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Introduction

Regular languages
Regular languages are great. One reason for this is their remarkable definitional
robustness: They have many substantially different definitions, all of which turn
out to be equivalent. Examples include one-way deterministic finite automata,
two-way deterministic finite automata, finite monoids and mso logic on words.
(Other well-known definitions include regular expressions and nondeterministic
automata, but we do not mention them because they do not fit the narrative of
this thesis.)

Apart from being aesthetically pleasing, having so many equivalent defini-
tions can be used to simplify proofs and algorithms. For example, the simplest
way to test a regular language, for nonemptiness, is to look at the language’s au-
tomaton representation and check if some accepting state is reachable. Thanks
to the equivalence of the definitions, this gives us an algorithm for every other
representation of a regular language. On the other hand, the declarative syntax
of mso formulas is usually more convenient for defining properties than the op-
erational, low-level syntax of automata. Also monoids and two-way automata
have their advantages – e.g. monoids play an important role in the renowned
Krohn-Rhodes theorem3, and two-way automata are very useful when defining
regular transductions4.

These desirable properties of regular languages have inspired an effort to ex-
tend them to object such as trees, graphs or words over infinite alphabets. This
line of research has already seen many important results: for example, Büchi
showed that automata and mso coincide for ω-words, and Rabin showed the
same for infinite trees. More recent examples include work on regular languages
of graphs5 or regular languages over abstract monads6.

The direction relevant to this thesis is the study of infinite alphabets. This
3See [KR65, Equation 2.2] or Theorem 7.
4See [EH01] or Item 3 in the introduction to Chapter 3.
5See [CE12].
6See [Boj20].
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line of research, started Kaminski and Francez in the paper [KF94], has proved
itself to be challenging. The study of regularity over infinite alphabets can be
divided into three phases:

1. Register automata. This phase was initiated by [KF94]. The idea is to
equip finite automata with registers so that they can store the input let-
ters and compare them with each other7. (In this model, letters from the
infinite alphabet can only be compared for equality; this restriction will
be true for all models discussed in this thesis.) However, it was quickly8
discovered that most of the models of language recognizers over infinite al-
phabets are pairwise inequivalent, with only trivial inclusions being valid.
In particular one-way register automata, two-way register automata, orbit-
finite monoids9, and mso∼ logic10 on words are pairwise nonequivalent.
Moreover, already two of those models – two-way register automata and
mso∼ – have undecidable emptiness11. Those results oriented the first
phase towards finding possibly strongest models that still have decidable
emptiness. Examples of such models include data automata12 and alter-
nating automata with one register13. For more details about the first
phase, see [Boj19, Part 1].

2. Orbit-finite automata. This second phase was initiated by [Boj13] and
[LKB14], inspired by work on nominal sets [Pit13]. The general goal
of this phase is to build a definitional framework, in which the vari-
ous existing automata models for infinite alphabets become simply the
same as the classical models for finite alphabets, except with new notions
of finite sets and functions between them. The appropriate framework
turned out to be the already existing14 category of nominal sets with
finitely supported functions (denoted as X →fs Y ), but enhanced with a
novel notion of oribit-finiteness. Notable successes of this phase include
Myhill-Nerode theorem and Angluin-style learning for deterministic orbit-
finite automata15. More recent results include development of a theory of
orbit-finite-dimensional vector spaces and decidability for equivalence of
weighted register automata16. For more details about the second phase,
see [Boj19, Sections 3 and 5].

7See Section 1.1 for details.
8Some of the inequivalence results are already present in [KF94], see [NSV04] for a com-

plete overview. A few of them are also presented in Section 1.4.1 of this thesis.
9A natural extension of finite monoids for infinite alphabets. See [Boj13, Defnition 3.1].

10A natural extension of the mso logic for infinite alphabets. See [NSV04, Section 2.4].
11For proof for two-way register automata see Section 1.4.1.3 or [NSV04, Theorem 5.3].

For mso∼, see [NSV04, Theorem 3.2 and Theorem 5.1] combined with the fact that mso∼

closed under compositions.
12See [BDM+11] or [Boj19, Section 2.1].
13See [DL09], [JL11], and [Boj19, Section 1.3].
14See [Pit13], or Section 1.2 for details and more bibliographical notes.
15See [LKB14, Theorem 5.2] and [MSS+17].
16See [BKM21] for details on both of those results.
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3. Single-use automata. Finally (what I hope can be described as) the
third phase of studies of infinite alphabets was started by [Ste18] and
[BS20] and is further developed in this thesis (with some of the ideas
traceable back to [Boj13] and [CLP15]). The key observation is that we
can recover the definitional robustness of regular languages by introduc-
ing the single-use restriction. In the setting of register automata, this
restriction amounts to the requirement that every read access to a regis-
ter should have the side effect of destroying the register’s value17. In a
more abstract setting, the single-use restriction means replacing finitely
supported functions (X →fs Y ) with single-use functions18 (denoted as
X ( Y ). Under the single-use restriction, one recovers many of the equiv-
alences that were true for finite alphabets but failed for infinite alphabets,
including the equivalence of the following models: one-way and two-way
automata, orbit-finite monoids, and a version of mso∼19, which is the first
such four-way equivalence result for infinite alphabets. Presenting and ex-
tending the research about the third phase is the main contribution of this
thesis.

Transductions
Another important extension of the theory of regular languages is the study
of transductions, i.e. functions of type Σ∗ → Γ∗. The theory of transducers
is mainly interested in transduction classes of low complexity – a good litmus
test is the decidability of the equivalence problem (i.e. given two transducers
f and g from a given class, is it possible to check if f(w) = g(w) for every w).
The classification of transductions is finer than the one of languages. Relevant
classes include:

Mealy machines ⊆ Letter-to-letter
rational functions ⊆ Regular functions

Below, we present a brief description of each of these classes. For more details,
see the introduction to Chapter 3.

Mealy machines20 are a version of DFAs where all states are accepting, and
every edge is additionally labelled by an output letter. Each such machine
implements a length-preserving function, where every input position is replaced

17See Section 2.1 for details.
18The notion of single-use functions is a novel contribution of this thesis. See Defintion 7.
19Orbit-finite monoids were introduced in [Boj13]. Rigidly-guarded mso∼ was introduced

and shown to be equivalent to orbit-finite monoids in [CLP15]. One-way and two-way single-
use register automata were introduced in [Ste18], and were shown to be equivalent to each
other and to orbit-finite monoids in [BS20]. The definitions and the equivalence proof for
orbit-finite monoids, single-use one-way automata and single-use two-way automata can also
be found in this thesis. See Section 1.4.2, Definition 11, Definition 12, and Theorem 6. For a
novel topological perspective see [UMB23].

20See [Mea55] or Item 1 in the introduction to Chapter 3.
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by the output label of the corresponding transition. Here is an example of a
Mealy machine that implements the following function:

“Change every second a to b” ∈ {a, b}∗ → {a, b}∗

Rational functions21 are all functions that can be expressed as a composition
of a left-to-right Mealy machine and a right-to-left Mealy machine. Equivalent
definitions include unambiguous nondeterministic Mealy machines and Mealy
machines with a regular look-ahead. Here is an example of an unambiguous
nondeterministic Mealy machine that implements the following function:

“Swap the first and the last letter” ∈ {a, b}∗ → {a, b}∗

Regular functions22 are all functions that can be implemented by two-way
transducers, i.e. a version of two-way automata, where every transition may be
additionally labelled with an output letter. Regular functions exhibit a simi-
lar definitional robustness as regular languages. Equivalent definitions include
mso-transductions23, string streaming transducers24, regular expressions with
output25, and many others. Possibly for this reason, they have been the sub-
ject of significant research attention in recent years.26 Here is an example of a
two-way transducer that implements the following regular function:

“Reverse the input word” ∈ {a, b}∗ → {a, b}∗

21See [Eil74] or Item 2 in the introduction to Chapter 3.
22See [EH01] Item 3 in the introduction to Chapter 3.
23See [Cou94, Section 2].
24See [AČe10, Section 3] or Section 4.1.2.
25See [AFR14, Theorems 13 and 15].
26For examples, see [DFJL17], [DH19], [CHL+19], [NDRP20], or [BNê23].
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Without a robust theory of regularity, one cannot hope for a good theory
of transducers. In particular, deciding the equivalence of two transducers is at
least as hard as the emptiness problem for their underlying automaton model.
For example, the equivalence problem for (multiple-use) two-way register trans-
ducers is undecidable. In Chapters 3 and 4 of this thesis, we show that under
the single-use restriction, one recovers a robust theory of transducers for infinite
alphabets. The main results are as follows.

In Chapter 3, we define and study single-use register Mealy machines. In
particular, we show that they:

1. admit a Krohn-Rhodes-like decomposition27; and

2. have an equivalent algebraic definition28.

The Krohn-Rhodes decomposition theorem for single-use Mealy machine is the
main technical contribution of this thesis (it constitutes around one fourth of its
total volume). In Chapter 3, we also define an infinite-alphabet version of the
rational functions, show that it also admits Krohn-Rhodes-like decompositions,
and we develop a similar algebraic theory29 for them.

Finally, in Chapter 4, we present the theory of single-use two-way transduc-
ers. We prove that the deterministic two-way single-use register30:

1. also admit a Krohn-Rhodes-like decomposition;

2. are closed under compositions;

3. have decidable equivalence;

4. are equivalent to the single-use variant of copyless SSTs over infinite al-
phabets (modification of SSTs from [AČ11, Section 2.2]);

5. are equivalent to the infinite alphabet variant of regular list functions
(modification of [BDK18, Section 6]).

27This was initially shown in [BS20]. In this thesis this is Theorem 8.
28This is a novel contribution of this thesis. See Section 3.3.
29See Section 3.7.
30All of the following results were initially shown in [BS20].
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We believe that the results presented in this thesis justify the name regu-
lar languages over infinite alphabets for the class of languages recognized by
single-use deterministic register automata, and the name regular functions over
infinite alphabets for the class of functions definable by single-use two-way reg-
ister transducers.

Contributions
This thesis is based on a single publication [BS20], with the objective of deliver-
ing its results in a cohesive narrative. Additionally, this thesis contains two novel
(unpublished before) contributions: The first one is defining single-use functions
and using them to simplify the definitions of different models of single-use au-
tomata and transducers. The second one is developing the algebraic theory
for single-use Mealy machines and single-use rational functions, and using this
theory to simplify the proofs of the Krohn-Rhodes decomposition theorems for
single-use Mealy machines and single-use two-way transducers. The results pre-
sented in this thesis are an outcome of a close collaboration with my advisor
Mikołaj Bojańczyk, and it is mostly impossible to partition the contributions
individually. However, for the sake of strengthening my Ph.D. application, it
might be worth noting that the original idea for the single-use restriction, which
initiated this line of research, was mine.
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Chapter 1

Infinite alphabets

This chapter serves two purposes: The first purpose is to put this thesis in
context. The chapter presents some previously studied models of computation
over infinite alphabets. The second purpose is to lay out foundations for the
upcoming chapters. We present the theory of sets with atoms and orbit finite-
ness, which is the modern abstract vocabulary for discussing infinite alphabets.
In the chapter we follow the narrative of [Boj19] – we start with a rather con-
crete model of deterministic register automata and we abstract away towards
deterministic orbit-finite automata. Then, we prove that the two models are
equivalent. Although this proof is quite technical, we include it the thesis, be-
cause it illustrates some useful techniques for working with sets with atoms.
Finally, in the last section we define some of the well-studied variants of regis-
ter automata (including orbit-finite monoids), and we compare their expressive
powers.

1.1 Deterministic register automata
We start describing the model of deterministic register automata with some
intuition and examples. Let us fix a countably infinite alphabet and call it A.
Introducing infinite sets to automata theory is dangerous: infinite alphabets can
only be processed using infinite state spaces, and automata with unrestricted
infinite state spaces can recognize all possible languages. To avoid this, we say
that elements of A can only be compared for equality. This means that we are
only going to consider languages that can be defined in terms of equality, for
example:

1. {w ∈ A∗ | the first letter of w appears again in w}

2. {w ∈ A∗ | the first and the last letter of w are equal}

3. {w ∈ A∗ | there are at most three different letters in w}.

14



(For now, we only talk about the intuition, and we do not define formally what it
means for a language to be definable only in terms of equality.) A deterministic
register automaton is a model that can recognize some languages of this type,
including the three example languages from the list. It has a finite set of control
states and a finite set of registers, in which it stores some of the letters it has
seen in the input word. It can compare the values of the registers with each
other and with the input letter. Here are two examples:

Example 1. Let us describe a deterministic register automaton, that recognizes
the language.

“The first letter appears again” ⊆ A∗

The automaton has one register and 3 control states: {qstart, qcheck, qfound}. Let
us go through the automaton’s run on the word 1 2 3 2 1 3 ∈ A∗ (we use natural
numbers to denote elements of A). Here is the initial configuration:

The automaton starts in qstart with an empty register (represented in the
picture as the empty box). In its first step, the automaton stores the first letter
in the register, sets its control state to qcheck, and moves forward:

In the next step it compares the register value with the current letter. Since
they are different, it simply moves forward:

The same transition happens two more times:
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Now, when the automaton compares the current letter with the register
value, it finds out that they are equal. It has found a reappearance of the initial
letter, so it sets its state to qfound and proceeds to the next letter.

In the state qfound the automaton ignores the input and keeps moving forward
until the end of the word.

At the end of the word, the automaton accepts the input word if it is in the
state qfound. /

Example 2. The automaton that recognizes the language

“There at most 3 letters in the word” ⊆ A∗

has three registers and four control states (q0, q1, q2, q3, and q>3). After reading
some part of the input, the automaton remembers the letters it has already seen
(wihtout repretitions) unless it has already seen more than 3 of them. Here is
an example run of the automaton:
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Now, let us discuss the transition function of a deterministic register automa-
ton. The contents of the automaton’s memory can be described as an element
of the following set:

Q︸︷︷︸
automatons’s control state

× (A +⊥)R︸ ︷︷ ︸
contents of each register, where
⊥ represents empty registers

This means that the transition function should have the following type:

Q× (A +⊥)R︸ ︷︷ ︸
current memory state

× A︸︷︷︸
current letter

→ Q× (A +⊥)R︸ ︷︷ ︸
updated memory state

As we have mentioned before, we cannot allow all transition function of this
type, or else a deterministic register automaton would become an unrestricted
infinite state machine (and such machines can recognize all languages, including
“the length of the word is prime”, and “the length of the word encodes a halting
Turing machine”). In order to avoid that, we restrict the power of the tran-
sition function. The intuition behind this restriction is that the only allowed
operations on registers should be:

1. comparing for equality two register values;

2. comparing for equality a register value with the input letter; and

3. saving the input letter in one of the registers.

We describe three ways of formalizing this restriction, and prove that they are
equivalent:

1. Syntactic equivariance For this definition we provide syntax for specify-
ing the transition function – every function that can be specified in this
syntax is syntactically equivariant. A transition function is specified as a
list of conditional commands, each of the following form:

list of conditions→ list of actions
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To apply the transition, the automaton goes through the list of conditional
comments (top-down), finds the first command in which every condition is
satisfied, and performs all the actions from that command. (To make this a
total function, we say that if there is no command whose all conditions are
satisfied, then the automaton stays in the same configuration.) Conditions
and actions are of the following types (each condition can appear both with
= and with 6=):

Example Description
r1 = r2 Compare two register values
r2 6= input Compare a register value with the current input letter
r5 = ⊥ Check if a register is empty
state = q5 Check that the automaton is in a particular state

Example Description
r2 := input Save the current letter to a register
r1 := r3 Copy a register value into another register.
swap(r2, r4) Swaps the contents of two registers.
r5 := ⊥ Clear the contents of a register
state := q3 Update the state of the automaton

2. Semantic equivariance The intuition behind this definition is that the
valid transition functions are the ones that do not discriminate between
atoms i.e. the ones that commute with permutations of atoms. To express
this formally, we have to extend atom permutations (A → A) to act on
the set of all memory states of a register automaton, i.e. on the set:

Q× (A +⊥)R

We do it in a natural way, by applying the permutation to every register
value, leaving the control state and the empty registers unchanged. Here
is an example of an action of π that swaps atoms 3 and 7 (and does not
touch other atoms):

We can naturally extend this action to the domain of the transition func-
tion:

(Q× (A +⊥)R)× A
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Finally, we say that a transition function δ is semantically equivariant if
for every atom permutation π and for every x:

δ(π(x)) = π(δ(x))

3. Haskell-style equivariance In this definition, we use Haskell’s type sys-
tem. The key idea is to encode A as the polymorphic type:

Eq a ⇒ a

We continue by encoding the finite setsR = {r1, . . . , rk} andQ = {q1, . . . , qn}
as variant types, explicitly enumerating all their elements:

type Q = q1 | q2 | . . . | qn

type R = r1 | r2 | . . . | rk
Then, we encode a configuration of a register automaton as:

Eq a⇒ (Q , R→ Maybe a)

Finally, we define the valid transition functions to be the Haskell-definable
total functions of the following type:

Eq a ⇒ (Q, R→ Maybe a)→ a→ (Q, R→ Maybe a)

We prove that those definitions are all equivalent, starting with equivalence
between semantic and syntactic equivariances. They are versions of definitions
from [Boj19, Section 1.1] adapted for transition functions (original definitions
work with transition relations), so this proof is very similar to the proof of
Lemma 1.3 from [Boj19]:

Syntactic equivariance ⇒ Semantic equivariance: Notice that apply-
ing atom permutations to an element of the domain (i.e. (Q× (A +⊥)R)× A)
preserves all conditions from the syntactic definition. This means that x and
π(x) will be dispatched to the same conditional command. Also, all actions only
move atoms around, so they commute with atom permutations.

Semantic equivariance ⇒ Syntactic equivariance: In this proof we
look into the structure of the domains of transition functions. We say that two
elements of (Q× (A +⊥)R)× A are in the same orbit if they differ only by an
atom permutation. Formally, we define an orbit of x, to be the following set:

{π(x) |π is an atom permutation}

Notice, that being in the same orbit is an equivalence relation – two orbits are
either equal or disjoint. It is not hard to see that two elements of the domain
belong to the same orbit, if and only if every condition from the definition of
syntactic equivariance is satisfied either in both of them or in none of them.
There are only finitely many of those conditions, so the following two claims are
consequences of this observation:
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Claim 1. There are finitely many orbits in (Q× (A +⊥)R)× A.

Claim 2. For every orbit O ⊆ (Q × (A + ⊥)R), there is a list of conditions,
such that an element belongs to O, if and only if it satisfies all the conditions
from the list.

We finish the proof by showing that we can use actions from the syntactic
definition to implement the transition function for each orbit:

Claim 3. For every orbit, there is a universal sequence of actions, that trans-
forms every x in that orbit into δ(x).

Proof. We start by showing that there is a sequence of actions that transforms
some x from the orbit into π(x). Take some x. The actions can modify the
state, clear the registers, and move the atoms around, so the only difficulty is to
show that every atom that appears in δ(x) also appears in x. Assume towards
a contradiction that there exists a ∈ A that appears in δ(x), but not in x. Let
π be an atom permutation that swaps a with a fresh atom (i.e. an atom that
appears neither in x nor in δ(x)) and does not touch other atoms. This means
that:

π(x) = x, but π(δ(x)) 6= δ(x), so δ(π(x)) 6= π(δ(x))

This contradicts the assumption that δ is semantically equivariant. It follows
that there exists a sequence of actions that transforms x into δ(x). Call it aδ,
and let us prove that it is universal, i.e. that for every x′ from the orbit of x:

δ(x′) = aδ(x
′)

If x and x′ are in the same orbit, then x′ = π(x), for some π. The function δ is
semantically equivariant, so:

δ(x′) = π(δ(x))

By definition of aδ:
π(δ(x)) = π(aδ(x))

Notice that every individual action commutes with atom permutations. This
means that aδ, which a composition of individual actions, also commutes with
atom permutations:

π(aδ(x)) = aδ(π(x))

Finally, since x = π(x′):
aδ(π(x)) = aδ(x

′)

Syntactic equivariance ⇒ Haskell-style equivariance: This implica-
tion is immediate – the syntax of syntactically equivariant functions can be
directly translated into Haskell.

Haskell-style equivariance ⇒ Semantic equivariance: This implica-
tion follows (for free) from [Wad89, Section 3.4].
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1.2 Sets with atoms
In this section, we introduce the abstract notion of sets with atoms. Intuitively,
they are sets whose element can store a finite number of atoms. One example
of a set with atoms, that we have already seen is:

Q× (A +⊥)R

Before we start, we include a short bibliographical note: Sets with atoms
were first studied by Fraenkel in 1920, and then by Mostowski in the 1930s. Both
of those authors studied them as potential alternative models of set theory, which
do not admit the axiom of choice. In computer science, they were rediscovered
(under the name of nominal sets) by Gabbay and Pits in [GP02] who consider
their applications to semantics. In the context of formal language theory, they
were first studied by Bojańczyk in [Boj13] and by Bojańczyk, Klin and Lasota
in [LKB14]. This section is mainly based on [Boj19, Chapter 2] and on [Pit13,
Section 1, 2, and 5].

1.2.1 Action of atoms permutations and its supports
Semantic equivariance was defined only in terms of the action of atom permu-
tations on the set Q × (A + ⊥)R. This means that we could define semantic
equivariance for a function X → Y , as long as we know that both X and Y are
equipped with an action of the group of atom permutations. Another important
property of Q×(A+⊥)R is that each of its elements contains only finitely many
atoms. This can be abstractly defined in terms of supports:

Definition 1. Let X be a set equipped with an action of the group of atom
permutations. We say that a subset of atoms α ⊆ A supports an element x ∈ X,
if for every permutation π:

for every a∈α,
π(a)=a ⇒ π(x) = x

We say that x is equivariant, if it is supported by the empty set. /

For example, the element (1, 2, 1) ∈ A3 (equipped with the natural action)
is supported by sets {1, 2} and {1, 2, 3}, but not by {1}. More generally, every
element (x, y, z) ∈ A3 is supported by the finite set {x, y, z}.

Definition 2. A set with atoms is a set equipped with an action of atom
permutations such that all its elements have finite supports. /

For example, the set
Q× (A +⊥)R

is a set with atoms, as long as R is finite. This is because every element of
the set is supported by the set of at most |R| atoms. Another example of set
with atoms is the set of all finite words over atoms i.e. A∗. This is because
every word has a support no bigger than the word’s length. On the other hand,
the set of all subsets of atoms P (A) is not finitely supported. This is because
elements of P (A) that are neither finite nor cofinite have infinite supports:
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Lemma 1. A subset X ⊆ A is finitely supported, if and only if either X or
(A−X) is finite.

Proof. Take a subset of atoms X, and its potential finite support α. An α-
permutation π modifies X (meaning that π(X) 6= X), if and only if π transforms
some atom from X into an atom from outside of X. This is only prevented if α
contains all elements of X or all elements from A −X. This is possible if and
only if one of those sets is finite.

It follows that sets with atoms are not closed under the powersets (i.e. P (X)
might not be a set with atoms even if X is). Instead, we define Pfs(X), which
is the set of all finitely supported subsets of X. For example, Pfs(A) is the set
of all finite and cofinite subsets of A. It is worth pointing out that Pfs(X) is
usually different from the set of all finite and cofinite subsets of X. For example,
the set {(x, 4) | x ∈ A} belongs to Pfs(A2), and it is neither finite nor cofinite.
It is not hard to see that if X is a set with atoms, then so is Pfs(X).

Notice that equivariant subsets of sets with atoms are sets with atoms them-
selves (with permutation action inherited from the superset). Note that this is
only true for equivariant subsets: consider {7, 8} – a finitely supported subset
of A. It is very easy to find a π, for which π(7) 6∈ {7, 8}. This means that the
permutation action inherited from the superset (i.e. A) is not valid action for
the set {7, 8}.

Another class of sets with atoms are the atomless sets, which are sets equipped
with the trivial action:

π(x) = x for every π

Every element of an atomless set is equivariant.

1.2.1.1 The finitely supported relations and functions

Sets with atoms are closed under many classical operations, including the prod-
uct:

Lemma 2. If X and Y are sets with atoms, then so is X×Y , with the following
permutation action:

π((x, y)) = (π(x), π(y))

Proof. It is easy to see that, if x is supported by α and y is supported by β,
then (x, y) is supported by α ∪ β. (Note that the lemma does not extend to
infinite products.)

A finitely supported relation between two sets with atoms X and Y is a
finitely supported subset of X × Y , i.e. an element of Pfs(X × Y ). This means
that the permutation action on relations is defined as follows:

x (π∼) y
def⇐⇒ π(x) ∼ π(y)
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Sets with atoms are closed under equivariant quotients: Let (∼) ⊆ X×X be an
equivariant equivalence relation, then X/∼ is a set with atoms. Its permutation
action defined as follows:

π ([x]∼) = [π x]∼

It is easy to see that [x]∼ is supported by whatever supports x

A finitely supported function is a finitely supported relation that happens to
be a function. (i.e. for all x there is exactly one y such that x ∼ y). This leads
to the following definition of permutation action on functions:

π(f) = π ◦ f ◦ π−1

It follows that a function is supported by α if, and only if it for every π that is
an α-permutation:

f(π(x)) = π(f(x))

We denote the set of all finitely supported functions between two sets with atoms
asX →fs Y . Similarly, we writeX →eq Y for the set of all equivariant functions.
The intuition behind the next lemma is that finitely supported functions cannot
create new atoms:

Lemma 3. If x is supported by α and f is supported by β then f(x) supported
by α ∪ β. In particular, if f is equivariant, then f(x) is supported by α.

Proof. Choose any (α ∪ β)-permutation π. Then, because π is both an α-
permutation and a β-permutation, we obtain that:

π(f(x))
β supports f

= f(π(x))
α supports x

= f(x)

Equivariant and finitely supported functions are closed under compositions –
if f is supported by α and g is supported by β, then f ◦g is supported by α∪β.1

We say that two sets with atoms (X and Y ) are isomorphic, if there exists
an equivariant bijection f : X →eq Y , i.e. an equivariant function that is
a surjection and an injection. The following lemma states that equivariant
bijections have equivariant inverses.

Lemma 4. Every finitely supported bijection f : X → Y , has a finitely sup-
ported inverse function f−1 : Y → X. Moreover, f and f−1 have the same
supports, i.e. for every finite α ⊂ A:

α supports f ⇐⇒ α supports f−1

1This means that there are two types of categories over sets with atoms. The first one is
the category of all functions supported by some α. When α = ∅, this is the category of all
equivariant functions – the Nom studied in [Pit13]. The other type of category is the broader
category of all finitely-supported functions (where the support depends on the functions).
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Proof. Functions are defined as relations, so f ⊆ X × Y . This means that we
can define:

f−1 = {(y, x) | (x, y) ∈ f}
Since f is a bijection, then f−1 is a function. It is easy to see that f−1 is the
inverse of f and that it has the same supports as f .

A similar argument shows that all finitely supported injections admit a par-
tial one-sided inverse. However, as we will see in Section 1.3.1, there are equiv-
ariant surjections that do not admit equivariant (or even finitely supported)
one-sided inverses.

1.2.2 Orbit-finite sets
Finite sets with atoms are not very interesting – it is not hard to see that all
finite sets with atoms have to be atomless. It turns out, however, that there
exists a suitable analogue of finiteness for sets with atoms called orbit finiteness2.
Intuitively, a set is orbit-finite if it has only finitely many elements up to atom
permutations. Formally, we define an orbit3 of an element x ∈ X to be

{π(x) | π is an atom permutation }.

Notice that every two orbits are either equal or disjoint, which means that they
divide X into equivalence classes. We say that X is orbit-finite if it has finitely
many orbits. For example, the set of all atoms A has only one orbit, so it is
orbit-finite. Tuples of atoms are orbit-finite as well:

Lemma 5. For every k, the set Ak is orbit-finite.

Proof. An orbit of Ak can be defined by an equality pattern such as the one
below (for k = 6):

It represents a tuple where atoms on positions 1, 3 and 5 are equal to each
other (and different from all the other atoms); atoms on positions 2 and 4 are
equal to each other (and different from all the other atoms); and the atom on
position 6 is only equal to itself. For every k, there are only finitely many such
patterns, so Ak is orbit-finite.

2It was first introduced by Bojańczyk in [Boj13]
3This is the same orbit as in the proof of Semantic equivariance⇒ Syntactic equivariance

from Section 1.1.
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The number of orbits in Ak is finite but very large, so it is sometimes useful
to consider the set A(k) ⊆ Ak of tuples whose atoms are pairwise distinct – it
has only one orbit (regardless of k).

An example of an orbit-infinite set is A∗ – the length of the word is preserved
by the permutation action, so there is at least one orbit for each word length.
Perhaps surprisingly, the set Pfs(A) is also orbit-infinite. The argument is the
same as for A∗ – the size of a set is preserved by the permutation action, so there
is at least one orbit for each finite set size. For the same reason, the following
set of finitely supported functions is orbit-infinite as well:

A→fs {yes, no}.

This means that unlike classical finiteness, orbit finiteness is not preserved under
powersets and function spaces. (In the next section, we will see that this causes
some of the results from finite automata theory to fail for infinite alphabets.)
Still, orbit finiteness is preserved by many classical combinators (and many
classical results hold for infinite alphabets). Here are some of the operations
that preserve orbit finiteness:

Lemma 6. If X and Y are orbit-finite, then the following sets are orbit-finite as
well: X×Y , X+Y , and X/∼ (where ∼ is an equivariant equivalence relation).

Proof. Cases X + Y and X/∼ are easy: To show that X + Y is orbit-finite, we
notice that:

#orbits of (X + Y ) = #orbits of X + #orbits of Y

To show that X∼ is orbit-finite, we notice that:

x is in the same orbit as y ⇒ [x]∼ is in the same orbit as [y]∼.

It follows that X∼ has as most as many orbits as X.

The most interesting case is X × Y . We start the proof by introducing a
way of representing orbit-finite sets:

Claim 4. Every orbit-finite set is isomorphic4 to a set of the form

A(k1)
/∼1

+ A(k2)
/∼2

+ . . .+ A(kn)
/∼n

where ∼i are equivariant equivalence relations.

Proof. Every orbit-finite set can be decomposed as a disjoint sum of its orbit,
so it suffices to show that every single-orbit set is isomorphic to

A(k)
/∼, for some k and ∼.

4Remember that we require the isomorphism to be an equivariant function.
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Let X be a single-orbit set. Take some x ∈ X, and let α be a finite support
of x. Arrange the elements of α in any order to form a tuple ᾱ ∈ A(k), where
k = |α|. Define a function f : A(k) → X as follows (remember that a function
is a special kind of a relation):

f = {(π(ᾱ), π(x)) | for each atom permutation π}

First, we show that f is well-defined (i.e. that it produces exactly one output for
every argument): The set A(k) only has one orbit, so for every β̄ ∈ A(k) there is
a π such that π(ᾱ) = β̄. It follows that f produces at least one result for every
argument. To show that it produces at most one result for each argument, we
take some π1 and π2, such that π1(ᾱ) = π2(ᾱ), and we show that π1(x) = π2(x):
Both π1 and π2 are α-permutations, so (π−1

2 ◦ π1) is an α-permutation as well.
Since x is supported by α, it follows that:

π−1
2 (π1(x)) = x

It follows that π1(x) = π2(x). Now, let us show that f is equivariant: take a
β̄ ∈ A(k) and an atom permutation π. We know that there is some ρ, for which
β̄ = ρ(ᾱ). It follows that:

π(f(β̄)) = π(f(ρ(ᾱ))) = π(ρ(x)) = f(π(ρ(ᾱ))) = f(π(β̄))

It is also not hard to see that f is a surjection (because X is a single orbit). It
follows that if we divide A(k) by f ’s kernel, we get an isomorphism:

f ′ : A(k)
/ker f → X

To finish the proof of the claim, notice that since f is equivariant then so are
ker f and f ′.

Now, take some orbit-finite X and Y and show that X×Y is also orbit finite.
We start by applying Claim 4, to both X and Y . Then apply the distributivity
of products over disjoint sums, to obtain that X × Y is isomorphic to a disjoint
sum of products of the following form:

A(k)
/∼i × A(l)

/∼′j

Disjoint sums preserve orbit finiteness, so we are left with showing that each
such product is orbit-finite: First, notice that each such product is isomorphic
to: (

A(k) × A(l)
)
/(∼i∼′j)

where (∼i∼′j) is a relation that independently checks that ∼i holds on the first
k coordinates and ∼′j holds on the last l coordinates. This is an equivariant
equivalence relation, so dividing by it preserves orbit finiteness. This leaves us
with showing that A(k) × A(l) is orbit-finite. Since A(k) × A(l) ⊆ Ak+l, this
follows from the following claim (and Lemma 5):

26



Claim 5. Equivariant subsets of orbit-finite sets are orbit-finite.

Proof. Let Y be an equivariant subset of an orbit-finite X. Notice, that if two
elements are in different orbits in Y , then they are also in different orbits in X.
It follows that X contains at least as many orbits as Y .

We conclude this section, with a table summarizing closure properties of sets
with atoms and orbit-finite sets:

Operation Preserves sets with atoms? Preserves orbit-finite sets?
X × Y Yes Yes
X + Y Yes Yes

X/∼ (for equivariant ∼) Yes Yes
Equivariant subsets Yes Yes

X∗ Yes No
P (X) No No
Pfs(X) Yes No
X → Y No No
X →fs Y Yes No

1.3 Deterministic orbit-finite automaton
In this section we introduce a model of computation that generalizes the deter-
ministic finite automaton. This is a very natural model that deals with infinite
(but orbit-finite) alphabets. Later, we argue that it is equivalent to register
automata. The section is mostly based on [Boj19, Section 5.2 and 6.2], but it
also discuses techniques from [BS20, Section B.1] and [Pit13, Section 4].

Definition 3. A deterministic orbit-finite automaton consists of:

1. an orbit-finite alphabet Σ;

2. an orbit-finite set of states Q;

3. an equivariant initial state q0 ∈ Q;

4. an equivariant subset of accepting states Qacc ⊆ Q;

5. and an equivariant transition function

f : Q× Σ→eq Q.

/
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Such an automaton defines a language over Σ. To see this in action, let us
define a deterministic orbit-finite automaton, recognizing the language

{w ∈ A∗ | w has at most 3 different letters}

First, we notice that Σ = A, which is an orbit-finite set. Then, let us define the
automaton’s set of states as:

Q =

(
A
≤ 3

)
︸ ︷︷ ︸

subsets of at most 3 atoms

+ ⊥︸︷︷︸
represents sets with
more than 3 atoms

This is an orbit-finite set – it has 5 orbits: one orbit for each size of the set (i.e.
0, 1, 2, and 3) and one for the element ⊥. The initial state is the empty set,
and the accepting states are all the states except of ⊥. The transition function
is defined as follows:

f(q, a) =

{
q ∪ {a} if q 6= ⊥ and |q ∪ {a}| ≤ 3

⊥ otherwise

The transition function is easily seen to be equivariant. Here is an example
(rejecting) run of this automaton:

1.3.1 Register automata, orbit-finite automata, and straight
sets

We would like to prove that deterministic orbit-finite automata and determin-
istic register automata have equal expressive powers. However, the two models
are slightly incompatible: register automata can only recognize languages over
the alphabet5 A, whereas orbit-finite automata can recognize languages over
every orbit-finite alphabet. The statement of the equivalence theorem has to
account for this incompatibility:

Theorem 1. Deterministic register automata and deterministic orbit-finite au-
tomata recognize the same languages over the alphabet A.

5Register automata are usually defined to work over the alphabet Σ×A (where Σ is some
finite set). Theorem 1 can be adapted to this type of automata as well.
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We start with discussing the more difficult part of the proof, which is trans-
lating orbit-finite automata to register automata. Let us illustrate the problem
with this translation, by discussing a failed attempt: Take an orbit-finite au-
tomaton A and let Q be its set of states. Thanks to Claim 4, we know that Q
is isomorphic to:

A(k1)
/∼1

+ A(k2)
/∼2

+ . . .+ A(kn)
/∼n

This set can be represented as:

A(k1) + A(k2) + . . .+ A(kn)

Each element of this set can be represented as a memory state (where k =
max(ki)):

Q′ := {1, 2, . . . , n}︸ ︷︷ ︸
the index i

× (A +⊥)k︸ ︷︷ ︸
ki atoms

followed by ⊥’s

It is important to point out that this representation is usually partial (i.e. some
elements from Q′ might not represent any element) and not injective (i.e. some
elements from Q might have more than one representation in Q′), but it is
always surjective (every element from Q has to have at least one representation
in Q′). Now, we would like to lift A’s transition function δ : Q×A→ Q to work
on this representation, obtaining δ′ : Q′ × A→ Q′. Here is an attempt:

δ′(x, a) = a representant of (δ(element represented by x, a))

Surprisingly, this is not always possible – we require δ′ to choose a represen-
tant, and some sets with atoms do not admit choice:

Claim 6. There is no finitely supported function f :
(A

2

)
→fs A(2), that chooses

a tuple representation of a set. In other words, there is no such f , that for all
a, b ∈ A the value f({a, b}) is either equal to (a, b) or to (b, a).

Proof. Suppose that there is such f , and let α be a finite support of f . Take
some two different atoms a and b from outside of α. Suppose without the loss of
generality that f({a, b}) = (a, b). Let π be the atom automorphism that swaps a
with b and does not touch other atoms. Notice that this π is an α-permutation,
and that {a, b} = π({a, b}). This leads to a contradiction:

(a, b) = f({a, b}) = f(π({a, b})) = π((a, b)) = (b, a).

The source of those problems with choice are symmetries such as {a, b} =
{b, a}. In the representation from Claim 4 they manifest themselves as the
equivalence relations (∼i). This observation motivates the definition of straight
sets, which are orbit-finite sets that do not exhibit those symmetries:

29



Definition 4. An orbit-finite set is straight if it is isomorphic to a set of the
following form:

A(k1) + A(k2) + . . .+ A(kn)

/

For example, A2 is a straight set:

A2 ' A︸︷︷︸
pairs of the form (x, x)

+ A(2)︸︷︷︸
pairs of the form (x, y)

.

In general, every Ak is a straight set – it is isomorphic to the disjoint union of
one A(ki) per equality pattern, where ki is the number of distinct atoms in that
equality pattern (see the proof of Lemma 5). Using a similar proof as the one of
Lemma 6, we can show that straight sets are closed under Cartesian products
and disjoint sums.

Let us now briefly discuss the structure of straight sets: One can think of
an element x ∈ A(k1) + A(k2) + . . .+ A(kn) as a coloured tuple:

x = i(x̄) for i ∈ {1, 2, . . . , n}︸ ︷︷ ︸
the colour

x̄ ∈ A(ki)︸ ︷︷ ︸
the tuple

We define

dimx = ki and σ(x) = {all the atoms from x̄}

It is easy to see that both dim and σ are equivariant functions, and that σ(x)
supports x. Thanks to the following lemma we can extend the functions σ and
dim to all straight sets:

Lemma 7. For every straight X, for every two isomorphisms:

f : X →eq A(k1) + . . .+ A(kn) g : X →eq A(l1) + . . .+ A(lm),

and for every x, it holds that σ(f(x)) = σ(g(x)). (In particular, since dim(x) =
|σ(x)|, it follows that dim(f(x)) = dim(g(x)).)

Proof. Let h = g ◦ f−1. It is an isomorphism of the following type:

h : A(k1) + A(k2) + . . .+ A(kn) →eq A(l1) + A(l2) + . . .+ A(lm)

It is enough to show that for all x ∈ A(k1) + A(k2) + . . . + A(ln), it holds that
σ(x) = σ(h(x)). The set σ(x) supports x, so by Lemma 3 it supports h(x) as
well. It follows that σ(h(x)) ⊆ σ(x). The other inclusion can be proved in the
same way, because by Lemma 4, the function h−1 is equivariant.

Finally, let us show that straight sets admit choice:
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Lemma 8 (Straight Uniformisation). Let X and Y be straight sets, and let
R be an equivariant relation R ⊆ X × Y . If for every x ∈ X, there exists at
least one y ∈ Y for which xR y, then there exists a finitely supported function
r : X → Y such that xR r(x), for every x ∈ X.

Before we prove the lemma, let us notice that r does not have to be equivariant:

Example 3. Consider the following R ⊆ A× A(2):

R = {(x, (x, y)) | x, y ∈ A, such that x 6= y}

It satisfies the conditions of Lemma 8, so it should have a finitely supported
uniformization. Here is an example uniformization supported by {4, 5}:

r(x) =

{
(x, 5) if x = 4

(x, 4) otherwise

On the other hand, it is not hard to see that R has no equivariant uniformization
(this follows from Lemma 3). /

As we can see, the reason why there might not be an equivariant r, is that
x might not have enough atoms to construct a matching element of Y . The fol-
lowing lemma formalizes this intuition. We prove it, before we prove Lemma 8:

Lemma 9. If R ⊆ X × Y is as in Lemma 8, but additionally for every x there
is a y such that xR y, and

σ(x) supports y,

then there is an equivariant r that uniformizes R.

Proof. Let us fix straight equivariant isomorphisms for X, Y :

fX : X →eq A(k1) + . . .+ A(kn) fY : Y →eq A(l1) + . . .+ A(lm)

This means that elements of X and Y can be seen as coloured tuples. We take
some x ∈ X, and we show how to construct r(x) ∈ Y in an equivariant way:

1. First, we consider only those y’s, such that xRy, and y is supported by
σ(x). (This means that σ(y) ⊆ σ(x).)

2. Out of those y’s, we prefer the ones labelled with a smaller colour.

3. To choose one of the remaining tuples, we annotate each atom in every
remaining tuple y with its position in x (remember that x is a tuple of
atoms). Then, we chose r(x) to be the y whose annotation is lexicograph-
ically smallest.

We are now ready to proof the Straight Uniformization Lemma:
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Proof. Let dimX be the maximal dimension of an element from X (and analo-
gously for dimY ). Let k = dim(X) + dim(Y ), and define R′ ⊆ (X ×A(k))× Y ,
to be a relation that ignores its A(k) part, and otherwise is equal to R:

R′ = {((x, ā), y) | (x, y) ∈ R, ā ∈ A(k)}

Now, we would like to apply Lemma 9 to R′. The following claim proves that
R satisfies the lemma’s assumptions:

Claim 7. For every ā ∈ A(dim(X)+dim(Y )) and for every x ∈ X, there is a
y ∈ Y , such that (x, ā)R′ y, and y is supported by σ(x, ā).

Proof. Take some ā ∈ A(dim(X)+dim(Y )) and some x ∈ X. By assumption, we
know that there exists y ∈ Y , such that xR y. Define π to be a permutation
that moves all atoms from σ(y)−σ(x) into σ(ā)−σ(x), and does not touch any
atoms from σ(x). We know that such a π always exists, because

|σ(y)− σ(x)| ≤ dimY and |σ(ā)− σ(x)| ≥ dimY

It follows that:
σ(π(y)) ⊆ σ(ā) ∪ π(σ(x))

Moreover π is a σ(x)-permutation, x is supported by σ(x), and R is equivariant,
so xRπ(y). It follows that (x, ā)R′ y.

Let r′ be the equivariant uniformization of R′ produced by Lemma 9. Pick
any tuple of atoms ā ∈ A(dim(X)+dim(Y )), and define r as:

r(x) = r′(x, ā)

It is easy to see that r is an ā-supported uniformization of R.

We are now ready to prove Theorem 1. We define a deterministic straight
automaton to be a variant of the orbit-finite automaton, where the alphabet
and the set of states have to be straight. We use this model to break the proof
of Theorem 5 into smaller steps:

Deterministic register
automaton

Deterministic straight
automaton

Deterministic orbit-finite
automaton

Special case

Section 1.3.1.3Section 1.3.1.2

Section 1.3.1.1

1.3.1.1 Register automaton ⇒ Straight automaton

The set of all possible memory configurations of a register automaton

Q× (A +⊥)R

is straight and as such it can be directly used as the set of states of a straight
automaton. The transition function, initial configuration, and set of accepting
functions are equivariant by definition.
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1.3.1.2 Straight automaton ⇒ Register automaton

Let the state space of the straight automaton be equal to :

Q ' A(k1) + A(k2) + . . .+ A(kn)

As mentioned before, one can think of this set as non-repeating tuples of atoms
coloured in one of the n colours and therefore elements of Q can be represented
as:

Q′ = {1, 2, . . . , n}︸ ︷︷ ︸
colour of the tuple

× (A +⊥)(max ki)︸ ︷︷ ︸
atoms of the tuple
(followed by ⊥’s)

This representation is partial, but injective and surjective. It follows, by a
similar argument as in Lemma 4, t has a (total) one-sided inverse. This means
that every element of Q has a canonical representation in Q′. We use it to lift
the transition function δ, to work on representations:

δ′(x, a) = the representation of (δ(the element represented by x, a))

We are now left with some technical details: The initial state of the straight au-
tomaton is equivariant, so its representation has to be of the form c0(⊥,⊥, . . . ,⊥),
for some colour c0. We choose this colour to be the initial state of the register
automaton. Moreover, since the register automaton accepts by control state
and not by memory configuration, every time it moves forward it has to check
if its configuration is accepting, and remember this information in its control
state.

1.3.1.3 Orbit-finite automaton ⇒ Straight automaton

This construction makes use of the Lemma 8 to fix the failed attempt from the
beginning of this section. Take an orbit-finite automaton A. Its set of states
(Q) is orbit-finite, so thanks to Claim 4 it is isomorphic to:

A(k1)
/∼1

+ A(k2)
/∼2

+ . . .A(kn)
/∼n

It can be therefore represented as the straight set:

Q̄ = A(k1) + A(k2) + . . .A(kn)

This time the representation function (call it h : Q̄→ Q) is surjective, but not
injective. Let f be the transition function of A. Consider the relation:

F ⊆ (Q̄× A)× Q̄

F = {((q, a), p) | q, p ∈ Q̄, a ∈ A, such that δ(h(q), a) = h(p)}

Since r is surjective, F satisfies the assumption from Lemma 8. We use it to
obtain a finitely supported transition function δ̄ : Q̄ × A → Q̄. The set of
accepting states is simply the set of all representations of accepting states. For
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the initial state, we repeat the uniformization construction. Define I = {•} to
be the atomless singleton and define:

B ⊆ 1× Q̄ B = {(• , q) | r(q) is the initial state of A}

Let ī be B’s uniformization, and pick ī(•) as the initial state of the straight au-
tomaton. This almost finishes the construction, but so far we have constructed a
finitely supported transition function, and we require an equivariant one. There
are two ways to fix this: First, we can show that orbit-finite sets can be repre-
sented by straight sets in a way that reflects supports, which means that for all
α and x:

α supports r(x)⇒ α supports x

With this stronger representation, we can use Lemma 9 and obtain an equiv-
ariant transition function and initial state, finishing the proof of Theorem 1.
Another approach to prove the theorem would be to show how to remove the
surplus atoms from the support of the straight automaton. Both of those ap-
proaches illustrate techniques that are going to be useful later in this thesis,
so in the next two subsections we present both of them. (Although any one of
them could finish the proof of Theorem 1.)

1.3.2 Support-reflecting straight representations
Most of this section is dedicated to proving the following straight representation
lemma. The proof is based on the proof of [Boj19, Lemma 6.2].

Lemma 10. For every orbit-finite set X there is a straight set X̄ and a surjec-
tive representation function:

f : X̄ → X

that reflects supports, i.e. for every x and α

α supports f(x) =⇒ α supports x

Proof. Straight sets are closed under disjoint unions, so it is enough to prove
the claim for an X that is a single orbit. We start the proof by applying Claim 4
to obtain an isomorphism:

A(n)
/∼ → X

This defines a natural straight representation:

f : A(n) → X

This straight representation may or may not reflect supports. If it does, then
there is nothing more to do. If it does not, then there is a x̄ ∈ A(k) and α, such
that α supports f(x̄), but it does not support x̄. This means that, there is an
atom in x̄ that is not present in α. Assume without loss of generality that this
is xn – the last atom of x̄. Interestingly, this means that f does not depend on
its last argument:
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Claim 8. For all pairwise distinct atoms y1, y2, . . . , yn, y
′
n:

f(y1, . . . , yn−1, yn) = f(y1, . . . , yn−1, y
′
n)

Proof. Since f is equivariant, we can prove the claim, by proving it for some par-
ticular y1, y2, . . . , yn, y

′
n that we choose (this is because for every z1, . . . , zn, z

′
n,

there is a π that maps it to y1, y2, . . . , yn, y
′
n). We choose to prove it for

x1, . . . , xn, x
′
n, where x1, . . . , xn are elements of x̄ – inherited from the proof of

Lemma 10 – , and x′n is some atom that does not appear in x̄ or in α. Define
x̄′ := x1, . . . , xn−1, x

′
n, and let us show that f(x̄) = f(x̄′). Let π be the per-

mutation that swaps xn with x′n and does not touch other atoms. Such π is an
α-permutation, so:

f(x̄) = π(f(x̄)) = f(π(x̄)) = f(x̄′)

Using the claim, we define an equivariant f ′ : A(n−1) → X in the following way:

f ′(x̄) = the only element of {f(x̄, xn) | xn ∈ A}

In this way we obtain a representation of a lower dimension. We repeat this
process until we obtain a representation that reflects the supports. (Note that,
this process will always end, because for n = 0, we obtain a representation
I → X, which always reflects supports, because I is atomless.)

Having proved the lemma, we go back and finish the translation Orbit-Finite
Automata ⇒ Straight Automata: we prove that if r is a straight and support-
reflecting representation of A’s set of states, then, by Lemma 3, the following
transition relation satisfies the condition of Lemma 9:

F ⊆ (Q̄× A)× Q̄ F = {((p̄, a), q̄) | f(r(p̄), a) = r(q̄)}

It follows that we can use (Lemma 9) and obtain an equivariant transition func-
tion, for the straight automaton.

An interesting consequence of Lemma 10 is the following theorem about least
supports. It was first proved as [GP02, Proposition 3.4], but the proof presented
below follows the lines of [Boj19, Section 6].

Definition 5. We say that α ⊆fin A is the least support of x if:

1. α supports x; and

2. for every other β, that supports x, it holds that α ⊆ β.

It is not hard to see that if a least support exists, then it is unique. If it exists,
we denote it as supp(x). /

Theorem 2. Every element of a set with atoms has a least support.
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Proof. Choose a set with atoms X and its element x ∈ X. Let Xx ⊆ X be the
orbit of x in X i.e.:

Xx = {π(x) | π is an atom permutation}

Let h : A(n) → X̄x be a straight and support-reflecting representation function
of Xx (as defined in Lemma 10). By combining the fact h reflects supports,
with Lemma 3, it is not hard to see that the least support of h(x̄) is σ(x̄). This
finishes the proof, because h is surjective.

1.3.3 Eliminating redundant atoms and name abstraction
In this section, we show an alternative approach of finishing the translation
Orbit-Finite Automata ⇒ Straight automata. It relies on the following lemma,
which shows that we can eliminate redundant atoms from the automaton’s sup-
port:

Lemma 11. If a language L is equivariant and recognized by a finitely sup-
ported orbit-finite automaton6, then it is also recognized by an equivariant orbit-
finite automaton. Moreover, if L is recognized by a finitely supported straight
automaton, then it is also recognized by an equivariant straight automaton.

To illustrate the intuition behind the proof of the lemma, we start by proving
it for register automata:

1.3.3.1 Register automata and atom placeholders

A finitely supported register automaton is a register automaton, whose transi-
tion function is syntactically finitely supported, i.e. it can be defined using the
syntax for an equivariant transition function extended with the following two
types queries and one type of action:

r1 = a, input = a, r1 := a

It is not hard to see that a transition function is syntactically finitely supported,
if and only if it is a finitely supported function. The proof is almost the same as
the one for syntactically equivariant functions from Section 1.1, but this time it
uses α-orbits, defined as:

{π(x) | π is an α-permutation of atoms}

Now, let us take L recognized by a finitely supported register automaton
A, and let us construct an equivariant A′ that recognizes the same language.
Notice that the group of atom permutations has a natural action on the set of
register automata7, which means that we can talk about π(A). It is not hard

6i.e. by an orbit-finite automaton whose transition function, initial state, and subset of
accepting states does not have to be equivariant (but has to be finitely supported)

7The action applies π to its set of states, initial state, transition function, and set of
accepting states. The only non-equivariant of those components is the transition function, so
this boils down to applying π to the transition function.
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to see that the function that maps an automaton to its language is equivariant,
i.e. π(A) recognizes π(L). Since L is equivariant, it follows that for every π:

π(A) recognises L

Every word w ∈ A∗ is finitely supported, so we can always find a permutation
πw, such πw(A) does not use any letter from w as a constant. The idea of the
proof is to construct one automaton A′, whose run on every w simulates the
run of πw(A). Choose a finite, atomless set P of atom placeholders, such that
|P | = |supp(A)|. This means that there exists a bijection p : supp(A)→fs P (the
bijection is supported by supp(α)). Let us now consider a variant of a register
automaton, which can use its register to store both atoms or placeholders. Now,
by replacing queries and actions of A in the following way

r1 = a  r1 = pa
input = a  input = pa
r1 := a  r1 := pa

we obtain an equivariant register automaton with placeholders A′. Note that
the query that compares an atom with a placeholder always returns “No”. Since
no atom from α appears in w, it follows that the run of A′ on w simulates the
run πw(A) on w. To finish the proof, notice that a placeholder automaton can
easily be simulated by a register automaton, that uses its control state to keep
track of the placeholder values.

1.3.3.2 Name abstraction

Before we prove Lemma 11 in its generality, let us show how to introduce place-
holders into abstract sets with atoms. This operation is described in [Pit13,
Section 4] under the name of name abstraction. The placeholders are intro-
duced using operations of the following kind: “Replace all the occurrences of
an atom a ∈ A in x by a placeholder” (where x is an element of a set with
atoms X). We denote this operation as 〈a〉x. Note that it is not injective: For
example, if we consider X = A(2), then

〈5〉(5, 2) = 〈4〉(4, 2)

because in both cases the first element is replaced with the placeholder. Be-
fore we define 〈a〉x formally, let us discuss the inverse operation: “Replace the
placeholder in 〈a〉x with b ∈ A.” This operation is denoted as (〈a〉x)@b. If
σ(a b) denotes the atom permutation that swaps a and b, then @ is defined in
the following way:

(〈a〉x)@b =


x if a = b

σ(a b) x if b 6∈ supp(x)

undefined otherwise
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The fact that (〈a〉x)@b is undefined when b 6= a and a 6∈ supp(x) represents
the intuition that the placeholder is different from all the atoms in 〈a〉x. For
example, if we consider X = A(2), then:

〈6〉(6, 4)@3 = (3, 4) but 〈6〉(6, 4)@4 is undefined

Observe that if we had simply replaced 6 with a 4 in (6, 4), we would have
obtained (4, 4) which does not belong to A(2).

Intuitively, in order to check if 〈a〉x is equal to 〈b〉y, we take a fresh c ∈ A –
i.e. such c that c 6∈ ({a, b} ∪ supp(x) ∪ supp(y)) – and check if 〈a〉x@c = 〈b〉y@c.
Notice that this does not depend on the choice of c – if this equality holds for
some fresh c, then it holds for all fresh c. We can define this as the following
relation:

〈a〉x ∼ 〈b〉y ⇐⇒ 〈a〉x@c = 〈b〉y@c

As shown in [Pit13, Lemma 4.1], this is an equivalence relation. We use it to
define the set of all possible 〈a〉x’s, denoted as [A]X:

[A]X = (A×X)/∼,

We define 〈a〉x to be the equivalence class of (a, x). For example:

[A]A2 ' A2︸︷︷︸
none of the atoms
is the placeholder

e.g.〈5〉(1,2)

+ A︸︷︷︸
the first atom

is the placeholder
e.g.〈5〉(5,2)

+ A︸︷︷︸
the second atom
is the placeholder

e.g.〈5〉(1,5)

+ 1︸︷︷︸
both of the atoms
are placeholders

e.g.〈5〉(5,5)

Notice that [A]X is a set with atoms, with the following action of the group
permutation:

π(〈a〉x) = 〈πa〉(πx)

Operation [A](·) commutes with many classical combinators:

Lemma 12. For all sets with atoms X and Y :

[A](X × Y ) ' [A]X × [A]Y [A](X + Y ) ' [A]X + [A]Y [A](X∗) ' ([A]X)∗

Proof. The isomorphism for products and coproducts is proved in [Pit13, Equa-
tions 4.27, 4.28]. For the words, we use the following isomorphism:

W : [A](X∗)→ ([A]X)∗

W (w) = (〈a〉(w@a)1, 〈a〉(w@a)2, . . . , 〈a〉(w@a)n) where a is any atom
that does not appear in supp(w)

Note that W (w) does not depend on the choice of a.

Let us cite two important properties of [A]:

Lemma 13 ([Pit13, Proposition 4.5]). For every x ∈ X and every atom a:

supp(〈a〉x) = supp(x)− {a}
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Lemma 14 ([Pit13, Proposition 4.14]). The following sets are isomorphic:

[A](X →fs Y ) ' [A]X →fs [A]Y

The isomorphism is given by the following formula:

(〈a〉f)x = 〈b〉 ((〈a〉f)@b) (x@b),

where b ∈ A is some atom that does not appear in x or in supp(〈a〉f). (As
usual, the result does not depend on the choice of c.)

Now let us show that 〈c〉(f) preserves identities and function compositions8.

Lemma 15. For every 〈a〉idX = id[A]X and 〈a〉(f ◦ g) = (〈a〉f) ◦ (〈a〉g).

Proof. We start with two claims that follow immediately from the definitions:

Claim 9. If b is fresh for 〈a〉x, then 〈a〉x = 〈b〉(σ(a b)x).

Claim 10. If a is fresh for x, then (〈a〉f)x = 〈a〉(f(x@a)).

Let us take some x ∈ X and an atom b that is fresh for x, and notice that:

(〈a〉idX)x
Claim 9

= (〈b〉idX)x
Claim 10

= 〈b〉(x@b) = x

For the second part, we need to show that for all a, f , g, x:

(〈a〉f) ((〈a〉g)x) = (〈a〉(f ◦ g))x

Take some a, f, g, x, and let b be a fresh atom. Define f ′ := σ(ab)f , g′ := σ(ab)g,
and observe that:

(〈a〉f) ((〈a〉g) x)
Claim 9

= (〈b〉f ′) ((〈b〉g′) x)
Claim 10

= (〈b〉f ′) (〈b〉(g′ x@b))
Claim 10

=

= 〈b〉 (f ′(〈b〉(g′ x@b)@b)) = 〈b〉(f ′ (g′ x@b)) =

= 〈b〉((f ′ ◦ g′) x@b)
Claim 10

= (〈b〉(f ′ ◦ g′)) x Claim 9
= 〈a〉(f ◦ g) x

Finally, we show one more property of 〈c〉(·) : X →fs [A]X:

Lemma 16. For all a ∈ A, f : X → Y and x ∈ X it holds that:

〈a〉(fx) = (〈a〉f)(〈a〉x)

This means that the following diagram commutes9

8This means that the following mapping is a functor: X 7→ [A]X, f 7→ 〈c〉f . To avoid
potential confusion, it is worth pointing out that this functor very similar to the [A] functor
defined in [Pit13, Section 4.4], but not exactly the same. For this reason the proof of the
lemma is very similar to the proof of [Pit13, Lemma 4.10]

9This means that 〈c〉(·) : X →fs [A]X is a natural transformation between the identity
functor and the functor 〈c〉(·) from the previous footnote. The same is true for the functor
[A] (see [Pit13, Equation 4.19] and the previous footnote).
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X Y

[A]X [A]Y

f

〈c〉(·)

〈c〉f

〈c〉(·)

Proof. The lemma follows from Claim 10:

(〈a〉f)(〈a〉x)
Claim 10

= 〈a〉(f 〈a〉x@a) = 〈a〉(fx)

1.3.3.3 Redundant atoms in orbit-finite automata

We are now ready to prove the general version of Lemma 11. Take an orbit-
finite automaton A that recognizes an equivariant language. We pick some
a ∈ supp(A) and we construct an automaton 〈a〉A such that:

1. 〈a〉A recognizes the same language as A;

2. supp(〈a〉A) = supp(A)− {a}; and

3. if A is straight, then so is 〈a〉A.

This is enough to prove the lemma, because if we repeat this construction
|supp(A)| times, we obtain an equivariant automaton, recognizing the same
language as A. Thanks to the third assumption, this construction preserves
straight automata.
If A = (Q,Σ, q0, Qacc, f), then we define 〈a〉A′ as:

([A]Q, [A]Σ, 〈a〉(q0), {〈a〉q | a ∈ Qacc}, 〈a〉(δ))

This definition results in a slight mismatch of alphabets – the alphabet of 〈a〉A
is [A]Σ, but we want it to recognize languages over Σ. The following lemma
shows a natural way to inject Σ into [A]Σ:

Claim 11. For every X, the following ιX function is an injection X ↪→ A[X]:

ιX(x) = 〈a〉x for any a 6∈ supp(x)

Proof. It is not hard to see that the definition does not depend on the choice
of a. To show that that ιX is an injection, let take some x, y ∈ X, such that
ιX(x) = ιX(y), and show that x = y. If we pick a that is fresh for x and y,
then:

x = (〈a〉x)@a = ιX(x)@a = ιX(y)@a = (〈a〉y)@a = y
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Formally, this means that, when 〈a〉A is used to recognize languages over
the alphabet Σ, it has the following transition function:

〈a〉δ(ιΣ(·), ·) : (Σ× [A]Q) → [A]Q defined as (a, q) 7→ (〈a〉δ)(ιΣ (a), q)

Thanks to Lemma 13, we know that supp(〈a〉A) = supp(A)− {a}, and it is
also not hard to show that if Q is straight then so is [A]Q. This leaves us with
showing that 〈a〉A recognizes the same language as A. This proof is similar to
the proof for register automata. Take some w ∈ Σ∗ and an atom b that is fresh
for w and A, and define A′w := σ(a b)(A). Since the language of A is equivariant,
we know that A and A′w recognize the same language. Moreover, since b is fresh
for A, it follows from Claim 9 that 〈a〉A = 〈b〉A′w. This means that it is enough
to show that 〈b〉A′w accepts w if and only if A accepts w. The key observation
is that since b is fresh for w, then for every i, it holds that ιΣ(wi) = 〈b〉(wi). It
follows that:

(〈b〉δ)(ιΣ(wi), ·) = (〈b〉δ)(〈b〉wi, ·)

Notice that b is fresh for every state that appears in the run of 〈b〉A′w on w –
this follows from Lemma 3, because b does not appear in the initial state, in the
transition function, or in any wi. It follows that we can use Claim 10 to further
simplify the transition function:

(〈b〉δ)(〈b〉wi, q) = 〈b〉(δ(wi, q@b))

By the formula from Lemma 14, it follows that the transition function for wi is
equal to:

〈b〉(δ(wi, ·))

If we treat, the initial state as a function 1 →fs Q, and the accepting set as a
function Q →fs {Yes,No}, then this leaves us with showing that the following
diagram commutes:

To prove that, we draw some auxiliary arrows so that each face of the diagram
becomes an instance of Lemma 16:
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This finishes the proof of Lemma 11, which in turn finishes the (second) proof
of Theorem 1.

1.4 Other models for infinite alphabets
The theory of infinite alphabets is notorious for the abundance of non-equivalent
models that it features – the expressive powers of different models are well
illustrated by [Boj19, Figure 1.1] or [NSV04, Figure 1]. In this section we
present the following part of this landscape:

1. Right-to-left deterministic orbit-finite automata;

2. Two-way deterministic orbit-finite automata;

3. One-way nondeterministic orbit-finite automata;

4. Orbit-finite monoids

The following picture summarizes the results presented in this section:

1.4.1 Variants of orbit-finite automata
We begin the discussion with variants of orbit-finite automata. This section is
based on [Boj19, Section 1.4]:
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1.4.1.1 Right-to-left orbit finite automata

Notice that the class of languages recognized by orbit-finite automata is not
closed under the reverse:

Lemma 17. There is a language L, such that it is recognized by a deterministic
orbit-finite automaton, but its reverse is not.

Proof. Consider the following language over the alphabet A∗:

LFirst = “The first letter appears again”

As shown by Example 1, it can be recognized by an orbit-finite register automa-
ton. Consider now its reverse:

LLast = “The last letter appears before”

We show that this language cannot be recognized by a deterministic orbit-finite
automaton. First, let us notice that every orbit-finite set has a limit on the size
of its supports:

Claim 12. For every orbit-finite set A there is a number k such that for every
a ∈ A, it holds that |supp(x)| ≤ k.

Proof. The following function is equivariant:

a 7→ |supp(a)|

It follows that the size of least supports is fixed in every orbit. There are only
finitely many orbits in A, so we can set k to be the maximal size of the support
among those orbits.

Suppose that LLast is recognized by a deterministic orbit-finite automaton
A and let k be the maximal support size for the states of A. Let q be the state
of A after it has read a prefix consisting of k + 1 different atoms:

a1 a2 . . . ak+1

Since A’s states have supports of size at most k, one of the input letters must
be fresh for q (i.e. ai 6∈ supp(q)). Say that it is aj . This leads to a contradiction
because, if we choose ak+2 different from all ai’s, then A cannot distinguish
between:

a1 a2 . . . ak+1 aj ∈ LLast and a1 a2 . . . ak+1 ak+2 6∈ LLast

A consequence of Lemma 17 is that deterministic (left-to-right) orbit-finite
automata recognize a different class of languages than their right-to-left coun-
terparts.

We finish the discussion on right-to-left and left-to-right deterministic orbit-
finite automata, by mentioning that both of those models are computationally
quite simple: They have decidable emptiness (special case of [Boj19, Theorem
1.7]) and, since they are closed under complements, decidable universally.
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1.4.1.2 Nondeterministic orbit-finite automata

The definition of a nondeterministic orbit-finite automaton is not surprising – it
looks just like a deterministic orbit-finite automaton, but (a) it may have more
than one initial state and (b) instead of transition functions, it has a transition
relation:

f ⊆fs Q× Σ×Q

Nondeterministic orbit-finite automata can recognize the language

“Last letter appears before”:

A nondeterministic automaton can nondeterministically guess a position, save
its letter to a register, and at the end of the word verify that it is equal to
the last letter. (In general, it is easy to see that the languages recognized by
nondeterministic automata are closed under the reverse.)

It follows that nondeterministic orbit-finite automata are strictly more ex-
pressive than their deterministic counterparts. A reason for this mismatch in
expressive powers is that orbit-finite sets are not closed under finitely supported
powersets and therefore they do not admit the powerset construction.

Non-deterministic orbit-finite automata are computationally quite complex:
They have decidable emptiness [Boj19, Theorem 1.7], but undecidable univer-
sality10 [Boj19, Theorem 1.8].

1.4.1.3 Two-way deterministic orbit-finite automaton

Two-way deterministic orbit-finite automaton is variant of a deterministic orbit-
finite automaton that is not forced to read the input left-to-right or right-to-left.
Instead, in each transition, it decides whether it wants to go left or right. When
it leaves the word, it gets notified and might choose to go back. To finish its run
it has to explicitly accept or reject the input11. To accommodate those features,
its transition function has the following type:

(Σ + {`,a}︸ ︷︷ ︸
end of word
markers

)×Q −→eq Q× {←,→}+ {accept, reject}

Two-way orbit-finite automata extend two-way finite automata (defined in
[She59, Defniiton 2]). Over finite alphabets, two-way and one-way automata are
equivalent ([She59, Theorem 2]). However, this equivalence does not hold for
orbit-finite alphabets: It is not hard to see that two-way orbit-finite automata
can recognize both Lfirst and Llast. It follows they are strictly stronger than

10It might be worth mentioning that universality is decidable for the unambiguous nonde-
terministic orbit-finite automata. One way to show this is to show that orbit-finite weighted
automata have decidable equivalence. See [BKM21] for details.

11It may also loop and never finish its run. We assume that this means that the automaton
rejects the input.
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one-way deterministic automata.

Two-way register automata are computationally very strong. The following
theorem says that they belong more to complexity theory than to automata
theory.

Theorem 3 ([NSV04, Theorem 3.8 (b)]). Take a language over a finite alphabet
L ⊆ Σ∗ and define LA ⊂ (Σ× A)

∗ to be the language of those words whose Σ-
part belongs to L and whose atoms are pairwise distinct. Then:

L ∈ LogSpace ⇐⇒ LA is recognisable by a two-way orbit-finte automaton

Proof. The key idea is that when the input alphabet is Σ×A, and all the atoms
are distinct, then remembering the atom value is the same as remembering the
atom’s position.

We start with the easier right-to-left implication (⇐): The alphabet Σ× A
is straight, so using the techniques presented in the proof of Theorem 1, we can
transform a two-way orbit-finite automaton that recognizes LA into a two-way
register automaton over the alphabet Σ × A (this type of an automaton is a
natural extension of the standard register automaton). In order to simulate this
two-way register automaton with a LogSpace Turing machine, we notice that
instead of storing an atom, it is enough to store its position (in binary).

The (⇒) implication is more involved. We start with the following claim:

Claim 13. There is a two-way orbit-finite automaton, recognizing the language
“Each letter appears only once” (over A).

Proof. We show that a two-way orbit-finite automaton can simulate the follow-
ing program:

for i in 1..n:
r = atom at i-th position
for j in (i + 1)..n:

if r is equal to the atom at j-th position:
reject

accept

The execution is mostly straightforward. The only problem appears, when the
automaton finishes the inner loop, and has to go back to position i+ 1. At this
point the automaton knows that the value r appears exactly once in the word,
so it can go back to the ith position by locating the value r.

We are left with showing that once a two-way automaton has checked that all
the input atoms are pairwise distinct, it can simulate a logspace Turing machine.
For this we use an intermediate model of two-way multi-head deterministic fi-
nite automaton. Such an automaton resembles a two-way deterministic finite
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automaton, but it has many heads that move independently from each other. A
transition function of a two-way multi-head deterministic finite automaton has
the following type:

Q× (Σ + {`,a})k︸ ︷︷ ︸
what each head is seeing

−→ Q× {←,→}k︸ ︷︷ ︸
instructions

for each of the heads

+ {accept, reject}

Here is an example configuration of a multi-head automaton:

The multi-head automata are equivalent to logspace Turing machines in the
following sense12:

Theorem 4. A language L ⊆ Σ∗ belongs to LogSpace if and only if it is
recognizable by a two-way deterministic multi-head automaton.

So it suffices to show that, as long as its input is equipped with a unique
atom on every position, a two-way orbit-finite automaton can simulate a deter-
ministic two-way multi-head automaton. This is straight forward: Instead of
remembering the position of each head, an orbit-finite automaton can simply
remember the atom from that position. For example, the configuration from
the example above can be represented as follows:

12To the best of my knowledge, the earliest reference to this result is [Iba71, Corollary 3.5].
However, in place of a proof, the author states that this is a well-known unpublished result by
Alan Cobham and others. The earliest reference that contains the proof is [Har72, Page 338].
I would like to thank Nguyễn Lê Thành Dũng for pointing me to those references.
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With this representation, a two-way orbit-finite automaton can simulate a
transition of a multi-head automaton, by doing two sweeps: a left-to-right one
to see the letter under each of the heads; and a right-to-left one to perform
necessary updates in the heads’ positions.

The emptiness of LogSpace-Turing machines is easily seen to be undecid-
able, so a consequence of Theorem 3 is that two-way deterministic orbit-finite
automata, have undecidable emptiness. As a deterministic model, they are
closed under complement, which means that they also have undecidable univer-
sality.

We finish this section, by showing that one-way nondeterministic orbit-finite
automata and two-way deterministic orbit-finite automata have incomparable
expressive powers:

Lemma 18 ([KF94, Example 11]). There is a language L, that can be recognized
by a two-way deterministic orbit-finite automaton, but cannot be recognized by
a one-way nondeterministic orbit-finite automaton.

Proof. One example of such L is the language “Each letter appears only once”.
According to Claim 13 it can be recognized by a two-way deterministic orbit-
finite automaton. It suffices to show that it cannot be recognized by a one-way
nondeterministic orbit-finite automaton: Suppose that it is recognized by A
whose set of states is Q. Let k be maximal support size in Q (see Claim 12).
Consider the word consisting of k + 2 pairwise distinct atoms:

a1 a2 . . . ak+1 ak+2

This word belongs to L, so A has to have an accepting run on it. Let qk be A’s
state in this run just after it has processed ak. One of the ai (for i ≤ k + 1) is
not present in the support of qk. It follows that A also has to have an accepting
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run the following word, which does not belong to L:

a1 a2 . . . ak+1 ai

This contradicts the assumption that A recognizes L.

Lemma 19 ([Boj19, Exercise 26]). There is a language L, that can be recognized
by a one-way nondeterministic orbit-finite automaton, but cannot be recognized
by a two-way deterministic orbit-finite automaton. (This lemma is conditional
on LogSpace 6= NLogSpace.)

Proof. We start by defining the domino language over the alphabet A2:

LDomino = {(a1, a2)(a2, a3)(a3, a4) . . . (an, an+1) | a1, . . . , an+1 ∈ A }

Now, we define the language LSubDomino of words that have a valid domino
subsequence that contains the first and the last letter. For example, the following
word belongs to LSubDomino (its valid domino subsequence has been underlined):

(7, 5) (1, 2) (5, 9) (5, 4) (8, 2) (4, 3) (3, 2)

It is easy to see that the language LSubDomino is recognized by a nondeter-
ministic orbit-finite automaton. On the other hand, it can be shown that
if LSubDomino is recognized by a deterministic two-way automaton, then the
NLogSpace-complete problem of reachability in directed acyclic graphs be-
longs to LogSpace. (See [Boj19, Exercise 26] for details.)

1.4.2 Orbit-finite monoids
We finish this introduction to languages over infinite alphabets with one more
model – orbit-finite monoids. As noted in the introduction, it plays a central
role in this thesis. This section is based on [Boj19], where the model was first
introduced.

First we discuss the well-established model of finite monoids (for recognizing
languages). A monoid is a setM , equipped with an associative binary operation
(·) and a neutral element 1. This means that, for all a, b, c ∈M it holds that

a · (b · c) = (a · b) · c and 1 · a = a · 1 = a.

A monoid is finite, if the set M is finite. A finite monoid M together with a
function h : Σ→M , and an accepting subset F ⊆M can be used to recognize
a language over the finite alphabet Σ: to see if a word w ∈ Σ∗ belongs to the
language, we check whether:

h(w1) · h(w2) · . . . · h(wn) ∈ F
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Example 4. For example, consider the following language (over a finite alpha-
bet Σ):

“No letter appears twice in a row”

It is recognized by the following finite monoid:

M = Σ2︸︷︷︸
(a, b) represents all non-empty words that

do not contain a repetition;
start with a; and end with b

+ ⊥︸︷︷︸
represents

all the words that
contain a repetition

+ 1︸︷︷︸
represents

the empty word

M ’s operation is defined as follows:

⊥ · x = x · ⊥ = ⊥, 1 · x = x · 1 = x, (x1, y1) · (x2, y2) =

{
(x1, y2) if y1 6= x2

⊥ otherwise

The function hmaps a letter x into (x, x), and the accepting subset F isM−{⊥}.
/

It is a well-known fact, that the class of languages recognized by finite
monoids is exactly equal to the class of regular languages:

Lemma 20. A language is recognized by an orbit-finite monoid, if and only if
it is recognized by a deterministic orbit-finite automaton.

Proof. (⇒): Let L ⊆ Σ∗ be a language recognized by a finite monoid M (to-
gether with h and F ). It is not hard to see that L is also recognized by an
automaton where the set of states is M , the initial state is 1, the accepting
subset of states is F , and the transition function is given as:

δ(q, a) = q · h(a)

(⇐): Let L be a language recognized by a finite automaton A whose set of
states is equal to Q. It follows that L is recognized by the monoid Q → Q,
whose operation is given as f · g = g ◦ f , together with the following h and F :

h(a) = (q 7→ δ(q, a)) F = {f | f ∈ Q→ Q, such that f(q0)
is an accepting state}

The intuition behind this construction is that a word w can be characterized by
its behaviour function bw ∈ Q→ Q:

bw(q) = In which state will A exit w on the right,
if it enters w on the left in the state q?

(For a more detailed explanation see [Boj20, Theorem 22], or Section 2.3.4).

Now, let us extend the theory of finite monoids to sets with atoms: An
orbit-finite monoid, is monoid whose underlying set (i.e. M) is orbit-finite and
whose operation (·) is an equivariant function. The language recognized by an
orbit-finite monoid M is defined in the same way as for a finite M , but we
require h and F to be equivariant, i.e.:

h : Σ→eq M and F ⊆eq M
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For example, consider again the language from Example 4, but this time over
an orbit-finite Σ:

“No letter appears twice in a row” ⊆ Σ∗

It is easy to see that this language is recognized by an orbit-finite monoid: In
fact, the definitions of M , h and F remain the same as in the finite case. If Σ
is orbit-finite then so is 1 + Σ2 + ⊥, and both h and F are easily seen to be
equivariant.

Let us present one more example:

Example 5. Consider the following language over the alphabet A:

“There are at most 3 different letters in the word ”

It is recognized by the following orbit-finite monoid:

M =

(
A
≤ 3

)
︸ ︷︷ ︸

sets with at most 3 letters

+ ⊥︸︷︷︸
a representation of

sets with more than 3 atoms

The monoid operation is defined as:

x · y =

{
x ∪ y if x 6= ⊥, y 6= ⊥, and |x ∪ y| < 3

⊥ otherwise

Function h is defined as x 7→ {x}, and the accepting subset is defined as F =
M − {⊥}. /

The expressive power of orbit-finite monoids is strictly weaker than the one
of deterministic one-way orbit-finite automata. First, let us notice that an orbit-
finite monoid can be translated into an orbit-finite automaton, using the same
construction as in the proof of Lemma 20. To show that orbit-finite monoids
recognize a different class of languages than deterministic orbit-finite automata,
it suffices to show that orbit-finite-monoids are closed under reverse (we already
know that the deterministic one-way orbit-finite automata are not):

Lemma 21. If a language L is recognized by and orbit-finite monoid, then so
is its reverse.

Proof. Let L be recognized by M,h, F . Define
←−
M , to be an orbit-finite monoid

that has the same underlying set as M , but its operation (?) is defined as:

a ? b = b · a

where (·) is the operation of the original monoid M . This operation is easily
seen to be associative. This finishes the proof, because

←−
M (together with the

original h and F ) recognizes the reverse of L.
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It follows orbit-finite monoids are indeed strictly weaker than deterministic
orbit-finite automata. The following claim gives an explicit witness of this non-
containment:

Example 6. The language

“First letter appears again”

is not recognized by any orbit-finite monoid. If it were, then (by Lemma 21) so
would be its reverse:

Llast = “The last letter appears before”

This would mean that the language Llast is recognized by some deterministic
orbit-finite automaton, which was shown in the proof of Lemma 17 to be false.

/

It is worth pointing out that:

orbit-finte monoids 6= (left-to-right deterministic
orbit-finite automata ) ∩ (right-to-left deterministic

orbit-finite automata )

The class on the right is stronger, as witnessed by the following language:

“The first letter is equal to the last one
and it appears somewhere else in the word”
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Chapter 2

Single-use restriction

In this section, we introduce the single-use restriction, which weakens register
automata in a way that makes them equivalent to orbit-finite monoids. The
restriction was first introduced in my master’s thesis [Ste18], which proves that
single-use register automata are not stronger than orbit-finite monoids, and later
studied in the conference paper [BS20], which proves that the two models are
actually equivalent. The contribution of this thesis is introducing the abstract
class of single-use functions (Section 2.2), and defining the single-use automaton
in terms of single-use functions (Section 2.3).

2.1 Single-use register automaton
We start the chapter with an informal discussion on the model of the single-use
register automaton, which is a variant of the deterministic1 register automaton,
where every register value can be used at most once. This means that:

1. the automaton is not allowed to make copies of register values; and

2. whenever the automaton asks a query about a register value, this has the
side effect of destroying that register’s contents.

To see this model in practice, consider the following example:

Example 7. We want single-use automata to be equivalent to orbit-finite
monoids. This means that the following language should not be recognized by
any single-use register automaton (because, by Example 6, it is not recognized
by any orbit-finite monoid):

“The first letter appears again” ⊆ A
1In this thesis we assume that all single-use models are deterministic unless we explicitly

state otherwise. This is because combining the single-use restriction with nondeterminism,
which we do not know how to resolve (see Section 2.4).
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The formal proof of this fact follows from Lemma 39 presented later in this
chapter. For now, let us simply show that the standard register automaton
presented in Example 1 (in Chapter 1) fails to recognize the language under the
single-use restriction. We follow the automaton’s run on the word 1 2 3 2 1 3. It
starts in the initial configuration:

The first transition proceeds without difficulties: the automaton stores the first
letter in its register and moves to the second position:

Then, the automaton compares its register value with its current input value. It
learns that they are different, but, as a consequence of the single-use restriction,
it loses the register value:

At this point, the automaton does not remember the first atom any more, so it
has no chance of checking if it appears later in the word. /

Let us now consider a positive example:

Example 8. The following language is recognized by a single-use automaton:

“No letter appears twice in a row” ⊆ A∗

The automaton has one register in which it stores a copy of the previous letter.
Whenever the automaton moves forward to a new position, it compares the
new letter with the previous one. This has the side effect of destroying the
register’s contents. If the letters are (or rather were) equal, the automaton
rejects the input. If they were different, the automaton saves the current letter
in its register and proceeds forward. /
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It is worth pointing out that a single-use automaton has an unrestricted (i.e.
multiple-use) access to its input letters. This is illustrated by our final example:

Example 9. In this example we show that the language:

“There are at most 3 different letters in the input word” ⊆ A

is recognized by a single-use register automaton. First, let us point out that
the standard (i.e. multiple-use) automaton presented in Section 1.1 violates the
single-use restriction. Interestingly, a single-use construction is possible, but
it requires six registers. Suppose that the automaton has already seen three
different letters a, b, c ∈ A. Then the automaton should store one of them in
three copies, one of them in two copies and one of them in one copy:

Suppose that the automaton is about to process the next letter d ∈ A,
which may or may not be equal to a, b, or c. This transition is explained in the
following (hopefully self-explanatory) diagram:

Using a similar idea, it is easy to extend this construction to cases where the
automaton has only seen two or fewer different letters so far. /
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2.1.1 Single-use transition functions
In this section, we define single-use transition functions for register automata.
This definition is specific to the functions of the type:

(Q× (A +⊥)R)× A→eq (Q× (A +⊥)R).

The syntactic definition of single-use transition functions is based on the
syntactic definition of equivariant transition functions. Recall that in Section 1.1
we have defined equivariant transition functions using programs of the following
shape:

if (condition and condition and . . . and condition) then
action; action; . . .; action;

else if (condition and condition and . . . and condition) then
action; action; . . .; action;

else if (condition and condition and . . . and condition) then
action; action; . . .; action;

. . .

Examples of conditions include state = q7, r1 = r2, or r1 = input, and
examples of actions include state := q7, r3 := r2 or r5 := input. Notice
that the if-statements are not allowed to branch. In the definition of single-use
transition functions, we use a similar syntax but with a different semantics. In
the single-use semantics, evaluating a condition has the side effect of destroying
the content of each register that appears in the condition (by replacing it with
⊥). For example, in the single-use semantics the following two programs are
equivalent:

if r1 = r3 then
state := q3;

else
state := q5;

if r1 = r3 then
r1 := ⊥;
r3 := ⊥;
state := q3;

else
r1 := ⊥;
r3 := ⊥;
state := q5;

Because of those side effects, the order in which we evaluate the conditions
might influence the outcome. To make this order clear, we modify the syntax
of single-use transition functions, by (a) disallowing the use of and in the if-
statements, and (b) allowing nested and branching if expressions.

As an example, we provide an implementation of the transition function for
the register automaton described in Example 8. The automaton has 4 control
states (q0, q1, q2, q3, qfail) and 6 registers (a1, a2, a3, b1, b2, c1). For the sake
of brevity, we limit the implementation to the case where the automaton has
already seen 3 different letters:
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if state = q3 then
if a1 = input then

a1 := input;
else if b1 = input then

b1 := a2;
b2 := a3;
a1 := input;
a2 := input;
a3 := input;

else if c1 = input then
c1 := b2;
b1 := a2;
b2 := a3;
a1 := input;
a2 := input;
a3 := input;

else
state := qfail

else ...

This particular transition function could have been implemented using and’s
instead of the branching if expressions, but this is not true for all single-use
transition functions. Here is an example of a function that requires branching:

if r1 = input then
if r2 = r3

then state := qok;
else state := qfail;

else
if r2 = r4

then state := qok;
else state := qfail;

2.1.1.1 Single-use acceptance function

Finally, let us discuss the way in which the single-use register automaton accepts
its input. There are two possible approaches: In the first one, called acceptance
by state, the automaton decides whether to accept its input by looking at its final
control state – if it belongs to the accepting subset F ⊆ Q, it accepts; otherwise
it rejects. In the second way, the automaton has an equivariant acceptance
function:

(Q× (A +⊥)R)→eq {Yes,No}.

Acceptance by control state is used by the standard (multiple-use) register au-
tomata, as defined in Chapter 1, and acceptance by configuration is used (im-
plicitly) by the orbit-finite automaton. It follows, from Theorem 1, that the
two acceptance models are equivalent for multiple-use automata. However, for
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the single-use register automaton, they can change the expressive power of the
automaton2:

Example 10. The following language

“The first letter is equal to the last one” ⊆ A∗

is recognized by a single-use register automaton that accepts by configuration,
but not by one that accepts by control state.

We start by describing the automaton that accepts by configuration. The
automaton has two registers: in the first one, it stores a copy of the first let-
ter, and in the second one, it stores a copy of the previous letter. In the final
configuration, the first register will contain a copy of the first letter, and the
second register will contain a copy of the last letter, so the acceptance function
can check if the two values are equal.

On the other hand, it is not hard to see that a register automaton that
accepts by control state and recognizes the language “The first letter is equal to
the last one”, has to compare each input letter with the first one (because every
letter could be the last one). This would violate the single-use restriction. /

The language from Example 10 is recognized by an orbit-finite monoid.
Since we would like single-use register automata to be equivalent to orbit-finite
monoids, we choose acceptance by configuration as the standard acceptance
model for the single-use register automaton. One could also argue that accep-
tance by configuration is more natural than acceptance by control state, because
it naturally appears in orbit-finite automata.

Finally, let us mention that we could also consider a model, which requires
the acceptance function to be single-use. (With the syntax for a single-use
acceptance functions defined analogously to the one for single-use transition
functions.) Fortunately, it turns out that this does not influence the expressive
power of the automaton. We prove this later in the chapter as Lemma 38.

2.2 Single-use functions
In this section, we take a detour from our discussion of automata theory to in-
troduce an abstract concept of single-use functions. Then, in the next section,
we will use these functions as a tool for analysing single-use automata. The
step from single-use transition functions to general single-use functions can be
compared to the step from equivariant transition functions (described in Sec-
tion 1.1) to the general equivariant functions (described in Section 1.2).

2We are going to briefly revisit this distinction in Chapter 3, while discussing the output
function (λ) of a local monoid transduction (see Definition 19).
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Before we define single-use functions, let us discuss a few of their properties.
The defining feature of the class is that it does not contain the following function:

copy : A→ A× A.

This motivates the notation X ( Y for the set of all single-use functions be-
tween X and Y . The notation comes from linear logic ([Gir87]) and linear type
systems3 ([Wad90]). It is important to point out that while single-use functions
are not allowed to copy atoms, they are allowed to discard them, which makes
them actually closer to affine logic, and affine type systems [Asp98] (they use
the symbol ( as well).

The proof that single-use automata are not stronger than orbit-finite monoids
relies on two key properties of single-use functions: The first one is that single-
use function spaces preserve orbit finiteness: if X and Y are orbit-finite, then
so is X ( Y . Note that this is not true for finitely supported functions, where
already A →fs {Yes,No} is orbit-infinite (see Section 1.2.2 for details). The
second important property is that single-use functions are closed under compo-
sitions: i.e. if f belongs X ( Y , and g belongs to Y ( Z, then (g ◦ f) belongs
to X ( Z. Thanks to those two properties, we know that if Q is orbit-finite,
then Q( Q is an orbit-finite monoid. We can use it to recognize the language
of a single-use automaton whose set of states is Q.

Unfortunately, as we are going to see, the definition of single-use functions
is (at least for now) rather syntactic in its nature. It limits their scope to a
very specific subclass of orbit-finite sets called polynomial orbit-finite sets. The
questions of finding a semantic definition of the class and extending its scope
remain open.

2.2.1 Polynomial orbit-finite sets
We start by defining polynomial orbit-finite sets4, which are the domains and
codomains of single-use functions:

Definition 6. The class of polynomial orbit-finite sets is the smallest subclass
of sets with atoms that:

1. contains the atomless singleton (1);

2. contains the set of all atoms (A);

3. is closed under products (P1 × P2); and

4. is closed under disjoint sums (P1 + P2).
3For more connections with linear type systems see [Nê21, Claim 1.4.11].
4The motivation of the name is as follows: The word orbit-finite is used, because every

polynomial orbit-finite set is orbit-finite. The word polynomial is used because the class of
polynomial orbit-finite sets is closed under × and + (i.e. products and coproducts).
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/

Example 11. Every finite S can be represented as polynomial orbit-finite,
because it is isomorphic to:

1 + 1 + . . .+ 1︸ ︷︷ ︸
|S| times

.

/

Example 12. The set of all possible memory configurations of a register au-
tomaton – i.e. the set Q×(A+⊥)R, for some finite R and Q – can be represented
as a polynomial orbit finite set, because it is isomorphic to:

(1 + 1 + . . .+ 1︸ ︷︷ ︸
|Q| times

)× (A + 1)× (A + 1)× . . .× (A + 1)︸ ︷︷ ︸
|R| times

/

It is easy to see that all polynomial orbit-finite sets are orbit-finite, and that
all polynomial orbit-finite sets are straight (as defined in Definition 4). It is
worth pointing out that the other inclusion does not hold – there are sets that
are straight and orbit-finite but not polynomial orbit finite. An example of such
a set is A(2). In general, thanks to the distributivity of × over +, it is not
hard to see that every polynomial orbit-finite set is isomorphic with a set of the
following form (in Lemma 22 we are going to show that this isomorphism is a
single-use function):

Ak1 + . . .+ Akn

2.2.2 Single-use functions
We are now ready to define the single-use functions:

Definition 7. The class of single-use functions is the smallest subclass of func-
tions between polynomial orbit-finite that is closed under the following combi-
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nators, and contains all the following basic functions:

Combinators

X
f−→ Y Y

g−→ Z

X
g◦f−→ Z

X1
f−→ Y1 X1

g−→ Y1

X1 ×X2
f×g−→ Y1 × Y2

X1
f−→ Y1 X2

g−→ Y2

X1 +X2
f+g−→ Y1 + Y2

Functions about A
eq : A× A→ 1 + 1
consta∈A : 1→ A
id : A→ A

Functions about ×
proj1 : X × Y → X
proj2 : X × Y → Y
sym : X × Y → Y ×X
assoc : (X × Y )× Z → X × (Y × Z)
leftI : X → 1×X

Functions about +
coproj1 X → X + Y
coproj2 Y → X + Y
cosym : X + Y → Y +X
coassoc : (X + Y ) + Z → X + (Y + Z)
merge : X +X → X

Distributivity
distr : X × (Y + Z)→ X × Y +X × Z

/

The class of single-use functions is a restriction of finitely supported func-
tions. To illustrate that, we start with a negative example:

Example 13. The following function is finitely supported, but not single-use:

f : A→ (1 + 1)︸ ︷︷ ︸
represents
true or false

f(a) =

{
true if a = 3 ∨ a = 5

false otherwise

This is because f needs to compare its input with two different constants, which
requires two copies of the input value. (A formal proof follows from the decision
tree representation, presented later in this section.) /

Let us now present a few positive examples:

Example 14. The function constI : X → 1 is a single-use function, because
it can be constructed as the following composition:

X
leftI−→ 1×X

proj1−→ 1

/

Example 15. The function rightDistr : (X + Y )× Z → (X × Z) + (Y × Z)
is a single-use function. It can be constructed as the following composition:

(X + Y )× Z sym−→ Z × (X + Y )
distr−→ Z ×X + Z × Y sym+sym−→ X × Z + Y × Z
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Using a similar idea, we can show that all the following functions are single-use:

rightI : X → X × 1 assoc−1 : X × (Y × Z)→ (X × Y )× Z

coassoc−1 : X + (Y + Z)→ (X + Y ) + Z

/

Example 16. Single-use functions are closed under the following combinator:

X
f−→ Z Y

g−→ Z

X + Y
[f,g]−→ Z

Function [f, g] is constructed as follows:

X + Y
f+g−→ Z + Z

merge−→ Z

This combinator can easily be generalized to any number of functions:

[f1, . . . , fn] : X1 + . . .+Xn → Y

/

Example 17. The function distr−1 : X × Y + X × Z → X × (Y + Z) is a
single-use function. It can be constructed as follows:

X × Y +X × Z
[proj1×coproj1,proj1×coproj2]
−−−−−−−−−−−−−−−−−−−−−−−→ X × (Y + Z)

/

In order to simplify the notation, we declare both × and + to be right associa-
tive. This means that:

X1 +X2 + . . .+Xn = X1 + (X2 + . . .+Xn).

(and analogously for ×). In a similar manner, we define Xn to denote

X ×X × . . .×X︸ ︷︷ ︸
n times

= X × (X × . . .×X)

Example 18. The following function is single-use:

proji : X1 × . . .×Xn → Xi

It can be constructed as follows:

X1 × . . .×Xn
proj2−→ X2 × . . .×Xn

proj2−→ . . .
proj2−→ Xi × . . .×Xn

proj1−→ Xi

Similarly, we show that coproji : Xi → X1+. . .+Xn is a single-use function. /
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Example 19. The following function is single-use:

assoc∗ : (X1 × . . .×Xn)× (Y1 × . . .× Ym)→ X1 × . . .×Xn × Y1 . . .× Ym

It can be constructed inductively on n:

(X1×(X2 . . .×Xn))×(Y1×. . .×Ym)
assoc−→ X1×((X2 . . . Xn)×(Y1×. . .×Ym))

id×assoc∗−→

−→ X1 × (X2 . . .×Xn × Y1 . . .× Ym)

Using a similar idea, we can extend assoc∗ to map between any two bracketings
of X1 × . . . × Xn. In an analogous manner, we can show that the following
functions are single-use:

coassoc∗ : (X1 + . . .+Xn) + (Y1 + . . .+ Ym)→ X1 + . . .+Xn + . . . Y1 + . . . Yn

distr∗ : (X1× . . .×Xn)×(Y1× . . .×Ym)→ X1×Y1 + X1×Y2 + . . .+ Xn×Ym
/

Example 20. For every permutation p : {1, . . . , k} → {1, . . . , k}, the following
function is single-use:

shufflep : X1 × . . .×Xk → Xp(1) × . . .×Xp(k)

In order to see that, we notice that every shufflep can from the following to
functions:

swap : X1 ×X2 . . .×Xk → X2 ×X1 × . . .×Xk

shift : X1 ×X2 . . .×Xk → X2 ×X3 × . . .×Xk ×X1

This leaves us with constructing swap and shift. Here is the construction for
swap:

Ak assoc∗−−−−→ A2 × Ak−2 sym×id
−−−−→ A2 × Ak−2 assoc∗−−−−→ Ak,

and here is the construction for shift:

Ak sym−→ Ak−1 × A assoc∗−−−−→ Ak.

/

Finally, let us show that we can use single-use bijections to present polyno-
mial orbit-finite sets in a normal form:

Lemma 22. For every polynomial orbit-finite X, there exists a single-use bi-
jection:

τX : X ( Ak1 + Ak2 + . . .+ Akn ,

such that τ−1
X is a single-use function as well.
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Proof. We construct the isomorphism inductively on X. First, we notice that
both τ1 and τA are both equal to id. Then we construct τX1+X2 :

X1 +X2
τ1+τ2−→ (Ak1 + . . .+ Akn) + (Al1 + . . .+ Alm)

coassoc∗−→ Ak1 + . . .+ Alm

Finally, we construct τX1×X2 :

X1 ×X2

τX1
+τX2−→ (Ak1 + . . .+ Akn)× (Al1 + . . .+ Alm)

distr∗−→

Ak1×Al1+Ak1×Al2+. . .+Akn×Alm assoc∗+...+assoc∗
−−−−−−−−−−−−−→ Ak1+l1+Ak1+l2+. . .+Akn+lm

This finishes the first part of the proof. To prove that τ−1
X exists and is a

single-use function, we use the following claim:

Claim 14. If a single-use function f : X ( Y can be constructed using only
the following basic functions (and all three combinators): sym, assoc, leftI,
cosym, coassoc, id, distr, proj1 limited to X × 1→ X, and proj2 limited to
1×X → X, then f−1 : Y → X exists and is a single-use function.

Proof. The proof goes by induction on the derivation of f as a single-use func-
tion. First, let us notice that all three combinators preserve reversibility:

(f ◦ g)−1 = g−1 ◦ f−1 (f × g)−1 = f−1 × g−1 (f + g)−1 = f−1 + g−1.

This leaves us with showing that all the basic functions listed in the claim have
single-use inverses: Each of sym, cosym, and id is its own inverse. Thanks
to Examples 15 and 17, we know that distr−1, assoc−1 and coassoc−1 are
single-use functions. Finally, we notice that leftI and proj2 : 1×X → X are
each other’s inverses, and the inverse of proj1 : X × 1 → X is rightI defined
in Example 15.

2.2.3 Single-use functions + copy

In this section we prove the following lemma, which justifies the intuition that:

(single-use functions) + copy = (multiple-use functions)

Lemma 23. If we extend the class of single-use functions, by including

copy : A → A × A

as a basic function, we obtain the class of all finitely supported functions between
polynomial orbit-finite sets.

We introduce the name definable function, for a function that belongs to the
class of single-use functions extended with copy.
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2.2.3.1 Definable ⇒ Finitely supported

We start the proof of Lemma 23 with the simpler inclusion:

Lemma 24. Every definable function is finitely supported.

Proof. Notice that for every a ∈ A, the function consta is supported by {a},
and that all other basic functions equivariant. To finish the proof, we need to
show that all the combinators preserve finite supports:

supp(f ◦ g) ⊆ supp(f) ∪ supp(g), supp(f × g) ⊆ supp(f) ∪ supp(g),

and supp(f + g) ⊆ supp(f) ∪ supp(g)

This follows from Lemma 3, because all ◦, ×, and + are equivariant (higher-
order) functions.

Before we proceed with the proof of Lemma 23, we state a corollary of Lemma 24:

Lemma 25. Every single-use function is finitely supported by the set of all
constants used in its derivation. In particular, if a single-use function can be
constructed without the use of any consta, then it is equivariant.

2.2.3.2 Finitely-supported ⇒ Definable

This section is dedicated to proving the remaining inclusion:

Lemma 26. If X and Y are polynomial orbit-finite, then every f : X →fs Y is
definable.

The proof is going to be similar to the proof from Section 1.1, that every
semantically equivariant transition function is also syntactically equivariant. We
start by defining α-orbits, which are orbits of α-permutations:

Definition 8. Let α be a finite subset of atoms. For every element x, of a set
with atoms X, we define the α-orbit of x to be the following set:

{π(x) | π is an α-permutation}

/

Similarly as it was the case for equivariant orbits, every two α-orbits of
X are either equal or disjoint. It follows that being in the same α-orbit is
an equivalence relation on X, which means that every set with atoms X is
partitioned into its orbits. By [Boj19, Theorem 3.16], we know that every orbit-
finite set is also α-orbit-finite:

Lemma 27. If a set X is orbit-finite, then it has finitely many α-orbits, for
every α ⊆fin A.

We start the proof of Lemma 27, by proving it in a very special case:
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Claim 15. Let α be a finite subset of atoms, and let O ⊆ Ak be an α-orbit
of Ak. For every α-supported f : O →fs A, there exists a definable function
f ′ : Ak → A, such that f ′ restricted to O is equal to f .

Proof. Take some x̄ from O. It follows from Lemma 3 that f(x̄) is either equal
to some a ∈ α or to some x̄i. In the first we define f ′ := consta, and in the
second case we define f ′ := proji. Let us show that f ′ matches with f on O:
Take some ȳ ∈ O. Since O is a single α-orbit, we know that ȳ = π(x̄), for some
α-permutation π. If f(x̄) = a, for some a ∈ α, then:

f(ȳ) = f(π(x̄)) = π(f(x̄)) = π(a) = a = consta(x̄).

If f(x̄) = x̄i, then:

f(ȳ) = f(π(x̄)) = π(f(x̄)) = π(x̄i) = ȳi = proji(ȳ).

In the next step, we would like to extend Claim 15 to functions of type
O → Ak. Before we do that, we need to define a couple of helper functions:

Example 21. The function copy can be extended from A to all polynomial
orbit-finite sets. We construct copy : X → X2 inductively on X: If X = 1,
then copy is equal to rightI. If X = A, then copy is a basic function. If
X = X1 ×X2, then copy can be defined as:

X1 ×X2
copy×copy
−−−−−−−→ X2

1 ×X2
2

assoc∗ ◦ shuffle ◦ assoc∗−−−−−−−−−−−−−−−−−−→ (X1 ×X2)2

Finally, if X = X1 +X2, then copy can be defined as:

X1 +X2
copy+copy
−−−−−−−→ X2

1 +X2
2

[proj1×proj1,proj2×proj2]
−−−−−−−−−−−−−−−−−−−−→ (X1 +X2)2

/

Example 22. Definable functions are closed under the following combinator:

X
f−→ Y1 X

g−→ Y2

X
〈f,g〉−→ Y1 × Y2

The function 〈f, g〉 can be constructed as:

X
copy−→ X ×X f×g

−−→ Y1 × Y2

Using a similar construction, we can generalize this combinator to any number
of functions:

〈f1, . . . , fn〉 : X → Y1 × . . .× Yn
/
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Using the 〈f1, . . . , fk〉 combinator, we can easily extend Claim 15 to functions of
type O →fs Ak. Now, let us notice that every function of type O →fs Y (where
Y can be any polynomial orbit-finite set) can be decomposed as:

O
f ′−→ Ak

coproji−→ Al1 + . . .+ Aln
τ−1
Y−→ Y

Thanks to this observation, we can extend Claim 15 to all functions of the type
O →fs Y . In order to further extend it to Ak →fs Y , we need to show that the
definable functions can calculate the α-orbit of their argument. (By Lemma 27,
we know that the set of α-orbits of Ak is finite, which means that it can be
represented as 1 + . . .+ 1.) Before that, we define two more helper functions:

Example 23. For every X, and for every x ∈ X, the function constx : 1→ X
is single-use. Let us start by defining const for X = Ak. For a x̄ ∈ Ak, we
construct constx̄ as:

1
rightI−→ 1× 1

id×rightI
−−−−−−−→ 1× 1× 1 −→ · · · −→ 1k

constx̄1
×...×constx̄k−−−−−−−−−−−−−−−→ Ak

Now, we use Lemma 22 to extend this construction to an arbitrary X: We take
some x ∈ X, and we define x̄ := τX(x), then we construct constx as:

1
constx̄−→ Akj

coprojj−→ Ak1 + . . .+ Akn
τ−1
X−→ X

/

Example 24. If X is finite, then every function f : X → Y is single-use. In
order to see that, we first notice that since X is finite, then τX (from Lemma 22)
has to be of the form τX : X → 1 + . . .+ 1. It follows that we can construct f
as:

X
τX−→ 1 + . . .+ 1

constf(x1)×...×constf(xk)
−−−−−−−−−−−−−−−−−−−−→ Y ,

where xi = τ−1
X (coproji(1)). /

We are now ready to show how to compute α-orbits:

Claim 16. The following function, which computes the α-orbit of its input is
definable for every α ⊆fin A:

orbitα : Ak → 1 + . . . 1.

Proof. The orbit of every x̄ ∈ Ak depends only on whether x̄i = x̄j for every
i, j ∈ {1, . . . , k}, and on whether x̄i = a for every a ∈ α and i ∈ {1, . . . , k}. The
first type of check can be performed by cmpi,j , defined as:

Ak copy−→ Ak × Ak
proji×projj−→ A× A eq−→ (1 + 1)

The second type of check can be performed by cmpi,a, defined as:

Ak rightI−→ Ak × 1
proji×consta−−−−−−−−−→ A× A eq−→ (1 + 1)
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Let c : (1 + 1)m → 1 + . . .+ 1 be the function that consolidates the results of all
those checks, and computes the α-orbit. Thanks to Example 24, we know that
c is definable. This means that we can construct orbitα as:

Ak
〈cmp1,1,...,cmpk,a〉
−−−−−−−−−−−−→ (1 + 1)m

c−→ 1 + . . .+ 1

In order to extend Claim 15 from O → Y to Ak → Y , we combine Claim 16
with the following combinator:

Example 25. The class of single-use functions is closed under the following
if-then-else combinator:

X
f−→ Y X

g−→ Y

(1 + 1)×X f?g−→ Y

The combinator is defined as follows:

(1 + 1)×X rightDistr
−−−−−−−→ X +X

[f,g]−→ Y

Using a similar technique, we can generalize the combinator to take more than
two functions:

(f1? . . . ?fn) : (1 + . . .+ 1)×X → Y

/

Finally, we use the [f1, . . . , fn] combinator and τX function, to extend Claim 16
to all functions of the type X → Y . This finishes the proof of Lemma 26.

2.2.3.3 k-fold use functions

In this section we define and briefly discuss the class of k-fold-use functions. It
is situated between single-use functions which can use only one copy of their
input, and finitely supported functions which can use any number of copies.

Definition 9. For every k ∈ N, we say that a function is k-fold-use, if it can
be constructed as a composition of the following form:

X
copyk−→ Xk

f ′

−−( Y ,

where f ′ is some single-use function. We denote the set of all k-fold use functions
between polynomial orbit-finite X and Y as X (k Y . /

It is easy to see that:

(X ( Y ) = (X (1 Y ) ⊆ (X (2 Y ) ⊆ (X (3 Y ) ⊆ . . .

It is also not hard to see that this hierarchy is strict:
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Example 26. Consider the following function f ∈ A →fs {Yes,No}, which is
supported by {4, 7}:

f(x) =

{
Yes if x ∈ {4, 7}
No otherwise

This function clearly belongs to A (2 {Yes,No}, but not to A ( {Yes,No}.
(The formal proof that f 6∈ A( {Yes,No} follows from the decision-tree rep-
resentation of single-use functions, presented later in this chapter.) /

This example can easily be generalized, to show that:

(X (1 Y ) ( (X (2 Y ) ( (X (3 Y ) ( . . .

In the limit, this sequence reaches X →fs Y :

Lemma 28. For every polynomial orbit-finite X and Y :

X →fs Y =
⋃
k∈N

X (k Y

Proof. The proof that every k-fold use function is finitely supported is almost
the same as the proof of Lemma 25. Now, let us prove the other inclusion: all
the basic functions from Definition 7 are 1-fold, and copy is easily seen to be
2-fold, so thanks to Lemma 26, it suffices to show that all three combinators +,
×, and ◦ preserve belonging to

⋃
k∈NX (k Y :

We start with ◦. Let us show that we can present the following composition
as an m-fold use function, for some m ∈ N:

X
copyk−→ Xk

f
−−( Y

copyl−→ Y l
g
−−( Z

We do this in the following way, with m = k · l:

X
copyk·l−→ Xk·l assoc∗

−−(
(

(Xk)
l
) f×...×f
−−( Y l

g
−−( Z

For × and +, it is not hard to see that if f is a k-fold-use function, and l is a
l-fold-use function, then both f+l and f×l are max(k, l)-fold-use functions.

2.2.4 Single-use decision trees
In this section we prove the most important property of single-use functions:

Theorem 5. The set of all single-use functions X ( Y is orbit-finite, for all
polynomial orbit-finite X and Y .

We prove Theorem 5 by introducing the single-use decision tree representa-
tion of single-use functions – for every polynomial X and Y , we define the set
Trees(X,Y ), such that there is an equivariant surjection5:

Trees(X,Y )→eq (X ( Y )

5This tree representation is not bijective – many different trees can describe the same
function.
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Then, we show that the set Trees(X,Y ) is polynomial orbit-finite for every X
and Y . This is enough to proof Theorem 5, because by [Boj19, Lemma 3.24]
images of orbit-finite sets under equivariant functions remain orbit-finite.

Definition 10. We start defining the single-use decision trees with the most
interesting case, i.e. trees for functions of the following type:

Ak ( Al1 + . . .+ Aln .

A single-use decision tree of this type is a tree whose nodes contain quieries and
whose nodes contain constructors. Each constructor is of the following form:

coproji(v1, . . . , vli),

where each vj is either an input variable xv or an atomic constant a ∈ A. Each
query is either of the form xi = xj or xi = a, where i, j ∈ {1, . . . , k}. Moreover,
every single-use tree has to satisfy the single-use restriction, which says that on
every path from the root to a leaf, each variable xi may appear at most once
(in queries or constructors). Here is an example of a single-use decision tree of
type A2 ( A + A2:

Each such tree naturally represents a function fT : Ak ( Al1 + . . . + Aln .
It is not hard to see that the single-use restriction on T guarantees that fT is a
single-use function.

The construction for trees of more general types is standard. The single-use
decision trees of the type Ak1 + . . .+Akn ( Al1 + . . .+Alm are simply n-tuples
of trees T = (T1, . . . , Tn) such that

Ti ∈ Trees(Ak1 ,Al1 + . . .+ Alm).

In this case, function fT is defined using the combinator Example 16:

fT : Ak1 + . . .+ Akn
[fT1

,...,fTn ]

−−( Al1 + . . .+ Aln
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Finally, in order to define single-use decision trees of type X ( Y , where X
and Y are arbitrary polynomial orbit-finite sets, we use the isomorphisms from
Lemma 22:

τX : X → Ak1 + . . .+ Akn τY : Y → Al1 + . . .+ Alm .

A single-use decision tree T representing a function X ( Y is a tree:

T ′ ∈ Trees(Ak1 + . . .+ Aln ,Ak1 + . . .+ Alm)

It represents the following function:

fT : X
τX−−( Ak1 + . . .+ Akn

fT ′−−( Al1 + . . .+ Alk
τ−1
Y−−( Y

/

It is not hard to see that the mapping T 7→ fT is equivariant, i.e. fπ(T ) =
π(fT ) for all atom permutations.

2.2.4.1 Single-use function ⇒ Single-use decision trees

In this section we show that the single-use decision tree representation is injec-
tive:

Lemma 29. Every function from X ( Y is represented by some T ∈ Trees(X,Y ).

We prove the lemma, by showing that the class of functions recognized by
single-use decision trees is closed under ◦, +, and ×; and contains all basic
functions from Definition 7.

We start with the most interesting case, which is showing that single-use
decision trees are closed under compositions. We first show it for trees on
tuples:

Claim 17. If g : Ak ( Al and f : Al ( Am are represented by single-use
decision trees, then so is (f ◦ g) : Ak ( Al.

Proof. Let us take two decision trees F , G that represent f and g, and let
us show how to compose them, obtaining H that represent f ◦ g. Here are
some example F and G (for clarity we denote the variables in F as xi, and the
variables in G as yi):
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We start the construction by placing one copy of G under each leaf of F :

Then we replace every yi in each copy of G, with the vi from the leaf of F (each
vi is either som xj or some a ∈ A):
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Finally, we resolve all the queries that can be resolved (and forget about F ’s
leaves):

The constructed tree recognizes f ◦ g by design. It is also not hard to see that
the construction preserves the single-use restriction.

It is not hard to see that Claim 17 can be first generalized for tress Trees(Ak1+
. . .+ Akn ,Al1 + . . .+ Alm), and then to all single-use decision trees.
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We continue the proof of Lemma 29 by showing that functions recognized
by single-use decision trees are closed under + and ×:

Lemma 30. If f : X1 → Y1 and g : X1 → X2 are represented by single-use
decision trees, then so is (f + g) : X1 +X2 → Y1 + Y2.

Proof. If f is represented by (F1, . . . , Fn), and g is represented by (G1, . . . , Gm),
then f+g is represented by (F1, . . . , Fn, G

′
1, . . . , G

′
m), where G′i is a modification

of Gi in which each coprojj is replaced with coprojn+j .

Lemma 31. If f : X1 → Y1 and g : X1 → X2 are represented by single-use
decision trees, then so is (f × g) : X1 ×X2 → Y1 × Y2.

Proof. Let f be represented by (F1, . . . , Fn) and g be represented by (G1, . . . , Gm),
and let us construct H that represents f × g. First of all, notice that H should
be a tuple of n ·m trees (H1,1, . . . ,Hi,j , . . . ,Hn,m). Let us show, how to con-
struct Hi,j . First, we notice that if Fi belongs to Trees(Aki ,Al1 + . . . + Alm)

and Gj belongs to Trees(Ak
′
j ,Al′1 + . . .+ Al′m′ ), then Hi,j should belong to:

Trees(Aki+k
′
j , Al1+l′1 + . . .+ Ali+l

′
j + . . .+ Alm+l′

m′ ).

In order to construct Hi,j , we take Fi and replace all its leaves with a modified
version of Gj , where each variable xp has been replaced by xp+k, and in which
every leaf has been replaced with the following merge of the leaf from Fi with
the leaf from Gj :

coproja(v1, . . . , vla), coprojb(w1, . . . , wl′b) 7→ coprojc(v1, . . . , vla , w1, . . . , wl′b),

where c is the index of Ak
′
i+l
′
j in Ak′1+l′1 + . . .+Ak′n′+l′m′ . For example, consider

the following Fi, Gj :

For those Fi, Gj , we construct the following Hi,j :
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Finally, we need to show that all basic functions from Definition 7 can be
implemented as single-use decision trees. For the sake of conciseness, we only
show how to implement proj1 (the implementations for other basic functions
are analogous):

Lemma 32. For every X and Y , the function proj1 : X×Y → X is represented
by some T ∈ Trees(X × Y,X).

Proof. Let τX and τY (from Lemma 22) have the following types:

τX : X → Ak1 + . . .+ Akn τY : Y → Al1 + . . .+ Alm

This means that for every i, j, we need to define a single-use decision tree Ti,j ∈
Trees(Aki+lj ,Ak1 + . . .+ Akn), such that:

proj1 = τ−1
X ◦ (T1,1 + . . .+ Ti,j + . . .+ Tn,m) ◦ τX×Y

It is not hard to see that we can construct Ti,j to be a single leaf with the con-
structor coproji(x1, . . . , xki). (Note that the constructor forgets about variables
xki+1 to xki+lj .)

This concludes the proof of Lemma 29.
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2.2.4.2 Single-use decision trees are polynomial orbit finite

This section is dedicated to proving the following lemma:

Lemma 33. For every polynomial orbit-finite X,Y , the set Trees(X,Y ) is poly-
nomial orbit-finite as well.

Proof. It suffices to prove the lemma only for the case where X = Ak. The
general version follows from Lemma 6. Notice that, thanks to the single-use
restriction, the depth of the trees from Trees(Ak, Y ) is bounded by k+ 1. Now,
the key observation is that there is only finitely many possible shapes of binary
trees of bounded height (a shape of a tree is a version of the tree where all atoms
have been replaced by an atomless blank). Let {s1, . . . , sk} be the set of these
shapes, and denote |si| to be the number of blanks (i.e. atoms) in each tree
of shape si. Then, the set of all from Trees(Ak,Al) can be represented as the
following polynomial orbit-finite set:

A|s1| + . . .+ A|sk|

2.2.4.3 Canonical single-use decision trees

The definition of polynomial orbit-finite sets (Definition 6) does not include the
constructor of single-use function spaces ((). This means that if we want to
treat X ( Y as a polynomial orbit-finite set (for example to talk about higher-
order single-use functions), we need to represent it as a polynomial orbit-finite
set. For this purpose, we are going to use Trees(X,Y ). Observe that, this tree
representation of single-use functions is not injective – the following two decision
trees represent the same function:

In this section we show that there is an equivariant way of choosing a canon-
ical tree Trees(X,Y ) for every function X ( Y (this is not immediate, because
sets with atoms do not always admit choice – see Claim 6):
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Lemma 34. For every polynomial orbit-finite X and Y there exists a function:

treeRepr : (X ( Y )→eq Trees(X,Y ),

such that treeRepr(f) represents f .

As usual, we first prove the lemma for the special case where X = Ak and
Y = Al1 + . . . + Aln : Define the height of a function f ∈ (X ( Y ) to be
the smallest height of a tree from Trees(X,Y ) that recognizes f and define
SU≤h(X,Y ) ⊆ X ( Y be the set of all single-use functions recognized by trees
that are not taller than h. We prove by induction on h that for every h there is
a function:

treeReprh : SU≤h(X,Y )→eq Trees(X,Y )

This is enough to prove the lemma: Thanks to the single-use restriction, the
height of trees from Trees(Ak, Y ) is bounded by k + 1, which means that
treeRepr = treeRepr≤ (k + 1).

We start the inductive proof with h = 1. If f has height 1, then it is recog-
nized by some leaf. Moreover, it is not hard to see that if coprojj(v

′
1, . . . , v

′
lj

)

and coprojj′(v
′
1, . . . , v

′
lj′

) recognize the same function, then j = j′, and for ev-
ery i, vi = v′i. This means that we can define treeRepr1(f) to be the only leaf
that recognizes f .

For the induction step we take a h > 1. Let f be a function in SUh(X,Y ).
We assume that the height of h is at least 2 – if not, we can simply repeat
the construction from the induction base. We say that a tree is minimal if no
tree of smaller height that represents the same function. We say that xi is the
leading variable of f , if i is the smallest index, for which there exists a minimal
tree that represents f and queries xi in its root. It is not hard to see that the
function that maps f to its leading variable is equivariant. Let xi be the leading
variable of f , and let T be a minimal tree that recognizes f and queries xi in its
root. Let xi = v be the query from the root of T , and let TYes and TNo be the
subtrees of T . The following claim states that v, fTYes and fTNo do not depend
on the choice of T :

Claim 18. Let T and T ′ be two minimal trees that recognize the same function,
and query the same variable xi in their roots:
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It follows that v = v′, fTYes = fT ′Yes
, and fTNo = fT ′No

.

Before we prove the claim, we finish the induction step. Notice that the
heights of fTYes and fTNo are strictly lower than h. It follows that we can define
fYes = treeRepr(fTYes), fNo = treeRepr(fTNo), and define treeRepr(f) to be:

The construction does not depend on the choice of T , which makes it equivariant.
This leaves us with proving Claim 18:

Proof of Claim 18: Let us take T, T ′ ∈ Treesh(X,Y ) that recognize the same
function f ∈ SUh(X,Y ), and query the same xi in their roots. Let xi = v and
xi = v′ be the root queries of T and T ′, and let TYes, TNo, T ′Yes, and T

′
No be their

subtrees. Notice that fTYes 6= fTNo , or otherwise f would have been recognized
by TYes, and T would not be minimal. Similarly, fT ′Yes

6= fT ′No
. Let us now show

that v = v′. Since both v and v′ might be equal to an input variable, or to an
atomic constant, we need to consider four cases. They are all similar to each,
so we only present the proof for v = a ∈ A and v′ = b ∈ A: Let us assume
that a 6= b and show that this leads to a contradiction. We start by noticing
that thanks to the single-use restriction none of TYes, TNo, T ′Yes, T

′
No uses xi. It

follows that, for every x̄ ∈ Ak and for every c ∈ A:

TYes(x̄[xi := c]) = TYes(x̄) and TNo(x̄[xi := c]) = TNo(x̄).

Similarly for T ′Yes and T ′No. Moreover, since f is recognized by T and T ′, it
follows that for every x̄ ∈ Ak and for every c ∈ A:

f(x̄[xi := c]) =

{
TYes(x̄) if c = a

TNo(x̄) if c 6= a
f(x̄[xi := c]) =

{
T ′Yes(x̄) if c = b

T ′No(x̄) if c 6= b

Since fTYes 6= fTNo , we know that there is a x̄ ∈ Ak, such that TYes(x̄) 6= TNo(x̄).
This leads to a contradiction because, if we take c ∈ A, that is different from
both a and b, we have that:

TYes(x̄) = f(x̄[xi := a]) = T ′No(x̄) = f(x̄[xi := c]) = TNo(x̄)

It follows that v = v′. Let us now show that fTYes = fT ′Yes
and fTNo = fT ′No

.
Since v, v′ might both be equal to some a ∈ A, or to some xj , we have two
cases to consider. Again, they are very similar, so we only present the proof for
v = v′ = a ∈ A. In this case, for all x̄ ∈ Ak:

TYes(x̄) = f(x̄[xi := a]) = T ′Yes(x̄)
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Similarly, if we take b ∈ A, that is different from a, then for all x̄:

TNo(x̄) = f(x̄[xi := b]) = T ′No(x̄)

Let us now define treeRepr for functions Ak1 + . . .+ Akn ( Al1 + . . .+ Alm :

treeRepr(f) := (treeRepr(f ◦ coproj1), . . . , treeRepr(f ◦ coprojn))

Finally, we define the representation for functions X ( Y :

treeRepr(f) := treeRepr(τY ◦ f ◦ τ−1
X )

2.3 Single-use automata
In this section we define the single-use automaton – a model which (slightly)
generalizes the single-use register automaton. A single-use automaton uses a
polynomial orbit-finite set of states Q to process words over a polynomial orbit-
finite alphabet Σ. It has an equivariant initial state q0 ∈ Q, and a single-use
acceptance function f : Q ( {Yes,No}. The type of its transition function is
slightly more complicated. We discuss it in the following section.

2.3.1 Single-use transition function
The first idea for the type of the transition function is:

(Σ×Q)( Q.

Such a transition function would only allow the automaton to use one copy
of each input letter, which would make single-use automata weaker than both
single-use register automata and orbit-finite monoids:

Example 27. The following language over A is easily seen to be recognized
by an orbit-finite monoid, and by a single-use register automaton, but not by a
single-use polynomial orbit-finite automaton of type Σ×Q( Q:

“The length of the word is 3 and all its letters are pairwise distinct”.

/

The main focus of this thesis are models equivalent to orbit-finite monoids,
so we are not going to discuss single-use automata of type Σ×Q( Q (which
might be interesting in another context). Instead, we present two equivalent
ways of typing the transition function that allow the automaton to use multiple
copies of the input letters:
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The first one is to let the automaton explicitly specify, how many copies of
the input letters it requires. We add this information as a number k ∈ N to the
automaton’s specification, and then we type its transition function as:

Σk︸︷︷︸
k copies of

the same letter

× Q︸︷︷︸
one copy of
the state

( Q

Let us stress that although, it is possible to feed a function of this type with k
different letters from Σ, we are only going to use it with k identical copies of
the input letter. Another way of typing the transition function is as follows:

Σ→eq (Q( Q)

The function transforms every letter in a multiple-use, equivariant way into a
single-use state transformation (which usually is not going to be equivariant,
because it is going to use atoms from the input letter). This way, we give the
automaton a multiple-use access to Σ and a single-use access to Q. A similar
approach to typing the transition function can be found in weighted automata,
where Σ is a finite set, Q is a finite-dimensional linear space, and the transition
function maps every letter to a linear transformation:

Σ→ (Q→lin Q),

Before we show that the two ways of defining transition functions are equiv-
alent, we need to discuss one more property of single-use functions:

2.3.1.1 Single-use currying

The following isomorphism called currying holds for many different classes of
functions, such as all functions, finitely supported functions, linear transforma-
tions, . . .

A→ (B → C) ' A×B → C

F (f)(a, b) = f(a)(b) F−1(f)(a)(b) = f(a, b)

In this section we would like to discuss currying for single-use functions, i.e.
talk about the relationship between:

A×B( C and A( Trees(B,C)

(As mentioned before, we need to represent B( C as Trees(B,C)).

First, we notice that every single-use function A ( Trees(B,C), can be
transformed into A×B( C:

Lemma 35. For every f : A( Trees(B,C), there exists an f ′ : A × B ( C,
such that for every a ∈ A and b ∈ B:

f(a)(b) = f ′(a, b)

Moreover, the mapping f 7→ f ′ is an equivariant function.
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In order to construct f ′, we simply have to unpack the leaves of f :

On the other hand, it might not be possible to translate a function A ×
B ( C into a function A( Trees(B,C). For example, consider the following
function f : A× A( A:

It is not hard to see that this function cannot be translated into a function A(
Trees(A, {Yes,No}) – this is because we need to compare the input argument
with both 7 and 3. However, the variable x1 appears only twice in the tree,
which means that we can express f as f ′ ∈ A(2 Trees(A, {Yes,No}):

f ′(a) = resolve all resolvable queries T [x1 := a]

For example, let us compute f ′(7). We substitute both appearances of x1 with
the atomic constant 7, and resolve all resolvable queries:
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This construction can be generalized:

Lemma 36. For every A, B, and C, there is an l ∈ N, such that for every f
of type A× B ( C, there exists an f ′ : A(l Trees(B,C), such that for every
a ∈ A, b ∈ B and c ∈ C:

f(a, b) = f ′(a)(b)

Moreover, the mapping f 7→ f ′ is equivariant.

Proof. Note that thanks to the single-use restriction, the size of a tree in Trees(A×
B,C) is bounded. This means that there is an l ∈ N such that every xi appears
at most l times in Trees(A×B,C). This means that we can construct f ′ in the
same way as in the previous example.

We are now ready to show that the two types of transition functions are equiv-
alent:

Lemma 37. For every k ∈ N and for every equivariant single-use function
f : Σk × Q( Q, there is a function f ′ : Σ →eq (Q( Q), such that for every
a ∈ Σ and q ∈ Q:

f ′(a)(q) = f(a, a, . . . , a︸ ︷︷ ︸
k times

, q)

And conversely: for every f ∈ Σ →eq (Q ( Q), there exists a k ∈ N and an
equivariant f ′ : Σk ×Q( Q, such that:

f ′(a, a, . . . , a︸ ︷︷ ︸
k times

, q) = f(a)(q)

Proof. The first part of the proof follows from Lemma 36. To prove the second
part, we transform f : Σ →eq (Q( Q) into an equivalent f ′ : Σk × (Q( Q),
in the following way:

Σ→eq (Q( Q)
treeRepr ◦ ·
−−−−−−−−→ Σ→eq (Trees(Q,Q))

Lemma 28−−−−−−−−→

Σ(k Trees(Q,Q)
Definition 9−−−−−−−−→ Σk ( Trees(Q,Q)

Lemma 35−−−−−−−→ Σk ×Q( Q
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2.3.2 Single-use automaton
We are now ready to define the single-use automaton:

Definition 11. A single-use automaton consists of:

1. a polynomial orbit-finite alphabet Σ;

2. a polynomial orbit-finite set of states Q;

3. an equivariant initial state q0 ∈ Q;

4. an equivariant single-use6 acceptance function f : Q( {Yes,No};

5. a transition function δ : Σ→eq (Q( Q).

/

Observe that for Σ = A, the single-use automaton model is equivalent to the
single-use register automaton: Thanks to Example 12, we know that the set of
memory configurations of every single-use register automaton can be represented
as a polynomial orbit-finite set. Conversely, by Lemma 22, every polynomial-
orbit-finite set is isomorphic to

Ak1 + Ak2 + . . .+ Akn ,

whose elements can be stored in the memory of a single-use register automaton.
The transition and acceptance functions are easily seen to be intertranslatable
between the two models (thanks to the single-use decision tree representation).

As we have mentioned before, the expressive power of the single-use automa-
ton does not change if we allow for the acceptance function to be multiple-use:

Lemma 38. For every single-use automaton whose acceptance function has
the type Q →eq {Yes,No}, there exists a standard single-use automaton (with
a single-use accepting function Q ( {Yes,No}), which recognizes the same
language.

Proof. Let A be the automaton whose acceptance function f has the type
Q →eq {Yes, No}. By Lemma 28, the function f can be transformed into
an equivalent f ′ : Q(k {Yes,No}. The acceptance function is used only once,
at the end of the computation, so we can simulate A, using a single-use automa-
ton that maintains k copies of the state of A (the automaton’s set of states is
Qk).

2.3.2.1 Single-use two-way automaton

Using single-use functions, we can easily define single-use versions of many clas-
sical automata models: In the next two chapters, we are going to see single-use
Mealy machines, single-use two-way transducers, and single-use SSTs. For now,
we define the single-use two-way automaton:

6See Lemma 38.
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Definition 12. A single-use two-way automaton consists of:

1. a polynomial orbit-finite alphabet Σ;

2. a polynomial orbit-finite set of states Q;

3. an equivariant initial state q0 ∈ Q;

4. a two-way transition function:

δ : (Σ + {`,a}) −→eq (Q ( (Q× {←,→}) + {Yes,No})

/

The model is analogous to the orbit-finite two-way automaton from Sec-
tion 1.4.1, but much weaker. An important difference between the two models
is that the single-use two-way automaton has decidable emptiness. This is be-
cause, as we are going to show in Theorem 6, every two-way single-use automa-
ton can be effectively translated into a one-way single-use automaton. Which
is, in turn, a special case of a one-way orbit-finite automaton whose emptiness
is decidable by [Boj19, Theorem 5.12].

2.3.3 Single-use automata and orbit-finite monoids
The following theorem states the key property of the single-use automaton:

Theorem 6. All the following models recognize the same class of languages:

1. One-way single-use automaton;

2. Two-way single-use automaton;

3. Orbit-finite monoids (limited to polynomial orbit-finite alphabets).

We prove this theorem using the following strategy:

Single-use
one-way

Single-use
two-way

Orbit-finite
monoids

Lemma 46
in Chapter 3

Obvious

Lemma 40

In this chapter we show how to translate a single-use two-way automaton
into an orbit-finite monoid. In order to make the two-way construction eas-
ier to understand, we first present the construction for a one-way single-use
automaton.
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2.3.4 One-way single-use automata ⊆ Orbit-finite monoids
This section is dedicated to proving the following lemma:

Lemma 39. If a language L over a polynomial orbit alphabet Σ is recognized
by a one-way single-use automaton, then it is also recognized by an orbit-finite
monoid.

The proof of the lemma is very similar to the classical translation of a finite
automaton into a finite monoid (see Lemma 20). Take a single-use one-way
automaton A over a polynomial orbit-finite alphabet Σ, and let Q be its poly-
nomial orbit-finite set of states. For every word w ∈ Σ∗, define A’s behaviour
on w as the following function Q→fs Q:

bw(q) = In which state will A exit w on the right,
if it enters w on the left in the state q?

Note that behaviours are compositional: buv = bv ◦ bu. Since single-use func-
tions are (by definition) closed under compositions, it follows that, all possible
behaviours of A are single-use functions. This means that the language of L is
recognized by the monoid Q( Q with the following operation as f · g = g ◦ f ,
and with the following accepting set:

{f | f(q0) is an accepting state}

This finishes the proof of Lemma 39, because by Theorem 5, Q ( Q is orbit-
finite.

2.3.5 Two-way single-use automata ⊆Orbit-finite monoids
In this section we show how to translate a two-way single-use automaton into
an orbit-finite monoid:

Lemma 40. If a language L over a polynomial orbit alphabet Σ is recognized
by a two-way single-use automaton, then it is also recognized by an orbit-finite
monoid.

In the proof we are going to use the theory of compositional functions (described,
for example, in [Boj20, page 5]):

Definition 13. Let Σ and R be arbitrary sets (possibly infinite). We say that
a function h : Σ∗ → R is compositional if for every u,w ∈ Σ∗, the value h(uw)
is uniquely determined by the values of h(u) and h(w). /

For example, the function f : Σ∗ → N that maps every word to its length
is compositional, and the function g : {a, b}∗ → {a, b,=}, defined as follows, is
not compositional:

g(w) =


a if there are more a’s than b’s in w
b if there are more b’s than a’s in w
= if there is equally many a’s and b’s in w
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A compositional function h : Σ∗ → R together with an accepting set F ⊆ R
can be used to recognize the language: {w | f(w) ∈ R} ⊆ Σ∗.

Lemma 41. If a language L ⊆ Σ∗ is recognized by an equivariant, compositional
function Σ∗ →eq R, for an orbit-finite R, then L is also recognized by an orbit-
finite monoid.

Proof. Let M be the image of Σ under f , and let us define the following oper-
ation on M :

x · y = f(uv) where u, v ∈ Σ∗ are such that f(u) = x and f(v) = y

Because M = f(Σ), we know that such u and v always exist, and thanks to f ’s
compositionality, we know that the value x · y does not depend on the choice of
u and v. This operation is associative: for every x, y, z, if we pick some u, v, w
such that f(u) = x, f(v) = y, f(w) = z, we have that:

(x · y) · z = f(uv) · z = f((uv)w) = f(u(vw)) = x · f(vw) = x · (y · z)

In a similar way, we can show that the image of the empty word (f(ε)) is the
operation’s identity element. It follows that M is a monoid, and it is easy to
see that M recognizes L. This leaves us with showing that M is an orbit-finite
monoid. To see that M is an orbit-finite set, we notice that M = h(R). This
is enough, because orbit-finiteness is preserved by taking images under finitely
supported functions ([Boj19, Lemma 3.24]). Finally, we show that the product
operation is equivariant: for every x, y and π, if we pick some u, v such that
f(u) = x, and f(v) = y, we have that:

π(x · y) = π(f(uv)) = f(π(uv)) = f(π(u)π(v)) = π(x) · π(y)

We are now ready to show how to translate two-way single-use automata
into orbit-finite monoids. The construction is a single-use variant of [She59,
Theorem 2]: Take a two-way automaton A over the alphabet Σ, and let Q be
its polynomial orbit-finite set of states. We define A’s behaviour on a word
w ∈ Σ∗ to be a function:

bw : Q× {←,→} −→ (Q× {←,→}) + {Yes,No}

The function is analogous to the one-way behaviour, but this time A can enter
w from the left or from the right, and it might leave w from the left or from the
right. It might also never exit w, because it accepts, rejects, or starts to loop
(which is considered as rejecting) inside w. Let us now show that all behaviours
are single-use functions:

Claim 19. For every w ∈ Σ∗, function bw is single-use:

bw ∈ Q× {←,→} −−( (Q× {←,→}) + {Yes,No}
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Proof. We prove the claim by induction on the length of w. For the empty word,
we have that bε = coproj1 (note that the symbol ← means entering from the
left and exiting from the right). Now, for the induction step let us take w = va.
We know that ba is equal to δ(a), which means that it is single-use. Thanks to
the induction assumption, we also know that bv is single-use. Now, let us use bv
and ba to construct bva as a single-use function. Our first (incorrect) approach
is to define four mutually recursive functions, each of the type:

Q −−( (Q× {←,→}) + {Yes,No}

They correspond to four possible entry points to va: (� va), (va�), (v � a),
and (v�a). Here are their definitions:

(� va)(q) =

{
(v � a)(q′) if bv(q,→)=(q′,→)

bv(q,→) otherwise
(va �)(q) =

{
(v � a)(q′) if ba(q,←)=(q′,←)

ba(q,←) otherwise

(v � a)(q) =

{
(v � a)(q′) if bv(q,←)=(q′,→)

bv(q,←) otherwise
(v � a)(q) =

{
(v � a)(q′) if ba(q,→)=(q′,←)

ba(q,→) otherwise

There are two problems with this approach: First, if A starts to loop in va, then
this recursive definition will never terminate. Second, it is unclear if single-use
functions are closed under taking fixpoints. We can deal with both of those
problems by bounding the number of times that A can cross between v and a:
Let α ⊂fin A be the finite set of all atoms that appear in va (i.e. the support of
va). Then, the subset Qα ⊆ Q of all states supported by α is finite as well – this
can be shown either by induction on the structure of Q, or by applying [Boj13,
Lemma 5.2]. Now, let us notice that all the states that appear in A’s run on
va are supported by α (thanks to Lemma 3), which means that they belong
to Qα. It follows that if A crosses between v and a more than 2 · |Qα| times,
it will visit some state for the second time in the same position, which means
that it is going to loop. In order to use this observation, we define (� va)k to
be the limited version of (� va), that only allows A to cross k times between
v and a, before it rejects the input. And similarly, for (va�)k, (v � a)k, and
(v�a)k. The definition of the functions is inductive on k. Here is the definition
for(�va)k (other definitions are analogous):

(� va)k(q) =

{
(v � a)k−1(q′) if bv(q,→)=(q′,→)

bv(q,→) otherwise

For the induction base we pick k = −1, in which case all four functions are equal
to constNo. Now, thanks to the if-then-else combinator from Example 25, it is
not hard to use induction on k, to show that all those functions are single-use.
To finish the proof of the claim, we notice that we can construct bva as:

Q× {←,→} distr−→ Q+Q
[(va�)k,(�va)k]
−−−−−−−−−−−−→ Q× {←,→}+ {Yes,No},

for k equal to 2 · |Qα|+ 1.
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It is easy to convince oneself that the behaviour buv depends entirely on
the behaviours bu and bv (even though the exact formula for combining those
behaviours might not be clear). Moreover, it is also easy to see that the be-
haviour bw uniquely determines whether w is accepted by A. This means that
the language recognized by A is also recognized by the compositional function
w 7→ fw, whose codomain is,

Q× {←,→} −−( (Q× {←,→}) + {Yes,No}

By Theorem 5 it is orbit-finite, which means that we can finish the construction
of an orbit-finite monoid, by applying Lemma 41.

2.4 Nondeterministic single-use automata
In this section, we explain why combining nondeterminsim with the single-use
restriction is problematic. The key concept of nondeterminism is a relation, so
in order to define a nondeterministic single-use automaton, it would be useful
to define single-use relations. Unfortunately, the question of finding a well-
behaved notion of a single-use relation remains open. Below, we present two
possible definitions of single-use relations, and explain why they are not well
behaved.

Definition 14. Let X and Y be polynomial orbit-finite sets. We say that a
relation R ⊆ X × Y is single-use, if there is a single-use function f : X × Y (
{Yes,No} such that:

R = {(x, y) | x ∈ X, y ∈ Y, such that f(x, y) = Yes}.

We denote the set of all single-use relations between X and Y as X (rel Y . /

Now, we define single-use nondeterministic automaton to be just like the
deterministic single-use automaton, except that its transition function, becomes
a transition relation of the following type:

Σ→eq (Q(rel Q)

Observe that Definition 14 allows nondeterministic single-use automata to rec-
ognize the language:

“The first letter appears again”.

This is because a nondeterministic automaton can store the first letter in its
state, nondeterministically guess the position where the first letter reappears,
and verify its guess by comparing the two letters. Thanks to nondeterminism,
this construction requires only one copy of the first letter. For example, here is
a tree of all possible runs of the automaton on the word 1 2 3 1 3:

87



It follows that nondeterministic single-use automata are more expressive
than orbit-finite monoids. The reason behind this is that Q (rel Q is not
closed under compositions: Consider the following relation:

check7 ∈ (A +>)(rel (A +>)

check7 = {(>,>)} ∪ {(a, a) | a ∈ A} ∪ {(7,>)}.

It is not hard to see that both check7 and an analogous check8 are single-use
relations, but their composition check7 ◦ check8 is not.

Our second approach to define single-use relations is based on the idea that
every relation between X and Y can be expressed as a function:

X → P (Y ).

The problem, with lifting this definition to polynomial orbit-finite sets is that
P (Y ) is neither polynomial nor orbit-finite. In order to make it at least polyno-
mial, we can represent it as Y ∗. To make it additionally orbit finite, we notice
that for every function f : X →fs Y

∗, there exists a kf , such that for all x ∈ X:

|f(x)| ≤ kf .

This is because X has only finitely many supp(f)-orbits, and for each of those
orbits the length of f(x) is constant. This leads to the following (alternative)
definition of a single-use relation:

Definition 15. Let X and Y be polynomial orbit-finite sets: We say that a
relation R ⊆ X × Y is single-use, if there is a k ∈ N, and a single-use function
f : X ( Y ≤k, such that:

R = {(x, y) | x ∈ X, y ∈ f(x)}

/
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This time, it is not hard to see that single-use relations are closed under
compositions. However, because k can be arbitrarily large, Q (rel Q will
usually be orbit-infinite. This can be exploited, to construct a nondeterministic
single-use automaton that recognizes the language:

“The first letter appears again”.

The construction is slightly different from the previous one: This time the au-
tomaton saves the first letter in its state, then it nondeterministically picks
another position, saves a second letter in its state, and keeps the two letters
until the end of the word. For example, here is a tree of all possible runs of the
automaton on the word 1 2 3 1 3:
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Chapter 3

Single-use Mealy machines
and their Krohn-Rhodes
decompositions

So far we have discussed languages (i.e. subsets of Σ∗) recognized by different
automata models. In the next two chapters, we are going to discuss word
transformations (i.e. functions Σ∗ → Γ∗) computed by finite state transducers
(i.e. output-producing variants of automata). Before we introduce single-use
models for infinite alphabets, let us discuss the classical theory of finite state
transducers: Their classification is finer than the one of automata – two models
that define the same class of languages, might define two different classes of
word transformations. To illustrate this, we present three models of transducers
that define three different classes of word transformations, but whose underlying
automaton models recognize the same class of languages (i.e. regular languages).

1. Mealy machine This model (introduced in [Mea55, Section 2.1]) is a ver-
sion of the deterministic register automaton, where every transition pro-
duces exactly one output letter. This is reflected in the type of transition
function:

Q︸︷︷︸
current state

× Σ︸︷︷︸
input letter

→ Q︸︷︷︸
new state

× Γ︸︷︷︸
output letter

A Mealy machine produces output for every input word, which means
that it does not have accepting (or rejecting) states. It follows that every
Mealy machine computes a total, length-preserving function. Here is an
example of a Mealy machine that recognizes the following transduction:

“Change every other a to b” ∈ {a, b}∗ → {a, b}∗
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2. Unambiguous Mealy machine This model is a nondeterministic version
of a Mealy machine. This means that the transition function becomes a
transition relation:

Q︸︷︷︸
current state

× Σ︸︷︷︸
input letter

× Q︸︷︷︸
new state

× Γ︸︷︷︸
output letter

The nondeterministic version of a Mealy machine can have a number of
runs on a single input word. To guarantee that it recognizes a total,
function we reintroduce the accepting and rejecting states, and we require
that for every input word there is exactly one accepting run (this is the
unambiguity condition). Here is an example of an unambiguous Mealy
machine that computes the following function:

“Swap the first and the last letters” ∈ {a, b}∗ → {a, b}∗

(Notice that the deterministic Mealy machine is not able to compute this
language, as it has no way of guessing what the last letter is going to be).
This class of transductions is known as rational letter-to-letter functions.1
It is worth pointing out that unambiguous Mealy machines admit the

1The class was introduced in [Eil74]. For a more detailed bibliographical note, see the
footnote in [BC18, Section 12.2].
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following decomposition into two deterministic Mealy machines2:(
unambigous

Mealy machine

)
=
(

left-to-right
Mealy machine

)
◦
(

right-to-left
Mealy machine

)
3. Two-way transudcer This is a version of the two-way automaton whose

every transition has an option of producing an output letter (it is a classical
model discussed, for example, in [EH01]). The transition function of a
two-way transducer has the following type:

Q︸︷︷︸
current
state

×( Σ︸︷︷︸
current
letter

+ {`,a}︸ ︷︷ ︸
end of word
markers

) −→ Q︸︷︷︸
new
state

× {←,→}︸ ︷︷ ︸
direction of
the next step

× (Γ + ε)︸ ︷︷ ︸
output
letter

+ finish︸ ︷︷ ︸
finish
the run

Here is an example of a two-way automaton that recognizes the function:

“Reverse the input” ⊆ {a, b}∗ → {a, b}∗

It can be shown that an unambiguous Mealy machine cannot compute the
reverse function. Note that it is possible for a two-way automaton to loop.
To guarantee that it does not loop we can add a semantic requirement
that prohibits two-way automata from looping (an alternative approach
would be to say that a looping run produces the empty word). The class
of functions computed by the two-way transducer has many equivalent
definitions, including streaming string transducers (see [AČe10, Section 3]
or Section 4.1.2 in this thesis) and the logical model of MSO-transductions
(see [Cou94, Section 2]). This class of transductions is known as the regular
functions.

The three transducer models are well behaved: For example, they are closed
under composition and their equivalence problem (as defined below) is decidable.

Input: Two transducers A and B.
Output: Do A and B compute the same function?

2This is known as the Elgot-Mezei theorem. It was originally shown in [EM63, Theo-
rem 7.8]. Since I was not able to access the full version of the original paper, I relied on
[BC18, Theorem 12.1]. It is worth pointing out that the two papers prove the theorem for
slightly different models (functional Mealy machines and unambiguous NFAs with output),
but the proof from [BC18, Theorem 12.1] can be easily adapted to work with unambiguous
Mealy machines.
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In the next two chapters, we are going to use the single-use restriction to develop
a similar theory for infinite alphabets. Chapter 3 covers single-use (determinis-
tic) Mealy machines and Chapter 4 covers single-use two-way transducers. The
theory of single-use unambiguous Mealy machines is still a work in progress,
but it is briefly discussed in Chapter 4.

Finally, let us briefly mention the class of polyregular functions: This is a
class over finite alphabets that extends regular functions while keeping many of
their desirable properties (see [Boj22]). Unfortunately, the question of finding a
notion of single-use polyregular functions that is a well-behaved class of functions
remains open, so we do not discuss it in this thesis. However, we would like to
note that this could be an interesting direction for further research.

3.1 Single-use mealy machines
Single-use Mealy machines are a transducer model that computes length-preserving
functions Σ∗ → Γ∗. Here is its definition:

Definition 16. A single-use Mealy machine consists of:

1. a polynomial orbit-finite input alphabet Σ and a polynomial orbit-finite
output alphabet Γ;

2. a polynomial orbit-finite set of states Q;

3. an initial state q0 ∈ Q;

4. a single-use transition function:

δ : Σ︸︷︷︸
current letter

−→eq

 Q︸︷︷︸
current state

(

 Q︸︷︷︸
new state

× Γ︸︷︷︸
output letter


/

Notice that if Σ, Γ and Q are finite (and not only orbit-finite), then this
definition matches the classical definition of a Mealy machine – this follows
from Example 24. Let us now consider some examples of Mealy machines:

Example 28 (Length-preserving single-use homomorphism). For any h : Σ→eq
Γ (where Σ and Γ are polynomial orbit-finite sets), we define h∗ : Σ∗ → Γ∗ to be
the length-preserving transduction that applies h to every input letter. This h∗
is can be computed by a one-state3 single-use Mealy machine, with the following
transition function:

δ(a)(1) = (1, h(a))

/

3in [Mea55] one-state machines are called combinatorial circuits
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Example 29 (Single-use atom propagation). Single-use atom propagation sim-
ulates single-use operations on one register. Its input alphabet is a set of in-
structions:

A︸︷︷︸
store an atom

+ ↓︸︷︷︸
output the atom from the register

and destroy it

+ ε︸︷︷︸
do nothing

Its output alphabet is:
A︸︷︷︸

outputs of ↓

+ ε︸︷︷︸
empty output

Here is an example input and output of the function (the grey arrows are only
informative – they are not part of the input or output):

The semantic is rather intuitive, but to avoid confusion, we also define it for-
mally: the i-th output letter is equal to a ∈ A, if (a) i-th input letter is equal to
↓, and (b) there is j < i such that the j-th input letter is equal to a and every
input letter between i and j is equal to ε. Otherwise, the i-th input letter is
equal to ε. Single-use atom propagation can be computed by a single-use Mealy
machine: its states are A + ε and its transition function is as follows:

δ(l, ↓) = (⊥, l) δ(l, ε) = (l, ε) δ(l, a ∈ Σ) = (a, ε)

/

Notice that since the transition function of a Mealy machine is single-use,
it has to forget every atom that it outputs. For this reason, the multiple-use
version of Example 29 cannot be computed by a single-use Mealy machine. In
order to prove this, we use a simple quantitative reasoning:

Definition 17. For every element x of a polynomial orbit-finite setX, we define
the multi-support of x (denoted msup(x)) to be the multiset of all atoms that
appear in x, with repetitions. This definition can also be extended to work on
words over polynomial orbit-finite sets. For example (if we take X = A3):

msup(3, 2, 3) = {2, 3, 3}

/
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Lemma 42. If f is a function computed by a single-use Mealy machine, then
there exists a k ∈ N, such that for every word w and every atom a:(

The number of times a
appears in f(w)

)
≤ k ·

(The number of times a
appears in w

)
Proof. The lemma follows from Lemma 37 combined with the following claim
(which can be easily shown using the tree representation):

Claim 20. Let f ∈ X (eq Y , and for every x ∈ X:

msup(f(x)) ⊆ msup(x)

It is not hard to see that the multiple-use version of Example 29 does not
satisfy the condition from Lemma 42, so it cannot be computed by a single-use
Mealy machine. The following example shows that the single-use restriction
does not apply to the finite information:

Example 30 (Multiple-use bit propagation). The multiple-use bit propagation
function can be seen as the classical variant of the single-use atom propagation
from Example 29. It simulates operations on one multiple-use register that
stores one bit of information, represented as one of two values – ( or #). Its
input alphabet is the following set of instructions:

{  ︸︷︷︸
output the register value
and save  to the register

, #︸︷︷︸
output the register value
and save # to the register

, ε︸︷︷︸
output the register value
and keep its contents

}

The output alphabet is the same: {#, , ε}. (Value ε denotes empty register –
the register cannot be emptied, but being empty is its initial value.) Here is an
example input and output (again, the grey arrows are only informative – they
are not part of the input or output):

The Mealy machine recognizing the bit propagation has three states: Q =
{#, , ε}. Its transition function is as follows:

δ(q,#) = (#, q) δ(q, ) = ( , q) δ(q, ε) = (q, q)

(To see that this is a single-use function, we notice that Q is finite and apply
Example 24.) /
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Here is an example of a more general class of functions recognized by Mealy
machines:

Example 31 (Monoid prefixes). For every finite monoid M , define the M -
prefix function M∗ → M∗ to be the function that computes products of the
input prefixes:

s1 s2 s3 . . . sn7→

s1 s1s2 s1s2s3 . . . s1s2 . . . sn

In particular, if we take a monoid P = {#, , ε} whose multiplication is given
by the following Cayley table, then the P -prefix function is the multiple-use bit
propagation, but with the results shifted one position to the right:

·P ε #  
ε ε #  
# # #  
  #  

It is not hard to see that for every finite M , the M -prefix function can be
computed by a single-use Mealy machine, where Q = M , q0 = 1M and whose
transition function is defined as:

δ(p, g) = (p · g, p · g)

(Again, Q is finite, so thanks to Example 24 we know that δ is single-use.) /

It is worth pointing out that if M polynomial orbit-finite (and not finite),
then the M -prefix function will not necessarily be computable by a single-use
Mealy machine:

Example 32. TakeM = A+1 such that 1 is the identity element, and otherwise
the operation is defined as follows:

a · b = a

If a sequence a1, . . . , an ∈ A∗ consists of n different atoms, then the M -prefix
function looks as follows:

a1 a2 a3 . . . an7→

a1 a1 a1 . . . a1

This function violates the condition from Lemma 42, which means that it cannot
be computed by a single-use Mealy machine. /

3.2 Krohn-Rhodes decomposition
The Krohn-Rhodes theorem [KR65, Equation 2.2] states that every function
computed by a classical Mealy machine can be decomposed into certain prime
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function. It uses two types of composition:

Σ∗
f−→ Γ∗ Γ∗

g−→ ∆∗

Σ∗
g◦f−→ ∆∗

sequential
Σ∗1

f1−→ Γ∗1 Σ∗2
f2−→ Γ∗2

(Σ1 × Σ2)∗
f1×f2−→ (Γ1 × Γ2)∗

parallel

The sequential composition is the usual function composition, and the parallel
composition, which only makes sense for length-preserving functions, applies one
function to the first coordinate of the word, and the other function to the second
coordinate of the word. Here is a schematic depiction of the two compositions:

Theorem 7 (Krohn-Rhodes). The class of functions computed by Mealy ma-
chines over finite alphabets is the equal to the smallest class of function that
is closed under sequential and parallel compositions, and which contains the
following (classical) prime functions:

1. the h∗ function from Example 28, for every h : Σ → Γ (such that Σ and
Γ are finite);

2. the multiple-use bit propagation function from Example 30;

3. the G-prefix function from Example 31, for every finite group G (note that
a group is a special case of a monoid).

The following theorem (proved by Bojańczyk and me in [BS20, Theorem 9])
shows that single-use Mealy machines for infinite alphabets admit a similar
decomposition:

Theorem 8. The class of functions computed by single-use Mealy machines
(over polynomial orbit-finite alphabets) is the equal to the smallest class of func-
tions that is closed under sequential and parallel compositions, and which con-
tains the following single-use prime functions:

1. all functions recognized by Mealy machines over finite alphabets;

2. h∗ for every equivariant h : Σ→eq Γ from example 28

3. single-use propagation from Example 29

(Note that thanks to Theorem 7 the first item can be further decomposed into
classical prime functions.)
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I would like to use this thesis to present a new and (hopefully) improved
proof of Theorem 8. The new proof is also a joint work with Bojańczyk.

3.2.1 Compositions of primes ⊆ Single-use Mealy machines
Translating compositions of single-use primes into single-use Mealy machines is
the easy part – we have already seen that all prime functions can be computed by
single-use Mealy machines, so it suffices to show that single-use Mealy machines
are closed under both types of composition:

Lemma 43. Single-use Mealy machines are closed under parallel composition.

Proof. The proof is straightforward – the machine A × B can be constructed
as a simple product construction: it keeps one copy of A, one copy of B and
whenever it receives a new letter (a, b) ∈ ΣA × ΣB it feeds a to A and b to B,
updates their states and outputs their outputs (as a pair).

Lemma 44. Single-use Mealy machines are closed under sequential composi-
tions.

Proof. We take any two single-use Mealy machines A : Σ∗ → ∆∗ and B : ∆∗ →
Γ∗, and we construct a single-use Mealy machine B ◦A : Σ∗ → Γ∗. Let us start
by restating the construction for classical (i.e. atomless) Mealy machines: the
machine B ◦ A keeps a copy of A and a copy of B. When it reads a new letter
a ∈ Σ, it:

1. feeds a ∈ Σ to A;

2. updates A’s state;

3. feeds A′s output letter to B;

4. updates B’s state;

5. outputs B’s output letter.

The problem with using the same construction for single-use Mealy machines
is that A produces only one copy of the output, whereas B might require a
multiple-use access to its input. This is because the first arrow in the type of
δB is equivariant but not necessarily single-use:

δB : ∆→eq (QB ( (QB × Γ))

To deal with this problem, we use a similar reasoning as in the proof of Lemma 37,
and show that that there is a k ∈ N such that δB can be represented as:

δ′B : ∆k ×QB ( (QB × Γ)

It follows that B requires only k copies of its input (for some fixed number k).
This means that we can repeat the classical construction for B ◦A, but we have
to maintain one copy of B and k identical copies of A.
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3.3 An algebraic model for single-use Mealy ma-
chines

In the proof of the remaining inclusion of Theorem 8, we would like to use the al-
gebraic theory of single-use machines developed in Chapter 2. For this purpose,
we will define an algebraic transducer model that is equivalent to single-use
Mealy machines. This model is going to be based on semigroups (a version
of monoids without the requirement of having an identity element). This shift
from monoids is justified by Claim 22 (stated later in this section), which demon-
strates that the identity elements would cause some technical problems in the
theory of orbit-finite transducers. However, it is worth noting that semigroups
and monoids are very similar algebraic structures. Trivially, every monoid is
a semigroup, and, as shown by the following claim, every semigroup can be
embedded into a monoid:

Claim 21. For every semigroup S, there exists a monoid S1 such that S is a
subsemigroup of S1.

Proof. If S already happens to contain an identity element, we can set S1 = S.
Otherwise, we need to adjoin a formal identity element to S. This means that
S1 = S + 1, with the operation defined as follows (for all x and y from the
original S):

x · y = x ·S y 1 · x = x x · 1 = x 1 · 1 = 1

(Observe that we could also unconditionally adjoin a formal identity element to
S. This operation is usually denoted as SI .)

3.3.1 Semigroup transductions over finite alphabets
Before discussing the algebraic transducer model for orbit-finite alphabets, let
us briefly discuss its classical version for finite alphabets. We start with a
definition4:

Definition 18. A semigroup transduction of type Σ∗ → Γ∗ consists of

1. a finite semigroup S;

2. an input function h : Σ→ S; and

3. an output function λ : S → Σ.

The semigroup transduction defines the following function Σ∗ → Γ∗:

Σ∗
h∗−→ S∗

S-prefix function
−−−−−−−−−−−−→ S∗

λ∗−→ Γ∗,
4Although I was not able to find this definition in the literature, it is consistent with the

commonly understood folklore in the field.
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where the S-prefix function is defined in Example 31, and h∗ and λ∗ are length-
preserving homomorphisms defined in Example 28. In other words, this means
that a word w1w2w3 . . . wn ∈ Σ∗, is transformed into the following word from
Γ∗:

λ (h(w1)) λ (h(w1) · h(w2)) . . . λ (h(w1) · . . . · h(wn))

/

As expected, this class of transductions is equivalent to finite Mealy machines5:

Lemma 45. The class of functions computed by Mealy machines over finite
alphabets is equivalent to the class of functions computed by semigroup trans-
ductions.

Proof. ⊇: Thanks to Examples 31 and 28, we know that the S-prefix function,
h∗ and λ∗ can be computed by a classical Mealy machine. This finishes the
proof, because by Lemma 44, Mealy machines are closed under compositions.

⊆: Let us take a classical Mealy machine A, and let us construct an equiva-
lent semigroup transduction. First, let us define the behaviour of a word w ∈ Σ∗

to be the following function bA(w) : Q→ (Q× Γ):

bA(w)(q) = (q′, c)
def⇔ If A enters w from the left in the state q,

it exits w from right in state q′, outputting the letter c ∈ Γ.

Similarly as it was in the case of finite automata, the set of all possible be-
haviours forms a semigroup. Its operation is defined as follows:

(f · g) = g ◦ proj1︸ ︷︷ ︸
projection
Q×Γ→Q

◦f

It is not hard to see that this finite semigroup, together with the following h
and λ, forms a semigroup transduction that is equivalent to A:

h(a) = bA(a) λ(f) = proj2(f(q0))

3.3.2 Semigroup transductions over orbit-finite alphabets
For infinite alphabets, things get more complicated. Even though orbit-finite
monoids are equivalent to single-use automata, the orbit-finite semigroup trans-
ductions are stronger than single-use Mealy machines. We have already seen
that in Example 32, but the problem persists even if Γ is finite:

5Again, this result seems to be a part of the field’s folklore. Similar reasoning can be
found in the literature – e.g. in [KR65, Section 4].
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Example 33. Consider the function fcmp : A∗ → {=, 6=} which replaces every
atom that is equal to the first letter with = and all other atoms with 6=. Here
is an example:

1 2 1 5 6 1 17→

= 6= = 6= 6= = =

This function is a semigroup transduction. We can implement it using S = A2

with the semigroup operation defined as follows

(a, b) · (c, d) = (a, d),

and with the following λ and h:

h(a) = (a, a) λ(a, b) =

{
= if a = b

6= if a 6= b

Let us now show that this function cannot be computed by a single-use Mealy
machine. If we consider languages as functions Σ∗ → {Yes,No}, we can write
that: (

The first letter
appears again

)
=
(The letter = appears

at least twice

)
◦ ffirst

By reasoning analogous to the one presented in the proof of Lemma 44, we
obtain that: (

Single-use register
automata

)
◦
(

Single-use
Mealy machines

)
=
(
Single-use register

automata

)
The language "the letter ‘=’ appears at least twice" is a regular (over a finite
alphabet). Therefore, if fcmp were recognized by a single-use Mealy machine,
then the language “the first letter appears again” would also be recognized by a
single-use Mealy machine. However, as shown by Example 6 and Lemma 39, this
is not true. Therefore, fcmp is not recognized by single-use Mealy machines. /

It turns out that whether an orbit-finite semigroup transduction is equivalent
to a single-use Mealy machine depends solely on the output function λ. As
we will show, it depends on whether λ satisfies the following locality equation
(which, to the best of my knowledge is an original contribution of this thesis,
based on a joint work with Bojańczyk):

Definition 19. Let S be an orbit-finite semigroup and let Γ be an orbit-finite
set. We say that a function λ : S →eq Γ is local, if for every a, e, b ∈ S, such
that e is an idempotent (i.e. ee = e) and b is a prefix of e (i.e. e = bb′ for some
b′ in S) and for every supp(e)-permutation π (i.e. a permutation π such that
π(a) = a, for every a ∈ supp(e)), it holds that:

λ(aeb) = λ(π(a)eb).

We further say that a semigroup transduction (S, h, λ) is local, if its output
function λ is local. In this thesis, we focus on local semigroup transductions that
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are also equivariant and orbit-finite. So, to simplify the notation, we additionally
require that in a local semigroup transduction the components S, h and λ are
equivariant and S is orbit-finite. /

To avoid interrupting the proof of Theorem 8 (which is already very long),
we defer some of the discussion about single-use Mealy machines to Section 3.6.
For now we only present some intuition and an example in the next couple of
paragraphs. However, in order to provide context, it is worth mentioning that,
later in this thesis we will show that local semigroup transductions recognize
the same class of transductions as single-use Mealy machines (see Lemma 9).
Furthermore, we will show that as long as S does not contain unreachable el-
ements, a semigroup transduction (S, h, λ) is equivalent to a single-use Mealy
machine if and only if λ is local (see Lemma 71 in Section 3.6).

Let us now offer some informal intuition behind the locality restriction: Con-
sider a nonlocal semigroup transduction (S, h, λ). This implies that there exist
a, e, b ∈ S and a supp(e)-permutation π such that e is an idempotent and b is a
prefix of e, for which the locality equation does not hold:

λ(aeb) 6= λ(π(a)eb)

Since b is a prefix of e, there exists c ∈ S such that bc = e. Consider the
following sequence:

a bc︸︷︷︸
e

bc︸︷︷︸
e

. . . bc︸︷︷︸
e

Observe that such a sequence contains arbitrarily many prefixes that evaluate
to aeb. We know that λ(aeb) 6= λ(π(a)eb), which means that the value of λ(aeb)
depends on an atom from (supp(a) − supp(e)). This means that every Mealy
machine computing this semigroup transduction would have to use at least one
copy of an atom from a while processing each bc part of the input. Since a
appears only once, and the input sequence can be arbitrarily long, this would
violate the single-use restriction.

Example 34. Let us construct a local semigroup transduction (S, λ, h) that
computes the single-use atom propagation from Example 29. The semigroup S
is defined as follows:

ε︸︷︷︸
do nothing

+ A︸︷︷︸
save an atom a
into the register

+ ⊥︸︷︷︸
empty the register

+ ↓︸︷︷︸
output and empty

the register

+ A ↓︸︷︷︸
output a ∈ A and
empty the register
(denoted as a ↓)

The operation in S is defined by the following table, for every a, b ∈ A (the
general rule is that x · ε = x = ε · x for every x ∈ S, and that x · y = y for every
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x, y ∈ S, such that y 6= ε. All exceptions to this rule are marked in blue):

ε · ε = ε ε · a = a ε · ⊥ = ⊥ ε· ↓=↓ ε · a ↓= a ↓
a · ε = a a · b = b a · ⊥ = ⊥ a· ↓= a ↓ a · b ↓= b ↓
⊥ · ε = ⊥ ⊥ · a = a ⊥ · ⊥ = ⊥ ⊥· ↓= ⊥ ⊥ · a ↓= a ↓
↓ ·ε = ⊥ ↓ ·a = a ↓ ·⊥ = ⊥ ↓ · ↓= ⊥ ↓ ·a ↓= a ↓
a ↓ ·ε = ⊥ a ↓ ·b = b a ↓ ·⊥ = ⊥ a ↓ · ↓= ⊥ a ↓ ·b ↓= b ↓

Note that Σ = A+ ↓ +ε, which means that Σ ⊆ S, so we can define h to be the
natural injection. Finally, we define λ as follows:

λ(x) =

{
a if x = a ↓
ε otherwise

This semigroup transduction (S, h, λ) defines the single-use atom propagation
function from Example 29. Let us now show that it satisfies the locality equa-
tion. We take x, e, y ∈ S, and a supp(e)-permutation π, such that e is an idem-
potent and y are a prefix of e, and we show that λ(xey) = λ(π(x)ey). First, let
us notice that unless y =↓ or y = a ↓, we know that λ(xey) = ε = λ(π(x)ey).
Moreover, if y = a ↓ we know that:

xey = a ↓= π(x)ey.

It follows that λ(xey) = a = λ(π(x)ey). This leaves us with the case where
y =↓. We need to show that:

λ(xe ↓) = λ(π(x)e ↓)

Observe that e cannot be equal to ↓, because ↓ is not idempotent. Moreover e
also cannot be equal to ε, because ↓ is not a prefix of ε. This means that e is
either equal to a, a ↓ or ⊥. It follows that z · e = e, for every z ∈ S. This means
that xe = e = π(x)e, which in turn means that λ(xey) = λ(π(x)ey). /

Finally, let us mention that the locality restriction is very limiting if the
underlying semigroup happens to be a monoid – this is the reason why we use
semigroup-based models for algebraic transductions rather than monoid-based
models:

Claim 22. Let (S, h, λ) be a local semigroup transduction. If S contains an
identity element, then λ can only output equivariant (i.e. atomless) values.

Proof. Every semigroup S contains at most one identity element (see [Pin10,
Section II.1.1] for details). This means that, if it exists, the identity element
of S can be computed from S in an equivariant way. Since the semigroup S
is equivariant as a whole, it follows from Lemma 3 that the identity element
1 ∈ S has to be equivariant as well. This means that every atom permutation
π is a supp(1)-permutation. Observe that 1 is idempotent and that it is its own
prefix. Since λ is equivariant, it follows that for every x ∈ S:

π(λ(x)) = λ(π(x)) = λ(π(x) · 1 · 1)
locality

= λ(x · 1 · 1) = λ(x)
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This means that for every x ∈ S, the output value λ(x) is equivariant (i.e.
atomless).

As mentioned before, we are going to use local semigroup transductions in
the proof of Theorem 8. Here is the plan:

Single-use
Mealy machines

Compositions of
Krohn-Rhodes primes

Local semigroup transductions
over polynomial orbit-fnite alphabets

Easy, already shown in
Section 3.2 Section 3.3.3

Lemma 62

The hardest part of the proof is Lemma 62 (translating local semigroup
transductions into compositions of primes). For this reason, we devote a signif-
icant portion of this chapter to explain it.

Notice, that as a byproduct of the proof strategy, we will obtain the following
theorem:

Theorem 9. Local semigroup transductions over polynomial orbit-finite alpha-
bets6 compute the same class of functions as single-use Mealy machines

Before we proceed with the proof of Theorem 8, let us show how to use it to
prove the missing implication from Theorem 6:

Lemma 46. Every language that can be recognized by an orbit-finite monoid
can also be recognized by a one-way single-use automaton.

Proof. Let L ⊆ Σ∗ be recognized by an orbit-finite monoid M . We define a
transduction fL : (Σ+ a)∗ → {ε, Yes, No}∗ such that the i-th letter of fL(w) is
equal to:

• Yes if wi the first a in w and w1, w2, . . . , wi−1 ∈ L;

• No if wi the first a in w and w1, w2, . . . , wi−1 6∈ L;

• ε if wi is not the first a in w.

Since L is recognized by M , we can use the following semigroup Ma to define
fL as a local semigroup monoid transduction.

Ma = M︸︷︷︸
words without a

+ M a︸︷︷︸
words that end with a

and otherwise do not contain a

+ ⊥︸︷︷︸
all other words

6 Notice that semigroup transductions work with all orbit-finite Γ and Σ (even if they are
not polynomial). This general case could be an interesting topic for future work. See also
Footnote 21 on page 155.
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The operation on Ma is defined as follows for every a, b ∈ M (note that there
are only two cases where the result is not ⊥):

a · b = a ·M b (a a) · b = ⊥ ⊥ · a = ⊥
a · (b a) = (a ·M b) a (a a) · (b a) = ⊥ ⊥ · (a a) = ⊥
a · ⊥ = ⊥ (a a) · ⊥ = ⊥ ⊥ · ⊥ = ⊥

The h function is the same as the one used to recognize L, and λ is defined as
follows:

λ(a) = ε λ(a a) =

{
Yes if s is accepting
No otheriwise

λ(⊥) = ε

It is easy to see that (Ma, h, λ) recognize fL. Let us show that λ satisfies the
locality equation: Take x, e, y and a supp(e)-permutation π such that e is an
idempotent and b is a prefix of e. The only interesting case is where y = a a, or
otherwise λ(xey) = � = λ(π(x)ey). The only idempotent that contains a a as
a prefix is ⊥, which means that e = ⊥. It follows that aeb = ⊥ = π(a)eb, which
in particular means that λ(aeb) = λ(π(a)eb).

It follows by Lemma 9, that there exists a single-use Mealy machine A that
computes fL. If we ignore the output of A and equip it with the following
acceptance function, we obtain a single-use automaton for the language L.

facc(q) =

{
Yes if the output letter of δ(q,a) is Yes
No otherwise

3.3.3 Single-use Mealy machines ⊆ Local semigroup trans-
ductions

In this section, we show how to translate a single-use Mealy machine into a local
semigroup transduction. The construction is a single-use version of the classical
construction presented in the ⊆-inclusion of Lemma 45. Given a single-use
Mealy machine A of type Σ∗ → Γ∗, we can translate every non-empty word
w ∈ Σ∗ into a behaviour b(w), which is of the following type:

Q︸︷︷︸
The state in

which A enters
w from the left.

( Q︸︷︷︸
The state in
which A exits

w from the right.

× Γ︸︷︷︸
The letter outputted

by A as it exits
w from the right.

To see that every behaviour is a single-use function, we notice that the be-
haviours of one-letter words as single-use functions (because the transition func-
tions of Mealy machines are single-use), and that the behaviours can be com-
posed according to the following formula:

bA(w1w2) = bA(w2) ◦ proj1 ◦ bA(w1)
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Similarly as in the proof of Lemma 45, it is not hard to see that A is equivalent
to the following semigroup transduction:

S = Q( Q× Γ h(w) = bA(w) λ(f) = proj2(f(q0)),

where q0 is the initial state of A. This leaves us with showing that λ is local.

We take x, e, y ∈ S and a supp(e)-permutation such that e is an idempotent
and y is a prefix of e, and we show that they satisfy the locality equation, i.e.:

λ(xey) = λ(π(x)ey)

By definition of λ this is equivalent to showing that:

proj2(q0 xey) = proj2(q0 π(x)ey),

where q0 xey is a notation for (xey)(q0) – remember that q0 is a function. Denote
q := proj1(q0xe), and notice that since π is a supp(e)-permutation and since q0

is equivariant, we know that π(q) = proj1(q0π(x)e). This means that we need
to show that:

proj2(q y) = proj2(π(q) y)

Let us pick some single-use decision tree T , that represents the function y, and
let us consider the trees proj1 ◦ T and proj2 ◦ T (obtained using the construc-
tion from Claim 17). We are going to show that the leaf of proj1 ◦ T , that
is reached when computing (proj1 ◦ T )(q), contains all the input variables xi,
such that π(xi) 6= xi. This is enough to prove that proj2(q y) = proj2(π(q) y),
because thanks to the single-use restriction, we know that if all variables that
are modified by π appear in the leaf of proj1 ◦ T (q), then they cannot appear
in the queries or in the leaf while computing (proj2 ◦ T )(q). (This is because
the queries for computing (proj2 ◦ T )(q) and (proj1 ◦ T )(q) are equal, and the
output variables that appear in the leaf of T (q) are partitioned between the
leaves for (proj1 ◦ T )(q) and (proj2 ◦ T )(q).)

This leaves us with showing that the leaf of (proj1 ◦T )(q) contains all input
variables for which π(xi) 6= xi. For this, we notice that since y is a prefix of e,
there exists a y′ such that yy′ = e. Notice that q is a fixpoint of y′ ◦ proj1 ◦ y:

y′(proj1(y(q))) = (yy′)(q) = e(q) = e(q0 xe)
notation

= q0 xee = q0 xe = q

Let us pick some tree T ′ that corresponds to y′ and let us consider the tree

T ′ ◦ proj1 ◦ T

By construction (from Claim 17), we know that the leaf corresponding to (T ′ ◦
proj1 ◦ T )(q), can only contain those input variables that were present in the
leaf of (proj1 ◦ T )(q):
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It follows that all input atoms of q that are not present in (proj1 ◦ T )(q) as
variables have to appear in the leaf of (T ′ ◦ proj1 ◦ T )(q) as atomic constants.
The tree T ′ ◦ proj1 ◦ T represents the function y′ ◦ proj1 ◦ y, which (by the
definition of the product in S) is equal to y′ · y = e. By Lemma 47 (stated
below), it follows all atoms that appear in the leaves of (T ′ ◦ proj1 ◦ T ) have
to appear in supp(e). It follows that all input variables that do not belong to
supp(e) have to appear in the leaf of (proj1 ◦ T )(q). This finishes the proof,
because π is a supp(e)-permutation. We are now left with proving Lemma 47:

Lemma 47. Let T be a single-use decision tree, and let fT be the single-use
function represented by T . If a leaf of T contains an atomic constant a ∈ A,
then a ∈ supp(fT ).

Proof. We consider the case where T is of type Ak ( Y (the proof can be easily
extended to the general case). We pick an a that appears in a leaf of T and we
show how to use fT and atomic constants other than a to construct a value y
such that a ∈ supp(y). As long as this construction is equivariant, it follows by
Lemma 3 that a ∈ supp(fT ). The proof goes by induction on the depth of T :

If T is a leaf, we take a tuple of k atoms (b1, . . . , bk) other than a, and de-
fine y as fT (b1, . . . , bk). Since T is a leaf, and a appears in T , we know that
a ∈ supp(y).

For the induction step, we assume that the query in the root is of the type
xi = b; as the case of xi = xj is analogous but simpler. We consider two
subclasses: b 6= a and b = a. First, let us deal with b 6= a. We assume that the
leaf with a belongs to the Yes-subtree (the case for the No-subtree is analogous),
and we construct y ∈ Ak ( Y as the following function:

(x1, . . . , xk) 7→ fT (x1, . . . , xi−1, b, xi+1, . . . , xk)
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Such y is equal to the function defined by the Yes-subtree, and since the
Yes-subtree contains a in its leaf, it follows by the induction assumption that
a ∈ supp(y).

The case where b = a is harder: We can assume that the Yes-subtree and
the No-subtree define two different functions (or otherwise we can directly apply
the induction assumption to the subtree with a) and we define y ∈ A as the only
atom c ∈ A such that for every d ∈ A, such that d 6= c, the following functions
are different :

(x1, . . . , xk) 7→ fT (x1, . . . , xi−1, c, xi+1, . . . , xk)
(x1, . . . , xk) 7→ fT (x1, . . . , xi−1, d, xi+1, . . . , xk)

It is not hard to see that the only such c is equal to a, which means that
a ∈ supp(y).

3.4 Factorization forest theorem
As mentioned before, the translation from local semigroup transductions to
compositions of primes is the hardest part of the proof of Theorem 8. We split
it into two sections: In this section, we define factorization trees and show how
to construct them using compositions of primes. In the next section, we use
factorization trees to construct the output of local semigroup transductions.

A factorization tree for a sequence s1, s2, . . . , sn over a semigroup S is a
tree labelled by elements of S. It has n leaves that correspond to the input
positions – the i-th leaf is labelled with si. The inner nodes of a factorization
tree correspond to infixes of the input sequence and are labelled by the product
of that infix. Here are three examples of factorization trees for the infinite
semigroup (N,+), over the following sequence:

1 2 1 3 2 2 1 3

An important parameter of a factorization tree is its height. Notice that
if nodes are allowed to have an unbounded number of children, then every
sequence admits a decomposition tree of height 1. On the other hand, if every

108



node can only have at most two children, then the height of a decomposition
tree over s1, . . . , sn cannot be lower than log2(n). A compromise between those
two approaches is to require that nodes with more than two children respect
the structure of S. An example of this approach is the following idempotency
condition: We say that a node is idempotent if all of its children are labelled
by the same idempotent from S. A factorization tree satisfies the idempotency
condition if all of its nodes are either binary or idempotent. Here is an example
of an idempotent factorization tree for S = (P ({a, b, c}), ∪ ):

Idempotent factorization trees are called Simon’s factorization trees after
Imre Simon, who has shown that finite semigroups admit idempotent factoriza-
tion trees of bounded height7:

Theorem 10 ([Sim90, Theorem 3.3]). For every finite semigroup S there exists
an hS ∈ N, such that every sequence s1, s2, . . . , sn ∈ S∗ admits an idempotent
factorization tree of height at most hS.

This theorem does not directly extend to orbit-finite semigroups:

Example 35. Consider S = A2, with the operation defined as follows:

(x1, x2) · (y1, y2) = (x1, y2)

Let us show that S does not admit idempotent factorization trees of bounded
height. Notice first, that the only idempotents in S are elements of the form
(a, a). Consider the following family of sequences ln ∈ S∗:

ln = (1, 2) (2, 3) (3, 4) . . . (n− 1, n),

and notice that no infix of ln evaluates to an idempotent. It follows that all
nodes in an idempotent factorization tree over ln have to be binary. This means
that the height of an idempotent factorization tree over ln is at least log2(n),
which is not bounded by any hM . /

7The original theorem shows this for monoids, but the same proof can be applied to
semigroups. It is also worth noting that in [Sim90] Simon’s factorization trees are referred to
as Ramseyan factorization trees.
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It follows from Example 35 that if we want to have an equivalent of Theo-
rem 10 that works for orbit-finite semigroups, we need to relax the idempotency
condition. We are going to define this relaxation in terms of smooth sequences,
which are in turn defined in terms of the Green’s infix relation:8

Definition 20. Let S be a semigroup. We say that x ∈ S is an infix of y ∈ S if
for some a, b ∈ S1 (from Claim 21), it holds that axb = y. The infix relation is
a preorder – i.e. it is reflexive and transitive. If x and y are each other’s infixes,
we say that they are infix equivalent (or J -equivalent). This is an equivalence
relation and its equivalence classes are called infix classes or J -classes. /

Example 36. Consider the semigroup S = A2 +⊥+ 1, where 1 is the identity
element and otherwise, the operation is defined as follows (this semigroup is
equal to the monoid from Example 4):

x · ⊥ = ⊥ ⊥ · x = ⊥ (x1, x2) · (y1, y2) =

{
(x1, y2) if x2 6= y1

⊥ otherwise

This semigroup has three infix classes: {1}, {⊥}, and {(x, y) | x, y ∈ A}. /

We now are ready to define smooth sequences:

Definition 21. Let S be a semigroup. We say that a sequence s1, s2, . . . , sn ∈
S∗ is smooth if each si is J -equivalent to the product of the sequence (i.e.
s1 ·s2 · . . . ·sn). (In particular, this means that all si’s are pairwise J -equivalent,
but this is not a sufficient condition for a sequence to be smooth.) /

Example 37. Consider the semigroup from Example 36. Here is an example
of a smooth sequence:

(1, 2) (3, 7) (4, 9) (7, 19)

Here are three examples of non-smooth sequences:

(1, 2) (3, 7) (7, 9) (1, 3); (1, 3) ⊥ (2, 9) (7, 3); (7, 3) 1 (4, 8)

/

We are now ready to define smooth factorization trees: we say that a node of a
factorization tree is smooth if the labels of its children form a smooth sequence.
We say that a factorization tree is smooth if all of its nodes are either binary or
smooth. Notice that the smoothness condition is a relaxation of the idempotency
condition – every idempotent factorization tree is also a smooth factorization
tree. Thanks to this relaxation, we can extend Theorem 10 to work with all
orbit-finite semigroups 9:

Theorem 11. For every orbit-finite semigroup S, there exists an hS ∈ N, such
that every sequence s1, s2, . . . , sn ∈ S∗ admits an idempotent factorization tree
of height at most hS.

8Green’s relations were introduced and studied by James Alexander Green in [Gre51].
9Although a proof of this theorem can be found in [BS20, Lemma16], we include it in this

thesis due to its central role in the proof of Theorem 8.
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In fact, to complete the proof of Theorem 8, we require a slightly stronger
version of Theorem 11: in addition to proving the existence of bounded smooth
factorization trees, we need to show that they can be constructed using compo-
sitions of primes. This means that we need a way of representing factorization
trees as words. For this we use a version of splits defined by Colcombet in
[Col07, Section 2.3]:

Definition 22. Let S be a semigroup. A split of height h over a sequence
s1, s2, . . . sn ∈ S∗ is a function t : {1, . . . , n} → {1, . . . , h}, which assigns a
height to every position of the input sequence. A split defines the following
forest structure on the positions of the sequence – a position i is a descendant
of j if:

1. the position i is to the left of (or equal to) j, i.e. i ≤ j; and

2. the position i is visible from the position j, which means that the heights
of all positions between i and j (including i, but excluding j) are strictly
lower than the height of j.

Note that the descendants of every position form a contiguous infix of the input
sequence. Here is an example split, together with an example set of descendants:

We say that two positions i and j are siblings if:

1. they have equal heights; and

2. all positions between i and j (excluding both i and j) are strictly lower
than i and j.

Being siblings is an equivalence relation. Here is an example split partitioned
into sibling equivalence classes:
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To avoid a potential confusion, let us clarify that being siblings is different
from being descendants of the same position. For instance, positions 3 and 4 are
both descendants of position 2, but they are not siblings. Conversely, positions
2 and 9 are siblings, but they are not descendants of any position.

The split value of a position is the semigroup product of the si-values of all
of its descendants (this includes the position itself). Here is an example split
over a sequence of elements of the semigroup defined in Example 37, where every
position is annotated with its split value:

A sibling subsequence is a sequence containing all positions from a sibling
equivalence class, where each position is labelled by its split value. We say that
a split is smooth if all of its sibling subsequences are smooth. The split presented
in the previous example is smooth. Here is a picture of the same split where all
sibling subsequences are marked in orange:

/

Observe that every smooth split of height h can be transformed into a smooth
factorization tree of height 2h+ 1. For example, consider the following split:
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It can be transformed into the following factorization tree:

It is not hard to see that a similar construction works for every smooth split.
This means that we can prove Theorem 11 by showing how to construct smooth
splits of bounded heights. Before we do this, we need to briefly discuss poly-
nomial orbit-finite representations of orbit-finite sets (that are not necessarily
polynomial):

Definition 23. Let X be an orbit-finite set. We say that a polynomial orbit-
finite set Σ together with a partial function r : Σ →eq X + ⊥ is a polynomial
orbit-finite representation of X if:

1. r is surjective – i.e. every element from X has a representation in Σ;

2. r preserves least supports – i.e. if r(x) is defined, then supp(x) = supp(r(x));

/

Lemma 48. Every orbit-finite set X has a polynomial orbit-finite representa-
tion.

Proof. Thanks to Lemma 10, we know that there is a surjective total function
that preserves least supports:

r′ : A(k1) + A(k2) + . . .+ A(kn) → X

To obtain a polynomial orbit-finite representation, we choose the following Σ:

Σ = Ak1 + Ak2 + . . .+ Akn ,

and we define r as follows:

r(x) =

{
r′(x) if x ∈ A(k1) + A(k2) + . . .+ A(kn)

⊥ otherwise

The function f is surjective and support-preserving supports because r′ is surjec-
tive and support-preserving. It is worth noting that r(x) is undefined for those
tuples that contain repeating atoms, as those tuples may not contain enough
distinct atoms to construct elements of X.
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We are now ready to formulate the lemma about constructing smooth splits
with compositions of primes. This is the main technical lemma of this section.

Lemma 49. For every orbit-finite semigroup S and its polynomial orbit-finite
representation r : Σ→eq S, there exists a natural number h and a function

f : Σ∗ → ({1, 2, . . . , h}︸ ︷︷ ︸
split height

× Σ︸︷︷︸
split value

)∗,

such that f can be constructed as a composition of primes and such that f
outputs a smooth split over the input sequence, annotated with the split values.
Note that the type of f guarantees that the height of the split is at most h.

The rest of this section is devoted to proving Lemma 49. The proof uses
induction on the J -height of S:

Definition 24. Let S be a semigroup. Define a J -chain to be a sequence of
elements:

s1, s2, . . . , sn,

such that every si is a proper infix of si+1 (i.e. si is an infix of si+1 , but si+1

is not an infix of si). The J -height of S is the length of its longest J -chain (or
∞ if S has arbitrarily long J chains). Similarly, the J -height of an element
x ∈ S, is the length of the longest J -chain that starts with x. /

In order to use J -height as the inductive parameter, we need to know that it is
finite:

Lemma 50 ([Boj13, Lemma 9.3]). If S is orbit-finite then it has a finite J
height.

Proof. We are going to show that if two elements x, y ∈ S belong to the same
orbit, then they are either J -equivalent or J -incomparable. This is enough to
prove the lemma because it means that the length of every J -chain is limited
by the number of orbits in S. Let us take x and y from the same orbit and
show that if x is an infix of y, then also y is an infix of x: Since x and y are
in the same orbit, then y = π(x) for some atom permutation π. The following
claim, which follows from [Pit13, Lemma 1.14], lets us assume that π touches
only finitely many elements1011 :

Claim 23. For every x and y that belong to the same orbit, there exists a
permutation π such that π(x) = y, with only finitely many atoms a for which
π(a) 6= a.

10In fact, in [Pit13] Pitts defines sets with atoms (nominal sets) using only this type of
atom permutations (called finite permutations).

11 It is worth pointing out that Claim 23 is not true for some other types of atoms that are
sometimes studied in the literature. One example of such atoms are rational numbers with
comparison (Q,≤), called total-order atoms (see [Boj19] or [Boj13] for more details). For this
reason, the single-use theory for total order atoms is different from the one for equality atoms.
We are currently working on it together with Nathan Lhote.
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We have assumed that x is an infix of π(x) (i.e. y) and we need to show
that π(x) is an infix of x. The infix order is an equivariant relation, so π(x) is
an infix of π2(x), and by induction on k we can show that πk(x) is an infix of
πk+1(x). Since π touches only finitely many atoms, there exists a k such that
πk is the identity permutation. It follows by transitivity that π(x) is an infix of
x, because x is an infix of π(x), which is an infix of π2(x), . . . , which is an infix
of πk−1(x), which is an infix of πk(x), which is equal to x.

We are now ready to start proving Lemma 49. We slightly strengthen its
formulation, to make it compatible with the inductive structure of the proof:

Definition 25. The output sequence of a split is its sibling subsequence of
maximal height (note that it is uniquely defined for every split). We say that
a split is semi-smooth if all of its sibling subsequences are smooth, with the
possible exception of the output subsequence. /

Here is an example of a semi-smooth split for the semigroup from Exam-
ple 37. Its output sequence is marked in orange:

Lemma 51. Fix an orbit-finite semigroup S, let H be its J -height, and let
r : Σ→eq S +⊥ be its polynomial orbit-finite representation. For every h ≤ H,
there exists a function:

f : Σ∗ → ({1, 2, . . . , h}︸ ︷︷ ︸
split height

× Σ︸︷︷︸
split value

)∗,

that can be constructed as a composition of primes, which constructs semi-
smooth splits of height ≤ h over the input sequence, and annotates each position
with its split value. Furthermore, the output sequence of every split constructed
by f consists only of elements whose J -height is at most H + 1− h.

Before we prove Lemma 51, let us show that it implies Lemma 49. We start
with the following claim:

Claim 24. All elements of J -height one are pairwise J -equivalent.

Proof. Let x and y be elements with J -heights equal to 1. Assume towards a
contradiction that they belong to two different J -classes. It follows that either
x or y is a proper infix of x · y, so either {x, xy} or {y, xy} forms a J -chain.
This contradicts the assumption.
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Thanks to Claim 24, we know that every sequence of elements with J -heights
equal to 1 has to be smooth. It follows that for h = H Lemma 51 produces a
smooth split.

Let us now proceed with the proof of Lemma 51. The induction base is very
simple: For k = 1, it suffices to set the height of every position to 1, and set the
split values to si’s. This can be expressed as a homomorphism f∗, where f is
the following function:

f(s) = (1, s)

This leaves us with proving the induction step. We construct the split func-
tion for h+ 1 in the following four steps:

1. We apply the induction assumption, constructing an almost smooth split
of height h. Here an example for the monoid from Example 37 and h = 2:

2. Then, we divide the output of the constructed split into almost smooth
blocks, which are blocks that are smooth sequences except of their last
element (this step is explained in detail in Section 3.4.1):

non-smooth︷ ︸︸ ︷
s1, s2, s3, . . . , sn︸ ︷︷ ︸

smooth

, sn+1

3. Then, we compute the product of each almost smooth block and show
that all those products have J -height of at most (H + 1− h)− 1.

4. Finally, we construct a partially smooth split of height h + 1, by in-
creasing the height of every last position in an almost smooth block by
1, and by setting the split value of each such position to the product

116



of its almost smooth block (this can be done using a homomorphism):

3.4.1 Breaking up the sequence
In this section, we construct a function that divides its input sequence into
almost smooth blocks, which are blocks that are not smooth, but would be
smooth if we removed their last element:

non-smooth︷ ︸︸ ︷
s1, s2, s3, . . . , sn︸ ︷︷ ︸

smooth

, sn+1

We encode this as a function that underlines the last letter of each block:

Σ∗ → ( Σ︸︷︷︸
underlined

+ Σ︸︷︷︸
not underlined

)∗

For example, consider the semigroup S =
( A
≤3

)
+⊥, with the following operation

(see Example 5):

x · y =

{
x ∪ y if x 6= ⊥, y 6= ⊥, and |x ∪ y| < 3

⊥ otherwise

For the following input sequence:

{1}, {1}, {1}, {5}, {7, 8}, {2}, {9}, {7}, {4}, {4}, {4}

The function should return:

{1}, {1}, {1}, {5}, {7, 8}, {2}, {9}, {9}, {7}, {4}, {4}, {4}

Which corresponds to the division into the following blocks:

{1}, {1}, {1}, {5}︸ ︷︷ ︸
1st block

, {7, 8}, {2}︸ ︷︷ ︸
2nd block

, {9}, {9}, {7}︸ ︷︷ ︸
3rd block

, {4}, {4}, {4}

Note that the last three elements do not belong to any block. This is because
their almost smooth block is under construction – they form a smooth sequence
and they have not seen an element that would break their smoothness. This is
only allowed at the end of the input sequence:
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Lemma 52. Let S be a semigroup and let r : Σ → S + ⊥ be its polynomial
orbit-finite representation. The following function fdivide can be constructed as
a composition of primes:

fdivide : Σ∗ → (Σ + Σ)∗

The function fdivide divides the input word into almost smooth blocks. Addition-
ally, the rightmost part of the input that does not belong to any block must be
smooth. (The input should only contain letters for which r is defined; if this is
not the case, the output of fdivide is unspecified).

Proof. The main idea of the proof is noticing that being a smooth sequence is
a local property:

Claim 25. A sequence s1, . . . , sn over a semigroup S is smooth, if and only if
all of its pairs of consecutive elements are smooth sequences.

Proof. (⇒): If si, si+1 is not smooth for some i, then si · si+1 is not an infix of
either si or si+1. It follows that s1 · si · si+1 . . . · sn is not an infix of either si or
si+1, which means that the entire sequence is not smooth.

(⇐:) We prove this by induction on n. For n ≤ 2, the claim is trivially true. For
the induction step, we assume that both s1, . . . , sn and sn, sn+1 are smooth and
show that s1, . . . , sn+1 is smooth. Every si is clearly an infix of s1, . . . , sn+1. It
suffices to show that s1 · . . . · sn+1 is an infix of every si. We already know that
s1 . . . sn is an infix of every si (for i ≤ n), so we just need to show that s1·. . .·sn+1

is an infix of both of sn+1 and of s1 . . . sn. For this, we are going to use the
following orbit-finite version of a well-known lemma about Green’s relation (the
orbit-finite version was proved in [Boj13, Lemma7.1 and Theorem5.1]):

Lemma 53. Let S be an orbit-finite semigroup, and let x, y ∈ S. If xy is an
infix of x, then xy is a prefix of x. In other words, there exists an x′ ∈ S1 (as
defined in Claim 21) such that x = xyx′. Analogously, if xy is an infix of y,
then xy is a suffix of y.

It follows from the lemma that there exists an s′n such that s′n · s1 · . . . · sn = sn.
Since sn, sn+1 is a smooth sequence, there are a, b such that asnsn+1b = sn+1.
It follows that a · s′n · s1 · . . . sn+1 · b = sn+1, so s1 · . . . · sn+1 is an infix of
sn+1. To prove that s1 · . . . · sn+1 is an infix of s1 · . . . · sn , it suffices to see
that by Lemma 53, there exists x ∈ S, such that snsn+1x = sn. It follows that
s1 · . . . · sn+1 · x = s1 · . . . · sn, which finishes the proof.

Before we show how to construct fdivide, we define a couple of auxiliary
functions:

Claim 26. For every polynomial orbit-finite set Σ, the following single-use
letter propagation function can be constructed as a composition of primes:

fΣ-prop : (Σ+ ↓ +ε)∗ → (Σ + ε)∗
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The function works in the same way as the single-use letter propagation from
Example 29, but it propagates elements of Σ instead of A.

Proof. The claim can be shown by a straightforward induction on the construc-
tion of Σ as a polynomial orbit-finite set.

Claim 27 ([BS20, Lemma 36]). For every polynomial orbit-finite alphabet Σ,
the following fdelay function can be constructed as a composition of primes:

a1 a2 a3 a4 a5 . . . an7→

` a1 a2 a3 a4 . . . an−1

Proof. The function can be implemented in three steps: First, we use a classical
Mealy machine to mark every position as odd or even (thanks to the classical
Krohn-Rhodes theorem, we know that the classical Mealy machine decomposes
into prime functions – see the last paragraph of the proof Lemma 52 for details).
In the next step, we use a homomorphism together with the single-use letter
propagation, to propagate all letters in even positions one position to the right.
Finally, we do the same for letters in odd positions.

We are now ready to construct fdivide. First, we apply the delay function,
while keeping the original input. This is a common pattern, that is possible
thanks to the × combinator:

Σ∗
copy∗−→ (Σ× Σ)∗

fdelay×id−→ ((Σ+ `)× Σ)

This brings us to the following situation:

` s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Now, we use a homomorphism to underline every pair si−1, si which is not
smooth. We can do this using a homomorphism, because the function Σ2 →
Σ2 + Σ2 that underlines non-smooth pairs is equivariant.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

` s1 s2 s3 s4 s5 s6 s7 s8 s9

We use one more homomorphism to project away the delayed letters:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Finally, we need to get rid of blocks of size 1 (they are always smooth, so they
cannot be almost smooth). We do this by removing every other underline in a
contiguous block of underlined letters:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
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Before we show how to implement this step, let us notice that it finishes the
construction of fdivide– it follows from Claim 25 that after this step o almost
smooth blocks (and possibly one smooth block in the end). This leaves us
with showing how to remove every other underline in each contiguous block of
underlines. First, we use a homomorphism to apply the following isomorphism
to every letter:

Σ︸︷︷︸
unerline

+ Σ︸︷︷︸
no underline

' Σ× { 1︸︷︷︸
underline

, 0︸︷︷︸
no-underline

}

This transformation extracts the finite information about underlines into a sep-
arate coordinate:

0 0 0 1 1 1 0 1 0 0
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Now, we use the parallel composition to apply the following classical (i.e. finite)
Mealy machine to the {0, 1}-coordinate (thanks to the classical Krohn-Rhodes
theorem, we know that it further decomposes into prime functions):

Finally, we use the same isomorphism to go back to the Σ + Σ alphabet:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

This finishes the proof of Lemma 52.

Remember that in the proof of Lemma 51, we need to apply fdivide to the
output of a semi-smooth split. This can be done using the following combinator:

Lemma 54. Compositions of primes are closed under the following subsequence
combinator:

Σ∗
f−→ Γ∗

(Σ +�)∗
(f+�)−→ (Γ +�)∗

,

The function (f +�) applies f to the word composed of Σ-letters of the input,
and leaves the �’s unchanged.

Proof. We start by noticing that:

((f ◦ g) +�) = (f +�) ◦ (g +�) and (f × g) +� = (f +�)× (g +�)

It is not hard to see that for every prime function f , the function (f + �) is a
composition of primes. This finishes the proof.
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3.4.2 Computing almost smooth products
In this section, we show how to use compositions of primes to compute the
products of almost smooth blocks. For example, we want to transform the
following input:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Into the following output:

� � � (s1 · s2 · s3 · s4) � (s5 · s6) � (s7 · s8) � �
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

This step is formalized as the following lemma:

Lemma 55. Let S be an orbit-finite semigroup and let h : Σ → S + ⊥ be its
polynomial orbit-finite representation. Then the following function fblocks is a
composition of primes:

fblocks(Σ + Σ)∗ → (Σ +�)∗

The function fblocks inputs a sequence of elements divided into almost smooth
blocks (for all other inputs its behaviour is undefined) and computes the product
of each of the block: If the i-th letter of the input is underlined, then the i-th
letter of the output is a representation of the product of the block that ends in
that letter, i.e. a representation of the value:

h(sj+1) · h(sj+1) · . . . · h(si)

where j is the first underlined position to the left of i (or 0 if i is the first
underlined position). If the i-th position is not underlined, then the i-th letter
of the output is equal to �.

We can reduce the general construction to the case a single block using the
following map combinator:

Lemma 56. If a function f : Σ → Γ is a composition of primes, then the
function

map f : (Σ + Σ)∗ → (Γ + Γ)∗,

which applies f independently to every block that ends with an underlined letter
(or with the end of the word) is a composition of primes as well.

Proof. Since map(f ◦g) = (map f)◦ (map g) and map(f×g) = (map f)× (map g), it
suffices to show that the map versions of all the prime functions can be expressed
as compositions of primes. We deal only with the hardest case, i.e. group pre-
fixes. Since it works over finite alphabets, its map version can be implemented
as a classical Mealy machine, which, by the classical Krohn-Rhodes theorem,
can be decomposed into prime functions.
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This leaves us with showing how to use compositions of primes to compute
a product of a single almost smooth block, i.e. a version of Lemma 55, with the
extra assumption that the last letter is the only underlined letter in the input:

s1 s2 s3 s4 s5 s6

We compute the product in two steps: In the first step, we compute the product
of the smooth sequence of all letters except the last one (this step is formulated
below as Lemma 57):

� � � � � (s1 · s2 · s3 · s4 · s5)
s1 s2 s3 s4 s5 s6

Then we include the last element to the product by using a homomorphism
to apply the binary product function (see Claim 28 below) to the underlined
position. This finishes the construction:

� � � � (s1 · s2 · s3 · s4) · s5

s1 s2 s3 s4 s5

Claim 28. Let S be an orbit-finite semigroup and r : Σ→ S+⊥ its polynomial
orbit-finite representation. There exists an equivariant function

f : Σ× Σ→eq Σ +⊥

such that for all s1, s2 ∈ Σ that represent elements of S it holds that:

f(s1, s2) is a representation of s1 · s2

Proof. We obtain f by applying Lemma 9 to the following relation R ⊆ Σ2×Σ:
If elements x, y ∈ Σ both represent elements of S, then the pair (x, y) is R-
related with every representation of r(x) · r(y). If either x or y is not a valid
representation, then (x, y) is only R-related with ⊥.

In order to use Lemma 9, we need to show that for every s1, s2 ∈ Σ, there
exists s3 ∈ Σ such that:

(s1, s2) R s3 and supp(s3) ⊆ supp(s1, s2).

If both s1 and s2 represent elements from S, we can pick any s3 that represents
r(s1)·r(s2) – by Definition 23 combined with Lemma 3, we know that supp(s3) ⊆
supp(s1) ∪ supp(s2). If either r(s1) or r(s2) is undefined, then we know that
they are related to ⊥, which is equivariant.

It is worth pointing out that Σ with fΣ−prop is not a semigroup, because
fΣ−prop does not have to be commutative: (a, f(b, c)) and f(f(a, b), c) might be
different representations of the same element.

This leaves us with showing how to use compositions of primes to compute
smooth products, we do this in the following lemma, which is the main technical
result of this section:
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Lemma 57. For every orbit-finite semigroup S and its polynomial orbit-finite
representation r : Σ → S + ⊥, the following function can be constructed as a
composition of primes:

fsmooth : (Σ+ a)∗ → (Σ + Σ)∗

1. The main case is when the input is a smooth sequence followed by the letter
a, which has to be the last letter of the input. In this case the function
should compute a representation of the product of all its input letters:

Input : s1 s2 . . . sn a
Output : � � . . . � s1 · . . . · sn

2. The secondary case is when the input does not contain the a letter. In this
case, fsmooth should only output �’s. (This case is useful for handling the
last, unfinished block in Lemma 55.)

In all other cases, the output of fsmooth is unspecified.

The remainder of this section is dedicated to proving Lemma 57 In the proof,
we use a similar approach as in Section 1.3.3. First, we show how to construct
fsmooth as a composition of finitely supported primes, which are the single-use
prime functions extended with homomorphisms based on finitely supported (and
not just equivariant) functions. Then in Lemma 60, we show how to eliminate
all atomic constants from the construction.

The construction of fsmooth as a composition of finitely supported primes
consists of the following six steps (we assume that n ≥ 2 – otherwise we can
construct the product using the delay function):

1. In the first step, we fix a tuple ā of 2·dim(S) different atoms (remember that
dim(S) = max{|supp(s)| : s ∈ S}) and we equip s1 with representation
of an idempotent e1, that satisfies the following two conditions (for the
purpose of this step we say that such e1 is good for s1):

(a) e1 and s1 are J -equivalent; and
(b) supp(e1) ⊆ supp(ā) ∪ supp(J(s1)), where J(s1) is the J -class of s1.

Notice that the set of all J -classes is a set with atoms itself, which
means that supp(J(s1)) is well-defined.

The result of this step should look as follows:

s1 s2 s3 s4 s5 s6 a
e1 � � � � � �

Before we show how to construct such e1, let us show that it exists:

Claim 29. There exists an idempotent e that is good for s1.
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Proof. The sequence s1, s2 is smooth. It follows that s1, s2, and s1 · s2

all belong to the same J -class. By [Pin10, Corollary 2.25], this means
that there is some idempotent e′ that belongs to J(s1). Let us show
how to transform this e′ into an e that is good for s1. Define π to be a
permutation that swaps every atom from (supp(e′)− supp(J(x))) with a
fresh atom from (ā − supp(J(x))). For such π to exist, ā has to be large
enough. This is not hard to see after noticing that function x 7→ J(x) is
equivariant, which means that:

|supp(J(x))|
Lemma 3
≤ |supp(x)| ≤ dim(S)

Define e := π(e′) and let us show that it an idempotent that is good for s1:

• π(e′) is idempotent, because e′ is idempotent and the product in S
is equivariant;

• the inclusion supp(π(e′)) ⊆ supp(J(x)) ∪ supp(ā) follows from the
choice of π;

• π(e′) ∈ J(x) because π is a supp(J(x))-permutation.

Now let us show how to construct e1 in the first position. First, we use a
classical Mealy machine to underline the first letter. Then, we use a homo-
morphism to apply a uniformization of the following relation (Lemma 8)
to the underlined element of the input word:

R(x, y)⇔

{
y represents an idempotent that is good for x
y = ⊥ and there is no idempotent that is good for x

2. In the second step, we want to propagate e1 throughout the word:

s1 s2 s3 s4 s5 s6 a
e1 e1 e1 e1 e1 e1 �

We do this in two substeps: First, we use an ā-supported homomorphism
based on the function x 7→ (x, ā) to equip every input position with ā:

s1 s2 s3 s4 s5 s6 a
e1 ā ā ā ā ā �

Then, we propagate e1 to every position. Notice that, since J(si) = J(s1),
and supp(J(si)) ⊆ supp(si), it follows that all the atoms from e1 are
already present in each position:

supp(e1) ⊆ supp(si, ā).

The following lemma says that this is enough to perform a multiple-use
propagation of e1:
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Lemma 58. For every polynomial orbit-finite X, the following condi-
tional multiple-use propagation function can be constructed as a composi-
tion of single-use primes:

fprop : X∗ → X∗

Given an input word w = x1, . . . , xn, the function fprop(w) replaces each
xi with x1, provided that supp(x1) ⊆ supp(xi) for every input position i.
If there is at least one i, for which supp(x1) 6⊆ supp(xi), then the output
is unspecified. Here is an example (for X = A2):

(4, 7) (7, 4) (7, 4) (4, 7) (7, 4)7→
(4, 7) (4, 7) (4, 7) (4, 7) (4, 7)

It is worth pointing out that the lemma crucially depends on the support-
inclusion condition. We have already seen in Example 32 that the un-
restricted version of fprop cannot be implemented as a single-use Mealy
machine. According to Section 3.2.1, this implies that it cannot be imple-
mented as a composition of primes either.

Proof. First, let us notice that by a simple induction on the structure of
X, we can show that it is possible to extract the supports of elements of
X in form of a tuple (the crucial assumption is that X is polynomial):

Claim 30. For every polynomial orbit-finite X ,there is an equivariant
function:

supp : X →eq A≤dimX ,

such that for every x, the tuple supp(x) contains the least support of x and
all atoms in supp(x) are distinct.

Now, let us show how to equip every position with supp(x1). We start
with a homomorphism that equips every position i with supp(xi). Then,
we use the delay function (Lemma 27) and a homomorphism to compute
the following relation in every position:

ri ∈ P ({1, . . . ,dim(X)} × {1, . . . ,dim(X)})

n ri m ⇔ n-th atom in supp(xi−1) and
m-th atom in supp(xi) are equal

Notice that every ri is an element of a finite set, which means that we can
use a classical Mealy machine to compute the composition of ri’s on each
prefix. This way, in every position we obtain the following −→r i:

n −→ri m ⇔ n-th atom in supp(x1) and
m-th atom in supp(xi) are equal

Thanks to the values −→ri , we locate each atom from supp(x1) in supp(xi),
so we can use a homomorphism to compute supp(x1) in every position.
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In the second phase of the construction, we use the values supp(x1) to
compute x1 in every position. The general idea is as follows:

(a) encode every atom in x1 as its position in supp(x1), obtaining an
atomless value x′1;

(b) use a classical Mealy machine to propagate x′1 throughout the word;

(c) in every position, repopulate x′1 with values from supp(x1).

Formally, we define x′1 using name abstraction and atom placeholders
(from Section 1.3.3). Remember that [A]X denotes the set of elements of
X, where one atom might have been replaced by an atomless placeholder.
It comes with two operations:

〈a〉(x)︸ ︷︷ ︸
replace all a’s in x
with the placeholder

x@a︸︷︷︸
replace the placeholder in x∈[A]X

with the atom a

Let us prove the name abstraction preserves polynomial orbit-finite sets:

Claim 31. If X is a polynomial orbit-finite set, then so is [A]X.

Proof. By Lemma 12, we know that [A](X + Y ) ' [A]X + [A]Y and
[A](X × Y ) = [A]X × A[Y ], so it suffices to notice that:

[A]1 ' 1 and [A]A ' A︸︷︷︸
real atom

+ 1︸︷︷︸
placeholder

Let us define [Ak]X and [A≤k]X as follows:

[Ak]X = [A](. . . ([A]X) . . .)︸ ︷︷ ︸
k times [A]

[A≤k] = X + [A]X + . . .+ [Ak]X

We define x′1 ∈ [A≤dim(X)]X as 〈supp(x1)〉(x1). By Lemma 13, we know
that x′1 is equivariant (i.e. atomless). This means that we can propagate
x′1 throughout the word using a classical Mealy machine. Now every po-
sition is equipped with both x′1 and supp(x1). This means that can use a
homomorphism to reconstruct x1 in every position as x′1@(supp(x1)).

3. In this step, we decompose every si into xi · yi such that e1 is a suffix of
x1 and a prefix of y1. We do this by using a homomorphism based on the
following function:

Claim 32. Let S be an orbit-finite semigroup, and h : Σ → S + ⊥ be
its polynomial orbit-finite representation. There exists a finitely supported
function that fdecompose : Σ2 →fs Σ2, that does the following:
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• Input: s, e ∈ Σ, such that e represents an idempotent from S, and s
represents an element from the same J -class as e;

• Output: x, y ∈ Σ, such that h(e) is a suffix of h(x), h(e) is a prefix
of h(y), and h(x) · h(y) = h(s).

Proof. Thanks to the Lemma 8, it suffices to show that for all s, e ∈ S
there exists at least one such decomposition. Since e is an infix of s, we
know that aeb = s for some a, b ∈ S. Define x := ae and y := eb. It
follows that:

xy = aeeb = aeb = s

Since e is clearly a suffix of x and a prefix of y, we can pick s = x · y as
the desired decomposition.

4. Next, we apply the delay function to the y-coordinates and use homomor-
phism to compute gi := yi · xi+1:

x1 x2 x3 x4 x5 x6 a
` y1 y2 y3 y4 y5 y6

` g1 g2 g3 g4 g5 a

We say that two elements of a semigroup are H-equivalent if they are both
prefix equivalent and suffix equivalent. The important property of the gi
values is that they are all H-equivalent to e1:

Claim 33. All gi are prefix and suffix equivalent to e1.

Proof. Let us show that e1 is prefix equivalent to gi (the proof for suffix
equivalence is similar). Thanks to Lemma 53, it suffices to show that e1 is
a prefix of gi and that gi and infix of e1. First, observe that e1 is a prefix
of yi, which in turn is a prefix of gi. Thus, e1 is a prefix of gi. Next, to
see that gi is an infix of e1, observe that xigiyi+1 = sisi+1. This means
that gi is an infix of sisi+1, which, by smoothness, is an infix of si, and si
an infix of e1. Thus gi is an infix of si.

5. In this step, we equip the last position (i.e. the position with a) with a
representation of the product of all gi’s:

−→g := g1 · . . . · gn−1

Recall that, by Claim 33, every gi is H-equivalent to ei. It follows that
the support of each gi is equal to the support of ei:

Lemma 59. Let e ∈ S be an idempotent and let H(e) be its H-class.
Then, for every x ∈ H(e), it holds that supp(x) = supp(e).

Proof. We start the proof by citing a few results:
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• [Pin10, Proposition 1.13] states that in every semigroup S (possibly
infinite), if an H-class contains an idempotent, then it forms a sub-
group. Moreover, thanks to [Pin10, Proposition 1.4] we know that the
idempotent is the identity element of this subgroup. (In particular,
this means that no H-class contains more than one idempotent.)

• [CLP15, Corollary 2.17] says that in an orbit-finite semigroup S all
H-classes are finite12.

It follows that H(e) is a finite subgroup of S and that e is the identity
element of this group. First, let us show that supp(e) ⊆ supp(x): Since
H(e) is a finite group, there exists an n such that xn = e. The function
x 7→ xn is equivariant, so by Lemma 3, supp(e) ⊆ supp(x). Now, let us
show that supp(x) ⊆ supp(e): By Lemma 3, supp(H(e)) ⊆ supp(e). Now,
since H(e) is finite, supp(x) ⊆ H(e) for every x ∈ H(x) (or otherwise
the supp(H(e))-orbit of x would be infinite). It follows that supp(x) ⊆
supp(H(e)) ⊆ supp(e).

Now, we equip every position with supp(e1) – the easiest way to do it is to
simply not forget those values from Step 2, but we can also use Lemma 58.
Then, we use a homomorphism to compute g′i = 〈supp(e1)〉(gi). By Lem-
mas 59 and 13, we know that all g′i’s are atomless. It follows that we can
use a classical Mealy machine to compute

−→
g′ = g′1 · . . . g′n and save it in

the last letter. The binary product used to compute g′ is defined using
functoriality of 〈supp(e1)〉 as 〈supp(e1)〉(_ · _). By Lemma 16, we know
that −→g ′@supp(e1) = −→g . Since, at this point, the last letter contains both
−→g ′ and supp(eq), it follows that we can use a homomorphism to construct
−→g in the last letter.

6. Finally, we notice that s1 · . . . · sn = x1 · −→g · yn. The value −→g is already
present in the last position. This means that in order to compute s1·. . .·sn,
we can use the generalized single-use propagation (Claim 26) to send x1

and yn to the last position (which we recognize by a), and then apply a
homomorphism that multiplies values x1, −→g and yi in the last position.

This leaves us with showing how to get rid of the unnecessary atoms:

Lemma 60. If f : Σ∗ → Γ∗ can be constructed as a composition of finitely
supported primes, then it can also be constructed as a composition of supp(f)-
supported primes. In particular, if f is equivariant, then it can be constructed
as a composition of (equivariant) primes.

Proof. Given a function f : Σ∗ → Γ∗, which can be constructed as a composi-
tion of α-supported primes, and an atom a 6∈ supp(f), we show how to construct
f as a composition of (α − a)-supported primes. This is enough to proof the

12It is also worth pointing out [CLP15, Lemma 2.14] which says that all orbit-finite groups
are finite. This can be seen as the reason why Krohn-Rhodes decompositions of single-use
Mealy machines use only finite (i.e. atomless) groups.
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lemma, because we can repeat this process for every atom in α− supp(f).

The construction uses name abstraction (see Section 1.3.3 for details). Con-
sider the function:

〈a〉f : [A](Σ∗)→ [A](Γ∗)

Thanks to the isomorphism WX : 〈a〉(X∗) ' (〈a〉X)∗ from Lemma 12, we can
treat 〈a〉f as a function on words:

〈a〉f : ([A](Σ))∗ → ([A](Γ))∗

Let us show that 〈a〉f can be constructed as a composition of (α−{a})-primes:

Lemma 61. If f : Σ∗ → Γ∗ can be constructed as a composition of primes
supported α, then 〈a〉f : (〈a〉Σ)∗ → (〈a〉Γ)∗ can be constructed as a composition
of primes supported by α− {a}.

Proof. The proof goes by induction by on the construction of f . For the induc-
tion base we assume that f is a prime function. The only prime function, that
might not me equivariant, is a homomorphism h∗. In this case, it is not hard
to see that 〈a〉(h∗) = (〈a〉h)∗ (thanks to the isomorphism W from Lemma 12).
This is enough, because Lemma 13 we know that if h is supported by α, then
〈a〉h is supported by α− {a}.

For the induction step, we first notice that thanks to Lemma 15, we have that:

〈a〉(f ◦ g) = 〈a〉f ◦ 〈a〉g

This is enough to handle the case of ◦-composition. For the ×-composition, we
would like to show that:

〈a〉(f × g) = (〈a〉f)× (〈a〉g)

The main problem is type inconsistency:

〈a〉(f × g) : ([A](Σ1 × Σ2))∗ → ([A](Γ1 × Γ2))∗

〈a〉f × 〈a〉g : ([A]Σ1 × [A]Σ2)∗ → ([A]Γ1 × [A]Γ2)∗

In order to solve it, we use the isomorphism from Lemma 12, which is defined
as follows:

P : ([A](X × Y )) ' ([A]X × [A]Y )

P (x) = (〈a〉(proj1(x@a)), 〈a〉(proj2(x@a)))

Using P ∗, we can (implicitly) cast between ([A](Σ1×Σ2))∗ and ([A]Σ1×[A]Σ2)∗.
Then it is not hard to see that:

〈a〉(f × g) = (〈a〉f)× (〈a〉g)
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Now, let us use 〈a〉f to reconstruct the original f without using a. Remember
that in Claim 11, we have defined an embedding: ιX : X → [A]X such that:

ιΣ(x) = 〈a〉x where a 6∈ supp(x)

This is an embedding, so it has a partial inverse ι−1
X : [A]X → X +⊥. We use

it, to construct f ′ in the following way and show that f = f ′:

f ′ : Σ∗
ι∗−→ ([A]Σ)

〈a〉f−→ ([A]Γ)∗
ι−1

−→ (Γ +⊥)∗

Note that there is a slight type mismatch: the type of f is Σ∗ → Γ∗, and the
type of f ′ is Σ∗ → (Γ + ⊥)∗. We can ignore this mismatch, because (as we
are going to show) f ′ never returns ⊥. Let us now proceed with the proof that
f ′ = f . It is enough to show that the following diagram commutes:

Σ∗ Γ∗

([A]Σ)∗ ([A]Γ)∗

f

ιΣ

〈a〉f

ιΓ

For that, we notice that (by assumption) a 6∈ supp(f), so 〈a〉f = ιΣ∗→Γ∗(f). It
follows that we can finish the proof by applying the following claim:

Claim 34. For every X,Y , and f : X →fs Y , the following diagram commutes:

Σ∗ Γ∗

([A]Σ)∗ ([A]Γ)∗

f

ιΣ

ι(f)

ιΓ

Proof. We take a x ∈ X, and show that ι(f(x)) = (ιf)(ιx). Let b be an atom
such that b 6∈ supp(x) ∪ supp(f). It follows by definition of ι that ι(f) = 〈b〉f ,
ι(x) = 〈b〉x, by and (by Lemma 3) ι(f(x)) = 〈b〉(f(x)). Using the isomorphism
from Lemma 14, we get that:

(ιf)(ιx) = (〈b〉f)(〈b〉x) = 〈b〉 (f((〈b〉x) @ b)) = 〈b〉(f(x)) = ι(f(x))

This completes the proof of Lemma 57.

3.5 Local semigroup transductions ⊆ Composi-
tions of primes

In this section, we finish the proof of Theorem 8 by proving the following lemma:
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Lemma 62. If Σ and Γ are polynomial orbit-finite sets and f : Σ∗ → Γ∗ is
a local semigroup transduction, then f can be constructed as a composition of
primes.

Take any local semigroup transduction f : Σ∗ → Γ∗ given by (S, h, λ).
All semigroup transductions are equivariant, so by Lemma 60, it suffices to
show that f can be constructed as a composition of finitely supported primes.
Moreover, we can assume that h : Σ →eq S is a polynomial orbit-finite repre-
sentation13 of S. This is because if the original function h : Σ → S is not a
polynomial orbit-finite representation, we can pick a polynomial orbit-finite rep-
resentation h′ : Σ′ →eq S and start the construction by applying to every letter
the uniformization (Lemma 8) of the following relation (using a homomorphism
prime function):

xR y ⇔ h(x) = h′(y)

This leaves us with implementing the transduction (S, h′, λ), which satisfies the
condition that h′ is a polynomial orbit-finite representation. From now on, we
assume that h is a polynomial orbit-finite representation of S. Thanks to this
assumption, we can use Lemma 49 to construct a smooth split over the input
sequence. In the remainder of this section, we show how to transform the split
into the output of the local semigroup transduction. First, let us define some
additional structure on the split:

Definition 26. For every position i of a split, we define its left ancestor to be
the rightmost j to the left of i, that is higher or equal than i. Note that every
position has at most one left ancestor. The ancestor sequence of i is the smallest
subsequence of the split positions, that contains i and is closed under ancestors
– i.e. the sequence that contains i, i’s ancestor, the ancestor of i’s ancestor, and
so on . . . /

Example 38. Let us consider the semigroup S =
( A
≤3

)
+⊥ with the following

operation:

a · b =

{
a ∪ b if a 6= ⊥, b 6= ⊥, and |a ∪ b| ≤ 3

⊥ otherwise

Here is a sequence over this semigroup (black) and an example split over the
sequence (grey). The orange arrows point to the left ancestor of every position:

13There is a slight type mismatch here: a polynomial orbit-finite representations is a partial
function Σ → S + ⊥, and h is a total function h : Σ → S. We can deal with this type
mismatch by defining a semigroup S′ = S +⊥, where ⊥ is an all-absorbing error element, i.e.
x · ⊥ = ⊥ = ⊥ · x. Alternatively, we can assume that input does not contain any letters for
which h is undefined.
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/

Importantly, the product of the split values in the ancestor sequence of a
position i is equal to the product of the ith prefix of the input sequence. (This
property follows immediately from a definition of a split value.) For example,
consider the following split:

We can calculate the product for the underlined prefix as the product of the
highlighted ancestor sequence:

{1, 2, 3} · {1, 2, 3} · {1, 3} · {1, 3} · {1} · {1}

Observe that the product of every two consecutive values in this sequence is
J -equivalent to the element on the left (i.e. aiai+1 is J -equivalent to ai). We
say that a split is monotone if all ancestor sequences (labelled with split values)
satisfy this condition:

Definition 27. Let s1, . . . , sn ∈ S∗ be a sequence over a semigroup equipped
with a smooth split and let v1, . . . , vn ∈ S∗ be the split values of this split. We
say that the split is monotone if for every j, i such that j is i’s left ancestor it
holds that:

vi · vj is infix equivalent to vi

/

The split form Example 38 is not monotone, because the following pairs do
not satisfy the monotonicity condition:
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It is, however, possible to construct another smooth split over this sequence that
is monotone (orange arrows point to ancestors):

At the end of this section, in Lemma 66, we will show how to transform
smooth splits of bounded height into monotone smooth splits of bounded height.
For now, let us assume that the input split is monotone.

In order to construct the output of the local semigroup transduction, it would
be enough to equip every position with its ancestor sequence. Unfortunately,
this cannot be achieved with compositions of primes, because the ancestor se-
quences can have unbounded lengths. The general idea of the proof of Lemma 62
is to compress the ancestor sequences so that they can be handled using compo-
sitions of primes, while preserving enough information to determine the output
of the local semigroup transduction.

Before we continue with the proof, we need to define a few more notions:
Remember that positions i and j are called siblings if they have equal heights
and there is no higher position between them. Being siblings in an equiva-
lence relation, and its equivalence classes are called sibling subsequences. The
leftmost position in every sibling subsequence is called the eldest sibling. The
sibling prefix of a position i is the prefix of the sibling subsequence that ends in
this position. Finally, we say that a position of a split is regular if its split value
is J -equivalent to some idempotent in S. Note that if a position of a smooth
split has at least one sibling, then by a reasoning similar to the one in Claim 29,
it has to be regular.

The following lemma says how to equip all sibling subsequences with values xi,
yi, and gi analogous to the ones constructed in the proof of Lemma 57:
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Claim 35. Let Σ be a polynomial orbit-finite representation of S. There is
a composition of primes that inputs a smooth split and equips every regular
position i of the split with (representations of) values gi ∈ S, yi ∈ S, and if i is
an eldest sibling xi ∈ S such that for every regular i and its eldest sibling j:

1. xjgiyi is equal to the product of the split values of i’s sibling prefix;

2. gj is an idempotent, and gi is H-equivalent to gj;

3. xj is prefix equivalent to vj (i.e. the split value of j) and suffix equivalent
to gj;

4. yi is suffix equivalent to vi and prefix equivalent to gi.

For example, consider the following split:

Highlighted is the sibling prefix of 11. The eldest sibling of 11 is 5. According
to the lemma, this means that x5 · g11 · y11 is equal to the product v5 · v8 · v9 · v11,
where vi denotes the split value of the position i. Note that vi differs from si,
which is the i-th element of the split’s underlying sequence. Furthermore, the
lemma requires that g5 is idempotent and H-equivalent to g11. Also, x5 is prefix
equivalent to v5 and suffix equivalent to g5. Lastly, y11 is prefix equivalent to
g11 and suffix equivalent to v5.

Proof. The proof goes by induction on the split’s height. If it is equal to 1, then
the input is a smooth product and we can use a construction similar to the one
in the proof of Lemma 57. The difference is that in Step 5, we use a classi-
cal (i.e. atomless) Mealy machine to equip every position i with the atomless
value −→gi ′ = g′1 · . . . · · · g′i. Then we can use a use homomorphism to repopu-
late every −→gi ′ with atoms from supp(e1) (available in every position), obtaining
−→g i = g1 · . . . · gi. We conclude by keeping the xi and yi values constructed in
Step 3 and defining gi as −→g i (this is not going to cause a name clash, because
we are not going to use the original gi’s any more).

For the induction step, notice that the positions of the maximal height form a
smooth subsequence. This means we can use the construction from the induction
base (combined with the subsequence combinator from Lemma 54), to compute
the values x, y and g in the positions of the maximal height. Then, we observe
that the positions of the maximal height divide the input split into smooth splits
of lower heights. For example:
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Thanks to this observation, we can finish the construction by combining the
induction assumption with the map combinator (Lemma 56).

Now, let us use the values xi, gi, yi to define the compact ancestor sequence
for every position of the split:

Definition 28. For every position i of a monotone smooth split, we define its
compact ancestor sequence (cas(i)) in the following way:

1. If i a regular position, then cas(i) is defined as the following tuple:

cas(i) = (cas(p), xj , gi, yi),

where j is i’s eldest sibling, and p is j’s left ancestor. Note that j always
exists, but it might happen that i = j. It is, however, possible that j
might not have a left ancestor – in this case, we simply omit the cas(p)
part.

2. If i is not regular, then cas(i) is defined as:

cas(i) = (cas(p), vi),

where p is the left ancestor of i. Again, if i does not have a left ancestor,
we omit the cas(p) part.

/

Notice that by Claim 35 the product of the compact ancestor sequence is
equal to the product of the split values in the full ancestor sequence. It follows
that the product of the compact ancestor sequence of i is equal to the product
of the ith prefix of the input sequence (i.e. s1 · . . . · si). Importantly, the length
of the compact ancestor sequence is bounded.

Claim 36. The length of every compact ancestor sequence is bounded by 3h,
where h is the height of the split.

Proof. It suffices to see that in Definition 28 the position p is always higher
than i. First, let us observe that, by construction, the position p is always
either higher than i, or a proper sibling of i (i.e. i 6= p). This leaves us with
showing that p is never a sibling of i: If i is regular, then we know that p cannot
be i’s sibling because it is to the left if i’s eldest sibling j. And if i is not regular,
then p cannot be i’s sibling, because the nodes that are not regular do not have
any siblings other than themselves (see the proof of Claim 29).
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Unfortunately, the compact ancestor sequence still contains too much infor-
mation to be computed by compositions of primes – if there were a composition
of primes that equips every position i with its compact ancestor sequence, then
there would also be a composition of primes that computes the semigroup prod-
uct of every prefix (it suffices to use a homomorphism to compute the product
of each cas(i)). This is a contradiction, because by Example 33, we know that
compositions of primes are not capable of computing products of prefixes.

In order to make the compact ancestor subsequences manageable for the
composition of primes, we need to forget some of their atoms. This is expressed
in the language of α-orbits. Remember that, if α is a finite subset of atoms,
then the α-orbit of an element x is defined as:

orbα(x) = {π(x) | where α is an α-permutation }

One can look at orbα(x) as an operation, that it forgets all the atoms from x that
do not belong to α. Note that orbα(x) is usually not polynomial orbit-finite.
However, as the following lemma shows, we can use polynomial orbit-finite sets
to represent orbits of polynomial orbit-finite sets.

Lemma 63. For every k ∈ N and every polynomial orbit-finite Σ, there is a
polynomial orbit-finite set orbk(Σ) and a function:

orb : A≤k × Σ→ orbk(Σ),

such that:

1. if orb(ā, x) = orb(ā, y), then x and y belong to the same ā-orbit; and

2. supp
(
orb(ā, x)

)
⊆ supp(ā).

The intuition behind this lemma is that orb(ᾱ, x) is a representation of orbα(x),
where ᾱ is any of the tuples that contains all atoms from α.

Proof. We start by defining orbk(Σ):

orbk(Σ) = [A≤k]Σ = Σ + [A]Σ + [A2]Σ + . . .+ [Ak]Σ

Now, in order to compute orb(ā, x), we abstract away all the atoms that do not
belong to ā:

orb(ā, x) = 〈supp(x)− ā〉(x).

(Note that supp(x) is the support-extracting function from Claim 30).

Now let us show that this orb satisfies the two required properties. The sec-
ond one (i.e. supp(orb(ā, x)) ⊆ supp(ā)) follows immediately from Lemma 13.
This leaves us with showing the first property: We take some ā, x, y, such that
orb(ā, x) = orb(ā, y) and show that x = π(y), for some ā-permutation π. Since
orb(ā, x) = orb(ā, y), we know that:

|supp(x)− ā| = |supp(y)− ā|
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Clearly, neither (supp(x) − ā) nor (supp(y) − ā) contains repeating atoms or
atoms from ā. This means that there is an ā-permutation π, that transforms
supp(y)− ā into supp(x− ā). Let us show that this π transforms y into x:

π(y) = π(orb(a, y)@(supp(y)− ā)) = (π(orb(a, y))@(π(supp(y)− ā))) =

= (orb(ā, y))@(supp(x)− ā) = (orb(ā, x))@(supp(x)− ā) = x

Let us now use orb to define the core ancestor sequence, which is a more com-
pressed version of the compact ancestor sequence:

Definition 29. For every position i, we define core ancestor sequence (core(i))
in the following way:

1. If i a regular position, then cas(i) is defined as the following tuple:

core(i) = ( orb (supp(gj), (core(p), xj))︸ ︷︷ ︸
A polynomial orbit-finite representation

of the supp(gj)-orbit of the pair (core(p), xj)

, gi, yi)

where j is i’s eldest sibling, and p is j’s left ancestor. Similarly as in
Definition 28, let us note that j always exists, but it might happen that
i = j. It is, however, possible that j might not have a left ancestor – in
this case, we simply skip the core(p) part.

2. If i is not regular, then:

core(i) = (core(p), vi)

where p is its left ancestor of i. Again, if i does not have a left ancestor,
we skip the core(p) part.

/

The intuition behind this definition is that the more distant an ancestor is,
the more of its atoms are forgotten in core(i). Since core(i) does not keep all
relevant atoms, we can no longer use it to reconstruct the product of the ith
prefix. However, if the output function λ : S → Γ satisfies the locality equation,
we can use core(i) to reconstruct the λ-value of the ith prefix, i.e. λ(s1, . . . , si):

Lemma 64. For every two sequences s1, . . . , sn, and s′1, . . . , s′n′ over an orbit-
finite semigroup S that are equipped with monotone smooth splits, for every i
and i′ that are positions in s and s′, and for every local λ : S → Γ, it holds
that:

core(i) = core(i′) ⇒ λ(s1 · . . . · si) = λ(s′1 · . . . · s′i′)

Proof. The proof goes by induction on the position i, but it requires a slight
strengthening of the induction hypothesis:
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Claim 37. Let S, i, j, λ, s1, . . . , sn and s′1, . . . , s′n′ be as in Lemma 64 and let
z ∈ S be a value that is monotone with both vi and v′i′ , i.e.:

viz is infix equivalent to vi and v′j′z is infix equivalent to v′i′ .

It follows that:

core(i) = core(i′) ⇒ λ(s1 · . . . · si · z) = λ(s′1 · . . . · s′i′ · z)

It is easy to see that the lemma follows from the claim – it suffices to take
S = S1 (from Claim 21) and z = 1. Let us now proceed with the proof of the
claim. First, let us consider the case where i is regular. Since core(i) = core(i′)
it follows that i′ is regular as well, and that:

(orb (supp(gj), (core(p), xj)) , gi, yi) = (orb
(
supp(g′j′), (core(p

′), x′j′)
)
, g′i′ , y

′
i′)

This means that gi = g′i′ , yi = y′i′ and

orb (supp(gj), (core(p), xj)) = orb
(
supp(g′j′), (core(p), x

′
j′)
)

By Claim 35, we know that g′j′ isH-equivalent to g′i′ , and that gj isH-equivalent
to gi. Since gi = g′i′ , it follows that gj is H-equivalent to g′j′ . Moreover, by
Claim 35 we know that both gj and g′j′ are idempotent. As explained in the
proof of Lemma 59, each H-class contains at most one idempotent, which means
that gj = g′j′ . To simplify the notation, let us use e to represent both of those
values. We know that:

orb (supp(e), (core(p), xj)) = orb
(
supp(e), (core(p′), x′j′)

)
Thanks to Lemma 63, it follows that there is a supp(e)-permutation π such that
π(core(p′)) = core(p) and π(x′j′) = xj .

We are now ready to prove that λ(s1 · . . . · sn · z) = λ(s′1 · . . . · s′n′ · z). First,
notice that s1 · . . . · sn = s1 · . . . · sp · xj · gi · yi (and similarly for s′). This means
that we can proof the claim by showing that:

λ(−→sp · xj · gi · yi · z) = λ(
−→
s′p′ · x′j′ · g′i′ · y′i′ · z),

where −→sp = s1 . . . sp (and similarly for sp′). We show this in two steps:

λ(
−→
s′p′ · x′j′ · g′i′ · y′i′ · z)

(1)
= λ(π(

−→
s′p′) · π(x′j′) · g′i′ · y′i′ · z)

(2)
= λ(−→sp · xj · gi · yi · z)

Let us first use the locality of λ to show that equation (1) holds. We know that
g′i′ is H-equivalent to e, which means that g′i′ = e · g′i′ . This means that in order
to show (1), it suffices to show that:

λ(
−→
s′p′ · x′j′ · e · g′i′ · y′i′ · z) = λ(π(

−→
s′p′) · π(x′j′) · e · g′i′ · y′i′ · z)

This is an instance of the locality equation (Definition 19), so since π was chosen
to be a supp(e)-permutation, this leaves us with showing that g′i′ · y′i′ · z is an
infix of e. This follows from Lemma 53 and the following facts:
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1. v′i′ · z is an infix of v′i′ (by assumption);

2. y′i′ is suffix equivalent to v′i′ (by Claim 35);

3. y′i′ is prefix equivalent to e (by Claim 35, because e = g′j′);

4. g′i′ is H-equivalent to e (by Claim 35).

This leaves us with showing (2): Since π(x′j′) = xj , g′i′ = gi = e, and y′i′ = yi,
it suffices to proof the following:

λ(π(
−→
s′p′) · xj · e · yi · z) = λ(−→sp · xj · e · yi · z)

Since core(i) = core(i′) we know that either both j and j′ have a left ancestor,
or neither of them has one. If they do not have left ancestors, then the equality
is trivially true (as the factors π(

−→
s′p′) and

−→sp are omitted). When p and p′ exist,
we prove the equality by applying the induction assumption to:

s = s1, . . . , sp, s′′ = π(s′1), . . . , π(s′p′), and z′ = xj · gi · yi · z.

This leaves us with showing that:

1. core(p′′) = core(p), where p′′ is a position in s′′ = π(s′) and p is a position
in s, and

2. z′ is monotone with both vp and v′′p′′ = π(v′p′).

First, it is not hard to see that the function core is equivariant with respect to
the input sequence, so since π was chosen to make π(core(p′)) equal to core(p),
it follows that:

core(p′′) = π(core(p′)) = core(p)

This leaves us with showing that vp · z′ is infix equivalent to vp (and similarly
for v′′p′′). Since z

′ = xj · gi · yi · z, this follows from the following facts:

1. yi · z is a prefix of yi: Thanks to Lemma 53, this can be shown by proving
that yi · z is an infix of yi, which follows from the assumption that vi · z
is an infix of vi, combined with Claim 35, which states that yi is suffix
equivalent to vi.

2. xj · gi · yi is a prefix of xi: This is because by Claim 35 combined with the
smoothness of the split, we know that the product xj · gi · yi is smooth.

3. vp · xj is an infix of vp: Thanks to the monotonicity of the split, we know
that vp · vj is an infix of vp and by Claim 35 xj is prefix equivalent to vj .

4. v′′p′′ · xj is an infix of v′′p′′ : This is because v′′p′′ = π(v′p′) and xj = π(x′j′),
which means that it suffices to show that v′p′ · x′j′ is an infix of v′p′ , which
can be shown using an analogous argument as in Item 3.
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This finishes the proof in the case where i and i′ are regular. In the case where
i and i′ are irregular (since core(i) = core(i) we know that i and i′ have to
be either both regular or both irregular), we can directly apply the induction
assumption.

It follows almost immediately from Lemma 64 that we can transform core an-
cestor sequences into the output letter output letters:

Claim 38. There is an equivariant function that transforms core(i) into the ith
letter of the output of the local semigroup transduction.

Proof. The existence of some function that maps core(i) into the ith letter of
the output follows immediately from Lemma 64. To see that this function is
equivariant, we can construct it as a composition of the following two equivari-
ant relations. The first relation maps core(i) to all splits with an underlined
position such that the core of the underlined position is equal to core(i). The
second relation is a function that maps a split with an underlined position, into
the output letter on that position. Thanks to Lemma 64, we know that this
composition results in a function.

This leaves us with showing how to equip every i with its core(i). First
of all, let us notice that thanks to a reasoning similar to the one in Claim 36
combined with Lemma 63, we know that in a split of bounded height, the values
of core(i) belong to a polynomial orbit-finite set. Now let us show how to use
compositions of primes to compute all core(i):

Lemma 65. For every height h, there is a composition of primes that inputs a
smooth split of height at most h and equips every position i with core(i).

Proof. We start the construction by applying Claim 35 to equip the input po-
sitions with their x-, y-, and g-values. Then, we construct the core-values, level
by level top-down: First for the positions of height h, then h−1, . . . , and all the
way down to 1. Let us assume that we have already constructed all core-values
for the positions that are strictly higher than k (for k = h this is trivially true),
and show how to construct core-values for the positions of height k:

First, we construct the core-values for all eldest siblings of height k. For
this, let us notice that if i is an eldest sibling, then core(i) depends only on:

1. core(p), where p is the left ancestor of i (if it exists); and

2. the values xi, gi, yi if i is regular, or on vi if i is not regular.

The values vi, and xi, gi, yi (if applicable) are already present in all i’s, so it
suffices to equip every eldest sibling with the core-value of its left ancestor (if
it exists). We do this in one round of a (generalized) single-use propagation:
Every node higher than k transmits its core-value, and every node of height k
tries to receive a value. This construction works, because for every position p
there is at most one i of height k such that p is the left ancestor of i. After this
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propagation, we can use a homomorphism to construct core(j) in every eldest
sibling j.

We are left with constructing the core-values in the non-eldest siblings. No-
tice that if i a non-eldest sibling, then core(i) depends only on:

gi, yi, orb (supp(gj), (core(p), xj)),

where j is i’s eldest sibling, and p is the left ancestor of j (if it exists). Since
the values xi, gi are already present in i, we only need to equip every non-
eldest sibling with orb (gj , (core(p), xj)). We start by using a homomorphism to
construct this value in every eldest sibling j of height k (this is possible because
values xj and core(p) are already present each such eldest sibling j). Then, we
notice that by Lemma 59, Claim 35, and Lemma 63, for every i whose eldest
sibling is j, it holds that:

supp
(
orb (gj , (xj , core(p)))

)
⊆ supp(gj) = supp(gi)

This means that we can use multiple use propagation (Lemma 58) together
with the map and subsequence combinators to equip every i of height k with
orb (gj , (xj , core(p))). After this step we have enough information in every non-
eldest node i of height k to use a homomorphism and compute its core(i).

This almost finishes the proof of Lemma 62. The last thing to show is how
to transform smooth splits of bounded height, into monotone smooth splits of
bounded height:

Lemma 66. For every semigroup S (represented by Σ), and for every height
h, there is a composition of primes that inputs a smooth split of height at most
h and transforms it into a monotone smooth split (over the same sequence) of
height at most h · (hJ (S) + 1), where hJ (S) is the J -height of S.

Proof. The proof is an induction on h. The induction base is trivial – splits
of height 1 are necessarily smooth, so every smooth split of height 1 is already
monotone. For the induction step, we assume that we have a construction for h,
and we derive a construction for h+1. We are going to illustrate the construction
on the following example:

Similarly as in the proof of Claim 35, we notice that the positions of the
maximal height divide the input sequence into subsplits of heights not greater
than h:
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This means that using the map combinator (Lemma 56), we can apply in-
duction assumption to each of those subsplits. This might increase the height
of those subsplits from h to h′ := h · (hJ (S) + 1). It follows that in order to
preserve the structure of the split, we need to increase the heights of the dividing
positions from h+ 1 to h′+ 1. (We can do this using a homomorphism.) In our
example, this looks as follows (for the sake of clarity, we lower h′ to 3, which is
still high enough to preserve the structure of the split):

Now let us investigate all possible remaining non-monotone positions, i.e.
all positions i, such that vj · vi is not infix equivalent to vj (where j is the left
ancestor of i). Note that it follows from the induction assumption that if (j, i) is
such a non-monotone pair, then j is of the maximal height (i.e. h′ + 1) and i is
not of the maximal height. Moreover, this can only happen in the last subsplit
(i.e. j has to be the rightmost position of maximal height):

Claim 39. If the left ancestor of i is not the youngest sibling (i.e. it has a
sibling to the right), then i is monotone (i.e. vjvi is infix equivalent to vj).

Proof. Let j be i’s left ancestor, and let j′ be the first sibling of j (to the right):
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Because the split is smooth, we know that vjvj′ is an infix of vj . By
Lemma 53, it follows that vjvj′ is also a prefix of vj . By definition of the
split values, we see that vi is a prefix of vj′ . It follows that vjvi is a prefix of
vjv
′
j . By transitivity, this means that vjvi is a prefix of vj .

It is easy to see that for every height k and for every position j, there is
at most one i of height h such that j is the left ancestor of i. It follows that
there are at most h′ non-monotone positions. Let us show how to detect them:
We start by equipping every position i whose left ancestor j is of the maximal
height (i.e. h′ + 1) with the value vj . This can be done in h′ rounds of the
generalized single-use propagation – in the kth round, nodes of height h′ + 1
transmit their split value and nodes of height k try to receive. This brings us
to the following situation (the ancestor split values are marked in orange):

Now we can use a homomorphism to underline all those nodes that have
received a vj ; and for which vj · vi is not infix equivalent to vj . In our example
there is only one such position:
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Then, we use a classical Mealy machine (or a multiple-use bit propagation)
to detect the first underlined node, and using a homomorphism, we set its height
to h′ + 2 and its split value to vj · vi:

It is not hard to see that this operation preserves the smoothness of the split.
In our example the split is already monotone, but in general there might still be
some non-monotone nodes left. Using a similar reasoning as before, we can see
that if a node is non-monotone then its left ancestor has to be the newly elevated
position of height h′ + 2. This means that we apply a similar construction:

1. Equip every position i whose left ancestor j is of the maximal height with
the value vj ;

2. Detect the first non-monotone position (i.e. a position for which vj · vi is
not infix equivalent to vj);

3. Increment the position’s height, and set its split value to vj · vi.

It is not hard to see that each such operation decreases the J -height of the
split value in the position of the maximal height. This means that after hJ (S)
iterations, we will obtain a monotone split of height at most h′ + hJ (S). As
h′ = h · hJ (S) + 1, this is smaller than (h+ 1) · (hJ (S) + 1).

This finishes the proof of Lemma 62 and, in turn, the proof of Theorem 8.
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3.6 Local semigroup transductions revisited
Although local semigroup transductions were introduced as an intermediate
model in the proof of Theorem 8, we believe that they are of independent inter-
est. For this reason, we devote this (brief) section to studying them for their own
sake. The main result of this section is that the containment problem between
general orbit-finite semigroup transductions and local semigroup transduction
is decidable. However, this main result is mostly a pretext to delve deeper into
the properties of local semigroup transductions.

Theorem 12. The following problem is decidable:

Input : A (possibly non-local) orbit-finite semigroup transduction (S, h, λ).
Output : Is there a local semigroup transduction (S′, h′, λ′)

that defines the same function?

For the sake of brevity, we do not discuss finite representations of orbit-finite
set (which is technically required to talk about the decidability of this problem).
Instead, we will focus on the intuitive understanding of decidability for sets with
atoms. The algorithm presented in the proof is relatively simple and we hope
that it will be intuitively clear, that it can work with any reasonable represen-
tation14.

Before presenting the algorithm, let us analyse the structure of semigroup
transductions. The main result of this analysis is going to be Lemma 70, which
says that if a function f : Σ∗ → Γ∗ is defined by some local orbit-finite semigroup
transduction, then all orbit-finite semigroup transductions that define f are
local (as long as their semigroups do not contain unnecessary elements).

3.6.1 λ-morphisms
We start by defining a suitable notion of a morphism between two semigroups
with outputs:

Definition 30. A Γ-coloured semigroup is a pair (S, λ), where S is a semigroup,
and lambda is a function S → Γ. A λ-morphism between two Γ-coloured
morphisms (S1, λ1)→ (S2, λ2) is a function f : S1 → S2 such that:

1. f is a semigroup morphism, i.e. f(x · y) = f(x) · f(y) for every x, y ∈ S1;
and

2. f preserves colours, i.e. λ1(x) = λ2(f(x)) for every x ∈ S1.

/

The interesting fact about equivariant λ-morphisms is that they preserve the
locality of λ both backwards and (as long as the λ-morphism is a surjection)
forwards:

14For more information on representing orbit-finite sets see [Boj19, Chapter 4]. For more
information on computations on sets with atoms see [Boj19, Chapter 5 and Part III].
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Lemma 67. Let (S1, λ1) and (S2, λ2) be two orbit-finite, equivariant Γ-coloured
semigroups, such that there exists an equivariant λ-epimorphism (i.e. a surjec-
tive λ-morphism):

f : (S1, λ1)→eq (S2, λ2).

It follows that λ1 is local if and only if λ2 is local.

Proof. We start with the easier (⇐)-implication, which holds even if f not
surjective. We assume that λ2 is local, and show that λ1 is local as well. For this,
we take x, e, y ∈ S1 and a supp(e)-permutation π such that e is an idempotent
and y is a prefix of e, and we show that λ1(xey) = λ1(π(x)ey). We start by
converting the left-hand side to λ2:

λ1(xey) = λ2(f(xey)) = λ2(f(x) · f(e) · f(y))

At this point, we would like to apply the locality of λ2. For this we observe the
following:

1. f(e) is idempotent: This is because f(e) · f(e) = f(e · e) = f(e);

2. f(y) is a prefix of f(e): Since y is a prefix of e, there is a z such that
yz = e. It follows that f(y) · f(z) = f(yz) = f(e).

3. π is a supp(f(e))-permutation: f is equivariant, so by Lemma 3, we know
that supp(f(e)) ⊆ supp(e). It follows that every supp(e)-permutation is
also a supp(f(e))-permutation.

This means that we can use the locality of λ2:

λ2(f(x) · f(e) · f(y)) = λ2(π(f(x)) · f(e) · f(y))

Since f is equivariant, we have that:

λ2(π(f(x)) · f(e) · f(y)) = λ2(f(π(x)) · f(e) · f(y))

We finish the proof by going back to λ1:

λ2(f(π(x)) · f(e) · f(y)) = λ2(f(π(x)ey)) = λ1(π(x)ey)

This finishes the proof of the (⇐)-implication.

The proof of the (⇒)-implication is more complicated and it requires f to be
surjective. This time we assume that λ1 is local and show that λ2 is local as well:
Take x, e, y ∈ S2 and a supp(e)-permutation π such that e is an idempotent and
y is a prefix of e. We need to show that λ2(xey) = λ2(π(x)ey). The immediate
approach would be to take some x′, e′ and y′ that belong accordingly to f−1(x),
f−1(e) and f−1(y) and apply the locality for λ1(x′e′y′). There are, however,
three problems with this approach: e′ might not be idempotent, y′ might not be
a prefix of x′, and π might not be a supp(e′) permutation (as e′ might contain
more atoms than e). In the next paragraphs, we present a solution that deals
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with all three of those problems.

It would be useful to assume that π touches only finitely many atoms – but,
since π is an arbitrary supp(e)-permutation, this might not be true. However,
by Claim 23, we can assume that there is another supp(e)-permutation π′ that
only touches finitely many atoms such that π′(x) = π(x). For such a π′ we have
that λ2(π(x)ey) = λ2(π′(x)ey). This leaves us with proving that λ2(x2ey) =
λ2(π′(x)2ey). We start by picking an appropriate e′:

Claim 40. There is an element e′ ∈ S1, such that:

1. f(e′) = e;

2. every s ∈ f−1(e) is an infix of e′;

3. e′ is idempotent;

4. π′ is a supp(e′)-permutation.

Proof. Let us consider E = f−1(e). As long as we pick e′ ∈ E, it will satisfy the
first condition of the claim. Observe that E is a subsemigroup of S1: This is
because {e} is a subsemigroup of S2, and inverse images of semigroup morphisms
preserve subsemigroups. Let E′ be the heaviest J -class of E, i.e. the set of all
elements whose J -height is equal to 1. (By Claim 24, we know that this is
indeed a J -class). Observe that E′ is a subsemigroup – this is because the
J -height of x · y cannot be higher than the J -height of x or y. Moreover,
observe that every element of E is an infix of every element of E′: if x ∈ E
and y ∈ E′, then it is not hard to see that xy ∈ E′, which means that xy is
J -equivalent to y. This means that as long as we pick e′ from E′, it will satisfy
the second condition. Since E′ is a subsemigroup of S1, it contains at least
one idempotent: Take some x ∈ E′ and let X be the subsemigroup generated
by x, i.e. X = {x, x2, x3 . . .}. By [Boj13, Theorem 5.1], we know that X is
finite and every finite (sub)semigroup contains an idempotent. Finally, let us
notice that E′ is supported by supp(e) (this follows from Lemma 3, as E′ can
be computed from E, and E can be computed from e). Since E′ contains an
idempotent, it follows that there is at least one supp(e)-orbit of idempotents
in E′. Moreover, we know that π′ is a supp(e)-permutation that only touches
finitely many atoms, which means that this orbit contains at least one (or, in
fact, infinitely many) e′, such that π′ is a supp(e′)-permutation. Such e′ satisfies
the conditions of the claim.

We are now ready to show that λ2(x2ey) = λ2(π′(x)2ey). Let us pick e′ as
in Claim 40 and some x′ and y′ such that f(x′) = x and f(y′) = y. Observe
that:

λ2(xey) = λ2(xe(ey)) = λ2(f(x′e′(e′y′))) = λ1(x′e′(ey′))

In the next step, we apply the locality of λ1 for x′, e′, ey′ and π′. We already
know that e′ is an idempotent (in S1) and that π′ is a supp(e′)-permutation.
Let us show that e′y′ is a prefix of e′: By Lemma 53, it suffices to show that

147



e′y′ is an infix of e′. Since y is a prefix of e, we know that there exists a z ∈ S2

such that yz = e. Let z′ be any element such that f(z′) = z. It follows that
f(e′y′z′) = eyz = ee = e, so by Claim 40, we know that e′y′z′ is an infix of e′.
It follows that e′y′ is an infix of e. This means that we can apply the locality
equation:

λ1(x′e′(ey′)) = λ1(π′(x′) · e′ · (ey′))
We finish the proof with the following transformations:

λ1(π′(x′) · e′ · (ey′)) = λ1(π′(x′) · e′ · y′) = λ2(f(π(x′) · e′ · y′)) = λ2(π′(x)ey)

3.6.2 Syntactic semigroup transduction
Syntactic semigroups are a well-established tool for studying formal languages –
they were introduced15 in [Sch55, Chapter 2], and they are discussed for example
in [Pin10, Section IV.4] or in [Boj13, Theorem 1.7]. In this section, we discuss
their generalization for word-to-word functions. We start with a definition:

Definition 31. We say that a length-preserving function f : Σ∗ → Γ∗ is future
independent if for all w, v1, v2 ∈ Σ∗:

the |w|-th letter of f(wv1) = the |w|-th letter of f(wv2)

/

It is not hard to see that the class of word-preserving, future-independent
functions is the equal to the class of functions recognized by possibly infinite
semigroup transductions (as we can always pick the free semigroup S = Σ∗ to-
gether with λ that maps a word w into the last letter of f(w)). For this reason,
we are only going to define syntactic semigroup transduction for functions that
are length-preserving and future independent.

When talking about syntactic semigroups, it is important to assume that the
underlying semigroup of a semigroup transduction does not contain unreachable
elements:

Definition 32. We say that a semigroup transduction (S, h, λ) of type Σ∗ →
Γ∗ is full16 if h∗ is a surjective homomorphism: i.e. if every element of S
corresponds to some word from Σ∗, i.e. for every s ∈ S, there is a w ∈ Σ∗, such
that:

s = h(w1) · . . . · h(wn)

/
15It might be worth noting that [Sch55] points further to [Dub41]. However, as I was unable

to access [Dub41], I keep [Sch55] as the reference.
16An alternative for the name full semigroup transduction might be surjective semigroup

transduction. However, the name surjective semigroup transduction might erroneously suggest
that the word-to-word function Σ∗ → Γ∗ is surjective. For this reason, we stick with full
semigroup transduction.
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Note that every semigroup transduction can be transformed into an equiva-
lent full transduction:

Claim 41. For every semigroup transduction (S, h, λ), there is an equivalent
full-semigroup transduction (S′, h′, λ′). (Moreover, if (S, h, λ) is equivariant,
then so is (S′, h′, λ).)

Proof. Define S′ ⊆ S to be the set of those elements that correspond to words
from Σ∗. It is not hard to see that S′ is a subsemigroup of S. If we define h′ and
λ′ to be restrictions of h and λ, we obtain an equivalent semigroup transduction.
(It is easy to see that this construction preserves equivariance.)

We are now ready to define the syntactic semigroup transduction for a function
f , which intuitively is the minimal semigroup transduction that computes f :

Lemma 68. For every length-preserving and future-independent function f :
Σ∗ → Γ∗, there exists syntactic semigroup transduction (Sf , hf , λf ), such that:

1. (Sf , hf , λf ) is full;

2. (Sf , hf , λf ) defines f ; and

3. for every full (S′, h′, λ′) that computes f there exists a λ-epimorphism
g : (S′, λ′)→ (Sf , λf ). (Note that since g is a λ-morphism, it follows that
(g◦h′, Sf , λf ) is equivalent to (Sf , hf , λf ), which means that (g◦h′, Sf , λf )
is an implementation of f .)

(It is worth pointing out that the syntactic semigroup transduction does not
have to be finite or orbit-finite.)

Proof. The proof is analogous to the proof of [Boj20, Theorem 1.7]: For every f ,
we define the two-sided Myhill–Nerode equivalence relation ∼f , which identifies
two words w1, w2 ∈ Σ∗ if:

the last letter of f(uw1v) = the last letter of f(uw2v), for all u, v ∈ Σ∗

The syntactic semigroup of f is constructed as follows: Sf = (Σ+)/∼f (i.e. the
set of non-empty words over Σ divided by ∼f ), with the following operation:

[u]f · [v]f = [uv]f ,

where [u]f denotes the abstraction class of u. Functions hf and λf are defined
as follows:

hf (w) = [w]f λf ([w]f ) = the last letter of f(w)

It is not hard to see that definitions of λ and of the semigroup operation do
depend on the choice of the representants. It is also not hard to see that
(Sf , hf , λf ) implements f . For every full (S′, h′, λ′) that implements f , we
define the following g:

g(x) = [wx]f where wx is any word whose h′-image’s product is equal to x
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To see that g is a well-defined, surjective, and a monoid morphism, we can
use the same argument that is used in the classical construction of a semantic
monoid of a language (see, for example, [Boj20, Theorem 1.7]). This leaves us
with showing that g preserves λ-values. Since both (S′, h′, λ′) and (Sf , hf , λf )
are implementations of f , it follows that:

λ′(s) = the last letter of f(ws) = λf ([ws]f ) = λf (g(s))

It can be shown that the syntactic semigroup transduction of f is unique
(with respect to λ-isomorphisms), which means that we can define it abstractly
using only the statement of Lemma 68. However, we stick with the concrete
definition using the construction from the proof of Lemma 68 (i.e. Sf = Σ+

/∼f )
as it is sometimes easier to reason about it. For example, by analysing the
construction, it is not hard to see that it preserves equivariance:

Claim 42. If f : Σ∗ → Γ∗ is equivariant, then so is its syntactic semigroup
transduction (S, h, λ). Moreover for every equivariant full (S′, h′, λ′) that cor-
responds to f , the λ-epimorphism g : (S′, λ′)→ (S, λ) is equivariant.

In the context of formal languages, the syntactic monoid often serves as a
useful tool for checking if a language possesses certain properties (such as first-
order definability). A similar approach can be used for syntactic semigroup
transductions and the locality restriction:

Lemma 69. An equivariant function f : Σ∗ →eq Γ∗ is recognized by some local
semigroup transduction if and only if its syntactic semigroup transduction is
local. (Remember that by Definition 19 every local semigroup transduction is in
particular orbit-finite.)

Proof. The “only if” part is immediate. Let us focus on the “if” part: Let
(S, h, λ) be the local semigroup transduction that recognizes f . As described
in Claim 41, we can transform it into an equivalent full (S′, h′, λ′). It is not
hard to see that (S′, h′, λ′) is local as well. Let (Sf , hf , λf ) be the syntactic
semigroup transduction of f . It follows by Lemma 68, and Claim 42 that there
is an equivariant, surjective λ-morphism k : (S′1, λ

′
1)→eq (Sf , λf ). Observe that

S′ is orbit-finite (because it is local). Since k is surjective, it follows that Sf is
orbit-finite as well. By Lemma 67, λf is local.

Interestingly, instead of checking whether the syntactic semigroup trans-
duction of a function f is local, it suffices to check whether some full semi-
group transduction that recognizes f is local. This is formalized by the fol-
lowing lemma which follows directly from combining Lemma 69 with Lem-
mas 67 and 68:

Lemma 70. If f : Σ∗ → Γ∗ is recognized by some local semigroup transduction,
then all full semigroup transductions that recognize f are local.
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We are now ready to prove Theorem 12. As noted in the introduction to this
section, in the proof we are going to use an informal intuition of what it means
to be a computable function over sets with atoms. For a formal definition, see
[Boj13, Chapter 8].

Proof of Theorem 12. We are given an orbit-finite semigroup transduction (S, h, λ)
and we want to check if it can be implemented as a local semigroup transduction.
Thanks to Lemma 70 we can do this in the following two steps:

1. In the first step we, we use the construction from Claim 32 to compute an
equivalent full-semigroup transduction (S′, h′, λ′). This can be done using
the following fixpoint algorithm. Initiate S′0 = h(Σ), and keep computing
S′i+1 as follows:

S′i+1 = S′i ∪ {x · y | x, y ∈ S′i},

until S′i = S′i+1. When this process stabilizes, set S′ := S′i.

To see that this procedure terminates, observe that if Si and Si+1 have an
equal number of orbits, then Si = Si+1. Consequently, the running time
of this procedure is limited by the number of orbits in S.

2. In the second step, we check if (S′, h′, λ′) is local: For every tuple (x, x′, y, z) ∈
S4 such that yz is an idempotent and x and x′ belong to the same
supp(yz)-orbit, we verify that:

λ(xyz) = λ(x′yz)

Since λ and S are equivariant, it suffices to check this condition for only
one representant of every orbit in S4. By Lemma 6, S4 is orbit-finite,
which means that we can do this in finite time.

We conclude our discussion of local semigroup transition with the following
lemma, which underlines the connection between local semigroup transduction
and single-use Mealy machines:

Lemma 71. A full semigroup transduction over polynomial orbit-finite alpha-
bets is equivalent to some single-use Mealy machine, if and only if it is local.

Proof. The “if” part follows directly from Lemma 9. Let us focus on the “only if”
part: Take a full (S, h, λ) that is equivalent to some single-use Mealy machine.
It follows by Lemma 9 that (S, h, λ) it is equivalent to some local semigroup
transduction. By Lemma 70 it follows that (S, h, λ) is local itself.

A corollary of Theorem 12 and Lemma 71 is that it is decidable whether
an orbit-finite semigroup transduction can be translated into a single-use Mealy
machine.
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3.7 Rational transductions with atoms and their
Krohn-Rhodes decompositions

In this section, we discuss rational transduction (i.e. the class of transductions
defined by unambiguous Mealy machines – see the introduction to this chapter
for details) and their possible extension to polynomial orbit-finite alphabets.
The main result of this section is a Krohn-Rhodes-like decomposition theorem
for this extension. Apart from being of its own significance, this result plays an
important role in the next chapter.

One possible approach to define rational transductions over polynomial orbit-
finite alphabets would be to use unambiguous single-use Mealy machines. How-
ever, unambiguity is a form of nondeterminism, and so far we do not have a
good notion of nondeterminism compatible with the single-use restriction (see
Section 2.4 for details17). For this reason, we define rational transductions with
atoms using an algebraic approach. Before discussing the definition for infinite
alphabets, we start by recalling the classic algebraic definition18 for rational
transductions over finite alphabets:

Definition 33. A rational semigroup transduction of type Σ∗ → Γ∗ (for finite
Σ and Γ) consists of a finite semigroup S, an input function h : Σ→ S, and an
output function λ:

λ : (S+ `)︸ ︷︷ ︸
prefix product

` represents empty prefix

× Σ︸︷︷︸
current letter

× (S+ a)︸ ︷︷ ︸
suffix product

a represents empty suffix

→ Γ︸︷︷︸
output letter

The rational monoid transduction defines the function f : Σ∗ → Γ∗, where the
ith letter of f(w) is equal to:

λ(h(w1) · . . . · h(wi−1), wi, h(wi+1) · . . . · h(wn))

/

Example 39. For example, let us construct a rational semigroup transduction
of type Σ∗ → Σ∗ that defines the function:

“Swap the first and the last letter”
17 It is worth noting that both examples from Section 2.4, which demonstrate that nonde-

terministic single-use automata are stronger than deterministic ones, use automata that are
ambiguous (which means that some accepted words will always have more than one accepting
run). It follows that those examples cannot be used to show that unambiguous automata are
stronger than deterministic ones. In fact, the question of whether unambiguous nondetermin-
istic automata are equivalent to deterministic single-use automata remains open. If the two
models turned out to be equivalent, it would open a path to a machine-based definition of
single-use rational transductions.

18I was unable to find this definition in the literature. However, it is consistent with the
field’s folklore, as it can be viewed as a semigroup version of Eilenberg’s bimachine [Eil74,
Section XI.7].
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The transduction is based on the semigroup S = Σ2, with the following opera-
tion:

(x1, y1) · (x2, y2) = (x1, y2)

The input and output functions of the transduction are as follows:

h(a) = (a, a) λ(p, a, s) =


ys if p =a and s = (xs, ys)

xp if s =` and p = (xp, yp)

a otherwise

/

For finite alphabets, rational semigroup transductions define the class of
rational transductions:

Lemma 72. Rational semigroup transductions define the same class of func-
tions as unambiguous Mealy machines.

Proof. ⊆: Observe that a rational semigroup transduction can be computed by
a composition of three deterministic right-to-left and left-to-right Mealy ma-
chines – the first one (right-to-left) computes the semigroup product of each
suffix, the second one computes the product of each prefix (left-to-right), and
the third one (right-to-left or left-to-right) computes the output letters. This
finishes the proof, because by reasoning similar as in Lemma 44 unambiguous
Mealy machines are closed under compositions with both left-to-right and right-
to-left Mealy machines.

⊇: In order to translate an unambiguous Mealy A, we can use the following
semigroup of behaviours. The behaviour of a word Σ∗ is the following relation
bw ⊆ Q×Q:

(q1, q2) ∈ bw ⇔
A has a run over w

that enters in q1 on the left,
and exits in q2 on the right

Similarly, as it was for the behaviour functions, the behaviour of concatenation
is a composition of behaviours: buv = bv ◦ bu. This means that the set of all
behaviours forms a semigroup. It is not hard to see that the i-th output letter
can be computed based on the behaviour of the (i− 1)-th prefix, the behaviour
of the (i + 1)-th suffix, and the i-th input letter (the unambiguity restriction
guarantees that there is only one possible output letter).

Now let us define local rational semigroup transductions, which is an exten-
sion of rational monoid transductions to orbit-finite alphabets. To the best of
my knowledge, this definition is an original contribution of this thesis. Similarly
as in Definition 19, the key idea is to restrict the power of λ with a locality
equation:
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Definition 34. A local rational semigroup transduction is a version of rational
semigroup transduction, where Σ, Γ, and S are orbit-finite, h and λ are equiv-
ariant, and λ satisfies the following locality equation for all x1, x2, y1, y2, e ∈ S
such that e is an idempotent, for all a ∈ Σ, and for all supp(e)-permutations π:

e = y1h(a)y2 ⇒ λ(x1 · y1, a, y2 · e · y2) = λ(π(x1) · e · y1, a, y2 · e · π(y2))

A local rational monoid transduction defines a function Σ∗ →eq Γ∗ (defined in
the same way as in Definition 33). It is worth pointing out that the locality
restriction does not restrict the values λ(`, ·, ·) or λ(·, ·,a). The intuitive rea-
son for this is that those values are computed only once, and only repetitive
behaviours create obstacles for the single-use restriction. /

Example 40. The transduction “swap the first and the last letter” from Exam-
ple 39 is a local rational semigroup transduction for every orbit-finite alphabet
Σ. Since the locality restriction only talks about situations where both prefix
and suffix are real semigroup elements (and not a or `), the locality restriction
is trivially satisfied:

λ(x1 · e · y1, a, x2 · e · y2) = a = λ(π(x1) · e · y1, a, x2 · e · π(y2)).

/

Finally, let us explore the relationship between semigroup transductions and
local rational semigroup transductions:

Claim 43. The class of local rational semigroup transductions that are future
independent (see Definition 31) is equal to the class of local semigroup transac-
tions.

Proof. We start the proof by observing that a rational transduction is future
independent if and only if for every x, a, y, y′, it holds that:

λ(x, a, y) = λ(x, a, y′)

The ⊆ inclusion is easy: In order to transform a local monoid transduction
into a local rational semigroup transduction, we can use the following output
function:

λ′(x, a, y) = λ(x · h(a))

It is easy to see that λ′ is future independent. Moreover, locality of λ implies
the locality of λ′. This is because if y1 ·h(a) ·y2 = e, then y1 ·h(a) is a prefix of e.

The proof of ⊇ is similar. The main difference is that we need to define
another semigroup S′ that keeps track of the last letter of a word. We define it
as S′ = S × Σ with the following operation:

(x1, a1) · (x2, a2) = (x1 · h(a1) · x2, a2)

Now, we define h′(a) = (1, a) and λ′((x, a)) = λ(x, a, 1). Thanks to the future
independence of λ, we know that the (S, h′, λ′) defines the same function as
(M,h, λ). Moreover, using a similar idea as in the proof of ⊆, we can show that
λ′ satisfies the locality equation.
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3.7.1 Rational Krohn-Rhodes decompositions
In this section, we formulate and prove a version of the Krohn-Rhodes theorem
for local semigroup transductions. Observe that all classical prime functions (see
Theorem 7) and single-use prime functions (see Theorem 8) except for the ho-
momorphisms are left-to-right oriented. The rational version of Krohn-Rhodes
theorem extends the set of prime functions with their right-to-left counterparts.
Let us start with the classical version of the theorem for finite alphabets19:

Theorem 13. The class of rational transductions (over finite alphabets) is equal
to the smallest class closed under ◦ and ×, that contains the following rational
prime functions:

1. Length-preserving homomorphism h∗ : Σ∗ → Γ∗, for every h : Σ → Γ,
where Σ and Γ are finite.

2. Left-to-right multiple-use bit propagation (from Example 30) and right-to-
left multiple-use bit propagation (analogous);

3. The G-prefix function (from Example 31) and the G-suffix20 function
(analogous) for every finite group G.

The following Krohn-Rhodes theorem for local rational semigroup transduc-
tions is the main result of this section. To the best of my knowledge, it is an
original contribution of this thesis.

Theorem 14. The class of local rational semigroup transductions over polyno-
mial orbit-finite alphabets21 is equal to the smallest class closed under ◦ and ×,
that contains the following single-use rational prime functions:

1. All rational prime functions over finite alphabets (from Theorem 13);

2. Length-preserving equivariant homomorphism h∗ : Σ∗ → Γ∗, for every
equivariant h : Σ→eq Γ, where Σ and Γ are polynomial orbit-finite;

19The theorem belongs to folklore. It follows immediately from the Elgot-Mezei theorem
([EM63, Theorem 7.8], see introduction to this chapter for details) combined with the Krohn-
Rhodes theorem (Theorem 7).

20Actually, it can be shown that we do not need the G-suffix function, as we can derive it
from the other rational primes. However, the G-suffixes function does not cause any problems
later on, and keeping it makes the formulation more symmetrical.

21 Note that local rational semigroup transductions are defined for all orbit-finite alpha-
bets, but the theorem only holds for polynomial orbit-finite alphabets. A counterexample
is the single-use propagation of

(A
2

)
, which can be constructed as a local rational semigroup

transduction but not as a composition of single-use rational primes. One way to address this
issue would be to extend the set of single-use rational primes with the generalized single-use
propagation for every orbit-finite Σ (i.e. an extended version of the function from Claim 26).
However, the current proof of the theorem only works for polynomial orbit-finite alphabets,
leaving the question of whether compositions of these generalized primes are equivalent to
local rational semigroup transductions over orbit-finite alphabets open. A similar (but sim-
pler) open question can also be asked about Krohn-Rhodes decomposition of local semigroup
transductions.
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3. Left-to-right single-use atom propagation (Example 29) and right-to-left
single-use atom propagation (analogous).

The remainder of this section is dedicated to the proof of Theorem 14.

3.7.1.1 Local rational transductions ⊆ Compositions of rational primes

We begin the proof of Theorem 14 by showing that all local rational semigroup
transductions can be constructed as compositions of (single-use rational) primes.
Thanks to Theorem 8, it is enough to show that we can construct every local
rational monoid transduction as a composition of left-to-right and right-to-left
single-use Mealy machines22. The proof follows the approach of Lemma 62:
First, we construct a smooth factorization of the input sequence, and then we
show how to transform it into the output of the local rational semigroup trans-
duction. This time, leveraging the more powerful computation model, we do
not construct smooth splits. Instead, we directly construct smooth factoriza-
tion trees using the following right-aligned encoding of trees. We illustrate the
encoding using the following example:

The key idea of the encoding is to write every node in the position of its
rightmost descendant. To make things cleaner, we also assume that all leaves
are on the same depth – for this reason, we introduce unary nodes. Here is
a right-aligned version of the example above (with the unary nodes marked as
triangles):

22 For finite alphabets, it was enough to use one left-to-right and one right-to-left Mealy
machine. In contrast, in the proof of Theorem 14, we are going to use multiple left-to-right
and multiple right-to-left single-use Mealy machines. It remains an open question whether
every local rational semigroup transduction can be constructed using one left-to-right and one
right-to-left single-use Mealy machine.
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Observe that in a right-aligned tree of height h, each position contains at
most h nodes. It follows that we can encode right-aligned trees as words over
the following alphabet (where Σ is a polynomial orbit-finite representation of
the semigroup): Σ︸︷︷︸

leaf

+ Σ︸︷︷︸
binary node

+ Σ︸︷︷︸
smooth node

+ Σ︸︷︷︸
unary node

≤k

Our example tree corresponds to the following word:

Such a word contains enough information to recreate the original tree: the
parent of a node q is the first node to the right of q whose height is hq+1 (where
hq is q’s height).

Let us now prove that we can use compositions of rational primes to construct
smooth factorization trees:

Lemma 73. Let S be an orbit-finite semigroup, and let Σ be its polynomial
orbit-finite representation. There exists h and a function ftree of the following
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type that can be constructed as a composition of rational single-use primes:

ftree : Σ∗ → ( (Σ + Σ + Σ + Σ)≤k︸ ︷︷ ︸
The alphabet for representing

right-aligned smooth factorications
(described earlier)

)∗,

such that ftree outputs a right-aligned smooth factorization tree for the input
sequence.

Proof. The proof is analogous to the proof of Lemma 49. It is an induction
on the maximal J -height of the input elements. If all elements have J heights
equal to 1 then, by Claim 24, we know that the input sequence is smooth. This
means that we can use Lemma 57 to compute its product, and construct a
smooth factorization tree by inserting a smooth root in the last position. Note
that we can detect the last node using a right-to-left Mealy machine – this is
not possible using only left-to-right Mealy machines.

This leaves us with the induction step: We start by partitioning the input
sequence into maximal smooth blocks, i.e. smooth blocks that would lose their
smoothness if extended by one element left or right. The construction is similar
to Lemma 52, but without the “keep every other underline” phase. Instead, there
is an additional step, where a right-to-left Mealy machine shifts all underlines
one position to the left. Next, we use a construction similar to Lemma 57 to
compute the product of each of those blocks. Then, for each block, we insert
a smooth node that groups its elements together – with right-aligned encoding,
this means inserting a smooth node in the last position of each smooth block
(for blocks of length one we use a unary node instead of a smooth one). Next,
we insert binary nodes to group the new nodes in pairs (if their number is odd,
we use two binary nodes to group the last three nodes together). We can do this
with a single-use Mealy machine that keeps track of the parity and remembers
enough copies of the previous value to compute binary products (this is possible
thanks to Lemma 28). Now, observe that those newly inserted binary nodes
contain values whose J -heights are strictly lower than the maximal J -height of
the input sequence. This means that we can finish the construction by combining
the induction assumption with the subsequence combinator from Lemma 54.

We are now ready to prove the ⊆-inclusion of Theorem 14. For this we fix
a local rational semigroup transduction f = (S, h, λ) of type Σ∗ → Γ∗ and we
show how to construct it as a composition of left-to-right and right-to-left single-
use Mealy machines. Observe first, that by a similar reasoning as in the proof
of Lemma 62 combined with the reasoning from the proof of the ⊇-inclusion in
Lemma 43, we can assume that h : Σ → S is a polynomial orbit-finite repre-
sentation of S. This means that we can use Lemma 73 to construct a smooth
factorization tree over the input sequence. In the remainder of this section,
we show how to transform the smooth factorization tree into the output of the
transduction.
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Before we continue with the proof, let us present a few definitions: First,
we define a pointed word (denoted as w) to be a word with one underlined
letter. We define the output of a pointed word w (with respect to the fixed
local rational semigroup transduction f) to be the i-th letter of f(w), where i
is the index of the underlined letter in w, and w is the word w, but without
the underline. Finally, we define the profile of w to be the following element of
S1×Σ×S1 (remember that S1 is defined in Claim 21 – we use it to handle the
case where the prefix or the suffix is an empty word):

(h(w1) · . . . · h(wi−1), wi, h(wi+1) · . . . · h(wn))

It is easy to see that the output of a pointed word depends entirely on its profile.

Let us now consider an input sequence s1, . . . , sn ∈ Σ∗ equipped with a
smooth factorization tree. Notice that every node of this tree splits the input
sequence into a suffix, an infix, and a prefix:

We say the context of a node is the following pair from S1 × S1:

(product of the prefix, product of the suffix)

Observe that if q is a node that contains the i-th position of the input, then
the i-th position of the output depends entirely on the context of q, and on the
profile of q’s infix with i as the underlined position. Moreover, observe that if
q is a leaf, then its infix consists of a single letter si, whose profile is equal to
(1, si, 1). This means that the i-th output letter depends only on si and on
the context of the i-th leaf. This means that if we were able to use compositions
of primes to compute the context of every node (or even every leaf), then we
would also be able to compute the output word. Unfortunately, compositions
of rational primes are unable to compute all contexts. The reason for this is
analogous to the reason why compositions of left-to-right primes cannot compute
the products of all prefixes (see Example 33). Instead, we define the reduced
context of a node which is an analogue of the core ancestor subsequences from
Definition 29. We start the definition by formulating an analogue of Claim 35.
(We skip the proof, as it is analogous to Claim 35.)
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Claim 44. There is a composition of rational primes that equips every smooth
sequence s1, . . . , sn ∈ Σ∗ with the (representations) of xi, yu,−→gi ,←−gi , such that:

1. the values xi, yi are a decomposition of si, i.e. xi · yi = si;

2. the values x1,
−→gi , yi can be used to compute the i-th prefix, i.e.

x1 · −→gi · yi = s1 · . . . si

3. the values yi,←−gi , xn can be used to compute the i-th suffix, i.e.

xi · ←−gi · yn = si · . . . sn

4. all −→gi s and ←−gi s are pairwise H-equivalent;

5. −→g1 =←−gn and they are both idempotent;

6. all xi’s are suffix-equivalent to −→g1 = ←−gn, and all yi’s are prefix-equivalent
to −→g1 =←−gn.

7. for all i > 1, it holds that −→gi = −−→gi−1 · (yi−1 · xi), and for all i < n, it holds
that ←−gi = (yi · xi+1) · ←−−gi+1.

Note the claim talks about finitely supported primes and not about equiv-
ariant primes. However, we do not have to worry about that, because in the end
we will be able to remove the unnecessary atoms from our construction, using
Lemma 61 (which can be easily extended to compositions of rational primes).
We are now ready to define reduced contexts:

Definition 35. The reduced context (denoted as ctx(q)) of a node q is defined
as follows:

1. If q is the root of the tree, then its reduced context is empty.

2. If q is a child of a unary node r, then its reduced context is equal to the
reduced context of r.

3. If q is a child of a binary node r, and q′ is its sibling then the reduced
context of q is equal to (ctx(r), vq′), where vq′ is the value of the node q′.

4. If q is the first child of a smooth node r, whose children are q1, . . . , qn (i.e.
q = q1), then its reduced context t contains the reduced context of r, and
the (smooth) product of the rest of its sibling values, i.e.:

(ctx(r), vq2 · . . . · vqn)

If q is the last child of a smooth node r, then the context of q is defined
analogously.
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5. If q is an inner child of a smooth node r, whose children are q1, . . . , qn,
i.e. q = qi for some 1 < i < n, then its reduced context is equal to the
following tuple:

orbe(x1, yn, ctx(r)), −−→gi−1, yi−1,
←−−gi+1, xi+1,

where x, y,−→g ,←−g are the values defined by Claim 44 for the smooth se-
quence vq1 , . . . , vqn , and e is the only idempotent that is H-equivalent to
−→gi . (As explained in the proof of Lemma 59, each H-class has at most one
idempotent, which means that e is well-defined.)

Moreover, the reduced context remembers to which one of those cases q belongs.
This means that we can represent the reduced context of a node at depth k,
using the polynomial orbit-finite set Ck, defined recursively: C0 is the singleton
set and Ck+1 is the following disjoint sum:

Ck︸︷︷︸
child of a
unary node

+ Ck × Σ︸ ︷︷ ︸
left child of a
binary node

+ Ck × Σ︸ ︷︷ ︸
right child of a
binary node

+ Ck × Σ︸ ︷︷ ︸
first child of a
smooth node

+ Ck × Σ︸ ︷︷ ︸
last child of a
smooth node

+ orbd(Σ2 × Ck)× Σ4︸ ︷︷ ︸
inner child of a
smooth node

(where d=dim(Σ))

/

Let us now show that the reduced context of a node and the profile of the
infix is enough information to calculate the output letter (this is an analogue of
Lemma 64):

Lemma 74. Let w and w′ be two pointed words, let T and T ′ be smooth fac-
torization trees for w and w′ (without the underlines), and let q and q′ be nodes
of T and T ′, such that:

1. the underlined positions in w and w′ belong respectively to the infix of q
and to the infix of q′;

2. the infix profile of q is equal to the infix profile of q′;

3. the reduced context of q is equal to the reduced context of q′.

Then the output letter of w is equal to the output letter of w′.

Proof. The proof is very similar to the proof of Lemma 64. It is an induction
on the depth of q and q′ (note that if ctx(q) = ctx(q′), then q and q′ have equal
depths). The induction base is trivial: We know that q and q are roots of T and
T ′. It follows that the infix profile of q is equal to the profile of w and the infix
profile of q′ is equal to the profile of w′. By assumption, the infix profiles of q
and q′ are equal, which means that the profiles w and w′ are equal as well. This
finishes the proof, because the output letter of a pointed word depends entirely
on its profile.

For the induction step, we only deal with the most interesting case, which
is when q is an inner node of a smooth node (other cases are immediate). We
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start by introducing some notation: Let r, q1, . . . , qi, . . . qn, and e be as in the
definition of ctx(q) (in particular this means that q = qi and that r is the parent
of q). Let (p1, a, s1) be the infix profile of q, let (s3, p3) be the context of r,
and let p2 and s2 be defined as follows:

p2 = v1 · . . . · vi−1 s2 = vi+1 · . . . · vn,

where vi denotes the tree value of the node qi. Finally, let Z be an incomplete
tree obtained by cutting out r’s subtree from T . Here is a sketch:

Observe that q′ is an inner node of a smooth node as well – this is because
ctx(q) = ctx(q′). It follows that we can introduce the same notation for T ′, i.e.
we define r′, q′1, . . . , q′n′ , p

′
1, p
′
2, p
′
3, a
′, s′3, s

′
2, s
′
1 and Z ′ analogously as for T . By

assumption, we know that infix profiles of q and q′ are equal, which means that
p1 = p′1, a = a′, and s1 = s′1. Moreover, since ctx(q) = ctx(q′), we also know
that:

1. −−→gi−1 = −−→gi′−1
′ and yi−1 = y′i′−1;

2. ←−−gi+1 =←−−gi′+1
′ and xi+1 = x′i′+1;

3. orbe(x1, yn, ctx(r)) = orbe′(x′1, y′n′ , ctx(r′)).

Since −−→gi−1 = −−→gi′−1
′, we know that e = e′, which (by Item 3) means that

there exist a supp(e)-permutation π such that π(x1) = x′1, π(yn) = y′n′ and
π(ctx(r)) = ctx(r′). Let us use this π to construct an intermediate tree T ′′ with
an underlined element, and us prove that both the output of T and the output
of T ′ are equal to the output of T ′′. We obtain T ′′ by taking T and replacing Z
with π(Z), replacing the node q1 with a node whose value is equal to π(x1) · y1

(it can be a leaf combined with unary nodes to keep the heights aligned), and
replacing qn with a node whose value is equal to xn · π(yn). Here is a sketch of
T ′′:
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As noted in the sketch, it holds by construction of T ′′ that p′′1 = p1, s′′1 = s1,
a′′ = a, p′′3 = π(p3), and s′′3 = π(s3). We are now left with showing that (a)
T ′′ is a valid smooth decomposition tree, (b) the output of T ′ is equal to the
output of T ′′ and that (c) the output of T is equal to the output of T ′′.

Let us first prove that T ′′ is a valid smooth factorization tree. It suffices
to show that vr′′ = π(vr), which means that it fits to π(Z), and that r′′ is a
smooth node. Let us with vr′′ = π(vr). Observe that, by construction of T ′′:

vr′′ = π(x1) · y1 · v2 · . . . · vn−1 · xn · π(yn).

By Claim 44, it follows that:

vr′′ = π(x1) · −→gn · π(yn)

By Claim 59, we know that supp(−→gn) = supp(e), which means that π(−→gn) = −→gn
(as π is a supp(e)-permutation). It follows that:

vr′′ = π(x1) · π(−→gn) · π(yn) = π(x1 · −→gn · yn) = π(vr)

Now, to show that r′′ is a smooth node, it suffices to show that the following
product is smooth:

π(x1) · y1 · v2 · . . . · vn−1 · xn · π(yn).

We have already shown that the value of this product is equal to π(vr), which,
thanks to the smoothness of r, belongs to the J -class of π(e) = e. According
to Claim 44, π(x1), y1, xn and π(yn) also belong to the J -class of π(e) = e.
Thanks to the smoothness of r, we know that each vj also belongs to this J -
class. It follows that the product is smooth.
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Now, let show that the output T ′ is equal to the output of T ′′. For this
we use the induction assumption for r′ and r′′. This means that we need to
show that the infix profile of r′ is equal to the infix profile of r′′, and that
ctx(r′) = ctx(r′′). First, observe that ctx(r′′) = π(ctx(r)). This is because the
reduced context of both r′′ and r depends entirely on the Z-part of the tree,
and this dependence is easily seen to be equivariant. We have chosen π, so that
π(ctx(r)) = ctx(r′), which means that ctx(r′′) = ctx(r′). Now, let us show that
the infix profiles of r′ and r′′ are equal, i.e. that:

(p′′2 · p1, a, s1 · s′′2) = (p′2 · p1, a, s1 · s′2)

It suffices to show that p′′2 = p′2 (the proof for s′′2 = s′2 is analogous). Notice that
p′′2 = π(x1) ·y1 ·vq2 · . . . ·vqi−1 . By Claim 44 it follows that p′′2 = π(x1) ·−−→gi−1 ·yi−1.
By assumption, we know that π(x1) = x′1,

−−→gi−1 = −−→gi′−1
′, and yi−1 = y′i′−1. It

follows that p′′2 = x′1 · −−→gi′−1
′ · y′i′−1, which by Claim 44 means that p′′2 = p′2.

Finally, let us show that the output of T is equal to the output of T ′′. We
do this by directly showing that:

λ(p3 · p2 · p1, a, s1 · s2 · s3) = λ(π(p3) · p′′2 · p1, a, s1 · s′′2 · π(s3))

We define c1 = p3 ·x1 and b1 = y1 · vq2 · . . . vqi−1
· p1 (and analogously for c2 and

b2). This means that p3 · p2 · p1 = c1 · b1 and π(p3) · p′′2 · p1 = π(c1) · b1 (and
analogously for b2, c2 and the s-values). This leaves us with showing that:

λ(c1 · b1, a, b2 · c2) = λ(π(c1) · b1, a, b2 · π(c2))

Observe that that c1 · e = c1 – this is because e is an idempotent that is a suffix
of x1, which is a suffix of c1 – and that π(c1) · e = π(c1), as π is a supp(e)-
permutation. (And analogously for c2.) This means that it is enough to show
that:

λ(c1 · e · b1, a, b2 · e · c2) = λ(π(c1) · e · b1, a, b2 · e · π(c2))

This resembles the locality equation for λ, but we do not know if c1ac2 = e
(in fact, this might not be true). However, it is not hard to see that c1ac2 is
H-equivalent to e. We finish the proof, by showing that this is enough to apply
the locality equation:

Claim 45. If λ satisfies the locality equation, then for every idempotent e, for
every supp(e)-permutation π, and for all a, b1, b2, c1, c2, a, such that b1ab2 is
H-equivalent to e, it holds that:

λ(c1 · e · b1, a, b2 · e · c2) = λ(π(c1) · e · b1, a, b2 · e · π(c2))

Proof. Let g := b1ab2. By assumption, we know that g is H-equivalent to e. By
[Pin10, Proposition 1.13], we know that the H-class of e is a subgroup of S, and
that e is the identity element of this subgroup. This means that there exists a
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g−1 (also H-equivalent to e) such that g−1 · g = g · g−1 = e. Define c′1 := c1g,
and b′1 := g−1b1. Observe that c′1 · e · b′1 = c1 · e · b1, which means that:

λ(c1 · e · b1, a, b2 · e · c2) = λ(c′1 · e · b′1, a, b2 · e · c2)

We know that b′1 · a · b2 = g−1 · g = e, which means that we can use the locality
equation:

λ(c′1 · e · b′1, a, b2 · e · c2) = λ(π(c′1) · e · b′1, a, b2 · e · π(c2))

By Lemma 59, we know that supp(g) = supp(e). It follows that π(c′1) = π(c1)·g,
which leads to π(c′1) · e · b′1 = π(c1) · e · b1. Thus, we have:

λ(π(c′1) · e · b′1, a, b2 · e · π(c2)) = λ(π(c1) · e · b1, a, b2 · e · π(c2))

This completes the proof of the claim.

At this point, it is not hard to show how to construct the output of the local
rational semigroup transduction. First, we notice that, thanks to Lemma 74, it
is not hard to show the following analogue of Claim 38:

Claim 46. Let wi be the ith input letter, and let li be the i-th leaf. There
exists an equivariant function, that transforms every pair (wi, ctx(li)) into the
i-th output letter of the local rational semigroup transduction.

Proof. Once, we notice that the infix profile of li is equal to (1, wi, 1), the claim
follows from Lemma 74, in the same way as Claim 38 follows from Lemma 64.

This finishes the construction, because by reasoning very similar to the proof
of Lemma 65, we can show that we can use compositions of rational prime
functions to construct ctx(q) in each node of a smooth factorization tree.

3.7.1.2 Compositions of rational primes ⊆ Local rational transduc-
tions

In this section, we show that every function f : Σ∗ → Γ∗ that can be constructed
as a composition of single-use rational primes, can be implemented as a rational
semigroup transduction. The proof goes by induction on the construction of
f as a composition of primes. However, in order to simplify the proof, we
introduce an alternative way of constructing compositions of primes, that only
uses sequential composition:

Claim 47. Let P be a set of prime functions that contains all length-preserving
homomorphisms – for example, P could be the set of single-use rational primes.
It follows that every word-to-word function can be constructed as a (×, ◦)-composition
of primes from P , if and only if it can be constructed as a (◦)-composition of
letter-to-letter homomorphisms and functions of the form p× id, where p ∈ P .
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Proof. Let P ′ be the extended set of primes. The (⇐)-implication is easy: it
suffices to notice that every function in P ′ is a (×, ◦)-composition of primes.
The proof of the (⇒)-implication uses the following equality to push down the
(×)-compositions:

(f × g) = (f × id) ◦ (id× f)

Formally, the proof goes by induction on the construction of f as a (◦,×)-
composition of primes from P :

1. The induction base is trivial: if f is equal to a p ∈ P , it can be constructed
as follows:

leftI−1∗ ◦ (p× id) ◦ leftI∗,
where leftI is the function Σ→ Σ× 1.

2. The case where f is a composition f = g ◦ h is also simple. By induction,
we know that:

g = gn ◦ . . . ◦ g1 h = hm ◦ . . . ◦ h1,

where all gi’s and hi’s belong to P ′. This means that we can construct f
in the following way:

f = gn ◦ . . . ◦ g1 ◦ hm ◦ . . . ◦ h1

3. Finally, the most interesting case is where f = g×h. Again, by induction
assumption, we know that:

g = gn ◦ . . . ◦ g1 h = hm ◦ . . . ◦ h1,

It follows that:

f = (gn◦. . .◦g1)×(hm◦. . . h1) = (gn×id)◦. . .◦(g1×id)◦(id×hm)◦. . .◦(id×h1)

This leaves us with showing that for every p ∈ P ′ functions p×id and id×p
are (◦)-compositions of functions from P ′. We only show this for p× id,
as the proof for id×p is analogous. There are two cases to consider: If p is
a letter-to-letter homomorphism then, so is p× id. If, on the other hand,
p is of the form p′ × idΣ∗ , where p′ ∈ P , then p× id = (p′ × idΣ)× idΓ,
which is almost the same as p′ × idΣ×Γ ∈ P ′. This finishes the proof, as
we can fix this slight type mismatch using (◦)-compositions with assoc∗

and assoc−1∗.

This leaves us with translating (◦)-compositions of the extended primes into
local rational semigroup transductions:

Lemma 75. Let p1, . . . , pn be a sequence of extended single-use rational primes
(i.e. every pi is either a letter-to-letter homomorphism or a p′× id, where p′ is
a single-use rational prime). It follows that the composition pn ◦ . . . ◦ p1 can be
expressed as a local rational semigroup transduction.
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The remaining part of this section is dedicated to proving Lemma 75: The
proof goes by induction on n. The induction base is trivial – if n = 0 then
the composition of primes is equal to id∗ : Σ∗ → Σ∗. For the induction step,
it suffices to show that local rational semigroup transductions are closed under
pre-compositions23 with extended single-use rational prime functions. We start
with the length-preserving homomorphisms:

Claim 48. Let f : Γ∗ → ∆∗ be defined by some local rational semigroup trans-
duction, and let g : Σ →eq Γ be an equivariant function over orbit-finite sets.
It follows that the following composition can also be defined by a local rational
semigroup transduction:

Σ∗
g∗−→ Γ∗

f−→ ∆∗

Proof. If f is recognized by (S, h, λ), then f ◦g∗ is recognized by (S, h◦g, λ).

Next, we show that local rational semigroup transductions are closed under
pre-composition with single-use left-to-right atom propagation – the right-to-left
variant of the proof is analogous.

Claim 49. Let f : ((A + ε) × Σ)∗ → Γ∗ be defined by some local rational
semigroup transduction. It follows that the following composition can also be
defined by a local rational semigroup transduction:

((A + {↓, ε})× Σ)∗
−−−−−→su-prop × id
−−−−−−−−−→ ((A + ε)× Σ)∗

f−→ Γ∗

Proof. Let (S, h, λ) be a local rational semigroup transduction that defines f .
We show how to construct (S′, h′, λ′) that defines f ◦ (f−−−−−→su-prop × id). First, let
us analyse how f−−−−−→su-prop × id modifies an input infix. Here is an example:

Since we do not know the prefix, we cannot exactly predict the output of
f−−−−−→su-prop × id on the infix. (Observe that the unknown suffix does not influence
the output on the infix.) We can, however, predict almost all of the output
letters:

23Showing this for post-compositions would be an equally valid proof strategy, but pre-
compositions seem to be more compatible with local rational semigroup transductions. We
are going to see a similar reasoning in Chapter 4 where, depending on the model, we are going
to use either pre- or post-compositions.
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Since we do not know all output letters, we cannot exactly compute the
product of their h-values. We can, however, use the product of the h-values to
compress the information about the infix:

Observe that s1 and s2 come from S1 (defined in Claim 21) – this is because
both the prefix before the first ↓ and the suffix after the first ↓ might be empty.
Moreover, in the general case, the last non-ε letter might be ↓ – in this case the
value propagated into the suffix is going to be ⊥. It is also possible that the
first non-ε value is not a ↓, or that the input word contains only ε’s. In order to
account for all those cases, we represent the compressed information about an
infix as an element of the following set:

S′ = S1 × Σ× S1 × (A +⊥)︸ ︷︷ ︸
An infix whose first non-ε

is equal to ↓

+ S × (A +⊥)︸ ︷︷ ︸
An infix whose first non-ε

is an element of A

+ S︸︷︷︸
An infix that

only contains ε’s

It is not hard to see that this compression is compositional – i.e. the compressed
information about w1w2 depends only on the compressed information about
w1 and the compressed information about w2. It follows by (the semigroup
version of) the proof of Lemma 41 that this compression operation induces
a semigroup structure on S′. Moreover, since both S and Σ are orbit-finite,
it follows that S′ is orbit-finite as well. It follows that we can use S′ as the
underlying semigroup for the rational semigroup transduction for f−−−−−→su-prop × id.
This leaves with defining h′ and λ′. We define h′ to be the compression function.
For λ′ we are going to need a couple of auxiliary functions. We start with feed:

feed : (A +⊥)︸ ︷︷ ︸
Value propagated
from the prefix

× S′︸︷︷︸
The compressed information

about the infix

→ S︸︷︷︸
The product of the h-values

on the infix after applying f−−−−−→su-prop
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It is not hard to see that the function feed can be computed using the following
formula:

feed(v, (s1, x, s2, a)) = s1h
(
v
x

)
s2 feed(v, (s, a)) = s feed(v, s) = s

Now, we define the function get : S′ → (A + ⊥) that computes the atom
propagated by the infix:

get(s1, x, s2, a) = a get(s, a) = a get(s) = ⊥

Now, we can use feed, get, and the original output function λ, to define λ′ that
computes the output letter for w1

(
y
x

)
w2 with respect to f ◦ (f−−−−−→su-prop × id):

λ′
(
p′,

(
↓
x

)
, s′
)

= λ

(
feed(⊥, p′),

(
get(p′)

x

)
, feed(⊥, s′)

)

λ′
(
p′,

(
ε

x

)
, s′
)

= λ

(
feed(⊥, p′),

(
ε

x

)
, feed(get(p′), s′)

)
λ′
(
p′,

(
a ∈ A
x

)
, s′
)

= λ

(
feed(⊥, p′),

(
ε

x

)
, feed(a, s′)

)
It is not hard to see that this λ′ is equivariant, and that (S′, h′, λ′) defines f ◦
(f−−−−−→su-prop×id). This leaves us showing that λ′ is local: Let us take x1, x2, y1, y2, e ∈
S′, a ∈ (A + {↓, ε})× Σ, and a supp(e)-permutation π, such that e is an idem-
potent, and y1h

′(a)y2 = e, and let us show that:

λ′(x1ey1, a, y2ex2) = λ′(π(x1) ey1, a, y2eπ(x2))

For this, we consider two cases:

First, we consider the case where e contains only ε’s, i.e. e ∈ S (see the
definition of S′). Since y1h

′(a)y2 = e, it follows that also y1, a, and y2 contain
only ε’s – i.e. y1, y2 ∈ S and a is of the form

(
ε
a

)
(for some a ∈ Σ). By definition

of S′ and λ′, it follows that:

λ′(x1ey1,

(
ε

a

)
, y2ex2) = λ(feed(⊥, x1) · e · y1,

(
ε

a

)
, y2 · e · feed(get(x1), x2))

Observe that (by definition of S′), e is an idempotent as an element of S, and
also in S it holds that y1h

(
ε
a

)
y2 = e. This means that we can use the locality of

λ to transform the right-hand side of the equality further into:

λ(π(feed(⊥, x1)) · e · y1,

(
ε

a

)
, y2 · e · π(feed(get(x1), x2)))

By equivariance of feed and set, we know that this is equal to:

λ(feed(⊥, π(x1)) · e · y1,

(
ε

a

)
, y2 · e · feed(get(π(x1)), π(x2))),
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which by definition of S′ and λ′ is equal to:

λ′(π(x1)ey1,

(
ε

a

)
, y2eπ(x2))

This finishes the proof for the first case.

In the second case, we assume the complement of the first case, i.e. that e
contains at least one ↓ or an element of A. In this case a could be of any form:(
ε
a

)
,
(↓
a

)
, or

(
b∈A
a

)
. All of those cases are analogous, so we only show how to deal

with the most interesting case, which is
(↓
a

)
. First, we notice that since e is an

idempotent, we have that λ′(x1ey1,
(↓
a

)
, y2ex2) = λ′(x1eey1,

(↓
a

)
, y2ex2). Then,

we use the definition of S′ and λ′ to unfold the right-hand side in the following
way:

λ

(
f(⊥, x1) · f(x1, e) · f(e, e) · f(e, y1),

(
get(ey1)

a

)
, f(⊥, y2) · f(y2, e) · f(e, x2)

)
,

where f(x1, e) is a notational shortcut for feed(get(x1), e). Now, let us observe
that (by definition of S′), feed(e, e) is an idempotent in S:

feed(e, e) · feed(e, e) = feed(e, e · e) = feed(e, e)

Moreover, since y1h
′(↓
a

)
y2 = e, we know that feed(y2, e) = feed(e, e), and that

feed(e, y1) · h
(
get(ey1)

a

)
· feed(⊥, y2) = feed(e, e)

Finally, we observe that by Lemma 3, it holds that supp(feed(e, e)) ⊆ (supp(e)),
which means that π is a supp(feed(e, e))-permutation. It follows that we can
apply the locality equation obtaining:

λ

(
π (f(⊥, x1) · f(x1, e)) · f(e, e) · f(e, y1),

(
get(ey1)

a

)
, f(⊥, y2) · f(y2, e) · π(f(e, x2))

)
By definition of S′ and λ′ this is equal to λ(π(x1)eey1,

(↓
a

)
, y2eπ(x2)), which is

in turn equal to λ′(π(x1)ey1,
(↓
a

)
, y2eπ(x2)). It follows that λ′ is local.

Finally, we show that local rational prime functions are closed under pre-
compositions with left-to-right multiple-use bit propagation and with group-
prefix functions (left-to-right propagation and group-suffix functions can be
handled analogously). We can deal with both of those cases by proving the
following claim:

Claim 50. Let A : Σ∗1 → Σ∗2 be a Mealy machine over finite (and not only orbit-
finite) alphabets, let Γ,∆ be orbit-finite alphabets, and let f : (Σ2×Γ)∗ → ∆∗ be
a local rational semigroup transduction. It follows that the following composition
is a local rational semigroup transduction as well:

f ◦ (A× id) : (Σ1 × Γ)∗ → ∆∗
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Proof. By Lemma 45, we know that A is equivalent to some finite semigroup
transduction (see Definition 18), which means that it can be expressed as
λ∗1 ◦ fS1-pref ◦ h∗1, where fS1-pref is the semigroup prefix function for some finite
(and not only orbit-finite) semigroup S1. Since, by Claim 48, we already know
that local rational semigroup transductions are closed under pre-compositions
with homomorphisms, it suffices to show how to construct f ◦ (fS1-pref × id) as
a local rational semigroup transduction:

Let (S2, h2, λ2) be a local rational semigroup transduction for f . We show
how construct a local rational semigroup construction for f ◦ (fS1-pref × id),
using the classical wreath product construction for finite semigroups24. First,
let us analyse how fS1-pref × id modifies an input infix. Here is an example:

In order to compute the output of fS1-pref×id, it suffices to know the S1-product
of the prefix. For example:

At this point, we can apply h2 to every letter, and compute the S2 product of
the infix. In general, this can be represented as a function of the following type:

S1
1︸︷︷︸

Given the S1-value of a prefix
(which might be empty) . . .

→ S2︸︷︷︸
. . . what is the

S2-value of the infix
after applying fS1−pref and h∗2

In order to obtain compositionality, we also need to remember the S1-value of
the infix. In total, we compress the information about each infix into an element
of the following set:

S3 = S1︸︷︷︸
S1-product
of the prefix

× (S1
1 → S2)︸ ︷︷ ︸

The function
explained above

The key observation is that since S1 is finite (and not only orbit-finite), we know
that S1 → S2 is orbit-finite, as it is isomorphic to a finite power S|S1|

2 . This
24See [KR65, Definition 1.7].
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procedure of compressing is compositional, which (as explained in Lemma 41)
imposes a semigroup product on S3. The explicit formula for this product looks
as follows:

(x,X) · (y, Y ) = (xy, p 7→ X(p) · Y (px))

The intuition behind this formula is that p is the S1-product of the X’s prefix,
and px is the S1-product of the Y ’s prefix (as Y ’s prefix also includes x). This
is a well-studied construction called the wreath product of S1 and S2 sometimes
denoted25 as S3 = S2 o S1. We use S3 as the underlying semigroup for the
local rational semigroup transduction for f ◦ (fS1-pref× id). The input function
h3 : S1 × Γ→ S3 is given by the following formula:

h3(s, a) = (s, p 7→ h2(ps, a)),

and the output function λ3 : S1
3 × (S1 × Γ)× S1

3 → ∆, is given by the following
formula:

λ3((x,X), (s, a), (y, Y )) = λ2(X(1), (xs, a), Y (xs))

The intuition behind this formula for λ3 is that after applying fS1−pref to the
input word, the S2-product of the h2-values of the prefix is equal to X(1), the
current letter is equal to (xs, a), and the S2-product of the h2-values of the suffix
is equal to Y (xs). Thanks to this intuition, it is not hard to see that (S3, h3, λ3)
implements f ◦ (fS1-pref × id).

This leaves us with showing that λ3 is local. For this we take (x1, X1),
(x2, X2), (y1, Y1), (y2, Y2), (e, E) ∈ S3, (s, a) ∈ S1 × Γ and a supp((e, E))-
permutation π such that (e, E) is an idempotent, and (y1, Y1)·h3(s, a)·(y2, Y2) =
(e, E), and we show that:

λ3((x1, X1)(e, E)(y1, Y1), (s, a), (y1, Y1)(e, E)(x1, X1)

=

λ3(π((x1, X1))(e, E)(y1, Y1), (s, a), (y2, Y2)(e, E) π((x2, X2)

First, since (e, E) is an idempotent, we can transform the initial expression into:

λ3((x1, X1)(e, E)(e, E)(y1, Y1), (s, a), (y1, Y1)(e, E)(x1, X1))

Then, using the definition of λ3 and of the product in S3, we transform it into:

λ2(X1(1)·E(x1)·E(x1e)·Y1(x1ee), (x1eey1s, a), Y2(x1eey1s)·E(x1eey1sy2)·X2(x1eey1sy2e))

Now, we observe that since (e, E) is an idempotent in S3, we know that e is an
idempotent in s1, and that since (y1, Y1) · h3(s, a) · (y2, Y2) = (e, E), we know
that y1sy2 = e. Thanks to this observation, we can transform our expression
into:

λ2(X1(1) · E(x1) · E(x1e) · Y1(x1e), (x1ey1s, a), Y2(x1ey1s) · E(x1e) ·X2(x1e))

25In [KR65] this is denoted as S3 = S2wS1.
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At this point, we would like to apply the locality equation for λ2. For this, we
need to show proof all of its assumptions. First, we observe that since (e, E) is
an idempotent, we know that:

(e, E) = (e, E)(e, E) = (ee, p 7→ E(p) · E(pe))

In particular, this means that E(p) = E(p) · E(pe) for every p ∈ S1
1 . If we

take p = x1e, we obtain that E(x1e) = E(x1e)E(x1ee) = E(x1e)E(x1e), which
means that E(x1e) is an idempotent. Next, by a similar reasoning, we observe
that since (y1, Y1) · h3(s, a) · (y2, Y2) = (e, E), we know that for all p, it holds
that:

Y1(p) · h2(py1s, a) · Y2(py1s) = E(p)

If we take p = x1e, we get that:

Y1(x1e) · h2(x1ey1s, a) · Y2(x1ey1s) = E(x1e)

Finally, we notice that S1 is atomless (this is because every equivariant set that
is both finite and orbit-finite has to be atomless). This means that both x1 and
e have empty supports, which means that π is a supp(E(x1e))-permutation, as
by Lemma 3 it holds that supp(E(x1e)) ⊆ supp(E). It follows that we can
apply the locality equation, obtaining:

λ2(π(X1(1)·E(x1))·E(x1e)·Y1(x1e), (x1ey1s, a), Y2(x1ey1s)·E(x1e)π(X2(x1e)))

Observe now that since x1 is atomless (i.e. equivariant), we know that π(x1) =
x1, and since π is a supp(e, E)-permutation, we know that π(E) = E. This
means that (after unfolding some of the e’s back to y1sy2 or to ee) we can fold
the definitions of λ3 and of the product in S3, obtaining:

λ3(π(x1, X1)(e, E)(e, E)(y1, Y1), (s, a), (y2, Y2)(e, E)π(x2, X2))

After folding (e, E)(e, E) back to (e, E), we conclude that λ3 is local.
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Chapter 4

Two-way transductions with
atoms

In this chapter, we define and study the class of word-to-word functions rec-
ognized by single-use two-way transducers. Our main result is Theorem 15,
which states that this class of transductions admits three more equivalent def-
initions: copyless streaming string transducers with atoms, regular list func-
tions with atoms, and compositions of single-use two-way primes. Furthermore,
we show that single-use two-way transducers (and their equivalent models) are
closed under compositions and have decidable equivalence.

In my opinion, these results demonstrate that single-use models are better
behaved than their multiple-use counterparts: Two-way multiple-use register
automata lack decidable equivalence (see Theorem 3), and copyless streaming
string transducers with multiple-use registers are not closed under composition
(see [AČ11, Proposition 4]). I believe that for this reason, the class of function
defined by single-use two-way transducers deserves the name of regular trans-
ductions with atoms.

This chapter, along with the four models it introduces, is based on [BS20]
(specifically, on [BS20, Theorems 13 and 14]). However, the presentation of
the models and the results is new and, hopefully, improved. The new approach
builds upon the idea of single-use functions from Chapter 2, and uses Theorem 14
from Chapter 3.

4.1 Definitions
We use this section to formulate and briefly discuss the four equivalent defini-
tions of regular transductions with atoms:
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4.1.1 Single-use two-way transducers
A single-use two-way transducer is a single-use two-way automaton with output.
We have already seen all the building blocks of the definition – we simply need
to combine them:

Definition 36. A single-use two-way transducer consists of:

1. A polynomial orbit-finite input alphabet Σ and a polynomial orbit-finite
output alphabet Γ;

2. A polynomial orbit-finite set of states Q;

3. An equivariant initial state q0 ∈ Q;

4. A single-use transition function:

δ : Σ + {`,a}︸ ︷︷ ︸
current letter, or an
end-of-word marker

→eq

 Q︸︷︷︸
current
state

( Q︸︷︷︸
new
state

× (Γ + ε)︸ ︷︷ ︸
output
letter

× {←,→}︸ ︷︷ ︸
which way

to go

+ finish︸ ︷︷ ︸
or finish
the run


A single-use two-way transducer defines the following function Σ∗ → Γ∗:

Given an input word w ∈ Σ∗, we equip it with end-of-word markers obtaining
` w a, and we place the transducer’s head at the first letter of w in the initial
state q0. Then, we start applying the transition function, feeding it with the
transducer’s state and with the input letter seen by the transducer’s head, and
using its output to update the transducer’s state and move the transducer’s
head. We continue this process until1 the transition function returns finish,
at which point we construct the output word as the concatenation of all output
letters produced by the transition function (excluding ε’s). /

Example 41. Consider the following map duplicate function, which duplicates
every #-separated block:

fmap-dup : (A + #)∗ → (A + #)∗

For example:

fmap-dup(1 2 3 # 5 7 # 1 2) = 1 2 3 1 2 3 # 5 7 5 7 # 1 2 1 2

Here is an example2 of a single-use two-way transducer that implements fmap-dup:
1There is the usual problem with looping – a looping transducer will never finish the run,

which could mean that it defines a partial function. The simplest way to fix this is to require
that the transducers do not loop. However, it would not make any difference if we assumed
instead that the output of a looping run is the empty word, or even if we agreed that the
two-way transductions are partial functions.

2Observe that this transducer only uses finitely many states. Since this is the only example
of a single-use two-way transducer presented in this thesis, it is worth pointing out that single-
use two-way are allowed to use polynomial orbit finite set of states.
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And here is an example run of this transducer:

/

4.1.2 Single-use streaming string transducers with atoms
Single-use streaming string transducers with atoms are a variant of copyless
streaming string transducers. The original model was simultaneously defined in
[AČ11, Section 2.2] and in [AČe10, Section 3] (the papers cite one another). In-
terestingly, the two papers provide different definitions: [AČ11] defines stream-
ing string transducers as a model over infinite alphabets (using multiple-use
atom registers, in style of [KF94]), while [AČe10] limits the definition to finite
alphabets. One of the main results of [AČe10] is [AČe10, Theorem 3], which
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states that the finite-alphabet version of coplyless streaming string transduc-
ers is equivalent to MSO-transductions. As MSO-transductions are equivalent
to two-way transducers, it follows that coplyless streaming string transducers
benefit from the robustness of regular transductions over finite alphabets. In
particular, they are closed under compositions and have decidable equivalence.
On the other hand, the infinite-alphabet version from [AČ11] retains only some
of those properties – it has decidable equivalence ([AČ11, Theorem 12]), but
it is not closed under compositions ([AČ11, Proposition 4]). Possibly for this
reason the finite-alphabet version from [AČe10] is much more prevalent in the
literature.

Before defining single-use string streaming transducers with atoms, let us
discuss its finite-alphabet version3. We start by an informal description (to be
followed by a formal definition): The copyless streaming string transducer is a
variant of a one-way automaton, which constructs its output using a finite num-
ber of string registers over the output alphabet. It can concatenate its registers
(e.g. r1 := r2 · r3), but the copyless restriction requires that this operation de-
stroys the contents of the concatenated registers (i.e. r2 and r3 in the example),
by overriding them with ε. Observe the analogy between the copyless and the
single-use restrictions. A streaming string transducer is not allowed to query its
registers (unlike the register automaton from Section 1.1).

Here is an example of a copyless streaming string transducer that imple-
ments the finite-alphabet version of fmap-dup from Example 41 over the alpha-
bet {a, b,#}. It has only one state, and three registers: current1, current2,
and output (due to the copyless restriction the transducer has to maintain two
copies of the current block: current1 and current2):

3As mentioned before, the model was originally defined in [AČe10, Section 3]. However,
our presentation differs slightly from the original one, as we want to maintain consistency
with the previous chapters of this thesis.
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For the formal definition, we are going to use a variant of the single-use
function (from Definition 7). First, let us define the class of polynomial Γ∗-
register sets (over a finite output alphabet Γ) to be the smallest class closed
under + and × that contains the following sets:

1︸︷︷︸
Singleton set

Γ∗︸︷︷︸
Contents of a
string register

Next, let us define the class of single-use functions over polynomial Γ∗-
register sets to be the smallest class of functions closed under the combinators
from Definition 7 (i.e. ◦, ×, and +), that contains all the basic functions from
Definition 7 except the functions about A, and all the following basic functions
about Γ∗:

Functions about Γ∗

concat : Γ∗ × Γ∗ → Γ∗

singleton : Γ→ Γ∗

constε : 1→ Γ∗

(In the type of singleton, we use the fact that since Γ is finite, it can be rep-
resented as the following polynomial Γ∗-register set: 1 + . . .+ 1).

Example 42. Consider the following function f : {a, b} × (Γ∗)
2 → Γ∗:

f(a, r1, r2) = r1 · r2 f(b, r1, r2) = r2 · r1

This is a single-use function over polynomial Γ∗-register sets, as it can be im-
plemented in the following way (assuming that {a, b} is represented as 1 + 1):

(1 + 1)× (Γ∗)
2 distr−→ (Γ∗)

2
+ (Γ∗)

2 id+sym
−−−−→ (Γ∗)

2
+ (Γ∗)

2 merge−→ (Γ∗)
2 concat−→ Γ∗

/

We denote the set of all single-use functions between two polynomial Γ∗-
register sets as X ( Y . Overloading the notation should not cause any confu-
sion, as it is usually clear from the context whether X and Y are polynomial
Γ∗-register sets or polynomial orbit-finite sets.

We are now ready to give a formal definition of copyless string streaming
transducers for finite alphabets:

Definition 37. A copyless streaming string transducer of type Σ∗ → Γ∗ (where
Σ and Γ are finite sets) consists of:

1. a polynomial Γ∗-register set Q of states;

2. an initial state q0 ∈ Q;

3. a single-use transition function δ : Σ→ (Q( Q); and
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4. an output function λ : Q( Γ∗.

Every coplyless string streaming transducer defines a function Σ∗ → Γ∗: In
order to compute the output for a w ∈ Σ∗, the transducer processes w letter by
letter, updating its state according to the transition function. After processing
the entire w, it computes the output word by applying λ to its final state. /

It is not hard to extend this definition to polynomial orbit-finite alphabets.
First, we define the class of polynomial orbit-finite Γ∗-register sets (where Γ
is a polynomial orbit-finite output alphabet) to be the smallest class of sets
closed under × and +, that contains the sets 1, A, and Γ∗. Then, we define the
class of single-use functions over polynomial orbit-finite Γ∗-register sets to be the
smallest class of functions that is closed under the combinators from Definition 7
(i.e. ◦, × and +), contains all basic functions from Definition 7, and contains
the three basic functions about Γ∗ (i.e. concat, constε, and singleton). Now,
we can define single-use string streaming transducers (for infinite alphabets) in
the same way as in Definition 37:

Definition 38. A single-use streaming string transducer of type Σ∗ → Γ∗

(where Σ and Γ are polynomial orbit-finite sets) consists of:

1. a polynomial orbit-finite Γ∗-register set Q of states;

2. an initial state q0 ∈ Q;

3. a single-use transition function δ : Σ→ (Q( Q); and

4. an output function λ : Q( Γ∗.

A single-use streaming string transducer defines a function Σ∗ →eq Γ∗ in the
same way as a finite streaming string transducer. /

Finally, let us point out that if we extend single-use functions with

copyA : A→ A× A,

we obtain a definition equivalent to the one from [AČ11, Section 2.2]. If we,
instead, include the function:

copyΓ∗ : Γ∗ × Γ∗ → Γ∗,

we obtain copyful streaming string transducers, a model whose finite-alphabet
version is studied in [FR17]. (The main result of the paper is that copyful
streaming string transducers over finite alphabets have decidable equivalence,
see [FR17, Section 3].) Of course, it is also possible to include both copyA and
copyΓ∗ and obtain a version of the transducer that is both multiple use and
copyful, but I was unable to find this variant in the literature.
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4.1.3 Regular list functions with atoms
Regular list functions with atoms are based on regular list functions – a model
for finite alphabets that was introduced in [BDK18]. One of the main results
of the paper is [BDK18, Theorem 6.1], which proves that regular list functions
are equivalent to MSO-transductions. This means that, similarly to two-way
transducers or copyless string streaming transducers, regular list functions (over
finite alphabets) exhibit the robustness of regular transductions.

Extending regular list functions to infinite alphabets is very natural. (In fact,
the extension was already suggested in [BDK18, Section 7].) For this reason, we
proceed directly to the definition of list functions with atoms. It is structurally
similar4 to the definition of single-use functions (i.e. Definition 7):

First, we define polynomial sets with atoms to be the smallest class of sets
that contains 1 and A, and that is closed under ×, +, and X∗ (i.e. lists of finite
length). Here is an example:

((A× A)∗ + A)∗

It is worth pointing out that every polynomial orbit-finite Γ∗-register set (as
defined in Section 4.1.2) is a polynomial set with atoms, but not vice versa.
This is because polynomial sets with atoms treat X∗ as an independent set con-
structor, whereas polynomial orbit-finite Γ∗-register sets only allow lists over
one fixed polynomial orbit-finite Γ.

We are now ready to define regular list functions with atoms:

Definition 39. The class of regular list functions with atoms is the smallest
class of functions that is closed under the combinators from Definition 7 (i.e.
+, ×, and ◦), contains all basic functions from Definition 7, and additionally
is closed under the following combinator map and contains the following basic

4In fact, the current shape of the definition of single-use functions was inspired by [BDK18,
Definition 2.1].
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functions:

The combinator map

X
f
−→ Y

X∗
mapf
−−→ Y ∗

Functions about lists
constε : 1→ X∗ Returns the empty lists
cons : X ×X∗ → X∗ Adds an element to the front of a list.
destruct : X∗ → X ×X∗ + 1 Extracts the head and tail of a list (if possible).
concat : (X∗)

∗ → X∗ Flattens nested lists.
reverse : X∗ → X∗ Reverses the list.
blocks : (X + 1)∗ → (X∗)

∗ Groups elements of X into maximal blocks.
groupG : (X ×G)∗ → (X ×G)∗ Computes group prefixes (see below).

Copying
copyA A→ A× A
copyX∗ X∗ → X∗ ×X∗

The function groupG : (G ×X)∗ → (G ×X)∗ is defined for every finite group
G. It computes group prefixes on the first coordinate and leaves the second
coordinate unchanged:

groupG([(g1, x1), (g2, x2), . . . , (gn, xn)]) = [(g1, x1), (g1·g2, x2), . . . , (g1·. . .·gn, xn)]

Finally, we define regular list transductions to be all regular list functions of
the type Σ∗ → Γ∗, where Σ and Γ are polynomial orbit-finite.

/

It is worth pointing out that if we remove A and related basic functions from
Definition 39, we obtain the original regular list functions from [BDK18].

Observe that regular list functions are a copyful model: They include copyA
and copyX∗ which allow for copying both atoms and lists. Moreover, using
a construction similar to the one from Example 21, one can derive a general
copyX function which works for every polynomial set with atoms X. Despite
that, regular list functions are equivalent to the single-use versions of two-way
transducers and string streaming transducers. Moreover, without the copy func-
tions, regular list functions would become too weak: Without copyA, they would
not be able to simulate multiple-use access to input letters, and without copyX∗ ,
they would not be able to implement the duplicate function (i.e. w 7→ ww). For
this reason, regular list functions are an interesting link between single-use and
multiple-use models that could help us understand the connections between the
two approaches. For finite alphabets, a related line of research has been recently
explored in [Boj23].
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4.1.4 Compositions of single-use two-way primes
In this section we define compositions of single-use two-way primes, which is a
model based on the Krohn-Rhodes decomposition theorems.

Observe that the functions computed by two-way transducers might not
preserve length, so if we want to define an equivalent class of compositions of
primes, we need to include some primes that are not length-preserving. Those
are going to be the fmap-dup function (from Example 41) and letter-to-word
homomorphisms, defined as follows:

Example 43. Let Σ, Γ be polynomial orbit-finite sets, and let f : Σ →eq
Γ∗ be an equivariant function. (Observe that since Σ is orbit-finite and f is
equivariant, it follows the length of words in f(Σ) is bounded.) Define the
letter-to-word homomorphism based on f to be the function f∗ : Σ∗ → Γ∗, that
applies f to every input letter and concatenates the results. For example, if we
take Σ = A +⊥, Γ = A, and f defined as f(a ∈ A) = aa and f(⊥) = ε, then:

f∗(123⊥45⊥⊥) = 1122334455

/

The parallel composition (i.e. ×) only makes sense for length-preserving
functions, which means that we can no longer use it in the definition of com-
position of single-use two-way primes. Instead, we use a similar approach as in
Claim 47, and define compositions of primes only in terms of (◦)-compositions:

Definition 40. We define the compositions of single-use two-way primes, to be
the smallest class of word-to-word functions that is closed under the sequential
composition (i.e. ◦) and contains all the following prime functions:

1. letter-to-word5 homomorphisms, i.e. functions of the form f∗ : Σ∗ → Γ∗,
for every f : Σ →eq Γ∗, where Σ and Γ are polynomial orbit-finite sets
(the function f∗ is defined as a function that applies f to every letter and
concatenates the results);

2. functions of the form p× id∆∗ : (Σ×∆)∗ → (Γ×∆)∗, where p : Σ∗ → Γ∗

is one of the single-use prime functions from Theorem 8 (i.e. the Krohn-
Rhodes decomposition theorem for single-use Mealy machines), and ∆ is
a polynomial-orbit-finite set;

3. map duplicate, i.e. function fmap-dup : (Σ + #)∗ → (Σ + #)∗, which is
a generalization of the map duplicate function from Example 41 for an
arbitrary polynomial orbit-finite alphabet Σ;

5In other words, a letter-to-words homomorphism Σ∗ → Γ∗ is simply a monoid morphism
between the free monoids Σ∗ and Γ∗. The phrase letter-to-word is used to distinguish this
general class of homomorphism from the letter-to-letter homomorphisms used in the previous
chapter.
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4. map reverse, i.e. the function fmap-rev : (Σ + #)∗ → (Σ + #)∗ defined
below in Example 44, for every polynomial orbit-finite Σ;

Example 44. For every polynomial orbit-finite Σ, we define the map
reverse function, which independently reverses every #-separated block:

fmap-rev : (Σ + #)∗ → (Σ + #)∗

For example:

fmap-rev(1 2 3 # 5 7 # 1 2) = 3 2 1 # 7 5 # 2 1

/

5. end of word marker, i.e. the function w 7→ w a. This function is only6
required to deal with the empty word, as for all other prime functions it
holds that p(ε) = ε.

/

4.2 Equivalence of the models
As mentioned in the introduction, all models defined in the previous section are
equivalent:

Theorem 15. All the following models recognize the same class of transductions
over polynomial orbit-finite alphabets:

1. Single-use two-way transducers;

2. Single-use streaming string transducers;

3. Regular list transductions with atoms;

4. Compositions of single-use two-way primes;

Before proving Theorem 15, let us point out its two important corollaries:

Claim 51. Single-use two-way transducers and single-use streaming string trans-
ducers are closed under composition.

Proof. The claim is an immediate consequence of Theorem 15, as compositions
of single-use two-way primes are trivially seen to be closed under compositions.

6If we only want to consider non-empty words, we can skip this function. Or if we want
to consider the empty word, we can replace it with the start of word marker (i.e. w 7→ `w).
If we want a symmetric function, we can also use the both ends marker (i.e. w 7→ `wa), or
the empty word selector, i.e. the function which maps every word to itself, with the exception
of the empty word which is mapped to a single letter #. All of those functions result in an
equivalent class of compositions of two-way single-use primes.

183



Claim 52. The equivalence problem is decidable for the four models that appear
in Theorem 15.

Proof. By analysing the proof of Theorem 15 (presented later in this section),
one can show that it is effective, i.e. translating between any two of the models is
a computable function. This leaves us with showing that just one of the models
has decidable equivalence. Let us focus on single-use string streaming string
transducers: As mentioned in the last paragraph of Section 4.1.2, single-use
streaming string transducers are a special case of streaming string transducers
from [AČ11], which by [AČ11, Theorem 12] have decidable equivalence. It
follows that single-use streaming string transducers have decidable equivalence
as well. (Alternatively, we can use [BS20, Theorem 14] which is a direct proof
of decidable equivalence for single-use streaming string transducers.)

The rest of Section 4.2 is dedicated to proving Theorem 15, according to the
following plan:

Regular list transductions

Two-way transducers Compositions of primes

Streaming string transducers

Section 4.2.1

Section 4.2.2

Section 4.2.3 Sec
tio
n 4

.2.4

Sec
tion

4.2.
5 Section 4.2.6

It is worth pointing out that Section 4.2.2 seems to be redundant. However,
together with Section 4.2.1 it completes the proof of Claim 51, which is later
used in Sections 4.2.3 and 4.2.5.

4.2.1 Two-way automata ⊆ Compositions of primes
In this section, we show how to translate two-way automata into compositions
of single-use two-way primes. This is the most complicated part of the proof of
Theorem 15. We start by showing that every non-looping single-use two-way
transducer can visit every position only a bounded number of times. This is
not obvious, because the number of states of a single-use two-way transducer
is usually infinite – in particular, an analogous lemma does not hold for the
multiple-use variant of two-way transducers.

Lemma 76. For every non-looping single-use two-way transducer A, there is a
bound k, such that A visits every position in every input word at most k times.
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Proof. Let A be a transducer of type Σ∗ → Γ∗ and let Q be A’s set of states.
Consider the following semigroup SA ofA’s behaviours (see the proof of Lemma 40
for details):

Q× {←,→} −−( Q× {←,→}+ finish

Thanks to Theorem 5, we know that SA is orbit-finite. It follows that there is a
bound p such that every element of SA is supported by at most p atoms. Sim-
ilarly there is a q such that every letter in Σ is supported by at most q atoms.
Moreover, since Q is orbit-finite, it follows that every finite set of atoms supports
only a finite number of elements in Q (this follows from [Boj13, Lemma 5.2] or
alternatively, since Q is polynomial orbit-finte, it can also be shown by structural
induction on Q). Additionally, it is not hard to see that the number of elements
in Q that are supported by a subset of atoms depends only on the subset’s size.
It follows that there is a function fQ, such that fQ(n) is the number of elements
in Q that are supported by a subset of n atoms. We are going to show that A
visits each position no more than k := fQ(2p+ q) times.

Let us take a word w ∈ Σ∗, a position i in w, and let us show that A visits
i at most k times. First, we split w into the prefix w<i ∈ Σ∗, the letter wi ∈ Σ,
and the suffix w>j ∈ Σ∗. Define b<i, b>j ∈ SA to be the behaviour of A on w<i
and w>j . By Lemma 3 (applied multiple times), we know that every state in
which A visits i, can contain only the atoms that appear in b<i, b>j , or wi. It
follows that there are at most fQ(2 ·p+q) different states in which A can visit i.
SinceA is non-looping, it follows that each of those states is visited at most once.
This means that the number of visits in i is bounded by k = fQ(2 · p+ q).

A useful abstraction for the construction of translating two-way automata
into compositions of primes is the shape of a run, which is a record of all visits
of A in each of the input position. A visit is represented as an element of the
following set:

{←,→}︸ ︷︷ ︸
wheather A entered
from left or right

× {←,→}︸ ︷︷ ︸
wheather A left

towards left or right

× (Γ + ε)︸ ︷︷ ︸
the letter that A outputs
when leaving the position

For the sake of simplicity, let us assume that A finishes all of its runs a, and
that it never outputs any letters in a or in `. (It is not hard to see that every
A can be transformed into an equivalent A′ that satisfies this restriction7.) By
Lemma 76, we know that each position admits at most k visits. It follows that
the shape of the run can be represented as a word over the following alphabet:

({←,→}× {←,→}× (Γ + ε))≤k,
7The only problem arises when the input word is empty – in this case, the restriction

prohibits the automaton from outputting any letters at all. One way to deal with this problem
is to start the translation, by applying the end-of-word marker prime function. This, way we
equip the input word with a copy of a (followed by the actual a). Now A′ can use this extra
letter to construct its output for ε.
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where each position stores its visits in chronological order. For example, here is
the shape of the run from Example 41:

Observe that the shape of A’s run uniquely determines its output – thanks to
the chronological order of the events we can retrace the steps of the automaton:

We split the construction of A as a composition of primes into two steps.
First, we show how to use compositions of primes to construct the shape of A’s
run over the input word. Then, we show how to use compositions of primes to
transform the shape of a run into the output.

4.2.1.1 Constructing the shape of the run

In this section, we show that the following function, that outputs the shape of
A’s run over its input word, can be constructed as a composition of primes:

fA-shape : Σ∗ →
(

({←,→}× {←,→}× (Γ + ε))
≤k
)∗

It is enough to show that fA-shape is a local rational semigroup transduction.
This is because, by Theorem 14, every local rational semigroup transduction can
be decomposed into single-use rational primes, which can be further decomposed
into single-use two-way primes:

Claim 53. Every composition of single-use rational primes is also a composition
of single-use two-way primes.

Proof. Thanks to Claim 47, it is enough to show that for every rational single-
use prime function p, the function p×idΣ is a composition of single-use two-way
primes. For homomorphisms and left-to-right functions, this is trivial. For the
right-to-left multiple-use bit propagation, we can use the following decomposi-
tion:

f←−−prop × idΣ = reverse ◦ (f−−→prop × idΣ) ◦ reverse,
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where the reverse function is easily seen to be a special case of fmap-reverse with
no #’s. We finish the proof, by observing that we can use the same approach
for all other right-to-left rational prime functions.

This leaves us with showing that fA-shape is a local rational semigroup trans-
duction. For that we take S to be the semigroup of A’s behaviours as described
in Section 2.3.5:

Q︸︷︷︸
In what state
does A enter

the word

× {←,→}︸ ︷︷ ︸
Does A enter
from the right
from the left

( Q︸︷︷︸
In what state
does A exit
the word

× {←,→}︸ ︷︷ ︸
Does A exit
from the right
from the left

× (Γ + ε)︸ ︷︷ ︸
What letter

does A outputs
when it leaves
the word

+ finish

It is not hard to see that for every u,w, v ∈ Σ∗, the w-part of A’s run on
uwv depends only on w and on A’s behaviours of u and v. It follows that there
is a function:

λ : S × Σ× S →eq ({←,→}× {←,→}× Γ)≤k,

that computes the shape of the run on the single-letter infix. (It is not hard to see
that this function is equivariant.) This means that fA-shape can be implemented
as (S, h, λ), where S and λ are as described above, and h is a function that maps
single-letter words to their behaviours. The hard part of the proof is showing
that λ satisfies the locality equation, i.e. that:

λ(x1ey1, a, y2ex2) = λ(π(x1) e y1, a, y2 e π(x2)),

provided that e is idempotent, y1 ·h(a) ·y2 = e, and π is a supp(e)-permutation.
We show this by using a slightly stronger result: Remember that the w-part of
the shape of A’s run on uwv depends only on w and on A’s behaviours on u
and v. It follows that we can extend λ to:

λ′ : S × Σ∗ × S →eq
(
{←,→}× ({←,→}× Γ)≤k

)∗
,

Now, in order to proof the locality of λ, we take some words ȳ2, ȳ2 ∈ Σ∗ whose
A-behaviours are equal to y1 and y2 (thanks to a reasoning similar to Claim 41,
we can assume that S only contains behaviours correspond to actual words) and
apply the following lemma for x1, x2, e and w = ȳ2aȳ2:

Lemma 77. Let e ∈ S be an idempotent behaviour, and let w be a word
whose behaviour is equal to e. For all behaviours x1, x2 and for every supp(e)-
permutation π, it holds that:

λ′(x1e, w, ex2) = λ′(π(x1) e, w, e π(x2))

Proof. In order to prove the lemma, we pick some x̄1, x̄2, ē ∈ Σ∗ (again, thanks
to a similar reasoning as in Claim 41, we can assume that those words ex-
ist), and we trace and compare the runs of A on ` x̄1 ē w ē x̄2 a and on `
π(x̄1) ē w ē π(x̄2)a.
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Consider the first part of the run, that starts in the initial state q0 and ends
when A enters the w-part of its input:

First, let us consider the run on ` x̄1 ē w ē x̄2 a: We define q1 be the state
in which A first enters w and q′1 to be the last state in which A enters ē, be-
fore entering w (see the picture). Let us now notice that analogous states for
`π(x̄1) ē w ē π(x̄2)a are equal to π(q1) and π(q′1). This is because those states
depend equivariantly on the behaviour of the prefix up until w, which in this
case is equal to π(x1) · e = π(x1) · π(e) = π(x1 · e).

Consider now the second part of the run, which lasts until A leaves the ēwē-
part of the input. Let us show that this part of the run exits the ēwē-part of
the input on the right in q1 (or π(q1)):

Observe that the behaviours of both ē and w and equal to e. Since e is
idempotent, it follows that the behaviour of the word ēwē is also equal to e. By
definition of q′1, we know that e(q′1,→) = (q1,→). It follows that the second
part of the run exits ēwē from the right in state q1:

(ēwē)(q′1,→) = e(q′1,→) = (q1,→)

Now, let us show that during this second part of the run (marked as a bold
line), A has to preserve all atoms from q1 that do not appear in supp(e) – in
particular, this means that A cannot query or output those atoms. The proof
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is analogous to the one in Section 3.3.3. First, let us consider the following
function, which describes the behaviour of A on ēwē, when it enters w from the
left:

(ē
�
wē) : Q︸︷︷︸

The state in which
A is placed in

the first letter of w.

( Q× {→,←}︸ ︷︷ ︸
The state and the direction

in which A exits ēwē

By an argument similar to the one in Claim 19, we know that (ē
�
wē) is, indeed,

a single-use function. Moreover, it is not hard to see that (ē
�
wē) depends (in

an equivariant way) only on the behaviours on ē and w, which are both equal
to e. By Lemma 3 it follows that:

supp(ē
�
wē) ⊆ supp(e)

Moreover since e(→, q′1) = q1, we know that:

(ē
�
wē)(q1) = (ewe)(→, q′1) = e(→, q′1) = (→, q1)

As the second part of the run corresponds to (ē
�
wē)(q1), it follows that it can

only destroy only those atoms from q1 that appear in supp(e). This is because
each atom from q1 that is destroyed during the second part of the run has to be
restored before A exits ēwē, as (ē

�
wē)(q1) = q1. By a reasoning similar to the

one from Section 3.3.3, we know that each such restored atom has to appear in
supp(ē

�
wē), and we know that supp(ē

�
wē) ⊆ supp(e).

Now, let us consider the second part of A’s run on ` π(x̄1) ēwē π(x̄2) a,
i.e. the part that starts in π(q1) (in the first letter of w), and ends when A
leaves ēwē. Thanks to the same arguments as for ` x̄1ēwēx̄2 a, we know that
the second part of the run also leaves ēwē from the right in π(q1), and during
the second part of the run, A has to preserve all atoms from π(q1) that do not
appear in supp(e). In particular, this means that A does not query or output
any atoms from π(q1) that do not appear in supp(e). Since π is a supp(e)-
permutation, it follows that, in the second part of the run, A cannot distinguish
between q1 and π(q1), as the only difference between the two states are the
atoms outside of supp(e). It follows that the second part of the run has the
same shape when starting in q1 and in π(q1). In particular, this means that the
shape of the w-part in the second part of the run is the same on both x̄1ēwēx̄2

and π(x̄1)ēwēπ(x̄2).

Now, let us consider the third part of the run – from exiting ēwē in q1 (or
π(q1)) until reentering w:
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We define q2 and q′2 analogously to q1 and q′1, i.e. q2 is the state in which
A reenters w, and q′2 is the last state in which A enters ē, before reentering w.
Similarly as before, we observe that the analogous states for `π(x̄1) ē w ē π(x̄2)a
are equal to π(q2) and π(q′2).

Let us now consider the fourth part of the run, which starts in q2 (or π(q2))
and continues until A leaves ēwē:

An analysis, similar to the one for the second part of the run, shows that A
leaves ēwē from the left in q2 (or in π(q2)), and that both in the run on x̄1ēwēx̄2

and on π(x̄1)ēwēπ(x̄2), A cannot query atoms from q2 (or π(q2)) that do not ap-
pear in supp(e). It follows, by the same argument as before, that the fourth part
of the run has the same shape for both ` x̄1ēwēx̄2 a and ` π(x̄1) ē w ē π(x̄2) a.
In particular, this means that during the fourth part of the run, the w-parts of
the two runs have equal shapes.
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We finish the proof by observing that a similar reasoning can be continued
until the end of the two runs.

4.2.1.2 Untangling the run graphs

In this section, we show how to use compositions of single-use two-way primes
to untangle the run graphs:

Lemma 78. For every polynomial orbit-finite Γ, and for every k ∈ N, the
following function can be constructed as a composition of single-use two-way
primes:

funtangle :
((
{←,→}2 × (Γ + ε)

)≤k)∗︸ ︷︷ ︸
encoding of a shape of the run

→ Γ∗︸︷︷︸
the untangled string

We assume that the input shape is a single path, i.e. all nodes except the initial
one have exactly one successor, and all nodes except the final one have exactly
one predecessor.

For example, consider the following input:

It corresponds to the following run graph:

Which means that the function funtangle should return the following word:

123123#5757#2323

This section is entirely dedicated to proving Lemma 78. We present the
same proof as in [BS20, Section E.4.3]. Interestingly, the proof looks almost the
same as it would for a finite8 Γ.

8To the best of my knowledge, the proof for a finite Γ was first presented in [Boj18,
Section 6.1]. We present the proof following the lines of [BS20, Section E.4].

191



The proof goes by induction on k, which represents the width of the run
graph, i.e. the maximal number of times a position is visited. For the induction
base, we notice that there are only two possible types of run graphs for k = 1:

Both of those cases are easy to untangle: The left-to-right pass is almost
already untangled – it suffices to apply a homomorphism that extracts the let-
ters. For the right-to-left pass, we can use the same homomorphism followed
by the reverse function. Unexpectedly, the hardest part of the induction base
is combining the two procedures into a single function. We do this using the
following lemma:

Lemma 79. Let L ⊆ Σ∗ be a language recognized by a single-use two-way
automaton. If f1 : Σ∗ → Γ∗ and f2 : Σ∗ → Γ∗ are both compositions of two-way
primes, then so is the following function:

(if L then f1 else f2)(w) =

{
f1(w) if w ∈ L
f2(w) if w 6∈ L

Proof. The construction consists of the following six steps:

Σ∗
w 7→wa−−−−→ (Σ+ a)∗

fL−→ (Σ + {Yes, No})∗ fcolour−−−−→ (Σ + Σ)∗

(Σ + Σ)∗
f1+id
−−−−→ (Γ + Σ)∗

id+f2−−−−→ (Γ + Γ)∗
merge∗

−−−−→ Γ∗,

1. First, we equip the input word with the end-of-word marker. This function
(i.e. w 7→ wa) is easily seen to be a composition of a rational transduction,
that underlines the last letter of the input, with a letter-to-word homo-
morphism that inserts a after the underlined letters. (Thanks to Claim 53,
the rational transduction can be further decomposed into two-way primes.)

2. Next, we transform the end of word marker a into either Yes or No depend-
ing on whether the input word belongs to L. This step is implemented as
the following function fL : (Σ+ a)∗ → (Σ + {Yes, No})∗:

fL(w a) =

{
w Yes if w ∈ L
w No if w 6∈ L

To see that fL is a composition of primes, observe that thanks to The-
orem 6, L can be recognized by a one-way single-use automaton. This
automaton can be easily modified into a single-use Mealy machine that
recognizes fL. It follows by Theorem 8 and Claim 53 that fL is a compo-
sition of single-use two-way primes.
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3. Next, we propagate the output of fL, by colouring each letter into either
blue or yellow depending on whether the input word belongs to L. For
this, we use the following function:

fcolour : (Σ + {Yes, No})∗ → ( Σ︸︷︷︸
blue copy

+ Σ︸︷︷︸
yellow copy

)∗,

It is not hard to see that fcolour can be implemented by a right-to-left
single-use Mealy machine. It follows, by (an analogue) of Theorem 8 and
Claim 53 that fcolour is a composition of single-use two-way primes.

4. Next, we apply the function (f1 + id), defined in the following claim:

Claim 54. If f : Σ∗ → Γ∗ is a composition of single-use two-way primes
then so is the following function (f + id) : (Σ + ∆)∗ → (Γ + ∆)∗:

(f + id)(w) =


f(w) if all letters in w belong to Σ

w if all letters in w belong to ∆

(unspecified) if w contains letters from both Σ and ∆

Proof. The proof goes by induction on the construction of f as a compo-
sition of single-use two-way primes. The induction step follows from the
following observation:

(g ◦ h) + id = (g + id) ◦ (h+ id),

This leaves us with the induction base, which states that for every single-
use two-way prime p, the function (p+ id) is a composition of single-use
two-way primes. We only show it for p = fsu-prop×idX , and p = fmap-rev,
as other cases are either trivial or analogous.

First, we show how to construct fsu-prop × idX + id. Here is its type:

((A + {↓, ε})×X + ∆)
∗ → ((A + ε)×X + ∆)

∗

We start the construction with a homomorphism that equips every letter
from ∆ with ε – i.e. the neutral letter of fsu-prop. This gives us a word
over (A + {↓, ε})× (X + ∆). Then, we apply fsu-prop × idX+∆, obtaining
a word over (A+ ε)× (X + ∆). Finally, we use homomorphism to remove
the ε’s from ∆.

This leaves us with constructing (fmap-rev + id), whose type is:

((Σ + #) + ∆)∗ → ((Σ + #) + ∆)∗

We start the construction with a letter-to-word homomorphism that ex-
pands every a from ∆ into #a#, and keeps elements of (Σ+#) unchanged.

193



Then, we apply fmap-rev. Finally, we remove all #’s that are adjacent to
at least one letter from ∆. (This last step is a composition of a local
rational semigroup transduction that underlines neighbours of ∆, and a
letter-to-word homomorphism that removes underlined #’s.)

5. Next, we apply id + f2, defined analogously to f1 + id.

6. Finally, we forget about the colours by applying homomorphism:

merge∗ : (Γ + Γ)∗ → Γ∗

This finishes the proof of the induction base for Lemma 78. We start the
proof of the induction step, with the special case of right loops, which are those
run graphs whose both initial and final nodes belong to the first position. In
order to untangle a right loop, let us consider the following way of dividing it
into two parts: the first one contains all the nodes up to (and including) the
first visit in the last position, and the second one contains all other nodes. Here
is an example:

The idea behind this division is that the width of either part is smaller than
the width of the whole run graph – this will enable us to apply the induction
assumption. Moreover, the division can be constructed as a composition of
primes:
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Lemma 80. The following function floop-div, which inputs a right loop and
splits it into two #-separated parts (as described earlier), can be constructed as
a composition of single-use two-way primes.

floop-div :
(
({←,→}2 × (Γ + ε))≤k

)∗ → (
({←,→}2 × (Γ + ε))≤k−1 + #

)∗
,

Here is an example:

Proof. First, we show how to colour each input node into yellow or blue, depend-
ing on whether it belongs to the first or to the second part of the decomposition.
We start with the special case where Γ is the singleton set, i.e. Γ = 1. In this
case, both the input and the output alphabets are finite, so it is enough to con-
struct the colouring as an unambiguous Mealy machine – thanks to Lemma 72,
Theorem 13, and Lemma 53, we know that the unambiguous Mealy machine
can be decomposed into single-use two-way primes.

The unambiguous Mealy machine uses nondeterminism to guess the colour
of each node, and verifies that the colouring is correct, by checking a few local
conditions:

1. the initial node is yellow;

2. the first node in the last position is yellow, and its successor is blue;

3. no yellow node is followed by a blue node.

The machine is unambiguous because there is only one correct colouring.

Now, let us go back to the general case: Since the output alphabet is now
infinite, we cannot use an unambiguous Mealy machine. However, it is not hard
to see the colouring does not depend on the Γ-values, which means that we
can reduce the polynomial orbit-finite case to the finite case: First, we apply a
homomorphism f∗Γ−extr, where fΓ−extr is a function that splits each input letter
into its Γ-free shape and its Γ-labels:

fΓ−extr : ({←,→}2 × (Γ + ε))≤k︸ ︷︷ ︸
The input letter

−→ ({←,→}2)≤k︸ ︷︷ ︸
The Γ-free shape part of

the input letter

× (Γ + ε)≤k︸ ︷︷ ︸
The labels of

the input letter

Next, we use an unambiguous Mealy machine to construct the colouring for the
Γ-free version (using Claim 55 defined below) and finally, we use a homomor-
phism to transfer the Γ-labels back to the run graph.
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Claim 55. Let A and B be finite alphabets, and let f : A∗ → B∗ be a function
recognized by an unambiguous Mealy machine. It follows that for every polyno-
mial orbit-finite C, the following function is a composition of rational single-use
primes (which by Lemma 53 means that it is also a composition of single-use
two-way primes):

f × idC : (A× C)∗ → (B × C)∗

Proof. The claim is a direct consequence of Lemma 72 and Theorem 14.

Once we have coloured the nodes, we can easily produce the output of
floop-div: First, we duplicate the coloured run (using fmap-dup with no sepa-
rators), and then we apply a single-use Mealy machine that filters out all blue
nodes from the first copy and all yellow nodes from the second copy.

After dividing the right loop into the two parts, we can untangle it by in-
dependently untangling each of the parts (using funtangle from the induction
assumption), and concatenating the results:(

({←,→}2 × Γ)≤k−1 + #
)∗ map funtangle
−−−−−−−−−→ (Γ + #)∗

concat−→ Γ∗

The list-flattening function concat : (Γ + #)∗ → Γ is a simple letter-to-word
homomorphism that filters out all #’s, and the map combinator is defined by
the following lemma:

Lemma 81. If f : A∗ → B∗ is a composition of single-use two-way primes,
then so is the following function map f , which applies f independently to each
#-separated block:

map f : (A+ #)∗ → (B + #)∗

Proof. We start the proof by noticing that:

map(f ◦ g) = (map f) ◦ (map g)

This leaves us with showing that for every prime function p, the function map p
is a composition of primes. Most of the cases are either easy or handled analo-
gously as in the proof of Lemma 56. The only interesting cases are p = fmap-rev
and p = fmap-dup. Moreover, the two cases are analogous, so we only show how
to construct map fmap-rev. Observe that it uses two types of separators:

(Σ + #1︸︷︷︸
separator
for map

+ #2︸︷︷︸
separator

for fmap-rev

)∗ → (Σ + #1︸︷︷︸
separator
for map

+ #2︸︷︷︸
separator

for fmap-rev

)∗

However, as one can easily verify, both of those separators are treated in the
same way: map fmap-rev is a version of fmap-rev that treats both #1 and #2 as
its separator. It follows that we can implement map fmap-rev by mapping both
#1 and #2 to #, and applying fmap-rev. Finally, we have to restore the #’s
back to #1 or #2. In order for this to be possible, we need to modify the first
step: instead mapping both #1 and #2 to #, we map them respectively to
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a1# and a2# (where a1 and a2 are letters that do not appear in Σ). After this
modification, we can map the #’s back to #1 and #2 using a single-use Mealy
machine.

Let us now deal with arbitrary loops, i.e. run graphs that start and finish
in the same position. It is not hard to see that they can be split into at most k
left loops and right loops, as illustrated by the following example:

Observe that, thanks to a reasoning similar to the one from Lemma 80, we
can construct this decomposition as a composition of single-use two-way primes.
This way, we reduce untangling an arbitrary loop into untangling right loops
and left loops. This finishes the construction, as left loops can be untangled
analogously to right loops.

Finally, let us show how to untangle arbitrary run graphs. Without loss of
generality, we assume that the initial node is to the left of the final node – the
other case can be handled analogously. First, let us inductively define stations,
sweeps and loops of a run graph: The first station is the position that contains
the initial node. The i-th loop is the part of the run between the first and the
last visit in the i-th station. The (i + 1)-st station is the first position to the
right of the i-th station, that was not visited by the i-th loop. Finally, the i-th
sweep is the part of the run graph between the last visit in the i-th station and
the first visit in the (i+ 1)-th station. Here is an example:

Notice that every position that is visited by the i-th sweep is also visited by
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the i-th loop, so the width of each sweep is smaller than the width of the original
graph – this will allow us to untangle the sweeps using the induction assumption.

Here is the procedure for untangling a run graph:

1. First, we underline all stations, and colour each node into either yellow
or blue, depending on whether it belongs to a loop or to a sweep – the
construction is analogous to the one for the right-loop decomposition from
Lemma 80.

2. Next, we transform a run graph into a #-separated list of its windows,
where the i-th window is defined to be the maximal interval that contains
the i-th station and no other station. (Note that the windows are usually
overlapping.) Here is an example:

We do this by surrounding every station with #’s, applying the map dupli-
cate function, and cleaning up the output with a single-use Mealy machine.

3. Observe that the i-th window contains the entire i-th loop and i-th sweep.
In this step, we extract the loop and the sweep from each of the windows.
For example, for the first window, this looks as follows:
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We do this by duplicating every window and filtering out the spurious
nodes. The filtering phase can be handled by an unambiguous Mealy ma-
chine combined with Claim 55. (To apply this construction to all windows,
we use the map combinator from Lemma 56.)

4. Now, we untangle each loop and each sweep. For the loops, we use the
construction described earlier in this section, and for the sweeps, we use the
induction assumption (as mentioned before, the sweeps are always thinner
than the whole run graph). We combine those constructions, using the
if− then− else and map combinators (see Lemmas 79 and 81).

5. Finally, we obtain the untangled result by concatenating all outputs pro-
duced by the previous step. (As mentioned before, this simply means
filtering out the #’s.)

4.2.2 Compositions of primes ⊆ Two-way automata
In this section, we show how to translate compositions of two-way primes into
single-use two-way transducers (this construction is also described in [BS20,
Section E.1]).

Lemma 82. For every composition of primes f = p1 ◦ . . . ◦ pn, there is an
equivalent single-use two-way transducer.

The proof goes by induction on n. For n = 0, the function f is the identity,
which makes the lemma trivial. For the induction step, it suffices to show
that single-use two-way automata are closed under pre-compositions with prime
functions: (2-way single-use

transducers

)
◦
(2-way single-use

primes
)
⊆
(2-way single-use

transducers

)
This is shown in the following claim:

Claim 56. For every single-use two-way prime function p, and for every single-
use two-way transducer A, there is a two-way transducer A′ that computes A◦p.
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Proof. We prove the claim by the case analysis of p. For the sake of concise-
ness, we only show the proof for multiple-use bit propagation, single-use atom
propagation, and map-reverse (other cases are either simple or analogous).

1. Multiple-use bit propagation To recognize A◦ (fprop× id), we use A′
which simulatesA and additionally keeps track of the current register value
for fprop. Every time it makes a transition, A′ combines the input letter
with the current register value and feeds this pair to A. It outputs the
same letter and moves in the same direction as A. When A goes forward,
then A′ can easily update the register value. When A goes backwards,
then A′ checks the current register operation (in its input): if it is ε, then
the register value stays the same; otherwise A′ goes left to the first non-
ε operation, updates its register value, and finds its way back by going
forward to the first non-ε operation.

2. Single-use atom propagation The transducer A′ for A◦ (fsu-prop×id)
resembles the transducer for fprop from the previous item, but it does
not keep track of the register value. Instead, it computes it on demand:
every time A′ enters a position with a ↓ (i.e. the read operation), it goes
left to the first non-ε operation, saves enough copies (see Lemma 37) of
the register value (or if the operation is ↓, remembers that the register is
empty) and finds its way back by going forward to the first ↓. Then it is
ready to simulate the transition of A.

3. Map-reverse To recognize A ◦ fmap-rev we use A′ that simulates A, but
modifies the order of the input letters – every time A wants to go right,
A′ goes left, and every time A wants to go right, A′ goes left. Moreover:

• whenever A′ enters # (or `) from the right, it goes to the next # (or
a);

• whenever A′ enters # (or a) from the left, it goes to the previous #
(or `);

• whenever A′ exits # (or `) to the right, it goes to the rightmost
element of the block to the right;

• whenever A′ exits # or (a) to the left, it goes to the leftmost element
of the block to the left.

Here is an example equipped with a schematic illustration of this order:
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This finishes the proof that compositions of single-use two-way primes are
included in single-use two-way automata. Together with Section 4.2.1, it follows
that the two classes are equal. In particular, this means that we already have
the proof that single-use two-way automata are closed under compositions (see
Claim 51). We are going to use this fact in the remaining parts of this section.

4.2.3 Streaming string transducers ⊆ Two-way automata
In this section, we show how to translate single-use streaming string transducers
into single-use two-way transducers. The translation has two parts: First, we
translate the streaming string transducer into a single-use two-way automaton
that transforms its input into the sequence of operations on Γ∗-registers per-
formed by the streaming string transducer while processing this input. Here is
an example of such a sequence of operations:

In the second step, we construct a single-use two-way transducer that in-
terprets the register operations and produces their output. This finishes the
translation because single-use two-way transducers are closed under composi-
tions (see Claim 51, and the last paragraph of Section 4.2.2).

Let us start by showing how to construct the sequence of register operations.
Notice that the Γ∗-registers are write-only, i.e. they can be used to construct
the output, but the transducer is not allowed to query their contents. It follows,
by a reasoning similar to the one in Section 2.2.4, that all single-use functions
over polynomial orbit-finite Γ∗-register sets, can be represented by single-use
decision trees such as the following one (for Γ = A):

A3 × (A∗)2 ( A3 × (A∗)2 + A2 × A∗
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In this type of tree, the inner nodes look the same as in the usual single-
use trees (from Section 2.2.4) – each inner node contains a query about the
A-variables. The difference is in the leaves, which can now include constructors
for the Γ∗-variables. Each such constructor is a finite word over Γ∗-values, where
each Γ∗-value is either a Γ∗-variable (Ri) or a Γ-literal. Each Γ-literal is, in turn,
an expression of the following form:

coproji(v1, . . . , vki),

where each vj is either an A-variable (xi) or an atomic constant. The single-use
restriction says that every xi and every Ri can appear at most once on each
path from the root to a leaf.

Thanks to this tree representation, we can look on a transition function of
a single-use streaming string transducer, as a function Σ →eq (Trees(Q,Q)).
Notice that for every Q there is a limit n of how many Γ∗-values can be stored
in the elements of Q. Moreover, since Σ is orbit-finite and the transition function
is equivariant, we know that the length of Γ∗ constructors (which are words over
Ri’s and Γ-constructors) is bounded by some m ∈ N. This means that the set
of all possible Γ∗-constructors that appear in the transition functions can be
represented as the following polynomial orbit-finite set:

Γ∗ = ( (1 + . . .+ 1)︸ ︷︷ ︸
representing Ri’s

+ Γ︸︷︷︸
single letters

)≤m

This means that we can think about Trees(Q,Q) as a function that ignores
the Γ∗-registers from the input, and instead of performing the Γ∗-operation, it
outputs them:
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This means that we can translate Trees(Q,Q) into Trees(Q′, Q′×Γ∗
≤n

), where
Q′ is the version of Q where every Γ∗ has been replaced by 1. Observe that both
Q′ and Γ∗

≤n
are polynomial orbit-finite sets. It follows that we can translate

the transition function of the streaming string transducer into a function of the
following type:

Σ→eq (Q′( Q′ × Γ∗
≤n

)

(Observe that this is a single-use function for polynomial orbit-finite sets, as
defined in Definition 7). It follows that we can treat each single-use string
streaming transducer as a single-use Mealy machine that outputs its register
operations (instead of performing them). This almost finishes the first part of
the construction. The last (technical) part is to produce the final register op-
erations generated by the output function λ (see Definition 38). Since a Mealy
machine has to finish its run as soon as it reaches a, it it is too weak for this
purpose. Instead, we use a single-use two-way automaton9 that simulates the
Mealy machine and outputs the λ-operations as soon as it reaches the a marker.
(We use the same construction as for the transition function, to translate λ into
Q′( Γ∗

≤n
.)

This leaves us with showing how to use a single-use two-way transducer to
interpret the sequence of operations on Γ∗. We present a construction (also
described in [BS20, Section E.6]) that is almost identical to the construction
for finite alphabets (see [BC18, Lemma 13.4]). First, we notice that thanks to
the single-use restrictions for Γ∗-registers, each sequence of register operations
can be described as a forest. For example, consider the following sequence of
operations:

9A more adequate model would be a single-use variant of a one-way transducer (see last
paragraph of [BS20, Section 2]). However, since we have not defined this variant in this thesis,
we need to use the stronger model of a two-way transducer.
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It corresponds to the following forest:

In order to execute the register operations, it suffices to perform a DFS
traversal starting in the final node (i.e. Out), outputting the encountered letters
as we visit them:

It is not hard to see that a single-use two-way transducer is capable of
performing such a traversal.

4.2.4 Compositions of primes ⊆ Streaming string trans-
ducers

In this section, we show how to translate compositions of two-way primes into
single-use streaming string transducers:

Lemma 83. For every composition of primes p1 ◦ . . .◦pn, there is an equivalent
single-use streaming string transducer.

The proof of the lemma uses a similar induction as the proof for two-way
transducers (Lemma 82), but this time we show that single-use streaming string
transducers are closed under post-compositions with single-use two-way primes:( single-use

2-way primes
)
◦
(single-use string streaming

transducers

)
⊆
(single-use string streaming

transducers

)
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(Note the difference with Lemma 82, where we have used pre-compositions).

Claim 57. For every single-use two-way prime function p, and for every stream-
ing string transducer A, there is a two-way transducer A′, that recognizes A◦p.

Proof. We prove the claim, by case analysis of p. This time, we present the
proof for all possible p’s:

1. Map reverse Observe that since fmap-rev is of the type (Γ + #)∗ →
(Γ + #)∗, then both A and A′ are of the type Σ∗ → (Γ + #)∗. We
construct A′ in the following way: The set of states of A′ is equal to the
set of states of A, where every (Γ + #)∗ is replaced by:

Γ∗︸︷︷︸
The initial part of

the register value in A
up to the first #,

reversed.

× (Γ + #)∗︸ ︷︷ ︸
The middle part of

the register value in A
from the first to the last #,

map-reversed.

× Γ∗︸︷︷︸
The final part of

the register value in A
after the last #,

reversed.

× {Yes,No}︸ ︷︷ ︸
Does the register
value in A contain

at least one
separator?

If the register in A contains no separator, then its entire content is stored
in the first Γ∗. It is also worth pointing out that the Γ∗-registers are
implemented as (Γ + #)∗-registers (which happen to have the semantic
property of never containing any #’s). Here is an example of a register
value in A and the corresponding value in A′ (for Γ = A):

12#345#67#89 !
(

21 , #543#76# , 98 ,Yes
)

The transition function of A′ is a version of the transition function of A,
where concat, singleton, and constε are interpreted as follows:

(A1, A2, A3, a4) · (B1, B2, B3, b4) =

{
(A1, A2B1A3B2, B3, Yes), if b4 = Yes
(A1, A2, B1A3, a4), otherwise

singleton′(a ∈ Γ) = (a, ε, ε,No) singleton′(#) = (ε,#, ε,Yes)

constε = (ε, ε, ε,No)

(It is not hard to see that all of those functions are single-use.) Simi-
larly, we define λ′ (i.e. the output function of A′) to be λ, where concat,
singleton and constε are interpreted in the same way as for the trans-
action function. Since such λ′ produces an element of

Γ∗ × (Γ + #)∗ × Γ∗ × {Yes,No},

we need to compose it with the following exit function, which collapses
this compound register type back to (Γ + #)∗:

(R1, R2, R3, r4) 7→ R1R2R3
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2. Map duplicate In this case, we use the same idea as for fmap-rev, but we
keep two copies of the initial and final blocks. For example:

12#345#67#89 !
(

12 , 12 , #345345#6767# , 89 , 89 ,Yes
)

3. Letter-to-word homomorphism We show how to construct A′ for
h∗ ◦ A, where h is a function of type Γ →eq ∆∗. In this case, A is of
type Σ∗ → Γ∗ and A′ is of type Σ∗ → ∆∗. We define A′ to be a version of
A where every Γ∗-register is replaced by a ∆∗-register, which keeps the h∗-
image of the original Γ-register from A. Simulating register concatenation
is trivial – whenever A concatenates two Γ∗-registers, A′ can simply con-
catenate the corresponding ∆∗-registers. Simulating singleton requires
some explanation. The principle is easy – A′ needs to interpret singleton
as follows:

singleton′(a) = h(a)

The harder part is implementing h as a single-use function: Observe,
first, that since Γ is orbit-finite, and h is equivariant, it follows that there
exists a limit l on the length of the output of h. This means that we
can translate h into an equivalent h1 : Γ →eq ∆≤l. Now, we can apply
Lemma 28 to obtain an equivalent h2 : Γ(k ∆≤l, which (by composing
it with at most l concat’s) can be easily transformed into an equivalent
h3 : Γ (k ∆∗. Finally, by Definition 9, we can transform h3 into an
equivalent h4 : Γk ( ∆∗. This finishes the construction, as A′ can be
easily modified to maintain k copies of every A-register from A.

4. Single-use atom propagation For the sake of simplicity, we show how
to construct A′ for fsu-prop ◦ A. (The construction can be easily modified
to construct the actual (fsu-prop × id) ◦ A.) As fsu-prop has the type
(A+ ↓ +ε)∗ → (A+ ε)∗, we know that A and A′ have the following types:

A : Σ∗ → (A+ ↓ +ε)∗ A′ : Σ∗ → (A + ε)∗

We construct A′ as a version of A, where every (A+ ↓ +ε)∗-register is
replaced by the following set (compare with the proof of Claim 49):

ε∗︸︷︷︸
Maximal
ε-prefix.

× {↓,�, ε}︸ ︷︷ ︸
The first non-ε
operation, or ε
if there is none.

(� represents elements of A)

× (A + ε)∗︸ ︷︷ ︸
The output for
the suffix after
the first non-ε.

× (A+ ↓ +ε)︸ ︷︷ ︸
The final non-ε
operation, or ε
if there is none.

(Again, the ε∗-registers are actually implemented as (ε + A)∗-registers.)
Observe that the output of the suffix after the first non-ε does not depend
on the initial register value for fsu-prop.

Here is an example of a register in A and the corresponding value in A′:

εε ↓ 12ε ↓ 3εεε ↓ 4εε !
(
εε , ↓, εεε2εεεε3εεε , 4

)
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This representation allows A′ to simulate register concatenation. For ex-
ample:

(A1, a2, A3, a4 ∈ A) · (B1, ↓, B3, b4) = (A1, a2, A3B1a4B3, b4)

Other cases are handled analogously. Operations singleton and constε
are trivial, and the exit function looks as follows:

(A1, a2, A3, a4) 7→

{
A1εA3 if a2 ∈ {�, ↓}
A1 if a2 = ε

5. Multiple-use bit propagation Again, for simplicity, we present the
construction for fprop ◦ A. The construction is similar to the one for
fsu-prop. This time both A and A′ have the type Σ∗ → {#, , ε}∗. We
construct A′ as a version of A, where every {#, , ε}∗-register is replaced
by:

({#, , ε}∗){#, ,ε}︸ ︷︷ ︸
fprop-output for the
maximal ε-prefix,
depending on the

initial register value.

× {#, , ε}∗︸ ︷︷ ︸
fprop-output for the suffix

that starts in the first non-ε.
(Note, that this does not depend

on the initial register value of fprop.)

× {#, , ε}︸ ︷︷ ︸
The final non-ε value,
or ε if there is none.

We represent ({#, , ε}∗){#, ,ε} as ({#, , ε}∗)3.

For example:

εε #εε εε !


 ε 7→ εε

# 7→ ##
 7→   

 ,  ###   , 


The concatenation of registers is interpreted as follows:

(A1, A2, a3) · (B1, B2, b3) =

{
(A1, A2 ·B1(a3) ·B2, b3) if a3 6= ε

(x 7→ A1(x) ·B1(x), B2, b3) if a3 = ε

Observe that this is a single-use function – in particular, each A1(x) and
B1(x) is used at most once. Functions singleton and constε are trivial,
and the exit function looks as follows:

(A1, A2, a3) 7→ A1(ε) ·A2

6. Group prefixes Again, for simplicity, we present the construction for
fG-pref ◦ A. This time both A and A′ are of the type Σ → G∗ (where G
is a finite group). We construct A′ as a version of A where every G∗ is
replaced by:

(G∗)G︸ ︷︷ ︸
The output for the register,

depending on the initial G-value

× G︸︷︷︸
The G-product of
the entire register
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(Again, we represent (G∗)G as (G∗)|G|).

For example, if we take G = Z3:

001211 !

0 7→ 001012

1 7→ 112120

2 7→ 220201

, 2


The register concatenation can be interpreted as follows (note the simi-
larity to the wreath product):

(A1, a2) · (B1, b2) = (g 7→ A1(g) ·B1(g · a2), a2 · b2)

Observe, that since G is a group, then g 7→ g · a2 is a bijection on G.
It follows that each A1(x) and each B1(x) is used at exactly once, which
makes the function single-use. Operations singleton and constε are
trivial, and the exit function looks as follows:

(A1, a2) 7→ A1(1)

7. End of word marker This is the simplest case. It can be simulated by
A′ that looks exactly of like A except of the output function, which for
A′ is defined in the following way:

λ′(q) = λ(w) a

It might be worth mentioning that, as observed in the last paragraph of
[BS20, Section E3], this proof of Claim 57 also works in the presence of both
copyΓ∗ and copyA. It follows that:( single-use

two-way primes
)
◦
(multiple-use string streaming

transducers

)
⊆
(multiple-use string streaming

transducers

)
The same proof also works in the finite case, which might be of independent
interest. In particular, it follows that:

(two-way transducers) ◦
(copyful string streaming

transducers

)
⊆
(copyful string streaming

transducers

)
4.2.5 Regular list transductions ⊆ Two-way transducers
In this section, we show how to translate regular list transductions with atoms
into single-use two-way transducers (the construction, which is also presented
in [BS20, Section E.5], is an adaptation of the left-to-right implication from
[BDK18, Theorem 4.3]).

Remember that regular list functions with atoms work over the class of
polynomial sets with atoms – i.e. the smallest class that contains 1 and A and
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is closed under ×, + and X∗. We start the construction by observing that every
element of every polynomial set with atoms can be encoded as a word over the
following alphabet:

Σ[A] = { ◦︸︷︷︸
element
of 1

, [ , ]︸︷︷︸
used for
X∗

, ( , )︸︷︷︸
used for
X×Y

, coproj1, coproj2︸ ︷︷ ︸
used for
X+Y

, ,︸︷︷︸
separator for
X×Y and X∗

}+ A︸︷︷︸
elements
of A

For example, here is an encoding of an element from (A2 + 1)∗:

[coproj1 (5, 8), coproj2 ◦, coproj1 (1, 2), coproj1 (7, 8), coproj2 ◦]

Thanks to this encoding, we can translate every regular list function with atoms
into a two-way transducer:

Lemma 84. For every regular list function with atoms f : X → Y , there is a
two-way transducer:

F : Σ∗[A] → Σ∗[A],

such that F(wx) outputs the encoding of f(x) (where wx denotes the Σ[A]-
encoding of x).

Proof. The proof is a standard induction on the construction of f as a regular
list function with atoms. The most interesting case is function composition
but, as explained in the last paragraph of Section 4.2.2, we already know that
single-use automata are closed under compositions.

We finish the construction, by observing, that for every polynomial orbit-
finite Γ, the following two functions can be implemented as single-use two-way
transducers:

TΓ : Γ∗ → Σ∗[A] T −1
Γ : Σ∗[A] → Γ∗,

where TΓ is a function that translates the input word (which is a polynomial set
with atoms) into its Σ[A]-encoding, and T −1

Γ is a one-way inverse of TΓ.

4.2.6 Compositions of primes ⊆ Regular list transductions
Finally, let us show how to translate compositions of single-use two-way primes
into regular list transductions with atoms (the construction is also presented
in [BS20, Section E.2]). Since regular list functions are (by definition) closed
under compositions, it suffices to show how to translate every prime function:

1. Letter-to-word homomorphism In this step, we construct h∗, for any
h : Σ →eq Γ∗ where Σ and Γ are polynomial orbit-finite. Similar as
in Section 4.2.4, we observe that there is a limit k on the length of the
outputs of h, which means that we can translate h into an equivalent
h′ : Σ→eq Γ≤k. As Γ≤k is polynomial orbit-finite, it follows by Lemma 23,
that h′ is a regular list function with atoms. This means that we can
construct h∗ in the following way:

Σ∗
map f ′
−−−→ (Γ≤k)∗

map toList≤k
−−−−−−−−−→ (Γ∗)∗

concat−−−−→ Γ∗,
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where toList≤k is the following tuple-to-list transformation:

toList≤k : X≤k → X∗.

We finish the construction by showing that toList≤k is a regular list
function. We start with toList1:

toList1 : X
rightI−→ X × I constε−→ X ×X∗ cons−→ X∗

Now, let us continue with toList≤2:

toList2 : X2 id×toList1−−−−−−−−→ X ×X∗ cons−−→ X∗

By continuing in this manner, we can construct toListi for every i ≤ k.
Finally, we combine all those functions into toList≤k using the [f1, . . . , fn]
combinator from Lemma 16.

2. Single-use propagation For the sake of clarity, we show how to construct
fsu-prop – the construction for fsu-prop × id is analogous. Consider the
following example input:

[1, ε, ε, ↓, ε, ε, 3, ε, ↓, 3, 2, ε, ↓, ↓, 3, ε]

We start by applying h∗ for the following h (we have already shown in the
previous item that h∗ is a regular list function):

h(ε) = ε h(↓) =↓ # h(a ∈ A) = #a

This transforms the input word into:

[#, 1, ε, ε, ↓, #, ε, ε, #, 3, ε, ↓, #, #, 3, #, 2, ε, ↓, #, ↓, #, #, 3, ε]

Next, we apply the block function:

[ [ ], [1, ε, ε, ↓], [ε, ε], [3, ε, ↓], [ ], [3], [2, ε, ↓], [↓], [ ], [3, ε] ]

Observe that every ↓ is the last element of some block, and that the output
produced by each ↓ is equal to the first letter of the ↓’s block (as long as
the block contains at most two letters – the output of a singleton block
[↓] is equal to [ε]). This means that we can produce the output for each
block using the following function:

fblock-out(b1 b
′ bn) =

{
ε b′ b1 if bn =↓
ε b′ ε otherwise

,

where b1 denotes the block’s first letter, bn denotes the last letter, and b′
denotes inner letters of the block. Observe, that due to the way the blocks
are constructed, we know that:

b1 ∈ A + ε, bn ∈ {ε, ↓}, and b′ ∈ ε∗.
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This definition of fblock-out only works blocks with at least two letters,
but the other cases are very simple: the empty block produces empty out-
put and all one-letter blocks produce [ε]. Observe that we can implement
the fblock-out function as a regular list function with atoms: First, we
use destr and reverse (together with some structural transformations,
such as distr) to split b into (b1, b

′, bn). Then, we can use the if-then-
else combinator from Example 25 together with cons, reverse (and some
structural functions) to construct the output. This finishes the construc-
tion, as we can now use map to apply fblock-out to every block, and combine
the results using concat.

3. Multiple-use propagation Again, we only show how to construct fprop –
the construction for fprop×id is analogous. The idea is very similar to the
one for single-use propagation (from the previous item). For this reason,
we only show how to implement the key component of the construction,
which is the following function:

replace : {#, } × ε∗ → {#, }∗,

which replaces every ε in the input word with the letter from the first
coordinate. For example:

( , [ε, ε, ε, ε]) 7→ [ , , , ]

Since {#, } is encoded as 1 + 1, we can use the if-then-else combinator
(from Example 25), and implement replace as follows10:

(map const#) ? (map const )

4. Map reverse This function can be implemented in the following way:

fmap-rev(Σ + #)∗
block−−−→ (Σ∗)

∗ map reverse
−−−−−−−−→ (Σ∗)

∗ concat−−−−→ Σ∗

The only problem with this construction is that it erases the #-separators.
However, it is not hard to see that we can reintroduce them before applying
the concat function.

5. Map duplicate We use a similar idea as for fmap-reverse. The only differ-
ence is that we have to implement the function duplicate : X∗ → X∗.
We start by showing how to concatenate two lists:

append : X∗ ×X∗ id×toList1−−−−−−−−→ X∗ × (X∗)
∗ append−→ (X∗)

∗ concat−→ X∗

Now we can implement duplicate in the following way:

X∗
copyX∗−−−−→ X∗ ×X∗ append

−−−−→ X∗

10It is worth mentioning that this idea does not work for replaceA : A× ε∗ → A∗. In fact,
it is not hard to see that replaceA cannot be implemented as a single-use two-way automaton,
which by Section 4.2.5, means that it is not a regular list function with atoms.
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Further work

Throughout the thesis, I have pointed out several open problems. This section
gathers them all in one place. For more information, about each of those prob-
lems follow the references to the sections where they were originally discussed,
or contact me directly.

1. Semantic definition of single-use functions. The definition of single-use
functions is quite syntactic in its nature, which limits their domain to poly-
nomial orbit-finite sets. This open question asks for a semantic definition
of single-use functions. (Compare with syntactic and semantic definitions
of equivariance in Section 1.1.) A possible approach might be to consider a
version of sets with atoms equipped with an action of all functions A→ A
or even all relations A × A (rather than only atom bijections). See the
introduction of Section 2.2 for context.

2. Nondeterministic single-use automata. A straightforward way of in-
troducing nondeterminism to single-use automata results in a model that
is too strong: It is not hard to construct a nondeterministic single-use
automaton that recognizes the language “The first letter appears again”
(which cannot be recognized by a deterministic single-use automaton).
This does not fit well in the picture of definitional robustness presented in
this thesis. This open question asks if there is a notion of nondeterminism
compatible with the single-use restriction. This seems to be connected
with developing a good notion of single-use relations. For context, see
Section 2.4.

3. Unambiguous single-use automata. It is worth noting that both exam-
ples from Section 2.4, which demonstrate that nondeterministic single-
use automata are stronger than deterministic ones, use automata that
are ambiguous (which means that some accepted words will always have
more than one accepting run). It follows that those examples cannot be
used to show that unambiguous automata are stronger than deterministic
ones. In fact, the question of whether unambiguous nondeterministic au-
tomata are equivalent to deterministic single-use automata remains open.
If the two models turned out to be equivalent, it would open a path to a
machine-based definition of single-use rational transductions. For context,
see Footnote 17 on Page 152.
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4. Local semigroup transductions over arbitrary orbit-finite sets. Note
that local semigroup transductions (Definition 19) are defined for all orbit-
finite alphabets, but their Krohn-Rhodes theorem only works for polyno-
mial orbit-finite alphabets. A counterexample is the single-use propaga-
tion of

(A
2

)
, which can be constructed as a local semigroup transduction

but not as a composition of single-use primes. One way to address this
issue would be to extend the set of single-use primes with the generalized
single-use propagation for every orbit-finite X (i.e. an extended version of
the function from Claim 26). However, the current proof of the theorem
only works for polynomial orbit-finite alphabets. This leaves the ques-
tion of whether compositions of these generalized primes are equivalent
to local rational semigroup transductions over orbit-finite alphabets open.
An analogous open question can be asked about local rational semigroup
transductions. For context, see the footnotes in Theorems 9 and 14.

5. Local semigroup transductions as two Mealy machines. Elgot-Mezei
Theorem ([EM63, Theorem 7.8]) shows that every rational function can
be expressed as a composition of one left-left-to-right and one right-to-left
Mealy machine. In contrast, in the proof of Theorem 14, we have used
multiple left-to-right and multiple right-to-left single-use Mealy machines.
It remains an open problem whether the Elgot-Mezei Theorem can be
generalized for single-use Mealy machines. For context see Footnote 22 on
Page 156.

6. Single-use restriction for total-order atoms. In this thesis, we have con-
sidered a set of atoms, whose elements can only be compared with respect
to equality. However, there are also other types of atoms that are studied
in the literature (see [Boj19, Chapter 3]). One example is the total-order
atoms, i.e. the set Q equipped with the relation ≤. Interestingly, Claim 23
fails for some of those other atoms (including the total-order atoms) which
breaks most of the proofs presented in this thesis. For this reason, develop-
ing a single-use theory for other kinds of atoms remains an open problem.
We are currently working on it together with Nathan Lhote. For context,
see Footnote 11 on Page 114.

7. Polyregular functions over infinite alphabets. Polyregular functions is
a class over finite alphabets that extends regular functions while keeping
many of their desirable properties (see [Boj22]). Our final open question
concerns finding a well-behaved class of polyregular functions over infinite
alphabets. It is harder than one might expect, as polyregular functions
seem to be very good at bypassing the single-use restriction. For context,
see introduction to Chapter 3.
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