grid points for o for each iteration is 21 while the number

of iterations is 4. Intentionally, we do not increase further the number of points in the

grid for state variable for very small x or x > 1
2
.

The social optimum

There is a substantial difference between the actual and numerical value functions

(see Fig. 5.1a) for two regions of the set of states x: close to 0, the point of singularity

of the actual value function, and the interval (1
2
, 1], at which the grid is rare.

Despite these differences, both numerical and actual consumptions are the same

with an error of rank 10−4, (see Fig. 5.1b, mainly at the region with rare grid).

Similarly, the optimal trajectory as well as the optimal consumption along with it,

are identical (Fig. 5.2a and 5.3a). In this case the rank of error decreases to 10−6 (see

Fig. 5.2b and 5.3b). So, there is no need to refine the grid for x at the interval (1
2
, 1],

at which it is rare, as well as on the set of points close to singularity at 0, since neither

numerical nor analytic optimal trajectory has a nonempty intersection with those sets

(see Prop. 48).
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(a) Numerical and actual value functions,
V SO(t, x), for the social optimum

(b) The error in SSO(t, x) (the difference
between numerical and actual values) for
the social optimum

Figure 5.1:

(a) The trajectories of numerical (red)
and actual (blue dashed) state variable,
X(t), for the social optimum

(b) The error in the trajectory of state
variable, X(t), for the social optimum

Figure 5.2:

(a) The optimal consumption path,
SSO(t,X(t)), for the social optimum: nu-
merical (red) and actual (blue dashed)

(b) The error in the optimal consumption
path, SSO(t,X(t)), for the social optimum

Figure 5.3:
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Nash equilibrium

Analogously, for the Nash equilibrium, when we compare the actual results with the

results of numerical analysis, we have the same observations: the difference between

the value functions (Fig. 5.4a) is large on the same regions as for the social optimum,

with apparently equal consumptions, SNE(t, x) of error of rank 10−4 (Fig. 5.4b), with

two ranks better accuracy of Nash equilibrium consumption and state trajectories (Fig.

5.5a-5.6a) with errors of rank 10−6 (Fig. 5.5b and 5.6b).

Note that the rank of accuracy for computing equilibria is same as for the less

complex problem of computing social optima. It means that accuracy of finding a

fixed point was very high. Thanks to iterative procedure of refining the grid on a

small interval, a point which we know that it contains the equilibrium, it was at a

reasonable time cost (see Proposition 49).

(a) Numerical and actual value functions,
V NE(t, x), for the Nash equilibrium

(b) The error in SNE(t, x) (difference be-
tween numerical and actual values) for the
Nash equilibrium

Figure 5.4:

(a) The trajectories of numerical (red)
and actual (blue dashed) state variable,
X(t), for the Nash equilibrium

(b) The error in the trajectory of the
state variable, X(t), for the Nash equi-
librium

Figure 5.5:
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(a) The optimal consumption path,
SNE(t,X(t)), numerical (red) and actual
(blue dashed) for the Nash equilibrium

(b) The error in the optimal consumption
path, SNE(t,X(t)), for the Nash equilib-
rium

Figure 5.6:

5.1.4 General conclusions from the analysis of the Fish Wars

example

In both cases: the social optimum and the Nash equilibrium, we obtained a sub-

stantial error in the value functions on some intervals and high accuracy of the op-

timum/equilibrium trajectory and consumption path. This situation is somewhat

unusual.

It is worth emphasising that it is not only for specific parameters and grids which

we present here graphically, but a more general rule. Even the first results obtained

for the procedure of finding social optima, with quite a few points of the grid, assumed

to be used to test the program, before refinement of the grid on certain subsets of

the set of states was introduced, revealed the same apparent paradox. While there

was a considerable error in the value function, especially at the initial time and the

regions close to boundaries of the set of states, the social optimum consumption path

S(t,X(t)) as well as X(t) was computed with unexpected (for this inaccuracy of V )

accuracy.

A similar paradox took place while computing the Nash equilibrium. In spite of

inaccurate computation of the value function close to the boundaries, the accuracy

of computing the equilibrium path was comparable to the distance between the grid

points for s̃ — the maximal precision that can be expected.

The only information that has been used in numerical computation is the fact

that the value function is continuous and increasing in x, V (t, 0) = −∞, the optimal

trajectory remains below a certain level, (we took 1
2
) whenever the initial condition x0

is below this level, and it is over some small ε > 0 whenever x0 is, while in computation

of equilibrium, we also use the facts that the best response of a player is a decreasing
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function of joint consumption of the others, the equilibrium exists and it is unique.

5.2 Extension to arbitrary discrete time dynamic

optimization problems and dynamic games

Here we prove the theorems, which allow, in a very general environment of dynamic

optimization problems, to assess whether a certain kind of error in approximation

of the value function — either resulting from using numerical computation with low

accuracy on some sets, or from replacing the actual value function by some a priori

estimation of it on some sets.

Consider any discrete time dynamic optimisation problem from Chapter 1 either

in a finite time horizon T or infinite time horizon.

We assume that the optimisation problem is such that J is always well defined

although it may be ±∞ and it is bounded from above.

In the infinite time horizon version of motivating example, the standard terminal

condition (1.3.10) does not hold, so it has to be replaced by a weaker one (1.3.11). We

introduced the following notations for the dynamic optimization problem:

• V — the actual value function;

• V approx — another function regarded as an approximation of V ; it may be either

a solution of a numerical procedure or the actual V with values on certain subsets

replaced by other values, e.g. some constraints known a priori.

• RHSt,x(s) = P (t, x, s) + βV (t + 1, φ(t, x, s)) — the maximized function in the

right hand side of the Bellman Eq. (1.3.7).

• RHSapprox
t,x (s) = P (t, x, s) + βV approx(t + 1, φ(t, x, s)) — the maximized function

in the right hand side of the Bellman Eq. (1.3.7) with V replaced by V approx

• OPT — the set of optimal controls; we assume that it is nonempty.

• OPTapprox — the set of controls S̃ ∈ U such that S̃(t, x) ∈ Argmax
s∈U

RHSapprox
t,x (s);

we assume that it is nonempty.

• Ω = {(t, x) : X S̄
t0,x0

(t) = x for some S̄ ∈ OPT and x0 ∈ X0}.

• For S̄ ∈ U , ΩS̄ = {(t, x) : X S̄
x0,S

(t) = x for some x0 ∈ X0}.

• Ωapprox = {(t, x) : X S̃
t0,x0

(t) = x for some S̃ ∈ OPTapprox and x0 ∈ X0}.
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The following theorem explains the apparent paradox of low errors in the compu-

tation of the optimal control path despite substantial errors in the computation of the

value function in our motivating example.

Theorem 50 Assume that either the horizon is finite or the terminal condition (1.3.11)

holds for V .

Assume also one of the following assumption holds:

(i) V (t, x) = V approx(t, x) for all (t, x) ∈ Ωapprox, and V (t, x) ≤ V approx(t, x) for all

(t, x) ∈ T× X;

(ii) V (t, x) = V approx(t, x) for all ((t, x)) ∈ Ω, and V (t, x) ≥ V approx(t, x) all

(t, x) ∈ T× X;

(iii) V (t, x) = V approx(t, x) for all (t, x) ∈ Ω ∪ Ωapprox.

Then Ω = Ωapprox, for every S̄ ∈ OPT there exist S̃ ∈ OPTapprox such that S̃ |Ω=

S̄ |Ω and for every S̃ ∈ OPTapprox there exist S̄ ∈ OPT such that s̃ |Ω= c̄ |Ω .

To prove Theorem 50, following lemmas first needed to be proven.

Lemma 51 Consider an arbitrary set U and two functions f, g : U→ R̄ with f(s) =

g(s) for all s ∈ Argmax f 6= ∅ and f(s) ≥ g(s) otherwise.

Then Argmax f = Argmax g.

Proof: Take s̄ ∈ Argmax f and any other s.

By the assumptions, g(s) ≤ f(s) ≤ f(s̄) = g(s̄). So, s̄ ∈ Argmax g.

Next, consider s̃ ∈ Argmax g and assume that s̃ /∈ Argmax f . Take s̄ ∈ Argmax f .

By the assumptions, g(s̄) ≤ g(s̃) ≤ f(s̃) < f(s̄) = g(s̄), which is a contradiction.

Lemma 52 Consider an arbitrary set U and two functions f, g : U→ R̄ with f(s) =

g(s) for all s ∈ Argmax f ∪ Argmax g with both Argmax f,Argmax g 6= ∅.
Then Argmax f = Argmax g.

Proof: Consider s̃ ∈ Argmax g and s̄ ∈ Argmax f .

By the assumptions, f(s̃) ≤ f(s̄) = g(s̄) ≤ g(s̃) = f(s̃), which implies that f(s̃) =

f(s̄) and g(s̄) = g(s̃). So, s̃ ∈ Argmax f and s̄ ∈ Argmax g.

Proof: (of Theorem 50)

First, note that

if (t, x) ∈ Ω, then for all s ∈ Argmax RHSt,x(t+ 1, φ(t, x, s)) ∈ Ω (5.2.1)
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and if (t, x) ∈ Ωapprox, then for all s ∈ Argmax RHSapprox
t,x (t+ 1, φ(t, x, s)) ∈ Ωapprox.

(5.2.2)

The proof follows the induction over t.

Together with Ω = Ωapprox, it is proved that Argmax RHSt,x = Argmax RHSapprox
t,x

for all (t, x) ∈ Ω (and, consequently, for all (t, x) ∈ Ωapprox).

Consider t = t0 and arbitrary x ∈ X0.

In this case, Ω ∩ {(t, y) ∈ T×X : t ≤ t0} = {t0} ×X0 = Ωapprox ∩ {(t, x) ∈ T×X :

t ≤ t0} in all the cases (i)–(iii).

Next, consider any t ≥ t0 and any x such that (t, x) ∈ Ω.

Assume that Ω ∩ {(k, y) ∈ T× X : k ≤ t} = Ωapprox ∩ {(k, y) ∈ T× X : k ≤ t}.
Use Lemma 51 applied to the functions RHSapprox

t,x and RHSt,x, and Eq. (5.2.2)–

(5.2.1), respectively to get,

Argmax RHSt,x = Argmax RHSapprox
t,x in cases (i) and (ii).

Again, use Lemma 52 applied to the functions RHSapprox
t,x and RHSt,x, and any of

Eq. (5.2.2) or Eq. (5.2.1) to get,

Argmax RHSt,x = Argmax RHSapprox
t,x in case (iii).

Consequently, in all the cases (i)–(iii), Ω∩ {(k, y) ∈ T×X : k ≤ t+ 1} = Ωapprox ∩
{(k, y) ∈ T× X : k ≤ t+ 1}.

This ends the proof that Ω = Ωapprox and that Argmax RHSt,x = Argmax RHSapprox
t,x

for all (t, x) ∈ Ω.

Take any S̃ ∈ OPTapprox. Define S̄ ∈ U such that S̄(t, x) = S̃(t, x) for all (t, x) ∈ Ω

and S̄(t, x) being any selection from Argmax RHSt,x otherwise.

The terminal condition either (1.3.10) or (1.3.11) is fulfilled by assumption.

By the fact that Argmax RHSt,x = Argmax RHSapprox
t,x , also the Bellman equation

is fulfilled, so S̄ ∈ OPT.

Next, take any S̄ ∈ OPT. Define S̃ ∈ U such that S̃(t, x) = S̄(t, x) for all

(t, x) ∈ Ω and S̃(t, x) being any selection from Argmax RHSapprox
t,x otherwise. Since

Argmax RHSt,x = Argmax RHSapprox
t,x , by the definition, S̄ ∈ OPTapprox.

Theorem 53 Assume that the terminal condition (1.3.11) holds for V .

Consider a control S ∈ U .

Assume also that one of the following assumption holds:

(i) If S ∈ OPTapprox and V = V approx for all (t, x) ∈ ΩS, and V ≤ V approx for all

(t, x) ∈ T× X, then there exist S̄ ∈ OPT such that ΩS̄ = ΩS and S |ΩS= S̄ |ΩS .

(ii) If S ∈ OPT and V = V approx for all (t, x) ∈ ΩS, and V ≥ V approx for all

(t, x) ∈ T× X, then there exist S̃ ∈ OPTapprox such that ΩS̃ = ΩS S̃ |Ω= S |Ω.
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Proof: Analogous to the proof of Theorem 50, with concentrating only on a single

S from OPT or OPTapprox.

5.2.1 Illustration of usefulness of Theorems 50 and 53 by ex-

amples

Proposition 54 Consider the Fish Wars game from section 5.1 but with T = +∞
and strategies not directly dependent on t.

(a) The social optimum strategy is given by S̄SO(x) = x(1−αβ)
n

,

with the value function V̄ SO(x) = n(ĀSO + B̄SO ln(x)), for

ĀSO = 1
1−β

(
αβ

1−αβ ln(αβ) + ln(1− αβ)− ln(n)
)

and B̄SO = 1
1−αβ .

(b) The Nash equilibrium strategy is given by S̄NE(x) =
(

1−αβ
n(1−αβ)+αβ

)
,

with the value function V̄ NE(x) = ĀNE + B̄NE ln(x), for

ĀNE = 1
1−β

(
αβ

1−αβ ln
(

αβ
n(1−αβ)+αβ

)
+ ln

(
1−αβ

n(1−αβ)+αβ

))
and B̄NE = 1

1−αβ .

Proof: The formulae have been proposed by Levhari, Mirman [82] and Okuguchi

[93]. It can be easily checked by substitution that the Bellman Eq. (1.3.7) holds

which was not done in [82] and [93]. The proofs in [82] and [93] also lack checking the

terminal condition.

So, to complete the proof, check the weaker terminal condition given by Eq.

(1.3.11). one part is immediate by the fact that ln(six) ≤ 0.

To prove another part for the social optimum, consider a profile of strategies S for

which lim sup
t→∞

βtV̄ SO(XS(t)) < 0. So, there exists a sub-sequence tk such that

lim
k→∞

βtk V̄ SO(XS(tk)) < 0. So, lim
k→∞

βtk ln(XS(tk)) < 0.
n∑
i=1

Ji(S) =
n∑
i=1

∞∑
t=t0

βt−t0 ln(Si(X
S(t))XS(t)) ≤

n∑
i=1

∞∑
k=0

βtk−t0 ln(Si(X
S(tk))X

S(tk))

≤
n∑
i=1

∞∑
k=0

βtk−t0 ln(XS(tk))→ −∞.

The proof for the Nash equilibrium is analogous.

Example 1 Assume that some preliminary analysis done for the problem resulted in

finding an ε < x0 for which we know that the optimal trajectory X(t) > ε for all t

(such an ε obviously exists).

Changing V by assigning V approx = −∞ for all x < ε
2

(see Fig. 5.7) changes

neither the optimal trajectory nor the optimal control path.

So, if we want to compute the optimal control, this substitution allows us to look

for the social optimum and the value function for x ≥ ε
2

only and to avoid problems

resulting from inaccuracies resulting from closeness to the actual singularity.
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Figure 5.7: Intentional underestimation of the value function on some interval not
influencing the optimal state and consumption trajectories in Example 1

Example 2 Assume again that some preliminary analysis done for the problem re-

sulted in finding an ε < x0 for which we know that the optimal trajectory X(t) > ε for

all t.

Since V (x) ≥ J(t0, x, S) for every control S, changing V by assigning V approx(x) =

J(t0, x, S̄) for all x < ε
2
, for any control S̄ changes neither the optimal trajectory nor

the optimal control path.

So, if we want to compute the optimal control, this substitution allows us to look

for the value function for x ≥ ε
2

only (and the resulting optimal control).

Example 3 Assume that preliminary analysis done for the problem resulted in finding

constants a and b for which we know that ax+b is an upper bound for the value function

for x > 1
2

(see Fig. 5.8) and in discovering the fact that if x0 ≤ 1
2
− ε, then for all t,

the optimal trajectory X S̄
t0,x0

(t) ≤ 1
2
− ε.

If we change V by assigning V approx(x) = ax + b for all x > 1
2
, and calculate the

maxima S̃(t, x) of the right hand side of the Bellman equation with V approx, then if the

trajectory X S̃
t0,x0

(t) < 1
2
− ε for all t, then S̃(t,X S̃

t0,x0
(t)) is the accurate solution path.

So, if we want to compute the optimal control, this substitution allows us to restrict

the computation of the value function for x < 1
2
− ε with one restriction: our results

are really the optimal control only when for all x0 <
1
2
− ε, the computed S̃ is such that

X S̃
t0,x0

(t) < 1
2
− ε for all t.
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Figure 5.8: Intentional overestimation of the value function on some interval not
influencing the optimal state and consumption trajectories in Example 3
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Chapter 6

Fish Wars model in the continuous time

— Optima, equilibria, enforcement and

delayed observation

In this chapter, we consider the Fish War model similar to Chapter 5, but in continuous

time and with the linear dynamics. We assume that the game does not directly depend

on time, so, we skip t whenever it does not lead to the confusion. So, the differential

game consists of:

1. A set of finitely many players I = {1, 2 . . . , n}.

2. A time set T = R+ is continuous with the infinite time horizon and the initial

time t0 = 0.

3. The state of the resource is x ∈ X = R+, denoting the biomass of fish.

4. At each time instant, country i extracts or consume si := cix, where si denotes

the cath or consumption for ci being the cath rate or consumption coefficient.

5. The set of decisions of each player is D = R+.

6. There are linear state dependent constraints on decisions. So, at state x, Si(t, x) ∈
Di(x) for Di(x) = [0,Mx] for a constant M > 0.

7. The current or instantaneous payoff function of country i for given si is

Pi(x, si) := ln (si) = ln (cix) , (6.0.1)

with ln(0) = −∞.

8. Payoffs are discounted by a discount factor β = exp−r for the constant r ∈ (0, 1).

9. We are interested in calculating the feedback strategies, Si : R+ × R+ → Di for

Si(X(t)) := Ci(X(t))X(t). Then S : R+ → Rn
+ defines a profile of strategies.

The symbol U denotes the set of controls of player i, so, Un is the set of profiles.
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10. Since for feedback strategies, the results for the optimization over Si(x) are equiv-

alent to the dynamic optimization over Ci(x) = Si(x)
x

, for x 6= 0 and arbitrary for

x = 0, for simplicity of calculation, we consider the control parameter ci instead

of si throughout in this chapter.

11. The trajectory X of the state variable, given a strategy profile S is,

Ẋ(t) = φ (X(t), S(X(t))) ; X(0) = x0, (6.0.2)

for ξ > 0 and for the state transition function

φ(X(t), S) :=

(
ξx−

n∑
i=1

si

)
=

(
ξ −

n∑
i=1

ci

)
x. (6.0.3)

12. Total payoff function of player i for a strategy profile S in the game is

Ji (x0, S) =

∞∫
t=0

e−rtPi(X(t), Si(X(t)))dt for i = 1, 2, · · ·n. (6.0.4)

and for X given by Eq. (6.0.2).

Analogously, Ji (x, S) can be defined for arbitrary initial x.

6.1 Calculation of optima and equilibria

6.1.1 Social Optimum

First we consider the social optimum problem.

Theorem 55 The unique feedback social optimum profile is given by

CSO
i (x) = cSO

i :=
r

n
, (6.1.1)

while the value function for all players is given by

V SO(x) := ASO +BSO ln(x), for (6.1.2)

ASO =
1

r

(
n ln

( r
n

)
+
nξ

r
− n

)
, and BSO =

n

r
.

At this social optimum, the value function of player i is defined as

V SO
i (x) :=

V SO(x)

n
. (6.1.3)
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Proof: It is enough to prove Eq. (6.1.1)–(6.1.2) on the restricted state set (0,+∞),

since 0 cannot be reached from a positive initial state while V SO(0) = −∞, whatever

SSO
i (0) is, it influences neither the current nor the total payoff. Use Theorem 7: for

this model, the HJB Eq. (1.3.16) is

rV (x) = max
c∈[0,x]n

(
n∑
i=1

ln(cix)

)
+

(
ξ −

n∑
i=1

ci

)
x
∂V (x)

∂x
. (6.1.4)

Calculate the point of zero derivative of Eq. (6.1.4) with respect to ci to get optimal

ci defined by
1

c̄i
=

(
x · ∂V (x)

∂x

)
, i = 1, 2 · · ·n. (6.1.5)

This is identical for all i, therefore, all c̄i are symmetric and given by Eq. (6.1.5) for

M large enough. Substitute ci = c̄i into Eq. (6.1.4) and solve for V (x) to get

rV (x) = n ln(c̄ix) + (ξ − nc̄i)x ·
∂V (x)

∂x
. (6.1.6)

The logarithmic structure of the optimization problem suggests that the value function

is of logarithmic form. Therefore, assume the form of the value function V (x) as

V (x) = ASO +BSO lnx, (6.1.7)

so that a logarithmic equation in the state x results. Since this equation has to hold

for all x, the coefficients of lnx and the constant term on the left hand side and the

right hand side have to be equal, which gives

ASO =
1

r

(
n ln

( r
n

)
+
nξ

r
− n

)
, and BSO =

n

r
.

Substitute BSO in Eq. (6.1.5), to get the social optimum catch rate

CSO
i (x) = cSO

i =
r

n
. (6.1.8)

To prove the terminal condition lim supt→∞ V (x)e−rt = 0, first note that ξX(t) ≥
Ẋ(t) ≥ (ξ − nM)X(t) which implies that x0e

ξt ≥ X(t) ≥ x0e
(ξ−nM)t. Since V (x) is

increasing, V (x0e
ξt)e−rt ≥ V (x)e−rt ≥ V (x0e

(ξ−nM)t)e−rt, i.e.,(
n ln

rx0e
ξt

n
+
nξ

r
− n

)
e−rt

r
≥ V (x)e−rt ≥

(
n ln

rx0e
(ξ−nM)t

n
+
nξ

r
− n

)
e−rt

r
.

The limits for t → ∞, of both the first and last expression are equal to 0. So,
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0 ≥ limt→∞ V (X(t))e−rt ≥ 0. Therefore, lim supt→∞ V (X(t))e−rt = 0. Hence, the

value function is given by Eq. (6.1.2) and the unique symmetric social optimum

strategy is given by Eq. (6.1.1).

6.1.2 Nash Equilibrium

Next, we consider the Nash equilibrium problem.

At a Nash equilibrium for every i, Ci is the best response to C∼i.

Theorem 56 The symmetric feedback Nash equilibrium profile is given by

CNE
i (x) = cNE

i := r, (6.1.9)

while the value function of player i is given by

V NE
i (x) := ANE

i +BNE
i ln(x), for (6.1.10)

ANE
i =

1

r

(
ln r +

ξ

r
− n

)
, BNE

i =
1

r
.

Proof: By analogous reasoning as in the social optimum problem, restrict the state

space to (0,+∞).

Define an auxiliary function Vi : R+ × Cn−1 → R given by

Vi(x,C∼i) = max
Ci∈C

Ji (x,C) (6.1.11)

Note that whenever the remaining players use their Nash equilibrium strategies CNE
∼i ,

V NE
i (x) = Vi

(
x,CNE

∼i
)
. (6.1.12)

Use Theorem 7. In this model, for given C∼i, the HJB Eq. (1.3.16) is

rVi(x,C∼i) = max
ci∈[0,M ]

(
ln(cix) +

(
ξ − ci −

n∑
j 6=i

Cj(x)

)
x · ∂Vi(x,C∼i)

∂x

)
. (6.1.13)

Calculate the point of zero derivative of Eq. (6.1.13) with respect to ci to get optimal

ci defined by the equation,

1

c∗i
=

(
x · ∂Vi(x,C∼i)

∂x

)
. (6.1.14)

The logarithmic structure of the optimization problem suggests that the value function
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is of logarithmic form. Therefore, assume the form of the value function Vi(x,C∼i) as

Vi(x,C∼i) = Ai(C∼i) +Bi(C∼i) lnx, i = 1, 2, · · · , n; (6.1.15)

so that a logarithmic equation in the state x results. Eq. (6.1.14) can be rewritten as

1

c∗i
= Bi(C∼i) (6.1.16)

by comparing the coefficients in Eq. (6.1.13) and whatever C∼i are, Bi(C∼i) = 1
r
.

Denote it by BNE
i . Consequently, all C∗i (x) = c∗i = r, which implies that also all

Ai(C∼i) are equal. So the HJB equation for Vi(x) simplifies to:

rVi(x,C∼i) = ln(c∗ix) + (ξ − nc∗i )x ·
∂Vi(x,C∼i)

∂x
. (6.1.17)

Since this equation has to hold for all x, the coefficients of lnx and the constant term

on the left hand side and the right hand side will have to be equal, which gives

Ai(C∼i) =
1

r

(
ln r +

ξ

r
− n

)
.

Denote it by ANE
i . To prove the terminal condition lim supt→∞ Vi(x)e−rt = 0, first

note that ξX(t) ≥ Ẋ(t) ≥ (ξ − nM)X(t), so, x0e
ξt ≥ X(t) ≥ x0e

(ξ−nM)t. Since x > 0,

Vi(x0e
ξt, C∗∼i)e

−rt ≥ Vi(x,C
∗
∼i)e

−rt ≥ Vi(x0e
(ξ−nM)t)e−rt, which implies that(

ln(rx0e
ξt) +

ξ

r
− n

)
e−rt

r
≥ Vi(x,C

∗
∼i)e

−rt ≥
(

ln(rx0e
(ξ−nM)t) +

ξ

r
− n

)
e−rt

r
.

The limits for t → ∞, of both the first and the last expression are equal to 0. So,

0 ≥ lim
t→∞

Vi(x,C
∗
∼i)e

−rt ≥ 0. Therefore, lim sup
t→∞

Vi(x,C
∗
∼i)e

−rt = 0. Hence, for given

C∗∼i, the auxiliary function Vi(·, C∗∼i) is equal to the value function of the optimization

problem of player i

Therefore, the symmetric feedback Nash equilibrium strategy is given by Eq.

(6.1.9), while the value functions of player i at the Nash equilibrium is given by Eq.

(6.1.10).

6.1.3 Comparison between the social optima and the Nash

equilibria

Here, we compare, also graphically, the behaviour of various model variables at social

optima and Nash equilibria for the different values of the parameters. Graphical
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comparison of the catch rates is skipped since it is obvious.

Fig. 6.1a–6.2b are for the values of the parameters as: ξ = 0.03, n = 4 and

x0 = 200. There are two different values of r: for patient players r = 0.02 while for

impatient players r = 0.04.

Note that, generally, there can be three situations concerning sustainability at

social optima: for ξ > r (related to as patient players) the state trajectory then

converges to +∞ as t → ∞, for ξ = r it is constant, while for ξ < r (impatient

players) it converges to 0.

Usually, in the real world r and ξ are close to each other, so for Nash equilibria,

especially for n players, the trajectory of the biomass always converges to 0.

Note that, while for impatient players, the resource is sustainable neither at the

social optimum nor at the Nash equilibrium. In the remaining cases, there is sustain-

ability at social optima while Nash equilibria always result in depletion of the resource,

which we can see in Fig. 6.1a.

In the subsequent figures, we compare graphically relations between trajectories,

catches, current payoffs and accumulated payoffs from a time instant on for social

optima and Nash equilibria, for patient and impatient players.

(a) Trajectories of the state for social op-
tima and Nash equilibria, for patient and
impatient players

(b) The catch over time for social optima
and Nash equilibria, for patient and im-
patient players

Figure 6.1

In Fig. 6.1b and 6.2a, it can be easily seen that the catch at a Nash equilibrium

tends to 0 and the current payoff tends to−∞ as time tends to infinity, while for patient

players the social optimum catch and current payoff tends to +∞. Note that the Nash
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equilibrium catch and payoff are initially higher than the social optimum catch and

payoff, but from some time instant on, the negative results of over-exploitation start

to dominate and the inequality becomes reverse.

For the accumulated payoff from time t on, discounted to time instant t, presented

in Fig. 6.2b, the social optimum payoff is always higher than the Nash equilibrium

payoff, and the difference between them increases over time.

(a) Instantaneous payoffs over time for
social optima and Nash equilibria, for pa-
tient and impatient players

(b) Total payoff from time t on (dis-
counted to time instant t) for social op-
tima and Nash equilibria, for patient and
impatient players

Figure 6.2

6.2 Enforcing social optimality by a tax-subsidy

system

Here we consider the problem of enforcement of a social optimum profile by a tax-

subsidy system, linear in the surplus over the social optimum level:

tax(ci, x) = τ(x)
(
ci − CSO

i (x)
)
x. (6.2.1)

So, the current payoff in the modified game is

Jτi (x,C) =

∞∫
t=0

e−rt
(

ln (Ci(X(t)) ·X(t))− τ(x)
(
Ci(X(t))− r

n

)
X(t)

)
dt. (6.2.2)
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Theorem 57 Consider the enforcement problem. Rate of linear tax-subsidy system τ

which enforces the social optimal profile CSO is given by

τ(x) =
(n− 1)

rx
. (6.2.3)

Fig. 6.3 represents the rate of tax of the tax-subsidy system enforcing the socially

optimal profile. It can be easily observed that for low biomass of fish, large value of τ

are required, moreover, τ decreases with x.

Figure 6.3: Tax rate τ(x) enforcing the socially optimal profile for the values of the
parameters are ξ = 0.03, n = 10 and r = 0.02

Proof: Consider a game with enforcing the social optimum profile. If a player

plays cSO
i = r

n
then there is no tax to be paid or subsidy to be obtained. So, if every

player plays cSO
i , each of them obtains the payoff V SO(x)

n
and this is the optimal payoff

for such an appropriate τ(x), if it exists. So, the HJB Eq. (1.3.16) for the modified

game is

r

n
V SO(x) = max

ci∈[0,M ]

(
ln(cix)− τ(x)

(
ci −

r

n

)
x+

(
ξ − ci −

n∑
j 6=i

cj

)
x · ∂V

SO(x)

n · ∂x

)
(6.2.4)

Calculate the zero derivative point of the right hand side of Eq. (6.2.4) to get the

optimal value of ci as

c̃i =
r

(1 + τ(x)rx)
(6.2.5)

and the social optimum should be attained at cSO
i . So, substitute c̃i = cSO

i to get τ as

given in Eq. (6.2.3). It can be easily checked that for this τ , c̃i fulfils the HJB Eq.

(6.2.4).
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6.2.1 Enforcement by a financial incentive — the general al-

gorithm

The technique used in the proof of Theorem 57 can be extended to a quite general

algorithm of calculating a successful enforcement of the socially optimal profile SSO
i

for games with arbitrary current payoffs Pi and state transition function φ in a certain

class of financial incentives or proving that such a tool does not exist.

This financial incentive of a general form T (x, si) = ϕ(x, si, p), dependent on

a vector p of m parameters. The tax should be purely regulatory and such that

T (x, SSO
i (x)) = 0 for all x.

Further extension of this method to finding a financial incentive enforcing a previ-

ously specified profile S̄ (or proving that such an incentive does not exist in a certain

class of incentives) if only we are able to calculate the players’ payoffs for this profile,

Ji(x, S), is also immediate.

For the given financial incentive ϕ defined by a vector of parameters p, the general

algorithm is as follows.

1. Write the HJB equation from Theorem 6 for the optimization problem of player

i given S̄∼i and Vi = Ji(x, S̄
SO
i ), for i = 1, . . . , n.

2. Calculate the strategy Spi (t, x) (for finite time horizon, the functions of the model

may be directly dependent on time, or S̄ may be dependent also on time, so we

usually cannot avoid direct dependence of time) such that Spi (t, x) maximizes

the right-hand side of HJB equation of player i for x and t.

3. Find p for which Sp ≡ S̄SO
i .

By Theorem 5 for a finite horizon case and by Theorem 6 for the infinite time horizon

case, S̄ is the Nash equilibrium in the game modified by this financial incentive.

6.3 Self-enforcing environmental agreement

Here, we solve a model of a self-enforcing environmental agreement, considering a

unilateral deviation of a player.

In this binding agreement model, all the players commit themselves to play their

social optimum strategies until the deviation is not observed. However, we assume

that the observation is delayed — it takes ε to notice a deviation of a deviating player.

So, if player i deviates at time 0, then the remaining players observe it at time ε, and

the agreement is broken and from time ε on, all the players play their Nash equilibrium

strategies.
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Fix a time instant t̄. We compare the payoff of player i for not deviating (and

playing the social optimum strategy) and V D
i (x) being the optimal payoff if they

deviate at t̄ assuming that the other players play their agreement strategies, CSO
∼i (x)

before they notice the deviation, and CNE
∼i (x) afterwards.

Definition 14 An agreement is self-enforcing if there is no incentive to unilaterally

deviate from it, whatever the state of the system x is. So, for every x, V D
i (x) ≤ V SO(x)

n
.

Obviously, if V D
i (x) > V SO

i = V SO(x)
n

, then player i will deviate and the agreement will

be broken whereas if V D
i (x) < V SO(x)

n
, then player i will not deviate at time t̄ at which

the state is x. Generally, if V D
i (x) = V SO(x)

n
in real life, we cannot be sure whether the

players will break the agreement or not, but such an option is possible.

Obviously, the feedback form of strategies is not applicable any more, and strategies

in this modification become dependent also on the time instant.

For such a binding agreement a different information structure has to be considered.

The fact that deviation has been observed has to taken into account by players who

want to be in agreement as long as it is not violated by the others. To describe

strategies of a player who abides by the agreement as long as they do not observe

defection of some other player, an additional binary variable a is needed with a = 1

denoting that any deviation has not been observed, as an additional argument of

strategy. The trajectory of this a is denoted by A.

ĈA
i (a, x) =

cSO
i if a = 1,

cNE
i if a = 0.

(6.3.1)

Theorem 58 The agreement is self enforcing if and only if

ε ≤ εcrit =
1

r
ln

(
(n− 1)2

1− n+ n ln (n)

)
. (6.3.2)
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Figure 6.4: The critical value of the delay εcrit with which the deviation is being
observed as a function of the number of players for ξ = 0.03, and r = 0.02

Fig. 6.4 shows how the critical εcrit behaves as the number of player increases —

it is increasing in n because of the fact that the agreement is such that the larger

the number of players in the agreement, the more severe is the punishment for the

deviating player.

This seems counter-intuitive — it is generally well known that it is easier to obtain

cooperation in smaller society. However, we have to take into account a specific form

of agreement. First, it is more costly for a deviating player to deviate for a larger

number of players because the punishment by many players is more severe. Besides, the

punishers punish because, if the agreement is broken, the others play Nash equilibrium,

so the best response is to play Nash equilibrium too.

Figure 6.5: Catches of a deviating player and of an abiding player, compared to the
catch of a player at the social optimum and Nash equilibrium for n = 10, ξ = 0.03,
r = 0.02 and ε = εcrit(n)

From Fig. 6.5, it can be easily seen that the catch of the deviating player is initially

higher even than at the Nash equilibrium while the catch of each of the abiding players
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is initially even lower than at the social optimum, then after a discontinuity of the catch

of the abiding player at the time of observing the deviation, they are both equal and

decreasing to zero (because of depletion of the resource).

Figure 6.6: Total payoff of a deviating player compared to the agreement payoff
depending on the delay for n = 10, ξ = 0.03, r = 0.02 and two different values of
delay: ε = 40 (below critical) and ε = 150 (above critical) depending on the initial
state

Fig. 6.6 shows the total payoff of a deviating player depending on the initial state,

compared to their non-deviating strategy assuming the others abide. Proof: The

payoff of the deviating player i is given by

ĴD
i (x0, Ci) :=

 ∞∫
t=0

e−rt ln (Ci(X(t)) ·X(t)) dt

 , where (6.3.3a)

Ẋ(t) =

(
ξ − Ci(X(t))−

n∑
j 6=i

ĈA
j (t,X(t), A(t))

)
X(t), (6.3.3b)

X(0) = x0. (6.3.3c)

Consider a situation when only a single player i deviates. If the deviation is at time t̄

then from (6.3.1), for simplicity, at time t, the strategies of the abiding players can be

equivalently written in form of feedback strategies dependent also on time as

CA
i (t, x) =

cSO
i if t < t̄+ ε,

cNE
i if t ≥ t̄+ ε.

(6.3.4)

Consider a strategy in which player i cheats at time t̄, then after t̄+ε, the best response
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to the strategies of the others is to play their Nash equilibrium strategies. So, with this

additional assumption on the strategy of player i and changing the form of strategies

of the others to (6.3.4), Eq. (6.3.3) can be rewritten as,

JD
i (x0, Ci) =

 t̄+ε∫
t=0

e−rt ln (Ci(X(t)) ·X(t)) dt

+ e−rεGi(X(t̄+ ε)) (6.3.5a)

Ẋ(t) =

(
ξ − Ci(X(t))−

n∑
j 6=i

C̄A
j (t,X(t))

)
X(t), (6.3.5b)

X(0) = x0, (6.3.5c)

for the terminal payoff Gi(x) = V NE
i (x).

Note that, if for every x̄ > 0, JD
i

(
x̄, Ci, C

A
∼i
)
≤ V SO

i , then it is enough to check

the deviation only at t̄ = 0, since deviating at any time t̄ > 0 results in an analogous

analysis whether the agreement is self-enforcing or not.

So, the total payoff of player i for deviation at time 0 is,

V D
i (0, x) = max

Ci∈C
JD
i (x,Ci) . (6.3.6)

Since the optimal strategy of the deviating player from time ε on is S̄NE
i , to solve

the optimization problem of the deviating player for t ≤ ε, it is enough to solve the

optimization problem for finite time with horizon ε and the terminal payoff V̄ NE
i by

using Theorem 5. By solving Eq. (1.3.12)–(1.3.13), similarly to the proofs of Theorems

55 and 56, after assuming the logarithmic form V D
i (t, x) = AD

i (t) + BD
i (t) lnx, to get

CD
i (x, t) = 1

BD
i

and BD
i solves the differential equation rBD

i (t)− d
dt
BD
i (t) = 1,

with the terminal condition BD
i (ε) = BNE

i = 1
r
, which results in BD

i (t) ≡ 1
r
.

Consequently, the optimal strategy of the deviating player is CD
i (t, x) = r = CNE

i .

For the accurate value of AD
i for comparison with the abiding strategy, solve the

differential equation for it to get, rAD
i (t)− d

dt
AD
i (t) = ln (r) + 1

r

(
ξ − r − (n−1)r

n

)
with

the terminal condition AD
i (ε) = ANE

i = 1
r

(
ln r + ξ

r
− n

)
, which gives,

AD
i (t) = (ln(r)nr+(−2n+1)r+nξ)exprε−exprtr(n−1)2

r2exprεn
.

Solve V D
i (x, 0) = V SO

i (x) for ε, to get Eq. (6.3.2) for the critical value of ε.
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Chapter 7

Conclusions and future directions

7.1 Conclusions

In this dissertation, as it is stated in the title, we consider various models of renewable

resource extraction. In those models, we study various aspects of the calculation of

optima and equilibria. Firstly, we have considered a constrained linear-quadratic dy-

namic game, modeling the problem of exploitation of a common renewable resource in

discrete time with the infinite time horizon and with increasing number of players. We

consider the value of the constraint such that it makes depletion possible. To make the

model realistic, we have imposed the constraints on strategies. As a consequence, cal-

culation of a feedback Nash equilibrium has become complicated. We have calculated

the social optima both for n-players and for the continuum of players. We have also

calculated the Nash equilibria for the continuum of players, and in spite of very simple

equilibria, the value function has turned out to be very complicated and irregular. For

the n-player case, we have not been able to calculate the Nash equilibria for n ≥ 2,

and we have proved that solutions in some class of functions cannot be obtained. We

return to this problem in a truncation of the game in Chapter 3 to show the reason

that even in a 2-stage truncation such a continuous solution does not exist. Our results

may be treated as a counterexample to the correctness of the undetermined coefficient

method, used for solving the Nash equilibrium and/or optimal control problems. We

have also investigated and found different kinds of enforcement of an optimal social

profile by a Pigovioun tax-subsidy system.

In Chapter 3, we have calculated the symmetric feedback Nash equilibria in two-

stage truncations of the considered constrained linear-quadratic dynamic game, but

only with 2 players. In spite of the concave instantaneous payoffs and convex sets of

available decisions, we have proven the non-existence of continuous symmetric feedback

Nash equilibria (discontinuous with respect to the state variable). However, we have

found a continuum of discontinuous symmetric feedback Nash equilibria with respect

to the state variable. So, the result is a counterexample to the common belief in the

continuity of equilibria for linear-quadratic dynamic games with concave payoffs.

103



Next, we have analysed a dynamic optimisation problem, closely related to the

above two dynamic games — a generalisation of a linear-quadratic problem with state-

dependent constraints on control. We have obtained a complicated form of the solution

with a piecewise linear solution with infinitely many pieces in the infinite time horizon.

However, we were able to prove that the Bellman equation holds and solve it by using

concavity. Equivalently, it may be regarded as a linear-quadratic problem with non-

negativity constraints, both on control and state. We have considered both the infinite

time horizon problem and its finite horizon truncations. The problem is very important

from the theoretical point of view — although it looks simple in its linear-quadratic

form, calculation of the optimal control is nontrivial because of the more general

discount factor β instead of the golden rule β.

In the next Chapter, we have started the work from computing and comparing the

numerical and analytic methods to find the social optima and the Nash equilibria for

the well known Levhari and Mirman Fish Wars model of a dynamic game for logarith-

mic current and terminal payoffs. In spite of singularities in payoffs, we have obtained

a very good approximation of social optima and Nash equilibria along the correspond-

ing optimal trajectory, although the value function was substantially overestimated on

some sets and underestimated on some other sets.

This has been a starting point to the main achievement of the paper that is the

formulation of general rules when such over-estimation or under-estimation of the value

function does not result in wrong optimal trajectory and the optimal strategy along

with it for the dynamic optimisation problems.

We have not restricted that the over-estimation or under-estimation is resulting

from using numerical methods only, but it may also be a result of replacing the value

function which is not known precisely by a constraint for it on some intervals a priori

in order to simplify further computation or calculation.

Our results also prove that in some dynamic optimisation problems, solving the

Bellman equation and finding the maximum of its right-hand side as the candidate for

optimal control for the steady state of the state variable only, may lead to a correct

result. It also justifies the procedure of calculating the optimal control only along the

optimal trajectory.

Finally, in the thesis, we have considered a differential game — a continuous time

version of the modified Fish Wars game with linear dynamics.

We have calculated the social optimum and a Nash equilibrium, and we have com-

pared the results for different parameter depending on whether the players are patient

or impatient. We have proved that over-exploitation of the resource always takes place

and it may even lead to its depletion.
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To have sustainability of the resource, we have solved two different problems of

enforcing social optimality: external enforcement by a tax-subsidy system and a self-

enforcing binding agreement with the assumption that there is a delay in observation

of a default. As a consequence of solving the tax-subsidy problem, we have also pro-

posed a general algorithm for finding financial incentives, defined by some parameters,

enforcing a social optimum in a large class of differential games.

7.2 Scope for future study

There are several potential continuations of the linear-quadratic dynamic game model.

• Numerical computation of a belief distorted Nash equilibrium.

• Introducing a more complex spatial distribution of fish in the model, so that

the current decisions of each of the players have more influence on the future

level of biomass in their zone than decisions of any other player. Obtaining Nash

equilibria in such a model, however, may turn out to be possible only in finite

time horizon problems.

• An attempt to calculate all the symmetric feedback Nash equilibria for more

than two stages (for the game considered in Chapter 3) can also be taken, how-

ever, because of discontinuity and non-uniqueness of the two-stage equilibria, its

extension to more than two stages poses several technical challenges.

• Formulation of general rules when such over-estimation or under-estimation of

the value function does not result in wrong optimal trajectory and the optimal

strategy along with it for the Nash equilibrium problems in dynamic games are

an obvious extension on which we already worked, and the results are available

in Singh and Wiszniewska-Matyszkiel [94].
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theory of large games with strategic complementarities. Economic Theory, pages

1–27, 2014.

[42]  Lukasz Balbus, Kevin Reffett, and  Lukasz Woźny. Monotone equilibria in
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[53] Mark Broom and Vlastimil Křivan. Biology and evolutionary games. Handbook

of Dynamic Game Theory, pages 1–39, 2016.

110



[54] Ross Cressman and Joe Apaloo. Evolutionary game theory. Handbook of Dynamic

Game Theory, pages 461–510, 2018.

[55] Robert J Aumann and Lloyd S Shapley. Values of non-atomic games. Princeton

University Press, 2015.

[56] Andreu Mas-Colell. On a theorem of Schmeidler. Journal of Mathematical Eco-

nomics, 13(3):201–206, 1984.

[57] Agnieszka Wiszniewska-Matyszkiel. Dynamic game with continuum of players

modelling”tragedy of the commons”. Game Theory and Applications, 5:162–187,

2000.

[58] Agnieszka Wiszniewska-Matyszkiel. A dynamic game with continuum of players

and its counterpart with finitely many players. In Advances in Dynamic Games,

pages 455–469. Springer, 2005.

[59] Agnieszka Wiszniewska-Matyszkiel. Static and dynamic equilibria in games with

continuum of players. Positivity, 6(4):433–453, 2002.

[60] Agnieszka Wiszniewska-Matyszkiel. Discrete time dynamic games with a con-

tinuum of players I: Decomposable games. International Game Theory Review,

4(03):331–342, 2002.

[61] Agnieszka Wiszniewska-Matyszkiel. Existence of pure equilibria in games with

nonatomic space of players. Topological Methods in Nonlinear Analysis, 16(2):339–

349, 2000.

[62] Maria Ekes. General elections modelled with infinitely many voters. Control and

Cybernetics, 32(1):163–174, 2003.

[63] Andrzej Wieczorek and Agnieszka Wiszniewska. A game-theoretic model of social

adaptation in an infinitive population. Applicationes Mathematicae, 25:417–430,

1999.

[64] Peter E Caines, Minyi Huang, and Roland P Malhamé. Mean field games. Hand-
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