University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Rafal Zaborowski
Student no. 369592

Computational methods for
differential analysis of chromatin
contact matrices

PhD’s dissertation
in COMPUTER SCIENCE

Supervisor:
dr hab. Bartosz Wilczyiski
Institute of Informatics, University of Warsaw

March 2020






Supervisor’s statement

I hereby confirm that the presented thesis was prepared under my supervision
and that it fulfills the requirements for the degree of PhD of Computer Science.

Date Supervisor’s signature

Author’s statement

I hereby declare that the presented thesis was prepared by me and none of its
contents was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining
an academic degree.

Moreover, I declare that the present version of the thesis is identical to the
attached electronic version.

Date Author’s signature






Abstract

Computational methods for differential analysis of chromatin
contact matrices

Understanding the relationships between chromatin structure and gene regulation
is a fundamental problem in genetics. However, for a long time there has been little
progress in the field of genome architecture except for studying low scale chromatin
organization. This situation changed during last two decades due to the advancement
in the development of NGS technology, which gave rise to Chromosome Conformation
Capture (3C) methods. The availability of 3C techniques enabled genome organiza-
tion studies on an unprecedented scale. In particular, the 3C-derived Hi-C protocol
allowed researchers to interrogate millions of chromatin interactions between pairs
of regions genome-wide at a very high resolution. One of the main applications of
Hi-C is the differential analysis, which aim to identify the structural differences of
chromatin influencing regulatory processes across various cell types, treatments or
species.

In this thesis we focus on the issue of comparing Hi-C contact matrices. First,
we study the problem of assessing the similarity between chromosome segmentations
arising from identification of Topologically Associating Domains (TAD) - an inherent
feature of mammalian Hi-C maps, which were shown to shape regulatory landscape
of the genome. We present a novel distance measure called BP-score, tailored for
comparison of TAD partitionings and prove that our measure satisfy metric proper-
ties. Evaluation of the BP-score on real and simulated datasets demonstrates that
it performs competitive against existing approaches. Additionally, we introduce lo-
cal measures of domain rearrangement and show their correlation with functional
measurements.

Second, we develop a normalization-free method for discovery of Hi-C differ-
ential interactions called DiADeM. Our method introduces an intuitive definition
of differential interaction, which takes into account the cross-dataset contact profile
similarity. Finally, we assess DiADeMs ability to detect differential interactions using
simulated contact maps and show it performs well against other available methods for
Hi-C differential analysis. In summary, the tools developed by us may help researches
in discovering unknown structural alterations driving regulatory mechanisms.



Streszczenie

Metody obliczeniowe w analizie ré6znicowej macierzy kontaktow
chromatynowych

Problem zrozumienia relacji pomiedzy struktura chromatyny, a regulacja genéw
ma kluczowe znaczenie w genetyce. Niestety przez wiele lat mozliwe byly wytacznie
badania architektury genomu w niskiej rozdzielczosci lub maltej skali. Sytuacja
zmienita sie w ciggu ostatnich dwoch dekad gtownie ze wzgledu na postep w rozwoju
technologii NGS, ktora data poczatek metodom 3C (ang. Chromosome Conforma-
tion Capture). Dostepnos¢ technik 3C umozliwita badania organizacji genomu na
niespotykang dotad skale. W szczegolnosci wysoko-rozdzielczy wariant metody 3C -
protokot Hi-C pozwala uzyskaé dane dotyczace miliondéw interakcji pomiedzy parami
regionéw chromatyny w calym genomie. Jednym z gléwnych zastosowan protokotu
Hi-C jest analiza réznicowa, ktéra ma na celu zidentyfikowanie réznic w strukturze
chromatyny wplywajacych na procesy regulacji gendéw w réznych typach komorek,
warunkach eksperymentalnych lub gatunkach.

W tej pracy koncentrujemy sie na problemie poréwnywania macierzy kontaktow
Hi-C. Po pierwsze, badamy problem oceny podobiernistwa miedzy segmentacjami chro-
mosomoéw wynikajacymi z identyfikacji domen topologicznych (TAD) - nieodlaczne;
cechy map Hi-C organizméw ssakow, ktore, jak wykazano, ksztattujg krajobraz reg-
ulacyjny genomu. Prezentujemy nowa miare odlegloéci o nazwie BP-score, dos-
tosowang do poréwnania segmentacji TAD oraz dowodzimy, ze nasza miara jest me-
tryka. Przykladowe analizy poréwnawcze przeprowadzone na danych symulowanych
i rzeczywistych pokazuja, ze odlegtos¢ BP jest konkurencyjna w stosunku do innych
metryk wykorzystywanych dotychczas podczas badania podobienistwa segmentaciji.
Dodatkowo wprowadzamy lokalne miary rearanzacji domen topologicznych i pokazu-
jemy, ze pomiary rearanzacji uzyskane przy uzyciu wprowadzonych przez nas miar
koreluja z pomiarami ekspresji genéw lub metylacji.

Po drugie, opracowujemy metode do wykrywania réznicowych oddziatywan Hi-
C o nazwie DiADeM dzialajaca na danych nieznormalizowanych. Nasza metoda
wprowadza intuicyjna definicje interakcji réznicowych, ktora uwzglednia podobieri-
stwo profili kontaktéw pomiedzy zestawami danych. Na koniec oceniamy zdolnosé
naszej metody do wykrywania interakcji réznicowych przy uzyciu symulowanych map
kontaktow i pokazujemy, ze osiaga konkurencyjne wyniki w pordéwnaniu z innymi
dostepnymi metodami stuzgcymi do analizy réznicowej Hi-C. Podsumowujac, opra-
cowane przez nas narzedzia mogg poméc badaczom w odkrywaniu nieznanych zmian
strukturalnych wptywajacych na mechanizmy regulacji genéw.
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CHAPTER 1
Biological Introduction

In 2003, after more than 10 years of research, the Human Genome Project was
completed. The main purpose of this undertaking was to establish the sequence of
human DNA and determine all of the genome fragments encoding proteins (so-called
genes). The results obtained during the Human Genome Project combined with
the development of Next Generation Sequencing technology gave rise to dynamic
progress in genetics. To date, the sequences of approximately 100 organisms have
been discovered, and sequencing has become a widely used method. Availability
of reference genomes stimulated advances in phylogenetics, epigenetics, chromatin
structure studies and many other branches of biology.

One of a key challenges in genetics is the study of gene regulation, which aim to
demystify the circumstances that induce decoding and transfer of genetic information
from certain DNA fragments. While DNA contains all the instructions required
for cell functioning, it is essential to properly transfer this information in order to
maintain life. In general organisms consists of various types of cells, however the
genetic information contained in DNA sequence across given individual cells is almost
identical. That implies the existence of mechanisms, which selectively decode DNA
leading to tissue specific gene regulation and cell differentiation. Precise elucidation
of gene regulation remains an open problem. Among many factors demonstrated to
influence cell differentiation and functioning is the spatial organization of chromatin
[ZX19].

The current chapter discusses some of the basic concepts of cell biology and
methods of studying the structure of chromatin, which are relevant later in this thesis.
Section [L1] covers selected issues related to the structure and basic functions of the
cell. Due to the extensiveness of the topic, it is limited to the description of eukaryotic
organisms as the data analyzed in this work originates from mammalian species.
Section is a brief introduction into Next Generation Sequencing technology, which
forms the basis of the chromatin structure studying techniques discussed in Section
3] In Section[I.4]the mechanisms of gene regulation processes and their relationship
with the DNA spatial structure are described.

1.1.
The Basics of Cell Biology

The cell is considered the basic building block of all living organisms and the smallest
unit capable of maintaining life. From a genetic standpoint, the cell acts as a con-
tainer for genome and enables the proper flow of genetic information. With respect
to classification, two types of cell are distinguished: eukaryotic (with nucleus) and
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prokaryotic (also known as bacterial, without nucleus). This section contains basic
facts about eukaryotic cells.

|1.1. 1| Cell Structure

Metazoan cells are complex objects composed of many elements. An outer layer
of cell, which acts as barrier separating the organelles from external environment is
called cell membrane. Apart from protecting the interior of the cell, another function
of the membrane is to facilitate exchange of different substances, e.g. import of
nutrients or export of metabolites. The core of any eukaryotic cell is the nucleus
where most of genetic information is kept and transferred to daughter cells during
mitosis and DNA replication or onto mRNA during transcription. Molecules of
mRNA are exported from the nucleus and information is further passed to proteins
inside ribosomes. Some other important organelles are mitochondria - responsible
for cell respiration, or Golgi apparatus where chemical modifications of lipids and
proteins takes place (Figure [1.1)).

Mitochondria
Lysosome

Nucleus

Microbody

(e.g., peroxisome) Nucleolus

Golgi apparatus

Endoplasmic reticulum
with ribosomes

Figure 1.1. The simplified illustration of eukaryotic cell. Figure from |Giell|. Used
with permission from Oxford University Press.

[1.1.2] Genome Organization

The main responsibilities of the cell nucleus is keeping the correct packing of the
genetic material, i.e. the genome. The genomes of mammalian organisms consists of
DNA and proteins, which form the chromatin fiber adopting complicated, hierarchi-
cal structures.

The main carrier of genetic information is the DNA (deoxyribonuceic acid) molecule.
The basic compounds that make up DNA are the phosphate residue, sugar - deoxyri-
bose, and nucleobases: Adenine, Cytosine, Guanine and Thymine, abbreviated as the
first letter of their name. Each nucleobase is linked to a sugar molecule to form a
nucleoside. Nucleosides combine into strand through phosphate residues. DNA usu-
ally occurs in the form of a double-stranded helix [WC+53; WSW53; [FG53|. The
helix structure is maintained through hydrogen bonds between complementary nu-
cleobases of opposite strands. This means that base pairs can only form between
Guanine and Cytosine or between Adenine and Thymine (Figure|l.2)). The sequence
of nucleobases of DNA strands determines the genetic material of an individual. Due
to the function of particular fragments, DNA is divided into coding and non-coding
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regions. The former are matrices for protein production in a process called gene
expression. The latter can perform structural functions or regulate gene expression.
Other non-coding regions do not have assigned role. Under evolutionary conser-
vation, it is estimated that about 8 to 15% of human DNA performs biochemical
functions, while the total number of base pairs of coding sequences represents less
than 2% of the human genome sequence [PH11; Ran+14; |Con+01].

Chromosomal DNA may be a very long molecule. For example each copy of the
human genome consists of approximately 3.5 billion base pairs which would measure
around 2-2.4 meters in length if fully expanded while the diameter of cell nucleus
is on average only a few micrometers in size. How such a long molecule fits inside
such a little nucleus? It turns out that DNA binds to specific proteins to form a
complex structure and achieve proper compaction level. First, the DNA double helix
wraps around protein complexes called nucleosomes (Figure . Nucleosomes form
so-called histone octamers, consisting of 4 pairs of histones. Short pieces of DNA
between nucleosomes are called linker DNA, while the entire structure is called a
chromatin fiber. Due to the degree of condensation and the associated transcriptional
activity, two types of chromatin are distinguished: euchromatin and heterochromatin
. The former is a loose, transcriptionally active structure also called a string
of beads or a 11 nanometer fiber. The latter arises when the nucleosomes and
linker DNA compacts forming so-called solenoid structure or 30 nanometer fiber.
Chromatin can pass between both states accompanied by an increase or decrease in
gene regulation respectively. The single chromatin fiber is called a chromatid. There
are 24 pairs of chromatids in human cells. Each pair comprise different chromosome
(or sister chromatids). In addition recent data obtained from Hi-C studies suggest a
fractal structure of chromatin fiber.
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Figure 1.2. The schematic illustration of DNA double helix structure. Two sugar-
phosphate strands are linked together by existence of hydrogen bonds between cor-
responding nucleobases. Figure from [Pra08]. Used with permission from Nature
Education.
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Short region of
DNA double helix

“Beads on a string”
form of chromatin

30-nm chromatin
fibre of packed
nucleosomes

Section of
chromosome in an
extended form

Condensed section
of chromosome

Centromere

Entire mitotic

chromosome 1,400 nm

Figure 1.3. The compaction of DNA into chromatin. DNA helix wraps around nucle-
osomes to form chromatin. The chromatin usually occupy condensed state of 30-nm
fiber. This fiber is further packed into hierarchy of domains, which form chromatids
and chromosome. Figure from [JV11]. Used with permission from American Society
for Microbiology.

[1.1.3]| Central Dogma of Molecular Biology

The central dogma of molecular biology describes the flow of genetic information
in a cell. Quoting Francis Crick, information can pass from nucleic acids to proteins,
but once it got to protein it can not get back to DNA . The most important
directions of genetic information flow are:

e from DNA to DNA, i.e. replication,

e from DNA to RNA, i.e. transcription,
e from RNA to protein, i.e. translation.

The flow of information in the remaining 3 directions is possible, however, it occurs
only in some organisms or in specific conditions [TM-+70; [Ahl02; MH65|.
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Living organisms require their cells to divide in order to maintain life. Cell
division includes copying the genetic material, i.e. DNA replication. DNA replica-
tion occurs in three stages: initiation, elongation and termination. The initiation
phase consists of unwinding DNA double helix at certain chromosomal locations
and constructing protein complexes called replicons. During the elongation phase,
the replicon slides along DNA and copies both strands. When replication complex
recognizes the termination sequence, it detaches from DNA [MS58; Pra].

One of the primary roles of DNA is to encode protein sequences, which are
the basic building blocks and signaling molecules in most organisms. Proteins are
synthesized from genes in two step process. First, a DNA sequence of a given gene is
transferred onto a mRNA molecule during transcription. Transcription begins when
the RNA polimerase and other proteins called transcription factors bind together
with a certain DNA region called the gene promoter. Afterwards, the process enters
the elongation phase. The double helix is unwinded and the mRNA molecule is
synthesized base by base. During the termination step, transcription machinery
releases DNA and strands folds back into the double helix. It must be noted that this
is a brief description of transcription. The precise mechanism of this process is much
more complex, involving many additional steps. The synthesized RNA undergoes
various post-transcriptional processes, and then it is removed from the cell nucleus
to the cytoplasm where protein synthesis takes place.

When ribosome captures mRNA, its sequence is translated into a protein. Dur-
ing this process, the ribosome moves along the mRNA reading subsequent nucleotide
triplets (so-called codons). The amino acids used to form the peptide chain are de-
livered by tRNA molecules, which bind to the mRNA codon and a specific ribosome
fragment. There are 2 types of codons that do not encode any amino acid - these are
called start and stop codons designating the translation start and end sites respec-
tively. During last stage of protein synthesis, the ribosome catalyzes the process of
transforming the polypeptide into its native form.

Not all transcribed genes are translated to proteins. Some fragments of DNA
called non-coding RNA (ncRNA) genes are responsible for synthesis of functional
RNA molecules, which facilitate various cellular processes [Edd01|. Examples of
ncRNAs are tRNA or ribosomal RNA mentioned above.

1.2.
Next Generation Sequencing

Until the 70’s, the process of discovering DNA sequences (i.e. sequencing) of even
small genome organisms was severely limited. For example in 1968 Wu and Kaiser
performed the first successful sequencing of lambda phage cohesive ends sequence
[WK68; San01|. Researchers used tedious protocol, which allowed to establish the
sequence of only 10 nucleobases length.

In 1977, Frederick Sanger and coworkers developed a method (later called Sanger
sequencing), which allowed for quick and efficient sequencing of relatively large se-
quences [SNC77|. The method became standard in sequencing assays due to the
ease of its automation, the ability to sequence long DNA fragments (up to 1000 nu-
cleobases) and its low error rate. Sanger sequencing has been successfully applied
for sequencing human mitochondrium genome (around 16.6 kbp) or phage lambda
genome (around 48.5 kbp) and played a major role during Human Genome Project
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[Con+01]. Despite the above mentioned advantages, the Sanger sequencing suffers
from one serious flaw - it is still relatively labor intensive as it sequences one indi-
vidually amplified DNA molecule at a time [SN14].

This issue led to the development of Next Generation Sequencing methods. These
techniques, also called massively parallel or high-throughput, allow to sequence entire
genomes at relatively low cost. For example, prior to 2008, the cost of sequencing
the entire human genome using Sanger technologies was estimated at $20-25 million,
which dropped to a few thousands dollars currently using NGS [Sch+19]. At present
there are several commercial platforms developed for NGS methods, for example:
[Mumina HiSeq, Roche 454, Pacific Biosciences and many others differing in details
and purpose of analysis.

However, all of them are based on similar core principles common for high-
throughput methods (Figure . At the first stage, the DNA sample is randomly
sheared into very short fragments (usually around 50 - 500 basepairs) and ligated
with adapters (Figure [1.4]A). The goal of adapters is twofold. First they serve as
starting point in PCR (so called primers). Second, they hybridize with solid basis
before sequencing step. Depending on the type of assay, fragments may be filtered
to retain specific part of the genome like for example during Whole-Exome studies
(Figure ) Remaining fragments are then amplified using PCR. Next, fragments
are captured into wells, so that one well is common to a single adapter sequence.
Then the sample is sequenced in a cycle-by-cycle manner (Figure ) At every
cycle, the substrates are added to the sample and the newly created chain is extended
by incorporating nucleotides and emitting a colored signal, which is registered. The
cycle ends with a wash-out of unincorporated nucleotides. The outcome of a NGS
experiment is a library of short reads (i.e. sequences), which is later mapped on
reference genome to determine location of reads (Figure [L.4D).

1.3.
Into Chromatin Structure

Before the discovery of 3C and derived methods, our understanding of chromatin
topology remained very limited. Light microscopy studies conducted by Carl Rabl
as early as the end of 19th century provided evidence of chromosome territories
[Mis08; (CC10]. This model assumed that chromosomes occupy separate volumes of
cell nucleus rather then interweave one another’s fiber. The concept of chromosome
territories suggested by Carl Rabl in 1885 was eventually confirmed by Thomas and
Christoph Cremer in 1980s [CC01]|. Another advancement in genome architecture
research was facilitated by the development of electron microscopy, which enabled
the discovery of beads-on-string organization of DNA [Ann08|. In between nucle-
osome level and chromosome level the chromatin was observed to adopt either the
condensed, repressed or relaxed, transcriptionally active states currently known as
hetero- and euchromatin respectively |[Lan+83; WH97; | Amo05; (GRO5; [DT12].

Current technical capabilities enable us to investigate the arrangement of chro-
matin at the level of long-range chromatin interactions between DNA fragments
spanning as little as few hundreds of basepairs. Moreover due to rapid progress in
the development of NGS technology it is possible to examine chromatin contacts
genome-wide for millions of fragment pairs in single experiment.
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Figure 1.4. Summary of the NGS protocol. First, extracted DNA sample is frag-
mented into pieces and ligated with adapters. Depending on the type of assay some
fragments may be filtered out. Next, the remaining DNA is amplified using PCR
and captured into sequence specific wells. Finally the sequencing process is per-
formed - bounded DNA fragments are copied by synthesizing counterparts base by
base, simultaneously registering the accompanied emitted fluorescence. As a result,
a library of short reads is obtained and mapped on reference genome in order to
establish the most likely location of sample DNA. Figure from [SN14]. Used with
permission from BMJ Publishing Group Ltd.

FISH Protocol

In 1969 Gall and Pardue developed foundations of techniques known as in situ
hybridization |[GP69|. This sort of methods allow us to localize a DNA sequence of
interest in cell nuclei by hybridizing a complementary labeled sequence called the
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probe, which can be later identified using appropriate imaging device. Initially, ra-
dioactive probes were replaced with fluorescent ones and the resulting FISH protocol
quickly became the standard in cytogenetics .

The overall scheme of the protocol is depicted in Figure [I.5] In the beginning,
probe sequences of interest are designed and labeled (Figure , b). This step may
include insertion of fluorophores (middle column) - for instant imaging or hapten (left
column), that can be used to yield fluorescence at any time during later steps of the
protocol. Before the hybridization step can be performed, a double helix structure
must be broken into a single strand form (Figure ) After hybridization (Figure
), probes may be localized using fluorescent microscope.

FISH turned out to be extremely useful in many important experiments. For
example, this method was applied to confirm the existence of chromosome territo-
ries when fluorescent probes were used to visualize individual chromosomes [SBD77]
. FISH also played a major role in Human Genome Project during the an-
notation of genes on human chromosomes. Currently, FISH is often exploited in
regulatory genomics to examine co-localization of regulatory elements.

\.g*-:‘
TR T TR TTTTRTTyTT O AT T T TTTTqueT i1
LI L Ly iyt

Praba Target

Figure 1.5. The scheme of FISH protocol. Initially, probe sequences of interest are
prepared and labeled with hapten or fluorophore. Next, both the probes and target
DNA sequence are melted in order to produce the single stranded form. During
the subsequent hybridization, probes bind with target DNA. Finally, the probes are
visualized. Figure from . Used with permission from Springer Nature.

3C Protocol

Chromosome Conformation Capture (3C) is the first method used to assess
genome architecture without imaging . The main principles behind 3C are
also common to all its derivative techniques . The protocol is illustrated in
Figure[T.6] The first step, called chromatin cross-linking, involves covalently binding
pairs of DNA regions bridged by proteins. This process is performed via treatment
with formaldehyde and should only affect DNA fragments that are in close spatial
proximity. Afterwards, the sample is digested with a restriction enzyme to produce
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short pairs of fragments. The following ligation results in chimeric molecules, which
are subsequently reverse cross-linked to yield 3C templates. Under high dilution,
intramolecular ligation should be favored over undesired intermolecular - leading to
noise amplification. Finally, templates are interrogated with PCR or sequencing
methods to quantify the frequency of interactions. In 3C, PCR primers are designed
to match selected, particular ligation junction allowing to examine interactions of
single pairs of DNA segments one at a time.

Therefore, 3C enables us to assess contacts in one-versus-one manner making it
difficult to scale. Another bottleneck of this technique lies in its inability to detect
contacts spanning more than few hundred kbp range. Fortunately, modifications of
3C can overcome such limitations.
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Figure 1.6. Schematic illustration of C protocols. Each presented method uses
proximity based ligation to sample genomic interactions. The first step consist of
cross-linking followed by restriction enzyme digestion. Next, a method dependent
on ligation and subsequent reverse cross-linking is performed. Afterwards, ligation
products are sheared into small hybrid fragments. Then, the obtained fragments are
mapped to the reference genome using methods, that depends upon the choice of the

protocol. Figure from |[HZW18|. Used with permission from Springer Nature.
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4C Protocol

A modification of the 3C technique using micro-arrays is known as 4C. This pro-
tocol allows for inspection of multiple potential interactions with a DNA segment
of interest (a bait) [Sim-+06]. Such type of analysis is called "one versus all". Dur-
ing 4C, the assay templates are subjected to a second round of restriction enzyme
digestion and remaining chimeric fragments are cyclicized in a subsequent ligation
step (Figure . Next, an inverse PCR with bait specific primers is performed to
amplify interacting regions. Baits are designed to match the DNA sequence nearby
particular restriction enzyme cleavage site. This allows to capture ligation products
of prespecified DNA region. The resulting library represents the fragment’s of inter-
est genomic environment, which is hybridized to micro-array and sequenced.

5C Protocol

An alternative variant of 3C that allows to quantify genomic contacts in many
to many manner is called 5C |Dos+06|. The difference between 3C and 5C lies in
the primers preparation method. The former technique requires fragment specific
primers, while the latter uses universal ones. Such modification enables to examine
multiple potential interactions simultaneously. Despite the major improvement with
respect to 3C, 5C is also limited in detection of interactions separated by over 1 Mbp
genomic distance [HM12].

Hi-C Protocol

As described above, the limitations of the 3C method are partially resolved by 4C
and 5C. On one hand, 4C enables us to capture interactions genome-wide no matter
how big the separation between DNA segments is. On the other hand, it is limited
to single viewpoint. 5C however, is able to interrogate multiple interactions at once,
albeit the span of detectable contacts can not exceed 1 Mbp genomic separation.

In 2009 Lieberman-Aiden and coworkers developed Hi-C protocol overcoming
both mentioned issues [LA+09]. Hi-C is a powerful method, which effectively samples
millions of interactions genome-wide in fully high throughput manner without any
restrictions on genomic separation between interacting regions and no need to design
any specific primers.

The Hi-C technique introduces one important modification in comparison with
its sister methods. Before the ligation step, biotin is introduced into restriction en-
zyme cleavage sites of paired fragments. Later steps involve ligation and reverse
cross-linking followed by DNA shearing of restriction segments into little fragments.
Finally, initial ligation products are selected by specific binding of biotin-containing
chimeric molecules with streptavidin beads. The resulting library is paired-end se-
quenced to produce a list of interacting regions later transformed to genome-wide
count matrix (Figure [L.6)).

Prior to constructing contact matrices a researcher must first determine a plausi-
ble binning of the genome. Bin size measures the number of base-pairs used to divide
the genomic DNA on consecutive, adjoint segments. Obtained segments (bins) are
then matched with collected reads. Bin size influence the power of any Hi-C based
statistical analysis and therefore reasonable choice of this parameter determines the
quality of Hi-C analysis. The optimum size of the bin depends on the cutting fre-
quency of restriction enzyme and sequencing depth. If the value is too small the noise
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will dominate the intrinsic signal. On the other hand, large bin sizes impede the dis-
covery of fine scale structural features like chromatin looping. Often the term bin
size is used interchangeably with resolution. However, it is important to remember
that high resolution indicate small bin sizes.

Although Hi-C is the most advanced of all proximity ligation methods, it re-
quires much effort in data processing and analysis. In particular, high resolution
Hi-C datasets may need significant computational resources to convert raw data
into useful contact matrices. Moreover, due to high complexity of protocol Hi-C
data is accompanied with noise and biases, which are difficult to remove. All this
severely impedes Hi-C based research unless appropriate algorithmic and statistical
approaches are employed in order to draw relevant conclusions.

Capture-C Protocol

The resolution of Hi-C is limited by the minimum size of restriction fragment,
which depends on the cutting frequency of the restriction enzyme used. Hi-C studies
achieving the resolution as high as 1kb were already successfully conducted [Rao-+14].
However, increasing Hi-C resolution is very costly and results in large datasets, which
are very time-intensive to process and analyze.

In some situations, instead of conducting very high resolution Hi-C, one may
choose the Capture-C assay |Hug+14]. Capture-C is a derivative of the 3C tech-
nique designed to interrogate interactions in many-to-many fashion. The difference
between Capture-C and the other many-to-many method 5C is that it can relatively
efficiently track contacts in very high resolutions (below 1kb), thereby allowing to
examine precise interactions between regulatory elements at relatively low cost. Es-
sentially Capture-C works by first generating a 3C library with frequently cutting
restriction enzyme and then shearing the library into very small fragments of ap-
proximately 300 bp. Afterwards, the obtained fragments are hybridized with cap-
ture probes (using oligonucleotide capture technology - OCT) designed to bind in
locations of interest like promoters or enhancers. The application of this protocol
enables to capture very short sequences and examine which DNA fragments they
interact with.

1.4.
Gene Regulation

Mammals are complex organisms consisting of trillions of cells of different types.
The proper functioning of such intricate systems require precise orchestration of
various regulatory mechanisms. How exactly does a cell know what type of process
and when to initiate or which cell type it should transform into? The annotation
of genes during the Human Genome Project raised many questions regarding their
function. Since then, a lot of effort have been made to understand the mechanisms
driving gene regulation processes.

In eukaryotes, the gene expression control is said to be combinatorial, i.e. cell
specific genes are regulated by the formation of various complexes containing com-
binations of multiple proteins. These processes depends on chemical modifications
of chromatin, which influence its compaction and spatial structure. Moreover, gene
regulation can be divided on transcriptional and post-transcriptional. The former
class of processes refers to transcription mechanisms controlling the production of
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mRNA while the latter indicate modifications of mRNA called splicing conducted
prior to protein synthesis. In particular depending on cell type or its environment
splicing can proceed differently leading to alternative forms of mRNA and therefore
different proteins [Phi08|.

Regulatory Elements

The prominent majority of human DNA sequence consists of non-coding regions.
Certain class of such regions called regulatory elements play a crucial role in mainte-
nance of cell processes [MEGO6|. In general, regulatory elements can be divided into
two classes: cis-acting and distal (Figure|1.7h). Cis-acting elements contain recogni-
tion motifs for DNA polymerase, transcription factors and distal elements. Usually,
tissue specific transcription is triggered after a DNA fragment called an enhancer
binds with a gene promoter region (Figure ) At the same time, silencers linked
to a promoter act as repressors of given gene. Insulators on the other hand, constrain
the range of regulatory elements (Figure . They isolate different regulatory re-
gions (Figure ) from undesired mutual influence of their elements. In contrast to
cell specific regulation, a large fraction of genes must be expressed at constant level
across all cells to maintain basic functions needed for living [EL13|. Those genes are
called housekeeping and are considered to be unregulated [Phi08§].
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Figure 1.7. Schematic illustration of regulatory elements. a) Gene regulatory re-
gion contains promoter elements and distal elements like insulators, silencers and
enhancers. Some genes regulation is initiated by the formation of loop between
enhancer and promoter elements. b) The function of distal regulatory elements. En-
hancers initiate transcription by looping interactions. In similar manner, silencers
prevent genes from being transcribed. Insulators constrain the range of enhancers
and silencers. The distal regulatory elements are usually organized into locus control
regions. Figures from [MEGO6|. Used with permission from Annual Reviews Inc.

Histone Modifcations

The same genome is responsible for the development of various cell types in mul-
ticellular organism of any individual, hence gene regulation can not be explained
solely on the basis of sequence. However, the genomic function of a DNA segment
can be influenced through chemical alterations of nucleobases or histone proteins.
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Such mechanisms are referred to as epigenetic modifications. According to contem-
porary definitions: "An epigenetic trait is a stably heritable phenotype resulting from
changes in a chromosome without alterations in the DNA sequence" . It
should be stressed that this definition may refer to both cell-to-cell and organism-to-
organism heritability. However in this thesis, only the former case will be considered.

The epigenetic studies are particularly important as histone modifications in-
crease our understanding of relationships between genome structure and its functions.
As have been mentioned in Section [I.1.2] chromatin can switch between loose, ac-
tive and compact, repressed states. These changes are associated with adjustments
in nucleosome compaction and subsequent accessibility of DNA helix. In general,
compaction of nucleosomes prevent DNA transcription by physically limiting access
of transcription factors to DNA helix [LDS16|. Numerous studies showed that the
reversed processes are driven by chemical modifications of histones
. More specifically, there are 4 histone proteins: H2A, H2B, H3 and H4 com-
prising a nucleosome core. FEach of core histones contain a tail with amino-acid
residues, which can be chemically modified (Figure . The fifth histone referred
to as H1 is called a linker. To this day, there are many different modifications dis-
covered with the most deeply studied being acethylations and methylations leading
to gene repression and activation respectively.
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Figure 1.8. Ilustration of a nucleosome. Each zoom-in shows a tail of respective
core histone: H2A, H2B, H3, H4. Every tail consists of different sequence of amino-
acids. Frequently modified amino-acids are highlighted with letters: K - lysine, R -
arginine, S - serine, T - threonine. The color represents a type of modification. Black
string coiling nucleosome represents DNA double helix. Figure from . Used

with permission from Elsevier.



CHAPTER 2
Computational Methods for NGS
Data Analysis

Sydney Brenner said in his 2002 Nobel lecture that "we are drowning in a sea of data
and starving for knowledge" [Bre03; RC12|. At that time, the first reference sequence
of human genome was just reported and NGS technology was under development.
During the next two decades, biology was revolutionized as a consequence of huge re-
duction of NGS costs and rapid evolution of various experimental and computational
methods allowing for easier, faster and cheaper acquisition of vast amounts of data.
According to |Coo+15|, the current pace of nucleotide and proteomics data genera-
tion exceeds the improvement in storage capacity thereby challenging the retention
of such data in public domain and handling them on large scale. This issue raises the
importance of developing more efficient compression techniques. Another challenge
is to keep up with the analysis of ever-growing datasets. Many experiments require
computational solutions. Currently, practically every study in genomics incorpo-
rates some specialized computational techniques and thorough statistical analysis to
provide meaningful interpretation of the gathered data.

This chapter is a brief introduction into common computational approaches used
in analysis of data obtained from high throughput methods. First, the problem of
mapping short reads onto reference genome is discussed. That issue is of fundamen-
tal importance in most NGS related experiments. Another essential problem is the
meaningful comparison of gene expression. Such experiments are always accompa-
nied by multiple biases causing straight-forward comparisons being non informative.
Therefore, an appropriate normalization of raw sequencing data is required to provide
meaningful conclusions.

2.1.
Basics of Short Sequence Mapping

The problem described within this section can be informally introduced as follows.
Given a long sequence over an alphabet of 4 letters (a word or string) consisting of
approximately a billion characters, we are given a collection of even hundred millions
of short sequences extracted from a long word by selecting some letter and cutting
this and rightmost, consecutive characters. Typically, the length of short words is
between 50 and 500. After cutting the short sequences, some of them may have had
certain letters changed due to the characteristics of the data-generating process. The
task is to find the most likely cut position for every short sequence in the long one.
In bioinformatics this challenge is known as short read mapping.

18
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The problem of short read mapping gained significant attention as a result of
widespread adoption of NGS technology. As pointed out in [FB09|, an output of
sequencing experiment, i.e. a collection of reads brings no valuable information
without proper processing. That processing depends on the type of analysis including
either assigning individual reads to precise positions on the reference genome or
putting together all pieces into a single sequence. The former is called mapping
or alignment while the latter is referred to as sequence assembling. During the
remaining part of this chapter, only the mapping problem will be discussed.

String Matching Problem

To formally define the string matching problem (SMP), a proper notation must
first be introduced. Let ¥ = {A, C, G, T} represents the (nucleobase) alphabet and
¥* the set of all finite strings over ¥. The reference sequence (usually the genome) is
aword T' € ¥* of length n. A set R C X* of m strings, each of length p represents a
collection of reads produced by sequencing device during the experiment. The usual
assumption is that n > p.

The first formulation of SMP is called exact: given T and P € R find the loca-
tions of all occurrences of P in T. In the presented context, the occurrence means
exact matches of P in T. Alignments based solely on the described definition are
impractical in most bioinformatic applications due to frequent mismatches between
reference genome and obtained reads. The reason for mismatching bases can be ei-
ther caused by sequencing errors or relevant biological variation between individual
genotypes including mutations, insertions, deletions. Either way, reads containing
mismatches should usually not be discarded. That leads to the second formulation of
SMP called approximate: given T"and P € R find all such substrings ¢ of T', such that
edit distance d(P,t) is minimized. The second formulation may also be extended to
allow for reporting reads that are within certain number of mismatches k, d(P,t) < k.

Selected Solutions of SMP

The naive solution to SMP would be trying to match each of the m reads with
subsequences of T" starting at every character ranging from 1 to n—p. Such procedure
has a run time O(m(n — p)), which is prohibitive given the size of genome and the
large number of reads. One way to reduce string query complexity is by constructing
an index of either the reference sequence or the reads. Initial alignment tools were
using suffix tree or suffix array structure to index the genome. Solutions based on
the former structure allowed to achieve O(p + o) complexity to find the pattern P
within string 7" while those exploiting the latter had O(p + logn + 0) search times,
where o is the number of occurrences of P in T |[CS15]. However, both methods have
space requirements of O(nlogn) bits, which at the time limited their use. The major
progress followed the development of full-text minute index (FM-index) [FMO00|. The
finding of Ferragina and Mangzini allowed to construct a structure with size linearly
proportional to initial sequence and perform a string search in O(olog'™®n) time
while maintaining enough information to recreate the text. The constant ¢ > 0
expresses the space-time tradeoff - for example, the Bowtie tool (discussed later)
fixes ¢ < 0.01 [CS15|. In general, the FM-index exhibits relevant improvement of
space requirement with respect to suffix array at the acceptable expense in run time.

Many popular mappers are based on the FM-index with modifications of the exact
match search procedure. The modifications are introduced in order to not exclude
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the reads with low number of mismatches. Unfortunately, the problem complexity
increases very quickly as a function of the number of mismatches. Accordingly, many
algorithms rely on heuristic approaches instead of an exhaustive search, which leads
to compromise between speed and accuracy. As has been shown in |[Hat+ 13|, there
are various metrics to evaluate the quality of mapping tools. The results reported
therein indicate that no tool outperforms all the other in every metrics. However,
Bowtie as well as BWA perform remarkably well in most benchmarks. According
to the authors, BWA shows better performance than Bowtie when applied to the
alignment of longer reads. The discussion below is only limited to Bowtie mapper
providing a representative example of the alignment tool commonly used in numerous
Hi-C studies.

The Bowtie aligner operates by first creating an FM-index of a genome and
then performing read queries using a modified EXACTMATCH algorithm. The EX-
ACTMATCH algorithm developed by Feragina and Manzini allow for fast pattern
search. Construction of FM-index requires the application of the Burrows-Wheeler
Transform (BWT). The BW transform creates a matrix, which rows are cyclic per-
mutations of initial character sequence prepended with a special character indicating
the start of the text. Matrix rows are then lexicographically sorted (fig. [2.1p). The
algorithm uses 3 properties of BW transfrom:

1. any character in the first column is preceded by the character in the last column

(in the initial string),

2. characters in the first column are lexicographically ordered,

3. LF (last-to-first) mapping, i.e. i-th occurence of a character in the last column
corresponds to the i-th occurence of the same character in first column.

The above properties allow to perform fast pattern search by gradually extending
the query string suffix one letter at a time and examining whether it matches any
row range (fig. ) Resulting pattern occurrences correspond to row range left
after inspecting every letter. That procedure enables only exact match discovery.
To accommodate mismatching reads, Bowtie uses a modified algorithm with a back-
tracking mechanism [Lan+09|. If the extension of the suffix by one letter leads to no
valid alignments, the suffix is modified by replacing one of its letter with another one.
Bowtie selects a character (nucleobase) with the lowest quality score. Afterwards,
the search is resumed from the replacement position.

In order to reduce excessive backtracking, Bowtie introduces double indexing,
which creates two indices of the genome: the BWT of forward sequence and the
BWT of reversed sequence called the mirror index. If the read is allowed to contain
one mismatch, an algorithm will explore 2 cases - a mismatch in the left half of
the read or the right half. The recipe for first scenario is to scan the forward index
requiring exact match of the right half of the read. The second case would be using a
reversed index and the reversed characters read simultaneously banning the aligner
to substitute in the reversed read right half subsequence. When the alignments are
allowed to contain two or more mismatches, it is not possible to fully avoid excessive
backtracking, so Bowtie introduce a limit on the maximum number of permitted
backtracks.

In its default options Bowtie permits two mismatches and therefore it does not
guarantee to find the most likely read alignment. However, competitive runtimes
and high alignment rates made this tool the primary choice in numerous sequenc-
ing projects. It is worth noting that Bowtie has been replaced with its successor
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Bowtie2, which improves the overall mapping performance [LS12|. The alignment
times on modern computers with multiple cores are order of hours for high depth
NGS experiment. Given the time required for conducting the sequencing part, there
is no incentive for further improvement of current performance.
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Figure 2.1. Burrows-Wheeler Transform and LF-mapping. a) Construction of BWT.
The input string is appended with special, lexicographically smallest character. All
cyclic permutations of the obtained string are produced, lexicographically sorted
and arranged in row matrix. The BWT is the last column. b) LF-mapping. Last
(L) and first (F) columns of BWT matrix suffice to recreate original text. This is
possible, because any character in the first column is preceded by the character in the
last column (in initial string) and i-th occurrence of a character in the last column
corresponds to the i-th occurrence of the same character in first column. c¢) Pattern
search. The LF-mapping can be used to examine the existence of a given pattern in
the original sequence by gradually extending the query suffix. Figure from |Lan+09].
Used with permission from BioMed Central Ltd.

2.2.
Statistical Models of Gene Expression

The study of differential gene expression (DGE) is an important part of many ge-
nomic projects and diagnostic procedures. Over- or under-expression of some genes
may be an indicator of certain abnormalities in an organism [Bai+13; Loh+ 13}
Lee+17]. Therefore, reliable methods to estimate which genes changed their expres-
sion between two measurements, taking into account the natural variability between
replicate experiments, are essential. Initially, gene expression assays were conducted
using the micro-array technology, which quantified the intensity of colored light emit-
ted after the hybridization of DNA sample sequence to fragments of reference called
probes. While this technology is not completely obsolete, more efficient, NGS based
solutions, are now preferred. Such experiments produce reads, which are aligned to
the reference genome and counted, so eventually, gene expression is measured by the
absolute abundance of reads mapped to the given gene across multiple samples.
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A typical gene expression experiment produces a table of counts Y,; with thou-
sands of genes g € {1,...,n} and multiple samples i € {1,...,m} also called libraries.
Usually, each sample belongs to some group j € {1,...,k} with the most standard
setup consisting of 2 groups: treatment and control. Typically, we expect at least
2 replications per group. The simplest design compares 2 groups, but more com-
plicated experiments including several conditions are often conducted. Another im-
portant characteristic of GE experiments is that the number of reads per gene is on
average significantly smaller then the library size (the total number of reads).

In simpler terms, the problem of determining differentially expressed genes may
be described as finding those genes for which read abundance changes upon some
treatment. However, the direct comparison of read counts is not very useful due to
its inherent variability even between replicated experiments. The usual solution is
to treat the abundance as random variable and model the observed variation using
appropriate probability distributions. Under this framework, one can conveniently
re-state the problem by formulating the null hypothesis asserting that the reads in
both groups were sampled from the same distribution. If the associated test rejects
the null hypothesis, the gene is considered to be differentially expressed.

The main challenge of the presented approach is the choice of appropriate models
for read counts. This section describes the most popular distributions for studying
differential gene expression. It starts by introducing a very simple model used for
count data, which is later gradually complicated in order to better suit the GE
experiments characteristics.

Count Data Distributions

One of the most natural models used for simulating count data is the Binomial
distribution. The binomial distribution models sampling process consisting of n
independent repetitions of a binary outcome experiment occurring with success and
failure probabilities p and 1—p respectively. Using the binomial density function, one
can calculate the probability of y successes in n trials, i.e. occurrences of a selected
outcome:

flyipon) = (Z)py(l )Y

The DEGseq package described in [Wan-+09| uses binomial distribution to model
the number of reads produced by gene g at group j: yg; ~ binomial(n;,pg;). Wang
and coworkers suggest estimating parameters directly from read counts table: n; =
> g=1Ygj and pg; = Yy;/n;j. Their test for differential expression is based on MA
transformation: M = log, yg1 — logy yg2 and A = (logy yg1 + 10gy Yg2)/2. Assuming
the independence of y41 and y4o, the authors show that both M and A follows
asymptotic normal distribution. This finding is used to construct a test asserting
the null hypothesis py1 = pg2 versus the two-sided alternative for any gene g.

Another popular model used for simulating a discrete outcome is the Poisson
distribution. The Poisson distribution can be derived by approximating a Binomial
model when n grows large and p is small [Hil11]. More precisely for n — oo, p — 0
such that y = np remain constant one can show that:

— Y
lim <n>py(1 —p)" Y = cH




Chapter 2. Computational Methods for NGS Data Analysis

So the density function of Poisson distribution is expressed as:
e HuY
y!

The Poisson model is sometimes used for modeling read abundances, because it is
simple and several assumptions of this distribution are frequently satisfied when con-
ducting GE experiments. For example, the number of reads per gene is usually small
with respect to the library size, which leads to large number of trials and low success
probability in the binomial setting. Conversely, the assumption of independence is
unlikely to be satisfied - some genes expression may in fact influence other genes
measurements. Another issue is the equality of mean and variance (equidispersion),
which basically follows from the definition of Poisson distribution. As it turns out
(see next section), the assumption of equidispersion is often violated in practice of
NGS experiments, forcing to seek alternatives to the Poisson model.

An extension of the Poisson distribution allowing to model over-dispersion is the
Negative Binomial. The Negative Binomial distribution can be derived from the
Poisson distribution by introducing heterogeneity term 7 [Hilll]:

e M (pT)?
y!

Given the density of 7, one can integrate it out to obtain an unconditional distribu-
tion of y:

flys ) =

fQysp,m) =

fly; ) = /OOO f(y;p,m)g(7)dr

Assuming 7 ~ Gamma(0, 0), a solution to the above integral is the Negative Binomial

density function:
F(y+0)< 0 >9< M )y
; 79 =
Fly 1, 9) yT@) \0+u) \0+4

After substituting ¢ = 1/6 (¢ > 0), one obtains another parametrization:

, CTy+e) [ 6\ T
T YO <¢>‘1+u> <¢>‘1+u>

_ Tly+eY ¢! op Y
= e Y <¢u+1)

which turns out to be very useful in modeling read abundances, because it allows to
express the variance as quadratic function of the mean:

Var(y) = 1+ ¢pi°

In the above expression, one may notice the ¢ coefficient, which captures the addi-
tional dispersion with respect to Poisson model. It is worth emphasizing that the
Poisson distribution can be considered a limiting case of Negative Binomial where

é = 0.
Generalized Linear Models

The models presented so far allow to conduct paired comparisons between treat-
ments in count collecting experiments. However, many modern GE studies include
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complex designs, which are easy to formulate using linear combinations of multiple
experimental conditions. In other words, a researcher wants to examine if the ex-
pression of a certain gene depends on the design of the experiment of interest. One
of the most common approaches for learning dependencies between measured vari-
ables are linear models. Unfortunately, this class of methods is bounded by strict
assumptions including constant variance and linear relationship between variables,
which are often violated in practice of NGS data. An extension of linear models
offering a lot more flexibility is known as Generalized Liner Models (GLM). A GLM
can be defined using following general formula [ACH14]:

9(Elyilz)) = g(pi) = mi = = B
and consists of 3 components:
e the distribution of y; conditional on x;,

e the link function g(-),

e coefficient vector of linear predictors 3.

Depending on the particular instantiation of GLM, the link function can be identity,
inverse, square root, logarithmic or other. Similarly, the conditional distribution of
y can be selected based on the experimental setup. A popular choices, especially
for count data are Binomial, Poisson or Negative Binomial distributions. Parameter
estimates are usually obtained through Maximum Likelihood Estimation (MLE). For
example, the MLE of (3, ¢) for Negative Binomial GLM are derived by differentiating

log-likelihood function L(y;3,¢) = —> 1 log f(yi; pi, $) with respect to model
parameters leading to the following estimating equations:
a n
—=L(y; = v iy Liy M
5L WiB:9) ; 8 (i i, B, )
a n
%E(y;ﬁ, ¢) = Wy(ys, i, 8, 9)
i=1
where:
- O
and:
1
P(yi — Mi))
log(gp; + 1) — LT 1)
og(Pp; + 1) p—
Here, the parametrization for Negative Binomial distribution density function f(y;; us, ¢)

is the same as the one specified in section and V (i;) = pit+ou?, F(u) = m%};(u)

are variance component and digamma function respectively. Final estimates are ob-
tained by solving for (3, ¢):

<Z?:1 \Ijﬁ(y“ L, /37 ¢)> -0
Z?:l \Il(b(yl’ Li, Ba ¢)
When y is distributed as Negative Binomial, the solutions are obtained with numer-

ical methods. By far, the most popular techniques for finding (3, ¢) estimates are
iterative methods like Fisher scoring and Newton-Raphson algorithms [Hill1].
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Selected Methods of DGE Analysis

Various research suggests that methods based on Negative Binomial distribution
are among the best performing models for read count data [YHV13; Fro+19|. Under
this framework, the number of reads mapped to gene g in sample ¢ follows the
Negative Binomial distribution with mean jg4; and dispersion ¢g:

Ygi ~ NB(Nipgjv ¢g)

The mean parameter can be reexpressed as pg = E(Yy) = Nipgj, where N; =
ZZ:l Y, is the library size and py; is the relative abundance of gene g in group
j. The observed variability of read abundances in GE studies exhibits substan-
tial over-dispersion hence the choice of Negative Binomial distribution. The above
parametrization leads to following variance formula (Section [2.2.2):

Var(ytqi) = Hgi + (Z)glugz;i

After dividing both sides by ,ugl-, one obtains the expression for squared coefficient
of variation (CV):

CV3(Yy) = 1. ¢y = TCV? + BCV?
Kgi

The coefficient of variation quantifies the relative variability of gene g in sample 1.
It comnsists of 2 terms: technical and biological coefficients of variation. The former
is the technical variability, which is a result of a measurement error attributed to
sequencing process. It is dependent on sequencing depth and decreases as the library
size increases. The latter represents the inherent variability of transcript abundances
between replicate samples. Importantly, the BCV express the variation that would
persist between biological replicates even if sequencing depth could be increased
indefinitely [MCS12].

The major problem concerning the estimation of ¢4 is insufficient replication.
For example, many studies consists of 2 or 3 replicates per group. As a result, the
obtained samples are too few to reliably estimate parameters separately for every
gene. In such situations, gene-wise dispersion estimates would be severely biased.
The usual solution for this problem is to assume common dispersion for all genes,
i.e. ¢ = ¢4 and then estimate it from the mean-variance relationship. This strategy
called information sharing is based on assumption that genes originating from iden-
tical sample carry similar aspects of biological variability. This approach is adopted
in 2 popular methods used for DGE analysis: DESeq and edgeR [AH10; RMS10].
Once the common dispersion is calculated, it is applied to compute the gene-wise es-
timates using Empirical Bayes methods. Afterwards, gene-wise mean and dispersion
estimates are used to examine the differential gene expression using Fisher’s exact
test adapted for over-dispersed data.

As mentioned in Section[2.2.2] GE studies often include complex experimental de-
signs consisting of multiple explanatory factors. Previously presented methods were
developed for paired comparisons and are therefore unable to describe multifactor
experiments. The usual approach in this situation is to employ the GLM framework
and model the gene expression using linear combination, which fits the appropriate
design X;; linking sample ¢ with treatment j:

k
l0g(pgi) = Y XijBgj + 0i
j=1
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The remaining parameters are: (,; - the gene-specific value of coefficient j and o; -
a sample-specific offset. In the DESeq method, the library size bias is accounted for
through normalization:

Hgi = SiQgi

k
log(qgi) = ZXijﬁgj
j=1

where the normalization factor s; is calculated with the median-of-ratios method:

Y, m 1/m
_ : gl R _ ,
gy (I

In the GLM framework, the null hypothesis asserts no relationship between depen-
dent variable and the response, which in terms of model parameters may be translated
to zero-valued coefficient or contrast, i.e. the linear combination of coefficients. The
hypothesis is examined using the likelihood ratio test [MCS12; |[LHA14].

The techniques presented in this chapter are the core of many modern bioinfor-
matic experiments relying on the NGS technology. Although the models presented
so far were described in the context of gene expression, they may as well be used dur-
ing other types of differential analysis incorporating count data including ChIP-seq
(analysis of histone modifications) and Hi-C |[NR14; [LS15].



CHAPTER 3

Hi-C Contact Matrices

The development of 3C related methods and Hi-C in particular has allowed us to
investigate the chromatin structure genome-wide with potentially very high resolu-
tion. Many regulatory mechanisms are driven by a complex network of interactions
needed to be deciphered in order to understand genome functioning. Therefore, the
emergence of Hi-C is an important step towards elucidating relationships between
chromosome structure and gene regulation that are fundamental in molecular biology.

However, Hi-C is a very complex protocol with multiple steps, contributing to
different biases, which amplify the overall noise to signal ratio. Moreover, precise
inference of genome organization is complicated by the fact that interactions from
millions of cells are sampled jointly rather than individually. In effect, a researcher
obtains averaged information on an ensemble of interactions. All this makes the
analysis of Hi-C data a challenging task requiring caution and appropriate statistical
techniques in order to draw meaningful conclusions.

Biological aspects of the Hi-C protocol have been described in section[1.3.5] This
chapter focus on the computational side of Hi-C analysis. First, the notation for
contact maps is introduced along with relevant definitions. As already mentioned,
Hi-C assays are accompanied by multiple sources of bias. Much attention has been
dedicated to that matter resulting in variety of tools to perform normalization. Two
important approaches to normalization are discussed in Section [3.2] Section [3.3] is
devoted to the description of genome architecture established on the basis of Hi-
C studies. Some elements of structural features were already known before the
development of C methods, however Hi-C studies shed more light on elucidating the
complexity of chromatin organization. The last section contains a brief introduction
into the problem of comparing Hi-C contact maps. That issue is addressed in more
detail during next 2 chapters as the main subject of research described within this
thesis.

3.1.
Notation and Definitions

A Hi-C experiment produces a library of paired-end reads, which are mapped onto
the reference genome to localize their origin. Each useful pair of reads is therefore
an indicator of interaction between 2 chromatin segments. Usually, the results are
summarized using contact maps, i.e. matrices of interaction abundances.

Each axis of a contact map corresponds to genomic bins (see Section along
a certain chromosome. In general, 2 types of contact maps can be distinguished:
inter-chromosomal and intra-chromosomal. The former consists of contacts between
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pair of different chromosomes, while the latter contains interactions from a single
chromosome (Figure . From now on, we will only refer to intra-chromosomal
matrices unless otherwise stated. A intra-chromosomal, unnormalized contact map
is denoted by:

Aezly, AT = A, ai; = (A);

where n is the number of bins in a chromosome. A k-diagonal elements of contact
map A are defined as follows:

A ={aij : k=|i—jl|, aij #0}

The resolution parameter, or the bin size expresses the DNA segment length mea-
sured in basepairs (see Section and corresponds to a unit size of matrix A is
denoted with r. Although there is no golden standard procedure for selecting the
best r, many studies aim to obtain resolution as high as possible, while retaining
a high correlation between contact matrices replicates or their respective features
[Dix+12|. Another method is to use a bin size resulting in at least 80% of all possi-
ble bins having more than 1000 contacts [AN15|. An important parameter in Hi-C
analysis is the coverage of a region i:

N
S(Z) = Z al-j
j=1
Finally the function:
d(k) = Ay

is called the decay. The term is attributed to the observed relationship between
the mean number of interactions and the separation distance, which exhibit rapidly

decreasing behavior (see Section [3.3.1]).

3.2.
Contact Matrices Normalization

The complex experimental protocol of the Hi-C method charges the resulting data
with various biases and artifacts. Each of the protocol’s multiple steps may am-
plify overall noise resulting in the decline of library quality. Some remediation to
this problem can be achieved by increasing the sequencing depth leading to better
sampling. However, although sequencing costs are decreasing over time, the depth
increase is not always feasible. Another workaround is to carefully study sources of
Hi-C biases and capture their influence using appropriate statistical models, which
can be taken into account later during analytical part of experiment. Such process
is called contact map normalization.

From the invention of Hi-C in 2009, this subject has been extensively studied.
In general, Hi-C normalization techniques can be divided on 2 categories: explicit
and implicit. The former methods try to discover the exact sources of bias, study
their behavior and suggest a model following it as precisely as possible. The latter
approach makes certain distributional assumptions about the interaction sampling
process and tries to estimate its parameters. This chapter aims to familiarize the
reader with both methods.
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Genomewide Hi-C Maps
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Figure 3.1. Contact maps of human IMR9I0 cells from the study conducted by
. The left matrix illustrates intra- and inter-chromosomal contact maps
of chromosomes 13 to 22. Chromosome boundaries are marked with dashed vertical
and horizontal lines. The right matrix is an intra-chromosomal contact map of chro-
mosome 22. The colorbar indicates contact intensity (the number of interactions).
Grey colored areas represent the absence of interactions. Large, grey strips present
in most matrices correspond to centromeres, telomeres or other unmappable regions.

|3.2.1| Explicit Factor Normalization

First thorough analysis of various sources of bias affecting Hi-C analysis is at-
tributed to Yaffe and Tanay [YT11]. Their study describes several biological and
technical factors, that can influence the read distribution in a misleading way. The
main artifact of the Hi-C protocol are pairs of reads resulting from non-specific chro-
matin cleavage by a restriction enzyme leading to spurious ligation products. As
shown by Yaffe and Tanay, such non-existent interactions can comprise as much as
20% of the library. Researchers suggested to identify spurious ligations by assessing
the distribution of sum of distances of pairs of reads to their nearest restriction sites.
For the restriction enzymes analyzed, the majority of read pairs are expected to map
within 500 bp from the closest restriction sites in contrast to random ligation events
characterized with uniform distribution of sum of distances (Figure [3.2h). Other
factors preventing an unbiased Hi-C analysis are related with features of restriction
fragments like fragment length, GC content of neighborhood surrounding restriction
site or its mappability (Figure —d). Specified characteristics can be quantified
by binning fragment ends according to feature and calculating the ratio of observed
Ofeat.[1, 7] to total Tty [Z, ] possible number of contacts:

Ofeat. [i7 .7]

Sfeat.[iyj] = (1/Pprior) . Tf . [Z ]]
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Here Pprior is equal the to the total number of observed pairs divided by the total
number of possible pairs. The number of bins is predefined to 20 for fragment length
and GC content or to 5 for mappability. Importantly, cis-interactions are studied
separately from trans contacts. Inspection of frequency of interactions classified by
the mentioned characteristics of respective restriction fragments reveals a nonuniform
distribution of read pairs (Figure —d). This may impact Hi-C analysis as potential
differences could be attributed to a varying nucleotide composition instead of relevant
biological effects.

To prevent the above biases from impacting the analysis, Yaffe and Tanay sug-
gested a multiplicative model predicting a probability of interaction between 2 re-
striction fragment ends a, b given their characteristics (fragment length bins aje, and
bien, GC content bins age and by, mappabilities M (a) and M (b)):

P(Xa,b) = Pprior : Flen<a1em alen) : Fgc(agCa bgc) ) M(a) : M(b)

where Fle, and Fy. are 2 real valued functions. Model parameters are estimated by
the Maximum Likelihood method with following likelihood function:

»C(ﬂenngc) = H P(Xa,b) : H (1 - P(Xa,b))
{a,b}el {a,b}¢I

After initialization of Fe, and Fy. with Fl?m = Slen and FgOC = Sgc the likelihood
function is maximized by alternating between 2 objectives:

F" = argmax L(Fen, anc); ancﬂ = Fgré

len
Een
n+1 __ n .+l _ n
Fgc - argFmaX ‘C(F’lenv FgC)’ F‘len - F1len
gc

The two steps above are repeated using the BFGS algorithm until a prespecified
improvement threshold of log-likelihood has been reached [NWO06|. Explicit normal-
ization of Yaffe and Tanay has been shown to greatly increase the correlation between
replicate Hi-C maps and reveal valuable biological insights despite the low resolution
of raw data.

Despite the high importance of the above model, its usage remain limited due
to high computational costs of parameter estimation. Meanwhile, Hu and coworkers
developed an alternative normalization procedure called HICNorm, which is based
on explicit modeling of biases discovered by Yaffe and Tanay [Hu+12|. Essentially
HiCNorm computes fragment length x?, GC content y]i» and mappability z} features
for a binned region j at chromosome % similarily to the Yaffe and Tanay method.
Importantly, bins refer here to the Hi-C contact map loci instead of the feature
matrix. Given a contact map A’ = {aék} the number of interactions between regions

j and k is assumed to follow the Poisson distribution with a rate 0§k:

aék ~ Poisson( ;k)

depending on features via log-linear relationship:
10g(851,) = 5 + Blen 108(52%) + Byen l08(y5ui,) + log(2)21)

Model parameters /3’8, ﬁ’fen, Béc are estimated by the Poisson regression. The com-

parison of HICNorm with YT normalization reveals the former method to exhibit a
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Figure 3.2. Sources of bias in Hi-C protocol. a) The distribution of sum of dis-
tances to nearest restriction sites exhibit bimodal shape. Pairs of reads mapping
far from restriction sites are likely products of spurious ligations. b-d) The number
of interactions is highly dependent on the length of restriction fragments, their GC
content and mappability. Therefore the difference in abundances at various loci may
for example represent a different nucleotide composition rather than relevant biolog-
ical variation. e) The comparison of biases obtained by explicit method (top) and

implicit one (middle). Figures a-d from [YT11], figure e from |Ima+12|. Used with

permission from Springer Nature.

significant speed-up over the latter approach while retaining similar reproducibility
improvement between replicate data.

[3.2.2] Implicit Factor Normalization

A different approach to normalization of Hi-C contact maps (ICE) was suggested
by Imakaev and coworkers . Instead of studying and modelling individual
biases separately, they proposed that the observed number of interactions O;; can
be factorized into a product of true contact probability T;; between regions ¢, j with
their associated biases B;, Bj:

Oij = BiBjTij s.t.

%
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Although Imakev and coworkers provide a method for estimation of the vector B and
the matrix T, the described problem is well-known in literature as matrix balancing
and has been extensively studied. A common algorithm used to find doubly stochastic
matrix 7' and vector B (diagonal matrix in most formulations) is due to Sinkhorn
and Knopp |SK67|. Their method is based on the fixed point iteration scheme and
is proven to converge, given the matrix A has total support [SK67; [KR13].

The ICE normalization of replicate Hi-C data yielded similar improvement in re-
producibility as that achieved by explicit methods. Remarkably, the outer product of
estimated bias vector B exhibited a striking similarity to the bias matrix computed
by the normalization procedure of Yaffe and Tanay (figure [3.2k).

3.3.
Structural Units of Chromatin

The most direct approach towards chromatin structure research would be to obtain
spatial coordinates of every nucleobase along the DNA in a given cell using some
experimental technique. Collected data could be then used for thorough analysis of
genome architecture similarly to protein conformation studies. Unfortunately, this
straight-forward approach is far beyond current technical capabilities. Moreover,
in contrast to many proteins, chromatin does not exhibit a native structure, which
means we would still need to obtain structural information across thousands of cells.
Instead of hypothetical direct approach, we are limited to indirect C-methods, which
produce less interpretable data and are therefore prone to misguided conclusions.
Nevertheless, the application of C and Hi-C studies in particular revealed many
important insights on chromatin architecture, which were later confirmed by more
direct experimental techniques. The next sections present major findings obtained
using the Hi-C protocol and explains in more detail how these results are derived
through the analysis of contact maps.

Contact Decay Bias

First genome-wide analysis of chromatin interactions is attributed to Lieberman-
Aiden and coworkers [LA+09|. Despite relatively low resolution, with bin size equal
to 1Mbp, the study provided significant remarks regarding genome architecture. One
of the most distinctive features of Hi-C contact maps reported by Lieberman-Aiden
and coworkers is the presence of the so-called decay bias, which results from polymer-
like behavior of chromatin fiber. The existence of contact decay was demonstrated
by studying the relationship between the mean contact abundance and the linear
genomic separation of respective chromosomal regions (Figure . Notably, the
existence of decay effect was confirmed before, using 3C and FISH studies, which
provided evidence for utilizing Hi-C in genome research. The analysis of contact
decays emphasizes the difference between inter- and intra-chromosomal interaction
density highlighting the existence of chromosome territories. Even at large distances,
the average number of intra-chromosomal contacts is higher then the mean number
of contacts between different chromosomes (Figure .

A /B Compartments and Hierarchical Structure

Another prominent feature of contact maps are A/B compartments. They corre-
spond to the partitioning of chromosomes into consecutive, non-overlapping intervals
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Figure 3.3. The contact probability as a function of genomic distance. Within a
chromosome, the mean number of interactions diminish rapidly with the increase in
genomic separation. Even at large genomic distances, the average number of inter-
actions exceeds the one between different chromosomes. Figure from . Used

with permission from The American Association for the Advancement of Science.

labeled as either A or B. Their distinctive property is that the number of interac-
tions between a pair of regions within one compartment is enriched with respect
to interactions across compartments. FISH experiments demonstrated that DNA
fragments located in the same compartment are closer in space than when placed in
opposite compartments despite smaller genomic distance. This once again validated
the existence of correlation between Hi-C contacts depletion and spatial distance of
interacting regions.

In order to determine the A /B labels, Lieberman-Aiden and coworkers developed
a 3-step procedure. First, raw contact maps are normalized by decay rate (Figure
middle). Next, the resulting normalized matrix is converted into Pearson correlation
map, which cells measure Pearson r between interaction profiles of corresponding
regions (Figure right). Finally, after applying PCA to the correlation matrix, it is
partitioned based on the positive and negative values of the first principal component.

Both FISH analysis and decay rate comparison between A and B compart-
ments indicate their high correspondence with either condensed or relaxed chromatin.
Moreover, subsequent Spearman correlation analysis exhibited significant association
of compartment A with the presence of genes, higher expression, accessible chromatin
as well as enrichment of activating and repressing marks. These results suggest the
connection of compartment A with open, actively transcribed chromatin.

Another remarkable finding reported by Liberman-Aiden and coworkers is the
demonstration of hierarchical, domain-like packing of chromatin fiber supported by
polymer simulations. As noticed by the researchers, the observed contact decay
exhibits power law scaling in approximately 500 kb and 7 Mb genomic distance range
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(Figure ) The power law type of relationship was suggested to describe polymer
behaviour in general and chromatin folding in particular [DGG79|. For example, a
popular model used by various researchers to simulate chromatin fiber folding called
equilibrium globule exhibits power law scaling of contact decay |[ML98; ML+09].
The fractal globule model used in this study extends the simple equilibrium model
by introducing a hierarchy accounting for folding the polymer into a fractal-like self-
similar conformation (Figure [3.5k,d). It turns out that contact decays calculated
from simulations obtained using fractal globule are more similar to observed decay
then those predicted by equilibrium globule (Figure ,b).

A Observed B Observed/Expected C Pearson correlation
] Chr 14 j 1 Chr 14 q 1 Chr 14 j
| | I
2 2 ¢ V-
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5 E &

Figure 3.4. A/B compartments may be associated with plaid pattern at contact
maps (left). The pattern is enhanced by first normalizing Hi-C map by contact decay
(middle) and transforming the normalized matrix into correlation map of normalized
interaction vectors (right). Figure from |[LA-+09]. Used with permission from The
American Association for the Advancement of Science.

3.3.3| Topologically Associating Domains

Semi-theoretical results regarding domain-like chromatin organization obtained
by Lieberman-Aiden and coworkers were confirmed 3 years later in a higher reso-
lution Hi-C study conducted on Drosophila embryonic nuclei [Sex+12]. During the
experiment carried out to explore the architecture of Drosophila genome, Sexton
and coworkers developed a statistical approach to model the interaction probability,
given the technical biases and genomic distances between pairs of restriction frag-
ments. Their model included distance-scaling, fragment-dependent factor expressing
how likely the regions to the left of restriction fragment are to establish contacts with
the regions located on the right side of the same fragment. Therefore, a high value of
scaling factor would indicate an insulator function of DNA segment preventing the
spread of chromatin interactions. Further examination of fragments with the highest
scaling factor facilitated systematic identification of chromosomal domains - highly
contact-enriched sub-matrices located along main diagonal of Hi-C contact maps.

More evidence for domain existence in mammalian genomes was reported by
Dixon and coworkers in their article from 2012 |Dix+12|. Upon examination of nor-
malized Hi-C contact maps obtained from mouse and human cell lines researchers no-
ticed the emergence of strong, contact-enriched, square-shaped blocks located along
the main diagonals of intra-chromosomal contact maps (Figure ,b). Dixon and
coworkers developed an algorithm for systematic detection of these entities and re-
ferred to them as Topologically Associating Domains (TADs). In general, TADs
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arise from partitioning of chromosome (an interval) into subintervals according to a
specific algorithm. More precisely a set of TADs T, consists of domains - intervals
ti = [si, ;] such that 1 < s; < e; < n and no two TADs ¢; and t; overlap for i # j.
For instance, the algorithm suggested by Dixon and coworkers is based on an
observation that a pair of loci within a single domain is enriched with interactions in
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contrast to regions belonging to different TADs (Figure ) To quantify a strength
of this effect for specific loci x, a statistic called Directionality Index was derived:

(B - A@) \ [(A) ~ @) | (Ba) - E@)?
Dl = <|B<x>—A<x>r> [ () 5(@)

Given a contact map C and a bin range k, A(x) - upstream interaction bias, B(z) -
downstream interactions bias and E(z) are defined as:

k k
A@) = Y ey B@) =Y ety Ba) = 2T

j=z—k

Therefore, DI measures the ratio of upstream to downstream interaction bias and
should exhibit large departures from 1 near domain boundaries as well as a change
of sign. The metaparmeters k as well as the resolution were selected to maximize
reproducibility of DI between 2 replicates of the experiment in each tissue. Finally,
TAD boundaries are determined using Hidden Markov Model with 3 states: upstream
bias, downstream bias and no bias. The MLE parameters of HMM were calculated
using the Baum-Welch algorithm. Domain boundaries are called at bins transitioning
from downstream bias to upstream bias state.

Functional analysis of domains discovered in ESC and IMR90 cell lines by Dixon
and coworkers linked TAD boundaries with strong enrichment of CTCF protein bind-
ing and frequent occurrences of active promoters as well as housekeeping genes. Con-
versely, no enrichment in epigenetic marks associated with enhancers was observed.
In agreement with the characteristics of insulator elements, TAD boundaries were
shown to stop the spread of heterochromatin as measured by the H3K9me3 mod-
ification. Importantly, while TAD partitioning remained mostly unchanged across
predifferentiated and differentiated cells, methylation pattern of specific TADs can
change. This finding was also confirmed in another study investigating the structure
of X-inactivation locus |[Nor+12|. The same study also examined the influence of
boundary deletion on transcription and reported that this leads to pathogenic mis-
regulations. That result is consistent with conclusions of experiment conducted by
Andrey and coworkers investigating effects of deleting a boundary region between 2
TADs known to contain different regulatory landscapes [And+13]. As a consequence,
regulatory elements of a specific TAD were observed to interact with promoters of
the neighboring domain leading to severe mis-regulation and disease-like phenotype.
Taken together, these observations show evidence supporting the hypothesis where
TADs function as separate regulatory units. According to early Hi-C studies, TAD
partitioning of the genome seems to be highly conservative both between examined
cell types and species (across syntenic regions). The evidence supporting this hypoth-
esis have been also reported in another study comparing chromosome architecture of
4 species using Hi-C |[Rud—+15].

The discovery of TADs by Dixon and others raised the importance of systematic
detection of Hi-C domains. As pointed out by |Fil+14] there may exist multiple
possible TAD segmentations of the chromosome. An approach suggested by Filipova
and coworkers is based on maximizing the sum of average intra-domain interaction
frequency. The problem may be defined in terms of the following objective function:

max Z q(sia ei?V)

[si.ei] €Ty
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The meta-parameter v, called resolution or scaling factor, influences the average
domain size. Lower ~ yields sets of larger domains and higher ~ results in sets of
smaller TADs. Different choice of v will lead to various collections of TADs. The
ultimate solution includes set of domains most persistent across different values of
' = {71,72, ...}, which is defined in terms of the second objective:

max Z p(si,ei, 1)

[si,ei]€Te

Here, T, is the set of non-overlapping persistent TADs across range of « values and
p(si,ei, ') is the persistence of domain ¢;, which measures how frequently it occurs
throughout resolutions.

The solution to the first objective can be formulated as a dynamic programming
problem:

OPT (1) = IEE?C{OPTl(kJ — 1) + max{q(k,l,v),0}}

The quality function is proportional to scaled and centered intradomain interaction
frequency:

q(k,1,7) = u(k,1,7) = pu(l = k)

where:

L

Zkhz —

=k h=g+
U(kalﬁ)zﬁ

and p, (I —k) is the mean value over all sub-matrices of length [ —k along the diagonal
of contact matrix A. The objective function defined above will allow to split domains
satisfying q(k,l,~) < 0 arbitrarily without affecting the optimal score. To rule out
the preceding behavior and guarantee that the algorithm can only produce a sets of
TADs lacking adjacent negatively scoring domains, the following modification to the
objective function was introduced:

OPT! — max {maxkd{OPTD(k -1}
OPTp(1)
where:
OPTp(l) = max{OPTy(k — 1) +4¢'(k,1,7)}
and:

—00 otherwise.

q(k,l,y) ifq(k,l,v) >0
q’(k,l,v)Z{ (,1,7) i 4tk 1,)

With initial conditions I € {0,1}: OPTp(l) = OPT}(I) = 0. The dynamic program
described above can be associated with directed acyclic graph G, which nodes corre-
spond to OPT (1) and OPTp(l) functions and an edge connects node with all other
nodes it depends on: {OPT}(k)}r<; and {OPTp(k)}r<;. An edge e = (k,l) has
weight ¢'(k,1,7). Thus, finding an optimal solution for OPT(n) can be reduced to
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finding the heaviest path from the corresponding node. To find the top K highest
weight paths in G, a standard procedure described in [HC05| were used.

The solution to the second objective is produced according to the following recipe.
First, a set T = U7€F T, is constructed according to objective 1. Next, to get the
final collection of non-overlapping, highly persistent TADs, below algorithm is used:

OPT3(j) = max{OPTy(j — 1), OPTa(c(5)) + p(s5, €5, 1)}

Here, OPT4(5) is the highest scoring, non-overlapping set of TADs for the jth domain
and c(7) is the closest domain before j that does not overlap with domain j. Domain
1 persistence is defined as:

p(Si,eiaF) - ZUZ', s.t. o; =

o 0 otherwise.

{1 if [Si,ei] € D’Y
The overall runtime of the described algorithm is O(mlogm + (n? + m)|T'|), where
m = |T|. In a comparison conducted using Hi-C data from |Dix+12|, the dynamic
programming approach produces domains with higher mean intra-domain interaction
frequency than HMM method developed by Dixon and coworkers.

It should be emphasized that so far over 20 methods for TADs identification
have been developed. A comprehensive comparison of domain sets produced by
different TAD calling tools reveals poor concordance among respective collections
of TADs |Zuf+18|. Resulting domains were shown to differ in number and average
size at various examined resolutions. As noted by the authors, a likely source of
high variability between methods lies in hierarchical organization of the genome and
inability of current methods to properly account for it. Although multiple tools for
determination of domain hierarchy exist, describing all of them in detail would be
outside of the scope of this thesis.

Finally it should be noted that TADs are not a phenomenon pervasive in every
species. For example studies of Arabidopsis thaliana genome architecture revealed no
evidence of TADs existence |[Fen+14]. It is also possible that domain segmentation
only concerns certain chromosome. Such phenomenon was observed in Caenorhab-
ditis elegans, where the X chromosome was shown to exhibit domain organization
absent across autosomes |[Cra+15|. Another important issue is the phase of cell cycle,
which is demonstrated to heavily influence the structure of chromosomes (Section
3.4.1)).

Chromatin Loops

Although the existence of significantly enriched long-range Hi-C interactions have
been postulated in [YT11; Dix+12; Jin+ 13|, a more precise definition of this effect
was presented in [Rao+14]. This study was the first to perform a Hi-C experiment
with an unprecedented sequencing depth, allowing to achieve an astonishing 1 Kbp
resolution. The high quality of the resulting data enabled the authors to investigate
the chromatin looping phenomenon. Intuitively, a chromatin loop is a pair of re-
gions exhibiting higher contact frequency between each other than to the loci on the
chromosome. However, systematic discovery of loops requires precise criteria and an
appropriate background model.

Rao and coworkers developed a method called HICCUPS, which is based on
assessing local neighborhood of interacting regions. The background model is cal-
culated using 2 matrices: Tj; - the normalized contact map with uniform coverage
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Figure 3.6. Topologically Associating Domains. a) Fragment of normalized Hi-C
contact map of human embryonic stem cells (ESC) chromosome 18 from |[Dix+12].
TADs emerge as strong intensity square-shape blocks of interactions along the main
diagonal. b) The same contact map as in a, but additionally TADs identified using
Directionality Index apporach were overlayed. c¢) A schematic illustration of Di-
rectionality Index approach. Figure ¢ from . Used with permission from
Springer Nature.

(see Section [3.2.2) and D;; = d(]i — j|) - the decay matrix accounting for contact
decay bias (see Sections and |3.3.1). The local expectation for pair of loci i, j is
obtained from the following formula:

> Ty
(L.5)EN

>. Dij
(i,5)EN

Eij = D

where: N is the pixel neighborhood surrounding the cell 7, j. The neighborhood N
can adopt various shapes (see Figure bottom) that are introduced in order to
limit false positive discoveries. For example, the lower-left filter (Figure bottom,
yellow color) prevents pixels located inside the TAD, while the horizontal (Figure
bottom, blue color) and vertical (Figure bottom, green color) filters prevent
the identification of pixels occupying TAD edges. The HICCUPS method examines
all neighborhoods illustrated in Figure [3.7] and considers the interaction at i,j as
looping only if it shows significant enrichment relative to each of 4 areas. As the
resulting £;; value is obtained from normalized matrix it does not obey the Pois-
son statistic. To derive the expected raw contact count, which can be assumed to
follow Poisson distribution E;; is multiplied by respective bias values: A = E;; B; B;
obtained from implicit normalization . Finally, the hypothesis that the num-
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ber of raw contacts at i, j, i.e. O;; is enriched with respect to background model is
calculated according to:

pij = P(Y > Oj;), where: Y ~ Poisson(\)

for all types of neighborhood A/. The obtained p-values are adjusted using Benjamini-
Hochberg procedure to FDR and then thresholded.

The loops discovered by Rao and others using HHCCUPS model were then exam-
ined and shown to coincide with previously reported enhancer-promoter interactions.
Additionally, it was shown that genes whose promoters occupy loci engaged in loop
formation are 6 times more expressed than genes, which are not associated with any
peaks. Moreover, the presence and absence of loops between different cell types was
frequently accompanied by changes in gene expression. Consistently with previous
reports indicating the role of CTCF and cohesin in establishing long range chro-
matin interactions majority of discovered loops (86%) were found to be bound with
these 2 proteins |Spl+06; [Hou+08; PC09|. Importantly, the observations of Rao and
coworkers support a model where gene activation is mediated by enhancer-promoter
looping interaction.

3.4.
Introduction to Hi-C Comparative Analysis

The existence of diverse cell types repeatedly undergoing cycles of events and com-
municating with external environment through complex molecular machinery require
specific mechanisms to respond accordingly given the current conditions. Some pro-
cesses are characteristic to cell type or external environment while others are not
influenced by these factors. For example, housekeeping genes are expressed at simi-
lar rates in all cell types while developmental genes are only transcribed under very
specific situations. For a long time, it has been known that chromatin architecture is
dynamic and correlates with gene regulation. However, the emergence of Hi-C data
enabled researchers to investigate the relationships between genome conformation
and cell specificity on a new level. For instance, today’s standard Hi-C experiments
easily achieve the resolution of 40kb. Numerous results including the ones discussed
in Section and Section indicate that the arrangement of A/B compart-
ments and TADs correlate with chromatin accessibility, regulatory activity, protein
binding and histone modifications. One wonders whether the differences in contact
abundance also correlates with changes in gene expression. After discovery of A/B
compartments, TADs and looping interactions, many studies set out to explore the
existence of alterations between identified structural units especially in context of
regulatory processes.

Domain Comparative Analysis

Local chromatin architecture should, in theory, exhibit some extent of variability
across different cell types due to specific goals they serve in maintaining organism
functioning. Initial Hi-C studies were expected to demonstrate a high degree of
variability in domain partitioning of chromosomes across different cell types. Many
researchers tried to tackle this problem by assessing the extent of overlap between
domain boundary locations. This approach led to the conclusion that genome-wide
domain segmentation is remarkably similar across cell types and species |Dix+12;
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Figure 3.7. Schematic illustration HICCUPS model. Chromatin loops are char-
acterized by strong contact enrichment relative to the surrounding neighborhood.
However the existence of TADs may bias the expected number of interactions for
pixels located inside or on the edges of the TAD. In order to reduce the number of
false positives, the pixel is tested against 4 background models build using different
neighborhoods (bottom, marked with different colors). Figure from [Rao-+14]. Used

with permission from Elsevier.

LD+14; Dix+15; (Cha+15|. Nevertheless, it has been later shown by us and others
that TAD segmentation between cell types may significantly vary when inspected
more thoroughly and using more precise metrics ; . Another reason
for this discrepancy is the choice of TAD calling algorithm. It has been shown that
existing methods may produce highly variable partitionings from the same input
data . To this date, the choice of proper method for TAD determination
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remains an open problem. Moreover, although many reports suggests the invariance
of domain boundaries across cell types, they also acknowledge relevant variability
of sub-TADs [DGR16|. Sub-TADs are usually obtained through the application of
higher resolution data and/or alternative algorithms |Rao+14]. Recently, several
groups also developed techniques for determination of whole hierarchy of domains
rather than single TAD partitioning [Fra+15; WR16; [WCP17; |An+19|. Hierarchical
methods seems to yield more reasonable results as they determine several equally
possible genome partitionings. Despite this, there is still no consensus regarding the
correct definition of TAD hence more in-depth studies of domains and their detection
are required. Given these objections it should not be ruled out that current conclu-
sions on TAD persistence across cell types may need to be revisited in the future.
The problem of comparing TAD segmentations is further discussed in Chapter [}
Here we focus on other published approaches for comparison of Hi-C datasets, which
assume the persistence of domain boundaries.

Apart from comparing the TAD boundary arrangement, several studies analyzed
the concordance of A/B compartments and the differences between intra-TAD in-
teractions. Establishing which chromosomal regions undergo compartement switch
seems to be an easier task than domain calling. For example, Dixon and others
suggested the following method to annotate A/B changes. Start with finding the
bins that switch compartment labels across examined cell types. Then, retain bins
exhibiting statistically significant variability of the first principal component as mea-
sured with ANOVA. An alternative approach is implemented in the HOMER software
[Hei+10]. It first selects the regions having uncorrelated interaction profiles between
Hi-C experiments. Afterwards, it scans along selected loci and outputs the longest
consecutive sequence of bins changing compartment label across experiments. The
application of both methods turn out to provide similar conclusions. For example, in
a study conducted by Dixon and others, the authors examined the influence of A/B
switch on gene expression during stem cell differentiation by comparing Hi-C data of
embryonic stem cells (ESC) to 5 other cell types derived from ESC. They concluded
that the transition from A to B (inactivating) was accompanied by reduced gene
expression, whereas genes located within activated compartments (B to A) exhibited
enriched expression when compared with stable chromatin segments (retaining their
label). The results obtained by us during a study comparing endothelial cells with
embryonic and mesendoderm cells are in agreement with conclusions of Dixon and
others. Addtionally our analysis of histone modification patterns indicated upregu-
lation of H3K27me3 (repressive) mark within closed compartment and enrichment
of H3K27ac (active) mark inside open compartments (Figure [3.8¢, top). Although
the overall changes are subtle, they are statistically significant.

The problem of testing which domains exhibit significant variability in the number
of intra-TAD interactions across Hi-C experiments is usually addressed with the
help of the bootstrapping procedure. The usual approach is to first construct the
difference map from a pair of Hi-C normalized matrices by subtracting respective
cell values. The obtained matrix is then used to produce a randomized one by
permuting every diagonal of the difference map. This procedure is repeated 1000
times to produce a collection of matrices and consequently a null distribution of
median difference for each domain. Finally, every TAD is examined for significant
departure (enrichment or depletion) from the null distribution leading to a p-value
estimate. At the end, p-values need to be adjusted for multiple hypothesis testing.

Conclusions resulting from the comparison between the density of interactions
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within TADs indicate a certain relationship between regulation and changes in chro-
matin contact abundance. For example, a study conducted by Dixon and coworkers
reports that a large proportion of TADs gain or lose contacts during cellular differ-
entiation. The portion of TADs linked with significant change of interaction density
was determined to range from 30% to even 70% depending on cell type. Further
analysis of epigenetic traits demonstrated that binding of active epigenetic marks
such as DHS, H3K27ac and CTCF correlated positively with changes in domain in-
teraction frequency while repressive chromatin modifications such as H3K27me3 and
H3K9me3 exhibited negative correlation with changes in TAD interactions. Con-
sistent with the changes in epigenetic marks, gene expression measurements shown
up-regulation of genes located within contact-gaining TADs and down-regulation in-
side interaction depleted domains. Similarly, in a study inspecting an influence of
hormone treatment on T47D cell line system, Le Dily and others demonstrate the
significant correlation between gene expression and changes in internal TAD contact
frequency [Tru+95} |Cha+15|. The conclusions obtained during our study examin-
ing the chromatin architecture of endothelial cells (EC) are in agreement with those
results. We discovered that approximately 35% of all TADs undergo significant en-
richment or depletion of interactions with respect to embryonic or mesendoderm cells
(Figure ) Similarly to Dixon and others, we observed a positive correlation be-
tween changes in intra-domain contact frequency and active epigenetic marks as well
as gene expression (Figure and ¢ bottom).

Lastly, it should be emphasized that the majority of Hi-C studies are concerned
with the structure of interphase chromosomes. During interphase, the chromatin
fiber is relatively decondensed, and adopts cell-type specific 3D structure. Multiple
studies confirmed the existence of A /B compartments, TADs and looping interactions
as apparent features emerging from Hi-C maps. However, the interaction landscape
changes significantly upon entering the metaphase (mitotic chromsome) [Nau+13].
The study of Naumova and coworkers shows that mitotic chromosomes are virtually
devoid of A/B compartments as indicated by flattening of first principal component
vector during transition from interphase to metaphase. Similarly to A/B compart-
ment loss the switch between cell cycle phases is accompanied by the reduction of
TAD segmentation signal. Additional studies, including inspection of contact decays
revealed different pattern of chromatin folding for interphase and metaphase chro-
mosomes. The former adopts a fractal-globule conformation while the latter acquire
a linearly-organized longitudinally compressed array of consecutive chromatin loops.
Importantly, the structure of mitotic chromosomes retain a high level of similarity
across different cell types. These results were also confirmed in the more recent study
in different mammalian species |Gib+18].

Long-Range Interactions Comparison

The progress in development of Hi-C methods allowed for a rapid increase of
sequencing depth resulting in higher resolution of contact maps. Increasing the Hi-C
resolution shifted researchers attention towards lower scale chromatin phenomena
like looping interactions. A good example of this trend are the results from the
study of Rao and coworkers discussed in Section [3.3.4] During analysis of long-
range chromatin interactions conducted on GM12878 cell line, researchers discovered
approximately 10000 loops, which in 30% cases (versus 7% expected by chance)
appeared to link promoters with enhancers. The authors also examined differences
in chromatin looping across cell types by searching for loops absent exclusively in
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Figure 3.8. a) The number of regions changing compartment from A to B (inac-
tivated) and from B to A (activated) during cell differentiation from ESC through
MDC and terminating on HUVEC. Similarly, the number of TADs significantly en-
riched/depleted for contacts in HUVEC is indicated. b) The fragment of normalized
interaction difference map of chromosome 15 along with UCSC Genome browser im-
age indicating compartmentalization (principal component 1) and gene expression
signal (GRO-seq). The middle TAD is associated with enrichment of contacts, ac-
tivating compartment switch and up-regulation. c) Violin plots demonstrating the
relationship of gene expression and histone modifications with the type of compart-
ment switch and TAD. Figure from . Used with permission from Oxford

University Press.

either of the compared datasets. Using the HICCUPS model (described in Section
Rao and others discovered 557 loops in GM12878 that were absent in IMR90.
Likewise 510 loops were annotated in IMR90, which were not present in GM12878.
Detailed analysis of gene expression demonstrated the relationship between existence
of cell-specific loops and up-regulation of genes associated with them. For example,
the inspection of loops specific to GM12878 indicated the promoters of 43 highly
up-regulated (>50-fold) genes, but of only one gene that was markedly up-regulated
in IMR90. Similarly, the promoters of 94 genes related with loops characteristic to
IMR90 were found to be markedly up-regulated versus 3 promoters up-regulated in
GM12878.

Another approach for discovery of long-range interactions, which seems to be
especially useful when dealing with lower resolution Hi-C data, is searching for inter-
TAD contacts. The inter-TAD contacts can be discovered using a method developed
during our study on endothelial cells (EC, HUVEC line). To begin with, a contact
map must be converted into TAD-wise (square) matrix T" of size [, where [ indicate the
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Figure 3.9. Long-range TAD interactions. Left: interaction frequency (above diag-
onal) and significance (below diagonal) for analysed datasets. Middle: interaction
frequency comparison between ESC and HUVEC. Additionally, the compartmental-
ization and H3K9me3 profiles are indicated on top (HUVEC) and to the right (ESC).
Right: HUVEC interaction frequency map and significance map after filtering out
non-significant LRIs. Figure from [Nis+17]. Used with permission from Oxford
University Press.

number of domains and 7;; represents the total sum of interactions between domain ¢
and j. The p-value associated with TADs i, j is calculated using the hypergeometric
test:

(i) (V)

p(k7 M7 n7 N) = M
(v)
k—1
pval =1 — Zp(i,M,n,N)
i=0

where: k =T;;, M = Zi,j Tij,n =7 ,T;;,N = Zj T;j. The application of hyperge-
ometric test on ESC, MDC and HUVEC-obtained contact maps resulted in annota-
tion of 60000-80000 long-range domain interactions (LRIs) with approximately 60%
of these interactions shared between all 3 examined datasets (Figure . Further
analysis of EC-specific LRIs demonstrated that emergence of loops is often assisted
by enrichment of repressive chromatin marks. This is also supported by the location
of many LRI-participating TADs, which were observed to reside within inactive com-
partments more frequently than expected by chance. Interestingly, the engagement
of domains in LRIs was observed to increase gene expression for TADs overlapping
activated compartments. Conversely, when TADs reside inside inactivated compart-
ment, they are more likely to exhibit up-regulation when not participating in LRI
formation.

The methods discussed so far are based on discovering chromatin loops sepa-
rately for each analyzed contact map and examining the simultaneous existence of
determined interactions across range of studied datasets. However, this approach
can diminish the accuracy of the study as such procedure does not take into account
the sample biases and relationships between interaction profiles. Additionally, the
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methods depending on comparing the existence of annotated loops between contact
maps do not express the effect strength and thereby impede the assessment of inter-
action relevance. A more precise approach could pool all available information and
model the joint variability including datasets similarity. This topic is expanded on
in Chapter



CHAPTER 4
Chromosome Segmentation
Comparison

One of the most intriguing questions in regulatory genomics is the problem of identi-
fication of the differences between chromatin conformation, which influence the dis-
tinct functioning of cells across various tissues or conditions. The discovery of TADs
followed by evidence of their correlation with gene expression and epigenetic traits
raised the importance of these entities in regulatory processes. Preliminary results
encouraged numerous studies exploring TAD segmentation across different species,
cell lines and conditions. The current chapter discusses the problem of differential
analysis of global and local TAD segmentation, the solutions and their applicability
in genomic research. Finally, a new method tailored for comparison of chromosome
partitioning is introduced.

4.1.
Introduction

The comparative analysis of Hi-C data may be conducted at various granularities in-
cluding A /B compartments, TADs, loops (Section[3.4) or even individual interactions
(Section . In order to study the differences between chromosome partitionings, a
researcher must first determine TAD segmentation using an arbitrarily selected al-
gorithm. Some domain calling techniques allow for gaps between TADs, while other
produce consecutive sets of ungapped TADs. Ultimately, the goal is to measure the
similarity between pair of partitions of some chromosomal interval or to evaluate the
difference between certain contact frequencies.

4.2,
TADs Similarity Measures

A TAD set determines specific chromosome segmentations and can be considered
as either collections of intervals or boundaries. Depending on which interpretation
is used, one may assess chromosome partition similarity by either computing the
boundary overlap or the intersection of segments induced by them. Additionally,
the choice of the appropriate similarity measure relies on whether a global or a local
segmentation comparison is to be performed. The former tests are mostly conducted
to check structural similarity of different cell lines, compare quality of replication
or benchmark TAD calling algorithms. The latter may be used to establish regions
responsible for differential activity between cell lines or aid tracking structural rear-
rangements of chromosomes.

47
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4.2.1) Boundary Oriented Comparison

The simplest way to compare the similarity of two TAD boundary sets is by counting
boundary overlaps. A higher number of overlaps indicates a larger similarity. As the
number of boundaries in both sets need not to be equal, some sort of normalization
is required. Therefore, given a chromosome, i.e. a set of N bins and two boundary
sets A, B C {i| i € Z,0 < i < N} the proper distance measure between them may
be expressed using Jaccard Index:

|AN B
| Al +|B] - [AN B

The overlap set is defined as AN B = {i| i € A,i € B}. Usually, Hi-C experiments
are noisy and even TAD datasets from 2 technical replicates may exhibit significant
variability of boundary locations. Therefore, it is common to relax the definition of
boundary overlap to: AN B = {i| 3;|i — j| < A,i € A,j € B}, where A < N is
some tolerance taking into account boundary shift in a replicate experiment. This
approach has been used in numerous studies suggesting a high level of similarity
between chromosome segmentation of different cell lines, species and indicating a
low structural variation during the stimuli treatment |[Dix+12; [LD-+14; Bar+15}
Fra+15|.

An alternative approach for detection of cell type specific boundaries is based
on the Directionality Index described in Section [3.3.3] The method developed by
Dixon and coworkers [Dix+12| calculates the similarity between two 20-bin vectors
of Directionality Index between A and B centered on the detected boundary. The
resulting similarity score (Spearman correlation) is compared with random control
to determine if a boundary is cell type specific.

The main disadvantage of the 2 methods described above lies in the inability to
distinguish between small and large boundary shifts - both of them have equal impact
on the overall similarity score, provided that they exceed Ax. Additionally, the DI-
based approach is not applicable for the comparison of chromosome segmentations
derived from different TAD calling techniques.

JI(A, B) =

4.2.2) Domain Oriented Comparison

The flaws accompanying the above described methods can be avoided by adopting
a different approach, which is based on comparing domain overlap instead of bound-
aries. TAD set can be considered as a result of some bin clustering procedure. A
very popular measure used to compare 2 clusterings is called Variation of Information
(VI) [Me103]. VI is based on a concept from information theory and requires the def-
inition of probability distribution over clusterings. In the domain oriented approach,
a clustering of bin set X with cardinality |X| = N is a set {X[1], X[2],..., X[n]}
of n non-empty subsets of X called domains such that their union equals X. The
probability that a randomly selected bin from clustering X belongs to domain 7 is
expressed as px (i) = X1l Hl Given 2 clusterings A and B and two clusters A[i], Blj]
their overlap is deﬁned as set Ali] N B[j| = {k|k € Ali]] Ak € B[j]}. The probability
that a randomly selected bin k£ will fall into the overlap of i-th and j-th domain
equals: pa p(i,j) = M. Then, the conditional entropy of segmentation A
given B equals:

H(A|B) = ZZPABZJ )log E))

=1 j5=1
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and Variation of Information between segmentations A and B can be calculated
according to the formula:

VI(A,B) = H(A|B) + H(B|A)

Some important properties of VI include:
e VI satisfies metric properties,

e the value of VI depends only on the relative sizes of the clusters, but not
directly on the number of points in the data set,

e the following upperbound is true for all N: VI(A, B) <log N,
e VI(A, B) can be computed in O(N + nanpg) time.

The comprehensive discussion on VI and its properties is contained in [Mei03].

TADsim

Another approach to segmentation comparison is to search for local segmentations
preserving high similarity. This could be useful in analysis of regulatory landscapes
exhibiting differential activity. An algorithm for the determination of locally simi-
lar TAD sets was suggested by [SK18|. Their approach is based on the VI metric
and Dynamic Programming to evaluate similarities of local TAD partitioning. The
algorithm of Sauerwald and Kingsford consists of 3 steps.

During the first step, the VI distance matrix between all subintervals in 2 sets
of boundaries is calculated. The entry 4,j of this matrix represents the distance
between subintervals starting at bin ¢ and ending at bin j. To speed up calculations,
a Dynamic Programming algorithm is employed instead of individually computing
each subinterval distance.

Next, VI scores of every subinterval are compared with randomized distribution in
order to select the significant ones. The random distribution of distances is obtained
by fixing subinterval of interest in one set, permuting domains in another set 1000
times and calculating the resulting VI scores. This randomized distribution is used
to compute the probability of obtaining a matching at least as good as the one
observed. As either of the 2 sets of TADs can be shuffled, the reported p-value is the
average taken over both random distributions. The resulting p-values are controlled
for false discovery rate using the Benjamini-Hochberg procedure.

The last step is required to remove nested intervals and select the final set of
non-overlapping significant intervals. It consists of 3 parts. First, only statistically
significant subintervals are chosen. Next, intervals not containing any subintervals
with a lower VI score are selected. If there are still some intervals left that begin or
end at the same position at this point, the longest one is selected as the resulting
interval.

4.3.
BP Score

In this section we introduce a new distance measure for assessing chromosome seg-
mentation similarity. Our measure is called BP score and it satisfies triangle inequal-
ity. The name is attributed to bipartite graph of domains and their overlaps induced
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by 2 partitionings of the same chromosome (Figure ,b). First, we define the mea-
sure and present the proof of its metric properties. Then, the behavior of the BP
score is examined by comparing it with Jaccard Index and Variation of Information.
Lastly, we introduce local similarity measures derived from the BP score and VI and
discuss their applicability.

a) 0 Al2] 7 A3 8 Al4] 10
®

¢ N
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Figure 4.1. Chromosome segmentations. a) Two segmentations and the overlaps be-
tween their respective domains. The sample overlap between 2 domains marked with
red color is indicated using hatch pattern. b) The segmentations can be illustrated
using a bipartite graph which nodes corresponds to domains and edges indicate the
existence of the overlap between a pair of domains. The parts of the graph corre-
spond to compared partitionings and were highlighted using brown (domains set A)
and blue (domains set B) ellipses respectively. The red edge represents the overlap
between 2 domains highlighted in a) using the red color.

|4.3.1| Notation and Definitions

A basic concept when comparing TAD partitionings is a segment.

Definition 1. A segment is a semi-closed non-empty discrete interval: (a,b] =
{x e Nt | a <z < b} with the following standard relations:

(i) equality: (a,b] = (¢,d] <= a=cAb=d
(i1) subset: (a,b] C (¢,d] <= a>cAb<d
(i) intersection:

, ifa>dVe>b

(max (a,c),min (b,d)], otherwise

(a,b] N (c,d] = {
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Segments may refer to chromosomes, TADs and their overlaps. Every chromo-
some can be partitioned into collection of non-overlapping, consecutive segments
- TADs or non-TAD regions. For simplicity, from now on, the notation will be
restricted to a single chromosome assuming that any partition refers to the same
chromosome. This notation can be naturally extended to multiple chromosomes,
for example, by assuming segmentations of concatenated chromosomes with fixed
boundaries between them. The capital letters are used to distinguish partitions, and
indexes refer to sorted segments (i.e. domains): X [i],Y [j] (Figure [4.1h).

Definition 2. The following functions are defined on segments:
(i) segment start: s ((a,b]) = a,
(ii) segment end: e ((a,b]) = b,

(iii) segment length: | (a,b]| =0b— a,

As stated above, all partitions (X,Y]...) refer to a single chromosome, so |X| =
Y| = ... = N denote its length.

Definition 3. Intersection of two partitions X and Y induces a partition called the
segmentation oxy with the following properties:

(i) ViV;X[iINY [jl #2 = X[i|nY[j] €oxy
(ii) Vi¥j>is (oxy [i]) < s (oxy [4])

When considering a triplet of partitions X,Y,Z, two types of segments may be
distinguished: atomic and non-atomic (or divisible). A segment (a, b] is called atomic
and denoted o[i] if there is no other segment ox y [k|, ox,z[l] or oy z[m] that is shorter
than (a,b] and included in (a,b]. Otherwise, the segment is called non-atomic and
denoted ox y[i]. For example, in Figure segment 04 ¢[3] is not atomic - it can
be further partitioned into o[3] and o[4], both of which are atomic.

Definition 4. The function fxy (i) gives the original segment from partition X,
that encompasses the segment oli]. More formally:

fxy (i) = (a,b] s.t. (a,b] € X Noxy [i] C (a,D]

The same function denoted by fy, x is used to find segments in the second parti-
tion.

Definition 5 (BP score). Given 2 partitions X andY s.t. | X| = |Y| their BP score
18 defined as:
BN Jold]|*

AXY)=1- %) e Ty O]

i

(4.1)

Theorem 1. The function d(X,Y) is a metric.

Proof. Let us introduce 3 segmentations (Figure . From now on, the notation of
A,B,C will be used to distinguish between 3 partitions used to construct this proof
and XY whenever referring to any pair of partitions from set A,B,C' s.t. X # Y.
To show that d(X,Y) is a distance function 3 properties must be proved:

e d(X,X) =0,
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o d(X,Y) = d(Y, X),

e d(A,B) <d(A,C)+d(B,C) for any A,B,C
Claim 1. Function d satisfies: d(A, A) =0 for any A.
Proof.

n

B _i |0AA[‘H2
d(A,A)=1 szax(|fAA()| | fa,4(8)])

faa
1 - 4[] (4.2)
N 2 [Af]
1 n
TN Z | Ald]|
7
1
—1— —.N=
N
O
Claim 2. Function d(X,Y) is symmetric for any A,B.
Proof.
RS Jo.a,8[]*
dA,B)=1——
(B =1- %D (a0, Fo @)
Ly 05,4l )
OB, A|?
R — d(B, A
N 2 s (Faal Faat) @
O
Claim 3. Consider 8 domain sets A,B,C. Function d satisfies:
d(A,B) <d(A,C)+d(B,C) (4.4)
Remark 1. Refer to Figure[{.4 as an example.
Start with expanding [£.4] with
IS 04,5l IS [oa.cli]
1-— > — <1-— r . 4.5
N 2 e (Fas ] Foa@) =L~ N 2= max(Fac@l foa@)
np,c

1 los.cli]l’

N 2 i o o@D

Using the multinomial theorem [HII77], the divisible segments can be substituted
with atomic ones in the following way:

n(k) 2 n(k)—1n(k)—i
oxy [K][* = (Zom) Zro Fe2 2 2k (4.6)



Chapter 4. Chromosome Segmentation Comparison
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Figure 4.2. Comparison of 3 partitionings of the same chromosome. In this setting
the segment 04 ¢[3] generated by segmentations A and C'is non-atomic and consists
of atomic segments o[3] and o[4].

where n(k) is the number of atomic segments in a divisible segment ox y[k]. Obvi-
ously, n(k) also depends on X and Y, but for simplicity, it is left out of the notation
here assuming it follows from the formula. Using equation [£.6] one can rewrite the

inequality

o[i]|
N - Zmax |fAB i)l, ’fBA()D

na,Bn(k)—1n(k)—

- Jolj]
2y X Z i |fAB< >|,rfB,A<k>\>§

’ . Jo[i]] - |o[]]
2y Z max ([fac()], | foa)

ofi]
N - Zmax (Frcl >| |fCB< D

n n(k)—
- |- foly]l

—22 Z Z o |ch< W es®))

Here, n is the number of atomic segments and nx y is the number of divisible seg-
ments induced by X,Y partitioning. As atomic segments are common for A, B and
C' the subscript in n can be omitted.

Definition 6 (islands of segments). Define a family of segments I, = {o[i] | o[i] C
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C[k]} referred to as islands of segments, as satisfying the following condition:

, , [fA,C(i) = fac()V [Bc(i) = fB,c()
o[ilel} oljl€lk
i#]
Intuitively, each island of segments results in a sum of product terms on the right
side of the inequality [4.7]

Claim 4. Any atomic segment o[i] satisfies:

o ol . ol
== max (| fa,5(0)], |fp,a(0)]) ~ max (|fa,c(i)l, [ fe,a(i)]) (48)
y ol . ol |
max (| fa,5(0)], [f.a(@)]) — max (|fp,c(@),|fo.5(i)])
Proof.
1. using definition of fx y (i) substitute:
o faB(i) = Alu] = fac(i)
 fB.4(i) = B[v] = fBo(i)
o foali) =Clz] = foB(i)
2. if |Afu]| > |B[v]|, then: |Afu]| < max (|A[u]], |C[z]])
3. otherwise |A[u]| < |B[v]| and: |B[v]| < max (|B[v]|,|C[z]|)
O

This allows us to split the squared terms from the right hand side of the inequality

and merge them into 2 groups (S - smaller, R - remaining), both of cardinality
n:

e S is the sum of terms from either A,C or B,C, such that each term satisfies
condition 2 (if it is a term from A,C’) or condition 3 (if it is a term from B,C'),

e R are remaining terms, i.e. they may not satisfy the above conditions.

We can rewrite the inequality [4.7}

o[i]|
N- Zmax |fAB i), ’fBA()D

na,Bn(k)—1n(k)—

|- lolj]]
_22 Z Z max )|a|fB,A(k)D :

fA B(
na,c n(k:)—l n(k)— (49)

o o]l - ol
Nes-e 3 X m<|fA,c<k>|,|fc,A<k>|>+

np,c n(k)—1n(k)—

| - [olJ]|
N-R - 22 Z Z max ( !fBC( W 1 fes(E)])
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Now:

& ol
2 e T ol =

SO we can write:

- Joli]|”
N _
e GIRIZG]
na,g n(k) n(k)—i lo[i]| - |o[4]] (410
.y <N-8
22 2 (a s Al
After using [£.10] to simplify 1.9} what is left is to show that:
na.cn(k)—1n(k)— ‘0[”
2
R+230 3 Z O e D
(4.11)

nBcn( 1nk) i

|- olj]
“Z Z Z. max |ch< >|,|fc,3<k>|>§N‘

Note that no two segments o4 c[k] and op c|[l] can generate two different atomic
segments oli], o[j] that would be properly included in them.

Claim 5. There are no 2 segments oa c[k] and op c[l], such that for two different
indices i,j (i < j): o[i] Coaclk] Aolj] Coaclk] and o[i] C opc|l] Aolj] C opcll].

Proof. assume that there exist nonatomic segment o4 ¢[u] and atomic segments
oli], olj] s.t. o[i] C oaclu] Aolj] C oa,clu]. That would imply:

e s(oaclu]) < s(oli]) < e(oli]) < s(ofj]) < e(o]j]) < e(oaclul)

e also as both atomic segments o[i], o[j] are contained in 04 c¢[u], they can not
be induced by partitioning between A and C. This means that there exist
segments op c[v] and op c[v + 1] (atomic or not) s.t. e(op,clv]) = e(o[i]) and
s(op,clv +1]) = s(o[f]).

This last statement implies that o[j] Z op cv]. O

The sums of product terms from the inequality can be re-expressed as a total
of m groups P corresponding to islands Ij:

Py, = {(Za.]) | i 7&]7 0[2} € Ik‘) 0[]] € Ik}
It will also be helpful to simplify the notation:

1. as islands of segments are considered, one can replace fc 4(k) and fc (k) with

fC(k)v
2. for any (i,7) € Py the notation fayp(i) is introduced such that:

fac(@), if fac(i) = fac(y)

fB,c(i), otherwise

favp(i) = {
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Rewriting the inequality gives:

m | Pkl

|- Jols]
R”ZZM rfAvB 1 emp =N (4.12)

The number of elements in Pj can be upperbounded by:

Py < <Z)

This allows for upperbounding the left hand side of the inequality {12}

m | Pyl

- ol
R”szax rfAvB Ol fe®) =
]>’L

o (4.13)

|- ol
R+2Z Z Z — |fAvB<>r,|fc<k>|>'

j .

R can be split into 2 groups:
1. Ry segments oli] such that: 3, ,)ep,i=uVi=0,
2. Rs remaining segments,

and rewritten as:

oli]|*
R=Ri+ Ry = szax yfAvB i), | fo(k)]) (4.14)

o ofi]?
+ 2 s (s @] Fo )

Now, put equation into the right hand side of the inequality

o Jofi]? Joli]?
ZmaxquvB( ), 1ok *Z Zmax (Favs@)] [fe(R))

(4.15)

- Jolj]
+2 Z Z o \fAvBur Fo())

]

In order to further upperbound the left hand side of inequality [£.15] we need to select
the minimum possible denominator. It can be easily shown that it is minimum when:

max(|favs (@) [fe(k)]) = [fe(k)] . (4.16)

This follows from the definition of islands of segments as each atomic segment o[i] €
I also satisfies: o[i] C C[k] meaning |favp(i)| < fc(k). The latter upperbound let
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us write again:

o Jofi]]? & Jofi] 2
Emaxmm( N 1folk *Z Zmax (Favs )] 1 fo®)])

N - lolj]
+2
Z Z max IfAvB( ) [fe(R)])
> (4.17)
o~ lolil* | g~ 1 -
< + _ olt||” + 2 olt
_ e®] 2 [Tt Z' " Z Z i
]>z
2
Ny . m n(k)
Joli]|” 1 :
= + T o[t
2 et 2 ey | 2100
The last step is to substitute | fo(k)| with atomic segments:
1. |fo(k)| = |o]i]| for atomic segments,
2. |fe(k)| = Z?(k) |o[i]| for divisible segments.
Finally, rewriting yields:
m n(k) ]
Z it Z |ofi]|
[fe ; :
2
nr . m n(k)
o] 1 :
< —
> Jofi]] (4.18)
ny m [ n(k) 1
=D loldl+ > [ > loldl
% k i
= lolill + Y lo[ill = N
which ends the proof, since obviously NV < N.
0

Comparison with Existing Approaches

The performance of JI, BP and VI metrics for comparing chromosome segmen-
tation was evaluated on simulated and real datasets. The artificial dataset A was
obtained by drawing TADs based on real Hi-C domain dataset. In order to sample
TADs, we first examined the distribution of real domain lengths and modeled it us-
ing the Negative Binomial distribution. Then using the obtained fit, we simulated a
TAD set A. The other TAD set (B) was generated by copying A and shifting existing
boundaries or introducing new ones yielding 3 chromosome segmentation categories:

1. e-matching - every boundary in B is shifted at most € bins left or right with

respect to its initial location (Figure [£.3h),
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2. new boundary at € - introduction of new boundary in B no more than ¢ bins
left from the existing boundary (Figure ),

3. binary boundary additions - 2™ — 1 boundaries are inserted inside every TAD
in B according to the binary interval partitioning scheme (Figure )

The described segmentations capture various (dis)similarity cases between pairs of
partitionings that we expect to see in real data. First category is similar to a pair of
TAD segmentations originating from 2 technical replicates data. The overall domain
coincidence is large but some boundaries may not overlap as the data acquisition is
accompanied by noise. The second case may represent 2 types of situations. When
€ is small, the matching resembles partitioning produced while using the TAD de-
tection algorithms yielding gapped segmentation like the Directionality Index or the
Dynamic Programing approach. When comparing the output of algorithms with a
segmentation of a very similar sample determined by an ungapped algorithm, their
distance is expected to be low. Larger values of € will lead to more dissimilar match-
ing cases. The binary boundary additions scenario will represent high inconsistency
between two segmentations except for the situation when n = 0.

The performance of all 3 metrics for every scenario and 3 parameter values are
presented in Figure Higher distances of ¢ shift than binary boundary additions
matching for the JI distance indicate the limitation of this metric in quantifying the
true chromosome segmentation similarity in contrast to the BP score and the VI
distances. Additionally, the BP score reports a larger difference between scenario 1
or 2 versus 3 as opposed to VI. This seems to be a desired behavior as the third
case represents the highest degree of reorganization in contrast to case 1 and 2 given
small values of € possibly reflecting technical variability. Moreover, the value of the
BP score have an intuitive interpretation for the binary boundary additions scheme.
For example, when n = 1, every domain in A overlaps 2 equal domains in B, which
corresponds to the score of: 1 — % = 0.5. If n = 2 we have 4 domains in B per 1
domain in A leading to the score of: 1 — % = 0.75. This scheme can be continued for
n > 2. Another interesting issue is the behavior of discussed metrics when comparing
scenario 1 with 2. Although each metric exhibits a higher distance for respective ¢,
in the first case then second one, the differences are the smallest for the BP score.
For instance, when using the BP score, the distance in scenario 1 (¢ = 1) is smaller
than in scenario 2 (¢ = 3) as opposed to VI. We argue that if ¢ is small, this effect
may be desired, as subtle perturbations of domain locations should provide more
certainty regarding the high degree of similarity between chromosome partitionings
as compared with an insertion of new TADs (like in scenario 2).

One of the potential applications of chromosome segmentation metric is to assess
the structural similarity between replicate data or cell lines. The replicate compari-
son may serve to quantify the quality of the replication experiment or as a baseline
for measuring the similarity of different tissues partitioning. The comparative anal-
ysis of the TAD segmentation across cell lines can be valuable in functional assays
of chromatin. To investigate the performance of studied metrics on real Hi-C data,
a set of 6 different cell lines was selected from publicly available resources having 2
(5 cell lines) and 4 (1 cell line) technical replicates. All collected datasets comprised
of 22 chromosomes (excluding X and Y). Each sample TADs were determined us-
ing the Dynamic Programing approach |[Fil+14], resulting domain sets were paired
and their respective distances were calculated. Pairs were initially assigned to one
of 2 categories: within cell type or between cell type. The examination of dis-
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Figure 4.3. Various matching scenarios. a) In e-matching a boundary in B is ran-
domly shifted at most € bins left or right with respect to their location in A. b) New
boundary at e inserts a boundary in B at randomly choosen location not further
than e bins left from their existing boundary. ¢) Binary boundary additions intro-
duce boundaries according to the binary interval partitioning scheme and represents
an example of highly reorganized matching.

tance distributions reveals that all metrics discriminate between two groups under
consideration, that is, the distances within cell type segmentation comparisons are
consistently lower than between cell type pairs.

As it is visible in Figure [4.5h, the distributions of distances exhibit substantial
overlap. Careful examination of individual segmentations revealed that the major-
ity of unexpected values can be attributed to ESC lines from different laboratories
(higher variability) and to ESC versus MDC comparisons (lower variability than ex-
pected). After moving these pairs to individual groups (Figure b, it seems more
credible to place them into different categories than initially, since ESC versus MDC
comparisons seem to be drawn from the within-cell-type distribution, whereas ESC



4.3. BP Score

Ji
0.75 1
0.50 1
0.25 - -
0.00 1
BP
0.75 1
8
§ 0.50 1
2
T 0.254
0.00 1
Vi
0.20 A
0.15 1
0.10
0.05 1
_ ———
0.00 1 n n :
epsilon shift new boundary at epsilon binary boundary additions

match scenario

en= 1 [l201s

Figure 4.4. The performance of 3 metrics on simulated data comparison. The JI
distance fails to recover true similarity as it reports the highest distances for e-
matching. The BP and VI distances capture the high dissimilarity of the binary
boundary additions scenario and high similarity in remaining cases. The VI distance
is scaled by logy IV, so it ranges from 0 to 1.

cells from different laboratories exhibit a much higher variance than expected from
the replicates. This observation complies with the results on the differential chro-
matin organization between cell lines reported in . Although all metrics
indicate significant discrimination, it is clear that both BP and VI exhibit a higher
significance of the difference and separation between the two groups than JI. Inter-
estingly, the results presented in Figure indicate some pairs of cell populations
that exhibit substantial mismatch of respective TAD segmentations. This contrasts
with the general view on persistence of TADs reported in numerous studies and
mentioned in Chapter [3]
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Figure 4.5. Real Hi-C datasets comparison. a) Boxplots represent distributions of
pairwise segmentation comparisons obtained using 3 metrics separately for every
chromosome. Each pair is assigned to either within cells (usually technical replicates
data) or between cells group. b) Same as a, but pairs obtained associated with
different laboratory ESC data or ESC versus MDC comparison were pulled out to
separate groups due to their unexpected variability.

m Local Measures of Similarity

The global similarity of chromosome segmentations is not always of primary in-
terest. Frequently, researchers are concerned with finding locally reorganized regions
of chromosomes given two sets of TADs. A dissimilarity between local segmentations
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can be for example examined for co-incidence with differentially expressed genes or
methylation patterns. To compare local segmentations, the local measures associ-
ated with BP distance and VI distance may be proposed. Local BP score of i-th
segment is defined as:

N lold]|
s ) = T s ) A

The value of the local BP score lies between 0 and 1. The smaller value of dlj‘% (i), the
larger overlap between f4 p(i) and fp a(i). The local measure related to VI would
be local Mutual Information (MI) of segment i expressed with following formula:

MI () _ 5. pAB(Z')>
38 ) = —pan(i) - togs S FA2)
The two local measures defined above are presented on Figure [£.6h,b illustrating
the segmentation of human chrl: 4000-12840 kb fragment, ESC and MSC cells with
color intensity reflecting the similarity. Figure [£.6b shows that in the local MI score,
segments tend to be first ordered by their length (descending) and then by the overlap
between domains (ascending from match to mismatch). The behavior of the local
BP score seems to be easier to interpret, as for example the perfectly overlapping
segments 22-28 in Figure [{.6h are consistently scored by the local BP score, while
the local MI assigns some of them (for example segment 25 in Figure ) scores
similar to rearranged ones (like segments in the 14-20 range).

Increasing evidence suggests the role of TADs in defining regulatory landscapes
and limiting the activity of some regulatory elements [And+13| [Nor-+12|. A straight-
forward way to investigate this phenomenon would be by examining a correlation
between the local score and the differential gene expression or methylation pattern
genome wide. To do this all-by-all Hi-C datasets pairing of available 6 cell lines
were created. Then, every pair was assigned local BP and MI scores as well as a
fold change of gene expression and methylation for every gene. The differential gene
expression was derived based on publicly available datasets. As the number of genes
were high, they were aggregated into 30 quantiles according to the local score value
in order to reduce noise. Finally, to examine the correlation between gene expression
or methylation fold change and the domain rearrangement score, the median quantile
local score versus median fold change was inspected.

The relationship between the local rearrangement score and the gene expression
fold change turned out to be significant for 5 out of 15 pairings in case of the local
BP score and 11 out of 15 pairings for the local MI score as measured by the Spear-
man correlation at significance level 0.05. Unexpectedly, in the case of the local BP
score, 8 out of 15 pairings exhibit negative correlation between the rearrangement
score and the fold change. For the local MI score, this correlation is positive for
each pairing as expected. However as both small and large values of this score may
represent high and low domain overlap, it is difficult to unambigously interpret the
outcome. In the case of the local BP score, the results are closer to what seems to be
expected for the methylation data where 13 out of 15 pairings exhibit positive and
significant Spearman correlation with mean coefficient value of 0.85. Taken together,
this result demonstrates that simple analysis of relationship between differential gene
expression and TAD segmentation doesn’t provide conclusive findings and a more
in-depth research need to be conducted in order to elucidate the alleged influence
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of variability in local TAD partitioning on regulatory mechanisms. A possible rea-
son for the lack of relationships between the local score and gene expression may
be partly related to the low quality of the data used. Another issue is the coarse
level of analysis. The combination of local score with other predictors like histone
modifications data or gene type (housekeeping or not) could have the potential for
more insightful conclusions. Apart from that, the problem of searching for locally
TAD-rearranged regions needs more research. Although [SK18| developed a method
for discovery of locally (dis)similar TAD segmentations, little is known about alter-
ations in TAD partitionings and their relationship with functional features of the
genome.

4.4,
Conclusions

This chapter introduces the new metric of chromosome segmentation similarity called
BP-score. The comparison of BP-score performance with other known measures show
that it can be successfully applied to examine the similarity between different Hi-C
datasets and draw useful conclusions. In particular, potential applications of BP-
score include assessment of replication quality or tracking the structural similarity
across various cell lines.

Additionally, two local similarity measures are presented here narrowing down
the assessment of chromatin segmentation differences to sub-chromosomal regions.
It turns out that local structural similarity correlates with some functional measure-
ments, especially in the case of DNA methylation.

In summary, we have described 3 new measures of similarity for comparison
of chromosome segmentation and proven that our global measure - the BP score,
satisfies metric properties. This results improve commonly used approaches for mea-
suring the chromosome segmentation similarity by counting boundary overlaps used
in multiple studies |Dix+12; |LD-14; Bar+15; Fra+15|. The results described in this
chapter were published in [ZW19a].
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Figure 4.6. Local measures of similarity. a) Graphical representation of TAD seg-
mentation between ESC and MSC cell lines of human chromosome 1: 4,000-12,840
kbp region (40 kb resolution) using a local BP score. The green color illustrates a
match between two TADs, whereas the red color indicates a mismatch. b) Same as
in a, but using local MI score. This time the color scale quantifies a match between
two domains and the segment length. For this reason a perfect match between 2
domains may have various values of local score (for example domains 22-28) and
hence to indicate that another color palette was used. c) The relationship between
median local score of domain overlaps and median fold change of expression of genes
residing inside them divided on 30 quantiles (domain overlaps were grouped into 30
quantiles based on their local score). d) The same as in ¢, but for methylation fold
change data.



CHAPTER B

Hi-C Differential Analysis

The differential analysis of Hi-C data aims to quantify and compare the contact
difference between two or more experiments of interest. Due to occurrence of var-
ious biases, direct comparisons of interaction abundances are difficult to interpret.
The usual solution is to model the contact variability at pairs of loci and seek for
deviations using the hypothesis testing framework. As a result, a significance map
is obtained where each entry in the matrix represents the magnitude of interaction
difference for the respective pair of regions between the compared experiments.

This chapter presents a new method for Hi-C differential interactions discovery.
The first section discusses common issues encountered when comparing contact abun-
dances between Hi-C matrices. The influence of biases and normalization techniques
on this process is addressed. Next, selected methods designed for Hi-C differential
analysis are described. Finally a new software package called DiADeM (differential
analysis via dependency modeling) is presented and the results of its application are
compared with existing approaches.

5.1.
Introduction

Unbiased comparison of interaction abundances between Hi-C datasets requires a
proper treatment of coverage and contact decay. The signal associated with both
mentioned factors can vary significantly even for technical replicate repetitions of a
single experiment. Therefore, proper addressing of this issue is essential to unravel
biologically relevant differences. A natural way to correct the coverage bias is by
the application of Hi-C normalization procedures. However, as demonstrated in the
next section, this approach is not satisfactory and can lead to other problems. Inter-
estingly raw Hi-C data seems to exhibit significant correlations between vectors of
equally distant pairs of regions even between different cell lines. The relationship be-
tween contact abundances leads to simple and intuitive definition of Hi-C differential
interaction, which can be leveraged to construct a background model for discovery
of differential interactions.

Influence of Biases on Differential Analysis

The first source of complications in Hi-C differential analysis is the varying coverage.
Usually, high coverage is desired at all chromosomal locations as this increases signal
to noise ratio. In practice, sequencing depth is costly. Therefore various Hi-C ex-
periments will end up having different coverages depending on experimental budget.

65



5.1. Introduction m

As a result, researchers are often faced with an issue of comparing contact maps
with diverse coverages (Figure ) This situation poses a problem, because direct
comparison of corresponding entries between two matrices will lead to biased results.
To avoid this kind of pitfall, contact maps are usually normalized using one of the
widely adopted methods. A very popular choice is, the Iterative Correction described
in section which performs well in removing coverage bias (Figure ) Un-
fortunately, such normalization may amplify issues related with other sources of bias
as it does not account for contact decay.

Divergent contact decays indicate a distinct global chromatin compaction. Such
differences can span orders of magnitude as the average number of contacts at a
given distance in the first map can be easily 10 times larger then the second one,
thereby masking any biologically relevant local variability (Figure . Normaliza-
tion methods used to successfully remove coverage bias does not solve the problem
in this case, because they fail to remove the contact decays difference. The situation
turns out to be even more difficult as various normalization procedures may lead to
opposite patterns of relative contact decays (Figure middle and bottom row). For
example, the relationship between raw data decays of human IMR90 and MSC cell
lines display much stronger signal for the former dataset within the prevalent range
of the separation distance. When contact maps are subjected to normalization, this
pattern changes considerably. If HiCnorm is used, the contact intensity of the MSC
dataset begins to exceed that of IMR90 around the 80th diagonal. However, when
ICE is applied to correct Hi-C matrices, then 2 decays cross each other at the 6th
diagonal. Both methods show consistent behaviour for higher ranges of contact de-
cays (Figure third column, rows 2 and 3), but they diverge significantly within
close separation distances (Figure second column, rows 2 and 3), where the most
reliable interaction data is collected.

raw data

150001

10000

5000 -

ICE normalized

1.004

sum of interactions

0.754

0.254

0 500 1000 1500 2000
bin

dataset © IMR90 + MSC

Figure 5.1. The comparison of coverages in 2 Hi-C experiments conducted in different
laboratories and using distinct cell lines. Top: Raw data. Bottom: After ICE
normalization.
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Figure 5.2. The influence of normalization on decay bias. The first row illustrates
the existence of the decay phenomenon in raw Hi-C data. Colors represent cell type.
Rows 2 and 3 depict how contact decay changes upon normalization using HiCnorm
and ICE. Columns 2 and 3 are zoom in of the range of genomic distances from column
1. Note the logarithmic scale.

|5.1.2| Correlation Between Interaction Patterns

Although the differences between contact decays of various raw Hi-C datasets
may reach orders of magnitude, the correlations among pairs of interaction patterns
at fixed genomic separation indicate a high degree of similarity. This observation
appears to be pervasive across different replicates, experiments and most surprisingly
cell lines. The similarity between contact intensity profiles measured by Pearson,
Spearman or Kendall correlation turns out to be significant in most cases for pairs
of regions separated by up to a few megabases. The maximum separation preserving
statistical significance ranges depending on the dataset quality and the chromosome
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size. Typically, around 10% of diagonals follow described behavior. Despite only a
low fraction of decay exhibiting significant between-diagonal correlation, it should
be emphasized that the majority of contacts are located at this particular genomic
distance spectrum. This observation is also in agreement with a previously reported
feature of Hi-C data - the power law distribution of contact decay. Even though the
importance of the Power-law distribution itself might not be essential, it is indeed
one of the distributions matching experimental data .
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Figure 5.3. The correlations between respective pairs of regions of interaction profiles
at given genomic distance. At low genomic distances where most of Hi-C data is col-
lected, the interaction profiles between cell types are significantly similar as indicated
by: various correlation coefficients (top) and b) respective p-values (bottom).

5.2.
Available Methods Overview

The problem of detecting differential chromatin contacts gained significant attention
in recent years. The large popularity of this issue is mostly owed to the importance
of understanding the interplay between various regulatory elements. For example,



Chapter 5. Hi-C Differential Analysis m

the analysis of differential interactions could be useful in discovering new non-coding
functional regions of chromatin. Until now, numerous approaches have been pro-
posed. The current section discusses selected published results on Hi-C differential
analysis.

diffHiC

Hi-C experiments are in fact a particular type of NGS assays, hence some approaches
to compare chromatin contact abundances can be borrowed from the field of differ-
ential gene expression analysis. One of the most popular methods for the discovery
of Hi-C differential interactions is diffHic, an R package based on edgeR framework
mentioned in section [LS15]. The main difference between edgeR and diffHic
is that the latter uses the bin pair concept instead of a gene. DiffHic requires repli-
cation and therefore only experiments with at least 2 repetitions per group can be
analyzed using this method.

The framework allows to perform a read alignment and many interaction filtering
strategies. Prior to modelling the experimental design, the data is normalized to get
rid off library specific biases. The removal of biases is performed by first fitting a
LOESS regression against the MA relationship derived from technical replicates of
specific experimental group and then adjusting offsets of every bin pair using a fitted
trend (Figure . Similarily to edgeR, diffHic models read abundances for specific
bin pair using a GLM:

p
E[Yyi] = pps = ZXijﬁbj + op;

j=1

Here, Y}; denotes the interaction abundance for bin pair b in sample i, X;; refer to the
element of design matrix for i-th sample originating from treatment j and op; is offset
term encompassing sequencing depth and normalization factors. The distribution of
counts for bin pair b in sample 7 is assumed to follow the quasi Negative Binomial
distribution, which variance can be specified as:

Var([Yy;] = o (i + dopiy )

The coefficient ¢y represents the NB dispersion for bin pair b and its value is estimated
by fitting an abundance dependent trend to the NB dispersions across all bin pairs.
Once ¢y is obtained, 02 can be estimated by performing a robust empirical Bayes
procedure. Finally, individual bin pairs may be tested against differential interactions
using the Quasi-Likelihood F-test and corrected for multiple hypothesis testing.

It is worth noting that a similar approach based on modeling interaction counts
with Negative Binomial GLM was also adopted in multiHiCcompare method [SCD19].
Essentially, the concepts used therein resemble those applied in diffHic with the main
difference being the introduction of genomic distance as an additional predictor in
modeling contact abundances.

FIND

An interesting approach to the discovery of differential chromatin contacts is to
compare spatial neighborhoods for pairs of regions as implemented in FIND method
[DCZ18|. The study conducted by Djekidel and coworkers reports that the intensity
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Figure 5.4. The illustration of trended biases. Each point represents the relationship
between logo-count-per-million interactions averaged over 2 repetitions of given cell
line Hi-C versus library size-adjusted logs-fold change (M-value) between the same
replicates. The panels depict trends before (a,b) and after (c,d) normalization. The
datasets studied are ERG-treated cells (a,c) and ESC cells (c,d). Figure from [LS15|.

of an interaction is strongly dependent on its nearest neighbors. Therefore, com-
parison of contact abundances in the area surrounding the interacting chromatin
regions should provide insight regarding the similarity of their local organization. In
the FIND model, the neighborhood of interacting loci i, j constitutes the squared
window fragment of the Hi-C contact map having a width w, which is centered on
i,7. Intuitively, if the interaction ¢,j is not differential, then the distribution of
(euclidean) distance between i, j and its k-nearest neighbor (examined across repli-
cates) should be similar between both conditions. To examine the neighborhoods,
point distribution in the surroundings of i, j is approximated with a homogeneous
Poisson process. Under this assumption, the probability of observing the kth nearest
neighbor at the distance x; from (7, j, 1) in the nth Hi-C replicate can be expressed
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as [BA14]:

(4N (p)m)* 4
f(@nk) = 3F—1() — 1)|xﬁ kl exXp /\(N)?x%k
The parameter A(p) needs to be estimated for each cell in neighborhood of i, j
separately. This could be done given n. replicates of treatment ¢ using the maximum
likelihood estimator:

© () — ek —1
47rzn 1 nk

After obtaining j\lgl)(u) and 5\22) (1), one can test the following null hypothesis Hy :
5\,(:)(#) = j‘l(f) () versus a two sided alternative. The test is easy to perfO{m because
Djekidel and coworkers show that under the null hypothesis, the ratio of )\,(:)(u) and

;\53) (1) follows Fisher distribution with 2n1k and 2nsk degrees of freedom.

In order to examine whether a paired region %, j is significantly enriched or de-
pleted in interactions between 2 condtions for fixed neighborhood w, w? — 1, cells are
tested against the null hypothesis specified above. To combine resulting p-values and
obtain final significance for 4, j interaction r-th, the ordered p-value method is used,
which decides a series of tests as significant if at least r of them are significant [ST14].

HiCcompare

Occasionally, the replication for a specific Hi-C experiment is not available thereby
preventing the usage of methods such as diffHic or FIND. One alternative approach
which enables us to conduct comparative analysis for 2 samples without replicates
is HiCcompare [Sta+18]. This method is based on joint normalization of paired
datasets. The main concept in HiCcompare are MD plots - an analog of MA plots.
In MD-plot interactions are divided by genomic distance (D - the predictor) and
the log fold change between 2 contact intensities of corresponding Hi-C maps entries
(M = logy (IF5/IFy) - the response). According to the authors, this relationship
captures relevant between-dataset biases. To further normalize the data, HiCcom-
pare estimates the function f(D) from MD relationship by the application of locally
weighted polynomial regression. Given f(D), normalized interaction frequencies (IF)
can be calculated according to following formulas:

log, (IF1D> log, (IF1p) + f(D)/2
log, (IF2D> — logy (IFap) — f(D)/2

In order to compare individual interactions, the normalized MD plot is constructed
and each value M; associated with pair of regions ¢ is centered and scaled by the
chromosome-wide mean M and standard deviation oj; to provide the normally dis-
tributed variable Z;:

M, — M
oM

Z; =

Finally, to test if the pair of regions 7 is significantly enriched or depleted in interac-
tions, a Z-test is performed. In the end, obtained p-values are adjusted for multiple



5.3. DiADeM Method

hypothesis testing.

SELFISH

Another approach based on comparing interaction neighborhoods was proposed
by |[AAL19|. The method called SELFISH uses the local self-similarity measure,
which was shown to outperform many classical image descriptors when searching for
similar patterns not sharing common image properties [SI07]. The main assumption
of the SELFISH model is as follows: if ¢,5 is a differential chromatin interaction
between contact maps A and B, then it should be accompanied by contact difference
at i,j as well as its surrounding area. Inspecting the neighborhood of i,j rather
than individual pixels should therefore reduce the risk of discovering single high
value differences, which are likely resulting from noise. To quantify the information
contained in neighborhood (impact region) of 4, j, the convolution of contact map A
and Gaussian filter with radius r; is calculated resulting in matrix G;i. Before G‘é
is obtained, the matrix A need to be normalized in order to remove contact decay
bias:

A(ij) — A(Z,]) — Md
0d

To examine various impact radii, i.e. the size of the neighborhood being affected,
Gﬁc is calculated with varying k. Finally, an estimate of influence, which ¢, j impose
on its surrounding area of size k can be quantified by a vector of values at pixel i, j
taken over every matrix Gy, : I' 4(i,j) = (G;f‘l (i,7), G;f; (4,7)5 ey G;ﬁl (7,7)). According
to the authors, the difference between I'; and I'4 can not be used to determine
whether a pixel is associated with significant change of contact intensity because of
the biases in the interaction frequencies. Instead, a first order derivative of I" is used
to compare the impact regions and mitigate the influence of biases:

ar .. . o .
%(7]7]7 k) ~ AF(Zaja k) - Grk+1(l7]) - Grk(%])
In the last step, to test if difference at ¢, j is significant, a corresponding p-value is

computed according to following formula:
P]X,B(ihj) =Pr (X > (AFA(Zajv k) - AFB(ivja ]{7)))

Here X ~ N(u,0) and both p and o are estimated from the distribution of AT'y —
ATl'p separately for each k. It is worth noting that in contrast to the FIND method,
SELFISH is able to manage comparisons of Hi-C experiments without replication.

5.3.
DiADeM Method

Evident correlations of interaction profiles described in section [5.1.2] suggests that
the majority of chromatin contact patterns exhibit high degree of similarity even
across different cell types. Consequently, only a small fraction of interactions can be
considered as relevant differential contacts. Those observations are the basis of the
DiADeM (Differential Analysis via Dependency Modeling) method, which assumes
that the prevalent portion of Hi-C contacts are non-differential and therefore may
be used to model biological variation.
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5.3.1| Diagonal Interaction Patterns

In order to investigate the relationship across interaction patterns of various Hi-C
datasets, we compared contact abundances between pairs of contact maps at respec-
tive regions. A simple method to study the dependency between two Hi-C profiles
would be to inspect paired interaction sets Dy, which relate a number of contacts in
matrix A versus B at every cell i, j:

Dy = {(aij,bij) | k =i — jl,ai; # 0,bi; # 0}

Close examination of paired interaction sets revealed linear relationship between in-
spected datasets for large range of genomic distances (Figure . We noted that
for multiple analyzed pairs of cell type specific datasets, the conditional variance of
the observed linear trend increased along with interaction growth as indicated by the
existence of funnel-like pattern. This phenomenon is referred to as heteroscedasticity
and is known to impede modeling of correlated data due to violation of the constant
variance assumption, which in turn prevents the application of a simple linear re-
gression technique. A common solution to model the linear relationships in presence
of heteroscedasticity is the application of the GLM framework.

Interestingly, a number of paired interactions seems to disobey the general pattern
described above. For example, the right-bottom panel on Figure|5.5|includes outlying
points, which indicate unusually large number of interactions in contact map B given
the number of interactions in matrix A. We consider this phenomenon as a proxy of
differential chromatin interaction at this stage.

Robust Regression

In order to effectively model the relationships described in the previous section,
two issues need to be properly taken care of: the existence of outliers and het-
eroscedasticity. The first problem can be remedied with robust regression, which
uses estimating methods resistant to the presence of unusual observations. The most
common among such methods uses M-estimators. The definition of M-estimator as
specified by |[HR81| is following:

Definition 7. Any estimate T}, defined by:

z": U (z;; 1))
=1

where V(zx;0) = %p(x; 0) and p is an arbitrary function is called an M-estimate (or
maximum likelihood type estimate).

The choice of p(z;0) = —log f(x;6) provides ordinary ML estimate. In case of
the simple linear model discussed so far an M-estimate of regression are defined as:

B= arg;ninp (nfjﬂ)> (5.1)

which leads to following estimating equation:

> iy (”(JB)> =0

i=1
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Figure 5.5. Relationship between interaction profiles of various pairs of Hi-C contact
maps at selected genomic distance. Each point represents a different pair of regions at
genomic distance (diagonal) k. The horizontal axis indicates a number of interactions
in contact map A while the vertical axis expresses contact abundance in matrix B.
Note the existence of outlying points (indicated with red circles), especially in NPC
vs ESC comparison, k = 20.

where: n(B) =1y —a:?,é is ¢-th residual and o is scale parameter, which can either be
an external estimate or estimated simultaneously. The usual assumptions regarding
p function are: p(r) is a non decreasing function of |r|, with p(0) = 0 and strictly
increasing for r > 0 where p(r) < p(co) [KS11]. The role of ¢ function is to weight
residuals and therefore reduce the influence of outliers on parameter estimates. In
general there are 2 types of ¢ functions:

e soft re-descending - residual weight decreases as r; value increases,

e hard re-descenders - once the value of residual exceeds some threshold its weight
equals zero.
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Alternative expression for the above estimating equation is as follows:
n
Z w,n(,@)m, =0
i=1

where: w; = ¥ (%ﬁ) / @) and usually it is solved by the application of It-
eratively Re-weighted Least Squares (IRLS) algorithm. The IRLS starts with OLS
estimates of 8(9) and proceeds by repeatedly improving the current estimate of 8(*) by
assigning smaller weights to more deviating observations. The procedure is repeated
until a convergence in terms of 8. Apart from estimating regression coefficients,
the IRLS algorithm is also used to determine outliers - the observations, which were
assigned zero weight.

The approach described above performs well when error terms are independent
and identically distributed. However, in the presence of heterscedasticity, it acts
poorly as the down-weighting of observations is done without prior consideration
of their conditional variance [SC88|. A solution to this problem was suggested by
|[KS11] who derived a novel SMDM estimator, which accounts for the existence of
outliers and heteroscedasticity at the same time. The SMDM-estimator determines
model parameters using a procedure consisting of following steps:

1. S-estimation,
2. M-estimation,
3. D-estimation,

4. M-estimation.

Informally, the S-estimator of regression is an estimate of 3 derived from a scale
statistic in an implicit way |[RY84]. More precisely, S-estimate of 3 is a minimizer of
a robust M-estimate of scale of the residuals, as follows [HR81|. For every value of
B, we estimate ¢(3) by solving:

1 :
Zp<7'z(:8)> -5
n 4 o
=1
for o, where 0 < § < 1 is a constant depending on the distribution of X. The

function p may not be the same as in equation but is usually from the same
family. The S-estimate of 3 is then defined as the value Bg, which minimizes &(3):

Bs = argmin 5(r(8))
8

6s =0 (r(Bs))

The application of S-estimate followed by M-estimate is referred to as MM-estimate.
The MM-estimates are defined as a local minimum of obtained using an iterative
procedure starting from S-estimate of regression ,ég and using g as scale parameter
[KS11].

Finally, the D-estimate refers to the novel scale estimator derived by [KS11] and
called Design Adaptive Scale Estimate. The scale parameter o is estimated by solving
following estimating equation for op:

n 2
2 T T
ZTZ-U} — K
—1 TiOD TiOD
1=
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where: w is a weighting function as before, x ensures Fisher consistency and 7; are
correction factors designed to reflect the heteroskedasticity of the distributions of
the residuals r;, which depends on the leverage of i-th observation h; and selected ¥
function. The distribution of residuals r; is unknown and therefore it is approximated
with von Mises expansion of § [KS11].

During the last step (M-estimate), a previously estimated scale parameter 6p is
plugged into in order to determine the ultimate 3. As this process is performed
with an IRLS algorithm, it is possible to obtain weights related with each point and
evaluate the outliers. After filtering out unusual observations, the remaining data
is used to fit the Negative Binomial regression that models the biological variability
devoid of differential signal.

Robust Negative Binomial GLM

An alternative for the approach described in Section [5.3.2] would be direct estima-
tion of model parameters using robust estimators. In 2014 Aeberhard and coworkers
derived M-estimators for Negative Binomial regression [ACH14]. The estimates for
B and ¢ may be obtained by solving 2 equations. First, a robust estimate of 3 is
obtained as a solution to:

n

> Unil8,6) = 3 |0V () St wl@e -~ a(B)| =0 (52
i=1 i=1 v

Here r; = (y;i— /uLi)Vfé (1) is Pearson Residual, w(x;) is the weight limiting influence
of possible leverage points and a;(3) = E[lﬁ(m)]vfé(“i)g—’#w(mi)wi is a correction
term, guaranteeing the Fisher consistency of the model. The robustness is provided
by the application of ¢ functions as described in Section [5.3.2] A common choice of
¥ includes Huber y-function defined as:

UHuber (7; ¢) = max(—c, min(e, 7))
and Tukey bi-weight function:

2 2

i) = {((r/c) Dl <e

0 Ir| > ¢
The parameter c is called the tuning constant and it need to be manually adjusted.
Various values of ¢ will lead to different ratios between efficiency of estimator and
its robustness against outliers. Usually, the optimal value for the tuning constant
is selected based on extensive simulation studies where model parameter values are
known in advance. In a study conducted by Aeberhard and coworkers, the authors
deduce ¢ = 4 as optimal trade-off between both mentioned properties of an estimator.
The analysis of performance for several examined 1 functions suggests that the choice
of Tukey bi-weight leads to the least biased results. Similar conclusions were also
reported in another study applying the model developed by Aeberhard and coworkers
to differential gene expression experiments |LL18|.

Equation [5.2] can be solved numerically by using the Fisher scoring method sim-
ilarly to ordinary ML estimates of Negative Binomial regression. According to the
authors, a unique solution is not guaranteed when using re-descending functions.
However, in practice, no issues were observed while using this class of ¢ function
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with MLE as initial parameter values. Having estimated B3 an estimate for ¢ may
be obtained as solution to following equation:

& & P(r

S Upi(8.9) =Z[ U 0, s, B (i) — bi(6)| = 0
i=1 i=1 !

where W, (yi, ;, 3, ¢) is the estimating equation of ordinary MLE specified in section

2.2.2 and b;j(¢) = E [M\I’QS(yi,wi,ﬁ, (j))w(:cl)] is another Fisher consistency term.

Ti

Additionally the authors derive an asymptotic distribution for parameter estimates,
so their confidence intervals may also be obtained.
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Figure 5.6. Significance maps. Each cell indicate the enrichment probability
(—logp). The cells above the main diagonal measure the enrichment of B with
respect to A while below the main diagonal are the enrichments of A versus B. For
better clarity, only a fraction of the chromosome is shown. a) IMR90 bootstrapped
data. b) IMR90 biological replicates data. ¢) IMR90 versus MSC. d) Same as in c,
but with annotated long-range differentially interacting regions.

DiADeM Model

The DiADeM method models decay relationships described in section The
main assumption of the model is that, diagonal-wise, contact abundances between
two analyzed contact maps exhibit significant correlation. Accordingly, differential
chromatin interactions are associated with points not fitting the observed linear
relationship rather than the largest absolute difference. Essentially, our method can
be summarized as a 3-step procedure:
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Figure 5.7. Abundances of different sizes of connected components determined on
significance maps across various pairs of contact maps. a) The vertical axis indicates
the number of connected components of a given size (i.e. containing certain number of
differential interactions) at specific pair of cells comparison between the two contact
maps (indicated on the horizontal axis). The connected component of size equal to
1 was removed for clarity. b) Similar to a, but now the vertical axis corresponds to
connected component size times the number of connected components of this size
detected in a specific comparison.



Chapter 5. Hi-C Differential Analysis

1. aggregate paired interaction sets based on their bivariate distribution similarity,
2. fit Negative Binomial regression for each aggregated paired interaction set,

3. given the model, determine the significance of interaction difference for every
pair of regions.

Step number 1 aims to determine sets 751, = Dy UDgy1 U...UD; such that the
bivariate distributions of paired interaction sets D;cy .. ;) are sufficiently similar to
each other. More precisely, the similarity of 2 n- and m-element samples X and Y
obtained from multivariate distributions F'x and Fy can be formulated in terms of
the following hypothesis test:

Ho: Fx = Fy vs Hy: Fix # Fy

Correspondingly, the rejection of the null hypothesis occurs for the samples that
are not sufficiently similar. Testing for equality of multivariate distributions is a
well studied problem in statistics. In particular, for a univariate setting, numer-
ous tests are available. For example, the very popular Kolmogorov-Smirnov test or
the Wald-Wolfowitz runs test. However, their generalizations to higher dimensions
are nontrivial due to the fact that there is no obvious extension of test statistic.
An interesting approach for calculating an analogue of runs statistic in multivariate
samples was suggested by [FR79|. Their method relies on computing the minimum
spanning tree (MST) of pooled sample points and removing edges connecting nodes
assigned to different samples resulting in test statistic R - the number of disjoint
subtrees. Unfortunately, the devised test is not distribution-free as the null distribu-
tion of R depends on structural features of MST. An improvement was was made by
[Sch86|, who proposed to count the number of occurrences, where the point and its
k-nearest neighbors belong to the same sample. The resulting nearest neighbor test
is distribution-free, although the exact distribution of the test statistic is not known
and only an asymptotic form was given. A remarkable work of |[Ros05| provided an
exact, distribution-free test based on an inter-point distance. In order to compute
the test statistic, the inter-point distances are calculated and used to construct the
optimal non-bipartite matching, i.e. a matching, which minimizes the sum of within-
pair distances. Then, the number of cross-matches i.e. different sample pairs is used
as test statistic. The run time of finding the optimum non-bipartite matching is
O(N3) where N is the total number of points across two tested paired interaction
sets. The density function of this test statistic includes multiple factorial terms mak-
ing the computations of cdf infeasible for large number of observations. In practice,
these two issues turn out to make this statistic unusable given the usual sizes of
Hi-C matrices. For this reason and also the availability of software implementation,
we decided to choose another test also based on inter-point distances [SR-+04]. Its
related test statistic is called energy distance (or E-statistic) and can be calculated
as:
n

nm [ 2 - 1 =
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In the above formula, X,Y are n, m-element samples from multivariate distributions
Fx, Fy, respectively. High values of E-statistic indicate larger evidence against the
null hypothesis. The E-statistic test is distribution free; however, it is not exact, so
the null distribution is obtained by drawing random permutations of pooled samples
[SR+04].

In order to reduce the computational burden of testing the equality of paired
interaction set distributions, we adopted the following simplification. Instead of
testing [ — k sample hypothesis Hg: Fy, = F11 = ... = F} a separate test is performed
for each consecutive i starting at k£ + 1 until Hg: F = F; may be rejected, which
gives pool p including diagonals k to [ = ¢ — 1. This procedure is justified by the
existence of a contact decay effect as for significant majority of diagonals i < j < k
if D; will be substantially shifted with respect to D; then so will be Dj,. The main
reason for the grouping procedure is to improve the accuracy of the model estimation
process in a subsequent step.

Having grouped paired interaction sets, Negative Binomial regression coefficients
are estimated separately for each D,. As discussed in section in order to
properly estimate the model, outlying observations need to be managed carefully.
One solution is to use IRLS to determine unusual points and discard them. Another
method would be to use robust NB GLM described in section [5.3.3] After obtaining
parameter estimates (/3’1,, ngﬁp), the significance of enrichment at certain location 4, j
in matrix B with respect to the same location in A is calculated according to the
formula:

p=1— P(Y < b;j), where: Y ~ NB(Bpaijvqu)

The resulting p-values are then corrected for multiple hypothesis testing using the
Benjamini-Hochberg procedure and resulting g-values can be shown on significance
maps (figure [5.6h-c) [BH95]. The results of DiADeM on different cell line Hi-C
datasets (figure [5.6) can be contrasted with bootstrap replicates data (figure [5.6j)
or biological replicates of the same cell data (figure [5.6p). The latter 2 datasets are
expected to exhibit a much weaker differential signal than different cell types, which
is reflected in significance maps.

m Long Range Differential Interactions

The model presented so far determines differential significance of individual pairs
of regions 7, 7 between two contact maps. However, inspection of significance maps of
different cell types reveal that highly significant pairs of loci tend to gather in larger
groups of cells. In contrast, the number and size of such clusters in bootstrapped
or replicate data comparisons seems to be much smaller. In order to increase the
confidence in the detection of biologically relevant differential interactions, DiADeM
performs a simple procedure for aggregation of significant paired interactions, which
allow to report larger clumps of significant cells.

When the p-value threshold is specified, each cell of a significance map can be
labeled as either significant or not, creating a binary matrix. Such matrix can be
easily converted to an incidence list of undirected graph G, whose vertices correspond
to consecutive bins of chromatin fiber and edges constitute differential interactions.
Therefore, the problem of detecting clusters of significant bin pairs reduces to finding
connected components of G. When G is undirected, as is the case, it suffices to
traverse through each non-visited vertex and recursively apply Depth First Search
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(DFS) or Breadth First Search (BFS) algorithm in order to determine connected
components (see Algorithm . An example outcome of the described algorithm is
presented on Figure [5.6(, where components containing at least 5 significant pixels
were shown.

After the aggregation of significant cells, the number and size of resulting clus-
ters can be compared across datasets presented on figure [5.6, Figure illustrate
the abundance of various cluster sizes while figure depicts the total number
of significant cells inside each cluster size at every type of datasets. Notably, the
differences are very pronounced and indicate that different cell lines data contain a
higher number of clusters as well as their size is larger. This observation might be
helpful in order to determine the minimum size of biologically relevant cluster.

Algorithm 1 Connected Components Search
Require: Incidence list of G: L
procedure DFS(V, i)
C+—o > connected component set
if V[i] then
Vi] + false
C+ CuU{i}
end if
for j € L[i] do
if V[j] then
C + CUDFS(V,j)
end if
end for
return C
end procedure

VI[1,...,n] < true > list of unvisited vertices
I+ ] > list of connected component sets
forie {1,..,n} do
if V[i] then
C + DFS(V,1)
append(l, C) > append set C' as the last element of [
end if
end for
return [

Comparison with Existing Approaches

In order to benchmark DiADeM’s performance, it was tested on simulated data
and the results were compared with those produced by tools described in section
(.2l First, some of the mentioned methods used the simulation procedure developed
in FIND to produce artificial Hi-C data and assess the classification quality. This
type of simulated data, although employed here, turned out to not resemble real Hi-C
datasets in terms of contact coverage and decay (Figure. Therefore, an additional
simulation protocol based on DiADeM model was suggested. The approach proposed
here, is to take a raw interaction set (Hi-C matrix) as input and a DiIADeM model
trained on a selected pair of contact maps and produce a corresponding replicate
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interaction set. Afterwards, artificial differential interactions are introduced into
paired contacts set by multiplying randomly selected regions in either set by the
specified fold change. Every simulated dataset was produced in 2 replicates. Some
of the discussed tools don’t rely on replication and in such cases, the replicates were
pooled. As the simulated dataset is highly unbalanced, i.e. the number of differential
interactions comprise less then 10% of all contacts, the Precision-Recall performance
metric is preferred over the ROC curve . The simulation was repeated 20 times
and for each simulated dataset the area under Precision-Recall curve (PRAUC) was
used as a final measure of performance.

=)
S
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mean number of interactions

1 10 100 1000
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dataset © IMR90 e simulated DiADeM ® simulated FIND

Figure 5.8. The comparison of contact decays for real and 2 types of simulated Hi-
C datasets. The FIND-simulated contact decay is highly different from the IMR90
contact decay although it was produced from this Hi-C dataset. In contrast DiADeM-
simulated contact decay is similar to IMR90.

The results illustrated in Figure [5.9] show that for most types of simulated data,
as well as fold change values, DiADeM performs better than the other methods as
indicated by higher PRAUC values. For simulated datasets obtained from the FIND
method, the performance of DiADeM is similar to multiHiCcompare. In case of a
low fold change value, all tools perform poorly although FIND and multiHiCcompare
(FIND simulated data) or SELFISH (DiADeM simulated data) exhibit better results.

5.4.
Conclusions

This chapter discusses the influence of normalization on the differential Hi-C analy-
sis, as well as the common approaches for finding Hi-C differential contacts. Firstly,
the results presented here indicate that normalization methods can impact such anal-
ysis leading to systematic biases and their direction may depend upon the choice of
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Figure 5.9. The comparison of performance of various methods for Hi-C differential
interactions detection measured with area under Precision-Recall curves. Rows rep-
resents the dispersion between pairs of datasets while columns indicate fold-change
between the introduced differential interactions.

normalization technique and genomic distance. Second, a new method for determina-
tion of Hi-C differential interactions is suggested. The new method called DiADeM is
based on modeling the similarity of semi-diagonal interaction profiles between pairs
of Hi-C datasets. Despite the fact that such relationship only exists at ranges of
close genomic distances, it accounts for most of the contact map interactions. The
observations we describe here, which are the basis of the DiADeM model, seem to
be representative across various pairs of Hi-C datasets.

Finally, the performance of the new method was assessed using various datasets.
The comparison of results obtained from bootstrapped, single cell and different cell
line replicates, confirm the model’s ability to discriminate between random and rel-
evant biological variation. Comprehensive benchmarks of DiADeM on simulated
datasets together with other commonly available approaches for Hi-C differential
analysis indicate that DiADeM performs well across a wide range of conditions.
Additionally, the new method presented here is equipped with a procedure for aggre-
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gation of significant differential interactions, which may facilitate functional analysis,
for example during gene expression annotation. The results described in this chapter

are described in preprint [ZW19b].



CHAPTER O
Summary

This thesis presents several approaches for the comparative analysis of chromatin
architecture using Hi-C contact matrices. We describe current methods used to
analyze and compare Hi-C data, discuss their related limitations as well as derive
some new results.

In Chapter|3] Section [3.4]we present results from our study conducted in collabo-
ration with biologists from Kaikkonen group. We show the evidence of a relationship
between changes in chromatin interactions and differential gene expression as well
as epigenetic marks. The results we obtained were published in [Nis+17]. The sim-
ple approach we used for studying contact differences became a motivation for the
development of more specific methods, which are introduced in Chapters [4 and [5}

Chapter [4 discusses the problem of comparing domain segmentations of a chro-
mosome. The main result contained therein includes the development of a measure
(the BP score) for studying the discrepancies in alignment between two domain par-
titionings. Moreover, we show that the BP score satisfies metric properties and
performs competitively against alternative approaches. Additionally, we report two
measures for the assesment of local chromosomal reorganization. Both theoretical
and applied findings were published in [ZW19a].

Finally, in Chapter [5| we introduce the DiADeM model for the discovery of long-
range differential chromatin interactions. The method we suggest proposes an intu-
itive definition of differential interaction and is shown to perform well against mul-
tiple existing approaches. Our model is described in a manuscript available on-line
|[ZW19b|, which is currently in peer-review process.

In summary, the methods developed within this dissertation offer a potential to
explore unusual structural features of chromatin during Hi-C comparative analysis,
which have the potential to shed some light on unknown regulatory mechanisms
mediated by alterations in genome conformation. More functional studies on high
quality datasets would be required to determine how accurate our methods are in
discovering the relevant connections between chromatin structure and regulation.
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