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Abstract
In the following thesis we are studying some consequences of Bednorz-Latała
theorem concerning the characterization of the Bernoulli process given by the
collection (Bt)t∈T , where Bt =

∑
i≥1 εiti, (εi)i≥1 is a sequence of independent

Bernoulli variables satisfying P(εi = −1) = P(εi = 1) = 1/2 and T ⊂ `2. It
states that b(T ) := E supt∈T Bt is comparable with

inf{sup
t∈T1
|t|1 + γ2(T2, d2) : T ⊂ T1 + T2},

where ‖ · ‖1 is the `1 norm and γ2 is Talagrand’s γ2-number. The main results
of this thesis provide positive answers to the conjectures concerning decompo-
sitions infinitely divisible processes, empirical processes and selector processes
posed in [32]. They are based on the refolmulation due to M. Talagrand of the
lower bound of b(T ) in terms of a special functional∫

T

Iµ(t)µ(dt),

where µ is some probability measure on T .
This thesis includes also some generalizations of the contraction principle for
Bernoulli processes and Lévy-Ottaviani type of inequality for the Bernoulli pro-
cess with monotone coefficients.

AMS 2000 subject classifications: 60G15, 60G17, 60G50

Keywords: Bernoulli processes, infinitely divisible processes, process bound-
edness, chaining method

Rafał Martynek
September 2020
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Streszczenie
Niniejsza rozprawa poświęcona jest badaniom wniosków płynących z twierdzenia
Bednorza-Latały dotyczącego charakteryzacji procesu Bernoulliego rozumianego
jako rodzina (Bt)t∈T , gdzie Bt =

∑
i≥1 εiti, (εi)i≥1 jest ciągiem niezależnych

zmiennych Bernoulliego spełniających P(εi = −1) = P(εi = 1) = 1/2, T ⊂ `2.
Twierdzenie to mówi, że b(T ) := E supt∈T Bt porównywalne jest z

inf{sup
t∈T1
|t|1 + γ2(T2, d2) : T ⊂ T1 + T2},

gdzie ‖ · ‖1 jest normą w `1, a γ2 jest liczbą γ2 Talagranda. Główne wyniki
rozprawy dają pozytywną odpowiedź na hipotezy dotyczące dekompozycji pro-
cesów nieskończenie podzielnych, procesów empirycznych i procesów selektorów
postawionych w [32]. Wyniki te oparte są na przeformułowaniu pochodzącym od
M. Talagranda dolnego oszacowania b(T ) w terminach specjalnego funkcjonału∫

T

Iµ(t)µ(dt),

gdzie µ jest pewną miarą probabilistyczną na T .
Rozprawa zajmuje się również pewnymi uogólnieniami zasady kontrakcji dla
procesów Bernoulliego i nierównością typu Léviego-Ottavianiego dla procesów
Bernoulliego ze współczynnikami monotonicznymi.

Klasyfikacja tematyczna: 60G15, 60G17, 60G50

Słowa kluczowe: procesy Bernoulliego, procesy nieskończenie podzielne, ograniczenia
procesów, metoda łańcuchowa
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Chapter 1

Introduction

1.1 Upper and lower bounds of stochastic pro-
cesses

1.1.1 Brief history

The study of suprema of stochastic processes understood as a family of random
variables (Xt)t∈T indexed by some set T is one of the primal tasks in probability.
Precisely, we consider E supt∈T Xt and we look for upper and lower bounds of it
in terms of deterministic quantities related to the geometry of the index set T .
In order to guarantee that this quantity is well-defined we will assume that T
is countable or define E supt∈T Xt := supF⊂T E supt∈F Xt, where the supremum
runs over all finite subsets F of T . It is motivated by various theoretical prob-
lems such as continuity of sample paths of stochastic processes or estimates of
norms of random vectors.
The first successful result in this area concerns the centred Gaussian process
(Gt)t∈T . The fundamental observation was that the boundedness of this pro-
cess is determined by the structure of the metric space (T, d2), where d2(s, t) =
(E(Gt−Gs)

2)1/2, which is the Euclidean distance on T . It is now a classic, but
essential result due to Fernique [8] and Talagrand ([28] or [32, Theorem 2.2.18])
that

g(T ) = E sup
t∈T

Gt

is comparable with so-called γ2 number. To get the idea behind the definition
of this quantity one might consider a finite set T look at the following simple
observation based on the union bound. Notice that g(T ) = 2E sups,t∈T (Gt−Gs)
and for p ≥ 1

E sup
s,t∈T

(Gt −Gs) ≤
(
E sup
s,t∈T
|Gt −Gs|p

)1/p

≤

(
E
∑
s,t∈T

|Gt −Gs|p
)1/p

(1.1)

≤ |T |2/p sup
s,t∈T

(E|Gt −Gs|p)1/p,

where | · | denotes the cardinality of T . So, if we take p = 2n and |T | = 22n and
denote (E|Gt −Gs|p)1/p = ‖Gt −Gs‖p we get that

g(T ) ≤ 4 sup
s,t∈T
‖Gt −Gs‖2n ≤ L2n/2 sup

s,t∈T
d2(s, t) = 2n/2∆2(T ),
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where we used the fact (see e.g. [35, (2.11)]) ‖Gt‖p ≤ L
√
p‖Gt‖2 and denoted

by ∆2(·) the diameter of the set with respect to distance d2. Here and in the
rest of this dissertation we denote by L a universal constant which might be
different at each occurance. To define γ numbers we will need the definition of
admissible sequence of partititions of T .

Definition 1. Let Nn = 22n for n ≥ 1 and N0 = 1 and consider T with some
distance d. We will call nested sequence of partitions (An)n≥0 of set T admissible
if it holds that |A0| = 1 together with |An| ≤ Nn for n ≥ 1, where by | · | we
denote the cardinality.

By An(t) we will denote the unique element of partition An that contains t ∈ T
and by ∆(·) the diameter of set in distance d. Given α > 0 define

γα(T, d) = inf sup
t∈T

∑
n≥0

2n/α∆(An(t)),

where the infimum is taken over all admissible sequences. The Fernique-Talagrand
bound (for historical reasons also referred as the Majorising Measure Theorem)
states that there is a universal constant L such that

1

L
γ2(T, d2) ≤ g(T ) ≤ Lγ2(T, d2), (1.2)

where d2 is an Euclidean distance on T . The definition of admissible sequence
of partitions as well as of γ2 number might look confusing at the first sight. In
order to better understand the above inequality one should look closer into the
idea of generic chaining (see [32, Chapter 2] or [35, Chapter 8]). The upper
bound should be treated as a strengthening of a Dudley’s entropy bound ([35,
Theorem 8.1.3], [32, Proposition 2.2.10]). It follows by combining the union
bound and the increment condition (see [32, (1.4)], [35, (2.10)]) given by

∀u > 0, P(|Gt −Gs| ≥ u) ≤ 2 exp

(
− u2

d2(s, t)2

)
.

Equivalently, we can write already mentioned fact the ‖Gt−Gs‖p is comparable
with √p‖Gt −Gs‖2. The above condition combined with the chaining method
motivates the definition of γ2 number. Method of obtaining upper bounds
will be explained in Section 1.2. The lower bound is a result of the essential
partitioning scheme which is a multiscale combination of Sudakov’s minoration
(see e.g. [35, Theorem 7.4.1] or [32, p. 2.4.2]) with concetration inequality ([32,
Lemma 2.4.7]). The minoration is in some sense reverse of (1.1) i.e. consider
|T | = 22n and A > 0. It states that

if ∀s, t ∈ T, ‖Gt −Gs‖2n ≥ A, then g(T ) ≥ L−1A.

We will outline the generalized form of the partitioning scheme in Section 1.1.2.
For the most insightful account of developments leading to the modern formu-
lation of the Majorising Measure Theorem given in (1.2) see [32, Section 2.8].
The natural extension of the Gaussian case follows from the fact that separable
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Gaussian process has a canonical representation given by the Karhunen-Loève
representation ([19, Corollary 5.3.4])

Gt :=
∑
i≥1

tigi,

where gi’s are independent standard normal variables. The problem then is to
consider the processes generated by random variables other than gi’s, for exam-
ple exponential or Weibull variables. This leads to the definition of canonical
stochastic processes. For T ⊂ `2 and t ∈ T define independent symmetric ran-
dom variables Yi satisfying for u > 0 and p ≥ 1, P(|Yi| ≥ u) ≤ 2 exp(−up/2)
and

Xt :=
∑
i≥1

tiYi.

The increment condition can be then deduced from the following (see [33, Ex-
ercise 7.2.2]) for p ≤ 2 and q such that 1/p+ 1/q = 1,

P(|Xt| ≥ u) ≤ 2 exp

(
− 1

L
min

(
u2∑
i≥1 t

2
i

,
up

(
∑

i≥1 |ti|q)p/q

))
,

while for p > 2

P(|Xt| ≥ u) ≤ 2 exp

(
− 1

L
max

(
u2∑
i≥1 t

2
i

,
up

(
∑

i≥1 |ti|q)p/q

))
.

Let us denote by d∞ and dp the distances induced by `∞ and `p norms respec-
tively. As will become clear from Theorem 3 (see also [33, Chapter 7.2]) this
implies that for p = 1,

E sup
t∈T

Xt ≤ L(γ2(T, d2) + γ1(T, d∞)),

for p ≤ 2,
E sup

t∈T
Xt ≤ L(γ2(T, d2) + γp(T, dq))

and for p > 2, we get E supt∈T Xt ≤ Lγ2(T, d2) and E supt∈T Xt ≤ Lγp(T, dq),
which can be interpolated to get

E sup
t∈T

Xt ≤ L inf{(γ2(T1, d2) + γp(T2, dq)) : T ⊂ T1 + T2}.

The above inequalities can be reversed (see [33, Chapter 7.2], [32, Chapter 10.2])
which should be treated as a generalization of the Majorising Measure Theorem.
We give the account of this result in Section 2.2.
A process of the crucial importance for our study is the Bernoulli process which
can be seen as a limiting case of the previous example when p = ∞. First, by
(εi)i≥1 we denote a sequence of random signs (Bernoulli sequence) i.e. P(εi =
±1) = 1/2. By the Bernoulli process we mean a collection of random variables
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(Bt)t∈T , where
Bt :=

∑
i≥1

tiεi

and T is again a subset of `2. We consider a quantity

b(T ) := E sup
t∈T

Bt.

We can bound b(T ) from above as follows. On the one hand, we have the obvious
upper bound given by |Bt| ≤ ‖t‖1 =

∑
i≥1 |ti| so that b(T ) ≤ supt∈T ‖t‖1.

On the other hand, we can observe that if we consider a canonical Gaussian
process Gt =

∑
i≥1 tigi, where gi’s are independent standard normal variables

independent also of εi’s then by Jensen’s inequality we have the following bound

g(T ) = E sup
t∈T

Gt = E sup
t∈T

∑
i≥1

tiεi|gi| ≥ E sup
t∈T

∑
i≥1

tiεiE|gi| =
√

2

π
b(T ).

With (1.2) in hand we see that b(T ) can be bounded from above by supt∈T ‖t‖1

and γ2(T, d2). Formally, since obviously if T ⊂ T1 + T2 = {t1 + t2 : t1 ∈ T1, t
2 ∈

T2} then b(T ) ≤ b(T1) + b(T2) we can formulate the upper bound as

b(T ) ≤ L inf{sup
t∈T1
‖t‖1 + g(T2) : T ⊂ T1 + T2}

≤ L inf{sup
t∈T1
‖t‖1 + γ2(T2) : T ⊂ T1 + T2}.

The milestone result due to Bednorz and Latała states that the above bound
can be reversed. It was conjectured by Fernique and the problem was open for
about 25 years as a Bernoulli conjecture until the celebrated paper of mentioned
authors (see [2]). The central theme of this dissertation will be a study of
random series of functions which are conditionally Bernoulli processes and the
main results obtained are consequences of this theorem.

Theorem 1. Let T ⊂ `2. There exists a universal constant L such that

inf{γ2(T1, d2) + sup
t∈T2
‖t‖1;T ⊂ T1 + T2} ≤ Lb(T ).

1.1.2 General partitioning scheme

In order to prove lower bounds such as in (1.2) or Theorem 1 we have to build
appropriate sequence of partitions of the index set T . The crucial concept is
to relate the geometry of T with the structure of the stochastic process by
considering distances on T induced by this process together with Sudakov’s
minoration and concentration inequality. The main step when going beyond
the Gaussian case is to consider the whole family of distances. We will now
provide a general setting after [32, Chapter 10] and we will consider a specific
examples in Chapter 4 and 5.
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Consider a family of maps (ϕj)j∈Z such that

ϕj : T × T → R ∪ {∞} , ϕj+1 ≥ ϕj ≥ 0 , ϕj(s, t) = ϕj(t, s).

Define
Bj(t, c) = {s ∈ T : ϕj(s, t) ≤ c}.

The idea which meets the geometry of the set T with the stochastic process
are functionals which satisfy so-called growth condition (see [32, Section 2.3]
for the introduction in the Gaussian case). Functionals we want to consider are
non-decreasing maps from subsets of T to R+. The examples to bear in mind
are γ2(T, d2) or E supt∈T Xt. Let Fn,j denote the functional and assume that

Fn+1,j ≤ Fn,j , Fn,j+1 ≤ Fn,j.

Definition 2. We say that functionals Fn,j satisfy the growth condition for
r = 2κ−3, κ ∈ Z, if the following occurs. Consider any j ∈ Z, any n ≥ 1 and
m = Nn. Consider any sets (Hl)1≤l≤m that are separated in the following sense:
there exist points u, t1, . . . , tm in T for which Hl ⊂ Bj+2(tl, 2

n+κ) and

∀l, l′ ≤ m, l 6= l′, ϕj+1(tl, tl′) ≥ 2n+1, (1.3)

∀l ≤ m, tl ∈ Bj(u, 2
n). (1.4)

Then,
Fn,j(

⋃
l≤m

Hl) ≥ 2nr−j−1 + min
l≤m

Fn+1,j+1(Hl). (1.5)

To get the intuition behind this definition it is good to keep in mind the Su-
dakov’s minoration (see [32, Lemma 2.4.2]) for Gaussian processes which states
that if we have a well-controlled number of points which are separated i.e.
∀l, l′ ≤ m, l 6= l′ for some number m (think of 2n) we have that d2(tl, tl′) ≥ a
then

E sup
l≤m

Gtl ≥
a

L

√
logm.

This can be generalized for subsets of well-separated balls (see [32, Proposition
2.4.9]). If points tl and numbers m and a are as previously and if we consider
subsets Hl ⊂ B(tl, σ) for σ > 0 sufficiently smaller than a by denoting H =
∪l≤mHl we have

E sup
t∈H

Gt ≥
a

L

√
logm+ min

l≤m
E sup
t∈Hl

Gt,

which should be compared with (1.5). Indeed, let us look at the example, where
ϕj(s, t) = r2jd(s, t)2 for a distance d on T . Notice that by denoting B(t, r) the
ball in distance d centred at t of radius r we have

Bj(t, c) = B(t, r−j
√
c),
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so the condition (1.3) means that

∀l, l′ ≤ m, l 6= l′, d(tl, tl′) ≥ 2(n+1)/2r−j−1 := a. (1.6)

It can then be deduced (see discussion after [32, Definition 10.1.1]) that (1.6)
reads

Fn,j(
⋃
l≤m

Hl) ≥ 2(n−1)/2a+ min
l≤m

Fn+1,j+1(Hl).

This suggest that (1.5) is uniform in j with the term r−j−1 being the normal-
ization factor. Also, it recovers the growth condition in the Gaussian case [32,
Definition 2.7.1] and the version of Sudakov’s minoration explained above for

Fn,j(H) = F (H) = g(H).

Let us also record an important fact that the functional given by γ2(T, d2)
satisfies the growth condition (see [32, Theorem 2.3.15]).
The general partitioning scheme is the following.

Theorem 2. Let Fn,j be functionals as above and assume that they satisfy the
growth condition of Definition 2. Suppose that for some j0 ∈ Z we have

∀s, t ∈ T, ϕj0(s, t) ≤ 1. (1.7)

Then, there exists an admissible sequence of partitions (An)n≥0 and for each
A ∈ An an integer j(A) and a point tn,A ∈ T such that

A ∈ An, C ∈ An−1, A ⊂ C =⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C) + 1, (1.8)

∀t ∈ T,
∑
n≥0

2nr−jn(An(t)) ≤ L(rF0,j0(T ) + r−j0), (1.9)

∀n ≥ 0, ∀A ∈ An, A ⊂ Bjn(A)(tn,A, 2
n). (1.10)

Looking back at the example ϕj(s, t) = r2jd(s, t)2, we see that (1.7) means that
∆(T ) ≤ r−j0 while by (1.10) we have ∆(A) ≤ 2r−jn(A)2n/2, so by (1.9) we have

∀t ∈ T,
∑
n≥0

2n/2∆(An(t)) ≤ L(rF0,j0(T ) + r−j0).

Now, if we take j0 to be the largest integer for which ∆(T ) ≤ r−j0 the we
conclude that

γ2(T, d) ≤ L(rF0,j0 + ∆(T ))

which recovers the lower bound in Majorising Measure Theorem [33, Theorem
2.8.1] by defininig F0,j0 = g(T ) and observing that ∆(T ) ≤

√
2πg(T ).

The reason why we only give a brief summary of the powerful tool given in
Theorem 2, the proof of which is of separate interest, is the fact that in the
setting we want to work in we will not be able to apply the general parti-
tioning scheme. However, it will be helpful in refolmulating the lower bound of
the Bernoulli process. We will be explain this in much more detail in Chapter 4.



1.2. Tools for upper bounds 7

1.1.3 Random series of functions

The main results of this dissertation concern lower bounds for infinitely divisible
processes, empirical processes and selector processes. Each of these processes
can be treated as conditionally Bernoulli process. The study of such processes
is in some sense a natural next step of investigation after characterization of
Bernoulli processes. Historically though it was the study of random Fourier
sequence conveyed by X. Fernique (see [32, Chapter 3.3] and [2, Section 8])
which inspired the questions on Bernoulli process and the fact that symmetric
random Fourier series can be interpreted as conditionally Bernoulli series played
the main role in the Marcus-Pisier theorem (see [32, Theorem 3.2.1]).
A leitmotiv of the theory of suprema of stochastic processes developed and
gathered by M. Talagrand in [32] is that the stochastic process which is condi-
tionally a Bernoulli process can be decomposed into the positive part and the
part which captures all possible cancellations between the terms and which can
be explained by the chaining. This phenomenon was already present in the
Bernoulli case where the bound supt∈T2 ‖t‖1 should be perceived as the part
of the process which owes nothing to cancellation while γ2(T1, d2) explains the
part of the process which gathers all the cancellations.
It will be convenient to work in the general setting of random series of functions
to formulate the main question. Let us consider an index set T , and a random
sequence (Zi)i≥1 of functions on T . This sequence does not have to be indepen-
dent (as we will see in Chapter 4). Consider an independent Bernoulli sequence
(εi)i≥1, which is independent of the sequence (Zi)i≥1. Define Xt =

∑
i≥1 εiZi(t).

Our goal is to provide under certain conditions a lower bound of the quantity

S := E sup
t∈T

Xt.

As we will outline in Sections 1.2 and 1.3 the question of upper bounds is
significantly easier. Let us skip the usual measurability of S discussion now for
the sake of exposure and come back to it in Chapter 2. The crucial property
of the series Xt is that conditioned on the Zi we are considering a Bernoulli
process.
As introduced before, there are three important examples of processes which
can be expressed as such a series. The first class are infinitely divisible processes
which have series represantation due to Rosiński [23]. This case will be treated
in detail in Chapter 4 and the main tools presented there wil be used for another
two classes of processes which are empirical processes and selector processes.
The contents of the next sections follow closely the state of art gathered in [33]
and [32]. They aim to present the upper bounds which are already known and
which we want to reverse as well as very useful symetrization inequalities in the
spirit of Giné-Zinn [10].

1.2 Tools for upper bounds
The following is a known result stating that if the increments of a centred
process satisfy Bernstein’s inequality, then we can control the supremum of this
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process from above. We restate it here after [33] and [32] together with the
proof for completeness.

Theorem 3. Consider a set T provided with two distances d1 and d2. Consider
a centered process (Xt)t∈T which satisfies ∀s, t ∈ T , ∀u > 0

P (|Xs −Xt| ≥ u) ≤ 2 exp

(
−min

(
u2

d2(s, t)2
,

u

d1(s, t)

))
. (1.11)

Then
E sup
s,t∈T
|Xs −Xt| ≤ L(γ1(T, d1) + γ2(T, d2)).

First, we need the following result which belongs independently to Latała and
Mendelson (see [32, Excercise 2.2.25], [33, Theorem 2.6.10] or [17]). Consider a
distance δn(s, t) = ‖Xs − Xt‖2n for n ≥ 0, where by ‖X‖p we denote the p-th
norm of random variable X i.e. (E|X|p)1/p. Let Dn(·) be a diameter in the
distance δn. This distance will be important in Chapter 2 and another form of
the next result will be provided in Section 2.2, we therefore omit the proof.

Theorem 4. Consider an admissible sequence of partitions (An)n≥0 of parti-
tions of T . Then,

E sup
s,t∈T
|Xs −Xt| ≤ L sup

t∈T

∑
n≥0

Dn(An(t)). (1.12)

We see that what we need to show is the following.

Theorem 5. Suppose that (1.11) is satisfied. Then, there exists an admissible
sequence of partitions (An)n≥0 such that

sup
t∈T

Dn(An(t)) ≤ L(γ1(T, d1) + γ2(T, d2)). (1.13)

Proof. Denote by ∆j(A) the diameter of the set A in the distance dj, j = 1, 2.
Consider an admissible sequence (Bn)n≥0 of partitions of T such that

∀t ∈ T,
∑
n≥0

2n∆1(Bn(t)) ≤ 2γ1(T, d1) (1.14)

and an admissible sequence (Cn)n≥0 such that

∀t ∈ T,
∑
n≥0

2
n
2 ∆2(Cn(t)) ≤ 2γ2(T, d2), (1.15)

where we denote by Bn(t) and Cn(t) the unique element of Bn and Cn respec-
tively which contains t. We define the partition An by A0 = {T} and for n ≥ 1,
An = {B∩C : B ∈ Bn−1, C ∈ Cn−1}. Obviously, it is nested because both (Bn)
and (Cn) are nested. Moreover, for n ≥ 1, |An| ≤ Nn−1 · Nn−1 = Nn, so An is
admissible. Now, notice that for non-negative random variable Y satisfying for
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some A,B > 0 and all u > 0

P(Y ≥ u) ≤ 2 exp

(
−min

(
u2

A2
,
u

B

))
we have that ‖Y ‖p ≤ L(A

√
p+Bp). Indeed we have

EY p =

∫ ∞
0

ptp−1P(Y ≥ t)dt ≤
∫ ∞

0

ptp−1(exp(− u
2

A2
) + exp(− u

B
))dt

It then remains to observe that up−1 exp(−u2) ≤ Lp(p−1)/2 exp(−u2/2) and ap-
ply it for u = t/A for the first integral and that up−1 exp(−u) ≤ Lpp−1 exp(−u/2)
and apply it for u = t/B for the second integral. Having established this we see
that Dn(An(t)) ≤ L(2n∆1(Bn−1))+2n/2∆2(Cn−1), so (1.13) follows by summing
(1.14) and (1.15).

Proof of Theorem 3. It now follows by combining (1.12) and Theorem 5.

We will use the following form of Bernstein’s inequality.

Theorem 6. Let (Wi)i≥1 be a sequence of independent random variables with
EWi = 0 and for some number U , |Wi| ≤ U for each i. Then, for v > 0

P

(∣∣∣∣∣∑
i≥1

Wi

∣∣∣∣∣ ≥ v

)
≤ 2 exp

(
−min

(
v2

4
∑

i≥1 EW
2
i

,
v

2U

))
. (1.16)

Proof. We will argue using Chebychev’s inequality, so we will need a bound for
E exp(λ|Wi|), λ ∈ R. To this end, observe that for |x| ≤ 1 we have

|ex − 1− x| ≤ x2
∑
k≥2

1

k!
= x2(e− 2) ≤ x2,

so since EWi = 0 for U |λ| ≤ 1 we have

|E exp(λWi)− 1| ≤ λ2EW 2
i .

So, E exp(λWi) ≤ 1 + λ2EW 2
i ≤ exp(λ2EW 2

i ) and

E exp

(
λ
∑
i≥1

Wi

)
=
∏
i≥1

E exp(λWi) ≤ exp

(
λ2
∑
i≥1

EW 2
i

)
.

Therefore, for 0 ≤ λ ≤ 1/U

P

(∑
i≥1

Wi ≥ v

)
≤ exp(−λu) exp

(
λ
∑
i≥1

EWi

)

≤ exp

(
λ2
∑
i≥1

W 2
i − λv

)
.
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Finally, we optimize λ. Namely, if Uv ≤ 2
∑

i≥1 EW
2
i put λ = v/(2

∑
i≥1 EW

2
i )

to get the bound exp(−v2/(4
∑

i≥1 EW
2
i )). If Uv > 2

∑
i≥1 EW

2
i , put λ = 1/U

and observe that

1

U2

∑
i≥1

EW 2
i −

v

U
≤ Uv

2U2
− v

U
= − v

2U
.

Therefore, we get the bound

P

(∑
i≥1

Wi ≥ v

)
≤ exp

(
−min

(
v2

4
∑

i≥1 EW
2
i

,
v

2U

))
.

We get the same bound for P(
∑

i≥1Wi ≤ −v) by changing Wi into −Wi.

1.3 Upper bounds for empirical and selector pro-
cesses

Let us now present two out of three main processes we want to study. We
postpone introducing infinitely divisible processes until Chapter 4.
First example is constituted by empirical processes. We will follow a standard
notation used in the study of such processes. Let (Ω, µ) be a probability space
and F be a bounded, countable subset of L2(µ) (it is the only instance when
we do not denote the index set by T ). Since F is countable we do not have
to distinguish between actual functions on Ω and classes of functions in L2(µ).
Denote µ(f) =

∫
fdµ. Consider independent random variables (Xi)i≤N all

distributed like µ. In this case the object of our study is

SN(F) = E sup
f∈F

∣∣∣∣∣∑
i≤N

(f(Xi)− µ(f))

∣∣∣∣∣ . (1.17)

The quantity supf∈F |
∑

i≤N(f(Xi)−µ(f))| is called discrepancy bound because
since ∣∣∣∣∣∑

i≤N

(f(Xi)− µ(f))

∣∣∣∣∣ = N

∣∣∣∣∣ 1

N

∑
i≤N

f(Xi)− µ(f)

∣∣∣∣∣
it measures the discrepancy between the true measure µ(f) and the ’empirical
measure’ N−1

∑
i≤N f(Xi). First, observe that

SN(F) ≤ 2E sup
f∈F
|f(Xi)|, (1.18)

because

SN(F) ≤ E sup
f∈F

∑
i≤N

|f(Xi)− µ(f)| ≤ E sup
f∈F

∑
i≤N

|f(Xi)|+N sup
f∈F

µ(f)

and by Jensen’s inequality N supf∈F µ(f) ≤ E supf∈F
∑

i≤N |f(Xi)|. Moreover,
we can now apply Bernstein’s inequality (1.16) for Wi = f(Xi)− µ(f) if i ≤ N
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and Wi = 0 if i > 0. Notice that EWi = 0, |Wi| ≤ 2 sup |f | = 2‖f‖∞ and
EW 2

i ≤ Ef 2(Xi) = ‖f‖2
2. We get that

P

(∣∣∣∣∣∑
i≤N

(f(Xi)− µ(f))

∣∣∣∣∣ ≥ v

)
≤ 2 exp

(
−1

4
min

(
v2

N‖f‖2
2

,
v

‖f‖∞

))
.

Finally, define Zf =
∑

i≤N(f(Xi)−µ(f)) and assume 0 ∈ F . Then, by Theorem
3

E sup
f∈F
|Zf | ≤ E sup

f,f ′∈F
|Zf − Zf ′| ≤ L(γ2(F , 2

√
Nd2) + γ1(F , 4d∞))

= L(2
√
Nγ2(F , d2) + 4γ1(F , d∞)), (1.19)

where d2 and d∞ are distances induced by L2(µ) and L∞(µ) norms repsectively.
The second example is a selector process. For a fixed number 0 < δ < 1 we
define a sequence of random variables (δi)i≤M which is 1 with probability δ and 0
with probability 1−δ. These variables are called selectors becasue they allow to
select a random subset of {1, 2, . . . ,M} of cardinality equal about δM . By the
selector process we understand the family of random variables

∑
i≤M ti(δi − δ),

where t varies over the set T of sequences. Similarly as we have seen before we
want to study the quantity

δ(T ) = E sup
t∈T

∣∣∣∣∣∑
i≤M

ti(δi − δ)

∣∣∣∣∣ . (1.20)

First type of the control we have over δ(T ) is again

δ(T ) ≤ E sup
t∈T

∑
i≤M

|ti|δi. (1.21)

To apply Bernstein’s inequality define Wi = ti(δi− δ) for i ≤M and Wi = 0 for
i > M . Obviously, EWi = 0. Moreover, |Wi| = |ti||δi − δ| ≤ 2 maxi≤M |ti| and
EW 2

i = δ(1− δ)t2i ≤ δt2i , so (1.16) implies

P

(∣∣∣∣∣∑
i≤M

ti(δi − δ)

∣∣∣∣∣ ≥ v

)
≤ 2 exp

(
−1

4
min

(
v2∑
i≥1 t

2
i

,
v

maxi≤M |ti|

))
.

As in the case of empirical processes Theorem 3 implies that

δ(T ) ≤ L(
√
δγ2(T, d2) + γ1(T, d∞)), (1.22)

where d2
2(s, t) =

∑
i≤M |ti − si|2 and d∞(s, t) = maxi≤M |ti − si|.

It is good to see both of the presented cases as examples of a general case i.e.
bounding

S = E sup
t∈T

∑
i≤N

εiZi(t).

Let us assume that Zi = 0 for i > N and that Zi are independent. They
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however do not have to be identically distributed. Let λi be the law of Zi
so that it is a probability measure on the space F = RT of functions on T .
Let ν =

∑
i≤N λi. We can therefore see the elements of T as functions on

the measured space (F , ν) and the two distances we want to use is d2 and d∞
induced by L2(ν) and L∞(ν) norm respectively. What might be confusing is the
fact that we use functions Zi(t) rather than t(Zi). The fact is we can use them
interchangeably as will become clear in Chapter 5 (see also discussion after [32,
Theorem 11.2.10]). After the two examples it should not be surprising that we
can bound S not only by E supt∈T

∑
i≤N |Zi(t)| but also as follows

S ≤ L(γ2(T, d2) + γ1(T, d∞)). (1.23)

Reversing the bounds (1.18) and (1.19) in the case of empirical processes was a
subject of [32, Research problem 9.1.3], while reversing the bounds (1.21) and
(1.22) in the case of selector processes was a subject of [32, Conjecture 12.3.3]
under the name of Generalized Bernoulli Conjecture. We will answer both
of them positively in Chapter 5. The results will be formulated in the form
of decomposition theorem similarly as for the Bernoulli process in Bednorz-
Latała Theorem (Theorem 1). We will formulate the same upper bounds and
decomposition for infinitely divisible processes in Chapter 4. At this stage it
might not be clear that both of these results will folllow from the same approach.
It might be even more unclear where do Bernoulli variables pop out in the whole
story since they are not present in the definition of SN(F) nor δ(T ). We will
clarify this in the next section.

1.4 Symmetrization inequalities
We start this section with a crucial property of a Bernoulli process called a
comparison principle. It will be studied in much more detail in Chapter 2. In
its’ simplest form it states what follows. For the proof see e.g. [32, Theorem
5.3.6].

Theorem 7. Let θi’s be contractions from R to R i.e. for each i ≥ 1, |θi(s)−
θi(t)| ≤ |s− t| and θi(0) = 0. Then for each finite subset T of `2 we have

E sup
t∈T

∑
i≥1

θi(ti)εi ≤ E sup
t∈T

∑
i≥1

tiεi. (1.24)

We will need a following consequence of the comparison principle.

Corollary 1. For each finite subset T of `2 we have that

E sup
t∈T

∣∣∣∣∣∑
i≥1

|ti|εi

∣∣∣∣∣ ≤ 2E sup
t∈T

∣∣∣∣∣∑
i≥1

tiεi

∣∣∣∣∣ .
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Proof. Denote by x+ = max{x, 0}, so that |x| = x+ + (−x)+. Hence, by
symmetry

E sup
t∈T

∣∣∣∣∣∑
i≥1

|ti|εi

∣∣∣∣∣ ≤ 2E sup
t∈T

(∑
i≥1

|ti|εi

)+

= 2E sup
t∈T ′

∑
i≥1

|ti|εi,

where T ′ = T ∪ {0}. By (1.24) applied for T ′ and the contraction given by | · |
we get

E sup
t∈T ′

∑
i≥1

|ti|εi ≤ E sup
t∈T ′

∑
i≥1

tiεi.

The result follows since E supt∈T ′
∑

i≥1 tiεi ≤ |E supt∈T
∑

i≥1 tiεi|.

In order to see that S is the correct quantity to bound we need the following
inequalities (cf.[33, Lemma 9.1.11]).

Theorem 8. Let SN(F) be as in (1.17) and assume for each f ∈ F , µ(f) = 0.
Then,

E sup
f∈F

∣∣∣∣∣∑
i≤N

εif(Xi)

∣∣∣∣∣ ≤ 2SN(F). (1.25)

For δ(T ) as in (1.20) we have

E sup
t∈T

∣∣∣∣∣∑
i≤M

εitiδi

∣∣∣∣∣ ≤ 3δ(T ) (1.26)

Proof. We start with (1.25). We will condition on the sequence (εi)i≤N . For
this define I = {i ≤ N : εi = 1} and J = {i ≤ N : εi = −1}, so that

E sup
f∈F

∣∣∣∣∣∑
i≤N

εif(Xi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Xi)

∣∣∣∣∣+ E sup
f∈F

∣∣∣∣∣∑
i∈J

f(Xi)

∣∣∣∣∣ .
Since Ef(Xi) = 0 for each f ∈ F and i ≤ N we can denote by EI the expacta-
tion with respect to Xi’s for i /∈ I and by Jensen’s inequality deduce that

sup
f∈F

∣∣∣∣∣∑
i∈I

f(Xi)

∣∣∣∣∣ = sup
f∈F

∣∣∣∣∣EI
∑
i≤N

f(Xi)

∣∣∣∣∣ ≤ EI sup
f∈F

∣∣∣∣∣∑
i≤N

f(Xi)

∣∣∣∣∣ .
We get the same inequality for J and get (1.25) by taking expactions of sides
and summating.
Now, we move to the proof of (1.26). First, observe that by triangle inequality

E sup
t∈T

∣∣∣∣∣∑
i≤M

εitiδi

∣∣∣∣∣ ≤ E sup
t∈T

∣∣∣∣∣∑
i≤M

εiti(δi − δ)

∣∣∣∣∣+ δE

∣∣∣∣∣∑
i≤M

εiti

∣∣∣∣∣ . (1.27)
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Consider an independent copy of the sequence (δi)i≤M given by (δ′i)i≤M inde-
pendent also of εi’s. By the triangle inequality we have

E sup
t∈T

∣∣∣∣∣∑
i≤M

ti(δi − δ′i)

∣∣∣∣∣ ≤ 2δ(T ). (1.28)

Observe that by Jensen’s inequality we have

E sup
t∈T

∣∣∣∣∣∑
i≤M

ti|δi − δ′i|

∣∣∣∣∣ ≥ E sup
t∈T

∣∣∣∣∣∑
i≤M

tiE|δi − δ′i|

∣∣∣∣∣ .
Since E|δi − δ′i| = 2δ and (εi|δi − δ′i|)i≤M has the same distribution as (εi(δi −
δ′i))i≤M and (δi − δ′i)i≤M by (1.28) we can write

2δE

∣∣∣∣∣∑
i≤M

εiti

∣∣∣∣∣ ≤ E sup
t∈T

∣∣∣∣∣∑
i≤M

ti|δi − δ′i|

∣∣∣∣∣ ≤ 2δ(T ). (1.29)

Again, by Jensen’s inequality we get

E sup
t∈T

∣∣∣∣∣∑
i≤M

εiti(δi − δ)

∣∣∣∣∣ ≤ E sup
t∈T

∣∣∣∣∣∑
i≤M

εiti(δi − δ′i)

∣∣∣∣∣ ≤ 2δ(T ). (1.30)

Combining (1.27), (1.29) and (1.30) yields (1.26).

Both (1.25) and (1.26) suggest that we want to consider t(Zi) given by f(Xi)
in the empirical case and by δiti in the selector case. The importance of next
results which are Giné-Zinn type of inequalities [10] will become apparent along
the way of proving the Decomposition Theorems.

Theorem 9. We have

E sup
f∈F

∑
i≤N

|f(Xi)| ≤ N sup
f∈F

µ(f) + 4E sup
f∈F

∣∣∣∣∣∑
i≤N

εif(Xi)

∣∣∣∣∣ . (1.31)

and
E sup

t∈T

∑
i≤M

δi|ti| ≤ δ sup
t∈T

∑
i≤M

|ti|+ 12δ(T ). (1.32)

Proof. First,

∑
i≤N

|f(Xi)| ≤
∑
i≤N

E|f(Xi)|+

∣∣∣∣∣∑
i≤N

(|f(Xi)| − E|f(Xi)|)

∣∣∣∣∣
So,

E sup
f∈F

∑
i≤N

|f(Xi)| ≤ sup
f∈F

∑
i≤N

E|f(Xi)|+ E sup
f∈F

∣∣∣∣∣∑
i≤N

(|f(Xi)| − E|f(Xi)|)

∣∣∣∣∣ (1.33)
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Observe that
∑

i≤N E|f(Xi)| = Nµ(f). To deal with the second term consider
an independent copy (X ′i)i≤N of (Xi)i≤N and note that (|f(Xi) − |f(X ′i)|) has
the same distribution as εi(|f(Xi)− |f(X ′i)|). So, by Jensen’s inequality

E sup
f∈F

∣∣∣∣∣∑
i≤N

(|f(Xi)| − E|f(Xi)|)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣∑
i≤N

(|f(Xi)| − |f(X ′i)|)

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣∑
i≤N

εi(|f(Xi)| − |f(X ′i)|)

∣∣∣∣∣ .
By triangle inequality

E sup
f∈F

∣∣∣∣∣∑
i≤N

εi(|f(Xi)| − |f(X ′i)|)

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣∑
i≤N

εi|f(Xi)|

∣∣∣∣∣ .
The last step is to apply Corollary 1 for a given value of Xi to obtaian

E sup
f∈F

∣∣∣∣∣∑
i≤N

εi|f(Xi)|

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣∑
i≤N

εif(Xi)

∣∣∣∣∣ .
The same argument applies to (1.32). We write

E sup
t∈T

∑
i≤M

δi|ti| ≤ δE sup
t∈T

∑
i≤M

|ti|+ E sup
t∈T

∣∣∣∣∣∑
i≤M

(δi − δ)|ti|

∣∣∣∣∣ . (1.34)

Introduce again (δ′i)i≤M the independent copy of (δi)i≤M and the Bernoulli se-
quence (εi)i≤M independent of both sequences. By Jensen’s inequality and the
fact that (εi(δi − δ′i))i≤M has the same distribution as (δi − δ′i)i≤M we get

E sup
t∈T

∣∣∣∣∣∑
i≤M

(δi − δ)|ti|

∣∣∣∣∣ ≤ E sup
t∈T

∣∣∣∣∣∑
i≤M

(δi − δ′i)|ti|

∣∣∣∣∣ = E sup
t∈T

∣∣∣∣∣∑
i≤M

εi(δi − δ′i)|ti|

∣∣∣∣∣ .
Now,

E sup
t∈T

∣∣∣∣∣∑
i≤M

εi(δi − δ′i)|ti|

∣∣∣∣∣ ≤ 2E sup
t∈T

∣∣∣∣∣∑
i≤M

εiδi|ti|

∣∣∣∣∣ ≤ 4E sup
t∈T

∣∣∣∣∣∑
i≤M

εiδiti

∣∣∣∣∣ ,
where in the last inequality we applied Corollary 1 for given value of δi. We use
this bound in (1.34) and conclude (1.32) by (1.26).

1.5 Overview of the following chapters
The heart of this dissertation lies in Chapters 4 and 5, where the three hypothe-
ses posed in [32] concerning infinitely divisible processes, empirical processes
and selector processes are settled affirmatively. They can be read straight after
the Introduction. Chapter 4 comes from [4]. Chapters 2 and 3 are devoted to
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study some further properties of the Bernoulli process. Chapter 2 deals with
a question posed by K. Oleszkiewicz about comparability of weak and strong
moments for Bernoulli series in a Banach space. It provides a partial answer to
it and is related to some extension of the comparison principle of a Bernoulli
sequence presented in (1.24), which is based on the proof of the Bernoulli The-
orem (Theorem 1). The contents of Chapter 2 were published in Bulletin of
Polish Academy of Science Mathematics [5]. In Chapter 3 we deal with ques-
tion posed by W. Szatzschneider about a Lévy-Ottaviani type inequality for a
Bernoulli series with monotone coefficients [26]. The contents of Chapter 3 were
published in Statistics and Probability Letters [3].
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Chapter 2

Comparison problem

2.1 Introduction and notation
Throughout this chapter we will use the following notation. For a set A the
number of elements in A will be denoted as |A|. If t = (ti)i≥1 is a sequence
of real numbers and p ≥ 1 then ‖t‖p = (

∑∞
i=1 |ti|p)

1
p and `p is the space of all

sequences t with ‖t‖p <∞. If S, T ⊂ `p then S+T = {s+ t : s ∈ S, t ∈ T}. For
a random variable ξ and p > 0 we put ‖ξ‖p = (E|ξ|p)

1
p . If (ξi)i≥1 is a sequence

of independent, identically distributed random variables such that Eξi = 0,
Eξ2

i = 1 and t = (ti)i≥1 ∈ `2 then the random variable

Xt =
∞∑
i=1

tiξi (2.1)

is well-defined. For each T ⊂ `2 with 0 ∈ T the process XT = (Xt)t∈T is called
canonical. The above series converges in ‖ · ‖2, i.e.

lim
n→∞

‖
n∑
i=1

tiξi −Xt‖2 = 0.

Clearly,
‖Xt −Xs‖2 = ‖t− s‖2, for s, t ∈ T.

Remark 1. The almost sure convergence in (2.1) might be guaranteed also
when the independence assumption on ξi’s is skipped. In that case we may
consider a finite-dimensional version of (2.1), where T ⊂ Rd. The most studied
example is when ξi’s have log-concave tails, i.e. P(|ξi| > t) = exp(−Ni(t)) for
Ni : [0,∞]→ [0,∞] convex, and may be dependent.

We want to distinguish two types of canonical processes which will be of special
interest. If (ξi) = (εi) and P(εi = 1) = P(εi = −1) = 1

2
then the process XT is

called canonical Bernoulli and denoted by BT = (Bt)t∈T . As mentioned before
this class of processes is of fundamental importance for further applications (see
Chapthers 4 and 5). If (ξi) = (gi) and gi are normally N (0, 1) distributed then
the process XT is called canonical Gaussian and denoted by GT = (Gt)t∈T . In
fact, canonical Gaussian processes can be seen as a motivation to study canon-
ical processes in general, the reason being the Karhunen–Loève representation
of separable Gaussian processes by means of canonical Gaussian processes (see
e.g. [19, Corollary 5.3.4]).
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The main object studied will be suprema of canonical processes. For any set T
and a stochastic process (Xt)t∈T we define

SX(T ) = sup
F⊂T

E sup
t∈F

Xt,

where F runs through all finite subsets of T . Usually, by considering a separable
modification of Xt, t ∈ T , it is possible to guarantee that supt∈T Xt is a well-
defined random variable (for the definition of a separable version of a process and
a discussion of measurability of suprema in the general setting of not necessarily
separable Banach spaces see [18, Ch. 2]). In this case SX(T ) coincides with the
usual expectation of the supremum of Xt, i.e.

SX(T ) = E sup
t∈T

Xt.

Let us finish this section with a few important technicalities which will be
helpful in dealing with canonical processes. We have SX(T ) = SX(T − t), where
T − t = {s − t : s ∈ T}, so we may always require that 0 ∈ T . Moreover,
SX(T ) = SX(Conv T ) and SX(T ) = SX(clT ), where Conv T is the convex hull
of T and clT is the closure of T in `2.

2.2 Suprema of canonical processes via chaining
First, we recall the basics of the chaining approach to upper bounds for stochas-
tic processes. Let (T, d) be a separable metric space, t0 ∈ T a fixed element and
Xt, t ∈ T a process such that ||Xs −Xt|| ≤ d(t, s) for t, s ∈ T . For each count-
able, dense D ⊂ T it is true that E supt∈DXt = SX(T ). Recall the Definition
1 of a sequence A = (An)n≥0 of partitions of T being admissible. Also, these
partitions are nested, i.e. for any A ∈ An, n ≥ 1 there is B ∈ An−1 such that
A ⊂ B. For t ∈ T we denote by An(t) the unique element of the partition An
which contains t. A sequence π = (πn)n≥0 of mappings πn : T → T is said to
be adapted to the partitions (An)n≥0 if πn(t) = πn(s) for s, t ∈ A ∈ An, n ≥ 0
and π0(t) = t0 for t ∈ T (the common value of πn on A ∈ An will be denoted by
πn(A)). Let Tn = {πn(t) : t ∈ T} and D =

⋃
n Tn. We say that πn is regular if

lim
n→∞

d(t, πn(t)) = 0 for each t ∈ T. (2.2)

For regular π the set D is a dense subset in T . We define

γX(π) = sup
t∈T

∞∑
n=1

‖Xπn(t) −Xπn−1(t)‖2n

γX(T ) = inf γX(π)
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where the infimum is taken over all admissible sequence of partitions (An)n≥0 of
T and regular sequence πn, n ≥ 0, of mappings T adapted to (An)n≥0. Further-
more, for t ∈ T and each m > 1 we can write the following chain representation

Xπm(t) = Xπ0(t) +
m∑
n=1

(Xπn(t) −Xπn−1(t)).

Therefore for each t ∈ D we have

Xt ≤ Xt0 +
∞∑
n=1

|Xπn(t) −Xπn−1(t)| (2.3)

γX(T ) should be compared with Talagrand’s functional γ2(T, d) (see [32, Defi-
nition 2.2.19] or the formulation due to Latała and Mendelson (see [15], [20]),
where it was proved that under suitable regularity assumptions, SX(T ) ≤
KγX(T ), where K is a universal constant. Let us give a short argument for
a similar upper bound with an improved constant.

Theorem 10. Under the above assumption on (T, d), t0 ∈ T and a process
(Xt)t∈T we have

SX(T ) ≤ EXt0 + 3γX(T ).

Proof. Let (An)n≥0 be any admissible sequence of partitions of T and π =
(πn)n≥0 a regular and adapted to (An)n≥0 sequence of mappings of T. For any
A ∈ An and n ≥ 1 we denote by A′ the unique A′ ∈ An−1 which contains A.
In what follows we will use that for any a, b > 0 a ≤ b(1 + (a

b
− 1)+). We get

for each t ∈ D that

Xt −Xt0 ≤
∞∑
n=1

|Xπn(t) −Xπn−1(t)|

≤
∞∑
n=1

2‖Xπn(t) −Xπn−1(t)‖2n
(
1 + (

|Xπn(t) −Xπn−1(t)|
2‖Xπn(t) −Xπn−1(t)‖2n

− 1)+

)
≤
( ∞∑
n=1

2‖Xπn(t) −Xπn−1(t)‖2n
)(

1 +
∞∑
n=1

(
|Xπn(t) −Xπn−1(t)|

2‖Xπn(t) −Xπn−1(t)‖2n
− 1)+)

)
.

The last inequality holds true since
∑∞

n=1 bn(1 + cn) ≤ (
∑∞

n=1 bn)(1 +
∑∞

n=1 cn)
for each sequnences (an), (cn) of nonegative real numbers. Hence, it follows that

sup
t∈D

Xt −Xt0

≤
(

sup
t∈T

∞∑
n=1

2‖Xπn(t) −Xπn−1(t)‖2n
)(

1 +
∞∑
n=1

sup
t∈T

(
|Xπn(t) −Xπn−1(t)|

2‖Xπn(t) −Xπn−1(t)‖
− 1)+)

)
≤ 2γX(π)

(
1 +

∞∑
n=1

∑
A∈An

(
|Xπn(A) −Xπn−1(A′)|

2‖Xπn(A) −Xπn−1(A′)‖2n
− 1)+

)
.
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We easily see that if t ∈ A ∈ An then

Xπn(t) −Xπn−1(t) = Xπn(A) −Xπn−1(A′).

Therefore, we obtain

E sup
t∈D

Xt ≤ EXt0+2γX(π)
(
1+

∞∑
n=1

∑
A∈An

E
|Xπn(A) −Xπn−1)(A′)|

2‖Xπn(A) −Xπn−1(A′)‖2n
−1)+

)
. (2.4)

Now, we show that for any nonnegative random variable θ and p > 2 we have

E(
θ

2‖θ‖p
− 1)+ ≤

1

2
· 1

p · 2p
.

Obiviously, it is enough to prove that if θ ≥ 0 and Eθp ≤ 1 then E( θ
2
− 1)+ ≤

1
2
· 1
p·2p . Indeed, if θ is as above and ξ = E(θ|G) where G is the σ field genertated

by the single event C = {θ ≥ 2} then E( ξ
2
− 1)+ = E( θ

2
− 1)+ and by Jensen

inequality Eξp ≤ Eθp ≤ 1. Observe that for the random variable ξ we have
ξ = x1C for some x > 2 with P(C) ≤ 1

xp
. Hence

E(
θ

2
− 1)+ = E(ξ) ≤ max

x>2

1

xp
(
x

2
− 1) = (1− 1

p
)p−1 1

p · 2p
≤ 1

2
· 1

p · 2p
.

Therefore, applying the above inequality for p = 2n for each n ≥ 1 the inequality
(2.4) yields

E sup
t∈D

Xt − EXt0 ≤ 2γX(π)(1 +
1

2
·
∞∑
k=1

Nk

2k22k
) ≤ 3γX(π).

Hence taking the infimum over all admissible partitions together with regular
and adapted sequences π we conclude the proof.
The same proof as above gives the estimate

E sup
t∈T
|Xt| ≤ E|Xt0|+ 3γX(T )

Lemma 1. Let X = (Xt), t ∈ `2 be a cannonical process and C1 a constant
such that

‖Xt‖2n+1 ≤ C1‖Xt‖2n ,∀t ∈ `2, n ≥ 0. (2.5)

Then, for all T1, T2 ⊂ `2.

γX(T1 + T2) ≤ C1(γX(T1) + γX(T2)). (2.6)

For canonical Bernoulli and canonical Gaussian processes the above inequality
holds with C1 =

√
3.

Proof. Let for i = 1, 2 (Ain) be an admisible sequence of partitions of Ti, together
with an adapted and regular sequence πi = (πin) of mappings of Ti. We have
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to construct an admissible sequence of partitions for T1 +T2 with an associated
sequnece of mappings. For that purpose for each t ∈ T1 + T2 let us choose and
fix t1 ∈ T1, t

2 ∈ T2 such that t = t1 + t2. For A1 ⊂ T1, A2 ⊂ T2 define

A1 ∗ A2 = {t ∈ T1 + T2 : t1 ∈ A1 , t2 ∈ A2}.

Define Bn in the following way. B0 = {T1 + T2} and for n ≥ 0 let Bn+1 consist
of sets A1 ∗ A2, where A1 ∈ A1

n and A2 ∈ A2
n. It is easy to see that (Bn) is an

admissible sequence of partitions of T1 + T2. Indeed, |Bn+1| ≤ Nn ·Nn ≤ Nn+1,
the sequence is clearly nested and for t = t1+t2 we have Bn(t) = An(t1)∗A′n(t2).
Now define the sequence π = (πn)n≥0 by π0(t) = 0 and πn+1(t) = π1

n(t1)+π2
n(t2)

for t ∈ T 1 + T 2. Obviously the sequence (πn) is regular and adapted to the
partition (Bn). Furthermore,

‖t− πn+1(t)‖2 ≤ ‖t1 − π1
n(t1)‖2 + ‖t2 − π2

n(t2)‖2,

so limn→∞ ‖t−πn+1(t)‖2 = 0. In this way we guarantee the regularity condition
(2.2) for the sequence of mappings πn adapted to the partition Bn.
We need to show that for fixed t ∈ T1 + T2

∞∑
n=1

‖Xπn(t) −Xπn−1(t)‖2n ≤ C1(γX(T1) + γX(T2)). (2.7)

By the above construction and triangle inequality we get

‖Xπn+1(t) −Xπn(t)‖2n+1 ≤ ‖Xπ1
n(t1) −Xπ1

n−1(t1)‖2n+1 + ‖Xπ2
n(t2) −Xπ2

n−1(t2)‖2n+1 ,

so by (2.5),

‖Xπn+1(t) −Xπn(t)‖2n ≤ C1(‖Xπ1
n(t1) −Xπ1

n−1(t1)‖2n + ‖Xπ2
n(t2) −Xπ2

n−1(t2)‖2n)

and consequently we sum over n ≥ 1 to obtain (2.7). That (2.5) holds with
constant

√
3 for both canonical Bernoulli and Gaussian processes is a result

known as the hypercontractivity (cf. [1], [13, Chapter 3.4], [9, Chapter 13]),
which states that for 1 < q < p < ∞ we have ‖Bt‖p ≤

√
p−1
q−1
‖Bt‖q and the

same inequality for Gt.

Let us summarize the available information about the processes for which a
full characterization of the supremum (i.e. lower and upper bounds) can be
provided with the use of γX(T ). To make the notation consistent within this
chapter we will denote the expectations of suprema of Gaussian process and
Bernoulli process by SG(T ) and SB(T ) respectively rather than g(T ) and b(T ).
The seminal result of Fernique and Talagrand known as the Majorizing Mea-
sure Theorem (see [8], [28] or [32] for a modern formulation) is equivalent to the
statement that SG(T ) is comparable with γG(T ) up to a numerical constant.
In [31] it was proved that SX(T ) is comparable with a quantity which, in a
sense, is equivalent to γX(T ) for a canonical process generated by ξ’s which
are symmetric and satisfy P(|ξ| > t) = exp(−cptp) for a fixed p ∈ [1, 2]. A
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similar result holds for p > 2, yet it is only possible to show that there exists
a set T ′ ⊂ `2 (which may significantly differ from T ) such that SX(T ) is com-
parable with γX(T ′) up to a numerical constant. Note that the limiting case
when p → ∞ is the case of canonical Bernoulli processes. Later, the idea of
[31] was slightly generalized by R. Latała [16] to canonical processes generated
by ξ with log-concave tails, yet under specific regularity assumptions. Finally,
in [17] it was proved that it suffices to assume only certain conditions on the
moment growth of ξ. Unfortunately, this result still does not apply to Bernoulli
processes.
Let us study the characterization of SB(T ) settled in [2] (see Theorem 1).
Firstly, we want to look at canonical Bernoulli processes from the perspec-
tive of distances relating to some properties of Bernoulli-type random variables.
We have (see [11], [21] and [12] for the formulation below) for any p ∈ N, p ≥ 1,

‖Bt‖p ≤
p∑
i=1

|t∗i |+
√
p(
∑
i>p

|t∗i |2)
1
2 ≤ 4‖Bt‖p, (2.8)

where (t∗i )i≥1 is the rearrangement of (ti)i≥1 such that |t∗1| ≥ |t∗2| ≥ . . .. Equiva-
lently, we can express this relation as

1

4
inf

t=t1+t2
(‖t1‖1 + ‖Gt2‖p) ≤ ‖Bt‖p ≤ inf

t=t1+t2
(‖t1‖1 + ‖Gt2‖p)

for p ≥ 2. This motivates the following interpretation. If we denote by I ⊂ N
some index set, we can think of (2.8) as a decomposition of the norm ‖Bt‖p into
the `1 part

p∑
i=1

|t∗i | = sup
|Ic|≤p

∑
i∈Ic
|ti|

and the Gaussian part

√
p(
∑
i>p

|t∗i |2)
1
2 =
√
p inf
|Ic|≤p

(
∑
i∈I

|ti|2)
1
2 .

In fact, a characterization similar to (2.8) can be formulated for a broad class
of processes, namely processes with log-concave distributions. In particular,
in [15] there is a characterization of ‖Xt − Xs‖p for canonical processes based
on one-unconditional log-concave random variables. As already mentioned, the
characterization of SB(T ) was known as the Bernoulli conjecture and was finally
proved in [2]. It states that similarly to (2.8), SB(T ) can be decomposed into
the Gaussian and `1 parts. More precisely, there must exist a decomposition of
T into T1, T2 ⊂ `2 such that T1 +T2 ⊃ T and moreover SB(T ) dominates up to a
universal constant both supt∈T1 ‖t‖1 and SG(T2). Usually such a decomposition
is formulated in terms of existence of a mapping π : T → `2 which defines
T1 = {t − π(t) : t ∈ T} and T2 = {π(t) : t ∈ T}. Recall that we can always
assume that 0 ∈ T and π(0) = 0.
We now prove that Theorem 1 implies that there must exist a subset T ′ ⊂ `2

such that γB(T ′) is comparable to SB(T ). The idea of the proof works also
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for other classes of canonical processes for which we can characterize SX(T ) in
terms of increments (see Remark 3 below).

Theorem 11. There exists a function π : T → `2 such that

K−1(γB(T1 + T2)) ≤ SB(T ) ≤ K(γB(T1 + T2)), (2.9)

where K is a universal constant, T1 = {t−π(t) : t ∈ T} and T2 = {π(t) : t ∈ T}.

Proof. By the main result of [2] we get the existence of π : T → `2 and con-
sequently the existence of a decomposition into countable sets T1, T2 ⊂ `2 such
that T ⊂ T1 + T2 and

SB(T ) ≥ K−1(sup
t∈T1
‖t‖1 + SG(T2)), (2.10)

where K is a universal constant. By the famous Fernique-Talagrand majorising
measure bound ([28], [22], [8]) we know that SG(T ) is comparable with γG(T2).
To be precise, we know that SG(T ) ≥ Cγ2(T ), where γ2(T ) is Talagrand’s γ2

functional given by

inf sup
t∈T2

∞∑
n=0

2n/2∆2(An(t)),

where the infimum runs over all admissible sequences of partitions of T2 and ∆2

denotes the diameter of a set in `2 norm. Obviously, we associate the sequence
(πn) with any admissible partition (An)n≥0 by choosing πn(t) to be any point
in the set An(t). Notice that the diameters of sets An(t) converge uniformly to
0 so (2.5) is satisfied. To conclude that γ2(T2) ≥ CγG(T2) we just estimate the
2n-th norm of a Gaussian random variable by the 2nd norm. Now, let g be a
standard normal variable independent of Bt, t ∈ T . Observe that for any p ≥ 1,

√
2√
π
‖Bt −Bs‖p = E|g|‖Bt −Bs‖p ≤ ‖Gt −Gs‖p

so we can conclude
√
π√
2
γG(T2) ≥ γB(T2).

The next goal is to show that supt∈T1 ‖t‖1 ≥ CγB(T1). To this end we consider
a dense countable subset S1 of T1. We will start with constructing an admissible
sequence of partititions and the associated sequence (πn) for S1 and then we
will extend the construction to the whole T1. We choose an admissible sequence
(An(S1))n≥0 of partitions such that for n > 0, An(S1) consists of Nn − 1 single
points and one addititonal set that contains all the remaining points. Clearly
this partition is nested. Fix t0 in S1. Define

πn(t) =

{
t if An(t) = {t}
t0 otherwise.
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Obviously, the sequence of partitions together with the sequence (πn) defined
above satisfy (2.2). If for some m, t ∈ Am(t) = {t} but Am−1(t) 6= {t}, then

∞∑
n=1

‖Bπn(t) −Bπn−1(t)‖2n = ‖Bt −Bt0‖2m ≤ ‖t− t0‖1.

Therefore, by the triangle inequality,

sup
t∈S1

∞∑
n=1

‖Bπn(t) −Bπn−1(t)‖2n ≤ 2 sup
t∈S1

‖t‖1.

In this way we have proved that supt∈S1
‖t‖1 ≥ 1

2
γB(S1). Now, we provide the

procedure that allows to extend the construction of the partition and the se-
quence (πn) to the whole T1. Recall that the partition element An(S1) consisted
of Nn − 1 singletons which we will denote by Sn. Of course, S1 ⊂ S2 ⊂ . . . .
Furthermore, S1 is countable, so we can refer to some fixed order on S1. To
construct the partition An(T1) we will proceed by induction. For n = 0 we sim-
ply put A0(T1) = {T1}, π0(t) = t0 ∈ S1 ∩ T1, since S1 ∩ T1 6= ∅. Then, suppose
we have constructed An−1(T1), πn−1(t), t ∈ T1, n ≥ 2. Consider A ∈ An−1(T1).
For t ∈ A we define πn(t) as the element s of Sn−1 which minimizes ‖t − s‖2.
In the case of multiple minimizers we choose the smallest in the assumed order.
This mapping defines the partition of the set A into not more than Nn−1 − 1
elements. We repeat this procedure for the remaining elements of An−1(T1)
to obtain An(T1), which satisfies the condition of being nested in an obvious
way. Moreover, its cardinality does not exceed Nn−1 ·Nn−1 = Nn. Finally, the
construction of πn(t) gurantees the regularity condition (2.5). This finishes the
construction.
By Lemma 1 we obtain

SB(T ) ≥ K−1(γB(T1) + γB(T2)) ≥ (KC1)−1γB(T1 + T2).

On the other hand, we have a trivial upper bound

SB(T ) ≤ SB(T1) + SB(T2) = SB(T1 + T2) ≤ 3γB(T1 + T2),

by Theorem 10.

Remark 2. The natural lower bound in the above Theorem would be of course
γB(T ) rather than γB(T1 + T2). However, it is not necessarily true that γB is
monotone in the sense that γB(T ) ≤ γB(T1 + T2) despite the fact that T ⊂
T1 + T2. The problem is that πn(T ) ⊂ T1 + T2 but we cannot easily rearrange
πn so that πn(T ) ⊂ T . Obviously, we could reformulate our definition in a way
that πn : T → `2. In this setting γB is monotonoe but values of π still may stay
outside of T . It is a non-trivial question whether is is possible to improve the
choice of the decomposition map π on the set T so that π(T ) ⊂ T .

Let us also observe that for P(|ξi| > t) = exp(−cptp), p ≥ 2 we could give
a similar proof, since for any p we have Talagrand’s [32] characterization of
SX(T ).
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Remark 3. For the class of canonical processes based on independent symmet-
ric ξi such that P(|ξi| > t) = exp(−cptp), p ≥ 2, SX(T ) is comparable with
γX(T1 + T2) up to a constant for some T1 + T2 ⊂ `2 that contains T . The role
of T2 can be again associated with comparing the process X with the Gaussian
process, whereas T1 ⊂ `p

∗ for p∗ = p
p−1

.

In general, we conjecture that the same is true for canonical processes based on
log-concave random variables.

Conjecture 1. If (ξi)i≥1 is a sequence of independent log-concave random
variables with mean 0 and variance 1 then there exist π : T → `2 and sets
T1 = {t− π(t) ∈ `2 : t ∈ T} and T2 = {π(t) ∈ `2 : t ∈ T} such that

K−1(γX(T1 + T2)) ≤ SX(T ) ≤ K(γX(T1 + T2)),

where K is a universal constant.

2.3 Contractions of canonical Bernoulli processes
Suppose we have a map ϕ : T → `2. The main question we treat in this chapter
is under what assumptions on Xt, T and ϕ we can show that SX(ϕ(T )) is
bounded by SX(T ) up to a numerical constant. In particular we are interested
in the case of canonical Bernoulli processes.
Let us start with classical results concerning comparison of Gaussian processes.
It is well-known that if Gt and G′t, t ∈ T , are centered Gaussian processes and
E|Gt −Gs|2 ≤ E|G′t −G′s|2, then for each finite subset F ⊂ T ,

E sup
t∈F

Gt ≤ E sup
t∈F

G′t. (2.11)

This is a consequence of Slepian’s Lemma ([18, Corollary 3.14] provides the proof
with constant 2; the proof with the best possible constant 1 is in [8, Corollary
2.1.3]). Note also that by the Majorizing Measure Theorem the result can be
generalized to the case where we compare a centered Gaussian process with a
centered process for which we only require subgaussianity (see [18, Theorem
12.16]). We start with a discussion of possible extensions of this result. It
is natural to ask for other cases when similar comparison results hold. From
Theorem 10 it can be easily deduced that if we can compare moments then we
can compare γ-type upper bounds.

Corollary 2. Suppose that (Xt)t∈T is a canonical process and ϕ : T → `2. If
there exists a universal constant C such that for each n ≥ 1

‖Xϕ(t) −Xϕ(s)‖2n ≤ C‖Xt −Xs‖2n . (2.12)

then SX(ϕ(T )) ≤ 3CγX(T ).

Proof. Clearly, by Theorem 10 we have SX(ϕ(T )) ≤ 3γX(ϕ(T )) ≤ 3CγX(T ).
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This means that if we could show that SX(t) ≥ K−1γX(T ), then by Corollary
2 we would get SX(ϕ(T )) ≤ 3CKSX(T ). Unfortunately, in general, there is
no proof that γX(T ) is comparable with SX(T ). On the other hand, as dis-
cussed before, there are cases where the idea works. In particular, we could
use Corollary 2 in order to recover the Gaussian comparison result with some
absolute constant. However, in the Gaussian setting, one can simply refer to
(2.11), rewriting it in the following way:

if ϕ : T → `2 satisfies ‖ϕ(t)− ϕ(s)‖2 ≤ ‖t− s‖2, then SG(ϕ(T )) ≤ SG(T ).
(2.13)

We now move to the case of canonical Bernoulli processes. The only known
comparison result is Theorem 7( [29, Theorem 2.1] or [18, Theorem 4.12]). It
states that if ϕ = (ϕi)i≥1 : T → `2, where ϕi : R → R are contractions, then
SB(T ) dominates SB(ϕ(T )) with constant 1:

if |ϕi(x)− ϕi(y)| ≤ |x− y| for i ≥ 1, then SB(ϕ(T )) ≤ SB(T ). (2.14)

Note that if we are interested in comparison up to a numerical constant (not
necessarily 1) then the requirement of coordinate contractions is too demanding.
However, it is known that the result analogous to (2.11), where we assume that
ϕ : `2 → `2 is a Lipschitz contraction, does not hold for Bernoulli processes.
Indeed, we can consider

T = {e1, e2, . . . },

where ei are elements of the basis in `1 and

ϕ(T ) = { 1√
n

(±1,±1, . . . ,±1︸ ︷︷ ︸
n terms

, 0, 0, . . . )}.

Then,
‖Bϕ(t) −Bϕ(s)‖2 =

√
2 = ‖Bt −Bs‖2,

SB(T ) = 1, but SB(ϕ(T )) ≥
√
n.

Therefore some additional assumptions on ϕ or T are required. As we show in
this chapter, comparison for canonical Bernoulli depends on a suitable family
of distances already present in (2.8). The following comparison result is a
straightforward consequence of Theorem 11.

Corollary 3. Suppose that ϕ : T → `2 can be extended to T1 + T2 in such a
way that for any p ≥ 1,

‖Bϕ(t) −Bϕ(s)‖p ≤ ‖Bt −Bs‖p for all s, t ∈ T1 + T2.

Then SB(ϕ(T )) ≤ KSB(T ), where K is a universal constant.

Proof. Clearly, by Theorem 10 we have SB(ϕ(T )) ≤ 3γB(ϕ(T )). Hence, by
Theorem 11,

SB(ϕ(T )) ≤ 3γB(ϕ(T )) ≤ 3γB(ϕ(T1 + T2)) ≤ 3γB(T1 + T2) ≤ 3KSB(T ).
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Note that the problem with application of the above result is that T1 + T2 may
be much larger than T . We conjecture the following generalization of the above
result.

Conjecture 2. Let ϕ = (ϕi)i≥1 : T → `2. If

‖Bϕ(t) −Bϕ(s)‖p ≤ ‖Bt −Bs‖p, for all p ≥ 2, s, t ∈ T, (2.15)

then SB(ϕ(T )) ≤ KSB(T ) for an absolute constant K.

We prove a weaker form of the conjecture. As explained before, the norm
‖Bt − Bs‖p can be decomposed into the Gaussian and `1 parts. Our condition
states that if the Gaussian part of ‖Bt − Bs‖p dominates the Gaussian part of
‖Bϕ(t) −Bϕ(s)‖p, for all s, t ∈ T and p ≥ 1 then SB(T ) dominates SB(ϕ(T )) up
to an absolute constant.

Theorem 12. Suppose that for all s, t ∈ T and all natural p ≥ 0 we have

inf
|Ic|≤Cp

∑
i∈I

|ϕi(t)− ϕi(s)|2 ≤ C2 inf
|Ic|≤p

∑
i∈I

|ti − si|2 (2.16)

for an absolute constant C ≥ 1. Then SB(ϕ(T )) ≤ KSB(T ), where K is a
universal constant.

Remark 4. The result is stronger than the comparison for Bernoulli processes
(2.14). It is easy to see the example of ϕ for which the contraction on each
coordinate will fail, but if for t ∈ T , ϕ(t) is zero for all, but some fixed number of
coordinates then C can be chosen to be appropriately large so that (2.16) holds
for p = 0. Consequently, the comparison will hold true. In this way Theorem 12
supports the conjecture that (2.15) suffices to prove that SB(ϕ(T )) ≤ KSB(T ).

There is an important case for which the conjecture is true: when we assume
that the supports J(t) = {i ≥ 1 : |ti| > 0} of t ∈ T are pairwise disjoint
for all t ∈ T . It is crucial to understand that in this case the decomposition
postulated in the Bernoulli Theorem can have a special form: π(t) = tJ1(t) and
t − π(t) = tJ2(t), where J1(t) and J2(t) are disjoint and J1(t) ∪ J2(t) = J(t).
We use the following notation. For Jk ⊂ {1, 2, . . .},k = 1, 2, we define t1Ji ∈ `2

such that (t1Jk)i = ti for i ∈ Jk and (t1Jk)i = 0 otherwise. We show this fact
when proving the following result.

Theorem 13. Suppose that (2.15) is satisfied and the supports J(t) = {i ≥ 1 :
|ti| > 0} are pairwise disjoint for all t ∈ T . Then SB(ϕ(T )) ≤ KSB(T ), where
K is a universal constant.

As we show in the last section, results of this type are of interest when one wants
to compare weak and strong moments for random series in a Banach space. The
question was proposed by K. Oleszkiewicz in a private communication.

2.4 Proof of the main results
In this section we prove Theorems 12 and 13.
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Proof of Theorem 12. The main step in the proof of the Bernoulli Theorem ([2,
Proposition 6.2]) is to show the existence of a suitable admissible sequence of
partitions. Consequently, if SB(T ) <∞ and 0 ∈ T then it is possible to define
nested partitions An of T such that |An| ≤ Nn. Moreover, for each A ∈ An one
can find jn(A) ∈ Z and πn(A) ∈ T (we use the notation jn(t) = jn(An(t)) and
πn(t) = πn(An(t)), where t ∈ An(t) ∈ An) which satisfy the following conditions
for M > 0 and r ≥ 2:

(i) ‖t− s‖2 ≤
√
Mr−j0(T ) for s, t ∈ T ;

(ii) if n ≥ 1, An 3 A ⊂ A′ ∈ An−1 then either

(a) jn(A) = jn−1(A′) and πn(A) = πn−1(A′), or

(b) jn(A) > jn−1(A′), πn(A) ∈ A′ and∑
i∈In(A)

min{|ti − πn(A)i|2, r−2jn(A)} ≤M2nr−2jn(A), (2.17)

where for any t ∈ A,
In(A) = In(t) = {i ≥ 1 : |πk+1(t)i − πk(t)i| ≤ r−jk(t) for 0 ≤ k ≤
n− 1}.

(iii) Moreover, the numbers jn(A), A ∈ An, n ≥ 0, satisfy

sup
t∈T

∞∑
n=0

2nr−jn(t) ≤ LSB(T ), (2.18)

where L is an absolute constant.

As proved in [2, Theorem 3.1], the existence of the quantities An, jn(A), πn(A),
In(A) that satisfy conditions (i) and (ii) formulated above implies the existence
of a decomposition T1, T2 ⊂ `2, T1 + T2 ⊃ T such that

sup
t1∈T1

‖t1‖1 ≤ LM sup
t∈T

∞∑
n=0

2nr−jn(t) and γG(T2) ≤ L
√
M sup

t∈T

∞∑
n=0

2nr−jn(t).

Together with condition (iii) we get (2.10). Our aim is to use the mapping ϕ to
transport all the required quantities to ϕ(T ). Before we do it, we formulate an
auxiliary fact about the sets In(A): we show that we can get rid of truncation
in (2.17) if we skip a well-controlled number of coordinates. We observe that
for each t ∈ A ∈ An there must exist a set Jn(t) such that |Jn(t)c| ≤ M2n+1

and ∑
i∈Jn(t)

|ti − πn(t)i|2 ≤M2nr−2jn(t). (2.19)

The fact will be proved in two steps. First, we show that |In(t)c| ≤ M2n. We
can only prove that |In(t)| = |In(An(t))| ≤ 2n if πn−1(t) 6= πn(t), which implies
jn−1(t) 6= jn(t) and πn(t) ∈ An−1(t). Therefore, there exists k ∈ {1, . . . , n} such
that

jn−1(t) = jn−k(t) > jn−k−1(t), where j−1(t) = −∞



2.4. Proof of the main results 29

and hence πn(t) ∈ An−1(t) ⊂ An−k(t) and πn−1(t) = πn−k(t), jn−1(t) = jn−k(t),
so by the construction of (An)n≥0,∑

i∈In−k(t)

min{(πn(t)i − πn−1(t)i)
2, r−2jn−1(t)}

=
∑

i∈In−k(t)

min{(πn(t)i − πn−k(t)i)2, r−2jn−k(t)} ≤M2n−kr−2jn−k(t).

Consequently,

|{i ∈ In−k(t) : |πn(t)i − πn−1(t)i| > r−jn−1(t)}| ≤M2n−k.

Obviously,

|In(t)c| ≤ |In−k(t)c|+ |{i ∈ In−k(t) : |πn(t)i − πn−1(t)i| > r−jn−1(t)}|
≤ |In−k(t)c|+M2n−k.

Therefore by induction, |In(t)c| ≤M
∑n

k=1 2n−k ≤M2n. Let

Jn(t) = {i ∈ In(A) : |ti − πn(t)i| ≤ r−jn(A)}.

The second step is to establish that |In(t) \ Jn(t)| ≤ M2n. Again it suffices to
prove the result only for n such that jn(t) > jn−1(t). Note that by (2.17),

|In(t) \ Jn(t)|r−2jn(t) =
∑

i∈In(A)\Jn(t)

r−2jn(t) ≤M2nr−2jn(t),

and hence the result holds. It remains to observe that

|Jn(t)c| ≤ |In(t)c|+ |In(t) \ Jn(t)| ≤M(2n + 2n) ≤M2n+1.

We turn to constructing an admissible sequence of partitions together with
all the related quantities for the set ϕ(T ). Let Bn consist of ϕ(A), A ∈ An.
Obviously the partitions Bn are admissible, nested and B0 = {ϕ(T )}. Moreover,
for each n ≥ 0 and A ∈ An we define

πn(ϕ(A)) = ϕ(πn(A)) and jn(ϕ(A)) = jn(A)

and obviously

In(ϕ(A)) = In(ϕ(t))

= {i ≥ 1 : |ϕ(πk+1(t))i − ϕ(πk(t))i| ≤ r−jk(ϕ(t)) for 0 ≤ k ≤ n− 1}.

As mentioned at the beginning of this proof, in order to use [2, Theorem 3.1] we
have to verify conditions (i) and (ii) for the new sequence B = (Bn)n≥0 as well
as jn(B), πn(B), In(B) for B ∈ Bn, n ≥ 0. For this we need our main condition
(2.16). First it is obvious that (2.16) implies for p = 0 that

‖ϕ(t)− ϕ(s)‖2 ≤ ‖t− s‖2 ≤
√
Mr−j0(T ).
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If A ∈ Bn and ϕ(A) ⊂ ϕ(A′) ∈ Bn−1 then either

jn(ϕ(A)) = jn(A) = jn−1(A′) = jn−1(ϕ(A′))

and
πn(ϕ(A)) = ϕ(πn(A)) = ϕ(πn−1(A′)) = πn−1(ϕ(A′)),

or jn(ϕ(A)) = jn(A) > jn−1(A′) = jn−1(ϕ(A′)). In this case we have πn(ϕ(A)) =
ϕ(πn(A)) ∈ ϕ(A′) and it suffices to show that∑

i∈In(ϕ(A))

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ C2nr−2jn(ϕ(A)). (2.20)

Obviously, the problem now is that we know little about the structure of the
set In(ϕ(A)). Therefore, we simply prove that∑

i≥1

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ C2nr−2jn(ϕ(A)).

Clearly,∑
i≥1

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))}

≤ C22nr−2jn(A) + inf
|Ic|≤C22n

∑
i∈I

|ϕ(t)i − ϕ(πn(A))i|2.

(2.21)

We can choose C2 ≥ 2CM in such a way that by (2.16) we get

inf
|Ic|≤C22n

∑
i∈I

|ϕ(t)i − ϕ(πn(A))i|2

≤ C2 inf
|Ic|≤M2n+1

∑
i∈I

|ti − πn(A)i|2 ≤ C2
∑
i∈Jn(t)

|ti − πn(A)i|2.

Hence, by (2.19) and (2.21),∑
i≥1

min{|ϕ(t)i − ϕ(πn(A))i|2, r−2jn(ϕ(A))} ≤ (C2 + C2M)2nr−2jn(A)

which proves (2.20) with C3 = C2+C2M . We have proved that the assumptions
required in [2, Theorem 3.1] are satisfied for (Bn)n≥0 and the related quantities.
Consequently, there exists a decomposition S1, S2 ⊂ `2 such that S1+S2 ⊃ ϕ(T )
and

sup
s∈S1

‖s‖1 ≤ LC sup
t∈ϕ(T )

∑
n≥0

2nr−jn(t), γG(S2) ≤ L
√
C sup

t∈ϕ(T )

∑
n≥0

2nr−jn(t).
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Since jn(ϕ(t)) = jn(t) and we have (2.18) for (An)n≥0, we obtain

sup
t∈ϕ(T )

∑
n≥0

2nr−jn(t) ≤ LSB(T ).

This implies that

SB(ϕ(T )) ≤ SB(S1) + SB(S2) ≤ KSB(T ),

for a universal constant K and ends the proof.

The second case we consider is when the supports J(t) = {i ≥ 1 : |ti| > 0} are
pairwise disjoint for all t ∈ T . Recall the following notation. For any t ∈ `2 and
J ⊂ {1, 2, . . .} we define t1J ∈ `2 such that (t1J)i = ti for i ∈ J and (t1J)i = 0
otherwise.

Proof of Theorem 13. Obviously, we may require that SB(T ) < ∞. We addi-
tionally assume that 0 ∈ T . This simplifies the proof, but the rpoof works also
for the general case as we will point out at the end. Recall that by the Bernoulli
Theorem [2] there exists a decomposition T1 + T2 ⊃ T such that

SB(T ) ≥ K−1(sup
t∈T1
‖t‖1 + γG(T2)), (2.22)

where K is an absolute constant. Obviously, we may think of K as suitably
large. We can represent the decomposition by π : T → `2 such that T2 = {π(t) :
t ∈ T} and T1 = {t− π(t) : t ∈ T}. We show that under the disjoint supports
assumption we may additionally require that π(t) = t1J2(t) and t−π(t) = t1J1(t)

where J1(t) and J2(t) are disjoint subsets of J(t) such that J1(t)∪J2(t) = J(t).
Moreover, J2(t) = {i ∈ J(t) : |ti| ≤ p(t)} for some suitably chosen p(t) ≥ 0.
In order to prove the result we have to look closer into the definition of π(t)
in [2, proof of Theorem 3.1]. The definition is based on the construction of
admissible sequences of partitions we have described in the proof of Theorem
12 above. Using the notation introduced there, let

m(t, i) = inf{n ≥ 0 : |πn+1(t)i − πn(t)i| > r−jn(t)}, t ∈ T, i ≥ 1. (2.23)

Note that SB(T ) is comparable with supt∈T
∑

n≥0 2nr−jn(t). Therefore, if SB(T )
is finite then necessarily limn→∞ jn(t) = ∞ for all t ∈ T . From the partition
construction used in [2, Section 6] we know that we can additionally assume a
regularity condition on jn(t), n ≥ 0, namely

jn(t) ≤ jn−1(t) + 2 for all n ≥ 0,

and for technical purposes we take j−1(t) = −∞. As in [2, proof of Theorem
3.1] the Bernoulli decomposition π(t) is given by π(t)i = πm(t,i)(t)i, where if
m(t, i) = ∞ the definition means that π(t)i = limn→∞ πn(t)i and the limit
exists. Consequently, denoting Jn(t) = {i ≥ 1 : m(t, i) = n} and J∞(t) = {i ≥
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1 : m(t, i) =∞} we get

π(t) =
∑
n≥0

πn(t)1Jn(t) + π(t)1J∞(t).

Clearly, Jn(t), n ≥ 0 and J∞(t) are disjoint. Note also that if m(t, i) = ∞
and i ∈ J(π(t)), then there must exist n ≥ 0 such that |πk(t)i| > 0 for all
k ≥ n. Due to the disjoint supports assumption this is only possible if there
exists n ≥ 0 such that πn(t)i = πn+1(t)i = · · · . Now, if there exists m ≥ 0 such
that Am(t) = {t} we define

τ(t) = inf{n ≥ 0 : An(t) = {t} = {πn(t)}, jn−1(t) < jn(t)},

otherwise τ(t) =∞. The time τ(t) is of special nature in the sense that without
loss of generality we may assume that jn(t) = jn−1(t) + 2 for n ≥ τ(t). This is
due to the fact that partitioning ceases after that time. Now, we define

J2(t) = {i ∈ J(t) : |ti| ≤ r−jτ(t)(t)−1}, J1(t) = J(t) \ J2(t).

We can now introduce the improved version of π denoted by π̄ and given by

π̄(t) = t1J2(t).

It is clear that
‖t− π̄(t)‖1 = ‖t1J1(t)‖1.

For n ≥ 0 let

Ln(t) = {i ∈ J(t) : r−jn(t) < |ti| ≤ r−jn−1(t)}.

Observe that J1(t) =
⋃
n<τ(t) Ln(t). If i ∈ Ln(t), n ≥ 0, then we may find

0 ≤ m ≤ n such that jm−1(t) < jm(t) = jm+1(t) = . . . = jn(t). Consequently,
by the definition (2.17) of In(t), for all s ∈ Am(t),∑

i∈In(t)

min{|si − πn(t)i|2, r−2jn(t)} =
∑

i∈Im(t)

min{|si − πm(t)i|2, r−2jm(t)}

≤M2mr−2jm(t) = M2mr−2jn(t) ≤M2nr−2jn(t).

We need to show that the decomposition π̄ is of the right form, i.e. it satisfies
(2.22). To this end we need to investigate a few cases according to different
possible paths of approximations π. First suppose that t 6= πn(t). Then we may
use the above inequality for s = t and thanks to disjoint supports we have

|In(t) ∩ Ln(t)|r−2jn(t) ≤
∑
i∈In(t)

min{|si − πn(t)i|2, r−2jn(t)} ≤M2nr−2jn(t)

so |In(t) ∩ Ln(t)| ≤M2n.

The same inequality holds if t = πn(t) but Am(t) 6= {t}. We show that
Ln(t) ⊂ In(t). Indeed, suppose that i 6∈ In(t). This means that for some
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k ∈ {0, 1, . . . , n − 1} we have |πk+1(t)i − πk(t)i| > r−jk(t). This may concern
i ∈ J(t) only if πk+1(t) = t, πk(t) 6= t or πk(t) = t and πk+1(t) 6= t, but then it
means that |ti| > r−jk(t) ≥ r−jn−1(t), i.e. i 6∈ Ln(t). This proves Ln(t) ⊂ In(t).
For 1 ≤ n < τ(t) this implies that∑

i∈Ln(t)

|ti| ≤M2nr−jn−1(t). (2.24)

For n = 0 we use simply |ti| ≤ 2SB(T ) and hence∑
i∈L0(t)

|ti| ≤ 2MSB(T ). (2.25)

Now suppose that t = πn(t) = πm(t) and Am(t) = {t}. If either t 6= πm−1(t) or
{t} 6= Am−1(t), then τ(t) = m. Otherwise τ(t) < m. If τ(t) = m, then by the
above argument,∑

i∈Ln(t)

|ti|2 =
∑

i∈Ln(t)

min{|ti|2, r−2jm−1(t)} ≤M2m−1r−2jm−1(t),

and thus using the fact that |ti| ≥ r−jm(t)−1 and jm(t) = jm−1(t) + 2, we have∑
i∈Ln(t)

|ti| ≤M2m−1r−2jm−1(t)+jm(t) ≤M2m−1r−jm−1(t)+2.

We have the remaining bound∑
i∈Ln(t)

|ti| ≤M2τ(t)−1r−jτ(t)−1(t)+2. (2.26)

Combining (2.24)–(2.26) we conclude by (2.18)

‖t1J1(t)‖1 ≤ 2MSB(T ) + 2M

τ(t)−2∑
n=0

r−jn(t)2n +M2τ(t)−1r−jτ(t)−1(t)+2

≤ 2MLSB(T ),

(2.27)

where L is an absolute constant.
Now consider s, t ∈ T , s 6= t. In order to prove that

‖π̄(s)− π̄(t)‖2 = ‖t1J2(t) − s1J2(s)‖2 ≤ ‖π(t)− π(s)‖2 (2.28)

we have to argue that J2(t) ∩ J(π(s)) = ∅, J2(s) ∩ J(π(t)) = ∅. Note that
J2(t) ⊂ J∞(t) and J2(t) ⊂ J∞(s). Moreover, J∞(s) and J∞(s) are disjoint.
Obviously, it suffices to show that J2(t) ∩ J(π(s)) = ∅.
First, note that J2(t) ∩ J∞(s) = ∅. Indeed, if the set were non-empty then for
a given n ≥ 0 we would have t = πn(s) = πn+1(s) = . . ., but then s ∈ An(t)
for all n ≥ 0 and therefore τ(t) = ∞. This would imply J2(t) = ∅, which is
a contradiction. Suppose that i ∈ J2(t) and i ∈ Jn(s). This is only possible
if πn(s) = t and πn+1(s) 6= πn(s) = t and r−jn(s) < |πn(s)i|. Let m ≥ 0 be
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such that jm−1(s) < jm(s) = jm+1(s) = . . . = jn(s). Then either m = 0,
or m ≥ 1 and t = πn(s) = πm(s) ∈ Am−1(s), which means that Am−1(s) =
Am−1(t) and jm−1(s) = jm−1(t). Therefore, τ(t) ≥ m and jτ(t)(t) > jm−1(t). If
i ∈ J2(t) ∩ Jn(s), then

r−jm−1(t)−2 = r−jm−1(s)−2 ≤ r−jm(s) < |ti| ≤ r−jτ(t)(t) = r−jτ(t)−1(t)−2

≤ r−jm−1(t)−2,

which is a contradiction. If m = 0, then the argument is trivial.
Summing up, by (2.27) we have

sup
t∈T
‖t− π̄(t)‖1 ≤ LSB(T )

and by (2.28) and Gaussian comparison we have γG(π(T )) ≤ γG(π̄(T )), which
means that our improved version of π satisfies

SB(T ) ≥ K−1(sup
t∈T
‖t− π̄(t)‖1 + γG(π̄(T ))),

where K is a universal constant. In this way we have proved that we may
additionally require that π(t) = t1J2(t) and t − π(t) = t1J1(t) for some disjoint
J1(t), J2(t) such that J1(t) ∪ J2(t) = J(t). Recall that J2(t) in each case is of
the form {i ∈ J(t) : |ti| ≤ r(t)} for a given r(t) ≥ 0.
We turn to the main part of the proof. Let p(t) be the smallest positive integer
such that √

p(t)‖t1J2(t)‖2 ≥ KSB(T ) ≥ ‖t1J1(t)‖1. (2.29)

Note that it is possible that J2(t) = ∅, in which case we may think of p(t) as
equal to∞. Since K is large enough and SB(T ) ≥ 1

2
supt∈T ‖t‖2, it is clear that

p(t) must be at least, say, 2. Consequently, by the choice of p(t),√
p(t)‖t1J2(t)‖2 ≤ 2KSB(T ). (2.30)

The last step is to define a suitable decomposition for ϕ(T ). For each t ∈ T
we define π(ϕ(t)) = tJ2(ϕ(t)) and ϕ(t) − π(ϕ(t)) = tJ1(ϕ(t)), where J2(ϕ(t)) and
J1(ϕ(t)) are defined by the decomposition of the norm ‖Bϕ(t)‖p(t), i.e.∑

i∈J1(ϕ(t))

|ϕ(t)i| = sup
|Ic|≤p(t)

∑
i∈Ic
|ϕ(t)i|

and ∑
i∈J2(ϕ(t))

|ϕ(t)i|2 = inf
|Ic|≤p(t)

∑
i∈I

|ϕ(t)i|2.

Consequently, by the decomposition (2.8) and the main assumption (2.15),∑
i∈J1(ϕ(t))

|ϕ(t)i|+
√
p(t)(

∑
i∈J2(ϕ(t))

|ϕ(t)i|2)
1
2

≤ 4‖Bϕ(t)‖p(t) ≤ 4‖Bt‖p(t) ≤ 4(‖t1J1(t)‖1 +
√
p(t)‖t1J2(t)‖2).
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Therefore, by (2.29), (2.30),∑
i∈J1(ϕ(t))

|ϕ(t)i| ≤ K1SB(T ).

Moreover, by (2.29),

(
∑

i∈J2(ϕ(t))

|ϕ(t)i|2)
1
2 ≤ K2‖t1J2(t)‖2.

This implies that

‖π(ϕ(t))− π(ϕ(s))‖2 ≤ ‖π(ϕ(t))‖2 + ‖π(ϕ(s))‖2

≤ K2(‖t1J2(t)‖2 + ‖s1J2(s)‖2) ≤ K3‖π(t)− π(s)‖2.

Therefore, by Gaussian comparison, we get γG(π(ϕ(T ))) ≤ KγG(π(T )) and
hence finally

SB(ϕ(T )) ≤ K(sup
t∈T
‖π(ϕ(t))‖1 + γG(π(ϕ(T )))) ≤ KLSB(T ).

This ends the proof in the case when 0 ∈ T . For the general case the proof
follows the same lines, where instead of t we consider t − π0(t). Notice that
formally this may not obey the disjoint supports assumption, but it does not
qualitatively affect the argument presented above.

Note that the above proof works since in the case of disjoint supports we have
almost perfect knowledge about the decomposition in the Bernoulli Theorem.
On the other hand, it is not difficult to give an alternative proof based on the
independence of the variables Bt, t ∈ T , but it is worth seeing what the decom-
position in [2, Theorem 3.1] should be in order to make Bernoulli comparison
possible.

2.5 The Oleszkiewicz problem
In this section we apply our result to compare expectations of norms of random
series in a Banach space. First, we prove a general result which concerns ϕ :
T → `2 where ϕ is linear, T is convex and T = −T . Then the assumption (2.12)
becomes

‖Bϕ(u)‖p ≤ C‖Bu‖p for all p ≥ 1 and u ∈ cl (Lin(T )), (2.31)

where Lin(T ) is the linear space spanned by the set T . This is because by the
assumptions on T any point u ∈ Lin(T ) can be represented as c · t, where c ∈ R
and t ∈ T . By the linearity of ϕ,

‖Bϕ(u)‖p = |c|‖Bϕ(t)‖p ≤ C|c|‖Bt‖p = C‖Bu‖p.

On the other hand, we can easily extend the condition (2.31) to the closure of
Lin(T ).
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We turn to proving that if cl(Lin(T )) = `2 then (2.31) implies that SB(T )
dominates SB(ϕ(T )).

Theorem 14. Suppose that T = −T , T is convex and cl(Lin(T )) ⊃ T1 + T2,
where T1, T2 are as in Bernoulli Theorem. If ϕ is linear and satisfies (2.12)
then SB(ϕ(T )) ≤ KSB(T ), where K is a universal constant.

Proof. By the Bernoulli Theorem [2] there exist T1, T2 such that T ⊂ T1 + T2

and
SB(T ) ≥ L−1(sup

t∈T1
‖t‖1 + γG(T2)).

Since ϕ is linear, it can be easily extended to cl(Lin(T )) = `2 and thus we can
define Si = ϕ(Ti), i ∈ {1, 2}. Obviously S1 + S2 ⊃ ϕ(T ); moreover, (2.31)
implies in particular that

‖ϕ(u)‖1 = ‖Bϕ(u)‖∞ ≤ C‖Bu‖∞ = C‖u‖1.

and
‖ϕ(u)− ϕ(v)‖2 = ‖Bϕ(u−v)‖2 ≤ C‖Bu−v‖2 = C‖u− v‖2.

Consequently,
sup
s∈S1

‖s‖1 = sup
t∈T1
‖ϕ(t)‖1 ≤ C sup

t∈T1
‖t‖1

and
γG(S2) = γG(ϕ(T2)) ≤ CγG(T2).

Therefore

SB(ϕ(T )) ≤ SB(S1) + SB(S2) ≤ K(sup
s∈S1

‖s‖1 + γG(S2))

≤ CK(sup
t∈T1
‖t‖1 + γG(T2)) ≤ CK2SB(T ).

We aim to study the question, posed by Oleszkiewicz, of comparability of weak
and strong moments for Bernoulli series in a Banach space. Let xi, yi, i ≥ 1,
be vectors in a Banach space (B, ‖ · ‖). Suppose that for all x∗ ∈ B∗ and u ≥ 0,

P(|
∑
i≥1

x∗(xi)εi| > u) ≤ C̄P(|
∑
i≥1

x∗(yi)εi| > C̄−1u). (2.32)

This property is called weak tail domination. Weak tail domination can be
understood in terms of comparability of weak moments, i.e. for any integer
p ≥ 1 and x∗ ∈ B∗,

‖
∑
i≥1

x∗(xi)εi‖p ≤ C‖
∑
i≥1

x∗(yi)εi‖p (2.33)
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Oleszkiewicz asked whether or not this implies comparability of strong moments,
that is, whether (2.32) or rather (2.33) implies that

E‖
∑
i≥1

xiεi‖ = E sup
x∗∈B∗1

∑
i≥1

x∗(xi)εi

≤ KE sup
x∗∈B∗1

∑
i≥1

x∗(yi)εi = KE‖
∑
i≥1

yiεi‖, (2.34)

where K is an absolute constant. Note that in the Oleszkiewicz problem one
may assume that B is a separable space since we can easily restrict the argument
to the closure of Lin(y1, x1, y2, x2, . . .). Therefore

E‖
∑
i≥1

yiεi‖ = sup
F⊂B∗1

E sup
x∗∈F
|
∑
i≥1

x∗(yi)εi|,

where F runs through all finite sets contained in B∗1 = {x∗ ∈ B∗ : ‖x∗‖ ≤ 1}.
We may assume that E‖

∑
i≥1 yiεi‖ < ∞ since otherwise there is nothing to

prove. Consequently, for each x∗ ∈ B∗ series
∑

i≥1 x
∗(yi)εi is convergent, which

is equivalent to
∑

i≥1(x∗(yi))
2 < ∞. Let Q : B∗ → `2 be defined by Q(x∗) =

(x∗(yi))i≥1. It is clear that Q : B∗/ kerQ → `2 is a linear isomorphism on the
closed linear subspace of `2. We apply Theorem 14 to get the following result.

Corollary 4. Suppose that Q is onto `2. Then (2.32) implies (2.34).

Unfortunately, if Q is not onto `2 then the above argument fails. Still it is
believed that the comparison holds. A partial result can be deduced from
Theorem 12:

Corollary 5. Suppose that for each x∗ ∈ B∗ and p ≥ 0,

inf
|Ic|≤Cp

∑
i∈I

|x∗(xi)|2 ≤ C2 inf
|Ic|≤p

∑
i∈I

|x∗(yi)|2. (2.35)

Then (2.34) holds, i.e.

E‖
∑
i≥1

xiεi‖ ≤ KE‖
∑
i≥1

yiεi‖.

Proof. It suffices to notice that (2.35) implies (2.16) and then apply Theorem
12.
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Chapter 3

Lévy-Ottaviani type inequality

3.1 Introduction
Let T ⊂ Rn. Recall that ε1, . . . , εn is a sequence of independent Bernoulli
random variables i.e. for each i ≥ 1, P(εi = ±1) = 1/2. We will employ a
different notation in this chapter than in the rest of the dissertation because it
will be more convenient and consistent with the notation of the original prob-
lem [26]. For the element t = (t1, . . . , tn) of T we define a random variable
Xt =

∑n
i=1 tiεi. Obviously, EXt = 0 and Var(Xt) =

∑n
i=1 t

2
i =: ‖t‖2. Further-

more, let X = supt∈T Xt.
The main assumption of this work will be the existance of the point t0 ∈ T
satisfying supt∈T Var(Xt) = Var(Xt0). We will refer to t0 as the point of max-
imal variance. The question we want to study concerns the control over X
one can expect from knowing t0. It will be a simple consequence of Theorem
16 and could be also deduced from McDiarmid’s inequality (see [34, Problem
3.7]) that the strengthened concentration inequality can be obtained (with con-
stant 2 instead of 8 in the exponent). The more intriguing question is on the
tail domination, namely can we expect a Lévy-Ottaviani type of inequality.
For this, we define Y =

∑n
i=1 t

0
i εi. The main motivation for the study of this

question is the following problem posed by W. Szatzschneider in [26]. Suppose
that ai : [0, 1] → R+, for i = 1, 2, . . . , n are non-decreasing, right-continuous
functions. In the orginal setting it was also assumed that functions ai satisfy
following conditions:

1. for each t ∈ [0, 1], a1(t) ≥ a2(t) ≥ . . . ≥ an(t)

2.
∑n

i=1 ai(1) ≥ 1 + 2a1(1).

Variables X and Y we defined at the beginning are now of the form X =
supt∈[0,1]

∑n
i=1 ai(t)εi and Y =

∑n
i=1 ai(1)εi.W. Szatzschneider conjectured that

under the above conditions the following inequality holds

P(X ≥ 1) ≤ 2P(Y ≥ 1).

Notice that conditions 1 and 2 require that n ≥ 3. In [26] the conjecture was
proved for cases n = 3 and n = 4 by a simple path analysis. Also, the fact
that constant 2 cannot be improved for even n was presented there. Before
we state the main result in the direction of Szatzschneider conjecture, let us
present a special case when the domination holds, which explains its relation
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with classic Lévy-Ottaviani inequality i.e. that for independent, symmetric
random variables Z1, Z2, . . . , Zn it holds true that

P( max
1≤k≤n

k∑
i=1

Zi ≥ u) ≤ 2P(
n∑
i=1

Zi ≥ u).

Proposition 1. Suppose that functions ai : [0, 1]→ R+ are of the form ai(t) =
αi(t)ai(1), where for all t ∈ [0, 1] 0 ≤ αn(t) ≤ . . . ≤ α1(t) ≤ 1. Then,

P(X ≥ 1) ≤ 2P(Y ≥ 1).

Proof. Denote Sak =
∑k

i=1 ai(1)εi. Obviously, Y = San. Then, by the Abel’s
inequality, we get

X =
n∑
i=1

ai(1)αi(t)εi =
n∑
i=1

(αi(t)− αi+1(t))Sai ≤ max
1≤i≤n

Sai ,

where we put an+1(t) = 0. Hence, by Lévy-Ottaviani inequality, we conclude
that

P(X ≥ 1) ≤ P( max
1≤k≤n

Sak ≥ 1) ≤ 2P(San ≥ 1).

Remark 5. An example of functions satisfying the above condition are ai(t) =
ai(1)1[ti,1](t) for 0 ≤ t1 ≤ . . . ≤ tn ≤ 1.

The approach we propose allows to skip the two mentioned conditions. We will
prove the following form of Szatzschneider’s conjecture.

Theorem 15. Let ai : [0, 1]→ R+, for i = 1, 2, . . . , n be non-decreasing, right-
continous functions and n ≥ 5. Then for u > 0

P( sup
t∈[0,1]

n∑
i=1

ai(t)εi ≥ 8u) ≤ 53P(
n∑
i=1

ai(1)εi ≥ u).

This result is also a consequence of the concentration result (Theorem 16) which
we prove in the next section. As we will explain the constant on the left hand
side of the above inequality comes from the estimate on the EX which we obtain
by using chaining method in the same manner as we did for Theorem 10. This
will be presented in section 3.
Let’s finish this section with the important comparison inequalities between the
Lp-norms ofXt. Let’s denote them by ‖Xt‖p. The first one is a hypercontraction
(see e.g. [13, Chapter 3.4]) i.e. for 1 < q < p <∞

‖Xt‖p ≤
√
p− 1

q − 1
‖Xt‖q. (3.1)
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Moreover, we have comparison with the first moment which in the following
form is due to Szarek [25]. We have

E|Xt| ≥
1√
2
‖Xt‖2 =

1√
2
‖t‖ (3.2)

It is easy to see that it extends to X in the sense that

EX ≥ (1/2
√

2) sup
t∈T
‖t‖.

The aim of section 3.3 is to prove that EX is actually comparable with ‖t0‖
in the Szatzschneider setting. It is an interesting and yet unfulfilled task to
provide a geometrical description of sets T for which such a comparison occurs.

3.2 Concentration
We aim to prove a special form of concentration result.

Theorem 16. Let T = [0, t01]× · · · × [0, t0n] and ϕ : R→ [0,∞) be any convex,
increasing function. Then

Eϕ(X − EX) ≤ Eϕ(Y ). (3.3)

Proof. Consider numbers (b(t))t∈T and define X̃ = supt∈T (
∑n

i=1 tiεi + b(t)).
We will prove that

Eϕ(X̃ − EX̃) ≤ Eϕ(Y ).

and apply this result for b ≡ 0. We will proceed by induction. For n = 0 both
sides equal 0. For n ≥ 1, we will condtion on ε1. To this end we define

X̃+ = sup
t∈T

(
t1 + b(t) +

n∑
i=2

tiεi

)
and X̃− = sup

t∈T

(
−t1 + b(t) +

n∑
i=2

tiεi

)
.

Notice that EX̃ = (EX̃− + EX̃+)/2, so we can write

Eϕ(X − EX)

=
1

2

(
Eϕ

(
X̃+ − EX̃+ +

EX̃+ − EX̃−
2

)
+ Eϕ

(
X̃− − EX̃− +

EX̃− − EX̃+

2

))
.

(3.4)
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Therefore, by the induction assumption used for convex increasing functions
x 7→ ϕ(x+ (EX̃+ − EX̃−)/2) and x 7→ ϕ(x+ (EX̃− − EX̃+)/2) we have

Eϕ(X̃ − EX̃)

≤ 1

2

(
Eϕ

(
n∑
i=2

t0i εi +
EX̃+ − EX̃−

2

)
+ Eϕ

(
n∑
i=2

t0i εi +
EX̃− − EX̃+

2

))

= Eϕ

(
|EX̃+ − EX̃−|

2
ε1 +

n∑
i=2

t0i εi

)
. (3.5)

Observe that
|EX̃+ − EX̃−|

2
≤ sup

t∈T
t1 = t01

and thus using the contraction principle (Theorem 7) in the special case, when
we condition on ε2, . . . , εn and consider a supremum over a single point we get

Eϕ

(
|EX̃+ − EX̃−|

2
ε1 +

n∑
i=2

t0i εi

)
≤ Eϕ

(
n∑
i=1

t0i εi

)
. (3.6)

Combining (3.4),(3.5),(3.6) completes the proof.

There are two functions which are of special interest. The first one will recover
the strenghened concentration, while the other will lead to the main result of
this work.

Corollary 6. We have

P(|X − EX| ≥ u) ≤ 2e
− u2

2‖t0‖2 . (3.7)

Proof. Apply (3.3) for ϕ(x) = eλx, λ ∈ R.

Corollary 7. Let 0 < α ≤ 1 and u > 0. Then,

P(X ≥ EX + (1 + α)u) ≤ 4

αu
P(Y ≥ u)E(Y )+. (3.8)

Proof. Consider ϕ(x) = (x−u)+. Then, by (3.3) we get that E(X−EX−u)+ ≤
E(Y − u)+. We will show that

αuP(X ≥ EX + (1 + α)u) ≤ E(X − EX − u)+ (3.9)

and
E(Y − u)+ ≤ 4P(Y ≥ u)E(Y )+. (3.10)

Notice that (3.9) follows simply from

E(X−EX−u)+ ≥ E(X−EX−u)+1{X−EX≥(1+α)u} ≥ αuP(X−EX ≥ (1+α)u).
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Moreover, (3.10) can be deduced from the Kahane’s inequality (see e.g. [13,
Proposition 1.4.1]). Indeed,

E(Y − u)+ =

∫ ∞
u

P(Y ≥ t)dt =

∫ ∞
0

P(Y ≥ u+ t)dt

≤ 4P(Y ≥ u)

∫ ∞
0

P(Y ≥ t)dt = 4P(Y ≥ u)E(Y )+.

Let’s state the main result of this chapter.

Theorem 17. Consider a subset T ⊆ [0, t01]× · · · × [0, t0n] of Rn. Let X and Y
be as in Theorem 16. Suppose that there exists a positive constant C1 such that
EX ≤ C1‖t0‖. Then, for u > 0, α ∈ (0, 1], θ ∈ (0, 1)

P(X ≥ (
C1√
θ

+ 1 + α)u) ≤ Cα,θP(Y ≥ u), (3.11)

where Cα,θ = max{ 18
(1−θ)2 ,

2
α
√
θ
}.

Proof. Suppose that u ≤
√
θ‖t0‖. Notice that by (3.1) we have (E|Y |2)2/E|Y |4 ≥

1/9. Hence, by the Paley-Zygmund inequality we get

P(Y ≥ u) ≥ P(Y ≥
√
θ‖t0‖) =

1

2
P(|Y | ≥

√
θ‖t0‖) =

1

2
P(|Y |2 ≥ θ‖t0‖2)

=
1

2
P(|Y |2 ≥ θE|Y |2) ≥ 1

2
(1− θ)2 (E|Y |2)2

E|Y |4
≥ (1− θ)2

18
,

so trivially

P(X ≥ (
C1√
θ

+ 1 + α)u) ≤ 1 ≤ 18

(1− θ)2
P(Y ≥ u).

Now, consider u ≥
√
θ‖t0‖. Notice that E(Y )+ = 1/2E|Y | ≤ 1/2

√
E|Y |2 =

1/2‖t0‖. Hence by Corollary 7

P(X ≥ (
C1√
θ

+ 1 + α)u) ≤ P(X ≥ (
EX√
θ‖t0‖

+ 1 + α)
√
θ‖t0‖)

≤ 4

α
√
θ‖t0‖

P(Y ≥ u)
1

2
‖t0‖. (3.12)

This finishes the proof.

Remark 6. Instead of using Kahane’s inequality in Corollary 7 one can use [6,
Lemma 7] to obtain that P(X ≥ EX + (1 + α)u) ≤ 16

α
P(Y ≥ u). Then by

considering cases when u is less or greater than (1/2
√

2)‖t0‖ and applying (3.2)
one can get

P(X ≥ (2
√

2C1 + 2)u) ≤ 16P(Y ≥ u). (3.13)



44 Chapter 3. Lévy-Ottaviani type inequality

3.3 Chaining
Theorem 18. The following inequality holds EX ≤ C‖a(1)‖, where C ≤ 4.45.

Proof. The proof is based on the special choice of approximation nets Tk, k ≥ 0.
We denote the number of elements |Tk| = Nk, where Nk are numbers which we
choose later. Define Tk = {uk0, uk1, . . . , ukNk−1} in the following way

ukl = inf{t ∈ [0, 1] : ‖a(t)‖2 ≥ l

Nk

‖a(1)‖2}.

Since ai(t) are right continuous we have that

l

Nk

‖a(1)‖2 ≤ ‖a(ukl )‖2 ≤ l + 1

Nk

‖a(1)‖2. (3.14)

Moreover, Tk ⊂ Tk+1. Let us define πk(t) ∈ Tk as max{ukl ∈ Tk : ukl ≤ t}.
Therefore, if t ∈ Tk, k ≥ 1 and πk−1(t) = uk−1

l then

l

Nk−1

≤ ‖a(πk−1(t))‖2 ≤ ‖a(t)‖2 <
l + 1

Nk−1

.

As a consequence of the above inequality and monotonicity of each ai we get
the following crucial fact

‖a(t)− a(πk−1(t))‖2 ≤ ‖a(πk(t))‖2 − ‖a(πk−1(t))‖2 ≤ ‖a(1)‖2

Nk−1

. (3.15)

It is clear that
⋃
k Tk is dense in T . FixK and consider points t ∈ TK . Obviously,

πK(t) = t. Using backward induction we define tk for k = 0, 1, 2, . . . , K as
tK = πK(t) = t and for k < K, tk = πk(tk+1). Note that t0 = 0 for all
t ∈ TK . Before we state the main chaining argument we present two helpful
inequalities. First, recall that from (3.1) we can bound any norm of Xt by ‖t‖,
namely ‖Xt‖p ≤

√
p− 1‖t‖. Also, (see proof of Theorem 10), we have for any

constant C ≥ 1 and p ≥ 2

E(
Xt

‖Xt‖p
−C)+ =

1

2
E(
|Xt|
‖Xt‖p

−C)+ ≤
1

2
max
x≥C

1

xp
(x−C) ≤ 1

2
C

1

p− 1

(
p− 1

Cp

)p
.

(3.16)
We proceed to chaining (it follows the same lines as the proof of Theorem 10).
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EX = lim
K→∞

E sup
t∈TK

(Xt −X0) = lim
K→∞

E sup
t∈TK

K∑
k=1

(Xtk −Xtk−1
)

≤ lim
K→∞

E sup
t∈TK

K∑
k=1

Ck‖Xtk −Xtk−1
‖pk

(
1 +

(
Xtk −Xtk−1

Ck‖Xtk −Xtk−1
‖pk
− 1

)
+

)

≤ ‖a(1)‖ lim
K→∞

E sup
t∈TK

K∑
k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(
1 +

(
Xtk −Xtk−1

Ck‖Xtk −Xtk−1
‖pk
− 1

)
+

)
(3.17)

≤ ‖a(1)‖ lim
K→∞

K∑
k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(
1 +

∑
u∈Tk

E

(
Xu −Xπk−1(u)

Ck‖Xu −Xπk−1(u)‖pk
− 1

)
+

)

= ‖a(1)‖ lim
K→∞

K∑
k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(
1 +

∑
u∈Tk

1

2Ck
E

( |Xu −Xπk−1(u)|
‖Xu −Xπk−1(u)‖pk

− Ck
)

+

)

≤ ‖a(1)‖ lim
K→∞

K∑
k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(
1 +

1

2Ck
|Tk|Ck

1

pk − 1

(
pk − 1

Ckpk

)pk)
(3.18)

where in (3.17) we used (3.15) and (3.1), while (3.18) follows from (3.16). It
remains to choose parameters Ck, pk and |Tk| in the optimal way. For this we
pick C1 = 1 and Ck = 2 for k ≥ 2. For each k we choose pk = 2k. We define
|Tk| iteratively so that |T0| = 1 and |Tk| it is the multiple of |Tk−1| (to satisfy
Tk−1 ⊂ Tk) closest to the minimizer of the function

f(x) =

(
2k − 1

|Tk−1|

) 1
2 1

2k − 1

(
2k − 1

2k+1

)2k

x+ 2

(
2k+1 − 1

x

) 1
2

,

which is

x = ((2k+1 − 1)(2k − 1))
1
3

(
2k

2k − 1

) 2
3

2k

|Tk−1|
1
3 22k .

The result then follows by substituting values of Ck, pk and Tk and a simple
estimation.

Proof of Theorem 15. We apply Theorem 17 with θ = (C1/(7−α))2 for α = 0.1
and C1 = 4.45.

Remark 7. Constant inside the probability on the left hand side in Theorem
15 can be reduced to 6 in exchange for Cα,θ ≤ 430. Alternatively, we can apply
(3.13) to reduce constant on the right hand side to 16 with constant on the left
equal to 14.6.

Remark 8. Notice that Corollary 7 implies that for big u (say u > EX/ε, ε > 0
small) the result is close to the original conjecture. Namely, for α = ε we get
that

P(X ≥ (1 + 2ε)u) ≤ P(X ≥ EX + (1 + α)u) ≤ 4E(Y )+

εu
P(Y ≥ 1).
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The constant 4E(Y )+/(εu) gets smaller with larger u we take. Obviously, the
estimate works until u exceeds

∑n
i=1 |ai(t)|.
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Chapter 4

Infinitely divisible processes

4.1 Overview of the result
It is a long-term program to investigate properties of general Lévy-type pro-
cesses. It is unexpectedly hard to provide some unified approach to this matter
and what is usually done in practice is to explore the behaviour of specific
examples separately. Initial attempt to deal with this task was done by M.
Talagrand in 1993 [29], where the regularity of infinitely divisible processes was
proved under additional technical assumption on the Lévy measure. It was con-
jectured that the result holds without it, however little progress on this problem
has been done since then. The main difficulty was related to the fact that the
Bernoulli Conjecture (see [2]) was still open then. Our goal is to prove that the
Talagrand’s conjecture holds true.
The essential technical tool in the study of infinitely divisible processes is its’
series representation due to J. Rosiński [23]. Consider a σ-finite measure space
(Ω, ν) and a Poisson point process of intensity ν on Ω (see e.g. [7], [14] for the in-
troduction to the subject of such processes). Recall it is a random subset Π of Ω
such that for any measurable subset A of finite intensity measure a cardinality of
A∩Π denoted by |A∩Π| is a Poisson random variable of expectation ν(A) <∞
and for disjoint measurable subsets A1, . . . , Ak random variables (|Ai∩Π|)1≤i≤k
are independent. We denote elements of Π by (Zi)i≥1. By (εi)i≥1 we denote a
sequence of random signs (Bernoulli sequence) i.e. P(εi = ±1) = 1/2 indepen-
dent of (Zi)i≥1. It is a delicate matter whether the construction of elements of
the random set is well-defined. However, we just refer to [23] or [32, Theorem
11.2.7] for details since what is crucial for our work is the existence of the se-
ries representation of infinitely divisible processes. For this reason and the fact
that we want to work with such processes in full generality we use the following
definition. It is different from a classical terminology used in this area as might
be found for example in [24].

Definition 3. An infinitely divisible (symmetric, without Gaussian component)
process is a collection (Xt)t∈T where T is a set of functions on Ω satisfying∫

Ω
t2 ∧ 1dν <∞ for t ∈ T and where Xt =

∑
i≥1 εit(Zi).

In order to see that the definition is legit we need a following property of a
Poisson point process (see [32, Lemma 11.3.1]), which we also use later.

E
∑
i≥1

t(Zi) =

∫
Ω

t(ω)ν(dω). (4.1)
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To show that
∑

i≥1 εit(Zi) converges almost surely, we use (4.1) and see that
E
∑

i≥1 t(Zi)
2 ∧ 1 < ∞ by the assumption

∫
Ω
t2 ∧ 1dν < ∞. Moreover, this

assumption implies that ν({ω : |t(ω)| ≥ 1}) <∞, so there are finitely many i’s
with |t(Zi)| ≥ 1.
The main question concerns the behaviour of E supt∈T Xt. Let us remind that
formally we consider

sup
F⊂T

E sup
t∈F

Xt,

where the supremum runs over all finite subsets F of T . Usually, by considering
a separable modification of Xt, t ∈ T , it is possible to guarantee that supt∈T Xt

is a well-defined random variable (for the definition of a separable version of a
process and a discussion of measurability of suprema in the general setting of not
necessarily separable spaces see [18, Ch. 2]). In this case supF⊂T E supt∈F Xt

coincides with the usual expectation of the supremum of Xt. We will assume
that T is separable so the formal definition coincides with E supt∈T Xt. Our
study is a part of the theory of suprema of stochastic processes developed by
M. Talagrand which can be summarized as relating the size of the process to the
appropriately measured size of the index set T . For this let us recall γ numbers.
First, consider distances on T

d∞(s, t) = sup
ω∈Ω
|s(ω)− t(ω)|

and
d2

2(s, t) =

∫
Ω

(s(ω)− t(ω))2ν(dω).

Consider an admissible (see Definition 1) sequence of partitions (An)n≥0 of set
T . By An(t) we will denote the unique element of partition An that contains
t ∈ T and by ∆(·) the diameter of set in distance d. Given α > 0 we have

γα(T, d) = inf sup
t∈T

∑
n≥0

2n/α∆(An(t)),

where the infimum is taken over all admissible sequences.
We are ready to formulate upper bounds for E supt∈T Xt. We will follow the
same steps as in the case of empirical and selector processes (see Section 1.3).
One obvious bound follows from the inequality

|Xt| ≤
∑
i≥1

|t(Zi)|.

It motivates the definition of the process (|X|t)t∈T , where |X|t =
∑

i≥1 |t(Zi)|
and a set T of functions on Ω satisfying

∫
Ω
|t| ∧ 1dν <∞. Therefore, if it hap-

pens that (|X|t)t∈T is bounded then obviously E supt∈T Xt is bounded and we
say that its boundedness owes nothing to cancellation. The other reason for the
boundedness follows from the chaining, which we explain next. The fundamen-
tal idea of Talagrand is that these are the only reasons for the boundedness of
the process. This applies not only to infinitely divisible proceeses and we give
an account of this fact in Chapter 5.
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An important feature of infinitely divisible processes is that they obey the Bern-
stein inequality. Before we state it we will need some properties of Poisson Point
Processes (cf. [33, Chapter 10.2]). Firstly, if X is a Poisson random variable
with mean a, then

E exp(λX) = exp(a(exp(λ)− 1)).

Now, if A is a measurable set of finite measure, t = c1A and X = |A∩Π|, then

E exp

(
λ
∑
i≥1

t(Zi)

)
= E(λc)X = exp(ν(A)(λc− 1)).

Therefore, by independence of |Ai∩Π| for step functions t we have the following
identity

E exp

(
λ
∑
i≥1

t(Zi)

)
= exp

(∫
(exp(λt(ω))− 1)ν(dω)

)
, (4.2)

which extends to bounded functions t satisfying
∫
|t| ∧ 1dν <∞ by approxima-

tion. We will see that the formula (4.2) in some sense replaces the independence
of Zi assumption as we had in the case of empirical processes for example. We
move towards the Bernstein inequality. Firstly, for t ∈ T , denoting by Eε the
expectation in εi’s, we have

Eε exp

(
λ
∑
i≥1

εit(Zi)

)
= exp

(∑
i≥1

log(cosh(λt(Zi)))

)
,

so by taking the expectation and applying (4.2) we get

E exp

(
λ
∑
i≥1

εit(Zi)

)
= exp

(∫
(cosh(λt(ω))− 1)ν(dω)

)
.

Observe that cosh(λt(ω))− 1 ≤ λ2t2(ω) for |λt(ω)| ≤ 1. Consequently, arguing
just as in the proof of Theorem 6 we get

P

(∣∣∣∣∣∑
i≥1

εi(s(Zi)− t(Zi))

∣∣∣∣∣ ≥ v

)
≤ 2 exp

(
− 1

L
min(

v2

d2(s, t)2
,

v

d∞(s, t)
)

)
.

This togehter with Theorem 3 yields

Theorem 19. We have

E sup
t∈T

Xt ≤ L(γ2(T, d2) + γ1(T, d∞)). (4.3)

As mentioned, the main concept due to M. Talagrand is that E supt∈T Xt is
actually comparable with the two quantities described above. However, the
initial version of this result requires the following condition on measure ν.
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Definition 4 (H(C0, δ) condition). Consider δ > 0, C0 > 0. We say that a
measure ν satisfies a condition H(C0, δ) if for all s, t ∈ T , and all u > 0, v ≥ 1
we have

ν({β; |β(s)− β(t)| ≥ uv}) ≤ C0v
−1−δν({β; |β(s)− β(t)| ≥ u}).

All α-stable distributions for α ∈ (1, 2) obey this condition and one can con-
struct a large class of measures for which it also holds, however it excludes for
example Dirac deltas. Such measures, whose mass is carried by a single point,
are precisely the source of difficulty in going beyond the above tail condition.
Dealing with them requires the same amount of effort as with Bernoulli pro-
cesses (see [2]) which we will discuss in Section 2.
The following result is known as the Decoposition Theorem for infinitely divis-
ible processes.

Theorem 20. Suppose that H(C0, δ) holds. Then we can decompose T ⊂ T1+T2

in such a manner that

γ2(T1, d2) + γ1(T1, d∞) ≤ LE sup
t∈T

Xt (4.4)

and
E sup
t∈T2
|X|t ≤ LE sup

t∈T
Xt. (4.5)

It was orginally proved in [29]. Despite the control of the measure ν the argu-
ment there is still very complex and demanding. The proof of Bernoulli Con-
jecture [2] provided a new hope for approaching infinitely divisible processes,
but it has been only recently to make the proof in [29] more comprehensible.
We will outline the new approach in the next section.
The main goal of this chapter is to prove Theorem 20 without H(C0, δ) condi-
tion. Before describing the method for this let us explain briefly the meaning
of Theorem 20. Observe that having the decomposition of t ∈ T given by
t = t1 + t2, t1 ∈ T1, t2 ∈ T2 and T ⊂ T1 + T2 we can write

E sup
t∈T

Xt ≤ E sup
t∈T

Xt1 + E sup
t∈T

Xt2 ≤ E sup
t∈T1

Xt + E sup
t∈T2

Xt.

Theorem 20 states that infinitely divisible process can be splitted into two parts.
E supt∈T1 Xt is the one explained through chaining (by (4.4) and (4.3)) and
E supt∈T2 Xt is bounded since E supt∈T2 |Xt| ≤ E supt∈T2 |X|t and then by (4.5).
The first part should be considered as the one where cancellations between terms
occur while in the second there are no cancellations. It is a general phenomenon
which we will discuss further in Chapter 5 by looking at empirical processes and
selector processes (see [32, Chapter 9 and Chapter 12]).
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4.2 Tools

4.2.1 Lower bounds from partition

Let us define mappings which are square of distances, but we will refer to them
as distances for simplicity. For j ≥ 1, s, t ∈ T let

ϕj(s, t) =

∫
Ω

r2j|s(ω)− t(ω)|2 ∧ 1ν(dω) (4.6)

and we denote by Bj(t, r) a ball in the distance ϕj centred at t with radius r.
Let us also assume that

s 6= t =⇒ lim
j→∞

ϕj(s, t) =∞. (4.7)

The first tool is the following (see [33, Theorem 6.6.1], [32, Theorem 5.2.6]). We
do not provide the proof of this Theorem here. However, the proof of Theorem
29 mimics this argument.

Theorem 21. Consider a countable set T of measurable functions on Ω, a
number r ≥ 4 and assume 0 ∈ T . Consider an admissible sequence of partitions
(An)n≥0 of T, and for A ∈ An consider jn ∈ Z, with the following properties,
where u > 0 is a parameter

A ∈ An, B ∈ An−1, A ⊂ B =⇒ jn(A) ≥ jn−1(B),

∀s, t ∈ A ∈ An, ϕjn(A)(s, t) ≤ u2n.

Then we can write T ⊂ T ′ + T ′′ + T ′′′ where 0 ∈ T ′ and

γ2(T ′, d2) ≤ L
√
u sup
t∈T

∑
n≥0

2nr−jn(An(t)), (4.8)

γ1(T ′, d∞) ≤ L sup
t∈T

∑
n≥0

2nr−jn(An(t)) (4.9)

∀t ∈ T ′′, ‖t‖1 ≤ Lu sup
t∈T

∑
n≥0

2nr−jn(An(t)). (4.10)

Moreover,
∀t ∈ T ′′′, ∃s ∈ T, |t| ≤ 5|s|1{2|s|≥r−j0(A0(t))}. (4.11)

What Theorem 21 effectively says is that if we can provide an admissible se-
quence of partitions of the set T together with the sequence (jn) satisfying
described properties and most importantly that if

sup
t∈T

∑
n≥0

2nr−jn(An(t)) ≤ E sup
t∈T

Xt (4.12)

then we are basically done with the proof of Theorem 20. The remaining steps
are relatively simple. First, we show the Giné-Zinn type of result ([32, Theorem
11.5.1], [33, Theorem 9.7.1]) the proof of which should be compared with the
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one of Theorem 9. Again we will need to deal with the fact that Zi’s are not
independent, so we cannot simply repeat the proof in the case of empirical
processes. We will need some extra tool which is the following Lemma (see [33,
Lemma 10.2.1], cf.[14, Proposition 3.8]).

Lemma 2. Consider a Poisson point process of intensity ν and a set A with
ν(A) > 0. Given |A ∩ Π| = N , the set A ∩ Π has the same distribution as the
set {X1, X2, . . . , XN}, where the variables Xi are independent and distributed
according to the probability λ on A given by λ(B) = ν(A∩B)/ν(A) for B ⊂ A.

Theorem 22.

E sup
t∈T
|X|t ≤ sup

t∈T

∫
Ω

|t(ω)|ν(dω) + 4E sup
t∈T
|Xt|. (4.13)

Proof. Consider a measurable subset A ⊂ Ω with ν(A) < ∞. Consider a
sequence {X1, . . . , XN} of independent random variables distributed according
to probability λ on A given for B ⊂ A by λ(B) = ν(A ∩ B)/ν(A). As usual,
by (εi)i≥1 we denote an independent Bernoulli sequence, independent of X ′is.
Then, by the same argument as for empirical processes (1.31) we get

E sup
t∈T

∑
i≤N

|t(Xi)| ≤
N

ν(A)
sup
t∈T

∫
A

|t(ω)|ν(dω) + 4E sup
t∈T

∣∣∣∣∣∑
i≤N

εit(Xi)

∣∣∣∣∣ . (4.14)

Now, we want to apply Lemma 2. For this consider a Poisson point process
(Zi)i≥1 of intensity measure ν. Given N = |{i ≥ 1 : Zi ∈ A}| we take the
expectation in (4.14) and use the fact that EN = ν(A) to get

E sup
t∈T

∑
i≤N

|t(Xi)|1A(Zi) ≤ sup
t∈T

∫
A

|t(ω)|ν(dω) + 4E sup
t∈T

∣∣∣∣∣∑
i≤N

εit(Xi)1A(Zi)

∣∣∣∣∣ .
(4.15)

Obviously, ∫
A

|t(ω)|ν(dω) ≤
∫

Ω

|t(ω)|ν(dω).

For the second part we apply Jensen’s inequality by taking the expectation in
those εi’s at which 1A(Zi) = 0 outside the absolute value and the supremum
and get

E sup
t∈T

∣∣∣∣∣∑
i≤N

εit(Xi)1A(Zi)

∣∣∣∣∣ ≤ E sup
t∈T

∣∣∣∣∣∑
i≤N

εit(Xi)

∣∣∣∣∣ ,
which finishes the proof by (4.15).

�
We then use Theorem 21 to write T1 = T ′ and T2 = T ′′+ T ′′′ and the last piece
is to show that

sup
t∈T2

∫
Ω

|t(ω)|ν(dω) ≤ LE sup
t∈T

Xt. (4.16)
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As introduced in Chapter 1 (see Theorem 2), providing an admissible sequence
of partitions such that the series∑

n≥0

2nr−jn(An(t))

is a lower bound for some functional of the set T is a central tool in Talagrand’s
machinery (see [33, Theorem 7.1.2], [32, Theorem 10.1.2]). Let emphasize again
that the existance of the admissible sequence depends on whether the appropri-
ate functional satisfies the growth condition of Definition 2 or not. Let us repeat
this notion (see also [33, Section 7] and [32, Section 10]) so that we can expose
the importance of the H(C0, δ) condition in the Talagrand’s initial approach
and motivate our strategy. Recall the distance ϕj given by (4.6).

Definition 5. We say that functionals Fn,j satisfy the growth condition for
r = 2κ, κ ∈ Z, if the following occurs. Consider any j ∈ Z, any n ≥ 1 and
m = Nn. Consider any sets (Hl)1≤l≤m that are separated in the following sense:
there exist points u, t1, . . . , tm in T for which Hl ⊂ Bj+2(tl, 2

n+κ) and

∀l, l′ ≤ m, l 6= l′, ϕj+1(tl, tl′) ≥ 2n+1

∀l ≤ m, tl ∈ Bj(u, 2
n).

Then,
Fn,j(

⋃
l≤m

Hl) ≥ 2nr−j−1 + min
l≤m

Fn+1,j+1(Hl).

In order to define the functional used in the proof of Theorem 20 we need more
structure related to the Bernoulli process. The next section is devoted to explain
how techniques used by Talagrand in his new proof of Theorem 20 [33, Section
10.8] are helpful for us to establish the general form of Theorem 20.

4.2.2 Partition for Bernoulli process

First, observe that conditionally on (Zi)i≥1, Xt is a Bernoulli process defined as
a collection (Yt)t∈S, where Yt =

∑
i≥1 εiti and S ⊂ `2. Let us restate here the

fundamental result due to W. Bednorz and R. Latała called Bernoulli Theorem
[2] because we will use a little different notation than in Chapter 1.

Theorem 23. Let S ⊂ `2. There exists a universal constant L such that

inf{γ2(S1, d) + sup
t∈S2

‖t‖1;S ⊂ S1 + S2} ≤ LE sup
t∈S

Yt,

where d denotes the Euclidean distance and ‖ · ‖1 is a `1-norm.

What might be not noticed by looking at the above statement is the special
construction crucial for its proof. Namely, it provides the admissible sequence
of partitions (An)n≥0 and numbers (jn(An(t)))n≥0 such that

sup
t∈S

∑
n≥0

2nr−jn(An(t)) ≤ LE sup
t∈S

Yt (4.17)
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Recent developments of M. Talagrand (see [33, Chapter 8.6]) allow to provide
a lower bound for E supt∈S Yt in terms of a functional which depends only on
the set S, not on decomposition S1 + S2. The significance of this result should
be compared with constructing the majorising measure for Gaussian processes
(cf. [28], [33, Chapters 2.6, 4.1], [32, Chapter 2.4]). In particular it allows to
prove Theorem 20 without H(C0, δ). For this reason and for the clarity of our
argument we restate this construction here. It can be summarized as follows.
Recall that by Nn we denote a number 22n .

Theorem 24. Let S ⊂ `2 and µ be a probability measure on S. Fix a positive
number r ≥ 4. Consider the following sequence of square distances for j ∈ Z

∀s, t ∈ S ϕ̃j(s, t) =
∑
i≥1

(r2j|ti − si|2) ∧ 1. (4.18)

Now, let k0 be the largest integer such that the diameter of S in the Euclidean
distance (∆(S, d2)) does not exceed r−k0. For t ∈ S define k0(t) = k0 and for
n ≥ 1

kn(t) = sup{j ∈ Z ; µ({s ∈ T, ϕ̃j(s, t) ≤ 2n}) ≥ N−1
n−1}. (4.19)

Let
Iµ(t) =

∑
n≥0

2nr−kn(t). (4.20)

Then there exists a universal constant L such that∫
S

Iµ(t)µ(dt) ≤ LE sup
t∈S

Yt. (4.21)

The proof of Theorem 24 involves two steps. We will adapt the notation from
[33]. Put b∗(S) = inf{γ2(S1, d) + supt∈S2

‖t‖1;S ⊂ S1 + S2}. Let b̄(S) be the
infimum of numbers supt∈S

∑
n≥0 2nr−jn(An(t)) such that there exists an admis-

sible sequence (An)n≥0 of partititons of S, and for A ∈ An an integer jn(A)
satisfying

s, t ∈ A =⇒ ϕ̃jn(A)(s, t) ≤ 2n (4.22)

and
∆(S, d2) ≤ r−j0(T ).

The first step is to show that [33, Theorem 8.6.2]

b̄(S) ≤ Lb∗(S). (4.23)

It follows from the subadditivity of b̄ (cf. proof of (2.6) ) i.e. for T, T ′ ⊂ `2

b̄(T + T ′) ≤ b̄(T ) + b̄(T ′)

and then the following estimates. First, b̄(B1) ≤ Lr, where B1 = {t ∈ `2 :∑
i≥1 |ti| ≤ 1} (see [33, Theorem 17.2.1], which we do not quote here since

it adds a little to the whole story and is quite technical). Moreover, b̄(T ) ≤
Lγ2(T, d2), which is a consequence of the fact that γ2(T, d2) satisfies the growth
condition of Definition 2 combined with Theorem 2. The second step is the
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following Lemma (see [33, Proposition 8.6.7]), which we quote together with
the proof for the instructional purposes.

Lemma 3. Given any probability measure µ on S we have∫
S

Iµ(t)µ(dt) ≤ Lb̄(S), (4.24)

where Iµ(t) is as in (4.20).

Proof. Consider an admissible sequence (An)n≥0 of partitions of S and for
A ∈ An an integer jn(A) as in (4.22) such that

sup
t∈S

∑
n≥0

2nr−jn(An(t)) ≤ 2b̄(S).

By the definition of k0 it follows that ϕ̃k0+1(s, t) > 1 and since ϕ̃k0+1(s, t) ≤
r2(k0+1)d2(s, t)2 we have r−k0−1 < ∆(S, d2). Hence, since ∆(S, d2) ≤ r−j0(T ),

r−k0 ≤ r−j0(T ) ≤ sup
t∈S

∑
n≥0

2nr−jn(An(t)).

Now, for n ≥ 1, A ∈ An and t ∈ A

A ⊂ {s ∈ S : ϕ̃jn(A)(s, t) ≤ 2n} ⊂ {s ∈ S : ϕ̃jn(A)(s, t) ≤ 2n+1}.

So, if µ(A) ≥ N−1
n+1 then kn+1(t) ≥ jn(A), hence∫
A

2n+1r−kn+1(t)µ(dt) ≤ 2

∫
A

2nr−jn(An(t))µ(dt).

On the other hand, if µ(A) < N−1
n+1∫

A

2n+1r−kn+1(t)µ(dt) < 2n+1r−k0N−1
n+1.

Summation over A ∈ An and then over n ≥ 0 yields∫
T

∑
n≥1

2nr−kn(t) ≤ L sup
t∈S

∑
n≥0

2nr−jn(An(t)) + Lr−k0 ,

which finishes the proof, because for n = 0, 1

2nr−kn(t) ≤ Lr−k0 ≤ L sup
t∈S

∑
n≥0

2nr−jn(An(t)).

�
Having prepared the lower bound for the Bernoulli process we are ready to come
back to infinitely divisible processes. Consider Iµ,Z be defined as in (4.20) but
for s, t ∈ S and

ϕ̃j(s, t) =
∑
i≥1

(r2j|t(Zi)− s(Zi)|2) ∧ 1
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by taking expectation with respect to the process (Zi)i≥1 in (4.21) we have

E

∫
T

Iµ,Z(t)µ(dt) ≤ LE sup
t∈T

Xt. (4.25)

The next step is to repeat the construction provided in Theorem 24 for the set
T . Using the distance (4.6) we define numbers (jk)k≥0 associated to each point
t ∈ T . Let

j0 = sup{j ∈ Z : ∀s, t ∈ T, ϕj(s, t) ≤ 4}. (4.26)

The use of constant 4 in the above will become apparent with the next Lemma.
Given any probability measure µ on T we define for any integer n ≥ 0 and t ∈ T

jµ0 (t) = j0

and
jµn(t) = sup{j ∈ Z : µ(Bj(t, 2

n)) > N−1
n }. (4.27)

We also define
Jµ(t) =

∑
n≥0

2nr−j
µ
n(t).

The crucial fact (see [33, Lemma 9.3.2]) is the following Lemma the proof of
which we include again for the sake of completeness.

Lemma 4. For each t ∈ T we have Jµ(t) ≤ LEIµ,Z(t).

Proof. Fix probability measure µ on T . To simplify the notation put jn(t) =
jµn(t). Observe that by (4.1) Eϕ̃(s, t) = ϕ(s, t). It is easy to verify (we postpone
the proof of this fact until Chapter 5, see also [32, Lemma 7.4.3], [33, Lemma
10.2.2]) that for any function 0 ≤ f ≤ 1 and constant A such that 4A ≤

∫
fdν

we have

P

(∑
i≥1

f(Zi) ≤ A

)
≤ exp(−A). (4.28)

We aim to prove that

P(k0 ≤ j0) ≥ 1

L
(4.29)

and for n ≥ 3

P(kn−2(t) ≤ jn(t)) ≥ 1

2
. (4.30)

These relations imply respectively that Er−k0 ≥ r−j0/L and for n ≥ 3,

LE2n−3r−kn−3(t) ≥ 2nr−jn(t).

Summing these inequalities and using for n ≤ 2 that 2nr−jn(t) ≤ Lr−j0 ≤
E2nr−kn(t) yields the result.
To prove (4.29) we use (4.28). By the definition of j0, ϕj0+1(s, t) > 4 and
therefore

P(ϕ̃j0+1(s, t) > 1) ≤ 1− exp(−1).
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By the definition of k0 the event ϕ̃j0+1(s, t) > 1 implies that k0 ≤ j0.
Now we argue that (4.30) holds. By the definition of kn(t) we have

µ({s ∈ T : ϕkn(t)+1(s, t) ≤ 2n}) ≤ N−1
n .

On the other hand, by (4.28), ϕkn(t)+1(s, t) ≥ 2n implies that

P(ϕ̃kn(t)+1(s, t) ≤ 2n−2) ≤ exp(−2n−2) ≤ N−1
n−2.

Hence,

Eµ({s ∈ T : ϕkn(t)+1(s, t) ≥ 2n, ϕ̃kn(t)+1(s, t) ≤ 2n−2}) ≤ N−1
n−2

and by Markov inequality we have

P(µ({s ∈ T : ϕkn(t)+1(s, t) ≥ 2n, ϕ̃kn(t)+1(s, t) ≤ 2n−2}) ≤ 2N−1
n−2) ≥ 1

2
.

Therefore, conditioned on such event we get that

µ({s ∈ T : ϕ̃kn(t)+1(s, t) ≥ 2n−2}) ≤ N−1
n + 2N−1

n−2 < N−1
n−3

and in turn kn−3(t) ≤ jn(t). This finishes the proof.
�

Lemma 4 together with (4.25) imply that∫
T

Jµ(t)µ(dt) ≤ L

∫
T

EIµ,Z(t)µ(dt) = LE

∫
T

Iµ,Z(t)µ(dt) ≤ LE sup
t∈T

Xt. (4.31)

The functional that can be used for the proof of Theorem 20 is given for A ⊂ T
by

Fn(A) = Fn,j(A) = sup
µ(A)=1

inf
t∈A

Jµ,n(t),

where
Jµ,n(t) =

∑
k≥n

2kr−j
µ
k (t).

The idea was to prove that above functionals satisfy the growth condition of
Definition 2, which in turn will induce the existence of the admissible sequence.
The critical point is that to show the growth condition (see [32, Proposition
11.6.10]) one needs to show that Bj+2(tl, 2

n+κ) ⊂ Bj+1(tl, 2
n−4), which is a

consequence of H(C0, δ) condition.
Since there is little hope for proving the growth condition without H(C0, δ)
condition the other strategy is imposed for the proof of general Decomposition
Theorem. First, we deduce from the fact that (4.31) holds for any probability
measure that there is some measure say µ0 for which we have

sup
t∈T

Jµ0(t) ≤ LE sup
t∈T

Xt.

This could be done by a standard argument using Hahn-Banach theorem pro-
vided that Jµ,0(t) is convex as a function of µ. Proving the convexity is highly
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non-trivial task which therefore is replaced by a modified reasoning giving a rise
to the most technical part of the proof. It is a subject of the next section.

4.3 The Separation Theorem
We start with the main consequence of (4.31). It should be compared with [30,
Propodition 3.2], [33, Lemma 13.3.9], [32, Lemma 13.1.4]. Fix a finite subset F
of T ,

Lemma 5. Consider a number a > 0. Suppose that C is a closed, convex subset
of real-valued functions on a finite set F . Assume that f ∈ C, g ≥ f =⇒ g ∈ C
and for each probability measure µ on F there exists f ∈ C such that

∫
fdµ ≤ a.

Then a constant function a ≡ a belongs to C.

Proof. Suppose that a /∈ C. Then by the Hahn-Banach theorem there exists a
linear functional ϕ on the space of functions on T such that for each f ∈ C,

ϕ(f) > ϕ(a). (4.32)

Consider a function g on T with g ≥ 0 and a number λ > 0 so that f + λg ∈ C
and ϕ(f) + λϕ(g) > ϕ(a). This implies that ϕ is non-negative, so there is a
probability measure µ0 on T and a number β ≥ 0 such that for each non-
negative function g on T we have ϕ(g) = β

∫
gdµ0, in particular ϕ(a) = βa.

By the assumption there is f ∈ C such that
∫
fdµ0 ≤ a, so ϕ(a) ≤ βa = ϕ(a)

contradicting (4.32). Hence, a ∈ C.
�

Theorem 25. There exists a positive integerM , sequence of non-negative num-
bers (αi)i≤M with

∑
i≤M αi = 1 and a sequence (µi)i≤M of probability measures

on a finite subset F of T such that for each t ∈ F .∑
i≤M

αiJµi(t) ≤ LE sup
t∈T

Xt. (4.33)

Proof. Consider a closed, convex hull C of the set of functions f for which there
exists a probability measure µ on T such that for each t ∈ T , f(t) ≥ Jµ(t).
Given any probability measure µ on T , the function f(t) = Jµ(t) belongs to
C and by (4.31) we have

∫
F
f(t)µ(dt) ≤ a := LE supt∈T Xt. The conclusion

follows from Lemma 5.
�

So far, we have proved that for any finite subset F ⊂ T we have

sup
t∈F

∑
i≤M

αi
∑
n≥0

2nr−j
µi
n (t) ≤ LE sup

t∈T
Xt.

We aim to show that there is a single probability measure on F and inte-
gers jn depending only on this measure such that supt∈F

∑
n≥0 2nr−jn(t) ≤

KE supt∈T Xt.. For a fixed finite set F ⊂ T and the sequeces (αi) of non-
negative numbers and (µi) of probability measures from Theorem 25 we define
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µ =
∑
i≤M

αiµi (4.34)

and for each t ∈ T numbers jn(t) with j0 as in (4.26) and for n ≥ 1

r−jn(t)−1 <
∑
i≤M

αir
−jµin (t) ≤ r−jn(t). (4.35)

Then, it is a matter of changing the order of summation to notice that

t ∈ F =⇒
∑
n≥0

2nr−jn(t) ≤ r
∑
i≤M

αi
∑
n≥0

2nr−j
µi
n (t) (4.36)

since j0 is fixed. What is crucial for the further construction is that jn’s defined
in (4.35) preserve the defining property of jµin ’s given by (4.27).

Lemma 6. Fix n ≥ 0 and t ∈ T . For µ as in (4.34) and jn(t) as in (4.35) we
have

µ(Bjn(t)(t, 2
n)) ≥ 2

3

1

Nn

≥ 1

Nn+1

. (4.37)

Proof. For n = 0 it is straightforward from (4.26). For n ≥ 1 observe that
if jµin (t) ≥ jn(t), then µi(Bjn(t)−1(t, 2n)) ≥ 1/Nn. Define βj =

∑
i αi1{jµin (t)=j}.

Certainly,
∑

j≥1 βj = 1. Moreover,

µ(Bjn(t)(t, 2
n)) ≥

∑
j≥jn(t)

βj
1

Nn

.

Now, we will argue that
∑

j<jn(t) βj can be bounded from above so that (4.37)
follows. From the definition of jn(t) we have∑

j<jn(t)

βjr
−j ≤ r−jn(t),

which implies that βjr−j ≤ r−jn(t) for each j < jn(t) and in turn that βj ≤
r−jn(t)+j. Hence, since r ≥ 4,∑

j<jn(t)

βj ≤
∑

j<jn(t)

rj−jn(t) ≤
∑
l≥1

r−l ≤ 1

3

which finishes the argument.
�

Now, consider numbers jµn(t) defined in (4.27) for the measure µ of (4.34). By
(4.37) we have that jµn+1(t) ≥ jn(t). Hence, by (4.36), (4.33) and the fact that
jµ0 = j0 = jµi0 it follows that for any t ∈ F∑

n≥0

2nr−j
µ
n(t) ≤ L

∑
n≥0

2nr−jn(t) ≤ LE sup
t∈T

Xt. (4.38)
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4.4 The Decomposition Theorem
What we achieved in the previous section is the lower bound from a majorising
measure µ which depends on the finite set F . Namely,

sup
t∈F

Jµ(t) ≤ LE sup
t∈T

Xt.

We aim to replace the lower bound by the sum depending on the admissible
sequence of partitions of the whole set T as in Theorem 21. Before stating the
result observe (using (a+ b)2 ≤ 2(a2 + b2)) that by the definition (4.6) we have
the following form of the triangle inequality. For s, t, x ∈ T

ϕj(s, t) ≤ 2(ϕj(s, x) + ϕj(x, t)) (4.39)

and as a consequnce

∀s, t ∈ T, ϕj(s, t) > 4a > 0 =⇒ Bj(s, a) ∩Bj(t, a) = ∅. (4.40)

First, let us refine the definition of jµn(t) so that they form a non-decreasing
sequence which can increase by at most 1. Define

j̃µn(t) = min
0≤p≤n

(jµp (t) + n− p).

In this way we have j̃µ0 (t) = jµ0 (t) and for n ≥ 1

j̃µn(t) ≤ j̃µn+1(t) ≤ j̃µn(t) + 1. (4.41)

Moreover, j̃µn(t) ≤ jµn(t), so

µ(Bj̃µn(t)(t, 2
n)) ≥ N−1

n . (4.42)

Finally, for t ∈ F , since r ≥ 4 we have

∑
n≥0

2nr−j̃
µ
n(t) ≤

∑
n≥0

2n
∑

0≤p≤n

r−j
µ
p (t)−n+p =

∑
p≥0

2pr−j
µ
p (t)
∑
n≥p

(
2

r

)n−p
≤ 2Jµ(t).

(4.43)

Theorem 26. There exists an admissible sequence of partititons (An)n≥0 of F
and for A ∈ An there exists an integer jn(A) such that for each t ∈ T∑

n≥0

2nr−jn(An(t)) ≤ L
∑
n≥0

2nr−j̃
µ
n(t). (4.44)

Moreover,
s, t ∈ A ∈ An =⇒ ϕjn(A)(s, t) ≤ 2n+2. (4.45)

The partitioning procedure is the content of the next Lemma.
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Lemma 7. Consider A ⊂ F . There exists a partition A of A such that |A| ≤
Nn and for each B ∈ A

s, t ∈ B =⇒ ϕj̃µn(t)(s, t) ≤ 2n+4. (4.46)

Proof. Consider U ⊂ T such that ∀s, t ∈ U , ϕj̃µn(t)(s, t) > 2n+2. By (4.40) balls
Bj̃µn(t)(t, 2

n) are disjoint for each t ∈ U . By (4.42) it follows that |U | ≤ Nn.
Take U with maximal cardinality. Then A ⊂

⋃
t∈U Bj̃µn(t)(t, 2

n+2) and each of
these balls satisfy (4.46). If we list elements of U denoting them by t1, . . . , tM ,
M ≤ Nn, then the partition A consists of sets

D1 = A ∩Bj̃µn(t)(t1, 2
n+2),

D2 = (A\D1) ∩Bj̃µn(t)(t, 2
n+2),

...

DM = (A\
⋃

k≤M−1

Dk) ∩Bj̃µn(t)(tM , 2
n+2).

Since each element of this partition is contained in the ball of radius 2n+2 (4.46)
follows.

�

Proof of Theorem 26. We proceed by induction. Set A0 = A1 = A2 = {T} and
for n ≤ 2, jn(T ) = j0. For A ∈ An, n ≥ 2, there exists an integer, which we
denote by jn(A), such that

t ∈ A =⇒ j̃µn−2(t) = jn(A). (4.47)

Suppose we have constructed An. By (4.47) and (4.41) for t ∈ A ∈ An we have
j̃µn−1 ∈ {jn(A), jn(A) + 1}. Set

A0 = {t ∈ A : j̃µn−1(t) = jn(A)} and A1 = {t ∈ A : j̃µn−1(t) = jn(A) + 1}.

Now, we apply Lemma 7 for n − 1 rather than n to get partitions of A0 and
A1 into at most Nn−1 elements, so that we obtain at most 2Nn−1 ≤ Nn sets.
For the element B of A0 we put jn+1(B) = jn(A) and for the element B of A1

we put jn+1(B) = jn(A) + 1. Apply this procesdure to each set A ∈ An to
get partitition An+1 which is obviously nested. Clearly |An+1| ≤ N2

n ≤ Nn+1.
Condition (4.47) holds for n+ 1 by the construction as well as (4.45). Since for
n ≤ 2, jn(An(t)) = j0 and for n ≥ 3, jn(An(t)) = j̃µn−2(t) also (4.44) follows.

The last step is to level up the partition to the whole set T and to formulate
the main lower bound. Before the formal statement let us describe the idea for
building the partition elements. We will follow the intuition that the partition
of large finite subset of T should not vary too much from the partition of T
itself. To formalize this concept we will consider ascending sequence of finite
subsets FN ⊂ T and either assign the element of T to already existing parti-
tion element of FN or let it define a new partition element. Alongside, we will
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need to guarantee that integers j defined for each partition of finite subset con-
verge. This will be done by the procedure of choosing consecutively appropriate
subsequences of the indices of FN .

Theorem 27. Assume that T is countable. Then, there exists an admissible
sequence (An)n≥0 of partitions of T and for A ∈ An an integer jn(A) such that
the following holds

∀t ∈ T,
∑
n≥0

2nr−jn(An(t)) ≤ LE sup
t∈T

Xt, (4.48)

A ∈ An, C ∈ An−1, A ⊂ C =⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C) + 1 (4.49)

and
s, t ∈ A ∈ An =⇒ ϕjn(A)(s, t) ≤ 2n+2. (4.50)

Proof. Assume first that T is finite. Then, the result follows from Theorem 26
combined with (4.43).
Now, let T be countable so that T =

⋃
N≥1 FN , where (FN)N≥1 is ascend-

ing sequence of finite subsets of T . We can enumerate elements of T i.e.
T = {t1, t2, . . . } and put FN = {t1, t2, . . . , tN}. Our aim is to construct the
admissible sequence of partitions (An)n≥0 of T and verify conditions (4.48),
(4.49) and (4.50). This will end the proof. Certainly, A0 = {T}. The approach
is based on the analysis of partitions (An,N)n≥0 of FN and use them for defining
the limiting partitions of T . Recall that An,N(ti) denotes the element of n-th
partition of FN that contains ti and jn(An,N(ti)) is the associated integer. To
simplify the notation we put jn(An,N(ti)) = jn,N(ti).

For t1 we obtain a sequence of sets (An,N(t1))N≥1 and the sequence of integers
(jn,N(t1))N≥1. Note that by (4.41)

j0 ≤ jn,N(t1) ≤ j0 + n. (4.51)

The main step in the construction is to describe appropriate limiting proce-
dure allowing to define (An(t1))n≥0 and (jn((t1))n≥0. It relies highly on the
boundedness of jn,N(ti) since we can expect a stabilization on certain infinite
subsequences. For the sake of simplicity all the sequences used in the proof will
be identified with certain subsets of positive integers. Then the fact that M is
a subsequence of M ′ is equivalent to M ⊂ M ′. The first task is to define sub-
sequences Nn(t1) for n ≥ 0. We know that for n ≤ 2 and each N , jn,N(t1) = j0,
so we put N0(t1) = N1(t1) = N2(t1) = {1, 2, . . . }. In this case, An = {T}. Next
we choose a subsequence N3(t1) of N2(t1) such that (j3,N(t1))N∈N2(t1) converges
to some limit (which is guaranteed by (4.51)) and we denote its’ limit by j3(t1).
We proceed in this way to obtain nested sequences (Nn(t1))n≥0 and finally by
the diagonal procedure we can select a sequence N(t1) such that for each n the
sequence (jn,N(t1))N∈N(t1) converges to jn(t1).
Let N0(t2) = N(t1). For n > 0 consider a set An(t1). We describe when t2
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should belong to An(t1), namely

t2 ∈ An(t1) ⇐⇒ ∃Nn(t2) ⊂ Nn−1(t2) such that ∀N ∈ Nn(t2), t2 ∈ An,N(t1).
(4.52)

There are two possible cases. Firstly, if the condition (4.52) is satisfied for each
n we obtain N0(t2) ⊃ N1(t2) ⊃ . . . . Due to the property that jn,N(t1) con-
verges to jn(t1) for N ∈ N(t1) we derive that jn,N(t2) = jn,N(t1) converges to
the same limit for N ∈ Nn(t2). Secondly, the condition (4.52) might not be
satisfied for some n = n̄ ≥ 1, which means that t2 ∈ An,N(t1) for finitely many
N ∈ Nn−1(t2). In this case we start a new element of partition (which will be
denoted by An(t2)) and consrtuct the subsqence Nn(t2) in order to stabillize
jn,N(t2) so that for N ∈ Nn(t2) it converges to jn(t2), which is guaranteed by
(4.51). We continue in this way obtaining new parition elements (An(t2))n≥ñ,
subsequences Nn(t2) and limits jn(t2) for all n ≥ ñ. Hence, again we obtain
nested family of subsequences N0(t2) ⊃ N1(t2) ⊃ . . . . Finally, in both cases we
can define N(t2) by the diagonal method.

The procedure described for t1 and t2 should help getting the intuition and
clarify the general construction which we provide now. The argument goes by
induction. Consider ti for i ≥ 1 and suppose we have dealt with t1, . . . , ti−1.
We aim to define an inductive procedure for constructing Nn(ti) and deciding
whether ti belongs to already existing partition element or starts a new one. Put
N0(ti) = N(ti−1). Note that N(ti−1) is already provided. For n > 0, consider
Nn−1(ti) and suppose that there exists a subsequence M of Nn−1(ti) such that

ti ∈
i−1⋃
j=1

An,N(tj) ∀ N ∈M.

If so, then we select the smallest j for which there exists Nn(ti) ⊂ Nn−1(ti) with
the propety that ti ∈ An,N(tj) for N ∈ Nn(tj). In this way we obtain an infinite
subsequence Nn(ti) ⊂ Nn−1(ti) and put ti into the partition element An(tj).
Similarly as we have argued for t2, we have that jn,N(ti) converges to jn(tj).
Secondly, it may happen that ti belongs to

⋃i−1
j=1An,N(tj) only for finitely many

N ∈ Nn−1(ti). In this case we start a new parititon element, An(ti). When
choosing Nn(ti) ⊂ Nn−1(ti) we care only for the stabilization of jn,N(ti) namely
we require that jn,N(ti) converges to a limit which we denote by jn(ti). Once
again, (4.51) implies the existence of this limit. Following the above scheme we
decide whether ti starts a new partition element for An or not, construct jn(ti)
and N0(ti) ⊃ N1(ti) . . . . We complete the procedure by choosing N(ti) from
the family N0(ti) ⊃ N1(ti) . . . by the diagonal method. Note that it does not
affect the convergence of jn,N(ti) to jn(ti) for N ∈ N(ti).
Now we check that the defined sequence of partitions is admissible. Namely,
that the sequence of partitions An = {An(ti) : i ∈ I}, where I is the index set
gathering those points in T which start a partition element, is nested and sat-
isfies |An| ≤ 22n . We have An(ti) = {ti} ∪ {tj ∈ T : j > i, tj ∈ An,N(ti) ∀ N ∈
Nn(tj)}. The crucial property of the constructed partition is following. Fix m
and consider Fm = {t1, ..., tm}. For any n there exists a constant Kn,m large



64 Chapter 4. Infinitely divisible processes

enough such that for N > Kn,m and N ∈ N(tm) we have An,N(ti) = An(ti)∩Fm.
Hence, |An ∩ Fm| = |An,N | ≤ 22n and since m is arbitrary we conclude that
|An| ≤ 22n . By the same reason we argue that An+1(ti) ⊂ An(ti), because
(An+1(ti) ∩ Fm) = An+1,N(ti) ⊂ An,N(ti) = (An(ti) ∩ Fm).
Finally, we verify (4.48), (4.49) and (4.50). They are all straightforward conse-
quence of the fact that for N > K(n,m) and N ∈ Nn(tm) we have jn,N(ti) =
jn(ti).

�

Remark 9. The proof easily extends to separable T , that is to such T which
has a countable subset which is dense in T with respect to some metric and also
each function ϕj(s, t) is continuous in this metric. Let An be the admissisble
sequence of partitions of this subset given by Theorem 27. Let Ā be the closure
of the set A, so by continuity of ϕj(A)(s, t), A ∈ An, we have for each s, t ∈ Ā,
ϕj(A)(s, t) ≤ 2n+2. Sets Ā cover T , but they do not have to be disjoint. We
construct an admissible sequence Bn of T such that for each B ∈ Bn there exists
A ∈ An such that B ⊂ Ā. It is possible because An is admissible so in particular
Ā =

⋃
{C̄ : C ⊂ A, A ∈ An+1}.

Assume with no loss in generality that 0 ∈ T which implies that (see [32, Lemma
2.2.1])

E sup
t∈T
|Xt| ≤ 2E sup

t∈T
Xt. (4.53)

We need one more ingredient for the final result.

Lemma 8. Assume 0 ∈ T . For each t ∈ T we have∫
Ω

|t|1{2|t|≥r−j0(t)}dν ≤ LE sup
t∈T

Xt. (4.54)

Proof. By (4.1) we have
∫

Ω
|t|1{2|t|≥r−j0(t)}dν = E

∑
i≥1 |t(Zi)|1{2|t(Zi)|≥r−j0(t)}.

Define
Nk =

∑
i≥1

1{rk≤2|t(Zi)|<rk+1}

and observe that Nk is a Poisson random variable with mean ν({ω : rk ≤
2|t(ω)| < rk+1}). Recall that ϕj0(t, 0) ≤ 4. Again by (4.1),

r−2j0ϕj0(t, 0) = E
∑
i≥1

min(|t(Zi)|2, r−2j0).

Hence,
r−2j0

4
E
∑
k≥−j0

Nk ≤ Emin(|t(Zi)|2, r−2j0) ≤ r−2j0 .

It means that for each k ≥ −j0, ENk ≤ 1 and since for λ ≤ 1 it holds that
λ ≤ e(1− e−λ) we have

ENk ≤ eP(Nk > 0).
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The above leads to

E
∑
i≥1

|t(Zi)|1{2|t(Zi)|≥r−j0(t)} ≤ E
∑
k≥−j0

rk+1

2
Nk ≤ 2eE

∑
k≥−j0

rk+1
1{Nk>0}.

Observe that

E
∑
k≥−j0

(r2(k+1)
1{Nk>0})

1
2 ≤ E

( ∑
k≥−j0

r2(k+1)Nk

) 1
2

≤ LE

(∑
i≥1

|t(Zi)|2
) 1

2

≤ L sup
t∈T

E

(∑
i≥1

|t(Zi)|2
) 1

2

≤ L sup
t∈T

E|
∑
i≥1

εit(Zi)|

≤ LE sup
t∈T
|
∑
i≥1

εit(Zi)|.

In particular, E
∑

k≥−j0(r
2(k+1)

1{Nk>0})
1
2 < ∞, so there exists maximal k for

which Nk > 0. Thus, we can deduce that the sum is controlled by the last term
and we can write

E
∑
k≥−j0

rk+1
1{Nk>0} ≤

r

r − 1
E(
∑
k≥−j0

r2(k+1)
1{Nk>0})

1
2 .

The result follows by (4.53).
�

Theorem 27 and Theorem 21 lead to the main result of this dissertation, which
is the following.

Theorem 28. Consider a countable set T of measurable functions on Ω as in
Definition 3 and assume 0 ∈ T . Then we can write T ⊂ T1 + T2 in such a
manner that

γ2(T1, d2) + γ1(T1, d∞) ≤ LE sup
t∈T

Xt (4.55)

and
E sup
t∈T2
|X|t ≤ LE sup

t∈T
Xt. (4.56)

Proof. Let s(T ) = E supt∈T Xt. Consider T ′, T ′′, T ′′ as in Theorem 21. Put T1 =
T ′ and T2 = T ′′ + T ′′′. By (4.48) we have γ2(T1, d2) ≤ Ls(T ) and γ1(T1, d∞) ≤
Ls(T ) using (4.8) and (4.9) respectively, so we showed (4.55). Now, by replacing
T2 by T2 ∩ (T − T1), it follows from (4.13) that

E sup
t∈T2
|X|t ≤ sup

t∈T2

∫
Ω

|t(ω)|ν(dω) + 2E sup
t∈T2
|Xt|

≤ sup
t∈T ′′′

∫
Ω

|t(ω)|ν(dω) + L(E sup
t∈T
|Xt|+ E sup

t∈T1
|Xt|),

where we used that for t ∈ T ′′ it is straightforward from (4.10) and (4.48) that
‖t‖1 ≤ Ls(T ). Now, notice that (4.3) and (4.53) together with (4.55) give that
E supt∈T1 |Xt| ≤ Ls(T ). Hence, the last piece we need to show is that for each
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t ∈ T ′′′, ‖t‖1 ≤ Ls(T ). By the construction (4.11) we know that for each t ∈ T ′′′
there is s ∈ T such that

|t| ≤ 5|s|1{2|s|≥r−j0}.

Combining this with Lemma 8 we finally get that

sup
t∈T ′′′

∫
Ω

|t(ω)|ν(dω) ≤ Ls(T ).

�

4.5 Comments

4.5.1 Approximation net for T

There is another proof of Theorem 28 which is based on a direct construc-
tion of approximation net of T rather than admissible sequence of partitions.
Namely, one can show the following form of Theorem 21. For the sake of clar-
ity in presenting the result in what follows the jµn of (4.38) will be denoted
by jn(t). We will assume with no loss in generality that 0 ∈ T which implies
that E supt∈T |Xt| ≤ 2E supt∈T Xt. Let us point out straight ahead that the
approach with partitions has a huge advantage over the one presented below
when it comes to extending the result beyond the finite T case. Nevertheless,
it seems instructive to see the following construction.

Theorem 29. Consider a compact set T of measurable functions on Ω and
assume that 0 ∈ T . Let µ be the probability measure on T and jn(t) ∈ Z both
as in (4.36). Then we can write T ⊂ T1 + T2 + T3 with 0 ∈ T1, where for some
parameter u ≥ 0

γ2(T1, d2) ≤ L
√
u sup
t∈T

∑
n≥0

2nr−jn(t) (4.57)

γ1(T1, d∞) ≤ L sup
t∈T

∑
n≥0

2nr−jn(t) (4.58)

∀t ∈ T2, ‖t‖1 ≤ Lu sup
t∈T

∑
n≥0

2nr−jn(t) (4.59)

and
∀t ∈ T3 ∃s ∈ T, |t| ≤ 4|s|1{2|s|≥r−j0(t)}, (4.60)

where ‖ · ‖1 is the L1 norm with respect to the measure ν.

Before we proceed to the proof of Theorem 29 let us record the essential tool
which enables to provide a lower bounds in terms of γ-numbers.

Lemma 9. [32, Theorem 2.3.1] Consider a metric space (T, d), and for n ≥ 0,
consider subsets T n of T with |T0| = 1 and for n ≥ 1 suppose there is τ ≥ 0
such |Tn| ≤ Nn+τ . Consider a number A and let

U = {t ∈ T :
∑
n≥0

2n/αd(t, T n) ≤ A}.
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Then γα(U, d) ≤ LA.

The constant in the assertion depends on α and τ only. Lemma 9 clarifies
the task of proving Theorem 29. Together with the set T1 we have to provide
approximating sets T n1 such that for each element t ∈ T1 we have

∞∑
n=0

2n/2d2(t, T 1
n) ≤

∑
n≥0

2nr−jn(t)

as well as ∑
n≥0

2nd∞(t, T 1
n) ≤

∞∑
n=0

2nr−jn(t).

T2 and T3 will be obtained by splitting T − T1 with respect to the size of its
elements and then we will need to verify (4.59) and (4.60).
The construction is as follows. It should be compared with the construction
provided for the majorising measures (see [27, Theorem 2.2]). First, observe
(using (a + b)2 ≤ 2(a2 + b2)) that we have the following form of the triangle
inequality. For s, t, x ∈ T

ϕj(s, t) ≤ 2(ϕj(s, x) + ϕj(x, t)). (4.61)

Fix n ≥ 0. We will define an approximating nets T̃n = {t0, . . . , tM} and we
will show that M ≤ Nn+τ for some τ ≥ 0. Let t0 = 0. We choose t1 so that it
maximizes jn(t) over the whole set T . Then we define set

D1 = {s ∈ T : ϕjn(s)−1(t1, s) ≤ 2n+2}

and for k ≥ 2 we choose tk ∈ T\
⋃k−1
l=1 Dl which maximizes jn(t) over the set

T\
⋃k−1
l=1 Dl. Then, we define

Dk = {s ∈ T : ϕjn(s)−1(tk, s) ≤ 2n+2}.

Now, we need to argue that the procedure of choosing points tk will cease after
at most Nn+τ ′ steps for some τ ′ ≥ 0. For this, let k′ < k and consider balls
centred at tk′ , tk of radius 2n in distance ϕjn(tk′ )−1 and ϕjn(tk)−1 respectively. If
we show that they are disjoint, then the claim will follow since jn’s are defined
so that µ(Bjn(t)−1) ≥ 1/2Nn implying that M ≤ 2Nn ≤ 22n+1 . Suppose that
there is x ∈ Bjn(tk′ )−1(tk′ , 2

n) ∩Bjn(tk)−1(tk, 2
n). Since tk 6∈ Dk′ we have that

ϕjn(tk)−1(tk, tk′) > 2n+2. (4.62)

On the other hand, we have ϕjn(tk′ )−1(tk′ , x) ≤ 2n and ϕjn(tk)−1(tk, x) ≤ 2n.
Observe that the way of choosing points tk implies that jn(tk′) > jn(tk), so by
(4.6) we get

ϕjn(tk)−1(tk, x) ≤ ϕjn(tk′ )−1(tk, x),

which together with the triangle inequality (4.61) implies that

ϕjn(tk′ )−1(tk, tk′) ≤ 2(ϕjn(tk′ )−1(tk, x) + ϕjn(tk′ )−1(tk′ , x)) ≤ 2n+2,
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which contradicts (4.62) so Bjn(tk′ )−1(tk′ , 2
n)∩Bjn(tk)−1(tk, 2

n) = ∅. This proves
the claim that |T̃n| ≤ Nn+1. Now, at each level n ≥ 0 we define

π̃n(t) = tl,where l = min{i ≥ 1 : t ∈ Di}. (4.63)

and

πn(t) =

{
π̃n(t) if jn(t) > jn−1(t)

πn−1(t) if jn(t) = jn−1(t),

where π0(t) = 0. In order to prove Theorem 29 we will follow closely the main
steps of Theorem 6.2.6 in [33] (cf. [32, Theorem 5.2.6]). We have to define
t1(ω), t2(ω) and t3(ω) such that

t(ω) = t1(ω) + t2(ω) + t3(ω).

For t ∈ T , ω ∈ Ω define

m(t, ω) = inf{n : |πn+1(t)(ω)− πn(t)(ω)| > r−jn(t)+1} (4.64)

if the set on the right is not empty and put m(t, ω) =∞ otherwise. Let

Ωn(t) = {ω ∈ Ω : m(t, ω) ≥ n}. (4.65)

Lemma 10. If n < m(t, ω), then∑
n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤ 2r−jn(t)+1. (4.66)

Proof. For each m < m(t, ω) we have

|πm+1(t)(ω)− πm(t)(ω)| ≤ r−jm(t)+1,

so ∑
n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤
∑
n≤m

r−jm(t)+1 ≤ r−jn(t)+1 1

1− 1/r
,

where we used the fact that jm(t) is non-decreasing sequence of positive integers
and since r ≥ 4 the result follows.

�
Let us present the decomposition of t ∈ T . Define t1(ω) = πm(t,ω)(t)(ω) and in
the case when m(t, ω) =∞ we define t1(ω) = limn→∞ πn(t)(ω) as the existence
of the limit is guaranteed from (4.66) and since we can assume that

sup
t∈T

∑
n≥0

2nr−jn(t) <∞. (4.67)

Notice that since π0(t) = 0 from (4.66) applied to n = 0 it follows that for each
ω

|t1(ω)| ≤ 2r−j0 . (4.68)
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Recall that by (4.26) j0 is independent of t. Intuitively, the definition of t2 should
be simply t − t1, however we will need some control over its size. Therefore,
define

Ξ(t) = {ω ∈ Ω : |t(ω)| ≤ r−j0(t)/2}

and then t2(ω) = (t(ω)− t1(ω))1Ξ(t) and t3(ω) = (t(ω)− t1(ω))1Ξ(t)c . We define

T1 = {t1 : t ∈ T} ; T2 = {t2 : t ∈ T} ; T3 = {t3 : t ∈ T}.

It is easy to see that (4.60) holds true. Indeed, for any t ∈ T we have

|(t(ω)−t1(ω))1Ξ(t)c| ≤ (|t(ω)|+|t1(ω)|)1Ξ(t)c ≤ (|t(ω)|+2r−j0)1Ξ(t)c ≤ 4|t(ω)|1Ξ(t)c ,

since on the set Ξ(t)c, r−j0(t) < 2|t(ω)|.
We proceed to L∞ and L2 estimates for the set T1 i.e. (4.58) and (4.57) respec-
tively. The proof of (4.58) is the subject of the next two lemmas.

Lemma 11. Let t1n(ω) = πm(t,ω)∧n(t)(ω) and T n1 = {t1n : t ∈ T}. Then, |T n1 | ≤
Nn+τ for τ ≥ 0.

Proof. It is clear from the construction (4.63) that πm(t,ω)∧n(t)(ω) is one of the
points tl, therefore T n1 ⊂

⋃
k≤n T̃k, so |T n1 | ≤

∑
k≤n 22k+1 ≤ 22n+2 .

�

Lemma 12. We have d∞(t1, T n1 ) ≤ 2r−jn(t)+1.

Proof. For n ≥ m(t, ω), |t1(ω)− t1n(ω)| = 0. For n < m(t, ω),

|t1(ω)− t1n(ω)| = |
∑

n≤m<m(t,ω)

(πm+1(t)(ω)− πm(t)(ω))|

≤
∑

n≤m<m(t,ω)

r−jm(t)+1 ≤ 2r−jn(t)+1

by the same argument as in Lemma 10. So, ‖t1(ω)− t1n(ω)‖∞ ≤ 2r−jn(t)+1 and
therefore d∞(t1, T n1 ) ≤ 2r−jn(t)+1.

�

Corollary 8. The bound (4.58) holds true.

Proof. Conditions of Lemma 9 are verified in Lemmas 11 and 12, therefore we
apply it with α = 1.

�
Now, we present the control over T1 in L2 norm i.e. (4.57)

Lemma 13. For (t1n)n≥0 as in Lemma 11 and some number u ≥ 0 we have

d2(t1n, t
1
n+1) ≤

√
ur−jn(t)2n/2. (4.69)

Proof. Let p(n, t) = inf{p ≥ 0 : jn(t) = jp(t)}. Recall that the construction of
πn(t) implies that

ϕjp(n,t)(t)−1(πp(n,t)(t), t) =

∫
r2jp(n,t)(t)−2|πp(n,t)(t)− t|2 ∧ 1µ(dω) ≤ 2p(n,t)+2.
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Recall that by definition of m(t, ω) and Ωn we have

|t1n+1 − t1n| ≤ |πn+1(t)− πn(t)|1Ωn∩{|πn+1(t)−πn(t)|≤r−jn(t)+1},

so

d2
2(t1n+1, t

1
n) =

∫
|t1n+1(ω)− t1n(ω)|2ν(dω)

≤
∫

Ωn

|πn+1(t)− πn(t)|2 ∧ r−2jn(t)+2ν(dω)

≤ r−2jn(t)+2ϕjn(t)−1(πn+1(t), πn(t))

≤ r−2jn(t)+2ϕjp(n,t)−1(π̃n+1(t), π̃p(n,t)(t))

≤ 2r−2jn(t)+2(ϕjp(n,t)−1(π̃n+1(t), t) + ϕjp(n,t)−1(π̃p(n,t)(t), t))

≤ 2r−2jn(t)+2(ϕjn+1(t)−1(π̃n+1(t), t) + ϕjp(n,t)−1(π̃p(n,t)(t), t))

≤ 24r−2jn(t)+22n.

�

Corollary 9. The bound (4.57) holds true.

Proof. Apply again Lemma 9. First, by the assumption (4.67) and (4.69) we
notice that (t1n)n≥0 is a Cauchy sequence in L2. Notice that for all ω ∈ Ω,
limn→∞ t

1
n(ω) = t1(ω), so

lim
q→∞
‖t1q − t1n‖2 = ‖t1 − t1n‖2.

Hence for any element t1 of T1,

d2(t1, Un) ≤ ‖t1−t1n‖2 = lim
q→∞
‖t1q−t1n‖2 ≤

∑
m≥n

‖t1m+1−t1m‖2 ≤
√
u
∑
m≥n

2m/2r−jm(t).

Finally,∑
n≥0

2n/2d2(t1, Un) ≤
√
u
∑
n≥0

2n/2
∑
m≥n

2m/2r−jm(t) =
√
u
∑
m≥0

2m/2r−jm(t)
∑
n≤m

2n/2

≤ L
√
u
∑
m≥0

2m/2r−jm(t).

Inequality (4.57) then follows by Lemma 9 applied for α = 2.
�

The last part concerns the L1 control of t2 i.e. (4.59). Recall, that by the
construction we have for each n ≥ 0

ϕjn(t)−1(πn(t), t) =

∫
Ω

r2jn(t)−2|πn(t)(ω)− t(ω)|2 ∧ 1ν(dω) ≤ 2n+2.
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Similarly to m(t, ω) of (4.64) we define for each t ∈ T

r(t, ω) = inf{n ≥ 0 : |πn+1(t)(ω)− t(ω)| ≥ 1

2
r−jn+1(t)+1}, (4.70)

and r(t, ω) = ∞ if the above set is empty. Notice that for ω ∈ Ξ(t) and
n < r(t, ω) it holds that

|πn+1(t)(ω)−πn(t)(ω)| ≤ |πn+1(t)(ω)−t(ω)|+|πn+1(t)(ω)−πn(t)(ω)| ≤ r−jn(t)+1,

since π0(t) = 0 and jn(t) is increasing. This means that r(t, ω) ≤ m(t, ω). Now,
put

t2n(ω) = (t− t1)1{r(t,ω)=n}∩Ξ(t)(ω).

The proof of the next result is exactly the same as of [33, Lemma 6.6.6] (cf. [32,
proof of Theorem 5.2.6]). We repeat it for the sake of completenes.

Lemma 14. We have that
t2 =

∑
n≥0

t2n (4.71)

and
‖tn2‖1 ≤ 3r−jn(t)+1ν({ω ∈ Ω : r(t, ω) = n} ∩ Ξ(t)) (4.72)

Proof. Fix ω ∈ Ξ(t). Recall that t1(ω) = πm(t,ω)(t)(ω) if m(t, ω) < ∞ and
limn→∞ πn(t)(ω) otherwise. We use the fact that r(t, ω) ≤ m(t, ω). First, sup-
pose that r(t, ω) < ∞, then trivially t − t1 = (t − t1)1{r(t,ω)=n}. If r(t, ω) =
∞, then m(t, ω) = ∞ and |πn+1(t) − t| ≤ r−jn+1(t)+1 for each n, so since
limn→∞ jn(t) = ∞, we have t1(ω) = limn→∞ πn(t)(ω) = t(ω). This holds for
every ω ∈ Ξ(t), so (4.71) follows. Now, if r(t, ω) = n then m(t, ω) ≥ n, so by
the proof of Lemma 12 |πn(t)(ω)− t1(ω)| ≤ 2r−jn(t)+1. Also, r(t, ω) = n implies
that |πn(t)(ω)− t(ω)| ≤ r−jn(t)+1/2, therefore

|t(ω)− t1(ω)| ≤ |t(ω)− πn(t)(ω)|+ |πn(t)(ω)− t1(ω)| ≤ 3r−jn(t)+1

so (4.72) follows.
�

Corollary 10. The bound (4.59) holds true.

Proof. By (4.72) we have to bound ν({ω ∈ Ω : r(t, ω) = n} ∩ Ξ(t)) by 2n.
Recall, that by the construction we have for each n ≥ 0

ϕjn(t)−1(πn(t), t) =

∫
Ω

r2jn(t)−2|πn(t)(ω)− t(ω)|2 ∧ 1ν(dω) ≤ 2n+2.

Now,

ν({ω ∈ Ω : r(t, ω) = n} ∩ Ξ(t))

≤ 4

∫
Ω

(r2jn+1(t)−2|πn+1(t)(ω)− t(ω)| ∧ 1)1{r(t,ω)=n}∩Ξ(t)ν(dω) ≤ 2n+5.

�
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4.5.2 Initial result

As mentioned before the initial proof of Theorem 28 was based on the approxi-
mation net rather than building the admissible sequence of partitions which was
then more technically involved to be extended to countable T . Also the original
result was a bit weaker because it contained an extra term L

∫
Ω
|t|1{2|t|≥r−j0(t)}dν

in the bound (4.56). Only after communicating the convexity argument of Sec-
tion 4.3 to M. Talagrand he suggested Lemma 8 providing a proof similar to
the one of Lemma 16 from the next Chapter.



73

Chapter 5

Generalized Bernoulli Conjecture

As noticed by M. Talagrand the contents of Chapter 4 apply not only to infintely
divisible processes. Our goal now is to extract those parts of the proof of the
Decomposition Theorem for infinitely divisible processes which do not depend
on the structure of such processes. Although the name of this chapter indicates
the decomposition for selector processes we will prove here quite general result
from which decompositions of both empirical and selector processes will follow.
Let us recall the general framework. We consider S = E supt∈T

∑
i≤N εiZi(t)

and assume that Zi = 0 for i > N and that Zi are independent. Each Zi is
distributed according to the law λi and ν =

∑
i≤N λi. We see T as functions on

the measured space (F , ν), F = RT and the distances d2 and d∞ are induced
by L2(ν) and L∞(ν) norm respectively. We will prove the following general
Decomposition Theorem [33, Theorem 9.6.3].

Theorem 30. For any independent sequence (Zi)i≤N of random functions there
is a decomposition Zi = Z1

i + Z2
i such that

γ2(T, d2) + γ1(T, d∞) ≤ LS, (5.1)

where the distances are induced by L2(ν1) and L∞(ν1) norm respectively and
ν1 =

∑
i≤N λ

1
i , λ1

i being the law of Z1
i , and that

E sup
t∈T

∑
i≤N

|Z2
i (t)| ≤ LS. (5.2)

The first pillar of the proof of Decomposition Theorem for infinitely divisible
processes was Lemma 4. Remarkably, it stems out of the following simple yet
critical observation. Let us define

ψj,ω(s, t) =
∑
i≥1

r2j|Zi(s)− Zi(t)|2 ∧ 1,

which should be compared with ϕ̃j(s, t) we defined in Chapter 4. The ω indicates
the randomness of Zi’s. Also, define

ϕj(s, t) = Eψj,ω(s, t) =

∫
F
r2j|s(ω)− t(ω)|ν(dω).



74 Chapter 5. Generalized Bernoulli Conjecture

Lemma 15. With the above notation we have ∀s, t ∈ T and ∀j ∈ Z

P(ψj,ω(s, t) ≤ ϕj(s, t)/4) ≤ exp(−ϕj(s, t)/4) (5.3)

Proof. It is a consequence of [33, Lemma 6.5.2] (also [32, Lemma 7.4.3]). Let us
repeat it here. Suppose that Wi’s are independent random variables such that
0 ≤ Wi ≤ 1 and that there is a constant A such that 4A ≤

∑
i≥1 EWi. We will

show that

P

(∑
i≥1

Wi ≤ A

)
≤ exp(−A). (5.4)

Firstly, we have P(
∑

i≥1Wi ≤ A) ≤ exp(A)E exp(−
∑

i≥1Wi). Now, notice
that for 0 ≤ x ≤ 1 we have 1− x ≤ e−x ≤ 1− x/2, so we have

E exp(−Wi) ≤ 1− EWi/2 ≤ exp(−EWi/2)

and by independence of Wi

E exp

(
−
∑
i≥1

Wi

)
≤ exp

(
−
∑
i≥1

EWi/2

)
≤ exp(−2A),

which finishes the argument for (5.4). To get (5.3) we apply (5.4) with Wi =
r2j|Zi(s)− Zi(t)|2 ∧ 1 and A = ϕj(s, t) =

∑
i≥1 EWi.

�

Remark 10. In the case of infinitely divisible processes the proof of (4.28)
follows the same lines because of the fact that due to (4.2) we have

E exp

(
−
∑
i≥1

f(Zi)

)
= exp

(∫
(exp(−f(ω))− 1)ν(dω)

)
≤ exp

(
−1/2

∫
f(ω)ν(dω)

)
≤ exp(−2A).

It might come as a surprise, but that’s almost all we need to restate the main
results of sections 4.3 and 4.4. The minor remaining component is to argue that
we can assume that 0 is in T . Also we will need a version of Lemma 8 and the
following Giné-Zinn inequality

E sup
t∈T

∑
i≤N

|t(Zi)| ≤ sup
t∈T

∑
i≤N

∫
F
|t|dλi + 4S̄, (5.5)

where we used the notation

S̄ = E sup
t∈T

∣∣∣∣∣∑
i≤N

εit(Zi)

∣∣∣∣∣
the proof of which is exactly the same as of (1.31).
So, first choose any t0 ∈ T and consider Z ′i(t) = Zi(t)−Zi(t0), so that Z ′i(t0) ≡ 0
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and E supt∈T
∑

i≥1 εiZ
′
i(t) = S. Hence, if Z ′i = Z ′1i + Z ′2i is the decomposition

of Theorem 30, then Z1
i (t) = Z ′1i (t) + Zi(t0) and Z2

i = Z ′2i is the required
decomposition of Zi. Thus, with no loss in generality we may assume that
Zi(t0) ≡ 0 for each i ≤ N and therefore t0 = 0 ν-a.e. So, S̄ ≤ 2S.
Next, we formulate the analogue of Lemma 8. Recall the definition (4.26) of
the number j0.

Lemma 16. For t ∈ T we have∫
F
|t|1{2|t|≥r−j0}dν ≤ LS̄. (5.6)

Proof. By the definition of j0 and the fact that t0 = 0 ν-a.e. we have∫
r2j0|t|2 ∧ 1dν ≤ 4.

Let U = {2|t| ≥ r−j0} = {4r2j0|t|2 ≥ 1} and note that for positive numbers a, b
we have 4a ∧ b ≤ 4(a ∧ b), so ν(U) ≤ 16, which by the definition of ν means
that

∑
i≤N λi(U) ≤ 16. Define I = {i ≤ N : λi(U) ≥ 1/2}. Notice that since

ν(U) ≤ 16 Markov inequality implies that |I| ≤ 32. For i /∈ I define an event
Ξi given by Zi ∈ U and for j 6= i, Zj /∈ U . Then,

P(Ξi) = λi(U)
∏
j 6=i

(1− λj(U)) ≥ λi(U)/L.

Now, conditioned on Ξi, Zi is distributed according to the restriction of λi to
U , so

1

P(Ξi)
E1Ξi |t(Zi)| =

1

λi(U)

∫
U

|t|dλi.

Hence, since λi(U)/P(Ξi) ≤ L, we get∫
U

|t|dλi ≤ LE1Ξi |Zi(t)| = LE1Ξi

∣∣∣∣∣εiZi(t) +
∑
j 6=i

EεεjZj(t)

∣∣∣∣∣ ≤ LE1Ξi

∣∣∣∣∣∑
j≤N

εjZj

∣∣∣∣∣ ,
where in the last inequality we used Jensen’s inequality by taking the expecta-
tion in εj’s for j 6= i outside the absolute value. To finish the proof we summate
above inequalities for i /∈ I, use the fact that Ξi are disjoint. Moreover, for i ∈ I
we simply write∫

U

|t|dλi ≤
∫
F
|t|dλi = E|Zi(t)| ≤ E

∣∣∣∣∣∑
j≤N

εjZj

∣∣∣∣∣ ,
which again follows from Jensen’s inequality and since I is finite we just combine
both of the above inequalities to get (5.6).

Remark 11. The above argument can serve as another proof of Lemma 8.
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We will need two more intermediate steps towards the proof of the general
Decomposition Theorem. The first one will produce decomposition of the set T
and the other will translate it into the decomposition of the measure ν.

Theorem 31. Consider a set T of measurable functions on a measured space
(F , ν) and on T ×T let ϕ(s, t) =

∫
F r

2j|s(ω)− t(ω)|ν(dω). There is a decompo-
sition T ⊂ T1 + T2, where the set T1 satisfies

γ2(T1, d2) ≤ LS and γ1(T1, d∞) ≤ LS (5.7)

and where ∫
F
|t|dν ≤ LS (5.8)

for each t ∈ T2.

Proof. It follows from Theorem 27 and then by Theorem 21 combined with (5.6)
by defining T1 = T ′ and T2 = T ′′ + T ′′′.

Theorem 32. There is a decomposition Zi = Z1
i + Z2

i such that (5.1) holds
true together with

∀t ∈ T,
∫
F
|t|dν2 ≤ LS, (5.9)

where ν2 =
∑

i≤N λ
2
i and λ2

i is the law of Z2
i .

Proof. We apply Theorem 31 to T seen as space of functions on F . It means
that we can write t = t1 + t2, where t1 ∈ T1, t2 ∈ T2 so that T1 satisfies (5.7)
and

∫
F |t

2|dν ≤ LS. We define the decomposition of Zi(t) as follows

Z1
i (t) = t1(Zi) and Z2

i (t) = t2(Zi).

Equivalently, by looking at t as function on F we can rewrite the above equations
as

t(Z1
i ) = t1(Zi) and t(Z2

i ) = t2(Zi).

Now, if λ1
i is a law of Z1

i and λ2
i is a law of Z2

i , then we have∫
F
|t|dλ2

i = E|t(Z2
i )| = E|t2(Zi)| =

∫
F
|t2|dλ2

i . (5.10)

By summing (5.10) over i ≤ N and applying (5.8) we obtain (5.9). To get (32)
we deduce the equivalence of γ2(T1, d2) and γ2(T, d2), where d2 is induced by
ν1 by exact the same reasoning as in (5.10) and then apply (5.7). Similarly, for
γ2(T, d∞).

Proof of Theorem 30. By Theorem 32 it now follows in the same way as Theo-
rem 28 using (5.5) and (1.23).

It is now easy to see that the following result concerning empirical processes
(see [33, Theorem 5.8.3], [32, Research problem 9.1.3]) follows in the same way.
The only extra tool we need is (1.25) and since we have already proved the
Giné-Zinn inequality (1.31) the following result is straightforward.
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Theorem 33. Consider a class F of functions in L2(µ) and assume µ(f) = 0
for f ∈ F . For a number N , there exists decomposition F ⊂ F1 + F2 with
0 ∈ F1 and such that

γ2(F1, d2) ≤ L√
N
SN(F),

γ1(F1, d∞) ≤ LSN(F)

and
E sup
f∈F2

∑
i≤N

|f(Xi)| ≤ LSN(F).

Furthermore, the Generalized Bernoulli Conjecture [32, Conjecture 12.3.3] also
follows from this approach (see [33, Theorem 9.11.1]).

Theorem 34. For a set T of sequences there exists decomposition T ⊂ T1 + T2

such that
γ2(T1, d2) ≤ L√

δ
δ(T ),

γ1(T1, d∞) ≤ Lδ(T )

and
E sup
t∈T2

∑
i≤M

|ti|δi ≤ Lδ(T ).

Proof. Let us summarize all required steps. First, we consider Zi(t) = δiti and
the distances needed for the critical property (5.3) are given by

ψj,ω(s, t) =
∑
i≤M

δir
2j|ti − si|2 ∧ 1 and ϕj(s, t) = δ

∑
i≤M

r2j|ti − si|2 ∧ 1,

which holds because δi’s are independent. This means that we are in the position
of applying Theorem 31, which in this case reads that for S = E supt∈T

∑
i≤M εitiδi

we can decompose T ⊂ T1 + T2 so that

γ2(T1, d2) ≤ LS√
δ

and γ1(T1, d∞) ≤ LS

together with

sup
t∈T2

∑
i≤M

|ti| ≤
LS

δ
.

The remaining steps are to use Giné-Zinn inequality (1.32) and conclude with
(1.22) and (1.26) just as in the proof of Theorem 28.
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