
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Radosław Piórkowski

Tame the infinite
—

simplification problems

for infinite-state systems

PhD dissertation

in COMPUTER SCIENCE

Supervisor:

prof. dr hab. Sławomir Lasota

Institute of Informatics

Auxiliary supervisor:

dr hab. Wojciech Czerwiński

Institute of Informatics

Warsaw, April 2022

Author’s declaration
This dissertation is ready to be reviewed.

20 April 2022 Radosław Piórkowski

Supervisor’s declaration
This dissertation is ready to be reviewed.

20 April 2022 prof. dr hab. Sławomir Lasota

Auxiliary supervisor’s declaration
This dissertation is ready to be reviewed.

20 April 2022 dr hab. Wojciech Czerwiński

Abstract

Centred on models with an infinite state space, the thesis explores computational problems
that fall within the general notion of ’simplification’. This includes examining—with a
particular use case in mind—under what conditions a simple model can suffice to replace
a complex one. We obtain results for register (ra) and timed automata (ta), as well as
for vector addition systems (vass).

Synthesis and games The first of the problems analysed is Church’s synthesis in
game-theoretic terms, which we generalise to cover register and timed setting. Our
game models interactions between a deterministic controller (Bob) and its operating
environment (Alice), which includes atoms or timestamps; only Alice’s set of actions
is infinite. A winning condition—given by a nondeterministic ra with guessing or a
nondeterministic ta —specifies when Alice wins. In both settings, we show computability
of Bob’s winning resource-limited controller, if it exists. More precisely, the problem is
solved when the input provides a limit on I the number of registers, I both the number
of clocks and the maximal numerical constant available to Bob, I just the number of
clocks. Interestingly, the last variant does not require the constant to be given in advance,
which is an important technical novelty not present in previous literature on timed games.
We complement these results by showing undecidability when the resources of Bob are
not fixed.

Deterministic separability A set separates two others when it contains one of them
and is disjoint from the other. Deterministic separability is a novel decision problem
about register and timed automata which has not been studied before. It asks whether
two languages of nondeterministic models are separated by a language of a deterministic
one. We reduce separability to resource-bounded synthesis by defining a game that
characterises separability. By means of it, the synthesis results translate into solutions
to the separability problem, the type of winning condition coinciding with the class
of languages to be separated, and the separator being subject to the same resource
constraints as the controller. Whether separability is decidable without limiting the
number of separator registers/clocks remains an interesting open problem.

Deterministic membership problems The deterministic membership problem for
ta asks whether, for a given nondeterministic ta, there exists a deterministic one having
the same language. An analogous problem is also stated for register automata. We draw
the complete decidability/complexity landscape for both variants of the problem. For
register automata, we prove that the deterministic membership problem is decidable
when the input automaton is a nondeterministic one-register automaton without guessing
and the number of registers of the output deterministic register automaton is fixed. This
is optimal, as we show that omitting any of the three assumptions about the output
or input automaton results in undecidability. In the timed setting, the situation is
similar. We show that the problem is decidable when the input automaton is a one-clock
nondeterministic timed automaton without epsilon transitions and the number of clocks
of the output deterministic timed automaton is fixed. Again, we prove this to be optimal.

Utility results for vass A vector addition system is similar to a finite automaton
equipped with counters, which are not zero-testable. We propose a new pumping

technique for two-dimensional vector addition systems with states (2-VASS) building
on natural geometric properties of runs. We illustrate its applicability by reproving an
exponential bound on the length of the shortest accepting run, and by proving a new
pumping lemma for languages of 2-VASS. The technique is expected to be useful for
settling questions concerning languages of 2-VASS, e.g., for establishing decidability
status of the regular separability problem.

Keywords

theory of computation, infinite-state models of computation, timed automata, register
automata, vector addition systems, decidability, Church synthesis, separability, deter-
minisability, pumping

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Computer Science

Subject classification

Theory of computation Automata over infinite objects
Theory of computation Quantitative automata
Theory of computation Timed and hybrid models

Tytuł pracy w języku polskim

Okiełznać nieskończone—problemy upraszczania dla systemów nieskończenie stanowych

2

Contents

List of theorems . 7
Acknowledgements . 11
Tale . 13

1. Overview . 17
1.1. Models of computation . 18

1.1.1. Automata with clocks (nta/dta) 19
1.1.2. Automata with registers (nra/dra) 20
1.1.3. Automata with counters (vass) 21

1.2. Contributions grouped by problems . 22
1.2.1. Synthesis problem and synthesis games 22
1.2.2. Deterministic separability problem 25
1.2.3. Deterministic membership problem 27
1.2.4. Pumping technique for vass2 . 30

1.3. Source materials . 31

2. Preliminaries . 33
2.1. Models of computation with infinite space of configurations 33
2.2. Labelled transition systems (lts) . 34
2.3. Sets with atoms . 40

2.3.1. Atoms . 40
2.3.2. Atom automorphisms . 42
2.3.3. Invariance . 43

2.4. Register automata (ra) . 44
2.4.1. Register constraints . 45
2.4.2. Nondeterministic register automata with guessing (nrag) 46
2.4.3. Nondeterministic register automata without guessing (nra) . . . 48
2.4.4. Deterministic register automata (dra) 49
2.4.5. One-register automata . 50
2.4.6. Invariance of register automata 50
2.4.7. Varieties of register automata . 51

2.5. Timed automata (ta) . 52
2.5.1. Timed words and languages . 53
2.5.2. Clock constraints and regions . 53
2.5.3. Nondeterministic timed automata (nta) 54
2.5.4. Deterministic timed automata (dta) 56

2.6. Vector addition systems with states (vass) 57
2.7. Computational problems . 59

3

CONTENTS

2.7.1. Synthesis problem and synthesis game 59
2.7.2. Deterministic separability problems 61
2.7.3. Deterministic membership problems 62

3. Generalised synthesis problems and games 65
3.1. Generalised deterministic lts synthesis game 65
3.2. Register synthesis game . 67
3.3. Timed synthesis game . 68

4. Synthesis game for solving deterministic separability 71
4.1. Motivating examples . 71
4.2. Reduction to generalised synthesis problem 72

5. Solving k-register synthesis problem . 75
5.1. Atom-blind synthesis problem . 76
5.2. Eliminating winning controller’s registers 76
5.3. Eliminating atoms . 79

6. Solving k-clock timed synthesis problems 81
6.1. Simplifying assumptions . 82

6.1.1. Zero-starting winning conditions 82
6.1.2. Strictly monotonic winning conditions 83

6.2. Elliminating winning controller’s clocks 84
6.2.1. Case of bounded constants in clock constraints 84
6.2.2. Case of unbounded constants in clock constraints 90

6.3. Elliminating time . 92

7. Solving deterministic membership problems 95
7.1. Decidability of dra1 membership for nra1 95

7.1.1. Proof of lemma 7.2 . 96
7.1.2. Other atoms . 102

7.2. Lower bounds for nra . 102
7.2.1. Invariance of timed automata . 104

7.3. Decidability of dta1 membership for nta1 108
7.3.1. Proof of lemma 7.30 . 110

7.4. Lower bounds for nta . 116

8. Undecidability in case of unbounded number of registers/clocks . . 119
8.1. Lossy counter machines . 120
8.2. Representing lcm runs as words . 120
8.3. Representing lcm runs as timed words 122
8.4. Undecidability of dta membership . 124
8.5. Undecidability of timed synthesis . 129

8.5.1. Definition of GT
M . 130

8.5.2. Intuitition . 130
8.5.3. Proofs . 132

8.6. Representing lcm runs as data words . 134
8.7. Undecidability of dra membership . 138

4

CONTENTS

8.8. Undecidability of register synthesis . 142
8.8.1. Local errors and local correctness 143
8.8.2. Definition of GA

M . 143
8.8.3. Proofs . 144
8.8.4. Eliminating guessing . 146

9. Utility results for vass2 . 147
9.1. Supporting definition – sequential cones 147
9.2. Thin/thick dichotomy of runs . 150

9.2.1. Proof of theorem 9.7 . 152
9.2.2. Proof of lemma 9.8 . 155

9.3. Dichotomy at work – pumping lemma & short run property 159
9.3.1. Proof thin . 160
9.3.2. Proof thick . 163

10.Closing remarks . 167

Bibliography . 169

5

List of theorems

Synthesis games

Positive results

Theorem 6.1 synthesis of dtak,m

For every fixed k,m ∈ N, the k-clock m-constrained timed synthesis problem is com-
putable.

Theorem 6.2 synthesis of dtak

For every fixed k ∈ N, the k-clock timed synthesis problem is computable.

Theorem 5.1 synthesis of drak

For every fixed k ∈ N, the k-register synthesis problem is computable.

Undecidability results

Theorem 8.2 synthesis of dta und.

The timed synthesis decision problem is undecidable, and this holds already when Alice’s
winning condition is an nta2 language.

Theorem 8.4 synthesis of dra und.

The register synthesis decision problem is undecidable, and this holds already when
Alice’s winning condition is an nra2 language.

Deterministic separability

Theorem 4.2 separability by dtak

For k ∈ N, the k-clock deterministic separability problem for nta are decidable.

7

CONTENTS

Theorem 4.3 separability by dtak,m

For k,m ∈ N, the k-clock m-constrained separability problem for nta is decidable.

Theorem 4.1 separability by drak

For k ∈ N, the k-register deterministic separability problem for nra is decidable.

Deterministic membership

Positive results

Theorem 7.28 dtak membership

For every fixed k ∈ N, the dtak membership problem is decidable for nta1 languages.

Theorem 7.29 dtak,m membership

For every fixed k,m ∈ N, the dtak,m membership problem is decidable for nta1 languages.

Theorem 7.1 drak membership

For every fixed k ∈ N, the drak membership problem is decidable for nra1 languages.

Undecidability and hardness

Theorem 8.3 dra membership und.

The dra membership problem is undecidable for nra1.

Theorem 8.1 dta and dta•,m membership und.

The dta and dta•,m (m > 0) membership problems are undecidable for nta1 without
epsilon transitions.

Theorem 7.17 undecidability and hardness for drak membership

Fix a k ≥ 0. The drak membership problem is:

1. undecidable for nra2,

2. undecidable for nrag1 (nra1 with guessing), and

3. not primitive recursive (Ackermann-hard) for nra1.

Theorem 7.48 undecidability and hardness for dtak membership

For every fixed k,m ∈ N, the dtak and dtak,m membership problems are:

1. undecidable for nta2,

8

CONTENTS

2. undecidable for ntaε1 (nta with epsilon transitions),

3. HyperAckermann-hard for nta1.

Pumping technique for vass2

Theorem 9.7 thin/thick dichotomy

There is a polynomial p such that every (0, 0)-run in a vass2 V is either p(nM)n-thin or
p(nM)n-thick.

Theorem 9.21 pumping runs of vass2

There is a polynomial p such that every (0, 0)-run τ in a vass2 of length greater that
p(nM)n factors into τ = τ0 τ1 . . . τk (k ≥ 1), so that for some non-empty cycles
α1, . . . , αk of length at most p(nM)n, the path τ0 α

i
1 τ1 α

i
2 . . . , α

i
k τk is a (0, 0)-run for

every i ∈ N. Furthermore, the lengths of τ0 and τk are also bounded by p(nM)n.

Theorem 9.22 exponential run property

There is a polynomial p such that for every (0, 0)-run τ in a vass2, there is a (0, 0)-run
of length bounded by p(nM)n with the same source and target as τ .

9

Acknowledgements

This dissertation symbolically completes a certain period of the author’s life. It was
a time rich in unforeseen events ranging in scale from personal to global—at times
unfavourable and disheartening, at times uplifting and inspiring. As trivial as it may
sound, it was an excellent opportunity for growth, both academic and personal—an
important step for me towards becoming an independent scientist, but not only that. I
would venture to say that it has also made me a better person—more aware of my own
goals, aspirations and motivations in life, but also of my own limitations. How true this
complacent claim is, only the future will tell.
I am fortunate to have been able to spend my time as a doctoral student surrounded by
the most wonderful people one can imagine, welcoming and understanding, on whom I
could rely. It is hard for me to believe my luck: it is generally hard to find kind and
friendly people, while I have been surrounded by them all around. This short note cannot
fit all my thanks, but I am grateful to everyone for the kindness shown to me. At this
point, however, I would like to thank in particular a few people who have supported me
most during my studies and later, during the writing of the dissertation.
I am beyond grateful to my PhD advisor, prof. Sławomir Lasota, for the countless hours
of discussions we shared both in his faculty room and online, for his willingness to share
the vastness of his knowledge, for gently but thoughtfully guiding my development, and
finally for the fact that I could always count on his support.
Furthermore, I would like to thank the people with whom I have had the opportunity to
collaborate in solving various research problems, which has often resulted in publications.
In particular, I thank to dr. hab. Wojciech Czerwiński (who became also my auxiliary
supervisor), and to dr. hab. Lorenzo Clemente. Working with you has been both enjoyable
and inspiring, I have learned a lot from you.
Additionally, I would also like to thank dr. Piotr Hofman, for the kindness and support
shown to me at the beginning of my doctoral studies, which made it incredibly easy for
me to enter the scientific world, despite the personal problems I suffered at the time.
I would like to thank those of my friends who have kept my spirits up when I lacked
confidence.
Lastly, I would like to thank my parents, with whose support I survived two disasters—
pandemics, and writing the doctoral thesis.

11

Tale

Once upon a time there was1 a magical realm called the land of computation. Living
there was Bob—a humble and kind adventurer with a big heart. A free spirit, going from
town to town, he took a liking in solving computational problems, and never walked past
those in need.

One day, he was traversing through a small village, when an upsetting sight caught
his attention. In the middle of a horrible mess stood a distraught-looking old woman.
Surrounded with remains of what must have been a universal Turing machine a few
minutes ago, she wrung her hands in a gesture of helplessness. The tape got all twisted
and torn; transition rules lying in disarray, some having crushed in pieces; what is worse,
the brass head has also broken in two.

“I am doomed” said the lady. “I was just returning from my appointment at tape
cleaner’s when, I know not how, the machine slipped out of my hand, and shattered on
the ground. I cannot afford another one, while the nearest repair workshop is in the city
beyond seven mountains and seven rivers.”

“Let me see, maybe there is something I can do?” Bob offered.
After all, he had quite a bit of experience with various models of computation. Young

man collected the scattered transition rules into a set; replacing missing or broken ones
with copies carved out of wood. Then, he cut off the ragged and ripped initial fragment
of the tape. Fortunately, the roll with the infinite suffix has survived: he only had to
wipe it clean from dust and mud. Finally, he took the two brass pieces and looked at
them with concern. Sadly, the head was broken beyond repair. Bob sighed quietly, then
reached deep into the inside pocket of his coat. He took out a bundle which held his last
spare head. A moment later, he handed the assembled machine back to the woman. She
looked astonished, touched and immensely relieved.

“Thank you, good man!” said she. “You saved me. Had it not been for your help, I
would’ve been crushed by the pile-up of computational problems. I have nothing repay
you, but, as a token of my gratitude, please accept this little amethyst. It is not an
ordinary stone. When my mother passed it onto me, she revealed that it can help its
owner in moments of trial. I was not able to work out its secret, but I believe you will
find a way to use it in your time of need.”

The adventurer thanked the woman cordially, though deep down he was doubtful if
the purple gemstone he was given had anything more to it than its plain appearance
would suggest. Then, they talked for a bit over a hot tea, but shortly after Bob was on
his way again.

∗ ∗ ∗

1It did not really happen.

13

CONTENTS

Not many weeks later, Bob saw from afar something resembling a large white
mountain. As he came closer, he saw a town at the foot of what turned out to be a
gigantic glossy white-tinted crystal. Since the sun was already setting, he decided to
arrange an overnight stay at a one of the town’s inns. Having paid the innkeeper, Bob
inquired him about the unusual landmark.

“It has been here for as long as I remember” replied the man. “The legend has it that
the mountain holds a castle of a princess named Alice. They say that one day, a malicious
sorcerer had sneakily planted an innocent-looking gift in the castle: a two-counter machine.
When the unsuspecting princess activated it, an overpowering undecidability spell escaped,
locking the entire castle in a crystal of never ending computation. Since then, many have
tried to save her, whether for love or for the supposed riches of her kingdom, but no one
who set out for the crystal mountain has ever returned. Between you and me, I think it
is cursed,” the innkeeper ended, looking Bob straight in the eye. “You’d better not go
near it.”

But, as is often the case in legends, bold young men rarely listen to the advice of
elders. Therefore, it is probably not a big surprise that the next morning sun found Bob
at the foot of the mountain that imprisoned Alice. He was walking around the huge
clusters of crystal stretching up and across as far as the eye could see, not knowing where
to start, when—behind a cliff—he saw a unique structure. It was a kind of door which,
instead of a handle, had an amazing mechanism that was in constant motion. All its
parts, gears, levers, chains, were made of crystal and shone so brightly that any prolonged
look provoked dizziness. Bob was determined to figure out how to open it. As hours
passed, he tinkered with the Non-comprehensible and Recondite Apparatus (NRA), to no
avail. However, before the thought of giving in started to linger in his mind, he recalled
the gift he has received recently. Bob tried to plug it into the mechanism, put the stone
next to it; he tested all the ways of using it that came to his mind. In a last desperate
attempt, he lifted the crystal to his eye, and… could not believe what he saw. No longer
did he see something non-comprehensible or recondite. Instead, he saw a mechanism of
Dramatically Reduced Appearance (DRA), the operation of which he worked out in no
time. He flipped a few switches, turned a crank and, finally, was able to go inside.

The door immediately slammed shut behind him. Now he had no choice, but to finish
his quest. He found himself in an enormous cave, probably kilometers wide and long.
It was so large that he could only see its two giant walls, at the junction of which was
the door by which he entered. However, he could not move freely through it, for it was
divided by lower walls, forming a sort of square grid, with countless passages, bridges
and walkways between them. At the horizon, somewhere inside the cave, he observed a
Tower, which was bound to be Alice’s castle. Roaming through this complicated net of
corridors for half an hour, he began to realise that something was wrong. In fact, each
and every square room he visited was exactly the same. To his horror, Bob realised that
this was a labyrinth of Virtually All the Same Spots (VASS). Indeed, every room had
exactly the same set of walkways connecting to it, except for rooms that were close to
the cave’s walls. He was even unable to get very far from the starting point, returning to
it time and time again. The moment he understood he has a problem with navigating
the labyrinth, he again turned to the amethyst for help. The very moment he took it
out of his pocket he felt a slight pull towards one of the passages. When he turned his
steps in that direction, the pulling did not stop, in fact, he could feel it even stronger,
an incredible, almost magnetic force. The gemstone was showing him the way! After

14

CONTENTS

several minutes of walking through eerily identical rooms and passageways, the crystal
stopped working for a moment. Bob realised that if he had continued in this direction,
he would have made it far into the cavern, away from both its walls, but this was not
the direction in which the tower was visible. Shortly after, the pull started anew, but
this time the pattern of corridor choices was different. Again, after the adventurer made
it through two dozen corridors, the pulling faded. Although this time the crystal became
inactive for good, Bob already knew what to do, as he realised that the stone has shown
him two vectors, the linear combination of which could lead him straight to the castle.

Three hours later he was already standing at the gates of Alice’s palace. He got
struck by what he saw inside. In the main hall, there was Alice, all her servants and a
few of the townsfolk. The legend was true. They all were there, panic and distress in
their eyes, all silhouettes ready to flee, chaos unraveling, a scene of fear and fright. But
nobody was moving. They all have been turned in crystal. Bob walked over to where
Alice was standing. He recognised her at once, for she exuded the aura of a true princess.
Her hands were cold, like glass, seemed non-human. In front of her, he found a box, and
in it, a small vial containing some purple liquid. The card fixed to its side read: “You,
who has come all the way here, do not rejoice too early, for the task that remains to you
is the most difficult. We shall play a game. In this room, not every statue was once a
human. It is your role to separate the people who are Numbed but Truly Alive (NTA)
from the statues which keep Nothing but Treacherous Appearances (NTA). This potion
can revive the people, but you cannot waste a drop on a statue. Determine the answer
without guessing, or perish and become a crystal yourself.” Bob reached for the magic
amethyst now almost reflexively. But nothing happened. There was no pull, and all the
statues seen through the colored stone looked the same as before. The young man did
not lose hope, but the passing hours of futile efforts made him more and more tired.
He sat down by the edge of the chamber, wanting to gather his strength, maybe take a
nap for a while. Could it be that the last riddle was going to overwhelm him? Just as
Bob was about to fall asleep, he realised he felt some sort of gentle pulsing in his hand.
Almost like a faint, barely noticeable heartbeat. It was the crystal again, giving him a
clue. Bob understood what he has to do momentarily. Bob touched the necks of all the
statues in turn, and where he felt a gentle, slow pulse, he used the potion. When he had
used up the last drop, suddenly, at once, all the statues trembled. In the blink of an eye,
everything changed, for he was now surrounded not by statues but by real, living people.
It took a while for everyone to understand the situation they were in. Bob recounted the
story of his rescue expedition to Princess Alice, who listened with keen attention and
asked him repeatedly for more details. Alice and her subjects was excited and greatly
exulted at being freed from the crystal prison. Bob was unanimously hailed a hero and
hosted him in the castle with honors worthy of a king. There was no end to the joy,
feasting and revelry.

They live happily ever since. Princess Alice rules her kingdom justly, providing a
prosperous life for her subjects. Bob, having spent a few weeks at the court, has returned
to his life of an adventurer on the move. They do keep in touch though. To this day,
they still send encrypted messages to each other. They must have exchanged public keys.
Who knows, maybe one day their paths will be reunited?

15

Chapter 1

Overview

Computers have become an integral part of human lives and made it possible to solve many
previously unattainable problems. Some tasks entrusted to them are very responsible. In
situations when human life is at stake (e.g., when a computer is steering an autonomous
car or conducting a medical surgery) there is no place for programming errors. There
arises a need for dependable software systems which are provably error-free. This is
one of the issues addressed by theoretical computer science, which developed various
approaches to solving this problem.
One of them, verification, aims at proving that programs satisfy some given specification
(describing their desired or undesired behaviours or properties). This is obtained through
a rigorous analysis of programs, which often incorporates representing inner workings of
real systems with simpler mathematical models. Another technique, known as program
synthesis, assumes a different initial setup, where only specification needs to be provided,
and the task is to automatically construct a program implementing it.
Both programs and their specifications can be represented through the means of models of
computation. The trade-off between the expressive power of a model (which phenomena
can they describe) and the simplicity of its analysis (ease of verifying its properties) cuts
across the field of computation theory. A multitude of models exists, each resolving this
difficult compromise in a different way.
On one side of the spectrum, there are finite automata—one of the simplest and most
natural models. They are essentially finite transition systems labeled with letters from
some alphabet—finite directed graphs with letter-labeled edges. Their computation,
starting and ending in designated initial and final locations, corresponds to a string of
letters visited in-between. Languages thereof form a class of regular languages—type
three in the landmark Chomsky hierarchy. A well-studied1 class of models, many of their
properties being easily verifiable, finite automata are easy to work with, but not very
expressive.
On the opposite side lie Turing machines. Like finite automata, they are based on
finite transition systems, but also feature a kind of memory: an infinite tape with read
and write access. The machine starts with an input word written on the tape, and
performs computations until reaching an accepting state. If there is no finite accepting
computation, the word is rejected. This more complicated model is more powerful, as it

1Although here, too, there are few problems waiting to be solved, such as the question of size of the
smallest automaton that distinguishes two given words of length n.

17

CHAPTER 1. OVERVIEW

can recognise exactly all recursively enumerable languages, which constitute level zero of
the Chomsky hierarchy. Unfortunately, it is much harder to verify properties of Turing
machines. Most natural decision problems, like question whether given machine ever
stops, are undecidable—there does not exist a reliable algorithmic way of determining
the answer.

There is a great number of models of computation situated between these extreme cases,
some of them addressing specific needs of particular domain and differing in the trade-offs
made between expressive power and simplicity of analysis. Compared to Turing machines,
such in-between devices may operate on other types of memory, be subject to syntactic
or semantic constraints, and vary in design, e.g., working on infinite alphabets. Custom
models often offer better fit to the use-case for which they were created, while avoiding
increased computational complexity or undecidability of problems.

It should come as no surprise that researchers often try to determine circumstances in
which it is possible to effectively replace a complex model with a simpler device. The
quest of finding less involved devices that approximate the behavior of a complex system
with sufficient precision is the central theme of this dissertation. We focus on several
instances of that general scheme, considering the following questions:

Q1 Given a complex specification, does there exist a simpler device realising it?
(synthesis problem)

Q2 Can disjoint languages of complex models be distinguished (separated) in a simpler
way?
(separability problem)

Q3 Can a complex device be equivalently described in a simpler way?
(membership problem)

Q4 Is a complex system bound to contain a simpler, more structured subsystem?
(pumping lemma)

Before we can state these problems more precisely and present our contributions in §1.2,
we need to introduce the models of computation that are of interest in this dissertation.

1.1 Models of computation

Automata over infinite alphabets
In the upcoming §§1.1.1 and 1.1.2, we present two models which both recognise words
over infinite alphabets: Σ×Q≥0 and Σ×A, where each input letter from a finite set Σ is
paired with an element of an infinite set. In case of the first model—timed automata—the
element is a nonnegative rational number interpreted as a timestamp, while for the
next—register automata—A is an arbitrary countably infinite set of atoms. Words over
these alphabets are called timed words and data words, and sets thereof are called timed
and data languages, respectively. Both models are build upon standard finite automata.
To deal with the extended alphabets, they are equipped with so-called clocks and registers,
respectively.

18

1.1. MODELS OF COMPUTATION

1.1.1 Automata with clocks (NTA/DTA)

Timed automata are one of the most widespread models of real-time reactive systems.
They are an extension of finite automata with rational-valued clocks2 which can be reset
and compared by inequality constraints (which may use integer constants).

Example 1.1. timed automaton distinguishing timestamps

Timed words w1 = (a, 0)(a, 4.5) and w2 = (a, 0)(a, 5.7) can be distinguished by a timed
automaton. Consider the following automaton A with one clock x and three states.

reset clock x if x < 5

It resets a clock x at the first symbol and then accepts if x < 5 upon arrival of the next
timed symbol. Note that the clocks measure time at the same pace as the timestamps of
the input letters increase.

As with most models of computation, we distinguish between nondeterministic (nta)
and deterministic (dta) timed automata.

Nondeterministic timed automata
The nonemptiness problem for nta is decidable and, in fact, PSpace-complete, as shown
by Alur and Dill in their landmark 1994 paper [2]. This paved the way for the automatic
verification of timed systems, leading to mature tools such as UPPAAL [8], UPPAAL Tiga
(timed games) [17], and PRISM (probabilistic timed automata) [68]. The reachability
problem is still a very active research area these days [1,44,51,52,55,57], as are expressive
generalisations thereof, such as the binary reachability problem [31, 41, 48, 67]. As a
testimony to the model’s importance, the authors of [2] received the 2016 Church Award
[21] for the invention of timed automata.

Deterministic timed automata
These are a strict subclass of nta, where the successive configuration is uniquely deter-
mined by the current one and the timed input symbol. The class of dta enjoys stronger
properties than nta, such as decidable universality/equivalence/inclusion problems, and
closure under complementation [2]. Moreover, the more restrictive nature of dta is
needed for several applications of timed automata, such as test generation [78], fault
diagnosis [13], learning [91,96], winning conditions in timed games [4,14,60], and in a
notion of recognisability of timed languages [72].
For these reasons, and for the more general quest of understanding the nature of the
expressive power of nondeterminism in timed automata, many researchers have focused
on defining determinisable classes of timed automata, such as strongly non-zeno nta [5],
event-clock nta [3], and nta with integer-resets [89]. These classes are not exhaustive,
in the sense that there are nta recognising deterministic timed languages not falling
into any of them. In fact, the class of determinisable nta is undecidable. Thus, it is of

2This generally accepted name is not very accurate, because the clocks of timed automata have more
affinity to stopwatches than to clocks, which cannot be easily reset.

19

CHAPTER 1. OVERVIEW

interest to be able to decide whether a timed language presented as an nta is actually
recognisable by a dta.

Another remarkable subclass of nta is obtained by requiring the presence of just one
clock (without epsilon transitions). The resulting class of nta1 is incomparable with dta:
For instance, nta1 are not closed under complement (unlike dta), and there are very
simple dta languages that are not recognisable by any nta1. Nonetheless, nta1, like
dta, have decidable inclusion, equivalence, and universality problems [70,79], although
the complexity is non-primitive recursive [70, Corollary 4.2] (see also [80, Theorem 7.2]
for an analogous lower bound for the satisfiability problem of metric temporal logic).
Moreover, the nonemptiness problem for nta1 is NLogSpace-complete (vs. PSpace-
complete for unrestricted nta and dta, already with two clocks [44]), and the binary
reachability relation of nta1 can be computed as a formula of existential linear arithmetic
of polynomial size, which is not the case in general [25].

1.1.2 Automata with registers (NRA/DRA)

The theory of register automata shares many similarities with that of timed automata.
Nondeterministic register automata (nra) have been introduced by Kaminski and Francez
around the same time as timed automata [61]. They were defined as an extension of
finite automata with finitely many registers which can store input values (now called
data values, or atoms) and be compared with equality and disequality constraints.

Example 1.2. register automaton distinguishing two data words

Data words w1 = (a, 0)(a, 0) and w2 = (a, 0)(a, 1) can be distinguished by a register
automaton A with one register x and three states:

x := y if y = x

Above, in the operations on edges, y denotes the currently read input value, while 0, 1
stand for some particular atoms.

Kaminski and Francez have shown, among other things, that nonemptiness is decidable
[61, Theorem 1]. It was later realised that the problem is, in fact, PSpace-complete
[40, Theorems 4.3 and Theorem 5.1]. The class of nra recognisable languages is not
closed under complementation [61, Proposition 5]; moreover, universality (and thus
equivalence and inclusion) of nra is undecidable [77, Theorem 5.1] (already for nra with
two registers [40, Theorem 5.4]).

Deterministic register automata
One way to regain decidability is to consider the deterministic register automata (dra).
This strict subclass of nra is effectively closed under complement and thus has decidable
inclusion problem3 (entailing also universality and equivalence). dra also provide the
foundations of learning algorithms for data languages [76]. A recent result completing

3In fact, even the inclusion problem L(A) ⊆ L(B) with A an nra and B a dra is decidable.

20

1.1. MODELS OF COMPUTATION

the theory of register automata has shown that a data language is dra recognisable if,
and only if, both this language and its complement are nra recognisable [64].

As in the case of timed automata, it has been observed that restricting the number of
registers results in algorithmic gains. Already in the seminal work of Kaminski and
Francez, it has been proved that the inclusion problem L(A) ⊆ L(B) is decidable when
A is an nra and B is an nra with one register [61, Appendix A], albeit the complexity
is non-primitive recursive in this case [40, Theorem 5.2].

Other atoms

The notion of register automaton by Kaminski and Francez was subsequently generalised
to allow input values (now commonly referred to as atoms) to originate from relational
structure A given as a parameter. In this setting, the original variant of register automata
is obtained by choosing A to be the equality atoms 〈N,=〉. Countless other choices for
atoms include total order atoms 〈Q,≤〉, or even timed atoms 〈Q,≤,+1〉, which make
register automata similar (but not identical) to timed ones.

The results shown in the thesis, for the sake of simplicity, are presented within the
original regime of equality atoms; however, they can be generalised to other kinds of
atoms, the method of this generalisation being described in the relevant chapters.

1.1.3 Automata with counters (VASS)

Vector addition systems [62] (vas) are a widely accepted model of concurrency equivalent
to Petri nets. Another equivalent model, called vector addition systems with states
(vass) [58], is an extension of vas with a finite control graph. It can also be seen as
a finite automaton over a unary alphabet with counters, on which the transitions can
perform operations of increment or decrement (but no zero tests), with the proviso
that counter values are initially set to zero and must remain non-negative along a run.
The number of counters d defines the dimension of a vass, model of dimension d being
denoted as vassd.

One of the main theoretically relevant questions for vass is the problem of reachability. It
can be formulated as follows: given a vass with two distinguished states p, q, does there
exist a run from p to q, starting and ending with all counters set to zero? The problem’s
status has recently been clarified—several decades after the first decidability proof of
Mayr [73] was published in 1981. However, the resulting Ackermann-completeness of
the problem (dropping to PSpace-completeness for vass2) essentially precludes practical
applications. For this reason, when working with the difficult to analyse vass model, one
may be tempted to try to seek a simpler description of its properties. One such approach
is the question of the regular separability of languages of labelled vass, which is open
already for vass2.

Described in the dissertation is a pumping method for runs of vass2, which we developed
with the hope of eventually solving the regular separability problem in the two-dimensional
case. Although we did not achieve our ultimate goal, our method—internally making
use of a variety of geometric observations—seems to be a step in the right direction.

21

CHAPTER 1. OVERVIEW

Pumping
Broadly speaking, pumping is a class of techniques exploiting repetitions of states in runs.
It is a ubiquitous phenomenon which typically provides valuable tools in proving short
run properties, characterizing set of runs or showing language inexpressibility results.
It seems to be particularly relevant in case of vass, as even the core of the seminal
decision procedure for the reachability problem in vass by Mayr and Kosaraju [66,74]
is fundamentally based on pumping. The decision procedure they propose essentially
decomposes a vass into a finite number of more structured vass, each having the property
that every path can be pumped up so that it induces a run.
Pumping techniques are used even more explicitly when dealing with subclasses of vass of
bounded dimension. The PSpace upper bound for the reachability problem in vass2 [9]
relies on various un-pumping transformations of an original run, leading to a simple run
of at most exponential length, in the form of a short path with adjoined short disjoint
cycles. A smart combinatorial manipulation of these simple runs was also used to obtain
a stronger upper bound (NL) in case when the transition effects are represented in
unary [43]. Un-pumping is also used in [19] to provide a quadratic bound on the length
of the shortest run for vass1, also known as one counter automata without zero tests,
and for unrestricted one counter automata. See also [6, 71] for pumping techniques in
one counter automata.

1.2 Contributions grouped by problems

Here, we summarise the main results found in the dissertation. Each of following §§1.2.1
to 1.2.4 first sketches the problem and the state of the art on it, and then presents the
newly proven theorems.

1.2.1 Synthesis problem and synthesis games

The principal result of the dissertation concerns the previously listed question Q1

Q1 Given a complex specification, does there exist a simpler device realising it?
(synthesis problem)

where the (complex) specification is specified in terms of nra/nta, and the goal is to
provide a deterministic device realising it. Before we discuss it, we need to introduce the
notions of ω-regular languages and synthesis games.

ω-regular languages
For finite automata over alphabet Σ, there are many ways of adapting them to recognise
infinite words (from Σω) instead of finite ones (from Σ∗). Some of these approaches only
modify semantics, while others introduce subtle alterations of the syntax, too. One may
consider dra or nra with updated acceptance conditions, i.a., Büchi, Muller, or parity
condition. Most4 of these variants have the same set of languages they can express—this
way, the class of ω-regular languages arises.

4All classes but dra equipped with Büchi condition, which can only express a strict subset of ω-regular
languages.

22

1.2. CONTRIBUTIONS GROUPED BY PROBLEMS

Synthesis games
One of the areas in which ω-regular languages find their use are synthesis games. These
infinite-duration games are played by two players, Alice and Bob, who both are assigned
finite alphabets of actions, A and B. An instance of a game is given as its winning
set—an ω-regular language W ⊆ (A×B)ω. Each turn consists of a single action of Alice
followed by one of Bob. The completed infinite play is a word w ∈ (A×B)ω, and Alice
wins if w ∈W . A finite memory strategy in such a game is a deterministic automaton
with additional output5 letter written on every transition. It reads the opponent’s actions
one by one and responds to them synchronously, with current player’s actions.

Synthesis problem
In their famous result [15], Büchi and Landweber have shown that one can

I decide the winner of such games,

I compute (synthesize) a finite-memory strategy for the winner.

Intuitively, if a player can win using arbitrary (possibly infinite) memory, they can also
win using a finite memory strategy, which can be effectively computed.
We generalise these games to the setting of automata over infinite alphabets, defining
timed synthesis games and register synthesis games. Since the two variants share many
similarities, we present them jointly here. The differences are highlighted with square
brackets [X,Y], where X and Y concern timed and register variant, respectively.

Timed and register synthesis games
There are two players, called Alice and Bob, who take turns in a strictly alternating
fashion. At the i-th round, Alice selects a letter ai from a finite alphabet and [a
nonnegative timestamp/an atom] χi from [Q≥0/A]. Bob replies with a letter bi from
a finite alphabet. This process continues infinitely. At the doomsday, the two players
will have built an infinite play π = (a1, b1, χ1)(a2, b2, χ2) · · · , and Alice wins if, and only
if, π belongs to her winning set W , which is specified as the language of a [nta/nra]
(possibly with ε-transitions).
Analogously to original synthesis games, finite-memory strategies in above game corre-
spond to [timed/register] automata with output.

Timed and register synthesis problems
The [timed/register] synthesis problem is to compute, if it exists, a winning controller
for Bob —[dta/dra] with output—which ensures that every play π conformant to
that controller is winning for Bob. We also consider two more restricted variants of it.
For a fixed number of [clocks/registers] k ∈ N, the [k-clock timed/k-register] synthesis
problem asks—as before—about a controller for Bob, but this time using at most k
[clocks/registers]. Finally, exclusively for the timed variant, we define a k-clock m-con-
strained timed synthesis problem, which is analogous to k-clock timed synthesis, but also
requires the controller’s transitions only to feature constraints with constant bounded by

5Other names by which such automaton with output is known include ‘letter-to-letter transducer’,
and ‘Mealy machine’.

23

CHAPTER 1. OVERVIEW

m in absolute value. With all problems, we naturally associate decision problems (‘does
a winning controller exist?’).

We show the computability of the restricted variants of synthesis problem, which are
analogues to the Büchi-Landweber result.

Theorem 5.1 synthesis of drak

For every fixed k ∈ N, the k-register synthesis problem is computable.

Theorem 6.1 synthesis of dtak,m

For every fixed k,m ∈ N, the k-clock m-constrained timed synthesis problem is com-
putable.

Theorem 6.2 synthesis of dtak

For every fixed k ∈ N, the k-clock timed synthesis problem is computable.

The main part of our proof is the reduction of these games to finite-state games with
an ω-regular winning conditions. This is done via introduction of a special protocol
using orbits/regions. Then, they can be solved using the seminal result of Büchi and
Landweber [15].

It is important to note that the k-clock timed synthesis problem requires the synthesis
of the maximal constant m, which is a technical novelty not shared with the current
literature on timed games. This result is obtained, intuitively, through a design of
protocol in which Bob demands from Alice to be informed when clocks elapse one time
unit. We require the number of such consecutive requests to be finite, yielding a bound
on m (when such a value exists).

Additionally, our construction of synthesis games in itself is noteworthy, as we thoughtfully
designed them to provide high expressiveness, while avoiding unnecessary complication:

I It was our informed choice to only allow Alice to use an infinite alphabet of actions.
This way, finite-memory strategies of Bob in our games are equivalent to timed/register
automata with output symbols (a.k.a. letter-to-letter transducers).

I Additionally, it is important that we specify the winning condition for Alice. In fact,
the same problem—with the set of winning plays for Bob specified by a nondetermin-
istic timed language—becomes uncomputable (cf. [42] for a similar observation).

When compared with our setup, variant of register synthesis problem considered by
Khalimov et al. [63] (settled independently) may ostensibly seem more expressive. In their
framework—not specified in terms of game—the transducer (automaton with output)
can also output atoms. In our terminology, this situation corresponds to a game, in
which both Alice and Bob can play atoms, but Bob is limited only to play these which
Alice has used so far. However, already in our original, simpler setting, one can obtain
undecidability of register synthesis problem

24

1.2. CONTRIBUTIONS GROUPED BY PROBLEMS

Theorem 8.4 synthesis of dra und.

The register synthesis decision problem is undecidable, and this holds already when
Alice’s winning condition is an nra2 language.

and of timed synthesis, too:

Theorem 8.2 synthesis of dta und.

The timed synthesis decision problem is undecidable, and this holds already when Alice’s
winning condition is an nta2 language.

Moreover, as in [63] the transducer is limited to use only atoms stored in registers, in
context of [k-clock/k-register] synthesis problem, his set of choices of symbols is in fact
always bounded by k. This makes it amenable to simulation with a finite alphabet.
It follows that our k-register synthesis setup is equally expressive as one of [63], while
additionally allowing other atom domains.

1.2.2 Deterministic separability problem

Separability is a classical problem in theoretical computer science and mathematics. For
sets S,L,M , we say that S separates L from M if L ⊆ S and S ∩M = ∅.
Intuitively, a separator S provides a certificate of disjointness, yielding information on
the structure of L,M up to some level of granularity.
There are many elegant results in computer science and mathematics showing that
separators with certain properties always exist, such as Lusin’s separation theorem in
topology (two disjoint analytic sets are separable by a Borel set), Craig’s interpolation
theorem in logic (two contradictory first-order formulas can be separated by one containing
only symbols in the shared vocabulary), in model theory (two disjoint projective classes
of models are separable by an elementary class), in formal languages (two disjoint Büchi
languages of infinite trees are separable by a weak language, generalising Rabin’s theorem
[85]), in computability (two disjoint co-recursively enumerable sets are separable by a
recursive set), in the analysis of infinite-state systems (two disjoint languages recognisable
by well-structured transition systems are regular separable [34]), etc.
When separability is not trivial, one may ask whether existence of separator is decidable.
Let C and S be two classes of sets. The S-separability problem for C amounts to decide
whether, for every input sets L,M ∈ C there is a set S ∈ S separating L,M . Many
results of this kind exist when C is the class of regular languages of finite words over
finite alphabets, and S ranges over piecewise-testable languages [36,81] (later generalised
to context-free languages [37] and finite trees [54]), locally and locally threshold testable
languages [82], first-order logic definable languages [84] (generalised to some fixed
levels of the first-order hierarchy [83]). For classes of languages C beyond the regular
ones, decidability results are more rare. For example, regular separability of context-
free languages is undecidable [59, 65, 90]. Nonetheless, there are positive decidability
results for separability problems on several infinite-state models, such as Petri nets [24],
Parikh automata [22], one-counter automata [32], higher-order and collapsible pushdown
automata [30,56], and others.

25

CHAPTER 1. OVERVIEW

In this dissertation, we study the separability problem for languages of timed and
register automata. In particular, we are interested in the deterministic separability
problem, in which we seek a simple—deterministic—separator for languages of more
complex—nondeterministic—devices. This matches the previously stated question Q2:

Q2 Can disjoint languages of complex models be distinguished (separated) in a simpler
way? (separability problem)

More precisely, the problem asks, given two nondeterministic automata A and B with
disjoint languages, be it timed or register ones, whether there exists a deterministic
automaton S such that L(S) separates L(A) from L(B). Various ways of quantifying
the models’ parameters, like the desired number of clocks/registers of the separator, give
rise to the following variants of the separability question:

I The k-clock m-constrained deterministic separability problem for timed automata
asks whether A,B ∈ nta can be separated by a deterministic automaton S ∈ dta

with k clocks measuring up to m units of time.

I The k-clock deterministic separability problem for timed automata is defined similarly,
but with the restraint on m is lifted. This way the resulting separator S can measure
the time up to arbitrary fixed number of time units.

I Finally, the k-register deterministic separability for register automata asks whether
A,B ∈ nra can be separated by a deterministic automaton S ∈ dra with k registers.

Intuitively, deterministic separability problem strengthens disjointness by additionally re-
quiring a simple (deterministic) reason of disjointness of more complex (nondeterministic)
models.
We can also see A as recognising a set of good behaviours which we want to preserve
and B recognising a set of bad behaviours which we want to exclude. From this point of
view, a deterministic separator, when it exists, provides a kind of compromise between
these two conflicting requirements.
Concerning separability, our main contribution is decidability of k-clock m-constrained
and k-clock deterministic separability, obtained by means of synthesis games discussed
in §1.2.1. We provide analogous results for both timed and register automata:

Theorem 4.1 separability by drak

For k ∈ N, the k-register deterministic separability problem for nra is decidable.

Theorem 4.3 separability by dtak,m

For k,m ∈ N, the k-clock m-constrained separability problem for nta is decidable.

Theorem 4.2 separability by dtak

For k ∈ N, the k-clock deterministic separability problem for nta are decidable.

26

1.2. CONTRIBUTIONS GROUPED BY PROBLEMS

To the best of our knowledge, separability problems for timed and register automata
have not been investigated before.
Decidability of timed deterministic separability should be contrasted with undecidability
of the corresponding deterministic membership problem—the question whether a nonde-
terministic timed language is deterministic is undecidable [46,93] (also cf. §1.2.3). This
is a rare circumstance, which is shared with languages recognised by one-counter nets
[32], and conjectured to be the case for the full class of Petri net languages6.
Similar situation holds also for register automata, as we outline in the next section §1.2.3.

1.2.3 Deterministic membership problem

Here, we consider an instance of the question Q3:

Q3 Can a complex device be equivalently described in a simpler way?
(membership problem)

where ‘complex’ and ‘simpler’ mean ‘nondeterministic’ and ‘deterministic’, respectively.
We provide analogous results for both timed and register automata.

Timed automata
The dta membership problem asks, given an nta, whether there exists a dta recognising
the same language. There are two natural variants of this problem, which are obtained
by restricting the resources available to the sought dta. Let k ∈ N be a bound on the
number of clocks, and let m ∈ N be a bound on the maximal absolute value of numerical
constants.

I The dtak is a variant of the problem above where the dta is required to have at most
k clocks.

I The dtak,m membership problem asks for the automaton with at most k clocks and
constants bounded by m in absolute value.

Notice that we do not bound the number of control locations of the dta, which makes
the problem non-trivial. (Indeed, there are finitely many dta with a bounded number of
clocks, control locations, and maximal constant.)
Since untimed regular languages are deterministic, the dtak membership problem can be
seen as a quantitative generalisation of the regularity problem. For instance, the dta0
membership problem is precisely the regularity problem since a timed automaton with
no clocks is essentially the same as a finite automaton. We remark that the regularity
problem is usually undecidable for nondeterministic models of computation generalising
finite automata, e.g., context-free grammars/pushdown automata [88, Theorem 6.6.6],
labelled Petri nets under reachability semantics [95], Parikh automata [16], etc. One
way to obtain decidability is to either restrict the input model to be deterministic (e.g.,
[7, 94, 95]), or to consider more refined notions of equivalence, such as bisimulation (e.g.,
[53]).

6All these classes of languages have a decidable disjointness problem, however regular separability is
not always decidable in this case [92].

27

CHAPTER 1. OVERVIEW

This negative situation is generally confirmed for timed automata. For every number of
clocks k ∈ N and maximal constant m, the dta, dtak, and dtak,m membership problems
are known to be undecidable when the input nta has ≥ 2 clocks, and for 1-clock nta with
epsilon transitions [46, 93]. To the best of our knowledge, the deterministic membership
problem was not studied before when the input automaton is nta1 without epsilon
transitions.

Register automata
The situation with register automata is similar to that of timed automata, only simpler.

I The drak membership problem asks, given an nra, whether there exists a dra with
k registers recognising the same language.

I The dra membership problem is the same problem, but with no apriori bound on the
number of registers of the deterministic acceptor.

Deterministic membership problems for register automata do not seem to have been
considered before in the literature.

Contributions
We complete the study of the decidability border for the deterministic membership
problem initiated for timed automata in [46, 93], and we extend these results to register
automata.

Upper bounds
Our main results on the deterministic membership problem for timed automata are

Theorem 7.28 dtak membership

For every fixed k ∈ N, the dtak membership problem is decidable for nta1 languages.

Theorem 7.29 dtak,m membership

For every fixed k,m ∈ N, the dtak,m membership problem is decidable for nta1 languages.

Our decidability result contrasts starkly with the abundance of undecidability results
for the regularity problem. We establish decidability by showing that if an nta1,m
recognises a dtak language, then, in fact, it recognises a dtak,m language and, moreover,
there is a computable bound on the number of control locations of the deterministic
acceptor (cf. lemma 7.30). This provides a decision procedure since there are finitely
many different dta once the number of clocks, the maximal constant, and the number of
control locations are fixed.
In our technical analysis, we find it convenient to introduce the so-called always resetting
subclass of ntak. These automata are required to reset at least one clock at every
transition and are thus of expressive power intermediate between ntak−1 and ntak.
Always resetting nta2 are strictly more expressive than nta1: For instance, the language
of timed words of the form (a, τ0)(a, τ1)(a, τ2) such that τ2 − τ0 > 2 and τ2 − τ1 < 1
can be recognised by an always resetting nta2 but by no nta1. Despite their increased

28

1.2. CONTRIBUTIONS GROUPED BY PROBLEMS

expressive power, always resetting nta2 still have a decidable universality problem (the
well-quasi order approach of [79] goes through), which is not the case for nta2. Thanks
to this restricted form, we are able to provide in lemma 7.30 an elegant characterisation
of those nta1 languages which are recognised by an always resetting dtak.
We prove a result analogous to theorem 7.28 in the setting of register automata.

Theorem 7.1 drak membership

For every fixed k ∈ N, the drak membership problem is decidable for nra1 languages.

Thanks to the effective elimination of ε-transition rules from nra1 (cf. lemma 2.22), the
decidability result above also holds for data languages presented as nra1 with ε-transition
rules.

Lower bounds
We complement the decidability results above by showing that the deterministic mem-
bership problem becomes undecidable if we do not restrict the number of clocks/registers
of the deterministic acceptor.

Theorem 8.1 dta and dta•,m membership und.

The dta and dta•,m (m > 0) membership problems are undecidable for nta1 without
epsilon transitions.

Theorem 8.1 is shown by improving on an analogous result from [46, Theorem 1] for
nta2. We obtain a similar undecidability result in the setting of register automata:

Theorem 8.3 dra membership und.

The dra membership problem is undecidable for nra1.

The following lower bounds further refine the analysis from [46] in the case of a fixed
number of clocks of a deterministic acceptor.

Theorem 7.48 undecidability and hardness for dtak membership

For every fixed k,m ∈ N, the dtak and dtak,m membership problems are:

1. undecidable for nta2,

2. undecidable for ntaε1 (nta with epsilon transitions),

3. HyperAckermann-hard for nta1.

A similar landscape holds for register automata, where the deterministic membership
problem for a fixed number of registers of the deterministic acceptor remains undecidable
when given in input either an nra2 or an nra1 with guessing7. In the decidable case of
an nra1 input, the problem is nonetheless not primitive recursive.

7Register automata with guessing are a more expressive family of automata where a register can be
updated with a data value not necessarily coming from the input word, i.e., it can be guessed.

29

CHAPTER 1. OVERVIEW

Theorem 7.17 undecidability and hardness for drak membership

Fix a k ≥ 0. The drak membership problem is:

1. undecidable for nra2,

2. undecidable for nrag1 (nra1 with guessing), and

3. not primitive recursive (Ackermann-hard) for nra1.

1.2.4 Pumping technique for VASS of dimension two

The pumping techniques mentioned in §1.1.3 are mostly oriented towards reachable sets,
and henceforth may ignore certain runs as long as the reachable set is preserved. As
consequence, they are not very helpful in solving decision problems formulated in terms
of the language accepted by a vass, like the regular separability problem (cf. [23,35,39]).

In the dissertation, we restrict ourselves exclusively to the vass of dimension two, our
primary objective being to design means of pumping applicable to every run of a vass2.
Therefore, as our main technical contribution related to vass2, we perform a meticulous
classification of runs, in form of a dichotomy:

For every run π of a vass2 starting and ending with both counters set to zero,

I either π is thin, by which we mean that the counter values along the run stay within
belts, whose direction and width are all bounded polynomially in the number n of
states and the largest absolute value M in vectors of the vass2;

I or π is thick, by which we mean that a number of cycles is enabled along the run, and
the effect vectors of these cycles, roughly speaking, span the whole plane. Additionally,
the lengths of cycles and the initial and final factors of π are all bounded polynomially
in M and exponentially in n.

The precise formulation of the dichotomy, omitting the definitions of thin and thick runs,
is as follows. It speaks of (0, 0)-runs, i.e., runs starting and ending with both counters
set to 0.

Theorem 9.7 thin/thick dichotomy

There is a polynomial p such that every (0, 0)-run in a vass2 V is either p(nM)n-thin or
p(nM)n-thick.

The dichotomy immediately entails a pumping theorem for vass2.

Theorem 9.21 pumping runs of vass2

There is a polynomial p such that every (0, 0)-run τ in a vass2 of length greater that
p(nM)n factors into τ = τ0 τ1 . . . τk (k ≥ 1), so that for some non-empty cycles
α1, . . . , αk of length at most p(nM)n, the path τ0 α

i
1 τ1 α

i
2 . . . , α

i
k τk is a (0, 0)-run for

every i ∈ N. Furthermore, the lengths of τ0 and τk are also bounded by p(nM)n.

30

1.3. SOURCE MATERIALS

Intuitively, adapted pumping scheme of vass1 is used in case of thin runs, whereas for
thick runs we we utilize the collected cycles to construct correct ‘inflated’ runs.
As a more subtle application of the dichotomy, we derive an alternative proof of the
exponential run property (shown originally in [9]), which immediately implies PSpace-
membership of the reachability problem.

Theorem 9.22 exponential run property

There is a polynomial p such that for every (0, 0)-run τ in a vass2, there is a (0, 0)-run
of length bounded by p(nM)n with the same source and target as τ .

1.3 Source materials

Many of the results presented in the thesis stem from the author’s close collaboration
with several people. This has borne fruit in scientific articles, already published or
awaiting publication. Other results of this collaboration, previously unpublished, are
presented for the first time. The list below summarises the relationship between the
source materials and theorems in this thesis.

Sources

1. Timed Games and Deterministic Separability [29] (ICALP 2020)
Authors: Lorenzo Clemente, Sławomir Lasota and P.

I theorems 6.1, 6.2 and 8.2 (timed synthesis)
I theorems 4.2 and 4.3 (dta separability)

2. Determinisability of One-Clock Timed Automata [26] (CONCUR 2020)
Authors: Lorenzo Clemente, Sławomir Lasota and P.

I theorems 7.28, 7.29 and 7.48 (dta membership)

3. Determinisability of register and timed automata (submitted to LMCS)
Authors: Lorenzo Clemente, Sławomir Lasota and P.

I theorems 7.1, 7.17, 7.28, 7.29 and 7.48 (dta and dra membership)

4. New Pumping Technique for 2-Dimensional VASS [33] (MFCS 2019)
Authors: Wojciech Czerwinski, Slawomir Lasota, Christof Löding and P.

I theorems 9.21 and 9.22 (pumping technique for vass2)

5. Previously unpublished results
Authors: Lorenzo Clemente, Sławomir Lasota and P.

I theorems 5.1 and 8.4 (register synthesis)
I theorem 4.1 (dra separability)

31

Chapter 2

Preliminaries

Here we introduce concepts essential for this dissertation. We first discuss the underlying
notions of transition systems and sets with atoms. The main purpose of this chapter is to
present three computational models with infinite configuration space and their associated
computational problems, which are of interest to us in the sequel.
This chapter has a complementary character to §§1.1 and 1.2. We present here precise
definitions of notions which were only briefly sketched in §1, as the main focus was on
discussing the current state of research in their field.

Basic notations
Sets of numbers We use standard symbols R,Q,Z,N for the sets of reals, rationals,
integers, and non-negative integers, respectively. Whenever convenient, we use subscripts
to specify subsets, e.g., R≥0,Q≥0 for non-negative reals and rationals.

Notational simplifications and shortcuts When speaking of composite objects,
we use the symbol ‘_’ to refer to unused components. For example, when defining a
projection φ : A×B×C → A×C, we write f(a,_, c) = (a, c). Given a set S ⊆ A×B×C
and two elements a ∈ A, c ∈ C, when writing ‘fix an element of S of shape (a,_, c), we
mean arbitrary (a′, b′, c′) ∈ S such that a′ = a and c′ = c. When speaking jointly about
elements of some sequence a1, a2, a3, . . . , we write a•.

2.1 Models of computation
with infinite space of configurations

The automata theory studies a wide variety of models of computation, ranging from very
simple (thus less expressive) ones, to more powerful machines, which are in turn harder
to analyze. On one end of the spectrum there are finite automata—its founding concept.
They are long known, thus well studied and understood, but can model only very simple
processes. At the other end, there are Turing machines, being able to perform any1

computation. There is, however, a high price one has to pay for their versatility—all
nontrivial problems about languages they recognise are undecidable [86].

1Assuming the validity of the Church-Turing Thesis.

33

CHAPTER 2. PRELIMINARIES

The space between these vastly different models did not remain empty and is populated
by intermediate models which emerged as a compromise between weaker expressiveness
and difficulty of theoretical analysis. Classical examples of such models include pushdown
automata, one counter automata, linearly bounded Turing machines or vector addition
systems with states (vass). All these models feature an infinite configuration space, as
Turing machines do, but still have some non-trivial properties decidable, e.g., language
membership or emptiness problem.

All models of computation mentioned so far share yet another common quality—they
are acceptors of languages over some finite alphabet Σ, or they can be easily extended
to become such acceptors. However, this is not something to take for granted, as there
exist models going beyond this regime, for instance timed automata, hybrid automata,
tree-walking automata, register automata, and orbit-finite automata. These devices
operate on richer data structures: timed words, trees, data words, and words over an
orbit-finite alphabet, correspondingly. Such upgrade is twofold beneficial:

I the expressive power is increased, while the machines stay relatively ‘simple’—the
input structures are read sequentially and only once, unlike in Turing machines,

I resulting models are by design well-suited for specific practical applications in analysis
of real-life systems—e.g., timed automata shine at modelling real-time reactive
systems, while tree-walking automata are geared well towards defining and checking
properties of XML documents.

In this dissertation, we focus primarily on three models of computation: register automata,
timed automata and vector addition systems. They all feature an infinite space of
configurations; this section’s purpose is to introduce all three. We begin by giving the
shared terminology that will prove useful when defining the classes of models in §§2.4
to 2.6.

2.2 Labelled transition systems (LTS)

Transition systems (ts) are a universal tool that can be used to specify the semantics
of all three models of our interest. They are (possibly infinite) directed graphs, whose
vertices are called configurations, their edges forming a transition relation. More formally,
a transition system T = (C,Cini →) is a tuple, where:

I C is the (possibly infinite) set of configurations,

I → ⊆ C × C is the transition relation between configurations,

I Cini ⊆ C is a subset of initial configurations.

An element of transition relation (c, c′) ∈ −→ is also written as c −→ c′.

34

2.2. LABELLED TRANSITION SYSTEMS (lts)

Runs of ts

A run π in T ∈ ts, starting in configuration c0, ending in configuration cn is a finite
walk in the graph (C,→) of the form

π = (c0, c1)(c1, c2) . . . (cn−1, cn) ∈→∗

also written as

π = c0 −→ c1 −→ . . . −→ cn.

If there exists a run π from c to c′, we write c −→∗ c′. Runs(T ; c, c′) is a set of all runs
starting in configuration c and ending in c′. Additionally, we define:

Runs(T ; c) =
⋃
c′∈C

Runs(T ; c, c′)

Runs(T) =
⋃
c∈Cini

Runs(T ; c).

In words, Runs(T) is the set of all runs of T which start in any initial configuration. A
configuration c′ is reachable if there exists c ∈ Cini such that c −→∗ c′.

Labelled transition systems

Transition systems also appear in a labelled variety, called labelled transition systems
(lts). This variant is suitable for defining semantics of models of computation which
read some input word. Intuitively, an lts is identical to a finite automaton, where the
requirement of finiteness of the set of states has been lifted. More formally, a labelled
transition system T = (Γ, C, Cini, Cfin,→) is a tuple, where:

I Γ is the set of transition labels,

I C is the (possibly infinite) set of configurations,

I Cini and Cfin are subsets of C called initial and final configurations, respectively,

I → ⊆ C × Γ× C is the transition relation between configurations.

Similarly to ts, we write c γ−→ c′ to denote a transition (c, γ, c′) ∈ −→.

An lts is deterministic, if |Cini| = 1, and for every configuration c ∈ C and label γ ∈ Γ
there exists at most one configuration c′ ∈ C such that c γ−→ c′. It is total, when for every
c ∈ C and γ ∈ Γ there exists at least one configuration c′ ∈ C such that c γ−→ c′.

The class of deterministic lts is denoted dlts. For T ∈ lts with set of labels Γ, we say
that T is over Γ. By lts(Γ) (or dlts(Γ)) we mean the class of all lts (dlts, respectively)
over Γ.

35

CHAPTER 2. PRELIMINARIES

Runs of lts

A run π in T , starting in configuration c0, ending in configuration cn and labelled by a
word w = γ1γ2 . . . γn ∈ Γ∗ (or “over” w), is a finite labelled walk in the graph (C,→) of
the form

π = (c0, γ1, c1)(c1, γ2, c2) . . . (cn−1, γn, cn) ∈ →∗

also written as

π = c0
γ1−→ c1

γ2−→ . . .
γn−→ cn.

For such run, we define input(π) = w. We say that π is accepting if its last configuration
is final (cn ∈ Cfin). If there exists a run π from c to c′ labelled with w, we write c w−→∗ c′;
if some such w exists, we write c −→∗ c′. Runs(T ; c, c′) is a set of all runs starting in
configuration c and ending in c′. Additionally, we define:

Runs(T ; c) =
⋃
c′∈C

Runs(T ; c, c′)

Runs(T) =
⋃
c∈Cini

Runs(T ; c).

In words, Runs(T) is the set of all runs of T which start in any initial configuration. A
configuration c′ is reachable if there exists c ∈ Cini such that c −→∗ c′. Note that in case
of deterministic lts, for every w ∈ Γ∗ there exists at most one run π over w, while for a
total lts at least one run needs to exist (not necessarily accepting).

Language of lts

The language L(T ; c) ⊆ Γ∗ of a configuration c ∈ C is defined in a natural way as the
set of possible labels of runs from c to some final state:

L(T ; c) =
{

input(π)
∣∣ ∃c′∈Cfin . π ∈ Runs(T ; c, c′)

}
The language of lts T is a sum of languages of all its initial configurations:

L(T) =
⋃
c∈Cini

L(T ; c)

Infinite runs
An ω-run π in T , starting in configuration c0 and labelled with an infinite word w =
γ1γ2γ3 · · · ∈ Γω, is an infinite labelled walk in the graph (C,→) of the form

π = (c0, γ1, c1)(c1, γ2, c2)(c2, γ3, c3) · · · ∈ →ω,

written also as

π = c0
γ1−→ c1

γ2−→ c2
γ3−→

The set of all ω-runs of T starting in c0 is denoted as Runsω(T ; c0), and—quite naturally—
we define Runsω(T) =

⋃
c∈Cini

Runsω(T ; c). For a run π as above, we define Inf(π) to be
the set of configurations visited by π infinitely many times

Inf(π) =
{
c ∈ C

∣∣∣ ∣∣{i ∈ N | ci = c}
∣∣ = ℵ0

}
.

36

2.2. LABELLED TRANSITION SYSTEMS (lts)

Languages of ω-words

Infinite words, a.k.a. ω-words, are infinite sequences of letters from some alphabet. The
set of all ω-words over the alphabet Σ is denoted as Σω. For further application in this
work, we will present two definitions of the language of w-words (or ω-language) which
can be associated with T . When there is no danger of confusion, we sometimes drop the
prefix ‘ω-’ and speak of words, languages, runs, etc.

Language Reach(L)

For a language L ⊆ Γ∗ of finite words over the alphabet Γ, we define the reachability
language Reach(L) as the set of ω-words, whose some prefix belongs to L. In case of
lts T , Reach(L(T)) ⊆ Γω is the set of labels of runs of T , which visit some final state
at least once. We will denote that ω-language as Reach(T).

Büchi acceptance condition

We obtain a more general family of ω-languages of lts as a result of using so-called ‘Büchi
winning condition’. In this case, we say that an ω-run π is Büchi-accepting, whenever it
visits final states infinitely many times

Inf(π) ∩ Cfin 6= ∅.

The careful reader may wonder whether the choice of this variant of the acceptance
condition is not too restrictive. In the theory of ω-regular languages, there are many
other ways of defining a language of infinite words, for instance by making use of Muller
or parity conditions. More worryingly, Büchi’s condition applied to deterministic systems
is not sufficient to define the full class of omega-regular languages. In this dissertation,
however, in conjunction with Büchi’s condition, we will consider only nondeterministic
models of computation. Moreover, the condition’s simplicity (no changes to the syntax
of the automaton, only modified semantics) will be a desirable feature. Places where it
is used in the following chapters can be easily adapted for the use of other conditions.

Language Lω(T)

For a configuration c ∈ C, we define its ω-language Lω(T ; c) ⊆ Γω as the set of labels of
runs starting in c and satisfying Büchi acceptance condition:

Lω(T ; c) = {input(π) | π ∈ Runsω(T) ∧ π is Büchi-accepting}.

As in the finite case, we define

Lω(T) =
⋃
c∈Cini

Lω(T ; c).

Lemma 2.1.

For any lts T , there exists an lts T ′ such that Reach(T) = Lω(T ′).

37

CHAPTER 2. PRELIMINARIES

Proof of lemma 2.1.

Fix an lts T . Construct T ′ = (Γ, C ∪ {Acc}, Cini, {Acc},−→′) by adding a new configu-
ration Acc, which becomes the only accepting one in T ′. The new transition relation −→′

extends −→ with the transitions

c
γ−→ Acc, Acc

γ−→ Acc

for every c ∈ Cfin and γ ∈ Γ.

For the left to right inclusion, fix w ∈ L(T) and v = v0v1v2 · · · ∈ Γω. Word wv is
Büchi-accepted by T ′. Indeed, let π be a run from Runs(T) which accepts w and ends
in configuration c ∈ Cfin. We construct π′ by extending π with the transition c

v0−→ Acc

and then using the self-loops Acc
vi−→ Acc with letters v1, v2, It is easy to see that

the constructed run π′ accepts wv. For the right to left inclusion, observe that if word w
belongs to Lω(T ′), then the corresponding ω-run π must have visited some state c ∈ Cfin
before going to Acc. The prefix of π ending at the last occurrence of c is an accepting
run of T and therefore w ∈ Reach(T).

The above lemma shows that languages of lcm defined with the Büchi winning condition
are at least as expressive as the reachability languages. The following example shows
that the converse statement is not true.

Example 2.2. ω-language not of the form Reach(•)

We define a language of words w ∈ {a, b}ω which contain infinitely many letters a. Let
T = ({a, b}, {sa, sb}, {sb}, {sa},−→), where the transition relation contains the elements

c
a−→ sa, c

b−→ sb,

where c ∈ {sa, sb}. Language L = Lω(T) is not of the form Reach(T ′) for any lts T ′.
Assume otherwise, and fix any T ′ such that L = Reach(T ′). Consider a word aω ∈ L.
It has to belong to Reach(T ′), therefore for some n ∈ N the prefix an belongs to L(T ′).
This in turn implies that anbω ∈ Reach(T ′), yielding a contradiction.

lts with output

An lts with an output T is a deterministic and total lts additionally equipped with an
output alphabet Υ, with every transition labeled by an output label υ ∈ Υ. Formally, is a
tuple T = (Γ,Υ, C, Cini, δ), such that

I T ′ = (Γ, C, Cini,∅, δ′) is a deterministic and total lts, where δ′ is {(c1, γ, c2) |
∃υ∈Υ(c1, γ, υ, c2)},

I in δ, output labels are functionally determined by other components, i.e., for any
configurations c1, c2 ∈ C and label γ ∈ Γ there exists exactly one letter υ ∈ Υ such
that (c1, γ, υ, c2) ∈ δ.

Note that in lts with output, the set of final configurations is not important and assumed
to be empty.

38

2.2. LABELLED TRANSITION SYSTEMS (lts)

Notions of finite or infinite runs defined for T ′ ∈ lts naturally transfer to lts with output
T . A transition (c0, γ, υ, c1) ∈ δ is also written as

c0
γ/υ−−→ c1.

For a run

π = c0
γ1/υ1−−−→ c1

γ2/υ2−−−→ c2
γ3/υ3−−−→ . . .

by analogy with input(π) = γ1γ2γ3 . . . , we define output(π) = υ1υ2υ3, both for finite and
infinite runs.
With each word w, finite or infinite, we associate a word T (w) := output(π), where π
is the unique run of T over w. In case when T ′ ∈ dfa, we call T an automaton with
output2.
Class of lts with output over alphabets Γ (input) and Υ (output) is denoted as dlts(Γ,Υ),
similar notation being used for finite automata: dfa(Γ,Υ).

Similarities of models to be defined
In the upcoming subsections, in order to define semantics of the three models we plan
to introduce, we will instantiate the general framework of ts/lts by plugging in as
configurations and labels some sets of more definite shape. It is instructive to look at
them now, even before we are ready to formally define their corresponding transition
relations →•, as similarities between the models will already become apparent.
For comparison, let us first look at lts corresponding to some finite automaton A =
(Σ, L, Lini, Lfin, δ) with control locations L recognizing words over a finite alphabet Σ.
As lts generalise finite automata, the construction is straightforward:

0. lts for a finite automaton
labels Γ0 = Σ
configurations C0 = L

transitions →0 = δ

Configurations and labels of lts instantiated to define semantics of register automata,
timed automata and vass look as follows:

1. lts for a k-register automaton
labels Γ1 = Σ× A
configurations C1 = L× (A ∪ {⊥})X

2. lts for a k-clock timed automaton
labels Γ2 = Σ×Q≥0
configurations C2 = L×QX

≥0 ×Q≥0

3. ts for vass of dimension k

configurations C3 = L× Nk

2This notion appears in the literature also under equivalent names ‘letter-to-letter transducer’ and
‘Mealy machine’.

39

CHAPTER 2. PRELIMINARIES

where A is some countably infinite set of so called atoms (to be discussed in greater detail
in §2.3), X = {x1, x2, . . . , xk} is a k-element set of names, and Q≥0,N denote nonnegative
rational numbers and natural numbers, correspondingly.
Observe that:

I all sets of configurations are infinite,

I as in finite automata, all labels in lts feature a letter from a finite alphabet Σ, while
all configurations have control location coming from a finite set L,

I configurations of all models feature a mapping from some k-element set (be it register
names, clock names, or dimension numbers) to some infinite set,

I register and timed automata recognise words over infinite alphabets (Γ1 and Γ2).

Similarities between timed and register automata
As of now, one could notice a striking resemblance between register and timed automata
in terms of the shape of their configurations and labels. It is not a coincidence, as both
models share many properties (e.g., see [45] for a link concerning a class of language-
related decision problems). Although several secondary but nonetheless not negligible
technical differences between the models force us to treat timed automata separately3,
ultimately, the results for both models that we prove are remarkably similar.

2.3 Sets with atoms

As we have just signalled, register automata operate on words over an infinite alphabet
Σ×A. Now, we will specify what exactly is the meaning of the set A. This section’s role
is to present a part of the theory of sets with atoms with which the register automata
are directly and inextricably linked. Due to the similarities between the models a great
portion of it will prove useful when defining the timed automata as well.

2.3.1 Atoms

Register automata are parametrised by their data domain—some relational structure A
over a finite signature, and with a countably infinite universe. We will call elements of A
atoms henceforth. As there is no danger of confusion, we will use the symbol A both to
denote the structure itself and its universe.
The simplest type of atoms—so called equality atoms A = 〈N,=〉 contains in its signature
the equality symbol only. For this reason, any other countably infinite set would be
indistinguishable from N. To indicate that we are treating numbers as atoms—and,
therefore, do not care about their order—we use the underline, e.g.: 1, 5, 7.
Other kinds of atoms include:

A. densely ordered atoms 〈Q,≤〉 where Q is the set of rational numbers and ‘≤’ is the
natural order),

3As is made evident by the different degrees of intricacy of proofs between §§5 and 6 or between
proofs in §8.

40

2.3. SETS WITH ATOMS

B. timed atoms 〈Q,≤,+1〉 which extend densely ordered atoms by the increment relation.
A register automaton operating on timed atoms closely resembles a timed automaton.

C. 〈N2,=1,=〉: pairs of elements which can be tested for equality of the first coordinate
(=1) and of both coordinates (=).

Homogeneous atoms

So-called homogeneity is a key property that enables algorithmic manipulation of compu-
tational models equipped with atoms. It allows for a finite representation of certain objects
associated with atoms, so that they can constitute input or output of for algorithms (cf.
claim 2.15). Formally, a structure A is homogeneous if every isomorphism between some
two of its finitely generated substructures can be extended to an automorphism of A.
This dissertation focuses solely on homogeneous atoms.

Example 2.3. (standard) example of a homogeneous structure

Densely ordered atoms A = 〈Q,≤〉 are homogeneous. Indeed, every finite partial
automorphism of A (i.e., a function preserving ≤) can be extended to a full automorphism
of A. Consider a partial function f = {1.5 7→ 1, 2.3 7→ 2.9, 4 7→ 3.7} ∈ A × A. Picture
below shows how it is extended to A.

1.5

1

2.3

2.9

4

3.7

In this thesis, the results of §§4 and 5 are proved in a general way which applies to any
homogeneous structure A of atoms over finite relational vocabulary. In turn, the results
of §7 related to register automata are proven for equality atoms A = 〈N,=〉. The criteria
a structure A must meet to enable a generalisation of these results are detailed in §7.1.2.

Sets with atoms

For a fixed structure of atoms A, we consider the universe of sets with atoms denoted by
V A. Intuitively, these are sets whose elements are either atoms or ’simpler’ sets of atoms.
We define it formally in von-Neumann-like fashion, by means of a cumulative hierarchy
arising through transfinite induction. Each level V A

λ in that hierarchy is labelled with
some ordinal number λ called its rank. The base level V A

0 = ∅ is just the empty set.
For an ordinal number λ, the level of rank λ+ 1 is

V A
λ+1 = P(V A

λ) ∪̇A,

where ∪̇ is the disjoint union. Finally, for a limit ordinal λ, we put

V A
λ =

⋃
α<λ

V A
α .

41

CHAPTER 2. PRELIMINARIES

Example 2.4. initial levels of the hierarchy

Fix A to be equality atoms 〈N,=〉, their elements being denoted as underlined numbers.
We list a few unrolled definitions of initial levels of the hierarchy, as well as examples of
sets belonging to them.

V A
0 = ∅
V A

1 = {∅} ∪̇A, V A
1 3 ∅, 6

V A
2 = P({∅} ∪̇A) ∪̇A V A

2 3 ∅, 6, {∅, 5, 9}
V A

3 = P(P({∅} ∪̇A) ∪̇A) ∪̇A V A
3 3 ∅, 6, {∅, 5, 9}, {∅, 7, {∅, 5, 9}}

2.3.2 Atom automorphisms

In the theory of sets with atoms, the notion of finiteness gives way to a weaker concept
of so-called orbit-finiteness. Intuitively, a set is orbit-finite if, and only if, it contains only
finitely many different elements up to automorphism of A. Therefore, the automorphisms
of the infinite atom structure A play a crucial role when working with sets with atoms—
they are a means to harness the infinite objects and making them amenable to further
analysis.

An atom automorphism is a bijection π : A ↪→→ A which preserves in both ways all
relations of A. By Aut(A) we denote the set of all automorphisms of the structure A.

Let S ⊆ A be a (possibly empty) finite set of atoms. An S-automorphism is an atom
automorphism π ∈ Aut(A) which additionally is the identity on S, i.e.

π(α) = α for every α ∈ S.

Let AutS(A) denote the set of all S-automorphisms of A. Naturally, Aut(A) = Aut∅(A).

Example 2.5. automorphims of equality atoms

For A being equality atoms, the set Aut(A) is simply a set of all bijections A ↪→→ A, as
there are no relations to preserve, except for the equality.

Example 2.6. automorphims of densely ordered atoms

For A being densely ordered atoms, automorphisms are monotonic bijections

Aut(A) = {π : A ↪→→ A | ∀α,β∈A . α ≤ β ⇒ π(α) ≤ π(β)}.

Example 2.7. automorphims of timed atoms

For A being timed atoms, if we put S = {0}, any S-automorphism π of A must satisfy
π(0) = 0 and π(p+ 1) = π(p) + 1 for every p ∈ Q. Therefore, any monotone bijection
on the unit interval [0, 1) ↪→→ [0, 1) uniquely determines an S-automorphism, and each
S-automorphism can be defined this way.

42

2.3. SETS WITH ATOMS

Atom automorphisms can be applied to sets with atoms. For X ∈ V A, S ⊆ A and
π ∈ AutS(A), the set π(X) is constructed from X by replacing every atom α ∈ A by
π(α) ∈ A. More formally, π acts on X point-wise as π(X) = {π(x) | x ∈ X}.
Later in the paper, there will be several use cases for this operation; we present here
some of them. They all rely on standard set-theoretic encodings of mathematical objects
(i.e., tuples, functions, etc.).

Example 2.8. applying atom automorphisms to data words

Let Σ be a finite alphabet. A finite data word is a sequence

w = (σ0, α0) · · · (σn, αn) ∈ (Σ× A)∗ (2.1)

of pairs (σi, αi) consisting of an input letter σi ∈ Σ and an atom αi ∈ A. An automorphism
π acts on a data word w as above point-wise

π(w) = (σ0, π(α0)) · · · (σn, π(αn))

Example 2.9. applying atom automorphisms to register valuations

Let X be a finite set of register names and let A⊥ = A ∪ {⊥}. where ⊥ 6∈ A represent an
undefined value. A register valuation is a mapping µ : X→ A⊥, written µ : AX

⊥, assigning
an atom µ(x) (or ⊥) to every register x ∈ X. An automorphism π acts on a register
valuation µ as π(µ)(x) = π(µ(x)) for every x ∈ X, i.e., π(µ) = π ◦ µ, where we assume
that π(⊥) = ⊥.

2.3.3 Invariance

A set with atoms X is S-invariant if π(X) = X for every S-automorphism π ∈ AutS(A).
A slight reformulation of this definition leads us to an alternative statement:

Fact 2.10.

Set X is S-invariant if, and only if the for every π ∈ AutS(A):

x ∈ X ⇔ π(x) ∈ X.

Example 2.11.

Note that π does not need to be the identity on X for X to be S-invariant. The set N is
∅-invariant. Let π : N ↪→→ N be a bijection between the even and odd numbers such that
for every n ∈ N:

2n π7−→ 2n+ 1

2n+ 1 π7−→ 2n

Observe that π(N) = N even though π has no fixpoints.

43

CHAPTER 2. PRELIMINARIES

A set X is invariant4 if it is S-invariant with S = ∅.

Orbits
The S-orbit of an element x ∈ X is the set of all elements π(x) which can be obtained
by applying some S-automorphism π to x:

orbitS(x) := {π(x) ∈ X | π ∈ AutS(A)}

Note that x can be an arbitrary object on which the action of automorphisms is defined.
The orbit of x is just its S-orbit with S = ∅, written orbit(x).
The set of all S-orbits of elements of X is denoted as OrbitsS(X) := {orbitS(x) | x ∈ X}.

Fact 2.12.

Elements x, y ∈ X have the same S-orbit orbitS(x) = orbitS(y) if, and only if, π(x) = y

for some π ∈ AutS(A).

The S-closure of a set X is the union of the S-orbits of its elements:

closureS(X) :=
⋃
x∈X

orbitS(x)

In particular, the S-orbit of x is the S-closure of the singleton set {x}: orbitS(x) =
closureS({x}). For brevity, we call ∅-closure closure(X) simply a closure. The following
fact characterises invariance in terms of closures.

Fact 2.13.

A set X is S-invariant if, and only if, closureS(X) = X.

Proof of fact 2.13.

The ‘only if’ direction follows from the definition of S-invariance. For the ‘if’ direction,
observe that closureS(X) = X implies π(X) ⊆ X for every S-automorphism π. The
opposite inclusion stems from S-automorphisms’ closure under inverse: π−1(X) ⊆ X,
hence X ⊆ π(X).

2.4 Register automata (RA)

Equipped with the basics of the theory of sets with atoms, we are ready to move to
register automata (ra). The model is parametrised by the choice of atoms—let us fix an
arbitrary relational structure A over a finite signature σ for the purposes of the rest of
§2.4.
A data word over the finite alphabet Σ is a sequence of letters from Σ × A. Sets of
all finite and infinite data words are denoted as (Σ× A)∗ and (Σ× A)ω, respectively.

4A term equivariant is also often used in the literature instead of invariant. Also, in the case of
S-invariant X, the literature often calls S a support of X, see e.g. [10,11].

44

2.4. REGISTER AUTOMATA (ra)

A language L ⊆ (Σ× A)∗ of data words is an arbitrary set of finite data words, while
ω-language is am arbitrary set of infinite data words.
Register automaton A, will have its semantics JAK defined in terms of lts. Therefore, it
can be seen as an acceptor of languages of both finite and infinite data words, depending
on the chosen notion of the language L(JAK), Lω(JAK) (cf. §2.2).
We begin by introducing a notion of register constraints. It is followed by formal
definitions of three different variants of the model, namely:

I nondeterministic register automata with guessing (nrag); the most expressive variant,

I nondeterministic register automata without guessing (nra),

I deterministic register automata (dra); the least expressive model.

The weaker classes will arise as syntactic limitations of the stronger ones. Lastly, we will
provide some definitions common to these classes and consider some modifications/ex-
tensions of ra.

2.4.1 Register constraints

A register constraint is a quantifier-free formula ϕ generated by the grammar

ϕ,ψ ::≡ true | false | x1 = x2 | x1 = ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | (2.2)
〈x1, x2, . . . , xR〉 ∈ R for every relational symbol R in σ (2.3)

where x• are variables, ⊥ is a special constant denoting an undefined data value, and R
denotes the arity of R. In the case of equality atoms A = 〈N,=〉, there are no relations
other than equality, so the rule (2.3) is not used. We denote the set of constraints with
variables from X as Constr(X).
The semantics of a constraint ϕ(x1, . . . , xn) with n free variables X = {x1, . . . , xn} is
the set defined by it, consisting of valuations satisfying it: JϕK = {µ ∈ AX

⊥ | µ |= ϕ}.
Using [10, Lemma 7.5] we easily deduce:

Claim 2.14. constraints represent invariant subsets

Let A be a homogeneous structure of atoms. Subsets of AX
⊥ definable by constraints are

exactly invariant subsets of AX
⊥.

Maximal register constraints
Conceptually, a maximal register constraint is a restricted form of a constraint, which is
maximally specific, non-redundant, and which defines some minimal non-empty invariant
subset of AX

⊥—i.e., an orbit(µ) of some µ ∈ AX
⊥. In the next sections, such constraints

will find use as a finite representation of those orbits.
Fix µ ∈ AX

⊥. We define the maximal constraint ϕ̂µ corresponding to orbit(µ) as the
conjunction of atomic formulas∧

R∈σ

∧
x1,...,xR∈X

{
〈x1, . . . , xR〉 ∈ R if (µ(x1), . . . , µ(xR)) ∈ R
¬〈x1, . . . , xR〉 ∈ R otherwise .

45

CHAPTER 2. PRELIMINARIES

Such a constraint exhaustively specifies all the relations that hold between the atoms
present in a valuation µ. We denote the set of all maximal constraints with variables
from X as MaxConstr(X).

Claim 2.15. orbits of valuations correspond to maximal constraints

Let A be a homogeneous structure of atoms. For every µ ∈ AX
⊥ we have that Jϕ̂µK =

orbit(µ)

Proof of claim 2.15.

For the right-to-left inclusion observe that µ ∈ Jϕ̂µK, and Jϕ̂µK is invariant by claim 2.14,
so orbit(µ) ⊆ Jϕ̂µK.
Let us assume Jϕ̂µK \ orbit(µ) is not empty and contains some µ′. Since µ′ /∈ orbit(µ),
there exists no automorphism π such that µ = π(µ′). This mismatch between µ and
µ′ is evidenced by a relation R and a tuple of variables v = (x1, . . . , xR) ∈ X such
that (µ(x1), . . . , µ(xR)) is in R but (µ′(x1), . . . , µ′(xR)) is not, or vice versa. Therefore,
µ′ /∈ Jϕ̂µK, a contradiction.

Corollary 2.16.

For homogeneous atoms, there is a bijective correspondence between constraints ϕ̂µ and
orbits of valuations orbit(µ).

We denote the orbit corresponding to some maximal constraint ϕ as orbit(ϕ).

2.4.2 Nondeterministic register automata with guessing
(nrag)

Let Σ be a finite alphabet. A nondeterministic register automaton with guessing (nrag)
with k ∈ N registers is a tuple A = (X,Σ, L, Lini, Lfin,∆) where:

I Σ is a finite alphabet,

I X = {x1, x2, . . . , xk} is a finite set of register names,

I L is a finite set of control locations, of which Lini, Lfin ⊆ L are marked as initial and
final, respectively,

I ∆ is a set of transition rules.

A rule of the form

(p, σ, ϕ, q) ∈ ∆ ⊆ L× Σ× Constr(Z)× L (2.4)

also written as

(p σ,ϕ==⇒ q) (if ϕ = true, it can be omitted)

46

2.4. REGISTER AUTOMATA (ra)

indicates that the automaton can go from control location p ∈ L to q ∈ L by reading
input symbol σ ∈ Σ, provided that the transition constraint ϕ is satisfied in the current
configuration.
Above, the set Z of variables that can appear in constraint ϕ is X∪ {x′

1, x
′
2, . . . , x

′
k} ∪ {y}.

Intuitively, ϕ(x1, . . . , xk, x′
1, . . . , x

′
k, y) relates the registers’ values before (x•) and after

a transition (x′
•) with the currently read atom y.

Intuition
An nrag reads an input data word w ∈ (Σ× A)∗ letter by letter. To handle the atoms
found at the input, the automaton is given a set of registers, in which it can store them.
Transition execution is subject to satisfying its constraint. Such condition speaks about
the newly read atom and atoms stored in registers (before and after the transition). The
constraint may use any symbol from the atoms’ signature σ.

Semantics
As it was already announced in §2.2, we will formally define the semantics of a reg-
ister automaton A as above in terms of an infinite labeled transition system JAK =
(C,Γ, Cini, Cfin,→). Since there is no danger of confusion, we use JAK to denote both the
labeled transition system above and its domain. Recall the previous definition of the set
of configurations and labels:

lts for a k-register automaton

labels Γ = Σ× A

configurations C = L× AX
⊥

pairs consisting of a control location and a register valuation

Above, we used the notation A⊥ = A ∪ {⊥} introduced previously in the example 2.9.
We complete the construction as follows:

initial configurations Cini = Lini × {λx.⊥} ⊆ C
pairs (p, µ) with p ∈ LI and µ(x) = ⊥ for all registers x ∈ X,

final configurations Cfin = Lfin × AX
⊥

pairs (p, µ) with p ∈ LF ; without any further restriction on µ

Lastly, there is a transition (p, µ) σ,α−−→ (q, µ′) between two configurations if, and only if
there exists a transition rule (p, σ, ϕ, q) ∈ ∆ such that η |= ϕ, where η : Z → A⊥ is a
valuation defined as follows:

xi
η7−→ µ(xi) and x′

i
η7−→ µ′(xi) for each i ∈ {1, 2, . . . , k}

y
η7−→ α

In other words, the constraint ϕ must be true when substituting the register values from
µ, µ′ for the variables x•, x′

•, and the current atom α for the variable y.
We use separate notations for transition rules of A and the induced transitions of JAK:

(p σ,ϕ==⇒ q) ∈ ∆ (p, µ) σ,α−−→ (q, µ′) ∈ →.

47

CHAPTER 2. PRELIMINARIES

Each run π of A

π = (l0, µ0) σ1,α1−−−→ (l1, µ1) σ2,α2−−−→ (l2, µ2) σ3,α3−−−→ . . .

has at least one designating sequence of transition rules ρ ∈ ∆∗ of the form

ρ = l0
σ1,ϕ1====⇒ l1

σ2,ϕ2====⇒ l2
σ3,ϕ3====⇒ . . .

with the property that the kth transition (lk−1, µk−1) σk,αk−−−→ (lk, µk) of π is induced by
the kth rule lk−1

σk,ϕk====⇒ lk of σ for all k.

We define the language L(A) of the automaton A to be the language of its LTS JAK.
Therefore, all definitions from §2.2 can be naturally instantiated in the setting of nra,
including the notions of run, an accepting run, language of a configuration, and reachable
configurations. Words over the alphabet Σ×A will be called data words, as in example 2.9.

2.4.3 Nondeterministic register automata
without guessing (NRA)

Roughly speaking, an automaton in nrag (i.e., with guessing) can nondeterministically
’guess’ an atom which is not stored in any of its registers and was not read from the input.
For example, the constraint ϕ may require the new register value x′

1 to be different both
from the old register values x1, x2, . . . , xk and from the atom in the input y. The class of
nondeterministic register automata without guessing (nra) arises as a simple syntactical
restriction of nrag, which eliminates this type of behaviour. More precisely, in nra every
constraint imposes an additional fixed requirement for the atoms stored in register:∧

i∈{1,...,k}

x′
i = xi ∨ x′

i = y.

In words, any new value of a register can only come from the input; otherwise, an old
value of the register is preserved.
The shape of transition rules inherited from nrag, in the presence of such a limiting
restriction, may be seen a bit superfluous and unnecessarily convoluted to work with.
Therefore, we simplify it to

(p, σ, ϕ, Y, q) ∈ L× Σ× Constr(X ∪ {y})× P(X)× L

written also as

(p σ,ϕ,Y===⇒ q) (if ϕ = true or Y = ∅, they can be omitted, respectively).

Here, the constraint only features k + 1 variables corresponding to current values of the
registers and the atom at the input. The reset set Y ⊆ X is a set specifying registers
to which the newly read atom is to be assigned, the rest retaining their value. More
formally, the above transition is interpreted as (p, σ, ϕ′, q) where ϕ′ has the form:

ϕ ∧
∧

i∈{1,...,k}

{
x′
i = y if xi ∈ Y

x′
i = xi otherwise

48

2.4. REGISTER AUTOMATA (ra)

2.4.4 Deterministic register automata (DRA)

In order to define the last class, we translate the notion of deterministic LTS introduced
in §2.2 to the concrete setting of nra. A register automaton without guessing A is
deterministic if it has precisely one initial location Lini = {pini} and, for every two rules
(p, σ, ϕ, Y, q) and (p, σ, ϕ′, Y′, q′) starting in the same location p, over the same input
symbol σ and with overlapping guards Jϕ ∧ ϕ′K 6= ∅, we necessarily have Y = Y′ and
q = q′. Hence A has at most one run over every data word w. We define deterministic
register automata (dra) as the subset of nra which are deterministic.

A dra can be easily transformed into a total one, i.e., one where for every location p ∈ L
and input symbol σ ∈ Σ, the sets defined by the constraints {JϕK | ∃Y, q . p σ,ϕ,Y−−−→ q} are a
partition of all register valuations AX

⊥. Thus, a total dra has exactly one run over every
timed word w.

Example 2.17.

Let Σ = {σ} be a unary alphabet. As an example of a language L recognised by an
nra1, but not by any dra, consider the set of data words where the last atom reappears
earlier, i.e., words of the form: (σ, α1) · · · (σ, αn) where αi = αn for some 1 ≤ i < n. The
language L is recognised by the nra1 A = (X,Σ, L, Lini, Lfin,∆) with one register X = {x}
and three locations L = {p, q, r}, of which Lini = {p} is initial and Lfin = {r} is final,
and transition rules

(p σ=⇒ p) (p σ,{x}===⇒ q) (q σ,x6=y====⇒ q) (q σ,x=y====⇒ r).

Intuitively, the automaton waits in p until it guesses that the subsequent input will be
the last appearance of the atom αi (not counting αn), at which point it moves to q by
storing αi in the register. From q, the automaton can accept by going to r exactly when
the atom stored in the register reappears in the input. The language L is not recognised
by any dra since, intuitively, any deterministic acceptor needs to store unboundedly
many different atoms αi.

Notations

We use the following notations:

I nragk, nrak, and drak denote the classes of k-register nrag, nra, and dra, respectively,

I we say that a data language is an nrag language, dra language, nrak language, etc.,
if it is recognised by a register automaton of the respective type,

I additionally, when it is clear from the context, for a class C and a language L we
write L ∈ C, to denote that L is recognised by dra,

I classes of register automata over alphabet Σ are denoted as nra(Σ), nrak(Σ), drak(Σ).

49

CHAPTER 2. PRELIMINARIES

2.4.5 One-register automata

Nondeterministic register automata with just one register enjoy stronger algorithmic
properties than the full class of nondeterministic register automata. It was already
observed in Kaminski and Francez’s seminal paper that the inclusion problem becomes
decidable5.

Theorem 2.18. c.f. [61, Appendix A]

For A ∈ nra and B ∈ nra1 the language inclusion problem L(A) ⊆ L(B) is decidable.

We immediately obtain the following corollary, which we will use in §7.1.

Corollary 2.19.

For A ∈ dra and B ∈ nra1 the language equality problem L(A) = L(B) is decidable.

Proof of corollary 2.19.

The inclusion L(A) ⊆ L(B) can be checked as a special instance of theorem 2.18. The
reverse inclusion L(B) ⊆ L(A) reduces to checking emptiness of a product construction
of B with the complement of A.

2.4.6 Invariance of register automata

The following lemma expresses the fundamental invariance properties of register automata.
Given a valuation µ of registers X, by µ(X) ⊆ A we mean the set of atoms stored in
registers: µ(X) = {µ(x) | x ∈ X, µ(x) ∈ A}. Automorphisms act on configurations by
preserving the control location: π(p, µ) = (p, π(µ)) = (p, π ◦ µ).

Lemma 2.20. Invariance of nra

1. The transition system JAK is invariant: If c σ,α−−→ d in JAK and π is an automorphism,
then π(c) σ,π(α)−−−−→ π(d) in JAK.

2. The function L(_) mapping a configuration c to the language L(c) it recognises from
c is invariant: For all automorphisms π, L(π(c)) = π(L(c)).

3. The language L(p, µ) recognised from a configuration (p, µ) is µ(X)-invariant: For all
µ(X)-automorphims π, π(L(p, µ)) = L(p, µ).

We refrain from proving lemma 2.20, since proofs of analogous invariance properties,
in the more involved setting of timed automata, are provided later (facts 7.19 to 7.21
in §7.2.1). For the proof of (1) in the setting of equality atoms, we refer the reader to
[10, Sect. 1.1]; the other points are readily derivable from (1).

5A window in the terminology of [61] corresponds to a register in this paper’s terminology. [61, Appendix
A] shows that the inclusion problem L(A) ⊆ L(B) is decidable when B is a two-window automaton. Due
to the semantics of window reassignment of [61], two-window automata are of intermediate expressive
power between one-register automata and two-register automata.

50

2.4. REGISTER AUTOMATA (ra)

2.4.7 Varieties of register automata

Register automata with output

Deterministic and total register automata, enriched with output labels on transition
rules coning from a finite alphabet Γ, are called register automata with output, their
class being denoted as dra(Σ,Γ). Formally, A ∈ dra(Σ,Γ) is a tuple (X,Σ,Γ, L, Lini, δ)
with δ ⊆ L× Σ× Γ× L, such that:

I (X,Σ, L, Lini,∅, δ′) ∈ dra(Σ), where δ′ contains projections of tuples of δ ignoring
the output letter Γ component,

I input label together with initial and final states of a transition rule in δ uniquely
determine an output letter γ ∈ Γ.

Semantics of register automata with output have semantics defined by analogy to regular
register automata, the additional output letter appearing on all transitions originating
from a given transition rule. For automaton A ∈ dra(Σ,Γ), JAK ∈ dlts(Σ,Γ). For every
word w ∈ (Σ× A)∗ ∪ (Σ× A)ω (both finite and infinite), A outputs an unique word
A(w) := JAK(w).

Automata with maximal constraints

To each of the classes of automata mentioned above—nrag, nra and dra—we may
add a simple structural requirement for transition rules to be labelled exclusively using
maximal constraints. This gives rise to corresponding subclasses with maximal constraints,
denoted by additional superscript •max. This special form of automata— will find usage
in the sections of this dissertation devoted to synthesis problem. In particular, we will
need the notion of the automaton with output using maximal constraints, denoted as
dramax(Σ,Γ).

Lemma 2.21.

For every C ∈ {nrag,nra,dra} and A ∈ C there exists an automaton A′ ∈ Cmax with
maximal constraints having the same number of registers and such that L(A) = L(A′).

Proof of lemma 2.21.

Fix an automatonA = (X,Σ, L, Lini, Lfin, δ) ∈ nrag. To obtainA′, replace every transition
rule labelled with a non-maximal constraint ϕ with an equivalent set of its copies using
maximal constraints. More precisely, for every (p, σ, ϕ, q) ∈ δ relation δ′ contains its
copies (p, σ, ϕi, q), where orbits corresponding to ϕi ∈MaxConstr(X ∪̇ X ∪ {y}) form a
partition of JϕK.

It is easy to see that A′ accepts exactly the same words as A. Moreover, if A is without
guessing or deterministic, A is so, too.

51

CHAPTER 2. PRELIMINARIES

Epsilon transitions

One of the extensions of nondeterministic register automata, the addition of ε-transition
rules, often proves useful for simplifying the construction of an automaton.

Intuitively, an ε-transition rule—one labeled with a special symbol ε—can be executed
without reading any symbol of the input word. While each ordinary transition is
corresponds to a single letter of the input word, the automaton can make arbitrary
number of ε-transitions, either before reading the first letter, between letters of the word
being read, or after it has ended (in case of finite words).

It turns out that nrag and nra with ε-transition rules are as expressive as respective
models without ε-transition rules. One can remove them by using a straightforward
construction:

Lemma 2.22. [10, excercise 2.]

For every nrag with ε-transition rules one can effectively build an nrag without them
and the same number of registers recognising the same language. The same holds also
for nra.

For this reason, in this dissertation, we deal exclusively with nra without ε-transition
rules. However, the reader should keep in mind that all the results concerning register
automata easily extend to them.

2.5 Timed automata (TA)

Timed automata are very similar to register automata instantiated with timed atoms
A = 〈Q,≤,+1〉 [12]. Both models share many properties: e.g., a strong link concerning
a class of language-related decision problems was provided in [45]. However, there are
several minor but not negligible differences between the models that force us to treat
timed automata individually:

I timed atoms lack homogeneity6 (this can be seen as the principal source of differences),

I certain syntactic and semantic restrictions are traditionally imposed on timed lan-
guages and timed automata, including monotonicity of time, nonnegative timestamps,
the special status of the initial timestamp 0, and the concrete syntax of transition
constraints.

For the reasons above, timed automata can be seen only as a strict subclass of the
corresponding register model. In this dissertation, we avoid defining timed automata
using a generic register model, and instead introduce them separately.

6For instance, the set of pairs of timed atoms consists of infinitely many orbits.

52

2.5. TIMED AUTOMATA (ta)

2.5.1 Timed words and languages

Fix a finite alphabet Σ. Timed words are obtained by instantiating data words to timed
atoms A = 〈Q,≤,+1〉 7, and imposing additional conditions—non-negativeness and
monotonicity.

A timed word over Σ is any sequence of the form

w = (σ1, τ1) . . . (σn, τn) ∈ (Σ×Q≥0)∗ (2.5)

which is monotonic, in the sense that the timed atoms (called timestamps henceforth)
τ• satisfy 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn. For a timed word w as in eq. (2.5) and an increment
δ ∈ Q≥0, let w + δ = (σ1, τ1 + δ) . . . (σn, τn + δ) be the timed word obtained from w by
increasing all timestamps by δ. Let T(Σ) be the set of all timed words over Σ, and let
T≥τ (Σ) be, for τ ∈ Q≥0, the set of timed words with τ1 ≥ τ . A timed language is any
subset of T(Σ).

The concatenation w · v of two timed words w and v is defined only when the first
timestamp of v is greater or equal than the last timestamp of w. Using this partial
operation, we define, for a timed word w ∈ T(Σ) and a timed language L ⊆ T(Σ), the
left quotient w−1L := {v ∈ T(Σ) | w · v ∈ L}. Clearly w−1L ⊆ T≥τn

(Σ).

2.5.2 Clock constraints and regions

Let X = {x1, . . . , xk} be a finite set of clocks. A clock valuation is a function µ ∈ QX
≥0

assigning a non-negative rational number µ(x) to every clock x ∈ X. A clock constraint is
a quantifier-free formula of the form

ϕ,ψ ::≡ true | false | xi − xj ∼ z | xi ∼ z | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ,

where ‘∼’ is a comparison operator in {<,≤, >,≥} and z ∈ Z. A clock valuation µ

satisfies a constraint ϕ, written µ |= ϕ, if interpreting each clock xi by µ(xi) makes ϕ true.
Let JϕK be the set of clock valuations µ ∈ QX

≥0 such that µ |= ϕ. If JϕK is non-empty and
it does not strictly include a non-empty JψK (JϕK for some constraint ψ, then we say
that it is a region. For example, for X = {x, y} we have that r0 = J1 < x < 2 ∧ y = 3K
is a region, while r1 = J1 < x ≤ 2 ∧ y = 3K is not. Nonetheless, the latter partitions
into two regions r1 = r0 ∪ Jx = 2 ∧ y = 3K, and we will later see that this is a general
phenomenon. A k,m-region is a region JϕK where ϕ has k clocks and absolute value of
maximal constant bounded by m. Let Reg(k,m) be a set of all k,m-regions.

Example 2.23. visualisation of regions for k = 2

For instance, the clock constraint 1 < x1 < 2 ∧ 2 < x2 < 3 ∧ x2 − x1 < 1 defines a
2, 5-region consisting of an open triangle with nodes (1, 2), (2, 2) and (2, 3).

7Equivalently, the reals R could be considered in place of rationals.

53

CHAPTER 2. PRELIMINARIES

1

1

2

2

3

30

A region JϕK is bounded if it is bounded as a subset of QX
≥0 in the classical sense, i.e.,

there exists M ∈ Q≥0 such that JϕK ⊆ [0,M]X.

2.5.3 Nondeterministic timed automata (nta)

A nondeterministic timed automaton (nta) is a tuple A = (X,Σ, L, Lini, Lfin,∆), where:

I X = {x1, x2, . . .} is a finite set of clocks,

I Σ is a finite input alphabet,

I L is a finite set of control locations,

I Lini, Lfin ⊆ L are the subsets of initial, resp., final, control locations, and

I ∆ is a finite set of transition rules

Transition rules in turn have the form

(p, σ, ϕ, Y, q) written also as (p σ,ϕ,Y===⇒ q) (2.6)

with p, q ∈ L control locations, σ ∈ Σ, ϕ a clock constraint to be tested, and Y ⊆ X the
set of clocks to be reset. If Y is just the singleton {x}, we sometimes write x instead of
{x}. Moreover, Y and ϕ can be omitted, if they are ∅ or ⊥, respectively. We write nta

for the class of all nondeterministic timed automata, ntak when the number k of clocks
is fixed, nta•,m when the bound m on constants is fixed, and ntak,m when both k and
m are fixed.

An nta•,m A is always resetting if every transition rule resets some clock (Y 6= ∅
in (2.6)), and greedily resetting if, for every clock x, whenever ϕ implies that x belongs
to {0, . . . ,m} ∪ (m,∞), then x ∈ Y. Intuitively, a greedily resetting automaton resets
every clock whose value is either an integer, or exceeds the maximal constant m.

54

2.5. TIMED AUTOMATA (ta)

Reset-point semantics
We introduce a semantics based on reset points instead of clock valuations. A reset-point
assignment is a function µ ∈ QX

≥0 storing, for each clock x ∈ X, the timestamp µ(x) when
x was last reset. Reset-point assignments and clock valuations have the same type QX

≥0,
however we find it technically more convenient to work with reset points than with clock
valuations. The reset-point semantics has already appeared in the literature on timed
automata [49] and it is the foundation of the related model of timed-register automata
[12].

Semantics of A ∈ nta is given in terms of an lts JAK = (Σ, C, Cini, Cfin,→), where
C = L×QX

≥0 ×Q≥0. A single configuration is a tuple (p, µ, τ0) consisting of a control
location p ∈ L, a reset-point assignment µ ∈ QX

≥0, and a ‘now’ timestamp τ0 ∈ Q≥0
satisfying µ(x) ≤ τ0 for all clocks x ∈ X. Intuitively, τ0 is the last timestamp seen in the
input and, for every clock x, µ(x) stores the timestamp of the last reset of x.

The set Cini of initial configurations contains all tuples (p, µ, τ0) where:

I p ∈ Lini

I τ0 = 0,

I µ(x) = 0 for all clocks x.

Final configurations are simply defined as Cfin := Lfin ×QX
≥0 ×Q≥0, without any further

restriction on µ or τ0.

For a set of clocks Y ⊆ X and a timestamp ξ ∈ Q≥0, let µ[Y 7→ ξ] be the assignment which
is ξ on Y and agrees with µ on X \ Y. A reset-point assignment µ together with τ0 induces
the clock valuation τ0 − µ defined as (τ0 − µ)(x) = τ0 − µ(x) for all clocks x ∈ X.

Every transition rule (2.6) induces a transition between configurations (p, µ, τ0) σ,τ−−→
(q, ν, τ) labelled by (σ, τ) ∈ Σ×Q≥0 whenever the following conditions hold:

I τ ≥ τ0, I τ − µ |= ϕ, and I ν = µ[Y 7→ τ].

Since there is no danger of confusion, we use JAK to denote both the timed transition
system above and its domain.

All notions defined for lts JAK in §2.2 remain valid and are inherited by timed automata.
Henceforth, when talking of a ‘run’, an ‘accepting run’, or a ‘language’, etc., of A, we
will mean a corresponding notion for JAK. In the same vein, when writing L(A) or
Lω(A; c), we mean L(JAK) and Lω(JAK; c), respectively. Additionally, for simplicity, we
omit brackets whenever it does not cause any confusion, e.g., preferring L(A; p, µ, τ0)
over L(A; (p, µ, τ0)).

Observe that above semantics guarantees that L(A; p, µ, τ0) ⊆ T≥τ0(Σ).

In an always resetting nta•,m, every reachable configuration (p, µ, τ0) satisfies τ0 ∈ µ(X),
where µ(X) = {µ(x) | x ∈ X}.

In a greedily resetting one:

1. (p, µ, τ0) has m-bounded span, in the sense that µ(X) ⊆ (τ0 −m, τ0], and moreover

55

CHAPTER 2. PRELIMINARIES

2. any two clocks x, y with integer difference µ(x) − µ(y) ∈ Z are actually equal
µ(x) = µ(y).

Condition 2) follows from the fact that if x, y have integer difference and y was reset
last, then x was itself an integer when this happened, and in fact they were both reset
together in a greedily resetting automaton.

2.5.4 Deterministic timed automata (dta)

Deterministic timed automata (dta) are a subclass of nta. A timed automaton A is
deterministic if its underlying lts JAK is so. This semantic requirement translates back
to A’s transition rules: A is deterministic if

I it has exactly one initial location, and

I for every two rules (p, σ, ϕ, Y, q), (p, σ′, ϕ′, Y′, q′) ∈ ∆, if σ = σ′ and Jϕ∧ϕ′K 6= ∅ then
Y = Y′ and q = q′. This condition guarantees that transition rules with common
initial state and jointly satisfiable constraints induce coinciding transitions in JAK.

Properties above imply that A has at most one run over every timed word w.
The notion of a total automaton is slightly changed by the requirement of monotonicity
for timed words. As timestamps can only increase while the word is being read, we say
a timed automaton is total when for every location configuration c = (p, µ, τ) ∈ C and
timed letter (σ, τ0) ∈ Σ×Q≥0 (τ0 ≥ τ) there exists at least one transition (p σ,ϕ,Y===⇒ q)
such that τ0 − µ |= ϕ. As expected, total dta has exactly one run over every timed word
w.
Observe that a dta can be easily transformed to an equivalent total one, with the
following additional property: For every location p ∈ L and σ ∈ Σ, the sets defined by
clock constraints {JϕK | ∃Y, q . (p, σ, ϕ, Y, q) ∈ ∆} form a partition of QX

≥0. We write dta

for the class of deterministic timed automata, and dtak, dta•,m, and dtak,m for the
respective subclasses thereof. A timed language is called nta language, dta language,
etc., if it is recognised by a timed automaton of the respective type.

Example 2.24. nta language which is not a dta language

This is a timed analogue of example 2.17. Let Σ = {σ} be a unary alphabet. As an
example of a timed language L recognised by an nta1, but not by any dta, consider
the set of non-negative timed words of the form (σ, τ1) · · · (σ, τn) where τn − τi = 1 for
some 1 ≤ i < n. The language L is recognised by the nta1 A = (X,Σ, L, Lini, Lfin) with a
single clock X = {x} and three locations L = {p, q, r}, of which Lini = {p} is initial and
Lfin = {r} is final, and transition rules

(p σ,true,∅=====⇒ p) (p σ,true,{x}======⇒ q) (q σ,x<1,∅=====⇒ q) (q σ,x=1,∅=====⇒ r).

Intuitively, in p the automaton waits until it guesses that the next input will be (σ, τi),
at which point it moves to q by resetting the clock (and subsequently reading σ). From
q, the automaton can accept by going to r only if exactly one time unit elapsed since

56

2.6. VECTOR ADDITION SYSTEMSWITH STATES (vass)

(σ, τi) was read. The language L is not recognised by any dta since, intuitively, any
deterministic acceptor needs to store unboundedly many timestamps τi.

Example 2.25. complement of language from 2.24 is nta, but not dta, too

The complement of L from example 2.24 can be recognised by an nta with two clocks.
Indeed, a timed word (a, τ1) · · · (a, τn) is not in L if either of the following conditions
hold:

1) its length n is at most 1, or

2) the total time elapsed between the first and the last letter is less than one time unit
τn − τ1 < 1, or

3) there is a position 1 ≤ i < n such that τn − τi > 1 and τn − τi+1 < 1.

It is easy to see that two clocks suffice to nondeterministically check the conditions above.

Since checking whether an nta recognises a deterministic language is undecidable [46,93],
there is no recursive bound on the number of clocks sufficient to deterministically
recognise an nta language (whenever possible). Thus nta can be non-recursively more
succinct than dta w.r.t. number of clocks. However, in general such nta recognise timed
languages whose complement is not an nta language. The next example shows a timed
language which is both nta and co-nta recognisable, however the number of clocks of an
equivalent dta is at least exponential in the number of clocks of the nta.

Example 2.26.

For k ∈ N, let Lk be the set of strictly monotonic timed words (a, t1) · · · (a, tn) s.t. tn−ti =
1 where i = n− 2k. The language Lk can be recognised by a (2 · k + 2)-clock nta Ak
of polynomial size. There are clocks x0, x1, . . . , xk and y0, y1, . . . , yk. Clock x0 is used
to check strict monotonicity. Clock y0 is reset when the automaton guesses (a, ti). The
automaton additionally keeps track of the length of the remaining input. This is achieved
by implementing a k-bit binary counter, where xj = yj represents that the j-th bit is
one. In order to set the j-th bit to one, the automaton resets xj , yj ; to set it to zero, it
resets only xj . This is correct thanks to strict monotonicity. At the end the automaton
checks y0 = 1 and that the binary counter has value 2k. Any deterministic automaton
recognising Lk requires exponentially many clocks to store the last 2k timestamps. The
complement of Lk can be recognised by a (2 · k+ 2)-clock nta of polynomial size. Indeed,
a timed word is not in Lk if any of the following conditions hold: 1. its length n is ≤ 2k,
or 2. tn − ti < 1 with i = n − 2k, or 3. tn − ti > 1 with i = n − 2k. The automaton
guesses which condition holds and uses a k-bit binary counter as above to check that
position i has been guessed correctly.

2.6 Vector addition systems with states (VASS)

Vector addition systems [62] (vas) are a widely accepted model of concurrency equivalent
to Petri nets. Another equivalent model, called vector addition systems with states

57

CHAPTER 2. PRELIMINARIES

(vass) [58], extends vas with a finite sets of control states. A vass with d counters is
said to be of dimension d; family of all such models being denoted as vassd.
Formally, a V ∈ vassd is a tuple (Q,T), where T ⊆fin Q × Zd × Q is a finite set of
transitions. Intuitively, each transition in T is assigned a vector describing how counter
values change upon executing it. A configuration of a vass is a pair (q, v) ∈ Q × Nd.
Semantics of vass is given by the transition system JVK = (Q×Nd,→), where→ contains
a transition (q, v)→ (r, w) if, and only if there exists a transition rule (q, δ, r) ∈ T such
that v + δ = w.
Problems concerning vass, which are frequently studied in literature include

I reachability—given c, c′ ∈ JVK, does c −→∗ c′ hold?

I coverability—given two configurations c =∈ JVK and c′ = (r, w) ∈ JVK, does there
exist δ ∈ Nd such that c −→∗ (r, w + δ)?.

I boundedness—given c ∈ JVK, is the set of reachable configurations {c′ ∈ JVK | c −→∗ c′}
finite?

In this thesis, we exclusively focus on vass of dimension 2, all subsequent definitions
related to vass reflect that.
We refer to elements of Z2 as vectors. Non-negative vectors are elements of N2, and
positive vectors are elements of Z2

>0. A vector with only non-negative coordinates and at
least one positive coordinate is called semi-positive; it is either positive, or vertical of
the form (0, a), or horizontal of the form (a, 0), for a ∈ Z>0. Additionally, by (0, 0) we
denote the vector (0, 0).
A 2-dimensional vector addition system with states (vass2) V consists of a finite set of
control states Q and a finite set of transitions T ⊆ Q× Z2 ×Q. We refer to the vector v
as the effect of a transition (p, v, q). A path in V from control state p to q is a sequence
of transitions π = (q0, v1, q1), (q1, v2, q2), . . . , (qn−1, vn, qn) ∈ T ∗ where p = q0 and q = qn;
it is called a cycle whenever the starting and ending control states coincide (q0 = qn).
The effect of a path is defined as eff(π) = v1 + . . .+ vn ∈ Z2, and its length is n. A cycle
is called non-negative, semi-positive or positive, if its effect is so.
A configuration of V is an element of Conf = Q×N2. A transition t = (p, v, q) is enabled
in a configuration c = (p′, u) if p = p′ and u+ v ∈ N2. Analogously, a path π is enabled
in a configuration c = (p′, u) if q0 = p′ and ui = u + v1 + . . . + vi ∈ N2 for every i. In
such case we say that π induces a run of the form

ρ = (c0, t1, c1), (c1, t2, c2), . . . , (cn−1, tn, cn) ∈ (Conf × T × Conf)∗

with intermediate configurations ci = (qi, ui), from the source configuration src(ρ) = c0
to the target one trg(ρ) = cn. If the source configuration c0 is clear from the context,
we do not distinguish between a path enabled in c0 and a run with source c0, and
simply say that the path is the run. A (0, 0)-run is a run whose source and target are
(0, 0)-configurations, i.e., a configuration whose vector is (0, 0).
We will sometimes relax the non-negativeness requirement on some coordinates: For
j ∈ {1, 2}, we say that a path π is {j}-enabled in a configuration c = (p′, u) if q0 = p′

and (u + v1 + . . . + vi)[j] ∈ N for every i. We also say that π is ∅-enabled in c if just
q0 = p′.

58

2.7. COMPUTATIONAL PROBLEMS

The reversal of a vass2 V = (Q,T), denoted rev(V), is a vass2 with the same control
states and with transitions {(q,−v, p) | (p, v, q) ∈ T}. We sometimes speak of the reversal
rev(ρ) of a run ρ of V, implicitly meaning a run in the reversal of V.
As the norm of v = (v1, v2) ∈ R2, we take the largest of absolute values of v1 and v2,
‖v‖ := max{|v1|, |v2|}. By the norm of a configuration c = (q, v) we mean the norm of
its vector v, and by the norm ‖V‖ of a vass2 V we mean the largest among norms of
effects of transitions.

2.7 Computational problems

The computational problems of interest in this thesis have already been outlined in
§1.2, which discusses their context in greater detail and presents our contributions. This
section complements it by providing concise and fully formal definitions of these problems.

2.7.1 Synthesis problem and synthesis game

Church’s synthesis problem
The synthesis problem proposed by Alonso Church in his work from 1957 became one of
the cornerstones of program synthesis. Intuitively, the task is to produce a finite-state
controller—an automaton with an output—which reacts to the input symbols it receives
in such a way as to always remain within a given specification.
The original formulation of the problem is as follows, with specification in terms of
monadic second order logic (MSO).

Problem 2.27. original Church’s synthesis

Input: specification in form of a formula ϕ of MSO(N, <) (a.k.a. MLO)
Output: I if it exists, return a finite automaton with output S which for every input

word w outputs S(w), such that the input-output pair (w,S(w)) satisfies ϕ,
I else return Nil.

We omit the details of how infinite words are handled by the formula. As the order
< is MSO-definable by the means of the successor function, above MSO(N, <) can be
replaced with MSO(N,+1) (a.k.a. S1S). We will not delve into logic, as it is not within
the area of interest of this dissertation. Instead, we use the classical result of Büchi
which relates MSO(N,+1) with ω-regular languages. It is easy to prove that for every
W ∈ nfa there exists a MSO(N,+1) formula ϕW which defines the same language of
infinite words:

Lω(ϕW) = Lω(W).

In his paper [87], Büchi has shown that the opposite implication also holds

Theorem 2.28. [87, corollary of lemma 10 and theorem 1]

For every MSO(N,+1) formula ϕ, there exists an nfa with the same language of infinite
words.

Given the above theorem, Church’s problem can be equivalently formulated as

59

CHAPTER 2. PRELIMINARIES

Problem 2.29. reformulated Church’s synthesis

Input: specification in form of an nfa W over the finite alphabet A×B
Output: I if it exists, return S ∈ dfa(A,B) which for every infinite input word

v = v1v2v3 · · · ∈ Aω produces an output word S(v) = w1w2w3 · · · ∈ Bω such
that

(v1, w1)(v2, w2)(v3, w3) · · · ∈ Lω(W),

I else return Nil.

Büchi-Landweber theorem

Twelve years after the Church’s problem was stated, Büchi and Landweber presented its
solution in their paper [15].

Theorem 2.30. [15, theorem 6.]

The Church’s synthesis problem is computable.

Synthesis games

Already in the paper solving the Church’s problem, the authors provide an alternative
formulation of the synthesis problem. It is rephrased as a question of existence of a
winning finite-memory strategy in an appropriately tailored game. They provide a two-
player zero-sum8 game of infinite duration, which matches the framework of Gale-Stewart
ω-games [50]. Additionally, one of the results from [15] shows that—unlike in the general
case of ω-games—its winner is always determined.

Definition 2.31. synthesis game

The synthesis game GA,B(W) is specified by its winning condition—the language W =
Lω(W) of some automaton W ∈ nra. There are two players, Alice and Bob, who
alternately play symbols from finite alphabets of actions A and B. In the i-th turn, Alice
plays some ai, and her opponent replies with bi; both can choose their moves based on
the history of all past turns (perfect information). They play indefinitely, thus creating
an infinite word

π = (a1, b1)(a2, b2)(a3, b3) · · · ∈ (A×B)ω (2.7)

called a play. Bob wins if the play satisfies the winning condition: π ∈W .

In some cases, it is more convenient to drop the pair brackets and write the play π as
a1b1a2b2a3b3 · · · ∈ (A ∪B)ω. When there is no danger of confusion, we will be silently
switching between these notations. The set of all possible plays of GA,B(W) is denoted
as Plays(GA,B(W)).

8A game with a property that when one player wins, the other one loses.

60

2.7. COMPUTATIONAL PROBLEMS

Strategies and controllers
The game GA,B(W) relates to the synthesis problem in the following way: Alice provides
the input word, while Bob reacts to its every symbol, in a letter-by-letter fashion, just as
an automaton with output would do. A strategy for Bob is any function of type A+ → B,
which, based on the whole history of letters played by Alice so far, determines the action
b ∈ B which Bob should play in response. We say that a play π as in eq. (2.7) is
conformant with a strategy f : A+ → B (or f -conformant) whenever bn = f(a1a2 . . . an)
for every n ∈ N. A strategy f is winning, if every f -conformant play is winning for Bob.
Observe that any strategy can be naturally represented by an (infinite) deterministic lts

with output9. Conversely, every S ∈ dlts(A,B) corresponds to some strategy, denoted
Strategy(S), mapping every v ∈ A+ to the last letter of S(v).
When the strategy can be represented by dfa(A,B), we call it a finite-memory strategy.
Henceforth, deterministic automata with output in the context of games are also called
controllers. We say that the controller S is winning whenever Strategy(S) is, and that a
play is S-conformant whenever it is Strategy(S)-conformant.
Similarly, we can define the strategy for Alice as any function g : B∗ → A. Although it
is of little relevance to this thesis, we give its definition for the sake of completeness. A
technical difference between the two analogous notions is that the function is specified
also for the empty word ε (hence the domain is B∗ and not B+). It represents the initial
action of Alice, which has to be played in absence of any previous actions of Bob.
A play π is g-conformant whenever an = g(b1b2 . . . bn−1) for every n ∈ N≥1. Notion of a
winning strategy is defined similarly to one of Bob.

Problem 2.32. Church’s synthesis—game-theoretic approach

Input: winning condition given by an nfa W over the finite alphabet A×B
Output: I if it exists, return a winning controller S ∈ dfa(A,B) for Bob.

I else return Nil.

2.7.2 Deterministic separability problems

Separation
We say that a set S separates A from B whenever

A ⊆ S ∧B ∩ S = ∅.

The general language separability problem below is parametrised with classes X,Y of
models of computation, and possibly with some additional parameters.

Problem 2.33. general language separability problem

Input: A,B ∈ X

Output: I S ∈ Y such that L(S) separates L(A) from L(B), if it exists;
I Nil otherwise.

9We can construct an infinite tree, whose branches correspond to words from A+ played by Alice.

61

CHAPTER 2. PRELIMINARIES

Deterministic separability problems
This thesis considers it instantiated for both timed and register automata. More precisely,
we show decidability of its three variants below, in all of which nondeterministic models
are to be separated by a deterministic device.

Problem 2.34. k-clockm-constrained deterministic separability of nta

Separability problem 2.33 parametrised by k,m ∈ N, with X := nta and Y := dtak,m.

Solved by theorem 4.3 on page 71.

Problem 2.35. k-clock deterministic separability of nta

Separability problem 2.33 parametrised by k ∈ N, with X := nta and Y := dtak.

Solved by theorem 4.2 on page 71.

Problem 2.36. deterministic separability of nta

Separability problem 2.33 with X := nta and Y := dta.

Open.

Problem 2.37. k-clock deterministic separability of nra

Separability problem 2.33 parametrised by k ∈ N, with X := nra and Y := drak.

Solved by theorem 4.1 on page 71.

Problem 2.38. determinisic separability of nra

Separability problem 2.33 with X := nra and Y := dra.

Open.

2.7.3 Deterministic membership problems

As with the separability problem, the generic version of the membership problem is
parametrised with two classes X,Y of models of computation.

Problem 2.39. general membership problem

Input: A ∈ X

Output: I B ∈ Y such that L(A) = L(B), if it exists;
I Nil otherwise.

Deterministic membership problems
We consider this problem for both timed and register automata, with X and Y being
chosen as 1-register/clock nondeterministic and deterministic models, respectively.

62

2.7. COMPUTATIONAL PROBLEMS

Problem 2.40. drak membership of nra1

Membership problem 2.39 parametrised by k ∈ N with X := nra1 and Y := drak.

Solved by theorem 7.1 on page 95.

Problem 2.41. dtak,m membership of nta1

Membership problem 2.39 parametrised by k,m ∈ N, with X := nta1 and Y := dtak,m.

Solved by theorem 7.29 on page 108.

Problem 2.42. dtak membership of nta1

Membership problem 2.39 parametrised by k ∈ N with X := nta1 and Y := dtak.

Solved by theorem 7.28 on page 108.

63

Chapter 3

Generalised synthesis
problems and games

This chapter introduces our proposed extensions of the framework of ω-synthesis games
(from §2.7.1), adapting it to the setting of register and timed automata. As our register
synthesis games and timed synthesis games share a lot of similarities, we shall start with
an abstract synthesis game parametrised by an arbitrary device W. This approach, in
addition to avoiding some repetitions, allows us to better highlight the subtle differences
between games, when the abstract definition is later materialised in subsequent sections.

3.1 Generalised deterministic LTS synthesis game

Church’s synthesis generalised to infinite alphabets

Below, there is an abstract generalisation of the Church’s synthesis problem, which adds
support for an infinite input alphabet.

Problem 3.1. generalised Church’s synthesis

Input: specification given by a model of computation W, which induces JWK ∈
lts(A×B × X) (where A,B are finite, while X does not have to)

Output: I if it exists, return a model S inducing JSK ∈ lts(A × X, B), which for
every infinite input word v = (v1, χ1)(v2, χ2)(v3, χ3) · · · ∈ (A×X)ω produces
an output word JSK(v) = w1w2w3 · · · ∈ Bω such that

(v1, w1, χ1)(v2, w2, χ2)(v3, w3, χ3) . . . /∈ Lω(W),

I else return Nil.

For the above problem to be considered from a practical perspective and enable algo-
rithmic manipulation, both lts have to be finitely represented through some models of
computation W and S. We will consider variants of it, in which these lts are given as
the semantics of either register or timed automata.

65

CHAPTER 3. GENERALISED SYNTHESIS PROBLEMS AND GAMES

Important difference in winning condition
In the original Church’s problem (problem 2.29), the word (v1, w1)(v2, w2)(v3, w3) . . .
combining the input and output was required to belong to the language Lω(W). This
is not the case in the generalised game we propose. It has a simple explanation. The
original problem features a winning condition which is a ω-regular language, and these
are effectively closed under complement. Therefore, in problem 2.29, it is not important
if the condition specifies desired or undesired behaviours of controllers. However, once
we move to the setting of register and timed automata, whose languages are no longer
closed under the complement, the way the problem is stated influences its computability.

Generalised synthesis game
As in case of the base Church’s synthesis, we introduce a generalised synthesis game
which allows us to formulate problem 3.1 in a game-theoretic language.

Definition 3.2. generalised synthesis game

The synthesis game GX
A,B(W) is specified by its winning condition—the language W =

Lω(W) ⊆ (A×B × X)ω of some model W. There are two players, Alice and Bob, who
alternately play symbols from alphabets of actions A× X and B, sets A,B being finite,
and X possibly not. In the i-th turn, Alice plays some (ai, χi) ∈ A×X, and her opponent
replies with bi ∈ B; both can choose their moves based on the history of all past turns
(perfect information). They play infinitely, thus creating an infinite play

π = (a1, b1, χ1)(a2, b2, χ2)(a3, b3, χ3) · · · ∈ (A×B × X)ω (3.1)

Alice wins if the play satisfies the winning condition: π ∈W .

We define two auxiliary projections, projA : A×B×X→ A ·X and projB : A×B×X→ B,
to help us extract the subsequences of plays produced only by Alice and Bob, respectively:

projA(a, b, χ) := (a, χ)
projB(a, b, χ) := b.

Both functions are extended homomorphically to finite and infinite words, and also to
languages. More precisely

projA(c1c2 . . .) = projA(c1)projA(c2) · · · for c• ∈ A×B × X
projA(L) = {projA(w) | w ∈ L} for L ⊆ (A×B × X)ω

case of projB being handled analogously.
Similarly to §2.7.1, a strategy for Bob is any function f of type (A× X)+ → B, the only
difference being that now the set of actions A×X is allowed to be infinite. Again, based
on the history of Alice’s actions, a strategy yields the symbol b ∈ B which Bob should
use in the current turn. A play πas in eq. (3.1) is said to be f-conformant whenever
bn = f((a1, α1)(a2, α2), . . . , (an, αn)) for every n ∈ N≥1. Again, as in the finite-alphabet
case, strategies can be represented by infinite dlts(A × X, B), and vice versa, every
T ∈ dlts(A × X, B) with matching alphabets corresponds to a strategy, denoted by
Strategy(T), outputting the last letter of S(w) for every w.

66

3.2. REGISTER SYNTHESIS GAME

A controller for Bob in GX
A,B(W) is any model of computation S, such that JSK ∈

dlts(A × X, B). We say that it is winning whenever Strategy(JSK) is; and that π is
S-conformant, whenever it is Strategy(JSK)-conformant.

Observe that if a play π as in eq. (3.1) is S-conformant, it corresponds to exactly one
run σ of JSK of the form

runToPlay(π) = c0
(a1,ξ1)/b1−−−−−−→ c1

(a2,ξ2)/b2−−−−−−→ c2
(a3,ξ3)/b3−−−−−−→ · · · ∈ Runs(JSK),

where c• are configurations of JSK. We write π = runToPlay(σ).

Problem 3.3. generalised Church’s synthesis—game-theoretic approach

Input: winning condition given by a model W, which induces lts JWK over the
alphabet A×B × X

Output: I if it exists, return a controller S (with input alphabet A× X and output
alphabet B), such that JSK is winning for Bob.
I else return Nil.

3.2 Register synthesis game

Register synthesis game is the first of two synthesis games we investigate in this disserta-
tion. Connected to it is the register synthesis problem, which arises as a generalisation of
the Church’s problem to the setting of register automata—a restricted form of problem 3.1
parametrised by structure A of atoms, and with W and S being nrag and dra with
output, respectively.

Definition 3.4. register synthesis game

The register synthesis game GA
A,B(W) is a game GX

A,B(W), where:

I the infinite component of the alphabet is the set of atoms: X := A,

I the winning condition is given by W ∈ nrag over the alphabet A×B,

I Alice plays a letter from a finite alphabet A paired with an atom from A,

I Bob has a finite set of actions B,

I Alice wins if, and only if, π ∈ Lω(W).

A controller for Bob in GA
A,B(W) is any timed automaton from dra(A,B). We also

consider a subclass of controllers parametrised in the number of used registers: a k-register
controller for Bob is any A ∈ drak(A,B).

Problem 3.5. register synthesis problem

Parametrised by a homogeneous structure A of atoms over finite relational vocabulary.

67

CHAPTER 3. GENERALISED SYNTHESIS PROBLEMS AND GAMES

Input: winning condition—register automaton W ∈ nrag over the alphabet A×B
Output: I if it exists, return a winning S ∈ dra(A,B).

I else return Nil.

Its associated decision variant is undecidable—theorem 8.4 on page 119.

Problem 3.6. k-register synthesis problem

Problem 3.5 parametrised by k ∈ N, and additionally requiring S to belong to drak(A,B).

Solved by theorem 5.1 on page 75.

3.3 Timed synthesis game

Timed synthesis game is closely resembling the register synthesis game we introduced,
introducing only minor technical assumption about the controllers.

Definition 3.7. timed synthesis game

The timed synthesis game GT
A,B(W) is a game GX

A,B(W), where:

I the infinite component of the alphabet is the set of timestamps: X := Q,

I the winning condition is given by W ∈ nta over the alphabet A×B,

I Alice plays a letter from a finite alphabet A paired with a timestamp from Q,

I Bob has a finite set of actions B,

I Alice wins if, and only if, π ∈ Lω(W).

In the timed case, a controller for Bob in GT
A,B(W) is a dta(A,B). We also consider

subclass of controllers:

I a k-clock timed controller for Bob is a timed controller, which is a dtak with output,

I a k-clock m-constrained timed controller for Bob is a timed controller, which is a
dtak,m with output.

For technical reasons, it is convenient to assume that timed controllers are regionised, i.e.,
that they feature only maximal clock constraints. It is not a problematic assumption,
because every controller can be easily brought to regionised form. Indeed, its every
transition rule (p σ,ϕ,Y===⇒ q) can be replaced by a number of rules (p σ,ϕi,Y====⇒ q) labelled
with maximal clock constraints ϕi. Since ϕi correspond to elements of Reg(k,m), we
can safely change the type of the transition relation δ to

δ ⊆ L×A× Reg(k,m)×B × P(Y)× L,

the change being only superficial and not affecting the semantics.

68

3.3. TIMED SYNTHESIS GAME

Problem 3.8. timed synthesis problem

Input: winning condition—timed automaton W ∈ nta over the alphabet A×B
Output: I if it exists, return a winning controller S ∈ dta(A,B), such that

Strategy(S) is winning for Bob.
I else return Nil.

Its associated decision variant is undecidable—theorem 8.2 on page 119.

Problem 3.9. k-clock timed synthesis problem

Problem 3.8 parametrised by k ∈ N, and additionally requiring S to belong to dtak(A,B).

Solved by theorem 6.2 on page 81.

Problem 3.10. k-clockm-constrained timed synthesis problem

Problem 3.8 parametrised by k,m ∈ N, and additionally requiring S to belong to
dtak,m(A,B).

Solved by theorem 6.1 on page 81.

69

Chapter 4

Synthesis game for solving
deterministic separability

Before moving on to the technical part, in which we solve the synthesis problems posed
in §3, we first demonstrate their practical applicability. As it turns out, the separability
problems 2.34, 2.35 and 2.37 can all be solved with a simple reduction to an appropriate
variant of synthesis problem:

Theorem 4.1. separability by drak

For k ∈ N, the k-register deterministic separability problem for nra is decidable.

Theorem 4.2. separability by dtak

For k ∈ N, the k-clock deterministic separability problem for nta are decidable.

Theorem 4.3. separability by dtak,m

For k,m ∈ N, the k-clock m-constrained separability problem for nta is decidable.

It is enough to define a single instance of the general synthesis game—we call it separation
game—and show that Bob’s winning strategy corresponds directly to a separator. This
is, one might say, a rather unusual case: typically, the results for timed and register
automata, despite having analogous formulations, often differ in their proofs in subtle
but non-negligible technical issues.

4.1 Motivating examples

We begin with a motivating example of non-separable timed languages.

Example 4.4.

Recall examples 2.24 and 2.25. Both the nta language L from the former example and its
complement from the latter are not dra. It follows that they cannot be deterministically
separable.

71

CHAPTER 4. SYNTHESIS GAME FOR SOLVING DETERMINISTIC SEPARABILITY

Moreover, a deterministic separator, when it exists, may need exponentially many clocks.

Example 4.5.

We have seen in example 2.26 an O(k)-clock nta language such that 1) its complement is
also an O(k)-clock nta language, and 2) any dta recognising it requires 2k clocks. Thus,
a deterministic separator may need exponentially many clocks in the size of the input
nta.

We do not know if there is an upper bound on the number of clocks/registers of the
deterministic separator, if it exists. The separability game from the next section does not
yield it, as the unconstrained synthesis problem is undecidable(theorems 8.2 and 8.4).

4.2 Reduction to generalised synthesis problem

Intuition
In order to solve all three separability problems at once, we define a generalised synthesis
game which essentially characterizes the concept of separability. The core abstract result
here is to show that Bob’s winning strategies of type (Σ× X)+ → {acc, rej} are—save
the case of empty word—characteristic functions of separators.

Separation game
Let A,B be two models of computation such that JAK, JBK ∈ lts(Σ × X), Σ being a
finite alphabet. A separation game Gsep

Σ×X(A,B) is a generalised synthesis game GX
Σ,B(W)

with two-element set B = {acc, rej} of Bob’s actions and with the winning condition of
Alice being W = Reach(V) for

V =
(

proj−1
A (L(A)) ∩ proj−1

B (B∗ · rej) ∪ (element in L(A) rejected)
proj−1

A (L(B)) ∩ proj−1
B (B∗ · acc) (element in L(B) accepted))

.

Intuitively, Bob in every turn needs to classify the word w ∈ (Σ× X)+ Alice has played
so far. If it belongs to L(A), his answer needs to be acc, and when w ∈ L(B), rej is
required. In other cases, the answer may be arbitrary. Alice’s winning condition describes
two situations when Bob incorrectly classifies w.

Lemma 4.6.

For a function f : (Σ× X)∗ → B such that f(ε) = acc ⇐⇒ ε ∈ L(A), t.f.a.e.:

1. f restricted to (Σ× X)+ is a winning strategy for Bob in Gsep
Σ×X(A,B),

2. f is a characteristic function of a language S separating L(A) from L(B).

72

4.2. REDUCTION TO GENERALISED SYNTHESIS PROBLEM

Proof of lemma 4.6.

Fix f satisfying the premise of lemma 4.6. Let f ′ = f (Σ×X)+ .

(1)⇒ (2)

Suppose f ′ is a winning strategy of Bob. We need to show that S = f−1({acc}) separates
L(A) from L(B), i.e., that for any w ∈ (Σ× X)∗

w ∈ L(A) =⇒ w ∈ S ∧ w ∈ L(B) =⇒ w /∈ S. (4.1)

Take any w ∈ (Σ× X)∗. If w = ε, the separability condition is trivially met. Otherwise,
fix any f ′-conformant play π of Gsep

Σ×X(A,B), with prefix π′ @ π satisfying projA(π′) = w,
i.e., one where Alice started by playing w. Since the strategy is winning, we conclude
that π /∈W , and in particular π′ /∈ V . Therefore, w satisfies

¬
(
w ∈ L(A) ∧ w /∈ S ∨ w ∈ L(B) ∧ w ∈ S

)
which is equivalent to the required separability condition in eq. (4.1) above.

(1)⇐ (2)

Suppose f separates L(A) from L(B). Therefore, for any w ∈ (Σ × X)∗ it satisfies
eq. (4.1). We conclude that for any f ′-conformant run π, its every finite prefix π′ @ π
does not belong to V , and thus π /∈W , which confirms that strategy f ′ is winning for
Bob.

Proof of theorem 4.1.

It is enough to show that problem 2.37 (k-register det. separability) reduces to k-register
synthesis—decidable due to theorem 5.1. Fix k ∈ N and A,B ∈ nrag. Observe that for
this choice of parameters G = Gsep

Σ×X(A,B) becomes a register synthesis game. Indeed,
its winning condition W is recognised by nrag, as the class of nrag languages is closed
under inverse homomorphic images, intersections, and unions. We need to show there
exists a winning controllerS ∈ drak(Σ, B) for Bob in G if, and only if, there exists a
drak separating L(A) from L(B).

The ‘⇒’ implication

Assume that S = (X,Σ, L, Lini,_, δ) ∈ drak(Σ, B) is a winning controller. From
lemma 4.6, Strategy(S) is the characteristic function of a separating language L (mod-
ulo empty word ε). It is recognised by S ′ ∈ drak easily obtained from S. Concep-
tually, the construction amounts to changing the acceptance condition from ‘output
acc as the last letter of S(w)’ to ‘visit accepting state after reading w’. Consider
S ′ = (X,Σ, L × {acc, rej}, Lini × {b0}, L × {acc}, δ′), where for any transition rule
(p σ,b,ϕ===⇒ q) ∈ δ, relation δ′ contains

((p, acc) σ,ϕ==⇒ (q, b)) ((p, rej) σ,ϕ==⇒ (q, b)).

Above, b0 = acc if, and only if ε ∈ L(A). It is easy to see that L(S ′) = L.

73

CHAPTER 4. SYNTHESIS GAME FOR SOLVING DETERMINISTIC SEPARABILITY

The ‘⇐’ implication

A similar construction allows us to define a winning controller, based on a separator
S ′ ∈ drak. We only need to correctly assign output labels to transition rules: those ending
in an accepting state are labeled with acc, while the others—with rej. Constructed
drak(Σ, B) is a winning controller by lemma 4.6.

Proof of theorems 4.2 and 4.3.

Proofs are analogous to the proof of theorem 4.1, with reductions to suitable synthesis
problems, relying on theorems 6.1 and 6.2.

74

Chapter 5

Solving k-register
synthesis problem

This chapter’s main theorem is a solution to problem 3.6 from §3.2:

Theorem 5.1. synthesis of drak

For every fixed k ∈ N, the k-register synthesis problem is computable.

Central to its proof are two reductions extracted into lemmas below. First, we move from
k-register synthesis problem to an intermediate ad-hoc atom-blind synthesis problem.

Lemma 5.2. eliminating winning controller’s registers

For every k ∈ N, the k-register synthesis problem reduces to the atom-blind synthesis
problem.

This is done by introducing a protocol which, conceptually, allows Bob to outsource
handling his registers, rendering them redundant in Bob’s controllers. Subsequently,
eliminating atoms altogether, we pose an equivalent synthesis problem over finite alpha-
bets:

Lemma 5.3. eliminating atoms

The atom-blind synthesis problem reduces to the synthesis problem over finite alphabets.

Thus, we reduced to a problem which is amenable to solving using the Büchi-Landweber
result (theorem 2.30).

Proof of theorem 5.1.

Trivial consequence of lemmas 5.2 and 5.3 and theorem 2.30. Based on a game provided
in the input, using the above reductions, we first construct an intermediate instance of
the atom-blind synthesis problem and then an instance of synthesis over finite alphabets.
Theorem 2.30 allows us to solve the reduced problem. If a winning controller is synthesized,
we go back in the chain of reductions, eventually constructing a winning k-register
controller.

We first define the atom-blind synthesis problem, while the above lemmas are proved in
the last two sections of this chapter.

75

CHAPTER 5. SOLVING K-REGISTER SYNTHESIS PROBLEM

5.1 Atom-blind synthesis problem

In a nutshell, this problem asks for atom-blind controllers in a register synthesis game,
at first glance severely limiting the playing ability of Bob.
Fix a register synthesis game G = GA

A,B(W). An atom-blind strategy of Bob in G is any
function of type f : A+ → B (as opposed to the type (A× A)+ → B of the unrestricted
notion of strategy). We say that a play

π = (a1, b1, α1)(a2, b2, α2)(a3, b3, α3) · · · ∈ (A×B × A)ω

is f -conformant whenever bn = f(a1a2 . . . an) for every n ∈ N≥1. Such strategies
correspond to S ∈ dlts(A,B) in a natural way (cf. §2.7.1). When S is finite, it belongs
to dfa(A,B) and is called an atom-blind controller. Its induced strategy—mapping every
w ∈ A+ to the last letter of S(w)—is denoted as Strategy(S). An atom-blind controller
S for Bob is winning in G, whenever no Strategy(S)-conformant run belongs to the
winning language W of Alice.

Problem 5.4. atom-blind synthesis problem

Input: a register synthesis game GA
A,B(W)

Output: I If exists, return a winning atom-blind controller S ∈ dra(A,B) for Bob.
I Otherwise, Nil.

5.2 Eliminating winning controller’s registers

Reduction idea
Introduction of a carefully crafted register outsourcing protocol for Bob allows us to
reduce the k-register synthesis problem to the atom-blind synthesis problem. Given a
game G—an instance of k-register synthesis—we construct a modified game Outk(G).
Therein, Bob, instead of manipulating registers directly, delegates handling of them to
Alice. In every turn, he tells Alice if and where to store the current atom. An updated
winning condition obliges Alice to inform Bob about the orbit of the current register
valuation ν ∈ AX∪{y}

⊥ (where X is the set of k registers, y—the current atom). Should
Alice provide incorrect information, it will prevent her from winning. This way, Bob
retains all the information and control, enabling him to play exactly the same way
as in the original game G, where he had registers. Consequently, winning atom-blind
controllers exist in Outk(G), whenever winning k-register controllers exist in G.

Proof structure
We begin by defining game Outk(G) and its underlying register outsourcing protocol.
Crucially to the correctness of the reduction, we observe that:

Lemma 5.5. the definition of Outk(G) is correct

For every register synthesis game G, winning condition of Outk(G) is an nrag language.

Therefore, Outk(G) is also a register synthesis game. The reduction is concluded with:

76

5.2. ELIMINATINGWINNING CONTROLLER’S REGISTERS

Lemma 5.6. S is winning ⇐⇒ F (S) is winning

For every register synthesis game G and k ∈ N, there is a winning atom-blind controller
S in Outk(G) if, and only if, there exists a winning k-register controller in G. Moreover,
having the former, the latter can be effectively constructed.

Proof of lemma 5.2.

Fix k ∈ N and a register synthesis game G. Construct game Outk(G), which is a register
synthesis game due to lemma 5.5; solve the corresponding at synthesis problem. Using
lemma 5.6, if a winning controller S is found, compute the k-register controller for G,
otherwise return Nil.

Reduction

Definition 5.7. definition of Outk(G)

Fix k ∈ N and a register synthesis game GA
A,B(W). Let X = {x1, x2, . . . , xk} be a k-element

set of register names. Outk(G) is a register synthesis game GA
A′,B′(W ′), where:

A′ := A×MaxConstr(X ∪ {y}), (5.1)
B′ := B × P(X), (5.2)
W ′ := φ−1(W) ∩R. (5.3)

The winning condition W ′ has two components, which are defined below.
First one, φ−1(W), simply adapts the original condition W to new alphabets, using
a projection function φ : (A′ × B′ × A) → (A × B × A) which ignores the extra data
included in the letters: φ((a,_), (b,_), α) = (a, b, α). φ is extended homomorphically on
finite and infinite plays.
Second one, R, is a language of correct register traces. It accepts a play

π = ((_, ϕ1), (_, Y1), α1)((_, ϕ2), (_, Y2), α2) · · · ∈ Plays(Outk(G)) (5.4)

whenever the constraints ϕ• provided by Alice match register valuations inferred from
atoms α• and reset sets Y•. Formally, it verifies that in every round i ∈ N≥1

µi−1[y 7→ αi] � ϕi, (5.5)

where valuations µ• ∈ AX
⊥ are defined in line with the semantics of a register automaton

µ0 := λx.⊥ (5.6)
µi := µi−1[Yi 7→ αi]. (5.7)

To make sure that Outk(G) is defined properly, we need to prove lemma 5.5:

Proof of lemma 5.5.

We aim at showing that winning condition W ′ of Outk(G) is a nrag language. As the
class of nrag is closed under inverse homomorphic images and intersections, it only

77

CHAPTER 5. SOLVING K-REGISTER SYNTHESIS PROBLEM

remains to make sure that R is an nrag language. As it turns out, it can even be
recognised by a dra. We construct R ∈ drak with two states Ok,Err, the former being
accepting and latter—rejecting. The automaton updates its registers at Bob’s request
and stays in state Ok while the constraints provided by Alice are true

(Ok
((_,ϕ),(_,Y)),ϕ,Y===========⇒ Ok).

If Alice plays a maximal constraint ϕ different than the actual ϕ′, R changes state to
Err and stays there

(Ok
((_,ϕ),(_,Y)),ϕ′,Y===========⇒ Err)

(Err =⇒ Err).

It is easy to see that the above automaton recognises R.

Proof of lemma 5.6.

Fix k ∈ N, a game G = GA
A,B(W), and a k-element set of register names X. Let

G′ = GA
A′,B′(W ′) = Outk(G).

We first define a computable bijection F , which maps Bob’s atom-blind controllers in G′

to controllers in G. Then, we complete the proof by showing that F (S) is winning if,
and only if, S is winning.

Definition of bijection F

Let F : dfa(A′, B′) ↪→→ dramax
k (A,B) be defined as follows

F (A′, B′, L, lini, δ) =
(

X, A,B, L, lini,
{

(p a/b,ϕ,Y====⇒ q)
∣∣∣ (p (a,ϕ)/(b,Y)=======⇒ q) ∈ δ

})
F is clearly computable and is a bijection.

S wins in G′ =⇒ F (S) wins in G

Fix a winning atom-blind controller S = (A′, B′, L, lini, δ) ∈ dfa(A′, B′). We will show
that F (S) is winning in G. Let π be any F (S)-conformant play of G

=π . . .(a1, b1, α1) (a2, b2, α2) (a3, b3, α3)

We have to prove that π /∈W . Let σ be a run of F (S) corresponding to π, and ρ—its
designating sequence of transition rules

=σ (l0, µ0) (l1, µ1) (l2, µ2) . . .
(a1, α1)/b1, (a2, α2)/b2, (a3, α3)/b3,

=ρ l0 l1 l2 . . .
a1/b1, ϕ1, Y1 a2/b2, ϕ2, Y2 a3/b3, ϕ3, Y3

Using definition of F we conclude that σ′ below is a run of S, corresponding to a play π′:

78

5.3. ELIMINATING ATOMS

=σ′ l0 l1 l2 . . .
(a1, ϕ1)/(b1, Y1) (a2, ϕ2)/(b2, Y2) (a3, ϕ3)/(b3, Y3)

=π′ . . .
(
(a1, ϕ1), (b1, Y1), α1

) (
(a2, ϕ2), (b2, Y2), α2

)(
(a3, ϕ3), (b3, Y3), α3

)
Since S is winning, the S-conformant play π′ does not belong to W ′, thus π /∈ W , as
required.

F (S) wins in G ⇒ S wins in G′

Here, we fix a winning k-register controller S = (X, A,B, L, lini, δ) ∈ drak(A,B), and
need to show that F−1(S) is winning in G′. W.l.o.g., due to lemma 2.21, we may assume
that S ∈ dramax

k (A,B). We reuse the notations π′, σ′, π, σ, ρ from the first part, but we
will quantify them differently.

Let π′ be an arbitrary F−1(S)-conformant play of G′. We have to prove that π′ /∈W ′.
It is trivially the case when π′ /∈ R, so let us assume otherwise. Let σ′ be the run of
F−1(S) associated to π′. Consider a sequence σ of transitions of JSK, as defined above.
Observe that since π′ ∈ R, we know that µi−1[y 7→ αi] � ϕi for all i. Therefore, σ is a
correct run of S, with runToPlay(σ) = π. The S-conformant play π is winning, therefore
π /∈W and, consequently, π′ /∈ φ−1(W), which finishes the proof.

5.3 Eliminating atoms

Reduction idea

The main tool in this reduction is the following lemma:

Lemma 5.8. folklore knowledge

For every S ∈ nrag(Σ), one can construct S ′ ∈ nfa(Σ), such that

L(S ′) = {projA(w) | w ∈ L(S)}

Analogous property applies also to ω-languages Lω(S),Lω(S ′).

Proof of lemma 5.8 (sketch).

The proof is analogous to a timed automata result by Alur and Dill [2], in which they
construct nfa recognising projT(S) for S ∈ nta. Here, given S ∈ nrag, one constructs
an ‘orbit automaton’ S ′—nfa with control locations L×MaxConstr(X), L being the
original set of locations of S. For each transition

(`1, µ1) σ,α−−→ (`2, µ2) (5.8)

of JSK, S ′ has a transition

(`1, ϕ1) σ−→ (`2, ϕ2), (5.9)

79

CHAPTER 5. SOLVING K-REGISTER SYNTHESIS PROBLEM

where ϕ1, ϕ2 are unique maximal constraints such that µ1 � ϕ1, µ2 � ϕ2. Crucially, for
every transition as in eq. (5.9), and ν1 ∈ AX

⊥, JSK has some transition

(`1, ψ(µ1)) σ,ψ(α)−−−−→ (`2, ψ(µ2))

obtained from eq. (5.8) by applying an atom automorphism ψ ∈ Aut(A) which maps µ1
to ν1. The statement of the lemma follows easily from this fact.

Reduction

Proof of lemma 5.3.

Fix a register synthesis game G = GA
A,B(W). Let G′ = GA,B(projA(W)), where the

automaton for projA(W) follows from lemma 5.8. Observe that atom-blind controllers
in G and controllers in G′ both have type dfa(A,B). Fix S ∈ dfa(A,B). We will show
that S is winning in G if, and only if, it is winning in G′.

The ‘⇒’ implication

Assume S is winning in G. Take an arbitrary S-conformant play π′ of G′. Assume that
π′ ∈ projA(W). Therefore, there exists a play π ∈ (A×B × A)∗ such that π ∈W . Since,
S is atom-blind, π is S-conformant and losing for Bob, contradiction.

The ‘⇐’ implication

Assume S is winning in G′. Take an arbitrary S-conformant play π ∈ (A×B × A)∗ of
G. Assume that is losing for Bob in G, i.e., π ∈ W . But then projA(π′) ∈ projA(W),
which is S-conformant and losing for Bob in G′, contradiction.

80

Chapter 6

Solving k-clock
timed synthesis problems

This chapter tackles k-clock timed synthesis problems:

I problem 3.10: k-clock m-constrained timed synthesis problem, and

I problem 3.9: k-clock timed synthesis problem—where the maximal constant m used
in clock constraints is not specified in advance.

We prove computability of both:

Theorem 6.1. synthesis of dtak,m

For every fixed k,m ∈ N, the k-clock m-constrained timed synthesis problem is com-
putable.

Theorem 6.2. synthesis of dtak

For every fixed k ∈ N, the k-clock timed synthesis problem is computable.

Structure
Above theorems are achieved in four steps, corresponding to §§6.1, 6.2.1, 6.2.2 and 6.3.

I §6.1 Simplifying assumptions
Firstly, we show that certain simplifying assumptions about the winning condition
W of any timed synthesis game can be made; i.e., that all words in W

I are strictly monotonic, and
I zero-starting: τ1 = 0 for any (a1, τ1)(a2, τ2) · · · ∈W .

I §6.2 Elliminating winning controller’s clocks

I §6.2.1 Case of bounded constants in clock constraints
Then, we present the main technical construction in the proof of theorem 6.1,
showing that k-clock m-constrained timed synthesis reduces to the degenerate
0-clock timed synthesis problem.

81

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

I §6.2.2 Case of unbounded constants in clock constraints
As a relatively easy extension of proof of theorem 6.1, we obtain theorem 6.2,
reducing once again to the 0-clock timed synthesis problem.

I §6.3 Elliminating time
Finally, we prove that degenerate 0-clock timed synthesis problem reduces to synthesis
over finite alphabets, computable due to Büchi-Landweber theorem theorem 2.30.

The computability results of this section are tight, since timed synthesis—even in its
decision variant—is undecidable when the number of clocks is not fixed (c.f. theorem 8.2).

Similarities to solving the k-register synthesis problem
The general structure of the proof bears some resemblance to the register case. Here,
likewise, first reduction removes the clocks from Bob’s winning controllers (cf. §5.2
Eliminating winning controller’s registers). Then, both proofs conclude with construction
of games with ω-regular winning condition.
Nevertheless, the ways of outsourcing controller’s registers and clocks to Alice are
fundamentally different. This is because the adapted reasoning for registers would only
apply to the k-clock m-constrained timed synthesis problem. To observe this, recall that
in the intermediate atom-blind game, Alice plays maximal constraints corresponding
to orbits of register valuations. A natural timed counterpart of that are k,m-regions,
which—if used in the 0-clock synthesis—would result in sewing a fixed m into the
very alphabet of Alice. Lifting the ‘m-constrained’ restriction required a more refined
reduction. In it, instead of a single k,m-region, Bob, after every simulated reset of one
of the k clocks, receives from Alice a series of ‘ticks’ at intervals of one time unit. In m-
constrained synthesis the limit on the length of such series is m, whereas in unconstrained
variant we only require that series to be finite.

6.1 Simplifying assumptions

6.1.1 Zero-starting winning conditions

A timed language W ⊆ Tω(Σ) is zero-starting if, and only if, all its nonempty words
(_, τ0)(_, τ1) · · · ∈W satisfy τ0 = 0.

Lemma 6.3. the zero-starting assumption is safe

For any timed synthesis game G there exists a game G′ with zero-starting condition, such
that Bob has a winning controller M ∈ dtak,m for G if, and only if, he has a winning
controller M′ ∈ dtak,m in G′.

Proof of lemma 6.3.

Let G = GT
A,B(W) be a timed synthesis game, where W ⊆ Tω(A×B). We design

an equivalent timed synthesis game G′ = GT
A′,B(W ′), where actions of Alice are in

A′ = A∪{.}, and the zero-starting winning condition is W ′ = {(., b, 0)·w |b ∈ B,w ∈W}.

82

6.1. SIMPLIFYING ASSUMPTIONS

M′ is obtained from M by responding arbitrarily to every ., and conversely, M is
obtained from M′ = (X, A,B, L′, `′0, δ

′) by restricting to alphabet A and letting the
initial location be the unique `0 such that δ′(`′0, ., r0) = (`0,_,_).

6.1.2 Strictly monotonic winning conditions

Lemma 6.4. the assumption of strict monotonicity is safe

Solving a timed game G = GT
A,B(W) with a monotonic winning condition W ⊆ Tω(A×B)

reduces to solving one G′ = GT
A′,B(W ′) with a strictly monotonic winning condition

W ′ ⊆ Tω(A′ ×B).

Proof of lemma 6.4.

We take Alice’s action to be in A′ := A×{0, 1}. Consider the function φ mapping a play
in G′ of the form

π′ = ((a0, f0), b0, τ
′
0)((a1, f1), b1, τ

′
1) · · · ∈ Tω(A′ ×B) (6.1)

to a corresponding play in G

π = φ(π′) = (a0, b0, τ0)(a1, b1, τ1) · · · ∈ Tω(A×B) (6.2)

where the new sequence of timestamps τ0τ1 · · · ∈ Qω
≥0 is defined as τ0 = τ ′

0 and, inductively,
τi+1 = τi if fi+1 = 0, and τi+1 = τ ′

i+1 otherwise. Let W< = {π′ | τ ′
0 < τ ′

1 < · · ·} be the
language of strictly monotonic plays. The winning condition in G′ is then

W ′ = φ−1(W) ∩W<.

Claim 6.5.

Bob has a winning controller M∈ dtak,m(A,B) in G if, and only if, he has a controller
M′ ∈ dtak,m(A′, B) in G′.

The ‘⇒’ implication

Let M = (X, A,B, L, `0, δ) ∈ dtak,m(A,B) be a winning controller for Bob in G. We
build a winning controller M′ = (X, A′, B, L′, `′0, δ

′) for Bob in G′ as follows. Control
locations are L′ = L× Reg(k,m), the initial location is `′0 = (`0, r0), and the transition
relation δ′ is defined, for every input (`, ϕ), (a, f), ϕ′, as

δ′((`, ϕ), (a, f), ϕ′) =
{

((`′, ϕ), b, Y) if f = 0 and δ(`, a, ϕ) = (`′, b, Y),
((`′, ϕ′), b, Y) if f = 1 and δ(`, a, ϕ′) = (`′, b, Y).

Assume π′ is an M′-conformant play as in eq. (6.1). If it is not strictly monotonic, then
π′ 6∈W ′ and we are done. Otherwise, assume π′ is strictly monotonic. Towards reaching
a contradiction, assume π′ ∈ φ−1(W). Therefore, π = φ(π′) ∈W as in eq. (6.2). By the
definition of δ′, π is M-conformant, contradicting that M is winning.

83

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

The ‘⇐’ implication

Let M′ = (X, A′, B, L′, `′0, δ
′) ∈ dtak,m(A′, B) be a winning controller for Bob in G′. We

assume without loss of generality that Bob remembers the input region when the flag
f = 1 was played last. Thus, locations in L′ are of the form (`, ϕ). We build a winning
controller M = (X, A,B, L′, `′0, δ) for Bob in G where

δ((`, ϕ), a, ϕ′) =
{

((`′, ϕ), b, Y) if ϕ′ = ϕ and δ′((`, ϕ), (a, 0), ϕ′) = ((`′, ϕ), b, Y),
((`′, ϕ′), b, Y) if ϕ′ 6= ϕ and δ′((`, ϕ), (a, 1), ϕ′) = ((`′, ϕ′), b, Y).

Let π be aM-conformant play and assume towards a contradiction that π ∈W . We can
choose sufficiently small increments in order to make all sequences of equal timestamps
in π become strictly monotonic, and choose the flags fi accordingly, and obtain a play π′

such that π = φ(π′). By the definition of δ, π′ is M′-conformant. But π′ ∈ W ′, which
contradicts with the assumption that M′ is winning in G′.

6.2 Elliminating winning controller’s clocks

6.2.1 Case of bounded constants in clock constraints

In this section we prove theorem 6.1 by reducing the k-clockm-constrained timed synthesis
problem to 0-clock timed synthesis problem, which is computable by lemma 6.13. This
is the most technically involved section. Modifying slightly the reduction presented here,
we will show computability of the k-clock timed synthesis problem in §6.2.2.
Let X be a fixed set of clocks of size |X| = k and let m ∈ N be a fixed bound on constants.

Intuition
We reduce the k-clock m-constrained synthesis problem to the 0-clock synthesis problem
by designing a protocol in which Bob, to compensate his inability to measure time elapse,
can request certain clocks to be tracked. Intuitively—omitting some corner cases—Alice’s
winning condition obliges her to play so called ‘improper actions’ of the form (�,_)
exactly one time unit after a corresponding request. As a reaction to improper action
of Alice, Bob may renew an earlier request; otherwise that request expires. In case of
m-constrained synthesis, the number of consecutive tracking request renewals is bounded
by m−1, allowing Bob to measure time up to m. In the following §6.2.2, this requirement
is replaced with weaker one—that there is no infinite sequence of renewals. It turns out
that this solves the unconstrained k-clock timed synthesis problem (3.9).

Fractional regions
Let fract(x) stand for the fractional part of the value of a clock x. For Y1, Y2 ⊆ X, two
(partial) clock valuations µ ∈ QY1

≥0, ν ∈ QY2
≥0 are fractional region equivalent if Y1 = Y2 and

they exhibit the same relations between fractional parts of clocks, i.e., for all x, x′ ∈ Y1
the following holds:

I µ |= fract(x) < fract(x′) if, and only if, ν |= fract(x) < fract(x′), and

I µ |= fract(x) = 0 if, and only if, ν |= fract(x) = 0.

84

6.2. ELLIMINATINGWINNING CONTROLLER’S CLOCKS

By a (partial) fractional X-region f we mean an equivalence class of this equivalence
relation. All elements µ ∈ QY

≥0 in f have the same domain Y, which we denote by
dom(f) = Y. Let integer(f) = {x ∈ dom(f) | f |= fract(x) = 0}, i.e., clocks of dom(f)
with integer value. Let FReg(X) be the set of all fractional X-regions, including the empty
one f0 with dom(f0) = ∅. For r ∈ Reg(X,m) and f ∈ FReg(X), we say that f agrees
with r if they give the same answer for clocks x, y ∈ dom(f):

I f |= fract(x) < fract(y) if, and only if, r |= fract(x) < fract(y) ∨ x > m ∨ y > m;

I f |= fract(x) = 0 if, and only if, r |= fract(x) = 0 ∨ x > m.

The successor relation between regions induces a corresponding relation between fractional
regions: f � f′ whenever dom(f) = dom(f′), f agrees with some r, f′ agrees with some
r′, and r � r′. The immediate successor is the minimal f′ with f ≺ f′. Finally, the
successor region of r agreeing with f is succX,m(r, f) = min�{r′ � r | f agrees with r′}.
In the sequel we apply clock resets also to regions r[Y 7→ 0] and fractional regions.

The reduction

Let the original game G = GT
A,B(W) have action alphabets A,B and Alice’s winning

condition W ⊆ Tω(A×B). Thanks to §§6.1.1 and 6.1.2 we assume w.l.o.g. that W is
both strictly monotonic and zero starting. We design a new game G′ = GT

A′,B′(W ′
k,m) as

follows. We take as the new action alphabets the sets

A′ = (A ∪ {�})× FReg(X) and B′ = (B ∪ {�})× P(X). (6.3)

The players’ action sets A′, B′ depend only on the set of clocks X and do not depend on
the maximal constant m. Moves of the form (�,_) are improper and the other ones (i.e.,
those involving A or B components) are proper. Let an infinite play be of the form

π = (a′
1, b

′
1, τ1)(a′

2, b
′
2, τ2) · · · ∈ Tω(A′ ×B′), (6.4)

where a′
i = (ai, fi) and b′

i = (bi, Yi). The domain Ti = dom(fi) of a fractional region
denotes the clocks tracked at time τi, i.e., those for which Alice needs to provide expiry
information. Sets Y• denote clocks which Bob wants to be still tracked: by an x-request
at time τi we mean a Bob’s move b′

i with x ∈ Yi. An x-request at time τi is cancelled if
there is another x-request for the same clock at some time ξ ∈ (τi, τi + 1). An improper
improper-request chain starting at time τi of length l ≥ 1 is a sequence of improper
non-cancelled x-requests at times τi, τi + 1, …, τi + l − 2, followed by an improper (but
possibly cancelled) x-request at time τi + l− 1. Likewise one defines an infinite improper
x-request chain starting at time τi.

Example 6.6. replacing clocks with chains of tracking requests

Before defining the winning set W ′
k,m formally, we illustrate the underlying idea. Consider

the following partial play (a1, b1, 0) (a2, b2, 4.2) (a3, b3, 6) ∈ T(A×B) in G:

85

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

time

0 1 2 3 4 5 6

a1

b1

a2

b2

a3

b3

In G′, Bob demands Alice to provide clock expiry information. Let X = {x, y} and m = 3.
Suppose Bob wants to make sure that a2 comes at time > 3. To this end, he makes
an x-request chain of length 3 (we write x instead of fract(x); fφ denotes the fractional
X-region agreeing with φ):

emulated
time

0 1 2 3 4 5 6

(a1, f0)
(b1, {x})

(a2, f0)
(b2, {y})

(a3, f0<y)
(b3, {y})

x = 0 x = 1 x = 2 x = 3 x > 3, y = 0 y = 1 1 < y < 2

(�, fx=0)
(�, {x})

(�, fx=0)
(�, {x})

(�, fx=0)
(�,∅)

(�, fy=0)
(�, {y})

cancelledwhat is played
Bob’s knowledge

The length of an x-chain at any given moment corresponds to the integral part of x; the
expiry information for x is provided by Alice precisely when the fractional part of x is 0.

In order to define W ′
k,m it will be convenient to have the following additional data

extracted from π. Let ν0 = λx.0 be the initial clock reset assignment, and, for i ≥ 0, let

νi+1 = (νi)[Yi+1 7→ τi+1]. (6.5)

In words, every x-request is interpreted as reset of clock x. The winning condition W ′
k,m

in the new game will impose, in addition to W , the following further conditions to be
satisfied by Alice in order to win. Let WA

k ⊆ Tω(A′ ×B′) be the set of plays π as in
(6.4) which are zero-starting (τ1 = 0), strictly monotonic and, for every i ≥ 1:

1. For every x ∈ X, x is expired at time τi if, and only if, τi ≥ 1 and there is a
non-cancelled x-request at an earlier time τj = τi − 1.

2. Tracked clocks are consistent with requests: for every clock x ∈ X, x is tracked x ∈ Ti
at time τi if, and only if, there is an x-request at an earlier τj with τi − 1 ≤ τj < τi.

3. The fractional regions are correct: fi agrees with [(τi − νi−1)]X,m.

Thus the conditions above assure that Alice provides exactly all expiry information
requested by Bob in a timely manner, and the fractional regions fi are consistent with
the requests and time elapse. Note that any play in WA

k satisfies 0 < (τi − νi)(x) ≤ 1 for
every i ≥ 1 and x ∈ Ti. Indeed, positivity is due to strict monotonicity, and the upper
bound due to the conditions 1–3. Provided Alice satisfies WA

k , she wins whenever Bob
violates any of the conditions below: Let WB

k,m ⊆ Tω(A′ ×B′) be the set of plays π as in
(6.4) such that

4. Bob plays a proper move if, and only if, Alice does so.

86

6.2. ELLIMINATINGWINNING CONTROLLER’S CLOCKS

5. Every improper Bob’s x-request b′
i is a response to Alice’s expiry information for x:

Yi ⊆ integer(fi). (Proper x-requests are allowed unconditionally.)

6. For every clock x ∈ X, the length Bob’s improper x-request chains is < m. This is
the only component in the winning condition which depends on m.

Consider the projection function φ : (A′ ×B′ ×Q≥0)→ (A×B ×Q≥0) ∪ {ε} such that

φ((a,_), (b,_), τ) =
{
ε if a = � or b = �
(a, b, τ) if a ∈ A and b ∈ B

which is extended homomorphically on finite and infinite plays. The winning condition
for Alice in G′ is

W ′
k,m = WA

k ∩
(
φ−1(W) ∪ Tω(A′ ×B′) \WB

k,m

)
. (6.6)

Since W , WA
k , are ntaε languages, and WA

k and WB
k,m are dtak languages over A′ ×B′,

thanks to the closure properties dta and ntaε languages the winning condition W ′
k,m is

an ntaε language.

Correctness of the reduction
In what follows, an untimed controller is a synonym for dta0. Then next two lemmas
state the correctness of the reduction. Our assumption on strict monotonicity facilitates
the correctness proof since we need not deal with simultaneous events.

Lemma 6.7.

If there is a winning controllerM∈ dtak,m for Bob in G, then there is a winning untimed
controller M′ ∈ dta0 for Bob in G′.

Lemma 6.8.

If there is a winning untimed controllerM′ ∈ dta0 for Bob in G′, then one can construct
a winning controller M∈ dtak,m for Bob in G.

Proof of lemma 6.7.

Let M = (X, A,B, L, `0, δ) be a winning k-clock m-constrained controller M for G with
clocks X = {x1, . . . , xk} and update function δ : L × A × Reg(X,m) → L × B × P(X).
We define a winning untimed controller M′ = (A′, B′, L′, Ini, δ′) for G′ with memory
locations L′ = {Ini} ∪ L × Reg(X,m), where Ini is the initial memory location, and
remaining memory locations are of the form (`, r), where ` ∈ L is the current memory
location of M and r ∈ Reg(X,m) is the current region of M’s clocks.
The update function δ′ : L′ × A′ → L′ × B′ (we omit regions and clock resets because
M′ has no clocks) is defined as follows. As long as the play is in WA

k , we can assume
that Alice starts with ((a, f0), τ) and τ = 0, due to the zero-starting restriction, which
allows Bob to submit requests at time 0. Consequently, let δ′(Ini, (a, f)) = ((`′, r0), (b, X)),

87

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

where the next location `′ and the response b are determined by δ(`0, a, r0) = (`′, b), and
the set X denotes a request to track all clocks. Then, for every `, r, a, f, let

δ′((`, r), (a, f)) = ((`′, r′), (b, Y)), (6.7)

where the r.h.s. is defined as follows. Let T = dom(f) be the currently tracked clocks,
and T0 = integer(f) ⊆ T the currently expired ones. If f agrees with no successor region
of r then Bob wins immediately because Alice is violating condition 3. Therefore, assume
such a successor region r̂ = succX,m(r, f) exists. We do a case analysis based on whether
Alice plays a proper or an improper move.

I Case a ∈ A (proper move): Let δ(`, a, r̂) = (`′, b, Y) thus defining `′ and (b, Y) in (6.7).
Take as the new region r′ = r̂[Y 7→ 0].

I Case a = � (improper move): Let the response be also improper b = �, the control
location does not change `′ = `, the new clocks to be tracked are the expired clocks
with a short improper chain Y = {x ∈ T0 | r̂ |= x = 1 ∨ · · · ∨ x = m− 1}, and r′ = r̂.

Consider an infinite M′-conformant run in G′ (omitting clock valuations since M′ has
no clocks)

ρ′ = Ini
a′

1,b
′
1,τ1−−−−−→ (`1, r1)

a′
2,b

′
2,τ2−−−−−→ (`2, r2) · · · ∈ Runsω(M′),

where

a′
i = (ai, fi),
b′
i = (bi, Yi).

If the induced play π′ = runToPlay(ρ′) = (a′
1, b

′
1, τ1)(a′

2, b
′
2, τ2) · · · ∈ Tω(A′ ×B′) is not

in WA
k , then Bob wins and we are done. Assume π′ ∈ WA

k , and thus conditions 1–3
are satisfied. We argue that π′ ∈ WB

k,m. The conditions 4 and 5 hold by construction.
Aiming at demonstrating that 6 holds too, let µ0 = λx.0, τ0 = 0, and, for i ≥ 0, let

µi+1 =
{
µi ai = � (improper round)
(µi)[Yi 7→ τi+1] ai ∈ A (proper round).

(6.8)

Thus reset assignments µi are defined exactly as νi in (6.5) except that only proper
requests are interpreted as clock resets. We claim that

Claim 6.9.

The region information ri is consistent with µi:

ri = [µi]X,m.

Indeed, this is due to π′ ∈WA
k , and the fact thatM′ updates its stored region consistently

with time elapse: at every round M′ uses the successor region agreeing with the current
fractional region submitted by Alice, and resets a set of clocks Y exactly when she plays
a proper move responded by a move of the form (b, Y) ∈ B ×P(X). Since an x-request is
submitted by M′ only when r̂ |= x ≤ m−1, condition 6 holds.

88

6.2. ELLIMINATINGWINNING CONTROLLER’S CLOCKS

In order to show that Bob is winning, consider an M′-conformant run ρ′. It suffices
to show π′ = runToPlay(ρ′) 6∈ φ−1(W). Let the proper moves in ρ′ be at indices
1 = i1 < i2 < · · · (i1 = 1 due to zero-starting). In particular, `il = `i for il ≤ i < il+1.
Consider the run

ρ = (`0, µ0, 0)
ai1 ,bi1 ,τi1−−−−−−→ (`i1 , µi1 , τi1)

ai2 ,bi2 ,τi2−−−−−−→ (`i2 , µi2 , τi2) · · ·

Using claim 6.9 and the definition of M′, one can prove by induction that ρ is an
M-conformant run in G. Since M is winning, the induced play π = runToPlay(ρ) =
(ai1 , bi1 , τi1)(ai2 , bi2 , τi2) · · · ∈ Tω(A×B), satisfies π /∈ W . Again by induction one can
prove that π = φ(π′). Hence φ(π′) /∈W as required.

Proof of lemma 6.8.

In what follows we restrict to plays satisfying WA
k . For proving lemma 6.8, the converse

of lemma 6.7, we need to understand the general shape of any possible untimed winning
controller M′ = (A′, B′, L′, `′0, δ

′) in G′.
We say that such an M′ is complete if its control locations are of the form L′ =
L× Reg(X,m)× FReg(X), `′0 = (`0, r0, f0), and every M′-conformant run is of the form

(`0, r0, f0) (a1,f1),(b1,Y1),τ1−−−−−−−−−−→ (`1, r1, f′
1) (a2,f2),(b2,Y2),τ2−−−−−−−−−−→ (`2, r2, f′

2) · · · , (6.9)

where for each i ≥ 1, the fractional region f′
i stored in a location agrees with the region

ri, its domain dom(f′
i) = {x ∈ X | there is an x-request at time ξ with τi − 1 < ξ ≤ τi},

and ri = [τi − µi]X,m for the clock reset assignments µi as defined in (6.8). The proof
has two steps, formulated in the claims below.

Claim 6.10. first step

If there is a winning untimed controllerM′ ∈ dta0 for Bob in G′, then there is a winning
complete one.

Indeed, it is not difficult to see that complete winning controllers suffice in G′. When
Alice plays a′ = (a, f), the complete controller simulates M′. Additionally, it uses the
fractional region f and current region r to compute the next region r′ (similarly as in
the proof of lemma 6.7) and the next fractional region f′. Let r̂ = succX,m(r, f), hence
f agrees with r̂. Then, r′ = r̂ in improper moves, and in proper moves of the form
b′ = (b, Y), let r′ = r̂[Y 7→ 0]. Let f′′ be restriction of f to dom(f) \ integer(f), and let
dom(f′) = dom(f′′) ∪ Y and f′ = f′′[Y 7→ 0] (thus dom(f′) possibly increases in the case
of proper move). This ensures that f′ agrees with r′ and dom(f′) contains all requested
clocks.
It now remains to show that

Claim 6.11. second step

If there is a complete untimed winning controller M′ ∈ dta0 for Bob in G′ then there is
a winning M∈ dtak,m for Bob in G.

89

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

Let M′ = (A′, B′, L′, `′0, δ
′) be a winning complete controller in G′ with L′ = L ×

Reg(X,m) × FReg(X), `′0 = (`0, r0, f0), and update function of the form δ′ : L′ × A′ →
L′×B′. We define a winning k-clock m-constrained controllerM = (A,B,L′, `′0, δ) in G
over the same set of control locations L′, and update function δ : L′ ×A× Reg(X,m)→
L′ ×B × 2X. In order to define one step of δ (which corresponds to a proper move) we
need to take many steps of δ′ to skip all improper moves preceding the corresponding
proper one. Let

δ((`, r, f), a, r̂) = ((`′′, r′′, f′′), b, Y), (6.10)

for a ∈ A, be recursively defined as follows:

1. In the base case, we have r � r̂ and f agrees with r̂ (as a special case we may have
r = r̂). We apply the transition function ofM′ and obtain directly the r.h.s. in (6.10)
as ((`′′, r′′, f′′), b, Y) = δ′((`, r, f), (a, f)) where r′′ = r[Y 7→ 0] and f′′ agrees with r′′.

2. In the next case, we have r ≺ r̂ and f does not agree with r̂. Let f′ be the immediate
successor of f, and let δ′((`, r, f), (�, f′)) = ((`′, r′, f̄′), (�,_)), where necessarily
r′ = succX,m(r, f′), and r′ agrees with f′. Then, we recursively define the r.h.s. in
(6.10) as ((`′′, r′′, f′′), b, Y) = δ((`′, r′, f̄′), a, r̂).

3. In any other case, r̂ is not a successor region of r. Thanks to completeness (6.9), r
is the region of the current clock valuation, and thus the controller can be defined
arbitrarily because Bob is already winning, since Alice is losing due to violation of
WA
k .

The recursion above ends, and thus δ is well-defined, since there are only finitely many
regions and ≺ is a strict total order on regions.
Consider an infinite M-conformant run ρ ∈ Runsω(M). By the definition of δ, there is
a corresponding M′-conformant run ρ′ ∈ Runsω(M) as in (6.9) where Alice in G′ plays
optimally (satisfying WA

k), and ρ arises from ρ′ by combining together adjacent sequences
of improper moves: Let the proper moves in ρ′ be at indices 1 = i1 < i2 < · · · . Then, ρ
is of the form

ρ = ((`0, r0, f0), µ0, 0)
a1,b1,τi1−−−−−→ ((`i1 , ri1 , fi1), µi1 , τi1)
a2,b2,τi2−−−−−→ ((`i2 , ri2 , fi2), µi2 , τi2) · · · ,

where aj = φ(a′
ij

) and bj = φ(b′
ij

). Since Alice plays optimally when building ρ′, the
corresponding play π′ = runToPlay(ρ′) = (a′

1, b
′
1, τ1)(a′

2, b
′
2, τ2) · · · is in WA

k , and sinceM′

is winning, π′ ∈WB
k,m and π′ /∈ φ−1(W). If the corresponding play π = runToPlay(ρ) =

(a1, b1, τi1)(a2, b2, τi2) · · · in G was winning for Alice, which means π ∈W , since φ(π′) = π

we would have π′ ∈ φ−1(W), a contradiction.

6.2.2 Case of unbounded constants in clock constraints

In this section we prove theorem 6.2, stating that the k-clock timed synthesis problem
is computable, by reducing it to the 0-clock synthesis problem, which is computable
by lemma 6.7. We build on the game defined in §6.2.1. Starting from a timed game

90

6.2. ELLIMINATINGWINNING CONTROLLER’S CLOCKS

G = GT
A,B(W) we define the timed game G′′ = GT

A′,B′(W ′′
k), where the sets of actions

A′ and B′ are as in (6.3), and the winning condition W ′′
k is defined as follows. Let

WB
k ⊆ (A′ ·B′ ·Q≥0)ω be the set of plays where, for every clock x ∈ X, improper x-request

chains have finite lengths: WB
k =

⋃
m∈NW

B
k,m. (In other words, (A′ · B′ · Q≥0)ω \WB

k

contains plays with an infinite improper x-request chain, for some clock x ∈ X.) Then,
W ′′
k is defined as W ′

k,m from (6.6), except that WB
k,m is replaced by the weaker condition

WB
k (notice W ′′

k does not depend on m):

W ′′
k = WA

k ∩
(
φ−1(W) ∪ (A′ ·B′ ·Q≥0)ω \WB

k

)
. (6.11)

Lemma 6.12.

There is a winning untimed controller for G′′ if, and only if, there is some m ∈ N and a
winning untimed controller for G′ = GT

A′,B′(W ′
k,m).

Proof of lemma 6.12.

For the ‘if’ direction, we observe that W ′′
k ⊆W ′

k,m, for every m ∈ N. Hence every winning
untimed controller for G′ is also winning for G′′.

For the ‘only if’ direction, let M′′ = (A′, B′, L, `0, δ) be an untimed winning controller
in G′′. Let m = |A′| · |L|+ 1. We claim that M′′ is also winning in G′ = GT

A′,B′(W ′
k,m)

for this choice of m.

Towards reaching a contradiction, suppose M′′ is losing in G′. An M′′-conformant run
ρ in G′ (or in G′′) and its associated play π are of the form

ρ = `0(a′
1, b

′
1, τ1, `1)(a′

2, b
′
2, τ2, `2) · · · ∈ Runsω(M′′), with a′

i = (ai, fi) and b′
i = (bi, Yi),

π = runToPlay(ρ) = (a′
1, b

′
1, τ1)(a′

2, b
′
2, τ2) · · · ∈ Plays(M′′).

Let ρi ∈ Runs(M′′) be the finite prefix of ρ ending at (a′
i, b

′
i, τi, `i). Since M′′ is losing

in G′, some M′′-conformant play π above is in W ′
k,m. Since M′′ is winning in G′′,

π 6∈ φ−1(W), and thus π ∈ WA
k \ WB

k,m. This means that π contains an improper
x-request chain C of length m, for some clock x ∈ X. By the definition of m, there are
indices i < j such that the same controller memory repeats together with Alice’s action
(a′
i, `i) = (a′

j , `j). In particular fi = fj . SinceM′′ is deterministic and its action depends
only on Alice’s action a′

i and control location `i, a posteriori we have b′
i = b′

j as well.
Moreover, as consecutive timestamps in C are equal to the first one plus consecutive
nonnegative integers, ∆ = τi − τj ∈ {1, . . . ,m− 1}.

Consider the corresponding infix

σ = (a′
i+1, b

′
i+1, τi+1, `i+1) · · · (a′

j , b
′
j , τj , `j)

of the run ρ. Since π ∈W ′
k,m, thanks to conditions 2 and 3 the fractional regions fi = fj

contain all tracked clocks, and they agree with the clock valuations νi and νj , respectively,
as defined in (6.5). Let {τi − 1 ≤ τi1 < τi2 < · · · < τil < τi} = {τi − νi(x) | x ∈ dom(fi)}
be the timestamps corresponding to the last request of the clocks tracked at time τi,

91

CHAPTER 6. SOLVING K-CLOCK TIMED SYNTHESIS PROBLEMS

and likewise let {τj − 1 ≤ τj1 < τj2 < · · · < τjl′ < τj} = {τj − νj(x) | x ∈ dom(fj)}. By
assumption, fi = fj , and hence l = l′ and for x ∈ dom(fi) = dom(fj) and 1 ≤ h ≤ l,

τih = τi − νi(x) ⇐⇒ τjh = τj − νj(x). (6.12)

Moreover, since integer(fi) = integer(fj), we have

τi1 = τi − 1 ⇐⇒ τj1 = τj − 1. (6.13)

Alice will win in G′ by forcing a repetition of the infix σ ad libitum. In order to do so,
we need to modify its timestamps. An automorphism of the structure (Q,≤,+1) is a
monotonic bijection preserving integer differences, in the sense that f(x+ 1) = f(x) + 1
for every x ∈ Q. Note that such an automorphism is uniquely defined by its action on
any unit-length interval. We claim that there exists such an automorphism f : Q→ Q
mapping τi − 1 to τj − 1 (and hence forcedly also τi to τj), and each τih with 1 ≤ h ≤ l
to f(τih) = τjh .
This is indeed the case, by eqs. (6.12) and (6.13) all timestamps τih ’s belong to the unit
half-open interval [τi − 1, τi) and likewise all timestamps τjh ’s belong to [τj − 1, τj). We
apply f to a timed word σ 7→ f(σ) by acting pointwise on timestamps. Consider the
infinite run

ρ′ = ρi · σ · f(σ) · f(f(σ)) · · · ;

it isM′′-conformant since the controllerM′′ is deterministic, and thus behaves the same
at every iteration. By construction, ρ′ contains an infinite x-request chain, and thus
ρ′ 6∈WB

k .
It remains to argue that ρ ∈WA

k implies ρ′ ∈WA
k as well. Let there be a non-cancelled

x-request at time τs in ρ′.
If τs < τj − 1, then this request must be satisfied at time τs′ = τs + 1 < τj , and thus
already in ρi · σ, which is the case since the latter is a prefix of ρ ∈WA

k .
Now assume τj − 1 ≤ τs < τj . Thus τs = τjh for some 1 ≤ h ≤ l. By the definition of f ,
f−1(τs) = τih < τj − 1 and, thanks to the previous case, the request at τih is satisfied at
τih + 1 due to (*). By applying f we obtain f(τih + 1) = f(τih) + 1 = τs + 1, and thus
the request at time τs is satisfied at time τs + 1 in f(σ), as required.
The general argument for τj +n∆+d−1 ≤ τs < τj +n∆+d, where n ≥ 0 and 0 ≤ d < ∆,
is similar, using induction on n.

Proof of theorem 6.2.

Due to lemmas 6.7, 6.8 and 6.12, there is a winning untimed controller M′′ for G′′ if,
and only if there is some m ∈ N and a winning k-clock m-constrained controller M for
G. Thus the k-clock timed synthesis problem reduces to the 0-clock 0-constrained timed
synthesis problem, and the latter is computable thanks to lemma 6.13.

6.3 Elliminating time

The 0-clock timed synthesis problem is equivalent to untimed synthesis problem, which
is computable thanks to the Büchi-Landweber result [15, Theorem 1′]:

92

6.3. ELLIMINATING TIME

Lemma 6.13.

The 0-clock synthesis problem is computable.

Proof of lemma 6.13.

Consider a timed synthesis game GT
A,B(W) and let W ′ = projT(W). Winning 0-register

controllers in GT
A,B(W) are in one-to-one correspondence with winning controllers in the

corresponding untimed synthesis game with winning condition W ′. Indeed, the update
function δ : L ·A · Reg(k,m)→ L ·B · 2X of a k-clock m-constrained controller M when
k = m = 0 can equivalently be presented as a function of type L ·A→ L ·B (which we
take as the update function in the untimed controllerM′), and all functions of the latter
type arise in this way.
If M is losing in GT

A,B(W), then there is a M-conformant run ρ ∈W , and thus projT(ρ)
is a M′-conformant run in W ′, showing that M′ is losing in the corresponding untimed
synthesis game.
On the other hand, let ρ′ ∈ W ′ be M′-conformant. Since M does not look at the
timestamps, we can choose them accordingly in order to find an M-conformant timing
thereof ρ ∈ proj−1

T (ρ′) ∩W .
Untimed synthesis is computable by theorem 2.30.

93

Chapter 7

Solving deterministic
membership problems

7.1 Decidability of dra1 membership for nra1

In this section we prove the decidability of deterministic membership for register automata:

Theorem 7.1. drak membership

For every fixed k ∈ N, the drak membership problem is decidable for nra1 languages.

The technical development of this section will also serve as a preparation for the more
involved case of timed automata from §§7.2.1 and 7.3. The key ingredient used in the
proof of theorem 7.1 is the following characterisation of those nra1 languages which are
also drak languages. In particular, this characterisation provides a bound on the number
of control locations of a drak equivalent to a given nra1 (if any exists).

Lemma 7.2.

Let A be an nra1 with n control locations, and let k ∈ N. The following conditions are
equivalent:

1. L(A) = L(B) for some drak B.

2. For every data word w, there is S ⊆ A of size at most k such that the left quotient
w−1L(A) = {v | w · v ∈ L(A)} is S-invariant.

3. L(A) = L(B) for some drak B with at most f(k, n) = (k + 1)! · 2n·(k+1) control
locations.

Using the above lemma we derive a proof of theorem 7.1:

Proof of theorem 7.1.

Given an nra1 A, the decision procedure enumerates all drak B with at most f(k, n)
locations and checks whether L(A) = L(B), using corollary 2.19. If no such drak B is

95

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

found, the procedure answers negatively. Note that the fact that A is nra1 is crucial
here, since otherwise the equivalence check above would not be decidable. In fact, this is
the only place where the one register restriction really plays a role: A generalisation of
lemma 7.2 for A being a nral for l ≥ 1 could be stated and proved; however we prefer to
avoid the additional notational complications of dealing with the general case since we
need lemma 7.2 only in the case l = 1.

Remark 7.3. complexity

The decision procedure for nra1 invokes the Ackermann subroutine to check equivalence
between an nra1 and a candidate dra. This is in a sense unavoidable, since we show in
theorem 7.17 that the drak membership problem is Ackermann-hard for nra1.

The proof of lemma 7.2 is presented below in §7.1.1. We remark that the lemma partially
follows from the literature of automata theory in sets with atoms. For instance, the most
interesting implication (2) =⇒ (3), even for A an arbitrary nral with l ≥ 1, minus the
concrete bound f(k, n) on control locations of B, follows from the following known facts:

a) L(A) is recognised by a nondeterministic equivariant orbit-finite automaton [10,
Theorem 5.11],

b) the assumption (2) implies that the Myhill-Nerode equivalence of L has orbit-finite
index,

c) thus by [10, Theorem 5.14] L(A) is recognised by a deterministic orbit-finite automa-
ton B′, and

d) we can construct from B′ some language-equivalent drak′ B.

However, this would not yield

1) the fact that we can even take k′ = k (i.e., the number of registers of B can be taken
to be the size k of the supports S in the assumption), and

2) the concrete bound f(k, n) on the number of control locations of B (a computable
such bound is necessary in the automata enumeration procedure in the proof of
theorem 7.1).

For these reasons, we provide a full proof of the lemma.

7.1.1 Proof of lemma 7.2

Let us fix an nra1 A = (X,Σ, L, Lini, Lfin,∆) and k ∈ N. Let n = |L| be the number of
control locations ofA. The implication (3) =⇒ (1) holds trivially. The implication (1) =⇒
(2) holds just because every left quotient w−1L(A) is the same as w−1L(B) by the
assumption L(A) = L(B) for a drak B, and, since B is deterministic, the latter quotient
w−1L(B) equals L(B; c) for some configuration c = (p, µ). The latter is µ(X)-invariant
by lemma 2.20(3), and clearly |µ(X)| ≤ k. (Notice that A did not play a role here.)
It thus remains to prove the implication (2) =⇒ (3), which is the content of the rest of the
section. Assuming (2), we are going to define a drak B′ with registers X = {x1, . . . , xk}

96

7.1. DECIDABILITY OF dra1 MEMBERSHIP FOR nra1

and with at most f(k, n) locations such that L(B′) = L(A). We start from the transition
system X obtained by the finite powerset construction underlying the determinisation of
A. Next, after a series of language-preserving transformations, we will obtain a transition
system isomorphic to the reachable part of JB′K for some drak B′. As the last step, we
extract from this deterministic transition system a syntactic definition of B′. This is
achievable due to the invariance properties witnessed by the transition systems in the
course of the transformation.

Macro-configurations
For simplicity, we will abuse the notation and write c = (p, α) for a configuration
c = (p, {x1 7→ α}) of A, where p ∈ L and α ∈ A ∪ {⊥}. A macro-configuration is
a (not necessarily finite) set X of configurations (p, α) of A. We use the notation
L(A;X) :=

⋃
c∈X L(A; c).

Let succσ,α(X) := {c′ ∈ JAK | c σ,α−−→ c′ for some c ∈ X} be the set of successors of
configurations in X which can be reached by reading (σ, α) ∈ Σ × A. We define a
deterministic transition system X consisting of the macro-configurations reachable in
the course of determinisation of A. Let X be the smallest set of macro-configurations
and transitions such that

I X contains the initial macro-configuration: X0 = {(p,⊥) | p ∈ Lini} ∈ X ;

I X is closed under successor: for every X ∈ X and (σ, α) ∈ Σ×A, there is a transition
X

σ,α−−→ succσ,α(X) in X .

Due to the fact that JAK is finitely branching, i.e. succσ,α({c}) is finite for every fixed
(σ, α), all macro-configurations X ∈ X are finite. Let the final configurations of X be
FX = {X ∈ X |X ∩ F 6= ∅} where F ⊆ JAK is the set of final configurations of A.

Claim 7.4.

L(A;X) = L(X ;X) for every X ∈ X . In particular L(A) = L(X ;X0).

For a macro-configuration X we write Val(X) := {α ∈ A | ∃p.(p, α) ∈ X} to denote the
set of atoms appearing in X.

Pre-states
By assumption (2), for every macro-configuration X ∈ X , L(A;X) is S-invariant for
some S of size at most k, but the macro-configuration X itself needs not be S-invariant
in general. Indeed, a finite macro-configuration X ∈ X is S-invariant if, and only if,
Val(X) ⊆ S, which is impossible in general when X is arbitrarily large while the size of
S is bounded (by k). Intuitively, in order to assure S-invariance we will replace X by its
S-closure closureS(X) (recall fact 2.13).

The least support of a set with atoms X is the least S ⊆ A w.r.t. set inclusion such
that X is S-invariant. In the case of equality atoms every set with atoms has the least
support, which is moreover finite (see [11, Cor. 9.4] or [10, Thm. 6.1]). By assumption,
the least finite support of every macro-configuration X in X has size at most k.

97

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

A pre-state is a pair Y = (X,S), where X is a macro-state whose least finite support
is S. Thus X is S-invariant which, together with the fact that S has size at most k,
implies that there are only finitely many pre-states up to automorphism. We define
the deterministic transition system Y as the smallest set of pre-states and transitions
between them such that:

I Y contains the initial pre-state: Y0 = (X0,∅) ∈ Y;

I Y is closed under the closure of successor: For every (X,S) ∈ Y and (σ, α) ∈ Σ× A,
the pre-state (X ′, S′) is in Y together with transition (X,S) σ,α−−→ (X ′, S′), where S′

is the least finite support of the language L′ = (σ, α)−1L(A;X) = L(A; succσ,α(X)),
and X ′ = closureS′(succσ,α(X)).

Example 7.5.

Suppose that k = 3, a successor of some macro-configuration X has the shape
succσ,α1(X) = {(p, α1), (q, α1), (r, α2), (s, α3)} and the least finite support S′ of L′ is
{α1, α3}, where α1, α2, α3 ∈ A are pairwise-different. Then X ′ = {(p, α1), (q, α1)} ∪
{(r, α) | α ∈ A \ {α1, α3}} ∪ {(s, α3)}.

By assumption, L′ is T -invariant for some T ⊆ A with |T | ≤ k. Since X is S-invariant,
L′ is also (S ∪ {α})-invariant. By the least finite support property of equality atoms,
finite supports are closed under intersection, and hence S′ ⊆ (S ∪{α})∩T , which implies
|S′| ≤ k.
By lemma 2.20 we deduce:

Claim 7.6. invariance of Y

For every two transitions (X1, S1) σ,α1−−−→ (X ′
1, S

′
1) and (X2, S2) σ,α2−−−→ (X ′

2, S
′
2) in Y and

an automorphism π, if π(X1) = X2 and π(S1) = S2 and π(α1) = α2, then we have
π(X ′

1) = X ′
2 and π(S′

1) = S′
2.

Let the final configurations of Y be FY = {(X,S) ∈ Y |X ∩ F 6= ∅}. By induction on
the length of data words it is easy to show:

Claim 7.7.

L(X ;X0) = L(Y;Y0).

States
We now introduce states, which are designed to be in one-to-one correspondence with
configurations of the forthcoming drak B′. Intuitively, a state differs from a pre-state
(X,S) only by allocating the values from (some superset of) S into k registers. Thus,
while a pre-state contains a set S, the corresponding state contains a register assignment
µ : AX

⊥ with image µ(X) ⊇ S.
Let X = {x1, . . . , xk} be a set of k registers. A state is a pair Z = (X,µ), where X is
a macro-configuration, µ : AX

⊥ is a register assignment, and X is µ(X)-invariant. Thus
every state (X,µ) determines uniquely a corresponding pre-state ρ(X,µ) = (X,S) where
S ⊆ µ(X) is the least finite support of X.

98

7.1. DECIDABILITY OF dra1 MEMBERSHIP FOR nra1

Example 7.8.

We continue example 7.5. States corresponding to the pre-state (X ′, S′) feature the
macro-configuration X ′, but can have different register valuations. One of them is
(X ′, µ′), where µ′ = {x1 7→ α1, x2 7→ α3, x3 7→ α1}.

We now define a deterministic transition system Z. Its states are all those (X,µ)
satisfying ρ(X,µ) ∈ Y , and transitions are determined as follows: Z contains a transition
(X,µ) σ,α−−→ (X ′, µ′) if Y contains the corresponding transition ρ(X,µ) σ,α−−→ ρ(X ′, µ′) =
(X ′, S′), and µ′ = µ[Y 7→ α], where

Y = {xi ∈ X | µ(xi) /∈ S′ or µ(xi) = µ(xj) for some j > i}. (7.1)

The equation (7.1) defines a deterministic update policy1 of the register assignment µ
that amounts to updating with the current input atom α all registers xi whose value is
either no longer needed (because µ(xi) /∈ S′), or is shared with some other register xj ,
for j > i and is thus redundant. It is easy to see that the above register update policy
guarantees that S′ ⊆ µ′(X) ⊆ S′ ∪ {α}. Using claim 7.6 we derive:

Claim 7.9. invariance of Z

For every two transitions (X1, µ1) σ,α1−−−→ (X ′
1, µ

′
1) and (X2, µ2) σ,α2−−−→ (X ′

2, µ
′
2) in Z and

an automorphism π, if π(X1) = X2 and π◦µ1 = µ2 and π(α1) = α2, then we have
π(X ′

1) = X ′
2 and π◦µ′

1 = µ′
2.

Let the initial state be Z0 = (X0, λx.⊥), and let final states be FZ = {(X,µ) ∈ Z |
X ∩ F 6= ∅}. By induction on the length of data words one proves:

Claim 7.10.

L(Y;Y0) = L(Z;Z0).

In the sequel we restrict Z to states reachable from Z0.

Orbits of states
Recall that the action of automorphisms on macro-configurations and reset-point assign-
ments is extended to states as π(X,µ) = (π(X), π◦µ), and that the orbit of a state Z is
defined as orbit(Z) = {π(Z) | π ∈ Aut(A)}.
While a state is designed to correspond to a configuration of the forthcoming drak B′,
its orbit is designed to play the role of control location of B′. We therefore need to prove
that the set of orbits {orbit(Z) | Z ∈ Z} is finite and its size is bounded by f(k, n).
Let Mk denote the number of orbits of register valuations AX

⊥, which is the same as the
number of orbits of k-tuples Ak⊥. In case of equality atoms we have Mk ≤ (k+ 1)! Indeed,
at the first position there are two possibilities, ⊥ or an atom; at the second position
there are at most three possibilities: ⊥, the same atom at the one at the first position, or
a fresh atom; and so on, until the last position where there are at most k+ 1 possibilities.

1There are in general many correct deterministic update policies, but for our purposes it suffices to
define one such deterministic update policy.

99

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

Every l-element subset S = {α1, α2, . . . , αl} ⊆ A of atoms induces, in the case of equality
atoms, exactly l + 1 different S-orbits of atoms:

OrbitsS(A) = {orbitS(α) | α ∈ A} = {{α1}, {α2}, . . . , {αl},A− S}.

Therefore, each S ⊆ A of size at most k induces at most Nk := k+ 1 different S-orbits of
atoms.
Consider a state Z = (X,µ) and let S = µ(X). We define the characteristic function
charZ : OrbitsS(A)→ P(L) as follows:

charZ(o) = {l ∈ L | (l, α) ∈ X for some α ∈ o}.

Since X is S-invariant, the choice of the atom α ∈ o is irrelevant, and we conclude:

Claim 7.11.

Every state Z = (X,µ) is uniquely determined by its register valuation µ and by the
characteristic function charZ .

Claim 7.12.

The size of {orbit(Z) | Z ∈ Z} is at most Mk · 2n·Nk .

Proof of claim 7.12.

We show that there are at most Mk · (2n)Nk different orbits of states. Consider two states
Z = (X,µ) and Z ′ = (X ′, µ) and let S = µ(X) and S′ = µ′(X). Suppose that the register
valuations µ and µ′ are in the same orbit: π ◦ µ = µ′ for some automorphism π. Thus
π(S) = S′, and moreover π induces a bijection π̃ between OrbitsS(A) and OrbitsS′(A).
Note that, once S is fixed, there are at most (2n)Nk possible characteristic functions of
Z, and likewise for S′ and Z ′. Supposing further that the characteristic functions agree,
i.e., satisfy charZ = charZ′ ◦ π̃, using claim 7.11 we derive π(Z) = Z ′, i.e., Z and Z ′ are
in the same orbit. Therefore, since the number of orbits of register valuations µ, µ′ is at
most Mk, and for each such orbit the number of different characteristic functions is at
most (2n)Nk , the number of different orbits of states is bounded as required.

For future use we observe that every state is uniquely determined by its register valuation
and its orbit:

Claim 7.13.

Let Z = (X,µ) and Z ′ = (X ′, µ) be two states in Z with the same register valuation. If
π(X) = X ′ and π◦µ = µ for some automorphism π then X = X ′.

Proof of claim 7.13.

Indeed, X is µ(X)-invariant and hence π(X) = X, which implies X = X ′.

In the terminology of automata in sets with atoms, we have proved that Z is a deter-
ministic orbit-finite automaton (c.f. [10, Sec. 5.2]) for a definition), with the concrete
bound on the number of orbits given by claim 7.12.

100

7.1. DECIDABILITY OF dra1 MEMBERSHIP FOR nra1

Construction of the dra

As the last step we define a drak B′ = (X,Σ, L′, {o0}, L′
F ,∆′) such that the reachable part

of JB′K is isomorphic to Z. Let locations L′ = {orbit(Z) | Z ∈ Z} be the orbits of states
from Z, the initial location be the orbit o0 of Z0, and final locations L′

F = {orbit(Z) |
Z ∈ FZ} be orbits of final states. Let each transition Z = (X,µ) σ,α−−→ (X ′, µ′) = Z ′ in Z
induce a transition rule in B′

(o, σ, ψ, Y, o′) ∈ ∆′ (7.2)

where o = orbit(Z), o′ = orbit(Z ′), Y = {x ∈ X | µ′(x) = α}, and the constraint
ψ(x1, . . . , xk, y) defines the orbit of (µ(x1), . . . , µ(xk), α) (here we rely on claim 2.14).
We argue that the automaton B′ is deterministic:

Claim 7.14.

Suppose that B′ has two transition rules o σ,ψ1,Y1−−−−→ o′
1 and o

σ,ψ2,Y2−−−−→ o′
2 with the same

source location o and jointly satisfiable constraints (Jψ1 ∧ ψ2K 6= ∅). Then the target
locations are equal (o′

1 = o′
2), and the same registers are updated (Y1 = Y2).

Proof of claim 7.14.

Since the constraints are jointly satisfiable, both transition rules are enabled in some
configuration c = (o, µ) and for some input atom α ∈ A. By claim 7.13, c determines a
corresponding state Z = (X,µ) with o = orbit(Z) and, since the system Z is deterministic,
both transition rules are induced by a common transition (X,µ) σ,α−−→ (X ′, µ′) in Z. This
in turn implies o1 = o2 and Y1 = Y2, as required.

Claim 7.15.

Z is isomorphic to the reachable part of JB′K.

Proof of claim 7.15.

For a state Z = (X,µ), let ι(Z) = (orbit(Z), µ). Let Z ′ denote the reachable part of JB′K.
By claim 7.13, the mapping ι(_) is a bijection between Z and its image ι(Z) ⊆ JB′K. We
aim at proving ι(Z) = Z ′.

By the very definition (7.2), the image ι(Z) is a subsystem of Z ′: ι(Z) ⊆ Z ′. For
the converse inclusion, recall that Z is total: for every (σ1, α1) . . . (σn, αn) ∈ (Σ× A)∗,
there is a sequence of transitions (X0, µ0) σ1,α1−−−→ · · · σn,αn−−−−→ (Xn, µn) in Z. Therefore
ι(Z) is total too and, since Z ′ is deterministic and reachable, the subsystem ι(Z) ⊆ Z ′

necessarily equals Z ′.

Claims 7.4, 7.7, 7.10 and 7.15 jointly imply L(A) = L(B′), which completes the proof of
lemma 7.2.

101

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

7.1.2 Other atoms

The proof of theorem 7.1 straightforwardly generalises to any relational structure of
atoms A satisfying the following conditions:

I A is homogeneous [47];

I A preserves well-quasi orders (wqo): finite induced substructures of A labelled by
elements of an arbitrary wqo, ordered by label-respecting embedding, are again a
wqo (for details we refer the reader to [69, item (A3), Sect.5]);

I A is effective: it is decidable, if a given finite structure over the vocabulary of A is an
induced substructure thereof;

I A has the least finite support property.

As an example, the structure of densely ordered atoms A = (Q,≤) satisfies all the
conditions and hence theorem 7.1 holds for register automata over this structure of
atoms.

We briefly discuss the adjustments needed. The syntax of constraints (2.2) is extended by
adding atomic constraints for all relations in A, and claim 2.14 holds by homogeneity of
A. The decision procedure checking equivalence of an nra1 and a dra from corollary 2.19,
invoked in the proof of theorem 7.1, works assuming that A preserves wqo and is effective.
The least finite support assumption is required in the definition of pre-states. Finally,
again due to homogeneity of A the bounds Mk and Nk used in claim 7.12 are finite (but
dependent on A).

7.2 Lower bounds for nra

The nra universality problem asks whether a given nra A recognises every data word
L(A) = (Σ × A)∗. All the lower bounds in this section leading to undecidability and
hardness results for the drak membership problem are obtained by a reduction from the
universality problem for corresponding classes of data languages.

Lemma 7.16. c.f. [46, Theorem 1]

Let k ∈ N and let Y be a class of invariant data languages that

1. contains all the dra0 languages,

2. is closed under union and concatenation, and

3. contains some non-drak language.

The universality problem for data languages in Y reduces in polynomial time to the drak
membership problem for data languages in Y.

102

7.2. LOWER BOUNDS FOR nra

Proof of lemma 7.16.

Let L ∈ Y be a data language over a finite alphabet Σ. We show that universality of
L reduces to drak membership. Thanks to the last assumption, let M ∈ Y be a data
language over some finite alphabet Γ which is not recognised by any drak. Consider the
following language over the extended alphabet Σ′ = Σ ∪ Γ ∪ {$}:

N := L · ({$} × A) · (Γ× A)∗ ∪ (Γ× A)∗ · ({$} × A) ·M,

where $ 6∈ Σ∪Γ is a fixed fresh alphabet symbol. Since Y contains the universal language,
by its closure properties the language N belongs to Y. We conclude by proving the
following equivalence:

L = (Σ× A)∗ if, and only if, N is recognised by a drak.

For the “only if” direction, if L is universal, then N = (Σ× A)∗ · ({$} × A) · (Σ× A)∗

is clearly recognised by a drak. For the “if” direction suppose, towards reaching a
contradiction, that N is recognised by a drak A but L is not universal. Choose an
arbitrary data word w 6∈ L over Σ and consider an arbitrary extension u = w · ($, α) of
w by one letter. Since $ does not belong to the finite alphabet Σ ∪ Γ, the left quotient
u−1N = {v | uv ∈ N} equals M . Let (p, µ) be the configuration reached by A after
reading u, which thus recognises L(p, µ) = M . Since M is invariant as a language in Y,
M is a drak language, which is a contradiction.

From lemma 7.16 we immediately obtain the undecidability and hardness results for the
drak membership problem, which we now recall.

Theorem 7.17. undecidability and hardness for drak membership

Fix a k ≥ 0. The drak membership problem is:

1. undecidable for nra2,

2. undecidable for nrag1 (nra1 with guessing), and

3. not primitive recursive (Ackermann-hard) for nra1.

Proof of theorem 7.17.

For the first point, consider the class Y consisting of all the nra2 languages. Clearly this
class contains all dra0 languages and it is closed under union and concatenation. Thanks
to example 2.17 we know that there are nra1 (and thus nra2) languages which are not
dra languages. Thus the conditions of lemma 7.16 are satisfied and the universality
problem for nra2 reduces in polynomial time to the drak membership problem for nra2.
Since the former problem is undecidable [40, Theorem 5.4], undecidability of the latter
one follows. For the other two points we can proceed in an analogous way, by using
the fact that the universality problem is undecidable for nrag1 (nra1 with guessing)
[10, Exercise 9], and not primitive recursive for nra1 [40, Theorem 5.2].

103

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

7.2.1 Invariance of timed automata

A fundamental tool used below is invariance properties of timed languages recognised by
nta with respect to timed automorphisms. In this section we establish these properties,
as extension of analogous properties of register automata. We also prove a timed analog
of the least support property, and relate regions to orbits of configurations.
Recall that timed automorphisms are monotonic bijections Q → Q that preserve in-
teger differences. A timed automorphism π acts on input letters in Σ as the iden-
tity, π(a) = a, and is extended point-wise to timed words π((σ1, τ1) . . . (σn, τn)) =
(σ0, π(τ1)) . . . (σn, π(τn)), configurations π(p, µ, τ0) = (p, π◦µ, π(τ0)), transitions π(c σ,τ−−→
c′) = π(c) σ,π(τ)−−−−→ π(c′), and sets X thereof π(X) = {π(x) | x ∈ X}.

Remark 7.18.

In considerations about timed automata we restrict to nonnegative rationals, while a
timed automorphism π can in general take a nonnegative rational τ ≥ 0 to a negative
one. In the sequel whenever we write π(x), for x being any object like a timestamp, a
configuration, a timed word, etc., we always implicitly assume that π is well-defined on x,
i.e., yields a timestamp, a configuration, a timed word, etc. In other words, for invariance
properties we restrict to those timed automorphisms that preserve nonnegativeness of all
the involved timestamps.

Let S ⊆ Q≥0. An S-timed automorphism is a timed automorphism such that π(τ) = τ

for all τ ∈ S. Let ΠS denote the set of all S-timed automorphisms, and let Π = Π∅.
A set X is S-invariant if π(X) = X for every π ∈ ΠS ; equivalently, for every π ∈ ΠS ,
x ∈ X if, and only if π(x) ∈ X. A set X is invariant if it is S-invariant with S = ∅.
The following three facts express some basic invariance properties.

Fact 7.19.

The timed transition system JAK is invariant.

Proof of fact 7.19.

Suppose c = (p, µ, τ0) σ,τ−−→ (p′, µ′, τ) = c′ due to some transition rule of A whose clock
constraint ϕ compares values of clocks x, i.e., the differences τ −µ(x), to integers. Since a
timed automorphism π preserves integer distances, the same clock constraint is satisfied
in π(c) = (p, π◦µ, π(τ0)), and therefore the same transition rule is applicable yielding
the transition (p, π◦µ, π(τ0)) σ,π(τ)−−−−→ (p, π◦µ′, π(τ)) = π(c′).

By unrolling the definition of invariance in the previous fact, we obtain that the set of
configurations is invariant, the set of transitions −→ is invariant, and that the set of final
configurations F is invariant.

Fact 7.20. Invariance of the language semantics

The function c 7→ L(A; c) from JAK to languages is invariant, i.e., for all timed automor-
phisms π, L(A;π(c)) = π(L(A; c)).

104

7.2. LOWER BOUNDS FOR nra

Proof of fact 7.20.

Consider a timed automorphism π and an accepting run of A over a timed word
w = (σ1, τ1) . . . (σn, τn) ∈ T≥τ0(Σ) starting in c = (p, µ, τ0):

(p, µ, τ0) σ1,τ1−−−→ · · · σn,τn−−−→ (q, ν, τn),

After σi is read, the value of each clock is either the difference τi − µ(x) for some
1 ≤ i ≤ n and clock x ∈ X, or the difference τi − τj for some 1 ≤ j ≤ i. Likewise is the
difference of values of any two clocks. Thus clock constraints of transition rules used
in the run compare these differences to integers. As timed automorphism π preserves
integer differences, by executing the same sequence of transition rules we obtain the run
over π(w) starting in π(c) = (p, π◦µ, π(τ0)):

(p, π◦µ, π(τ0)) σ1,π(τ1)−−−−−→ · · · σn,π(τn)−−−−−→ (q, π◦ν, π(τn)),

also accepting as it ends in the same location q. As w ∈ T(Σ) can be chosen arbitrarily,
we have thus proved one of inclusions, namely

π(L(A; p, µ, τ0)) ⊆ L(A; p, π◦µ, π(τ0)).

The other inclusion follows from the latter one applied to π−1 and L(A; p, π◦µ, π(τ0)):

π−1(L(A; p, π◦µ, π(τ0))) ⊆ L(A; p, π−1◦π◦µ, π−1(π(τ0))) = L(A; p, µ, τ0).

The two implications prove the equality.

Fact 7.21. Invariance of the language of a configuration

The language L(A; p, µ, τ0) is (µ(X) ∪ {τ0})-invariant. Moreover, if A is always resetting,
then L(A; p, µ, τ0) is µ(X)-invariant.

Proof of fact 7.21.

This is a direct consequence of the invariance of semantics. Indeed, for every (µ(X)∪{τ0})-
timed automorphism π the configurations c = (p, µ, τ0) and π(c) = (p, π◦µ, π(τ0)) are
equal, hence their languages L(A; c) and L(A;π(c)), the latter equal to π(L(A; c)) by
fact 7.20, are equal too. Thus, L = π(L). Finally, if A is always resetting, then τ0 ∈ µ(X),
from which the second claim follows.

Since timed automorphisms preserve integer differences, only the fractional parts of
elements of S ⊆ Q≥0 matter for S-invariance, and hence it makes sense to restrict to
subsets of the half-open interval [0, 1). Let fract(S) = {fract(x) |x ∈ S} ⊆ [0, 1) stand for
the set of fractional parts of elements of S. The following lemma shows that, modulo the
irrelevant integer parts, there is always the least set S witnessing S-invariance (c.f. the
least support property of, e.g., equality atoms).

105

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

Lemma 7.22.

For finite subsets S, S′ ⊆ Q≥0, if a timed language L is both S-invariant and S′-invariant,
then it is also S′′-invariant as long as fract(S′′) = fract(S) ∩ fract(S′).

Proof of lemma 7.22.

Let L be an S- and S′-invariant timed language, and let F = fract(S) and F ′ = fract(S′).
We prove that L is an (F ∩ F ′)-invariant subset of T(Σ). Consider two timed words
w,w′ ∈ T(Σ) such that w′ = π(w) for some (F ∩ F ′)-timed automorphism π. We need
to show

w ∈ L iff w′ ∈ L,

which follows immediately by the following claim:

Claim 7.23.

Every (F ∩ F ′)-timed automorphism π decomposes into π = πn ◦ · · · ◦ π1, where each πi
is either an F - or an F ′-timed automorphism.

Composition of timed automorphisms makes Π into a group. In short terms, claim 7.23
states that ΠF∩F ′ ⊆ ΠF + ΠF ′ , where ΠF + ΠF ′ is the smallest subgroup of Π including
both ΠF and ΠF ′ . We state below in claim 7.25 a fact equivalent to claim 7.23, and
which is based on the proof of Theorem 9.3 in [11]. An important ingredient of the proof
of claim 7.25 is the following fact where, instead of dealing with decomposition of π, we
analyse the individual orbit of F \ F ′, in the special case when both F \ F ′ and F ′ \ F
are singleton sets:

Claim 7.24.

Let F, F ′ ⊆ [0, 1) be finite sets such that F \ F ′ = {τ} and F ′ \ F = {τ ′}. For every
(F ∩ F ′)-timed automorphism π we have π(τ) = (πn ◦ · · · ◦ π1)(τ), for some π1, . . . , πn,
each of which is either an F - or an F ′-timed automorphism (i.e., belongs to ΠF + ΠF ′).

Proof of claim 7.24.

We split the proof into two cases.

Case F ∩ F ′ 6= ∅

Let κ be the greatest element of F ∩F ′ smaller than τ , and let ϑ be the smallest element
of F ∩ F ′ greater than τ , assuming they both exist. (If κ does not exist put κ := ϑ′ − 1,
where ϑ′ is the greatest element of F ∩ F ′; symmetrically, if ϑ does not exists put
ϑ := κ′ + 1, where κ′ is the smallest element of F ∩ F ′.) Then the (F ∩ F ′)-orbit {π(τ) |
π is an (F ∩ F ′)-timed automorphism} is the open interval (κ, ϑ). Take any (F ∩ F ′)-
timed automorphism π; without loss of generality assume that ξ = π(τ) > τ . The only
interesting case is τ < τ ′ ≤ ξ. In this case, we show π(τ) = π2(π1(τ)),where

I π1 is some F ′-timed automorphism that acts as the identity on [τ ′, κ+ 1] and such

106

7.2. LOWER BOUNDS FOR nra

that τ < π1(τ) < τ ′,

I π2 is some F -timed automorphism that acts as the identity on [ϑ− 1, τ] and such
that π2(π1(τ)) = ξ.

Case F ∩ F ′ = ∅

Thus F = {τ} and F ′ = {τ ′}. Take any timed automorphism π; without loss of generality
assume that π(τ) > τ . Let z ∈ Z be the unique integer such that τ ′ + z − 1 < τ < τ ′ + z.
Let π1 be an arbitrary {τ ′}-timed automorphism that maps τ to some τ1 ∈ (τ, τ ′ + z).
Note that τ1 may be any value in (τ, τ ′ + z). Similarly, let π2 be an arbitrary {τ}-timed
automorphism that maps τ1 to some τ2 ∈ (τ ′, τ + 1). Again, τ2 may be any value in
(τ ′, τ + 1). By repeating this process sufficiently many times one finally reaches π(τ) as
required.

Claim 7.25.

Let F, F ′ ⊆ [0, 1) be finite sets and let G ⊆ Π be a subgroup of Π. If ΠF ⊆ G and
ΠF ′ ⊆ G then ΠF∩F ′ ⊆ G.

Proof of claim 7.25.

The proof is by induction on the size of the (finite) set F ∪ F ′. If F ⊆ F ′ or F ′ ⊆ F ,
then the conclusion follows trivially. Otherwise, consider any τ ∈ F \ F ′ and τ ′ ∈ F ′ \ F ;
obviously τ 6= τ ′. Define E = (F ∪F ′) \ {τ, τ ′}. We have F ⊆ E ∪{τ} and F ′ ⊆ E ∪{τ ′}
hence

ΠE∪{τ} ⊆ ΠF ⊆ G ΠE∪{τ ′} ⊆ ΠF ′ ⊆ G.

We shall now prove that ΠE ⊆ G. To this end, consider any π ∈ ΠE . By claim 7.24,
there exists a permutation

ψ = πn ◦ · · · ◦ π1 ∈ ΠE∪{τ} + ΠE∪{τ ′}

such that π(τ) = ψ(τ). In other words, each of π1, . . . , πn is either a (E ∪ {τ})- or a
(E ∪ {τ ′})-timed automorphism. Since ΠE∪{τ} ⊆ G and ΠE∪{τ ′} ⊆ G, all πi ∈ G, hence
also ψ ∈ G.
On the other hand, clearly ΠE∪{τ} ⊆ ΠE and ΠE∪{τ ′} ⊆ ΠE , so all πi ∈ ΠE , therefore
ψ ∈ ΠE . As a result, π−1 ◦ψ ∈ ΠE . Since (π−1 ◦ψ)(τ) = τ , we obtain π−1 ◦ψ ∈ ΠE∪{τ},
therefore π−1 ◦ ψ ∈ G. Together with ψ ∈ G proved above, this gives π ∈ G. Thus we
have proved ΠE ⊆ G.
It is now easy to show that ΠF∩F ′ ⊆ G. Indeed, |F ∪ E| = |F ∪ F ′| − 1, so by the
inductive assumption for F and E, we have ΠF\{τ} ⊆ G (note that F \ {τ} = F ∩ E).
Further, |(F \{τ})∪F ′| = |F ∪F ′|−1, so ΠF∩F ′ ⊆ G (note that (F \{τ})∩F ′ = F ∩F ′),
as required.

Claim 7.25 immediately implies claim 7.23 by taking G = ΠF + ΠF ′ . Lemma 7.22 is thus
proved.

107

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

As a direct corollary of lemma 7.22, we have:

Corollary 7.26.

For every timed language L, the set {fract(S) |S ⊆fin Q≥0, L is S-invariant}, if nonempty,
has a least (inclusion-wise) element.

Finally, recall S-orbits and orbits of elements, as defined abstractly in §2.3. Every
bounded region corresponds to an orbit of configurations. Hence, in case of greedily
resetting nta where all reachable regions are bounded, orbits of reachable configurations
are in bijective correspondence with reachable regions:

Fact 7.27.

Assume A is a greedily resetting ntak,m. Two reachable configurations (p, µ, τ0) and
(p, µ′, τ ′

0) of A with the same control location p have the same orbit if, and only if, the
corresponding clock valuations τ0 − µ and τ ′

0 − µ′ belong to the same k,m-region.

7.3 Decidability of dta1 membership for nta1

In this section we prove our main decidability results for timed automata, which we now
recall.

Theorem 7.28. dtak membership

For every fixed k ∈ N, the dtak membership problem is decidable for nta1 languages.

Theorem 7.29. dtak,m membership

For every fixed k,m ∈ N, the dtak,m membership problem is decidable for nta1 languages.

Both theorems are proved by means of the following key characterisation of those nta1
languages which are also dtak languages.

Lemma 7.30.

Let A be an nta1,m with n control locations, and let k ∈ N.
The following conditions are equivalent:

1. L(A) = L(B) for some always resetting dtak B.

2. For every timed word w, there is S ⊆ Q≥0 of size at most k such that the last
timestamp of w is in S and w−1L(A) is S-invariant.

3. L(A) = L(B) for some always resetting dtak,m B with at most f(k,m, n) =
Reg(k,m) · 2n(2km+1) control locations (Reg(k,m) stands for the number of k,m-
regions).

108

7.3. DECIDABILITY OF dta1 MEMBERSHIP FOR nta1

As in case of register automata, this characterisation provides a bound on the number of
control locations of a dtak equivalent to a given nta1 (if any exists).

The proof of theorem 7.28 builds on lemma 7.30 and on the following fact:

Lemma 7.31.

The dtak and dtak,m membership problems are both decidable for dta languages.

Proof of lemma 7.31.

We reduce to a deterministic separability problem. Recall that a language S separates
two languages L,M if L ⊆ S and S ∩M = ∅.

It has recently been shown that the dtak and dtak,m separability problems are decidable
for nta [28, Theorem 1.1], and thus, in particular, for dta.

To solve the membership problem, given a dta A, the procedure computes a dta A′

recognising the complement of L(A) and checks whether A and A′ are dtak separable
(resp., dtak,m separable) by using the result above.

It is a simple set-theoretic observation that L(A) is a dtak language if, and only if, the
languages L(A) and L(A′) are separated by some dtak language, and likewise for dtak,m
languages.

Proof of theorems 7.28 and 7.29.

We solve both problems in essentially the same way.

Given an nta1,m A, the decision procedure enumerates all always resetting dtak+1,m
B with at most f(k + 1,m, n) locations and checks whether L(A) = L(B) (which is
decidable by [79, Theorem 17]).

If no such dtak+1 B is found, the L(A) is not an always resetting dtak+1 language,
due to lemma 7.30, and hence is not a dtak language either; the procedure therefore
answers negatively. Otherwise, in case when such a dtak+1 B is found, then a dtak
membership (resp. dtak,m membership) test is performed on B, which is decidable due
to lemma 7.31.

Remark 7.32. complexity

The decision procedure for nta1 invokes the HyperAckermann subroutine of [79] to check
equivalence between an nta1 and a candidate dta. This is in a sense unavoidable, since
we show in theorem 7.48 that dtak and dtak,m membership problems are HyperAcker-
mann-hard for nta1.

In the rest of this section we present the proof of lemma 7.30. The proof is a suitable
extension and refinement of the argument used in case of register automata in §7.1.

109

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

7.3.1 Proof of lemma 7.30

Let us fix an nta1,m A = ({x},Σ, L, Lini, Lfin,∆), where m is the greatest constant used
in clock constraints in A, and k ∈ N. We assume w.l.o.g. that A is greedily resetting:
This is achieved by resetting the clock as soon as upon reading an input symbol its value
becomes greater than m or is an integer ≤ m; we can record in the control location the
actual integral value if it is ≤ m, or a special flag otherwise. Consequently, after every
discrete transition the value of the clock is at most m, and if it is an integer then it
equals 0.

The implication (3) =⇒ (1) follows by definition. For the implication (1) =⇒ (2)
suppose, by assumption, L(A) = L(B) for a total always resetting dtak B. Every left
quotient w−1L(A) equals L(B; c) for some configuration c, hence point (2) follows by
fact 7.21. Here we use the fact that B is always resetting in order to apply the second
part of fact 7.21; without the assumption, we would only have S-invariance for sets S of
size at most k + 1.

It thus remains to prove the implication (2) =⇒ (3), which will be the content of
the rest of the section. Assuming point (2), we are going to define an always resetting
dtak,m B′ with clocks X = {x1, . . . , xk} and with at most f(k,m, n) locations such
that L(B′) = L(A). We start from the timed transition system X obtained by the
finite powerset construction underlying the determinisation of A, and then transform
this transition system gradually, while preserving its language, until it finally becomes
isomorphic to the reachable part of JB′K for some dtak,m B′. As the last step we extract
from this deterministic timed transition system a syntactic definition of B′ and prove
equality of their languages. This is achieved thanks to the invariance properties of the
transition systems in the course of the transformation.

Macro-configurations

Configurations of the nta1 A are of the form c = (p, ξ, τ0) where ξ, τ0 ∈ Q≥0 and ξ ≤ τ0.
A macro-configuration is a (not necessarily finite) set X of configurations (p, ξ, τ0) of A
which share the same value of the current timestamp τ0, which we denote as now(X) =
τ0. We use the notation L(A;X) :=

⋃
c∈X L(A; c). Let succσ,τ (X) := {c′ ∈ JAK |

c
σ,τ−−→ c′ for some c ∈ X} be the set of successors of configurations in X.

We define a deterministic timed transition system X consisting of the macro-configurations
reachable in the course of determinisation of A. Let X be the smallest set of macro-
configurations and transitions such that

I X contains the initial macro-configuration: X0 = {(p, 0, 0) | p ∈ Lini} ∈ X ;

I X is closed under successor: for every X ∈ X and (σ, τ) ∈ Σ × Q≥0, there is a
transition X

σ,τ−−→ succa,τ (X) in X .

Due to the fact that JAK is finitely branching, i.e. succσ,τ ({c}) is finite for every fixed
(σ, τ), all macro-configurations X ∈ X are finite. Let the final configurations of X be
FX = {X ∈ X |X ∩ JAK 6= ∅}.

110

7.3. DECIDABILITY OF dta1 MEMBERSHIP FOR nta1

Claim 7.33.

L(A;X) = L(X ;X) for every X ∈ X . In particular L(A) = L(X ;X0).

For a macro-configuration X we write Val(X) := {ξ | (p, ξ, now(X)) ∈ X} ∪ {now(X)}
to denote the rationals appearing in X. Since A is greedily resetting, every macro-
configuration X ∈ X satisfies Val(X) ⊆ (now(X) − m, now(X)]. Whenever a macro-
configuration X satisfies this condition we say that the span of X is bounded by m.

Pre-states
By assumption (Point 2), L(A;X) is S-invariant for some S of size at most k, but
the macro-configuration X itself needs not be S-invariant in general. Indeed, a finite
macro-configuration X ∈ X is S-invariant if, and only if, fract(Val(X)) ⊆ fract(S), which
is impossible in general when X is arbitrarily large, its span is bounded (by m), and size
of S is bounded (by k). Intuitively, in order to assure S-invariance we will replace X by
its S-closure closureS(X) (recall fact 2.13).
A set S ⊆ Q≥0 is fraction-independent if it contains no two rationals with the same
fractional part. A pre-state is a pair Y = (X,S), where X is an S-invariant macro-state,
and S is a finite fraction-independent subset of Val(X) that contains now(X). The
intuitive rationale behind assuming the S-invariance of X is that it implies, together
with the bounded span of X and the bounded size of S, that there are only finitely many
pre-states, up to timed automorphism. We define the deterministic timed transition
system Y as the smallest set of pre-states and transitions between them such that:

I Y contains the initial pre-state: Y0 = (X0, {0}) ∈ Y;

I Y is closed under the closure of successor: for every (X,S) ∈ Y and (σ, τ) ∈
Σ × Q≥0, there is a transition (X,S) σ,τ−−→ (X ′, S′), where S′ is the least, with
respect to set inclusion, subset of S ∪ {τ} containing τ such that the language L′ =
(σ, τ)−1L(A;X) = L(A; succσ,τ (X)) is S′-invariant, and X ′ = closureS′(succσ,τ (X)).

Observe that the least such fraction-independent subset S′ exists due to the following
facts: by fraction-independence of S there is a unique fraction-independent subset
S̃ ⊆ S ∪ {τ} which satisfies fract(S̃) = fract(S ∪ {τ}) (S̃ is obtained by removing from S

any element ξ such that fract(ξ) = fract(τ), if any); since X is S-invariant, due to fact 7.20
so it is its language L(A;X), and hence L′ is necessarily S̃-invariant; by assumption
(Point 2), L′ is R-invariant for some set R ⊆ Q≥0 of size at most k containing τ ; let
τ ⊆ [0, 1) be the least set of fractional values given by corollary 7.26 applied to L′, i.e.,
T ⊆ fract(S̃) ∩ fract(R); finally let S′ ⊆ S̃ be chosen so that fract(S′) = T ∪ fract({τ}).
Due to fraction-independence of S̃ the choice is unique and S′ is fraction-independent.
Furthermore, τ ∈ S′ and the size of S′ is at most k.

Example 7.34.

Suppose k = 3, m = 2, succσ,τ (X) = {(p, 3.7, 5), (q, 3.9, 5), (r, 4.2, 5)} and S′ =
{3.7, 4.2, 5}. Then X ′ = {(p, 3.7, 5)} ∪ {(q, τ, 5) | τ ∈ (3.7, 4.2)} ∪ {(r, 4.2, 5)}.
now(X ′) = 5.

111

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

A corresponding state (as defined below) is (X ′, µ′), where µ′ = {x1 7→ 3.7, x2 7→ 4.2, x3 7→
5}.

By fact 7.20, we deduce:

Claim 7.35. invariance of Y

For every two transitions (X1, S1) σ,τ1−−→ (X ′
1, S

′
1) and (X2, S2) σ,τ2−−→ (X ′

2, S
′
2) in Y and

a timed permutation π, if π(X1) = X2 and π(S1) = S2 and π(τ1) = τ2, then we have
π(X ′

1) = X ′
2 and π(S′

1) = S′
2.

Proof of claim 7.35.

Let i range over {1, 2} and let X̃i := succa,τi
(Xi). Thus S′

i is the least subset of Si ∪ {τi}
containing τi such that L(A; X̃i) is S′

i-invariant, and X ′
i = closureS′

i
(X̃i). By invariance

of JAK (fact 7.19) and invariance of semantics (fact 7.20) we get

π(X̃1) = X̃2, and π(L(A; X̃1)) = L(A; X̃2),

and therefore π(S′
1) = S′

2, which implies π(X ′
1) = X ′

2.

Let the final configurations of Y be FY = {(X,S) ∈ Y |X ∩ Lfin 6= ∅}. By induction on
the length of timed words it is easy to show:

Claim 7.36.

L(X ;X0) = L(Y;Y0).

Due to the assumption that A is greedily resetting and due to Point 2, in every pre-state
(X,S) ∈ Y the span of X is bounded by m and the size of S is bounded by k.

States
We now introduce states, which are designed to be in one-to-one correspondence with
configurations of the forthcoming dtak B′. Intuitively, a state differs from a pre-state
(X,S) only by allocating the values from S into k clocks, thus while a pre-state contains
a set S, the corresponding state contains a reset-point assignment µ : X → Q≥0 with
image µ(X) = S.
Let X = {x1, . . . , xk} be a set of k clocks. A state is a pair Z = (X,µ), where X is a macro-
configuration, µ : X→ Val(X) is a reset-point assignment, µ(X) is a fraction-independent
set containing now(X), and X is µ(X)-invariant. Thus every state Z = (X,µ) determines
uniquely a corresponding pre-state ρ(Z) = (X,S) with S = µ(X). We define the
deterministic timed transition system Z consisting of those states Z such that ρ(Z) ∈ Y ,
and of transitions determined as follows: (X,µ) σ,τ−−→ (X ′, µ′) if the corresponding pre-state
has a transition (X,S) σ,τ−−→ (X ′, S′) in Y, where S = µ(X), and

µ′(xi) :=
{
τ if µ(xi) /∈ S′ or µ(xi) = µ(xj) for some j > i

µ(xi) otherwise.
(7.3)

112

7.3. DECIDABILITY OF dta1 MEMBERSHIP FOR nta1

Intuitively, the equation (7.3) defines a deterministic update of the reset-point assignment
µ that amounts to resetting (µ′(xi) := τ) all clocks xi whose value is either no longer
needed (because µ(xi) /∈ S′), or is shared with some other clock xj , for j > i and is thus
redundant. Due to this disciplined elimination of redundancy, knowing that τ ∈ S′ and
the size of S′ is at most k, we ensure that at least one clock is reset in every step. In
consequence, µ′(X) = S′, and the forthcoming dtak B′ will be always resetting. Using
claim 7.35 we derive:

Claim 7.37. invariance of Z

For every two transitions (X1, µ1) σ,τ1−−→ (X ′
1, µ

′
1) and (X2, µ2) σ,τ2−−→ (X ′

2, µ
′
2) in Z and a

timed permutation π, if π(X1) = X2 and π◦µ1 = µ2 and π(τ1) = τ2, then we have
π(X ′

1) = X ′
2 and π◦µ′

1 = µ′
2.

Proof of claim 7.37.

Let i range over {1, 2}. Let Si = µi(X) and (Xi, Si)
a,τi−−→ (X ′

i, S
′
i) in Y . By claim 7.35 we

have

π(X ′
1) = X ′

2 and π(S′
1) = S′

2.

Since π◦µ1 = µ2 and the definition (7.3) is invariant:

π◦(µ′) = (π◦µ)′,

we derive π◦µ′
1 = µ′

2.

Let the initial state be Z0 = (X0, µ0), where µ0(xi) = 0 for all xi ∈ X, and let the final
states be FZ = {(X,µ) ∈ Z |X ∩ JAK 6= ∅}. By induction on the length of timed words
one proves:

Claim 7.38.

L(Y;Y0) = L(Z;Z0).

In the sequel we restrict Z to states reachable from Z0. In every state Z = (X,µ) in Z,
we have now(X) ∈ µ(X). This will ensure the resulting dtak B′ to be always resetting.

Orbits of states
While a state is designed to correspond to a configuration of the forthcoming dtak B′,
its orbit is designed to play the role of control location of B′. We therefore need to prove
that the set of states in Z is orbit-finite, i.e., the set of orbits {orbit(Z) |Z ∈ Z} is finite
and its size is bounded by f(k,m, n). We start by deducing an analogue of fact 7.27:

Claim 7.39.

For two states Z = (X,µ) and Z ′ = (X ′, µ′) in Z, their reset-point assignments are in
the same orbit, i.e., π◦µ = µ′ for some π ∈ Π, if, and only if, the corresponding clock
valuations now(X)− µ and now(X ′)− µ′ belong to the same k,m-region.

113

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

(In passing note that, since in every state (X,µ) in Z the span of X is bounded by m,
only bounded k,m-regions can appear in the last claim. Moreover, in each k,m-region
one of the clocks constantly equals 0.) The action of timed automorphisms on macro-
configurations and reset-point assignments is extended to states as π(X,µ) = (π(X), π◦µ).
Recall that the orbit of a state Z is defined as orbit(Z) = {π(Z) | π ∈ Π}.

Claim 7.40.

The number of orbits of states in Z is bounded by f(k,m, n).

Proof of claim 7.40.

We finitely represent a state Z = (X,µ), relying on the following general fact.

Fact 7.41.

For every ξ ∈ Q≥0 and S ⊆ Q≥0, the S-orbit2 orbitS(ξ) is either the singleton {ξ} (when
ξ ∈ S) or an open interval with end-points of the form τ + z where τ ∈ S and z ∈ Z
(when ξ /∈ S).

We apply the fact above to S = µ(X). In our case the span of X is bounded by m, and
thus the same holds for µ(X).
Consequently, the integer z in the fact above always belongs to {−m,−m+1, . . . ,m}.
In turn, X splits into disjoint µ(X)-orbits orbitµ(X)(ξ) consisting of open intervals separated
by endpoints of the form τ + z where τ ∈ µ(X) and z ∈ {−m,−m+1, . . . ,m}.

Example 7.42.

Continuing example 7.34, the endpoints are {3, 3.2, 3.7, 4, 4.2, 4.7, 5}, as shown in the
illustration:

Recall that µ(X) is fraction-independent. Let e1 < e2 < · · · < el+1 be all the endpoints
of open-interval orbits (l ≤ km), and let o1, o2, o3, . . . := {e1}, (e1, e2), {e2}, . . . be
the consecutive S-orbits orbitµ(X)(ξ) of elements ξ ∈ µ(X). The number thereof is
2l + 1 ≤ 2km + 1. The finite representation of Z = (X,µ) consists of the pair (O,µ),
where

O = {(o1, P1), . . . , (o2l+1, P2l+1)} (7.4)

2The orbits of states Z should not be confused with S-orbits of individual rationals ξ ∈ Q≥0.

114

7.3. DECIDABILITY OF dta1 MEMBERSHIP FOR nta1

assigns to each orbit oi the set of locations Pi = {p | (p, ξ, τ0) ∈ X for some ξ ∈ oi} ⊆ L,
(which is the same as Pi = {p | (p, ξ, τ0) ∈ X for all ξ ∈ oi} since X is µ(X)-invariant, and
hence µ(X)-closed). Thus, a state Z = (X,µ) is uniquely determined by the sequence O
as in (7.4) and the reset-point assignment µ.

We claim that the set of all the finite representations (O,µ), as defined above, is orbit-
finite. Indeed, the orbit of (O,µ) is determined by the orbit of µ and the sequence

P1, P2, . . . , P2km+1 (7.5)

induced by the assignment O as in (7.4). Therefore, the number of orbits is bounded by
the number of orbits of µ (which is bounded, due to claim 7.39, by Reg(k,m)) times the
number of different sequences of the form (7.5) (which is bounded by (2n)2km+1). This
yields the required bound f(k,m, n) = Reg(k,m) · 2n(2km+1).

Construction of the dta

As the last step we define a dtak B′ = (X,Σ, L′, {o0}, L′
fin,∆′) such that the reachable

part of JB′K is isomorphic to Z. Let locations L′ = {orbit(Z) |Z ∈ Z} be orbits of states
from Z, the initial location be the orbit o0 of Z0, and final locations L′

fin = {orbit(Z) |
Z ∈ FZ} be orbits of final states. A transition Z = (X,µ) σ,τ−−→ (X ′, µ′) = Z ′ in Z induces
a transition rule in B′

(o, a, ψ, Y, o′) ∈ ∆′ (7.6)

whenever o = orbit(Z), o′ = orbit(Z ′), ψ is the unique k,m-region satisfying τ − µ ∈ JψK,
and Y = {xi ∈ X | µ′(xi) = τ}. The automaton B′ is indeed a dta since o, σ and ψ

uniquely determine Y and o′:

Claim 7.43.

Suppose that two transitions (X1, µ1) σ,τ1−−→ (X ′
1, µ

′
1) and (X2, µ2) σ,τ2−−→ (X ′

2, µ
′
2) in Z

induce transition rules (o, σ, ψ, Y1, o
′
1), (o, σ, ψ, Y2, o

′
2) ∈ ∆′ with the same source location

o and constraint ψ, i.e,

τ1 − µ1 ∈ JψK τ2 − µ2 ∈ JψK. (7.7)

Then the target locations are equal o′
1 = o′

2, and the same for the reset sets Y1 = Y2.

(Notice that we only consider two transition rules with the same constraint ψ, instead
of two different jointly satisfiable constraints ψ,ψ′ as in the definition of deterministic
timed automata, due to the fact that each constraint of B′ is a single k,m-region.)

Proof of claim 7.43.

We use the invariance of semantics of A and claim 7.37. Let o = orbit(X1, µ1) =
orbit(X2, µ2). Thus there is a timed automorphism π such that

X2 = π(X1) µ2 = π◦µ1. (7.8)

115

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

It suffices to show that there is a (possibly different) timed permutation π′ satisfying the
following equalities:

τ2 = π′(τ1) {i | µ′
1(xi) = τ1} = {i | µ′

2(xi) = τ2} µ′
2 = π′◦µ′

1 X ′
2 = π′(X ′

1). (7.9)

We now rely the fact that both τ01 = now(X1) ∈ µ1(X) and τ02 = now(X2) ∈ µ2(X)
are assigned to the same clock due to the second equality in (7.8): τ01 = µ1(xi) and
τ02 = µ2(xi). We focus on the case when τ1 − τ01 ≤ m (the other case is similar and
easier since all clocks are reset due to greedy resetting), which implies τ2 − τ02 ≤ m due
to (7.7). In this case we may assume w.l.o.g., due to (7.7) and the equalities (7.8), that
π is chosen so that π(τ1) = τ2. We thus take π′ = π for proving the equalities (7.9).
Being done with the first equality, we observe that the last two equalities in (7.9) hold
due to the invariance of Z (c.f. claim 7.37). The remaining second equality in (7.9) is a
consequence of the third one.

Claim 7.44.

Let Z = (X,µ) and Z ′ = (X ′, µ) be two states in Z with the same reset-point assignment.
If π(X) = X ′ and π◦µ = µ for some timed automorphism π then X = X ′.

Claim 7.45.

Z is isomorphic to the reachable part of JB′K.

Proof of claim 7.45.

We essentially repeat the argument of claim 7.15. For a state Z = (X,µ), let ι(Z) =
(o, µ, τ), where o = orbit(Z) and τ = now(X). Let Z ′ denote the reachable part of JB′K.
By claim 7.13, the mapping ι(_) is a bijection between Z and its image ι(Z) ⊆ JB′K.
We aim at proving ι(Z) = Z ′. By the very definition (7.2), the image ι(Z) is a subsystem
of Z ′. Recall that Z is total: for every (σ1, τ1) . . . (σn, τn) ∈ T(Σ), there is a sequence
of transitions (X0, µ0) σ1,τ1−−−→ · · · σn,τn−−−→ in Z. Therefore ι(Z) is total too and, since Z ′ is
deterministic and reachable, the subsystem ι(Z) necessarily equals Z ′.

Claims 7.33, 7.36, 7.38 and 7.45 imply L(A) = L(B′), which completes the proof of
lemma 7.30.

7.4 Lower bounds for nta

All the lower bounds in this section are obtained by a reduction from the universality
problem for suitable language classes (does a given timed language L ⊆ T(Σ) satisfy
L = T(Σ)?), in complete analogy to §7.2 dealing with register automata. Our starting
point is the following result.

Theorem 7.46. [46, theorem 1]

The dta membership problem is undecidable for nta languages.

116

7.4. LOWER BOUNDS FOR nta

We provide a suitable adaptation, generalization, and simplification of the result above
which will allow us to extend undecidability to the dtak membership problem for every
fixed k ≥ 0, and also to obtain a complexity lower bound for nta1 input languages. Fix
two languages L ⊆ T(Σ) and M ⊆ T(Γ), and a fresh alphabet symbol $ 6∈ Σ ∪ Γ. The
composition LBM is the timed language over Σ′ = Σ ∪ {$} ∪ Γ defined as follows:

LBM = {u($, τ)(v + τ) ∈ T(Σ′) | u ∈ L, v ∈M, τ ∈ Q≥0},

where τ is necessarily larger or equal than the last timestamp of u by the definition
of T(Σ′). The following lemma exposes some abstract conditions on classes of timed
languages which are sufficient to encode the universality problem.

Lemma 7.47.

Let k,m ∈ N and let Y be a class of timed languages that
1. contains all the dta0 languages,

2. is closed under union and composition, and

3. contains some non-dtak (resp. non-dtak,m) language.

The universality problem for languages in Y reduces in polynomial time to the dtak
(resp. dtak,m) membership problem for languages in Y.

Lemma 7.47 is entirely analogous to lemma 7.16 for data languages, except that invariance
of languages in Y is not required; moreover, notice that the notion of composition of timed
languages that we need to state and prove the lemma above is a bit more complicated
than the straightforward notion of concatenation that appears in the analogous statement
for data languages from lemma 7.16.

Proof of lemma 7.47.

We consider dtak membership (the dtak,m membership is treated similarly). Consider
some fixed timed language M ∈ Y which is not recognised by any dtak (relying on the
assumption 3), over an alphabet Γ. For a given timed language L ∈ Y , over an alphabet
Σ, we construct the following language over the extended alphabet Σ ∪ Γ ∪ {$}:

N := LB T(Γ) ∪ T(Σ)BM ⊆ T(Σ ∪ Γ ∪ {$}),

where $ 6∈ Σ∪Γ is a fixed fresh alphabet symbol. Since Y contains all the dta0 languages
thanks to the assumption 1, and it is closed under union and composition thanks to the
assumption 2, the language N belongs to Y . We claim that the universality problem for
L is equivalent to the dtak membership problem for N :

L = T(Σ) ⇐⇒ N is recognised by a dtak.

For the “only if” direction, if L = T(Σ) then clearly N = T(Σ) B T(Γ). Thus N is
a dta0 languages, and thus also dtak for any k ≥ 0. For the “if” direction suppose,
towards reaching a contradiction, that N is recognised by a dtak A but L 6= T(Σ).
Assume, w.l.o.g., that A is greedily resetting. Choose an arbitrary timed word w =

117

CHAPTER 7. SOLVING DETERMINISTIC MEMBERSHIP PROBLEMS

(σ1, τ1) . . . (σn, τn) 6∈ L over Σ. Therefore, for any extension v = (σ1, τ1) . . . (σn, τn)($, τn+
τ) of w by one letter, we have

v−1N = τ +M = {(σ′
1, τ + ξ1) . . . (σ′

m, τ + ξm) | (σ′
1, ξ1) . . . (σ′

m, ξm) ∈M}.

Choose τ larger than the largest absolute value m of constants appearing in clock
constraints in A, and let (p, µ) be the configuration reached by A after reading v. Since
τ > m, all the clocks are reset by the last transition and hence µ(x) = 0 for all clocks
x. Consequently, if the initial control location of A were moved to the location p, the
so modified dtak A′ would accept the language M . But this contradicts our initial
assumption that M is not recognised by a dtak, thus finishing the proof.

We can now prove the following refinement of theorem 7.46 claimed in the introduction.

Theorem 7.48. undecidability and hardness for dtak membership

For every fixed k,m ∈ N, the dtak and dtak,m membership problems are:

1. undecidable for nta2,

2. undecidable for ntaε1 (nta with epsilon transitions),

3. HyperAckermann-hard for nta1.

Proof of theorem 7.48.

Each of the three points follows by an application of lemma 7.47. For instance, for
the first point take as Y the class of languages recognised by nta2. This class contains
all dta0 languages, is closed under union and composition, and is not included in
dtak for any k nor in dtak,m for any k,m (c.f. the nta1 language from example 2.24
which is not recognised by any dta). Since the universality problem is undecidable for
nta2 [2, Theorem 5.2], by lemma 7.47 the dtak and dtak,m membership problems are
undecidable for nta2. The second and third points follow in the same way, using the fact
that universality is undecidable for ntaε1 (nta1 with epsilon transitions) [70, Theorem
5.3], resp., HyperAckermann-hard for nta1 (by combining the same lower bound for
the reachability problem in lossy channel systems [18, Theorem 5.5], together with the
reduction from this problem to universality of nta1 given in [70, Theorem 4.1]).

118

Chapter 8

Undecidability in case of
unbounded number
of registers/clocks

This chapter groups together four undecidability results that share a lot of similarities
with one another. Problems are considered in the order of increasing complexity of proofs,
latter building upon the former. Observe that all undecidable problems are the most
general variants of the corresponding classes of problems—variants in which the number
of registers/clocks of the sought deterministic automaton in not given in advance.

Theorem 8.1. dta and dta•,m membership und.

The dta and dta•,m (m > 0) membership problems are undecidable for nta1 without
epsilon transitions.

Theorem 8.2. synthesis of dta und.

The timed synthesis decision problem is undecidable, and this holds already when Alice’s
winning condition is an nta2 language.

Theorem 8.3. dra membership und.

The dra membership problem is undecidable for nra1.

Theorem 8.4. synthesis of dra und.

The register synthesis decision problem is undecidable, and this holds already when
Alice’s winning condition is an nra2 language.

In all cases, undecidability is shown by a reduction of the problem of finiteness for lossy
counter machines (lcm) introduced in the §8.1. As a preparatory step, we introduce
encodings of lcm runs as data and timed words. A core fact to be shown in the
proofs concerning membership questions is that languages of incorrect encodings can be
recognised by nra/nta. The last two sections, devoted to synthesis problems, additionally
show that ‘locally’ correct encodings can be recognised as well.

119

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

8.1 Lossy counter machines

A k-counter lossy counter machine (lcmk) is a tuple M = (C, Q, qini,∆), where C
is a set of k counters, Q is a finite set of control locations, qini ∈ Q is the initial
control location, and ∆ is a finite set of instructions of the form (p, op, q), where
op ∈ Op = C × {‘␣ += 1’, ‘␣ -= 1’, ‘␣ = 0?’}. A configuration of an lcm M is a pair
(p, µ) ∈ Q × NC, where p is a control location, and µ is a counter valuation. For two
counter valuations µ, ν ∈ NC, we write µ ≤ ν if µ(c) ≤ ν(c) for every counter c ∈ C. The
semantics of an lcm M is given by a (potentially infinite) transition system over the
configurations of M such that there is a transition (p, µ) δ−→ (q, ν), for δ = (p, op, q) ∈ ∆,
whenever one of the following conditions holds:

1. op = ‘c += 1’ and ν ≤ µ[c 7→ µ(c) + 1], or

2. op = ‘c -= 1’ and ν ≤ µ[c 7→ µ(c)− 1], or

3. op = ‘c = 0?’, ν(c) = 01 and ν ≤ µ.

The finiteness problem (a.k.a. space boundedness) for an lcm M asks to decide whether
the set of reachable configurations of M

ReachConf(M) = {(p, µ) | (qini, µini) −→∗ (p, µ)}

is finite, where µini = λc.0 is the valuation mapping all counters to 0.

Theorem 8.5. [75, theorem 13]

The lcm4 finiteness problem is undecidable.

8.2 Representing lcm runs as words

In this section, we devise an encoding of lcm runs as words over a finite alphabet, thus
preparing grounds for the upcoming undecidability proofs. Our goal here is to provide a
way of representing computations of lcm such that some of its properties are regular. In
subsequent sections, the encoding will be further adapted to both data words and timed
words. Languages of those extended encodings will turn out to be co-nra and co-nta

languages, respectively.

Since already four lossy counters make the finiteness problem undecidable, for the rest of
the chapter we will focus exclusively on lcm4. Let us fix the lcm4 M = (C, Q, qini,∆)
with a set of counters C = {c1, c2, c3, c4}. We start by providing encodings for counter
valuations.

1Observe that the zero test can always be executed, as any counter can spontaneously lose its value
due to the lossiness. The only requirement is that the corresponding counter value is 0 afterwards.

120

8.2. REPRESENTING lcm RUNS ASWORDS

Encoding a counter valuation
Consider a counter valuation µ : C→ N. Its encoding enc(µ) ∈ C∗ is the word

enc(µ) = cµ(c1)
1 cµ(c2)

2 cµ(c3)
3 cµ(c4)

4 .

Let ValEncM = L(c∗
1c∗

2c∗
3c∗

4) be the language of correct encodings of counter valuations.
Additionally, for w ∈ ValEncM, let JwK denote the unique valuation µ for which
enc(µ) = w.

Encoding lcm runs
For the reasons that will become apparent in next section, we will encode the lcm runs in
a reverse order. To make the presentation consistent, we will also use a reversed notation
c′ δ←− c for a transition c

δ−→ c′. Fix a run π of lcm

π = (p1, µ1) δ1←− (p2, µ2) δ2←− · · · δn−2←−−− (pn−1, µn−1) δn−1←−−− (pn, µn) (8.1)

starting in (pn, µn) = (qini, µini) and ending in (p1, µ1). Let ∆′ = ∆′, and ΣM = C ∪∆′.
An encoding enc(π) ∈ Σ∗

M of the run π is defined as:

enc(π) = . enc(µ1) δ1 enc(µ2) δ2 · · · δn−2 enc(µn−1) δn−1 enc(µn) / (8.2)

Note that enc : Runs(M) ↪→ Σ∗
M. Let RunEncM be the language of encodings of runs

of M:

RunEncM = enc(Runs(M)).

For w ∈ RunEncM, by JwK we denote the unique run π ∈ Runs(M), such that w =
enc(π).
When no additional assumptions on M are made, the language RunEncM needs not
to be regular. However, many properties of valid encodings can be expressed as simple
regular conditions. For this reason we define an auxiliary language RegM ⊇ RunEncM,
which contains words w ∈ Σ∗

M satisfying conditions 8.6.A to 8.6.D, given below. As all
those conditions can be easily verified by finite automata, the language is regular.
Intuitively, RegM accepts words which satisfy almost all properties of a valid encoding
of lcm run. The only properties not captured by RegM are the inequalities given in
points 1-3 in the definition of lcm, which are required to hold between consecutive
counter valuations in a proper run’s encoding.

Condition 8.6.A. block structure

Any valid encoding of an lcm run must have a block structure composed of alternating
transition rules and counter valuation encodings:

w ∈ . ValEncM (∆ValEncM)∗ /

Condition 8.6.B. transition sequentiality

In any run π ∈ Runs(M), successive transitions pi
δi←− pi+1

δi+1←−− pi+2 are labelled with

121

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

transition rules sharing the intermediate state pi+1 ∈ Q:

δi+1 = (pi+2, opi+1, pi+1), δi = (pi+1, opi, pi)

Therefore, in w, if we disregard symbols from ΣM \∆, every two consecutive symbols
δi, δi+1 ∈ ∆ need to be of the shape (p,_,_) and (_,_, p) for some p ∈ Q, respectively.

Observe that if w meets conditions 8.6.A and 8.6.B, it corresponds to an unique sequence
JwK of lcm configurations interleaved with transition rules:

JwK = (p1, µ1) (p2, µ2) . . . (pn−1, µn−1) (pn, µn)
δ1 δ2 δn−2 δn−1

Condition 8.6.C. proper initial configuration

Every run π ∈ Runs(M) starts in the configuration c0 = (qini, λc.0). Therefore, any
proper encoding w must end (due to the reversed order) with the encoding of c0 followed
by /:

w ∈ Σ∗
M (qini,_,_)

ε︷ ︸︸ ︷
enc(λc.0) / .

Condition 8.6.D. consistency with zero tests

The last regular requirement ensures that the zero tests appearing in w are reflected in
corresponding counter valuations. For every infix of w of the form

enc(µi) (pi+1, ‘c = 0?’, pi) enc(µi+1)

we require enc(µi) ∈ (C \ {c})∗, i.e., symbol c does not appear in enc(µi).

8.3 Representing lcm runs as timed words

In this section, we define timed language RunEncTM tailored to satisfy, i.a., two design
goals:

I projT(RunEncTM) = RunEncM,

I RunEncTM ∈ co-nta1.

None of the above follows directly from the definition, the proof of the former concluding
this section, and of the latter—being the main content of the next section.
Let RegTM = proj−1

T (RegM). It clearly is in dta0. Define the timed encodings as

RunEncTM = RegTM ∩ AT
M ∩ BT

M ∩ CT
M.

where AT
M, BT

M, and CT
M be the languages of words satisfying conditions 8.7.A to 8.7.C

below, respectively. For the sake of upcoming sections, we denote the complements (with
respect to T(ΣM)) of languages arising in the definition as R̂eg

T
M, Â

T
M, B̂

T
M, and Ĉ

T
M.

122

8.3. REPRESENTING lcm RUNS AS TIMEDWORDS

Intuitively, the role of these conditions is to entail the property of lcm runs not captured
by RegM —enforcing inequalities between successive counter valuations:

Jvi+1K(c) ≥ JviK(c) +


0 op ∈ Op \ {‘c += 1’, ‘c -= 1’}
−1 op = ‘c += 1’

1 op = ‘c -= 1’
(8.3)

for every counter c ∈ C and every two consecutive valuation encodings vi, vi+1 with
operation op executed between them. Note that in case of case ‘c = 0?’, the actual test is
made by RegM).

Condition 8.7.A. strict monotonicity

Timed word w is strictly monotonic—it does not contain two letters with the same
timestamp.

Condition 8.7.B. blocks aligned to unit intervals

Symbols from ∆′ appear in w with consecutive integer timestamps starting from 0.

Observe that words belonging to RegTM and satisfying condition 8.7.B take a form

(., 0) v1 (δ1, 1) v2 (δ2, 2) · · · (δn−2, n− 2) vn−1 (δn−1, n− 1) vn (/, n) (8.4)

for some n ∈ N, where words vi encode valuations µi = JprojT(vi)K.

Condition 8.7.C. well-alignment of valuation encodings

For every infix of w having the form (δi−1,_) vi ((pi+1, op, pi),_) vi+1 (δi+1,_) , where
δ• ∈ ∆′ and v• ∈ proj−1

T (ValEncM), the encodings vi, vi+1 are well aligned, i.e., for each
counter c ∈ C, depending on op, appropriate requirement is met:

Case a: op ∈ Op \ {‘c += 1’, ‘c -= 1’}, i.e., op does not modify the c counter
expected condition structural requirement
Jvi+1K(c) ≥ JviK(c) Each timed symbol (c, τ) in vi implies existence of (c, τ+1)

in vi+1 after exactly one time unit.

Case b: op = ‘c += 1’
expected condition structural requirement
Jvi+1K(c) ≥ JviK(c)− 1 As in case a, with the exception of the first symbol (c, τ)

in vi, which can, but does not have to have a match in
vi+1.

Case c: op = ‘c -= 1’
expected condition structural requirement
Jvi+1K(c) ≥ JviK(c) + 1 As in case a, and additionally in vi+1 an extra letter

c appears within less than one time unit from the first
symbol c of vi.

We will show that RunEncTM characterises valid encodings of M’s runs:

123

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Lemma 8.8. timed encodings express all runs ofM, and only them

RunEncM = projT(RunEncTM).

Proof of lemma 8.8.

RunEncM ⊇ projT(RunEncTM)

Fix w ∈ RunEncTM. As w ∈ RegTM, we know that w corresponds to a sequence

JwK = (p1, µ1) (p2, µ2) . . . (pn−1, µn−1) (pn, µn)
δ1 δ2 δn−2 δn−1

which is consistent with zero tests, the successive transition rules match, and it starts
in a valid configuration. It remains to show that well-alignment implies that correct
inequalities hold between every two consecutive valuations µi, µi+1. Fix arbitrary infix
of w of the form

(δi−1, τi−1) vi ((pi+1, op, pi), τi) vi+1 (δi+1, τi+1) .

Condition 8.7.B implies that the timestamps τ• are i− 1, i and i+ 1, respectively:

(δi−1, i− 1) vi ((pi+1, op, pi), i) vi+1 (δi+1, i+ 1) .

For any counter c ∈ C, if it is not modified by op, well-alignment implies that every
symbol (c, τ) in vi (with timestamp τ ∈ (i−1, i)) has its repetition (c, τ +1) in vi+1. Due
to strict monotonicity, the repetition (c, τ+1) is not associated to any other symbols of vi.
Thus, µi(c) ≤ µi+1(c), as it was required. Other inequalities, for op ∈ {‘c += 1’, ‘c -= 1’}
are handled similarly. Therefore, JwK ∈ Runs(M).

RunEncM ⊆ projT(RunEncTM)

We only need to show that enc(π), having form as in eq. (8.2), can be upgraded into a
timed word satisfying conditions 8.7.A to 8.7.C. As there is only one, straightforward
way of enforcing first two of them, it suffices to show that encodings of counter valuations
can be well aligned. We construct the alignment from left to right, starting by arbitrarily
selecting timestamps for v1 = enc(µ1): we assign its i-th letter with i+1/|v1|+2. Let us
assume vi = enc(µi) has been already given timestamps and we need to align vi+1 well.
Fix a counter c ∈ C. If opi does not modify c, we know that µi(c) ≤ µi+1(c), thus we
may place one letter c one time unit later than every c appearing in vi. The excessive
letters c can be then distributed arbitrarily, e.g., after the last c, but before the next
symbol. Valuations of counters affected by presently executed operation can be aligned
similarly.

8.4 Undecidability of dta membership

This section contains a proof of the following undecidability result:

124

8.4. UNDECIDABILITY OF dta MEMBERSHIP

Theorem 8.1 dta and dta•,m membership und.

The dta and dta•,m (m > 0) membership problems are undecidable for nta1 without
epsilon transitions.

The reduction presented here has two main ingredients—the lemmas stated below.

Lemma 8.9. wrong timed encodings are recognised by nta1

T(ΣM) \ RunEncTM ∈ nta1 and the automaton can be effectively constructed.

Lemma 8.10. M’s finiteness equivalent to determinisability of RunEncTM

The set of reachable configurations ReachConf(M) is finite if, and only if, RunEncTM is
a deterministic timed language.

Proof of theorem 8.1.

The reduction from theorem 8.5 is a result of a trivial juxtaposition of lemmas 8.9 and 8.10:
given lcm4 M, construct the automaton for T(ΣM) \ RunEncTM and ask about its
determinisability. The answer will be positive if, and only if, the complement—RunEncTM

—is a deterministic timed language, which in turn occurs if, and only if, ReachConf(M)
is finite.

Proof of lemma 8.9.

Observe that

T(ΣM) \ RunEncTM = R̂eg
T
M ∪ Â

T
M ∪ B̂

T
M ∪ Ĉ

T
M.

Since the class of nta1 is effectively closed under unions, we only need to show that
languages Â

T
M, B̂

T
M, and Ĉ

T
M are recognised by nta1. Thus, the statement to be proven

stems from the following lemmas 8.11 to 8.13.

Lemma 8.11.

Â
T
M ∈ dta1.

Lemma 8.12.

B̂
T
M ∈ dta1.

Lemma 8.13.

Ĉ
T
M ∈ nta1.

Proof of lemma 8.11.

Observe that w ∈ Â
T
M whenever two symbols in w appear with the same timestamp.

Thus, Â
T
M is straightforwardly recognised by dta1 with one clock x and just 3 states L =

{Ini,Ok,Err}, first one being initial, Err —accepting. The automaton has transitions

(Ini σ,{x}===⇒ Ok) (Ok
σ,x>0,{x}======⇒ Ok) (Ok

σ,x=0====⇒ Err) (Err σ=⇒ Err).

for each σ ∈ ΣM.

125

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Proof of lemma 8.12.

Language B̂
T
M can be recognised by a dta with one clock x as well. The correspond-

ing automaton detects any misaligned boundary of blocks. As before, its states are
{Ini,Ok,Err}, Ini being initial and Err—accepting. The transitions are

(Ini δ, x=0, {x}=======⇒ Ok) (Ok
c, x<1====⇒ Ok) (Ok

δ, x=1, {x}=======⇒ Ok)

(Ok
σ, x>1====⇒ Err) (Ok

δ, x<1====⇒ Err) (Ok
c, x=1====⇒ Err) (Err σ=⇒ Err)

missing boundary boundary too soon bad boundary symbol

where σ ∈ ΣM, δ ∈ ∆′, and c ∈ C.

Proof of lemma 8.13.

Language of counter valuation encodings’ alignment errors, Ĉ
T
M, is recognised by E ∈ nta1.

Its definition is preceded by an intuitive description of its operation.

Intuition

The automaton tries to nondeterministically locate an infix w′ of the form

w′ = (δi−1,_) vi ((pi+1, op, pi),_) v′
i+1 where δi−1 ∈ ∆′ and vi, v

′
i+1 ∈ T(C)

which witnesses a misalignment error, i.e., an infix such that for its every w′′ of the form

w′′ = v′′
i+1 (δi+1,_) where v′′ ∈ T(C) and δi+1 ∈ ∆

the word w = w′w′′ does not satisfy the well-alignment condition 8.7.C. In general, for
every c ∈ C, the condition can be violated in two ways:

1. symbol s1 = (c, τ) occurring in vi is not followed by (c, τ + 1) in vi+1, while it should
be, according to well-alignment, or

2. op = ‘c -= 1’, a symbol s1 = (c, τ) is the first occurrence of c in vi, but the last
symbol with timestamp < τ + 1 is not c.

The automaton nondeterministically selects s1 in vi and tries to verify that one of the
above cases occurs. To do so, it needs to locate the following symbols, if they exist, and
store them in its control location:

I s0 = (α,_)—the immediate predecessor of s1,

I s1—as above,

I s2 = ((_, op,_),_)—the first timed symbol from ∆ appearing after s1,

I s3 = (β,_)—the last timed symbol in w with a timestamp < τ + 1,

I s4 = (γ, τ ′)—the first timed symbol in w with τ ′ ≥ τ + 1 (s3 being its immediate
predecessor)

126

8.4. UNDECIDABILITY OF dta MEMBERSHIP

All symbols are required to appear in the input word exactly in the order specified by
their subscripts. For convenience, their mutual relations were illustrated in the picture
below:

time

τ τ + 1

cs1:αs0: βs4:

(_, op,_)s3:

immediate predecessor of c

no letters no letters

one time unit

no letters from ∆

Having found the symbols, it checks whether one of the following conditions holds:

C1. op is ‘c -= 1’ or it does not involve c, but s4 6= (c, τ + 1),

C2. op = ‘c += 1’, s1 is not the last letter in a sequence of symbols c (i.e., α = c), but
s4 6= (c, τ + 1),

C3. op = ‘c -= 1’ and s1 is the last letter in a sequence of symbols c (α 6= c), but the
successor of s4 is not labelled with c.

Upon successful verification, it goes to (and stays in) the accepting state Err.

Construction of the automaton for Ĉ
T
M

The state space of dta1 E realising the above is Σ0
M ∪ Σ1

M ∪ Σ2
M ∪ Σ3

M ∪ Σ4
M ∪ {Err},

the first component being used to find and store symbols s•. Its initial state is (), while
Err is the only accepting one. The automaton operates in three phases:

1. (finding s1) In the first phase, it nondeterministically skips some prefix of the input
and selects some letter c ∈ C, storing it by transitioning to state (s1). At the same
time, it resets its clock to be able to correctly determine s4 later.

2. (finding s2 and s3) In the phase between guessing s1 and finding s3, automaton E
checks for each symbol that the clock value is strictly less then 1—otherwise the
run is not continued. Symbol s2 = (α,_)—successor of s1—is stored by going to
state (c, α), if α /∈ ∆, or to (c, α, α) otherwise. If letter from ∆ is yet to be seen, i.e.,
the present state is (c, α), the automaton E waits with a self-loop and upon finding
δ ∈ ∆ goes to (c, α, δ).

3. (finding s4 and verifying conditions) In the last phase, being in state (c, α, δ), au-
tomaton E waits for s4 with a self-loop requiring counter to be less than 1. Once it
encounters symbol s4 it can check conditions C1 and C2. If either one is met, it goes
to (and stays in) state Err. Otherwise, it goes to state (c, α, δ, β), and if the next
letter read satisfies C3, it goes to Err, too.

127

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Language of local errors Ĉ↓
T
M

For the sake of the upcoming §8.5 we also define an automaton E ′, which for every
σ ∈ ΣM does not contain the transition rule (Err σ=⇒ Err). It recognises timed words,
for which some run of E enters the Err state for the first time. We denote the language
of E ′ as Ĉ↓

T
M, and its complement as C↓TM. Intuitively, C↓TM recognises a local absence

of errors against the condition 8.7.C—no such error is detected whilst the last letter of
the input is read.

Fact 8.14. properties of Ĉ↓
T
M

I Ĉ
T
M = Ĉ↓

T
M · T(ΣM),

I w ∈ CT
M if, and only if, its every prefix v v w belongs to C↓TM.

We move to the last remaining part of this section—the proof of lemma 8.10

Proof of lemma 8.10.

Given M∈ lcm4, we need to prove the equivalence

|ReachConf(M)| <∞ ⇐⇒ RunEncTM ∈ dta.

The ‘⇒’ implication

Assume that ReachConf(M) is finite. Since the size ofM’s configuration space is limited,
it becomes a finite state system and thus the language RunEncM is regular. However, to
deterministically recognise RunEncTM, we also need to verify conditions 8.7.A to 8.7.C.
Let k ∈ N be the finite upper bound on the attainable sum of M’s counter values. By
lemma 8.8, in every w ∈ RunEncTM the length of infixes from ValEncMis bounded by k,
too. We will show that RunEncTM can be recognised by dta2k+2

2. Since AT
M and BT

M
are complements of dta1 languages (lemmas 8.11 and 8.12), they are dta1.
We construct a timed automaton A which will recognise RunEncTM. It simulates the
automata recognising RunEncM, AT

M, and BT
M. Therefore we can assume JwK ∈ Runs(M)

and w has the form as in eq. (8.4). Additionally, from the assumption, each vi has length
at most k.
Intuitively, we only need to deterministically verify condition 8.7.C (well-alignment)
using remaining 2k clocks. To this end, we partition the clocks into two groups of size k,
which will be used in alternating fashion, to verify alignment of pairs vi, vi+1 starting in
odd- and even-numbered blocks v•, respectively. Since well-alignment is a local property,
the group of clocks can be reused after reading two blocks.
Fix pair of consecutive blocks vi, vi+1. When the automaton A reads vi, it resets its
j-th clock from the currently unused group and remembers each letter cj of vi in its
state. Having read transition rule δ at the block boundary, A trivially verifies that the
symbols from vi are followed one time unit later by matching symbols in vi+1, when
well-alignment conditions require that.

2The construction is not optimal: k + 1 clocks would suffice, coming at the price of a more involved
proof.

128

8.5. UNDECIDABILITY OF TIMED SYNTHESIS

The ‘⇐’ implication

Let us assume that ReachConf(M) is infinite, and, towards contradiction, that RunEncTM
is recognised by some A ∈ dta with a finite set of clocks X, k = |X|. Due to first
assumption, there is no finite upper bound on the attainable counter values. In particular,
there exists a run π ending with a counter valuation µ with µ(c) = k+ 2. Due to , π has
some encoding w ∈ RunEncTM, which needs to have the form

w = .

enc(µ)︷ ︸︸ ︷
v′ (c, τ0) . . . (c, τk+1) v′′ (δ, τ)︸ ︷︷ ︸

w′

w′′ ,

where v′, v′′ correspond to counters other than c, and δ ∈ ∆. When A is reading
w, after observing the enc(µ) block, it must forget at least two of the timestamps
τ0, . . . , τk+1. At least one of them, say τj , is different than τ0. Recall the well-alignment
condition 8.7.C. Although depending on counter operation executed in between, symbol
(c, τ0 + 1) may not be required in w′′, it unconditionally needs to contain k + 1 letters
(c, τ1 + 1), . . . , (c, τk+1 + 1).

Intuitively, we will arrive at a contradiction by showing that the letter (c, τj + 1) can be
moved slightly without influencing the acceptance of A. Let z = (l, ν) be the configuration
of A after reading w′. Let T = ν(X ∪ {O}) be the set of timestamps remembered in that
configuration. Since L(z) is T -invariant (), and τj /∈ T , we may move the letter (τj + 1)
slightly, by applying an automorphism ψ ∈ AutT (T) such that ψ(τj) 6= τj to w′′. The
resulting encoding w′ψ(w′′) is no longer valid, since it violates condition 8.7.C, but A
still accepts it. This contradicts that A recognises RunEncTM, and thus RunEncTM is
not a dra language, as required.

8.5 Undecidability of timed synthesis

In this section, we continue to develop the tools that helped to show the undecidability
of the dta membership problem, aiming this time to prove the decision version of timed
synthesis problem undecidable:

Theorem 8.2 synthesis of dta und.

The timed synthesis decision problem is undecidable, and this holds already when Alice’s
winning condition is an nta2 language.

For M∈ lcm4, we will define a timed synthesis game GT
M with condition WM and show

that:

Lemma 8.15. Alice’s winning condition in GT
M is nta2

WM ∈ nta2.

129

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Lemma 8.16. GT
M characterises determinisability of RunEncTM

ReachConf(M) is finite if, and only if, there exists a winning strategy for Bob in GT
M.

Proof of theorem 8.2.

Undecidability is a trivial consequence of theorem 8.5 and lemmas 8.15 and 8.16.

8.5.1 Definition of GT
M

Players in game GT
M have actions

A = ΣM (Alice)
B = {ok, , errR, errA, errB, errC} (Bob)

The winning set of Alice is WM = Reach(V T
M) for the following language V T

M of finite
timed words:

V T
M = proj−1

B (ok∗ + ok) (8.5)

∪ proj−1
B (ok∗ ∗) ∩ proj−1

A (RegTM) (8.6)

∪ proj−1
B (ok∗ ∗ errR) ∩ proj−1

A (RT
M) (8.7)

∪ proj−1
B (ok∗ ∗ errA) ∩ proj−1

A (AT
M ∪ R̂

T
M) (8.8)

∪ proj−1
B (ok∗ ∗ errB) ∩ proj−1

A (BT
M ∪ R̂

T
M ∪ Â

T
M) (8.9)

∪ proj−1
B (ok∗ ∗ errC) ∩ proj−1

A (C↓TM ∪ R̂
T
M ∪ Â

T
M ∪ B̂

T
M) (8.10)

∪ proj−1
B (ok∗ ok) ∩ proj−1

A (R̂
T
M ∪ Â

T
M ∪ B̂

T
M ∪ Ĉ↓

T
M) (8.11)

8.5.2 Intuitition

Before we move to the proof of lemmas 8.15 and 8.16, we first provide a less formal,
intuitive description of the mechanics of game GT

M.

Fix a play of GT
M —an infinite timed word w = (a1, b1, τ1)(a2, b2, τ2) · · · ∈ Tω(A ·B).

Let vn denote its prefix of length n ∈ N. Conceptually, in n-th turn, Bob has provide
an answer bn to some question regarning the timed word projA(vn) built so far by Alice.
Alice wins if Bob gives an incorrect answer in some round; conversely, Bob wins if all his
answers are correct.

The question for Bob is: ‘Does the word projA(vn) belong to one of the languages R̂
T
M, Â

T
M,

B̂
T
M, Ĉ↓

T
M of erroneous encodings? If so, point out the first out of the listed languages to

which it belongs’.

130

8.5. UNDECIDABILITY OF TIMED SYNTHESIS

Intuition on the Bob’s actions

Bellow is a list of permitted responses to this question, along with their intuitive meanings:

ok ‘projA(vn) does not belong to any of the languages of incorrect encodins’,

errR, errA,
errB, errC

‘projA(vn) belongs to R̂
T
M, Â

T
M, B̂

T
M, or Ĉ

T
M, respectively, but it does not

belong to any language appearing earlier in the list’,

 ‘I cannot point out any of the required errors in projA(vn) just yet, but I
am certain that as Alice continues to build the word, some error will appear
no later than the end of encoding marker / is reached’.

Bob is punished for giving an incorrect answer by V T
M.

Intuition on the components of V T
M

Every line of V T
M’s definition has the form proj−1

B (LB) ∩ proj−1
A (LA) for some regular

language LB and timed language LA. A prefix v v w is winning for Alice, if it satisfies
both projB(v) ∈ LB and projA(v) ∈ LA. Let us analyse the definition of V T

M line by line,
intuitively describing the requirements they impose on Bob upon reading v.

(8.5) Bob is forbidden to use ok after he played which leaves him only with the
remaining symbols { , errR, errA, errB, errC}. Intuitively, by playing
 , he declared he will find an error in the future and he cannot withdraw
this promise.

(8.6) Bob is forbidden to play when v ∈ proj−1
A (RegTM) (i.e., when, i.a., the

last symbol Alice produced is /). Intuitively, a past use of obliges Bob
to play a symbol from {errR, errA, errB, errC} the turn Alice plays / at
the latest.

(8.7)
– (8.10)

Bob’s error reports need to correctly point out the first language among
R̂
T
M, Â

T
M, B̂

T
M, and Ĉ

T
M to which projA(v) belongs. Bob loses both when he

fails to notice an error with higher priority than the one being reported, or
when his report is false.

(8.11) Bob cannot play ok when projA(v) does belong to some language of erroneous
encodings.

Observe that in each of (8.5) – (8.11) the proj−1
B (LB) component features a language

LB with the property that a letter from E = {errR, errA, errB, errC} appears at most
once. Therefore, the outcome of the game is decided as soon as Bob plays some symbol
from E.

Additionally, note that if a partial play vn features the symbol an = /, and Alice has not
won yet (i.e., vi /∈ V T

M for i ≤ n), from now on Bob has a trivial winning strategy: to
reply with errR no matter what his opponent plays. Indeed, his answer will be correct,
as no partial play v A vn containing vn as its proper prefix can satisfy projA(v) ∈ RT

M,
because a prefix of RegTM can only contain / as the last letter.

131

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

For a play w ∈ Tω(A ·B), let cut(w) ∈ T(A ·B) denote its prefix up to and including
the first symbol of the form (/,_) if it exists, and an empty prefix ε otherwise. The
winning condition is designed to ensure the following property:

Lemma 8.17. correspondence between RunEncTM and plays of GT
M

Consider a play w ∈ Plays(GT
M) \WM with nonempty prefix v = cut(w). Then

projA(v) ∈ RunEncTM ⇐⇒ projB(v) ∈ ok∗.

In words, if w is winning for Bob and cut(w) is not empty, then projA(v) is a valid
encoding of M’s run if, and only if, Bob played only ok in v. This characterisation will
play a crucial role in proving lemma 8.16.

8.5.3 Proofs

The remainder of this section contains proofs of lemmas 8.15 to 8.17.

Proof of lemma 8.15.

Observe that it suffices to prove that V T
M ∈ nta2. Since the class of nta2 is closed with

respect to unions, we only need to show that each of the languages stated in lines (8.5)
– (8.11) is nta2. This is evident for all lines but (8.10), because we have already shown
that RegTM,RT

M,AT
M,BT

M ∈ dta1 and Ĉ↓
T
M ∈ nta1. Thus, we only need to show that

proj−1
B (ok∗ ∗ errC) ∩ proj−1

A (C↓TM ∪ R̂
T
M ∪ Â

T
M ∪ B̂

T
M) ∈ nta2,

the difficulty being caused by the occurence of C↓TM. Since the component proj−1
B (ok∗ ∗ errC)

is just a regular condition on the word played by Bob, we can focus on proving that

C↓TM ∪ R̂
T
M ∪ Â

T
M ∪ B̂

T
M ∈ nta2.

We construct A ∈ nta2 recognising that language. It consists of four independent
components, thus recognising the union of their languages. The components are A′ (yet
to be defined), and the automata corresponding to languages R̂

T
M, Â

T
M, and B̂

T
M. This

construction guarantees that R̂
T
M, Â

T
M, B̂

T
M ⊆ L(A). To complete the proof, we need to

design A′ ∈ nta2 such that for every w ∈ RT
M ∩ AT

M ∩ BT
M

w ∈ L(A′) ⇔ w ∈ C↓TM.

This in turn boils down to verifying whether the automaton E ′ recognising Ĉ↓
T
M from

the fact 8.14 rejects w. Recall that in order to accept, E ′ tries to locate in w symbols
s1, s2, s3, s4 satisfying particular conditions (C1, C2 or C3).

Proof of lemma 8.16.

The ‘⇒’ implication

132

8.5. UNDECIDABILITY OF TIMED SYNTHESIS

Assume that ReachConf(M) is finite. There is some k such that every reachable configu-
ration (p, µ) has size

∑
c∈C µ(c) ≤ k. In this case, the set of correct timed encodings of

runs of M can be recognised by a dta(k+2) A which resets clock xj when reading the
j-th position of block piuiδi (which is of length ≤ k + 2). From A we can produce a
winning controller for Bob with k clocks:

The ‘⇐’ implication

Assume that ReachConf(M) is infinite and, towards reaching a contradiction, that Bob
has a winning controller B = (X, A,B, L, lini,∆) with k ∈ N clocks. We will focus on
constructing B′ ∈ dtak recognising RunEncTM, which will imply by lemma 8.10 that
ReachConf(M) is finite.

Construction of dtak

Let B′ = (X, A, L ∪ {Ok,Err}, lini, {Ok},∆′), where ∆′ contains transitions

I (p a,ϕ,Y===⇒ q) for every (p a/ok,ϕ,Y=====⇒ q) ∈ ∆ where a ∈ A \ {/},

I (p a,ϕ,Y===⇒ Ok) for every (p //ok,ϕ,Y=====⇒ q) ∈ ∆,

I (p a,ϕ,Y===⇒ Err) for every (p a/e,ϕ,Y=====⇒ q) ∈ ∆, where e ∈ B \ {ok},

I (Err a=⇒ Err) for every a ∈ A.

Correctness

We need to show that L(B′) = RunEncTM. Take any u ∈ T(A). Let w be any (u,B)-
conformant play of GT

M. As B is a winning controller, w is winning for Bob. Let
v = cut(w). Note that by construction projA(v) = u, and v corresponds to an accepting
run of B′ if, and only if, projB(v) ∈ ok∗. Therefore we have

u ∈ L(B′) ⇐⇒ projB(v) ∈ ok∗ ⇐⇒ projA(v) = u ∈ RunEncTM

where the last equivalence follows from lemma 8.17.

Proof of lemma 8.17.

Let us fix a play w ∈ Plays(GT
M) \WM winning for Bob, such that v = cut(w) is not

empty. We need to show that

projA(v) ∈ RunEncTM ⇐⇒ projB(v) ∈ ok∗

The ‘⇒’ implication

Assume projA(v) ∈ RunEncTM = RegTM∩AT
M∩BT

M∩CT
M. Towards contradiction, assume

that projB(v) /∈ ok∗. We aim at showing that w is not winning for Bob. Note that it
suffuces to exhibit a prefix v′ v v belonging to V T

M. Let E = {errR, errA, errB, errC}.

133

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Case 1: projB(v) ∈ B∗EB∗

Let v′ v v be the shortest prefix of v such that the last letter b of projB(v′) belongs
to E. Since w is winning, projB(v′) ∈ ok∗ ∗ E (as ok cannot follow). Note that
projA(v′) ∈ RT

M ∩ AT
M ∩ BT

M ∩ C↓TM, because

I RT
M is the prefix closure of RegTM,

I languages AT
M and BT

M are both prefix-closed, and

I projA(v′) ∈ C↓TM due to fact 8.14.

therefore, depending on the letter b ∈ E, one of the components (8.7) – (8.10) matches
v′, implying v′ ∈ V T

M.

Case 2: projB(v) ∈ {ok, }∗

In this case projB(v) needs to contain symbol . If it is followed by ok symbol, some
prefix of v trivially matches the component (8.5) of vM’s definition. Otherwise projB(v) ∈
ok∗ +. But projA(v) ∈ RegTM and therefore v ∈ V T

M (cf. (8.6)).

The ‘⇐’ implication

Assume that projB(v) ∈ ok∗. Since w is winning, no prefix of v belongs to V T
M. Therefore,

for every v′ v v we have projA(v′) ∈ RT
M ∩ AT

M ∩ BT
M ∩ C↓TM (cf. (8.11)). Using fact 8.14

we conclude that projA(v) ∈ CT
M, and—consequently—projA(v) ∈ RunEncTM.

8.6 Representing lcm runs as data words

In this section, we set up the general framework for the upcoming undecidability results
related to register automata. Although their general idea and structure will remain
similar to the timed case, there will be quite significant differences in the technical details.
In particular, membership and game undecidability proofs diverge sooner, as they require
slightly different encoding variants. Therefore, we define two languages of encodings:
RunEncAM (unordered) and RunEncA,<M (ordered). Analogously to §8.3, they will have
the properties

I projA(RunEncAM) = projA(RunEncA,<M) = RunEncM (cf. corollaries 8.22 and 8.23),

I RunEncAM ∈ co-nra1,

I RunEncA,<M ∈ co-nra2.

We specify both languages indirectly, by imposing some of conditions 8.18.A to 8.18.C<.
Let RegAM = proj−1

A (RegM). It clearly belongs to dra0. Define

RunEncAM = RegAM ∩ AA
M ∩ BA

M ∩ CA
M

RunEncA,<M = RegAM ∩ AA
M ∩ BA

M ∩ CA,<
M

134

8.6. REPRESENTING lcm RUNS AS DATAWORDS

where AA
M, BA

M, CA
M, and CA,<

M are the languages of words satisfying conditions 8.18.A
to 8.18.C< below, respectively. Again, the complements with respect to (ΣM × A)∗ are
denoted as R̂eg

A
M, Â

A
M, B̂

A
M, Ĉ

A
M, and Ĉ

A,<
M .

Similarly to the timed case, these conditions are built to entail inequalities between
successive counter valuations (cf. eq. (8.3)). Recall that w ∈ RegAM implies w has a block
structure imposed by condition 8.6.A.

Condition 8.18.A. all transitions come with single, unique data value

There exists α ∈ A such that for all symbols (σ, β) ∈ ΣM × A of the input word

σ ∈ ∆′ ⇐⇒ β = α.

Intuitively, all symbols from ∆′ appear with α, and just them.

Condition 8.18.B. no duplication of data values within blocks

Every valuation encoding block in w has all its atoms pairwise different. (But the same
atom can appear in many blocks.)

Condition 8.18.C. symbols are repeated

Choose any counter c ∈ C and arbitrary suffix of w having the form

(δ0,_) v1 (δ1, α1) v2 w
′ (8.12)

where I δ• ∈ ∆′, I δ1 = (p2, op, p1), I α• ∈ A, I projA(v•) ∈ C∗, and I v2 is a maximal
infix containing only letters from C. Depending on op, we require the following:

Case a: op ∈ Op \ {‘c += 1’, ‘c -= 1’}, i.e., op does not modify c

expected condition structural requirement
Jv2K(c) ≥ Jv1K(c) Each letter/atom pair (c, α) in v1 reappears in v2.

Case b: op = ‘c += 1’
expected condition structural requirement
Jv2K(c) ≥ Jv1K(c)− 1 As in case a, with the exception of the first symbol labeled

with c in v1, which can, but does not have to have a match
in v2.

Case c: op = ‘c -= 1’
expected condition structural requirement
Jv2K(c) ≥ Jv1K(c) + 1 As in case a, and additionally the repetition (c, α) in v2

cannot be the first occurrence of c in v2.

The final condition 8.18.C< modifies slightly 8.18.C. Below, neighbouring atoms of v1, if
they are repeated in v2, they need to be so in the same order as in v1.

135

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Condition 8.18.C<. pairs of symbols, if repeated, appear in order

Choose any counter c ∈ C and arbitrary suffix of w having the form

(δ0,_) v1 (δ1, α1) v2 w
′ (8.13)

where I δ• ∈ ∆′, I δ1 = (p2, op, p1), I α• ∈ A, I projA(v•) ∈ C∗, and I v2 is a maximal
infix containing letters from C in all positions except the last one, which can be arbitrary.
Depending on op, we require the following:

Case a’: op ∈ Op \ {‘c += 1’, ‘c -= 1’}, i.e., op does not refer to c

expected condition structural requirement
Jv2K(c) ≥ Jv1K(c) For any two consecutive symbols xx′ = (c, β) (_, β′) in

v1 (δ1, α1) , if atom β′ appears in v2 , then x occurs in
there too, before β′ does.

Cases b-c are an exact copy of cases 8.18.C.b-c, but now defined on top of updated
condition a’.

Observe that CA,<
M * CA

M, because condition 8.18.C< is also met by w = (δ1,_) v (δ2, α2) (δ3, α3) ,
for arbitrary v ∈ (C× A)∗ and atom α3 different from atoms of v (δ2, α2) . However,
once we enforce that all symbols from ∆′ are labeled with one atom α ∈ A, we obtain

Lemma 8.19. conditions 8.18.A and 8.18.C< together imply condition 8.18.C

AA
M ∩ CA,<

M ⊆ CA
M.

Proof of lemma 8.19.

Fix a data word u ∈ (ΣM × A)∗. Assume that it meets conditions 8.18.A and 8.18.C<.
Take arbitrary infix w of u having the form as in eq. (8.12). Let us enumerate symbols
of v1, starting from the last: v1 = xn . . . x2x1x0, where n ∈ N and xi = (ci, βi) ∈ C× A.
The proof is a simple induction with respect to i.

Base case
Observe that condition 8.18.A implies that α1 = α2. Applying condition 8.18.C< to w,
choosing pair of symbols x0(δ, α1) as xx′, we get that x0 appears in v2.

Inductive step
This follows trivially from the inductive assumption that xi reappears in v2, and condi-
tion 8.18.C<, applied to the pair xi+1xi.

Lemma 8.19 trivially implies that

Corollary 8.20. ordered encodings are valid unordered encodings

RunEncA,<M ⊆ RunEncAM.

The remainder of this section is devoted to the proofs of the following lemma:

136

8.6. REPRESENTING lcm RUNS AS DATAWORDS

Lemma 8.21.

I RunEncM ⊆ projA(RunEncA,<M) ⊆ projA(RunEncAM),

I RunEncM ⊇ projA(RunEncAM) ⊇ projA(RunEncA,<M).

which yields the corollaries:

Corollary 8.22. unordered data encodings ≡ runs ofM

RunEncM = projA(RunEncAM).

Corollary 8.23. ordered data encodings ≡ runs ofM

RunEncM = projA(RunEncA,<M).

Proof of lemma 8.21.

As corollary 8.20 trivially implies that projA(RunEncA,<M) ⊆ projA(RunEncAM), we are
left with only two inclusion relations to prove.

RunEncM ⊇ projA(RunEncAM)

Take any w ∈ RunEncAM. As w ∈ RegAM, we know that w corresponds to a sequence

JprojA(w)K = (p1, µ1) (p2, µ2) . . . (pn−1, µn−1) (pn, µn)
δ1 δ2 δn−2 δn−1

which is consistent with zero tests, the successive transition rules match, and it starts
in a valid configuration. It remains to show that well-alignment implies that correct
inequalities hold between every two consecutive valuations µ1, µ2. Fix arbitrary infix of
w of the form

(δ0,_) v1 ((p2, op, p1),_) v2 (δ2,_) .

For any counter c ∈ C, if it is not modified by op, condition 8.18.C implies that there
are as many symbols (c,_) in v2 as there are distinct data values in v1. In turn,
condition 8.18.B implies that all data in v1 are pairwise different, thus µ1(c) ≤ µ2(c),
as it was required. Other inequalities, for op ∈ {‘c += 1’, ‘c -= 1’} are handled similarly.
Therefore, JprojA(w)K ∈ Runs(M).

RunEncM ⊆ projA(RunEncA,<M)

Let w ∈ RunEncM. By definition, there exists π ∈ Runs(M) such that w = enc(π). We
only need to show that each letter of enc(π) (as in eq. (8.2)), can be labeled with an
atom, such that the resulting data word meets conditions 8.18.A, 8.18.B and 8.18.C<.
Let us fix α ∈ A, which will be used as a label of all symbols from ∆′. Put A′ = A \ {α}.
We construct the labeling of infixes vi = enc(µi) inductively. We start by pairing each
letter of v1 with pairwise-different atoms chosen arbitrarily from A′.

137

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

Inductive step
Let us assume that letters of vi have been already assigned atoms. We construct
the labeling of vi+1 sequentially, in four steps, handling one individual counter of
c1, c2, c3, c4 ∈ C at a time. Let vj• denote the (maximal) infixes of v• corresponding to
counter cj . In j-th step, depending on opi, we label vji as follows:

a) If opi does not modify c, then vc
i = µi(c) ≤ µi+1(c) = vc

i+1. We apply the labeling
of vc

i to the first |µi(c)| letters of vc
i+1. Remaining letters are labeled with pairwise-

different and fresh3 atoms from A′.

b) If opi = ‘c += 1’, when computing the labeling of vc
i+1, we disregard the first symbol

of vc
i . The remaining atoms with which vc

i was annotated are used to label |µi(c)|− 1
letters of vc

i+1. As before, the remaining letters of vc
i+1 get fresh3 atoms.

c) If opi = ‘c -= 1’, we label the first symbol of vc
i+1 with a fresh3 atom, and handle the

remaining part the same way as in case a).

Note that this construction guarantees that each vi is labeled with pairwise-different
atoms, thus satisfying condition 8.18.B. Condition 8.18.A is also trivially met. Finally,
observe that the case enumeration above match the cases listed in condition 8.18.C<.
Therefore, one can easily show that condition 8.18.C< holds.

8.7 Undecidability of dra membership

The aim of this section is to prove

Theorem 8.3 dra membership und.

The dra membership problem is undecidable for nra1.

The reduction presented here has two main ingredients—the lemmas stated below.

Lemma 8.24. wrong data encodings are recognised by nra1

(ΣM × A)∗ \ RunEncAM ∈ nra1 and the automaton can be effectively constructed.

Lemma 8.25. M’s finiteness equivalent to determinisability of RunEncAM

The set of reachable configurations ReachConf(M) is finite if, and only if, RunEncAM ∈
dra.

Proof of theorem 8.3.

The reduction from theorem 8.5 is a result of a trivial juxtaposition of lemmas 8.24
and 8.25: given lcm4 M, construct the automaton for (ΣM × A)∗ \ RunEncAM and
ask about its determinisability. The answer will be positive if, and only if, the

3in particular, not used as labels for either vi or any vk
ii

, k < j

138

8.7. UNDECIDABILITY OF dra MEMBERSHIP

complement—RunEncAM —is a deterministic data language, which in turn occurs if, and
only if, ReachConf(M) is finite.

Proof of lemma 8.24.

Observe that

(ΣM × A)∗ \ RunEncAM = R̂eg
A
M ∪ Â

A
M ∪ B̂

A
M ∪ Ĉ

A
M.

Since the class of nra1 is effectively closed under unions, we only need to show that
languages Â

A
M, B̂

A
M, and Ĉ

A
M are recognised by nra1. Thus, the statement to be proven

stems from the following lemmas 8.26 to 8.28.

Lemma 8.26.

Â
A
M ∈ dra1.

Lemma 8.27.

B̂
A
M ∈ nra1.

Lemma 8.28.

Ĉ
A
M ∈ nra1.

Proof of lemma 8.26.

Â
A
M is straightforwardly recognised by dra1 with one register x and just 3 states L =
{Ini,Ok,Err}, first one being initial, Err —accepting. For each σ ∈ ΣM and δ ∈ ∆′,
the automaton has transitions

(Ini δ,{x}===⇒ Ok) (Ok
δ,x=y,{x}======⇒ Ok) (Ok

σ,x6=y====⇒ Ok)

The remaining transitions not listed above lead to the state Err.

Proof of lemma 8.27.

Language B̂
A
M can be recognised by an nra with one register x. The corresponding

automaton simply guesses the position with a repeated atom α ∈ A and goes to the state
Err upon finding superfluous copy of α within the same counter valuation encoding
block. The simple construction is omitted.

Proof of lemma 8.28.

As before, nra1 suffices to find a violation of condition 8.18.C. Here, the constructed
automaton tries to locate within its input an infix w of the form

(δ1,_) . . . (c, α) . . .︸ ︷︷ ︸
v1

(δ2,_) v2 (δ3,_)

where δ• ∈ ∆′, δ2 = (p, op, q), c ∈ C, α ∈ A, which violates condition 8.18.C. One of the
following cases

1. op ∈ Op \ {‘c += 1’, ‘c -= 1’} and (c, α) doest not appear in v2,

2. op = ‘c += 1’ and (c, α) does not appear in v2, although it is not the first element in
the sequence of symbols c in v1,

139

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

3. op = ‘c -= 1’ and (c, α) does not appear as a non-first symbol of v2.

Construction

We construct an automaton E ∈ nra1 with 23 states

S = {Ini,KeepPrev,Err} ∪ ({KeepPrev,Sel,SelFst,SkipFst,Find} × C),

Ini being initial, Err —accepting. Elements (•, c) of the last component of the expression
above are denoted as •(c) (e.g., KeepPrev(c)). The constructed device first skips an
arbitrary prefix of the input word

(Ini σ=⇒ Ini) for σ ∈ ΣM

and nondeterministically guesses the beginning of the infix w

(Ini δ=⇒ KeepPrev) for σ ∈ ∆′.

Afterwards, it skips some prefix of v1, keeping track of the most recently seen letter b ∈ C

(KeepPrev
b=⇒ KeepPrev(b)) for b ∈ C,

(KeepPrev(b) c=⇒ KeepPrev(c)) for b, c ∈ C,

until it nondeterministically selects some symbol (c, α) within v1. When that occurs,
atom α gets stored in the register x, while the letter c is remembered in state SelFst(c)
or Sel(c). The actual state depends on whether c was the first of a sequence of symbols
c in v1

(KeepPrev
c,x=y====⇒ SelFst(c)) for c ∈ C

(KeepPrev(b) c,x=y====⇒ SelFst(c)) for b, c ∈ C, b 6= c

or not (in which case Sel is used in SelFst’s stead)

(KeepPrev(c) c,x=y====⇒ Sel(c)) for c ∈ C.

State Sel or SelFst does not change while letters from C are being read

(Sel(c) d=⇒ Sel(c)) for c, d ∈ C

(SelFst(c) d=⇒ SelFst(c)) for c, d ∈ C.

Upon reading a symbol δ ∈ ∆, the automaton has collected enough information to
decide whether, according to condition 8.18.C, the previously selected symbol needs to
be repeated or not. In cases, where repetition of that symbol is required, E proceeds
to the phase of searching for (c, α) in appropriate part of v2, possibly skipping its first
symbol. Its transition relation, for every δ = (_, op,_) ∈ ∆ and c ∈ C, features the
following transitions

(Sel(c) δ=⇒ Find(c)) for op ∈ Op \ {‘c -= 1’},

(SelFst(c) δ=⇒ Find(c)) for op ∈ Op \ {‘c += 1’, ‘c -= 1’},

(Sel(c) δ=⇒ SkipFst(c)) for op = ‘c -= 1’,

(SelFst(c) δ=⇒ SkipFst(c)) for op = ‘c -= 1’.

140

8.7. UNDECIDABILITY OF dra MEMBERSHIP

In case when the first symbol of v2 was to be skipped, the search begins right after
reading it

(SkipFst(c) d=⇒ Find(c)) for c, d ∈ C.

The search continues while the symbols read in the process are either not equal to (c, α)

(Find(c) d=⇒ Find(c)) for c, d ∈ C, c 6= d,

(Find(c) c,x6=y====⇒ Find(c)) for c ∈ C,

or the next symbol from ∆′ is encountered—witnessing an error

(Find(c) δ=⇒ Err) for c ∈ C, and δ ∈ ∆′

which is then remembered until the end of the input

(Err σ=⇒ Err) for σ ∈ ΣM.

In case (c, α) is found, the automaton does not have any available transition, consequently
rejecting the input. By construction, E accepts if, and only if, the input word does not
meet the condition 8.18.C.

Proof of lemma 8.25.

Given M∈ lcm4, we need to prove the equivalence

|ReachConf(M)| <∞ ⇐⇒ RunEncAM ∈ dra.

The ‘⇒’ implication

Assume that ReachConf(M) is finite. Since the size ofM’s configuration space is limited,
it becomes a finite state system and thus the language RunEncM is regular. However, to
deterministically recognise RunEncAM, we also need to verify conditions 8.18.A to 8.18.C.
Let k ∈ N be the finite upper bound on the attainable sum of M’s counter values. By
corollary 8.22, in every w ∈ RunEncAM the length of infixes from ValEncMis bounded
by k, too. We will show that RunEncAM can be recognised by dra2k+2. Note that
AA

M ∈ dra1, since it is a complement of dra1 language (cf. lemma 8.26).

The ‘⇐’ implication

Let us assume that ReachConf(M) is infinite, and—towards contradiction—that RunEncAM
is recognised by some A ∈ dra with a finite set of registers X, k = |X|. Due to first
assumption, there is no finite upper bound on the attainable counter values. In particu-
lar, there exists a run π ending with a counter valuation µ with µ(c) = k + 2. Due to
corollary 8.22, π has some encoding w ∈ RunEncAM, which needs to have the form

w = (., α)

enc(µ)︷ ︸︸ ︷
v′ (c, β0) . . . (c, βk+1) v′′ (δ, α)︸ ︷︷ ︸

w′

w′′ ,

141

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

where v′, v′′ correspond to counters other than c, and δ ∈ ∆. When A is reading w, after
observing the enc(µ) block, it must forget at least two atoms from {β0, β1, . . . , βk+1}.
Consequently, at least one atom β ∈ {β1, . . . , βk+1} is not stored in registers. Recall
condition 8.18.C. Observe that if the counter operation of δ is ‘c += 1’, symbol (c, β0)
does not have to appear in w′′ to meet the condition. However, the remaining k letters
(c, β1), . . . , (c, βk) are required to reappear in the next valuation encoding.

Intuitively, we will arrive at a contradiction by showing that the letter (c, β) can be
removed from ? without influencing the acceptance of A.

The resulting encoding w′ψ(w′′) is no longer valid, since it violates condition 8.18.C, but
A still accepts it. This contradicts that A recognises RunEncAM, and thus RunEncAM is
not a dra language, as required.

8.8 Undecidability of register synthesis

In this section, we continue to develop the tools that helped to show the undecidability
of the dra membership problem, aiming this time to prove the decision version of the
register synthesis problem undecidable:

Theorem 8.4 synthesis of dra und.

The register synthesis decision problem is undecidable, and this holds already when
Alice’s winning condition is an nra2 language.

For M ∈ lcm4, we will define a register synthesis game GA
M with condition WM and

show that:

Lemma 8.29. Alice’s winning condition in GA
M is nra2

WM ∈ nra2.

Lemma 8.30. GA
M characterises determinisability of RunEncA,<M

ReachConf(M) is finite if, and only if, there exists a winning strategy for Bob in GA
M.

Proof of theorem 8.4.

Undecidability is a trivial consequence of theorem 8.5 and lemmas 8.29 and 8.30.

142

8.8. UNDECIDABILITY OF REGISTER SYNTHESIS

8.8.1 Local errors and local correctness

Below we define two nra languages, B̂↓
A
M and Ĉ↓

A,<
M , which are ‘localised’ versions

of B̂
A
M and Ĉ

A,<
M defined in §8.6. More precisely, they have a property that for any

w ∈ (ΣM × A)∗

I w ∈ B̂
A
M if, and only if, there exists a prefix v v w such that v ∈ B̂↓

A
M,

I w ∈ Ĉ
A,<
M if, and only if, there exists a prefix v v w such that v ∈ Ĉ↓

A,<
M .

B̂↓
A
M is simply the language of the automaton shown in the proof of lemma 8.27, with

only the transition (Err =⇒ Err) removed from its transition relation.

The same would apply to Ĉ↓
A,<
M and Ĉ

A,<
M , but the latter language was not shown to be

nra. Therefore, we need to prove the following

8.8.2 Definition of GA
M

Players in game GA
M have actions

A = ΣM (Alice)
B = {ok, , errR, errA, errB, errC} (Bob)

Let us define projA : A · B · A → A · A as the projection function which ignores Bob’s
letters: projA(a, b, α) = (a, α). Complementarily, let projB : A ·B ·A→ B be a projection
which ignores Alice’s letters and data values: projB(a, b, α) = b. We extend both
functions homomorphically to finite and infinite words. The winning set of Alice is
WM = Reach(V A

M) for the following language V A
M of finite data words:

V A
M = proj−1

B (ok∗ + ok) (8.14)

∪ proj−1
B (ok∗ ∗) ∩ proj−1

A (RegAM) (8.15)

∪ proj−1
B (ok∗ ∗ errR) ∩ proj−1

A (RA
M) (8.16)

∪ proj−1
B (ok∗ ∗ errA) ∩ proj−1

A (AA
M ∪ R̂

A
M) (8.17)

∪ proj−1
B (ok∗ ∗ errB) ∩ proj−1

A (B↓AM ∪ R̂
A
M ∪ Â

A
M) (8.18)

∪ proj−1
B (ok∗ ∗ errC) ∩ proj−1

A (C↓A,<M ∪ R̂
A
M ∪ Â

A
M ∪ B̂

A
M) (8.19)

∪ proj−1
B (ok∗ ok) ∩ proj−1

A (R̂
A
M ∪ Â

A
M ∪ B̂

A
M ∪ Ĉ

A,<
M) (8.20)

Intuition

It cannot go unnoticed that the above definition bears a striking resemblance to one
of V T

M, which appears in §8.5. It is important to point out that though the semantics
of the languages appearing in both definitions differs, the high level mechanics of the

143

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

game remains the same. More precisely, the entire content of the §8.5.2 applies to GA
M,

provided that the following substitutions are made in its text

GT
M 7→ GA

M V T
M 7→ V A

M RunEncTM 7→ RunEncAM timed word 7→ data word

RT
M 7→ RA

M AT
M 7→ AA

M BT
M 7→ B↓AM C↓TM 7→ C↓A,<M

R̂
T
M 7→ R̂

A
M Â

T
M 7→ Â

A
M B̂

T
M 7→ B̂

A
M Ĉ

T
M 7→ Ĉ

A,<
M .

For this reason, we refrain from reproducing its contents here, instead restating only the
‘register’ version of lemma 8.17 below.
For a play w ∈ (A ·B × A)ω, let cut(w) ∈ (A ·B × A)∗ denote its prefix up to and
including the first symbol of the form (/,_) if it exists, and an empty prefix ε otherwise.
The winning condition is designed to ensure the following property:

Lemma 8.31. correspondence between RunEncA,<M and plays of GA
M

Consider a play w ∈ Plays(GA
M) \WM with nonempty prefix v = cut(w). Then

projA(v) ∈ RunEncA,<M ⇐⇒ projB(v) ∈ ok∗.

In words, if w is winning for Bob and cut(w) is not empty, then projA(v) is a valid
encoding of M’s run if, and only if, Bob played only ok in v. This characterisation will
play a crucial role in proving lemma 8.30.

8.8.3 Proofs

The remainder of this section contains proofs of lemmas 8.29 to 8.31.

Proof of lemma 8.29.

Observe that due to it suffices to prove that V A
M ∈ nra2. Since the class of nra2 is

closed with respect to unions, we only need to show that each of the languages stated in
lines (8.5) – (8.11) is nra2.
This is evident for all lines but X, Y and Z, because of the languages Q, R and S. We
show that in subsequent .

Lemma 8.32.

Ĉ
A,<
M ∈ nra2

Lemma 8.33. local validity of condition 8.18.B is in nrag1

B↓AM ∈ nrag1

Note that this is the only component of the definition of V A
M which requires guessing to

be recognised. A way of eliminating guessing is discussed in §8.8.4.

144

8.8. UNDECIDABILITY OF REGISTER SYNTHESIS

Lemma 8.34. local validity of condition 8.18.C< is in nra2

C↓A,<M ∈ nra

Proof of lemma 8.30.

The ‘⇒’ implication

Assume that ReachConf(M) is finite. There is some k such that every reachable configu-
ration (p, µ) has size

∑
c∈C µ(c) ≤ k. In this case, the set of correct data encodings of

runs of M can be recognised by a dra(k+2) A which resets clock xj when reading the
j-th position of block piuiδi (which is of length ≤ k + 2). From A we can produce a
winning controller for Bob with k clocks:

The ‘⇐’ implication

Assume that ReachConf(M) is infinite and, towards reaching a contradiction, that Bob
has a winning controller B = (X, A,B, L, lini,∆) with k ∈ N clocks. We will focus on
constructing B′ ∈ drak recognising RunEncA,<M , which will imply by lemma 8.25 that
ReachConf(M) is finite.

Construction of drak
Let B′ = (X, A, L ∪ {Ok,Err}, lini, {Ok},∆′), where ∆′ contains transitions

I (p a,ϕ,Y===⇒ q) for every (p a/ok,ϕ,Y=====⇒ q) ∈ ∆ where a ∈ A \ {/},

I (p a,ϕ,Y===⇒ Ok) for every (p //ok,ϕ,Y=====⇒ q) ∈ ∆,

I (p a,ϕ,Y===⇒ Err) for every (p a/e,ϕ,Y=====⇒ q) ∈ ∆, where e ∈ B \ {ok},

I (Err a=⇒ Err) for every a ∈ A.

Correctness
We need to show that L(B′) = RunEncA,<M . Take any u ∈ (A× A)∗. Let w be any
(u,B)-conformant play of GA

M. As B is a winning controller, w is winning for Bob. Let
v = cut(w). Note that by construction projA(v) = u, and v corresponds to an accepting
run of B′ if, and only if, projB(v) ∈ ok∗. Therefore we have

u ∈ L(B′) ⇐⇒ projB(v) ∈ ok∗ ⇐⇒ projA(v) = u ∈ RunEncA,<M

where the last equivalence follows from lemma 8.31.

Proof of lemma 8.31.

Let us fix a play w ∈ Plays(GA
M) \WM winning for Bob, such that v = cut(w) is not

empty. We need to show that

projA(v) ∈ RunEncA,<M ⇐⇒ projB(v) ∈ ok∗

145

CHAPTER 8. UNDECIDABILITY IN CASE OF UNBOUNDED NUMBER OF REGISTERS/CLOCKS

The ‘⇒’ implication

Assume projA(v) ∈ RunEncA,<M = RegAM ∩ AA
M ∩ BA

M ∩ CA,<
M . Towards contradiction,

assume that projB(v) /∈ ok∗. We aim at showing that w is not winning for Bob. Note that
it suffices to exhibit a prefix v′ v v belonging to V A

M. Let E = {errR, errA, errB, errC}.

Case 1: projB(v) ∈ B∗EB∗

Let v′ v v be the shortest prefix of v such that the last letter b of projB(v′) belongs
to E. Since w is winning, projB(v′) ∈ ok∗ ∗E (as ok cannot follow). Note that
projA(v′) ∈ RA

M ∩ AA
M ∩ BA

M ∩ C↓TM, because

I RA
M is the prefix closure of RegAM,

I languages AA
M and BA

M are both prefix-closed, and

I projA(v′) ∈ C↓TM due to fact 8.14.

therefore, depending on the letter b ∈ E, one of the components (8.7) – (8.10) matches
v′, implying v′ ∈ V A

M.

Case 2: projB(v) ∈ {ok, }∗

In this case projB(v) needs to contain symbol . If it is followed by ok symbol, some
prefix of v trivially matches the component (8.5) of vM’s definition. Otherwise, projB(v) ∈
ok∗ +. But projA(v) ∈ RegAM and therefore v ∈ V A

M (cf. (8.6)).

The ‘⇐’ implication

Assume that projB(v) ∈ ok∗. Since w is winning, no prefix of v belongs to V A
M. Therefore,

for every v′ v v we have projA(v′) ∈ RA
M ∩AA

M ∩BA
M ∩C↓

A,<
M (cf. (8.11)). Using fact 8.14

we conclude that projA(v) ∈ CA,<
M , and—consequently—projA(v) ∈ RunEncA,<M .

8.8.4 Eliminating guessing

The game we presented can be transformed to one without guessing. The construction,
though conceptually easy, would add another layer of difficulty to the construction,
therefore it was factored out. Here, we present the set of modifications needed to
eliminate guessing.
Observe that in the definition of language VcM , the only component which requires
guessing is the language BA

M. The modified game will have a new auxiliary initial phase,
with # marking the transition between phases.
Define V ′

M analogously to VM, but with two differences

1. with BA
M replaced by

2. with flc skcjrnpwesrcnl.

146

Chapter 9

Utility results for VASS2

The area of interest of the last chapter diverges slightly from the preceding parts, which
are essentially devoted to register and timed automata.

9.1 Supporting definition – sequential cones

For a vector v ∈ Z2, define the half-line
induced by v as `v := R≥0 · v = {αv | α ∈
R≥0}. We call two vectors v, w collinear
if `v = `w, and contralinear if `v = `−w.
For two vectors u, v ∈ Z2 \ {(0, 0)}, define
the angle][u, v] ⊆ R2 as the union of all
half-lines which lie clock-wise between `u
and `v, including the two half-lines them-
selves. In particular,][v, v] = `v. Analo-
gously we define the sets][u, v),](u, v]
and](u, v) which exclude one or both
of the half-lines. We refer to an angle
of the form][v,−v] as half-plane. We
write v � u when u ∈](v,−v), i.e., u
is oriented clock-wise with respect to v

(see figure 9.1 for an illustration). Note
that � defines a total order on pairwise
non-collinear non-negative vectors.

Figure 9.1. Quasi-order �

u1

u2
u3
u4

u5
u6

u7

u8

u9u10
u11

Above u1 � u2 � . . . � u11 � u1. Also,
u4 � u9, but u4 6� u11 and u11 � u4. Pairs
of vectors ui, ui+6 are contralinear, for
i = 1, . . . , 5.

By the cone of a finite set of vectors {v1, . . . , vk} ⊆ Z2 we mean the set of all non-negative
rational linear combinations of these vectors:

Cone(v1, . . . , vk) := {Σk
j=1 ajvj ∈ R2 | a1, . . . , ak ∈ R≥0}.

We call the cone of a single vector Cone(v) = `v trivial, and the cone of zero vectors
Cone(∅) = {(0, 0)} degenerate. Two non-zero vectors v1 and v2 can be in four distinct
relations: (i) they are collinear, (ii) they are contralinear, (iii) v1 � v2 and hence
Cone(v1, v2) =][v1, v2], (iv) v2 � v1 and hence Cone(v1, v2) =][v2, v1].

147

CHAPTER 9. UTILITY RESULTS FOR vass2

Lemma 9.2.

Every cone either equals the whole plane R2, or is included in some half-plane.

Proof of lemma 9.2.

Assume, w.l.o.g. that the vectors v1, . . . , vk are non-zero and include no collinear pair.
Suppose there is a contralinear pair vi, vj among v1, . . . , vk. If all other vectors vh satisfy
vi � vh � vj then Cone(v1, . . . , vk) is included in the half-plane][vi, vj]. Otherwise
Cone(v1, . . . , vk) is the whole plane.

Now suppose there is no contralinear pair among v1, . . . , vk. If some three vi, vj , vh
of them satisfy vi � vj � vh � vi then Cone(v1, . . . , vk) includes the three angles
][vi, vj],][vj , vh] and][vh, vi], the union of which is the whole plane. Otherwise, the
relation � is transitive and hence defines a (strict) total order on {v1, . . . , vk}. The
minimal and maximal element vi and vj w.r.t. the order satisfy vi � vj , and hence
Cone(v1, . . . , vk) =][vi, vj] is included in the half-plane][vi,−vi].

The sequential cone of vectors v1, . . . , vk ∈ Z2 imposes additional non-negativeness
conditions, namely for every i, the partial sum a1v1 + . . .+ aivi must be non-negative
(this is required later, when pumping cycles in a run whose effects are v1, . . . , vk in that
order):

SeqCone(v1, . . . , vk) := {Σk
j=1 ajvj ∈ R2

≥0 | a1, . . . , ak ∈ R≥0, ∀i . Σi
j=1 ajvj ∈ R2

≥0}.

Note that v1 may be assumed w.l.o.g. to be semi-positive, but other vectors vi are not
necessarily non-negative; and that every sequential cone is a subset of the non-negative
orthant R2

≥0. Importantly, contrarily to cones, the order of vectors v1, . . . , vk matters for
sequential cones. In fact, sequential cones are just convenient syntactic sugar for cones
of pairs of non-negative vectors:

Lemma 9.3.

For all vectors v1, . . . , vk, the sequential cone SeqCone(v1, . . . , vk), if not degenerate,
equals Cone(u, v), for two non-negative vectors u, v, and each of them either belongs to
{v1, . . . , vk}, or is horizontal, or vertical.

Proof of lemma 9.3.

We proceed by induction on k. For k = 1 we have SeqCone(v1) = `v1 = Cone(v1, v1).
Let v0 and h0 denote some fixed vertical and horizontal vector, respectively. For the
induction step we assume SeqCone(v1, . . . , vk−1) = Cone(u, v) for non-negative vectors
u, v; and compute the value of SeqCone(v1, . . . , vk), separately in each of the following
distinct cases (assume w.l.o.g. u � v):

148

9.1. SUPPORTING DEFINITION – SEQUENTIAL CONES

SeqCone(v1, . . . , vk) =



Cone(vk, v) if vk ∈][v0, u)
Cone(u, v) if vk ∈][u, v]
Cone(u, vk) if vk ∈](v, h0]
Cone(u, h0) if vk ∈](h0,−u]
Cone(v0, h0) if vk ∈](−u,−v)
Cone(v0, v) if vk ∈][−v, v0).

I II
III

IVV

VI

v0

h0

u

v

149

CHAPTER 9. UTILITY RESULTS FOR vass2

9.2 Thin/thick dichotomy of runs

The main result of this section (cf. theorem 9.7 below) classifies (0, 0)-runs in a vass2
into thin and thick ones. Throughout this section we consider an arbitrary fixed vass2
V = (Q,T). Let n = |Q| and M = ‖V ‖.

Figure 9.4. Thin run

A

W

Thin runs

The belt of direction v ∈ N2 and width W is the
set

Bv,W = {u ∈ N2 | dist(u, `v) ≤W},

where dist(u, `v) denotes the Euclidean distance
between the point u and the half-line `v.
For A ∈ N, we call Bv,W an A-belt if ‖v‖ ≤ A

and W ≤ A.
We say that a run ρ of V is A-thin if for every
configuration c in ρ there exists an A-belt B such
that c ∈ Q×B.
Figure 9.4 shows an example of an A-thin run
contained within four belts Bvi,W .

Figure 9.5. Thick run

A

ρ

ρ′
v′

2

v1

v2

v4

v3

v′
1

Thick runs

Let A ∈ N. Four cycles π1, π2, π3, π4 ∈ T ∗

are A-sequentially enabled in a run ρ if their
lengths are at most A, and the run ρ factors into
ρ = ρ1 ρ2 ρ3 ρ4 ρ5 so that (denote by v1, v2, v3, v4
the effects of π1, π2, π3, π4, respectively):

I The effect v1 is semi-positive, the cycle π1
is enabled in c1 := trg(ρ1), and both coordi-
nates are bounded by A along ρ1.

I If v1 is positive then π2 is ∅-enabled in c2 :=
trg(ρ2). Otherwise (let j be the coordinate
s.t. v1[j] = 0) π2 is {j}-enabled in c2 :=
trg(ρ2), and jth coordinate is bounded by A
along ρ2.

I The cycle πi is ∅-enabled in ci := trg(ρi), for
i = 3, 4.

We also say that the four vectors v1, v2, v3, v4 are A-sequentially enabled in ρ, quantifying
the cycles existentially. A (0, 0)-run τ is called A-thick if it partitions into τ = ρ ρ′ so
that

1. some vectors v1, v2, v3, v4 are A-sequentially enabled in ρ,

150

9.2. THIN/THICK DICHOTOMY OF RUNS

2. some vectors v′
1, v

′
2, v

′
3, v

′
4 are A-sequentially enabled in rev(ρ′),

3. SeqCone(v1, v2, v3, v4) ∩ SeqCone(v′
1, v

′
2, v

′
3, v

′
4) is non-trivial.

Example 9.6. geometry of a thick cone

Figure 9.5 illustrates the geometric ideas underlying these three conditions for A-thick
runs. Purple angles denote sequential cones SeqCone(v1, v2), SeqCone(v1, v2, v3) and
SeqCone(v1, v2, v3, v4), respectively, and yellow angle denotes SeqCone(v′

1, v
′
2).

Concerning condition 1, a cycle π1 depicted by a dotted line, with vertical effect v1, can
be used to increase the second (vertical) coordinate arbitrarily, which justifies the relaxed
requirement that a cycle π2 with effect v2 is only {1}-enabled. Note that the norm of the
configuration enabling π1, as well as the first coordinate of the configuration enabling π2,
are bounded by A.
Concerning condition 2, a cycle π′

1 with positive effect v′
1 can be used to increase both

coordinates arbitrarily; therefore a cycle π′
2 with effect v′

2 is only required to be ∅-enabled,
and no coordinate of the configuration enabling π′

2 is required to be bounded by A. In
the illustrated example, vectors v′

3 and v′
4 are not needed; formally, one can assume

v′
2 = v′

3 = v′
4 and ρ′

3 = ρ′
4 = ε.

Condition 3 ensures that the cycles π1, . . . , π4 and π′
1, . . . , π

′
4 can be pumped such that

the pumped versions of ρ and ρ′ are still connected.
In the illustrated example, observe that SeqCone(v1, v2)∩SeqCone(v′

1) = ∅. Intuitively,
both coordinates in the target of ρ can be increased arbitrarily using v1 and v2, and
similarly both coordinates of the target of rev(ρ′) can be increased arbitrarily using v′

1,
but ‘directions of increase’ are non-crossing. Adding v3 and v′

2 is not sufficient, as still
SeqCone(v1, v2, v3) ∩ SeqCone(v′

1, v
′
2) = ∅. When vector v4 is adjoined, condition 3

holds as SeqCone(v1, v2, v3, v4) = R2
≥0. Finally, the four vectors are really needed here,

e.g., vector v3 can not be omitted as SeqCone(v1, v2, v4) = SeqCone(v1, v2).

The first of two main results in this chapter is:

Theorem 9.7. thin/thick dichotomy

There is a polynomial p such that every (0, 0)-run in a vass2 V is either p(nM)n-thin or
p(nM)n-thick.

In its proof we use the following core fact:

Lemma 9.8. non-negative Cycle Lemma

There is a polynomial P such that every run ρ in V from a (0, 0)-configuration to a
target configuration of norm larger than P (nM)n, contains a configuration enabling a
semi-positive cycle of length at most P (nM).

Both theorem 9.7 and lemma 9.8 have relatively complex proofs; for this reason we place
each proof in a separate subsection.

151

CHAPTER 9. UTILITY RESULTS FOR vass2

9.2.1 Proof of theorem 9.7

Proof of theorem 9.7.

Let P be the polynomial from lemma 9.8. The polynomial p required in theorem 9.7 can
be chosen arbitrarily as long as p(x) ≥

√
2 ·

(
P (x) + (x+ 1)3) · x. for all x; note that the

following inequality follows:

p(nM)n ≥
√

2 ·
(
(P (nM))n + (nM + 1)3) · nM. (9.1)

In the sequel we deliberately confuse configurations c = (q, v) with their vectors v:
whenever convenient, we use c to denote the vector v, hoping that this does not lead to
any confusion.
Let τ be a (0, 0)-run of V which is not p(nM)n-thin, i.e., τ contains therefore a configura-
tion t which lies outside all the p(nM)n-belts. We need to demonstrate points 1–3 in the
definition of thick run. To this aim we split τ into τ = ρ ρ′ where trg(ρ) = t = src(ρ′), and
are going to prove the following two claims (a) and (a’). Let D := P (nM)n + (nM + 1)3.
For x, y ∈ R2, let dist(x, y) denote their Euclidean distance.

(a) Some vectors v1, v2, v3, v4 are P (nM)n-sequentially enabled in ρ, and the sequential
cone SeqCone(v1, v2, v3, v4) contains a point u ∈ R2

≥0 with ‖u− t‖ ≤ D.

(a’) Some vectors v′
1, v

′
2, v

′
3, v

′
4 are P (nM)n-sequentially enabled in rev(ρ′), and the se-

quential cone SeqCone(v′
1, v

′
2, v

′
3, v

′
4) contains a point u ∈ R2

≥0 with ‖u− t‖ ≤ D.

In simple words, instead of proving point 3, we prove that both sequential cones contain
a point v which is sufficiently close to t.

Claim 9.9.

The conditions (a) and (a’) guarantee that τ is thick.

Indeed, points 1–2 in the definition of thick run are immediate as P (nM) ≤ p(nM). For
point 3, observe that the inequality (9.1) implies p(nM)n ≥

√
2 ·D, which guarantees

that the circle {u ∈ R2
≥0 | dist(u, t) ≤

√
2 ·D} does not touch any half-line `w induced

by a non-negative vector w with ‖w‖ ≤ p(nM)n. In consequence, neither does the
square X := {u ∈ R2

≥0 | ‖u− t‖ ≤ D} inscribed in the circle, and hence X lies between
two consecutive half-lines `w induced by a non-negative vector w with ‖w‖ ≤ p(nM)n.
Hence, as SeqCone(v1, v2, v3, v4) contains some point of X, by lemma 9.3 it includes the
whole X, and likewise SeqCone(v′

1, v
′
2, v

′
3, v

′
4). In consequence, the whole X is included

in SeqCone(v1, v2, v3, v4) ∩ SeqCone(v′
1, v

′
2, v

′
3, v

′
4) which entails point 3. Claim 9.9 is

thus proved.
As condition (a’) is fully symmetric to (a), we focus exclusively on proving condition (a),
i.e., on constructing sequentially enabled vectors v1, v2, v3, v4. Vector t lies outside of
p(nM)n-belts, hence outside of all the P (nM)n-belts, therefore its norm ‖t‖ > P (nM)n.
Relying on lemma 9.8, let c1 be the first configuration in the run ρ which enables a

152

9.2. THIN/THICK DICHOTOMY OF RUNS

semi-positive cycle π1 of length bounded by P (nM), and let v1 = eff(π1). We start with
the following obvious claim (let v0 be some vertical vector, e.g. v0 = (0, 1)):

Claim 9.10.

SeqCone(v0) contains a point u ∈ R2
≥0 such that ‖u− c1‖ ≤ P (nM)n + nM .

Indeed, due to lemma 9.8 we may assume ‖c1‖ ≤ P (nM)n + M and hence u = (0, 0)
satisfies the requirement.
Recall that the relation � defines a total order on pairwise non-collinear non-negative
vectors.

Claim 9.11.

We can assume w.l.o.g. that v1 � t.

Indeed, if v1 and t were collinear then t ∈ Cone(v1) and hence condition (a) would hold.
Split ρ into the prefix ending in c1 and the remaining suffix: ρ = ρ1 σ, where trg(ρ1) =
c1 = src(σ). As the next step we will identify a configuration c2 in σ which satisfies
claim 9.12 (which will serve later as the basis of induction) and enables a cycle π2 with
effect v2 (as stated in claim 9.13).

Claim 9.12.

SeqCone(v0, v1) contains a point u ∈ R2
≥0 such that ‖u− c2‖ ≤ P (nM)n + 2nM .

The proof of claim 9.12 depends on whether v1 is positive. If v1
is so, we simply duplicate the first cycle: c2 := c1 and π2 := π1,
and use claim 9.10. Otherwise, v1 is vertical due to claim 9.11. If
t[1] ≤W = P (nM)n+(n+1)M then condition (a) holds immediately
as SeqCone(v1) = `v1 contains a point u ∈ R2

≥0 with ‖u − t‖ ≤
P (nM)n + (n + 1)M ≤ D. Therefore, suppose t[1] > P (nM)n +
(n + 1)M , and define the sequence d1, . . . , dm of configurations as
follows: let d1 := c1, and let di+1 be the first configuration in σ with
di+1[1] > di[1]. Recall that d1[1] ≤ P (nM)n +M , and observe that
di+1[1] ≤ di[1] +M . Thus, by the pigeonhole principle, m > n and
hence for some i < j ≤ n+ 1 the configurations di and dj must have
the same control state. The infix σij of the path σ from di to dj
is thus a cycle, enabled in di, whose effect is positive on the first
(horizontal) coordinate. Let c2 := di. As c2[1] ≤ P (nM)n+(n+1)M ,
SeqCone(v0, v1) = `v0 contains necessarily a point u ∈ R2

≥0 such
that ‖u− c2‖ ≤ P (nM)n + (n+ 1)M , which proves claim 9.12.

W

c1 = d1

d2

d3

τ

d4

π2 d5

Claim 9.13.

The configuration c2 {1}-enables a cycle π2 of length bounded by p(nM)n, such that the
first coordinate of eff(π2) is positive.

153

CHAPTER 9. UTILITY RESULTS FOR vass2

Recalling the proof of the previous claim, observe that the first (horizontal) coordinate
in the infix σij is bounded by P (nM)n + (n+ 1)M , and think of the second (vertical)
coordinate as irrelevant. Let π2 be the path inducing σij . For bounding the length of
π2, as long as π2 contains a cycle α with vertical effect (0, w), remove α from π2. This
process ends yielding a cycle π2 of length at most (P (nM)n + (n+ 1)M) · n, and hence
at most p(nM)n (by the inequality (9.1)), which is {1}-enabled in c2, but not necessarily
enabled. Let v2 := eff(π2).

Claim 9.14.

We can assume w.l.o.g. that v2 � t.

Indeed, if v1 = v2 then claim 9.11 does the job; otherwise v1 is vertical and then t � v2
(or t colinear with v2) would imply t ∈ SeqCone(v1, v2), hence condition (a) would hold
again.
Split σ further into the prefix ending in c2 and the remaining suffix: σ = ρ2σ

′, where
trg(ρ2) = c2 = src(σ′). If σ′ contains a configuration which ∅-enables a simple cycle
whose effect w belongs to][t,−v2) then t ∈ SeqCone(v2, w) and hence condition (a)
holds. We aim at achieving this objective incrementally.

For i ≥ 2, let ci+1 be the first configuration in σ′

after ci that ∅-enables a simple cycle πi+1 with ef-
fect vi+1 ∈](vi,−vi). As discussed above, if vi+1 ∈
][t,−vi) for some i then t ∈ SeqCone(vi, vi+1) and
hence condition (a) holds. Assume therefore that the
sequence v1, . . . , vm so defined satisfies vi+1 ∈](vi, t)
for all i ≥ 2. Let cm+1 := t. As vectors v3, . . . , vm are
pairwise different, semi-positive and, being effects of
simple cycles, have norms at most nM , we know that
m ≤ (nM + 1)2 + 1.

v2

v3
v4

t

c2

c3

c4

Claim 9.15.

For every i = 1, . . . ,m, SeqCone(v0, vi) contains a point u ∈ R2
≥0 such that ‖u− ci+1‖ ≤

P (nM)n + (i+ 1)nM .

Proof of claim 9.15.

By induction on i. The induction base is exactly claim 9.12. For the induction step,
we are going to show that SeqCone(v0, vi) contains a vector u such that ‖u− ci+1‖ ≤
P (nM)n + (i+ 1)nM . Decompose the infix of σ′ which starts in ci and ends in ci+1 into
simple cycles, plus the remaining path ρ̄ of length at most n. The norm of the effect v̄ of
ρ̄ is hence bounded by nM , and we have

ci+1 = ci + s+ v̄,

where s is the sum of effects of all the simple cycles. By the definition of vi+1, the
effects of all the simple cycles belong to the half-plane][−vi, vi], and hence there belongs
s. By induction assumption there is u′ ∈ SeqCone(v0, vi−1) such that ‖u′ − ci‖ ≤
P (nM)n + inM . As vi−1 � vi, we also have u′ ∈ SeqCone(v0, vi).

154

9.2. THIN/THICK DICHOTOMY OF RUNS

Consider the point

u := u′ + s

which necessarily belongs to the half-plane][−vi, vi] but not necessarily to
SeqCone(v0, vi) =][−vi, vi] ∩ R2

≥0. Ignoring this issue, by routine calculations we
get

‖u−ci+1‖ = ‖u′+s−ci−s−v̄‖ ≤ ‖u′−ci‖+‖v̄‖ ≤ ‖u′−ci‖+nM ≤ P (nM)n+(i+1)nM

as required for the induction step. Finally, if u /∈ R2
≥0, translate u towards ci+1 until

it enters the non-negative quadrant R2
≥0; clearly, the translation can only decrease the

value of ‖u− ci+1‖.

Applying the claim to i = m, and knowing that m ≤ (nM + 1)2 + 1, we get some
point u ∈ SeqCone(v0, vm) such that ‖u − t‖ ≤ P (nM)n + ((nM + 1)2 + 1) · nM ≤
P (nM)n + (nM + 1)3. Furthermore, relying on the assumptions that t lies outside all
p(nM)n-belts and that v1 � t we prove, similarly as in the proof of claim 9.9, that v1 � u
and hence the point u belongs also to SeqCone(v1, vm). This completes the proof of
theorem 9.7.

9.2.2 Proof of lemma 9.8

Fix a vass2 V with n states, and let M = ‖V ‖. We proceed by a sequence of auxiliary
lemmas.

Lemma 9.16.

Let ρ be a run such that one of coordinates is smaller than K in all configurations in ρ,
and such that ‖trg(ρ)‖ > ‖src(ρ)‖+KnM . Then

(i) ρ contains, as an infix, a cycle with vertical or horizontal effect,

(ii) ρ contains a configuration enabling such a cycle of length polynomial in KnM .

Proof of lemma 9.16.

W.l.o.g. assume that the first (horizontal) coordinate is bounded by K in all configurations
in ρ. Let s = src(ρ) and t = trg(ρ).

We first prove that ρ contains a cycle with vertical effect. Define a sequence of configu-
rations c0, c1, . . . , cm as follows. Let c0 be the first configuration which minimizes the
value of the second (vertical) coordinate; clearly c0[2] ≤ s[2]. Further, let ci+1 be the first
configuration in ρ such that ci+1[2] > ci[2]. Thus ci+1[2] ≤ ci[2] +M , and in consequence

t[2] ≤ cm[2] ≤ c0[2] +mM ≤ s[2] +mM.

155

CHAPTER 9. UTILITY RESULTS FOR vass2

K

q

r

s

r

q

p

According to the assumption we have ‖t‖ > ‖s‖ + KnM

hence, as the first coordinate is bounded by K, we deduce the
inequality

t[2] > s[2] +KnM.

The two above inequalities relating t[2] and s[2] imply m > Kn.
Therefore, there must be two configurations ci and cj , for 0 ≤
i < j ≤ Kn, with the same control state q and the same first
coordinate ci[1] = cj [1], and thus the infix ρij of ρ from ci to cj
is a cycle with effect (0, y), where 0 < y ≤ (j − i)M ≤ KnM .
Now we bound the length of the cycle. For all configurations
in ρij , we observe that the first coordinate stays between 0
and K − 1, and the second coordinate stays between c0[2] and
cj [2]. We know that j ≤ Kn, hence cj [2] ≤ c0[2] +KnM . In
consequence, the counter values in all configurations in the cycle ρij are restricted to at
most K(KnM + 1) different vectors, and therefore there are at most L = Kn(KnM + 1)
different configurations in ρij . By removing repetitions of configurations, i.e., by removing
cycles of effect (0, 0), we reduce the length of the cycle to at most L, which is bounded
polynomially in KnM .

Every vass2 V induces a directed graph whose vertices are control states of V , with an
edge from p to q if, and only if, V has a transition of the form (p, v, q). This graph allows
us to split control states of V into strongly connected components, which we call briefly
sccs. The following lemma distinguishes two kinds of sccs:

Lemma 9.17.

Every scc S satisfies one of the following conditions:

(a) every control state in S belongs to some positive cycle of length polynomial in nM ;

(b) the effects of all cycles in S belong to some half-plane containing no positive vector.

Proof of lemma 9.17.

Let U be the set of effects of simple cycles included in S. We consider two cases:

Case 1: Cone(U) contains a positive vector.

Fix an arbitrary positive vector v ∈ Cone(U). By Caratheodory’s Theorem, v = a1u1 +
a2u2 ∈ Cone(u1, u2) for some two vectors u1, u2 ∈ U and a1, a2 ∈ N. By lemma 9.27 we
know that a1u1 + a2u2 is positive for some non-negative integers α1, α2 ≤ (2M)2. We
also know that u1 is the effect of a simple cycle π1 from, say, state q1 to q1; and u2 is
the effect of a simple cycle π2 from state q2 to q2.
Fix a state q ∈ S. As S is strongly connected it contains a cycle π of length at most 3n
which contains all q, q1 and q2. Thus absolute values of eff(π) on both coordinates are
at most 3nM , hence are larger or equal than −3nM . Therefore π, together with cycle
π1 repeated a1 · (3nM + 1) times, and with cycle π2 repeated a2 · (3nM + 1) times, form

156

9.2. THIN/THICK DICHOTOMY OF RUNS

a cycle with positive effect. The length of this cycle is at most 3n+ 2n(2M)2(3nM + 1),
hence bounded polynomially in nM . Condition (a) holds.

Case 2: Cone(U) contains no positive vector.

By lemma 9.2 we deduce that Cone(U) is included in some half-plane Π. If Π intersects
the positive quadrant R2

≥0, rotate the half-plane so that it is disjoint from R2
≥0. The

so obtained half-plane Π′ contains no positive vector and still includes Cone(U), hence
condition (b) holds.

Lemma 9.18.

There is a polynomial Q such that every run ρ within one scc with ‖trg(ρ)‖ > Q(nM) ·
(‖src(ρ)‖+ 1) contains a configuration enabling a semi-positive cycle of length at most
Q(nM).

Proof of lemma 9.18.

Let Q1 and Q2 be the polynomials from lemma 9.17(ii) and lemma 9.16(a), respectively.
Let s = src(ρ) and t = trg(ρ), and let S be the scc containg ρ. We split the proof
according to the two cases (a) and (b) of lemma 9.17. The proof goes through for every
polynomial Q satisfying the following two inequalities:

Q(x) ≥ Q1(Q2(x) · x2) (Case 1)
Q(x) ≥ x2 (Case 2)

Case 1: S satisfies (a).

If ρ visits some configuration with both coordinates at least Q2(nM) ·M = K then this
configuration necessarily enables a positive cycle of length bounded by Q2(nM) ≤ Q(nM).
Otherwise, we know that in every configuration in ρ one of coordinates is smaller than K.
W.l.o.g. assume t[1] < K. Let ρ′ be the longest suffix of ρ such that the first coordinate is
bounded by K − 1 along ρ′, and let s′ = src(ρ′). We claim that ‖s′‖ ≤ ‖s‖+K − 1 +M ;
indeed, if s′ 6= s, the first coordinate of the configuration u preceding s′ in ρ is at least
K, and therefore u[2] ≤ K − 1, which implies that s′[2] ≤ K − 1 +M .
By assumption we know that ‖t‖ > Q(nM) · (‖s‖ + 1), and hence necessarily ‖t‖ >
‖s′‖+KnM . We can thus apply lemma 9.16(ii) to ρ′, to learn that some configuration
in ρ′ enables a vertical cycle of length at most Q1(KnM) ≤ Q(nM).

Case 2: S satisfies (b).

Denoting by U the set of all simple cycles in S, due to condition (b) we know that
Cone(U) is included in some half-plane Π =][−w,w], where −w ∈ N × (−N) and
w ∈ (−N)× N. We aim at showing the following claim:

Claim 9.19.

U contains a vertical or horizontal cycle.

157

CHAPTER 9. UTILITY RESULTS FOR vass2

Towards contradiction suppose U contains no vertical nor horizontal cycle. Whenever a
vector p = (−x, y) ∈ (−N)×N, for y > x > 0, is the effect of a simple cycle, its ratio y/x
is necessarily bounded by nM . Therefore, the vector w determining Π can be assumed
to have ratio bounded by nM as well. Note that all cycles contained as an infix in ρ,
necessarily belong to Π. We are going to show bounds on t[1] and t[2] which contradict
the assumption on ‖t‖.
Factor the run ρ into a at most n (not necessarily simple) cycles, interleaved with at
most n− 1 remaining transitions. Thus we have t = s+ r + p, where p ∈ Π is the total
effect of the cycles and r is the total effect of at most n− 1 transitions. Let p′ denote the
total effect of those among the cycles whose vertical effect is non-negative (and hence
horizontal effect is forcedly negative). Thus

t[2] ≤ (s+ r + p′)[2].

As the half-plane Π =][−w,w] contains all these cycles, and the ratio of w is bounded by
nM as discussed above, we know that ratio of p′ is also bounded by nM . In consequence
p′[2] ≤ −p′[1] ≤ (s+ r)[1] · nM , and hence

t[2] ≤ (‖s‖+ ‖r‖) · (1 + nM) ≤ (‖s‖+ (n− 1)M) · (1 + nM).

As the same bound is obtained symmetrically for t[1], we have arrived at a contradiction
with the assumption ‖t‖ > Q(nM) · (‖s‖+ 1). Claim 9.19 is thus proved.

Claim 9.20.

The run ρ contains, as an infix, a vertical or horizontal cycle π.

W.l.o.g. supose U contains a vertical cycle. In consequence, no cycle in S has positive
first (horizontal) coordinate. Therefore the horizontal coordinate is smaller than K =
s[1] + (n− 1)M + 1 in all configurations in ρ. By lemma 9.16(i) ρ contains, as an infix,
a vertical cycle.
Relying on the claim 9.20, w.l.o.g. assume ρ contains a vertical cycle π as infix. For
completing the proof of lemma 9.18 we need to bound the length of π. As S satisfies
condition (b), it contains no cycle with positive horizontal effect; in consequence, decom-
position of π into simple cycles uses only cycles with effect (0, a), where a ∈ Z. Split these
simple cycles into increasing (a > 0) and non-increasing (a ≤ 0). Suppose the length
of π = π0 is greater than n and consider the first simple cycle σ1 contained as its infix.
If σ1 is non-increasing remove σ1 from π, thus obtaining the path π1, and consider the
first simple cycle σ2 contained in π1 as an infix. Again, remove σ2 if it is non-increasing.
And so on, continue this process until finally certain cycle σi in πi−1 is increasing. As all
the removed simple cycles σ1, . . . , σi−1 were non-increasing, inserting back to πi−1 those
of them which preceed σi necessarily increases the configuration src(σi) in πi−1 so that
it enables σ. The proof is thus completed.

Proof.

lemma 9.8] Let Q be the polynomial from lemma 9.18. We define a polynomial P (x) =
Q(x) · (x+ 1). Consider a run ρ from a (0, 0)-configuration to some target configuration t.
Let k ≤ n be the number of sccs traversed by the run ρ and, for i = 1, . . . , k, let si and

158

9.3. DICHOTOMY ATWORK – PUMPING LEMMA & SHORT RUN PROPERTY

ti be the first and the last configuration in the i-th scc, respectively. Then s1 = (0, 0)
and tk = t. Suppose, towards contradiction, that ρ contains no configuration enabling a
semi-positive cycle of length at most P (nM). As Q(nM) ≤ P (nM), by lemma 9.18 we
obtain

‖ti‖ ≤ Q(n,M) · (‖si‖+ 1) (9.2)

for i = 1, . . . , k. We show by induction on i that ‖ti‖ ≤ P (nM)i. For i = 1 we use (9.2)
and the equality ‖s1‖ = 0, to obtain ‖t1‖ ≤ Q(nM) ≤ P (nM). For the induction step
we use (9.2) and the inequality ‖si+1‖ ≤ ‖ti‖+M , to obtain:

‖ti+1‖ ≤ Q(nM) · (‖si+1‖+ 1) ≤
Q(nM) · (‖ti‖+M + 1) ≤
Q(nM) · (P (nM)i +M + 1) ≤ P (nM)i+1,

as required. Thus ‖t‖ ≤ P (nM)n which contradicts the assumption on ‖t‖ and therefore
completes the proof of lemma 9.8.

9.3 Dichotomy atwork – pumping lemma& short
run property

This section illustrates applicability of theorem 9.7. As before, we use symbols n and
M for the number of control states, and the norm of a vass2, respectively. As the first
corollary we provide a pumping lemma for vass2: in case of thin runs apply, essentially,
pumping schemes of vass1, and in case of thick runs use the cycles enabled along a run.

Theorem 9.21. pumping runs of vass2

There is a polynomial p such that every (0, 0)-run τ in a vass2 of length greater that
p(nM)n factors into τ = τ0 τ1 . . . τk (k ≥ 1), so that for some non-empty cycles
α1, . . . , αk of length at most p(nM)n, the path τ0 α

i
1 τ1 α

i
2 . . . , α

i
k τk is a (0, 0)-run for

every i ∈ N. Furthermore, the lengths of τ0 and τk are also bounded by p(nM)n.

As another application, we derive an alternative proof of the exponential run property
for vass2.

Theorem 9.22. exponential run property

There is a polynomial p such that for every (0, 0)-run τ in a vass2, there is a (0, 0)-run
of length bounded by p(nM)n with the same source and target as τ .

We fix from now on a vass2 V = (Q,T) and the polynomial p of theorem 9.7. Let
A = p(nM)n. Both proofs proceed separately for thin and thick runs τ . The polynomials
required in theorems 9.21 and 9.22 can be read out from the constructions.

159

CHAPTER 9. UTILITY RESULTS FOR vass2

9.3.1 Proof thin

As usual, we use n = |Q| for the number of control states, and M = ‖V ‖ for the norm
of V . Assume a (0, 0)-run τ to be A-thin: every configuration in τ lies in some A-belt
Bv,W . Fix W = A+

√
2M and B = 6WA2 + 3W , and let S = [0, B]2. Let ‖v‖2 denote

the Euclidean norm of v. Note that ‖v‖2 ≤
√

2‖v‖.

Claim 9.23.

The run τ does not change belts outside S, i.e., any two consecutive configurations (q, w),
(q′, w′) in τ satisfying w,w′ /∈ S share a common belt.

Proof of claim 9.23.

Assume that w ∈ Bu,A for some u (‖u‖ ≤ A). We will show w′ ∈ Bu,A. Notice that
w′ ∈ Bu,W (since ‖w′−w‖2 ≤

√
2‖w′−w‖ ≤

√
2M). Towards contradiction assume that

v′ also belongs to some A-belt Bv,A 6= Bu,A (i.e. v and u non-colinear). Then of course
w′ ∈ Bv,W too. We will show that this implies w′ ∈ S.

Figure 9.24. Limited
intersection

u v

A B

`

square S

pu pvw′

`u `v `I

W

A-belts intersect only within square S.

W.l.o.g. assume that u � v. Let I = (1, 1).
Notice that when u � I � v then w′ also
belongs to BI,W . Thus, we can assume that
u � v � I or I � u � v. W.l.o.g. let us choose
the first option. Note that this implies that
u[2], v[2] > 0.

Let pu and pv be the intersection points of `u
and `v with the horizontal line ` : y = w′[2].
Their horizontal coordinates are u[1]

u[2] ·w
′[2] and

v[1]
v[2] · w

′[2], respectively, so

‖pu − pv‖ = w′[2] |u[1]v[2]− v[1]u[2]|
u[2]v[2] .

Because the belts intersect with ` at an angle
between 45◦ and 90◦, the line segments Bu,W∩`
and Bv,W ∩ ` are of length ≤ 2

√
2W < 3W .

Thus ‖pu − pv‖ ≤ ‖pu − w′‖+ ‖pv − w′‖ < 6W . Consequently:

w′[2] |u[1]v[2]− v[1]u[2]|
u[2]v[2] < 6W

w′[2] < 6W u[2]v[2]
|u[1]v[2]− v[1]u[2]| < 6WA2 ≤ B − 3W < B.

Furthermore pv[1] < pv[2] = w′[2] and ‖pv − w′‖ < 3W so w′[1] < B too, contradiction.

160

9.3. DICHOTOMY ATWORK – PUMPING LEMMA & SHORT RUN PROPERTY

Claim 9.25.

Let C = (A2 · n)2. If τ visits a configuration of norm larger than D = B + C · A,
then it decomposes into τ = τ0 α1 τ1 α2 τ2, for two cycles α1, α2 of opposite effects
eff(α1) = −eff(α2) ≥ (0, 0) containing jointly at most C(C + 1) different configurations.

Proof of claim 9.25.

For a configuration c of norm larger than D, let us decompose τ into

τ = π γ γ′ π′

such that trg(γ) = c = src(γ′) and γγ′ is a maximal infix of π that visits only configu-
rations of norm greater than B. By claim 9.23, there exists unique belt B = Bu,A that
contains γγ′. Assume w.l.o.g. that ‖u‖ > M . Let us divide B \ S into segments Bi as
follows:

Si := [0, B + iu[1]]× [0, B + iu[2]] Bi := B ∩ (Si+1 \ Si).

Observe that γγ′ visits more than C initial blocks Bi starting from B0 up to BC , since
a single transition cannot ‘jump’ over a block without visiting it. Let ci = (qi, vi) be
the first configuration in γ beloging to Bi, and symmetrically let c′

i = (q′
i, v

′
i) be the last

configuration in γ′ beloging to Bi. Observe that each block Bi has the same shape as
B0 and differs only by translation by iu. Furthermore, as ‖u‖ ≤ A, each Bi fits inside a
square of size A so it contains at most A2 points. By the pigeonhole principle, there are
at least two i, j (0 ≤ i < i+ d = j ≤ C) such that

qi = qj vi + du = vj q′
i = q′

j v′
i + du = v′

j .

Taking as α1 the infix from ci to cj , and as α2 the infix from c′
j to c′

i, we obtain two
required cycles.

Claim 9.26.

Under assumption of claim 9.25, τ decomposes into τ = τ0 α1 τ1 α2 τ2 so that τ0 τ1 τ2 is
also an A-thin (0, 0)-run.

Proof of claim 9.26.

The same proof as for claim 9.25, with one modification: take as ci the last configuration
in γ belonging to Bi, and symmetrically take as c′

i the first configuration in γ′ belonging
to Bi.

Proof of theorem 9.21.

First part of two—case when τ is A-thin.

Applying claim 9.25 simultaneously to the first belt in which the norm D is exceeded,
and to the very last such belt, we get (0, 0)-runs

τ0 α
i
1 τ1 α

i
2 τ2α

i
3 τ3 α

i
4 τ4,

161

CHAPTER 9. UTILITY RESULTS FOR vass2

for i ∈ N, where cycles α1, α2 belong to the first belt and cycles α3, α4 belong to the
last one. The lengths of the cycles can be reduced to at most C(C + 1) by removing
repetitions of configurations. Then the length of the very first factor τ0 can be bounded
by (D+ 1)2 +C(C + 1) by replacing, if needed, cycles α1, α2 with the first cycle of effect
(0, 0) in τ0. Likewise for the very last factor τ4.

Proof of theorem 9.22.

First part of two—case when τ is A-thin.

Immediate using claim 9.26, according to which every A-thin (0, 0)-run exceeding norm
D can be shortened. Once all configurations along a run have norm bounded by
D, by eliminating repetitions of configurations we arrive at a run of length at most
n · (D + 1)2.

162

9.3. DICHOTOMY ATWORK – PUMPING LEMMA & SHORT RUN PROPERTY

9.3.2 Proof thick

In this section, we assume τ to be A-thick. We rely on the standard tool, cf. [20, Prop. 2]
(the norm of a system of inequalities is the largest absolute value of its coefficient, and
likewise we define the norm of a solution):

Lemma 9.27.

Let U be a system of d linear inequalities of norm M with k variables. Then the smallest
norm of a non-negative-integer solution of U is in O(k ·M)d.

Consider a split τ = ρρ′, where ρ = ρ1 ρ2 ρ3 ρ4 ρ5 and ρ′ = ρ′
5 ρ

′
4 ρ

′
3 ρ

′
2 ρ

′
1, as well as

cycles π1, . . . , π4 and π′
1, . . . , π

′
4 given by the definition of thick run. Let v1, . . . , v4 and

v′
1, . . . , v

′
4 be the respective effects of π1, . . . , π4 and π′

1, . . . , π
′
4. For j = 1, . . . , 4 let

cj = trg(ρj) and for j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such
that the configuration cj + ej enables cycle πj . We define the following system U of
linear inequalities with 6 variables a1, a2, a3, a4, x, y (max is understood point-wise):

a1v1 ≥ e2 (9.3)
a1v1 + a2v2 ≥ max(e2, e3) (9.4)

a1v1 + a2v2 + a3v3 ≥ max(e3, e4) (9.5)
a1v1 + a2v2 + a3v3 + a4v4 = (x, y) ≥ e4 (9.6)

(Observe that when v1[j] = 0, i.e., in case when v1 is vertical or horizontal, ej = 0 and
therefore one of the two first inequalities is always satisfied, namely a1v1[j] ≥ e2[j].)
Likewise, we have a system of inequalities U ′ with 6 variables a′

1, a
′
2, a

′
3, a

′
4, x

′, y′. Observe
that the sequential cone SeqCone(v1, v2, v3, v4) contains exactly (projections on (x, y)
of) non-negative rational solutions of the modified system U (0,0) obtained by replacing
all the right-hand sides with (0, 0). Likewise we define U ′(0,0).

Finally, we define the compound system C by enhancing the union of U and U ′ with two
additional equalities (likewise we define the system C(0,0))

(x, y) = (x′, y′). (9.7)

Claim 9.28.

C admits a non-negative integer solution (a1, a2, a3, a4, x, y, a
′
1, a

′
2, a

′
3, a

′
4, x

′, y′).

Proof of claim 9.28.

The system C(0,0) admits a non-negative rational solution as the intersection of the
cones SeqCone(v1, v2, v3, v4) and SeqCone(v′

1, v
′
2, v

′
3, v

′
4) is non-empty by assumption.

As intersection of cones is stable under multiplications by non-negative rationals, the
solution can be scaled up arbitrarily, to yield a non-negative integer one, and even a
non-negative integer solution of the stronger system C.

163

CHAPTER 9. UTILITY RESULTS FOR vass2

Claim 9.29.

For every non-negative integer solution of C, for the cycles defined as αj := π
aj

j and
α′
j := (π′

j)
a′

j , for j = 1, 2, 3, 4, the following path is a (0, 0)-run:

ρ1 α1 ρ2 α2 ρ3 α3 ρ4 α4 ρ5 ρ
′
5 α

′
4 ρ

′
4 α

′
3 ρ

′
3 α

′
2 ρ

′
2 α

′
1 ρ

′
1.

Proof of claim 9.29.

The first two inequalities (9.3) enforce that the first cycle π1 is repeated sufficiently
many a1 times so that π2 is enabled in configuration trg(ρ1 α1 ρ2). Then the next
two inequalities (9.4) enforce that π1 and π2 are jointly repeated sufficiently many
a1, a2 times so that π2 is still enabled after its last repetition (which guarantees that
every of intermediate repetitions of π2 is also enabled), and that π3 is enabled in
configuration trg(ρ1 α1 ρ2 α2 ρ3). Likewise for (9.5). Finally, the inequalities (9.6) enforce
that π1, . . . , π4 are jointly repeated sufficiently many times so that π4 is still enabled
after its last repetition. Analogous argument, but in the reverse order, applies for the
repetitions of π′

4, . . . , π
′
1. Finally, equalities (9.7) ensure that the total effect of α1, . . . , α4

is precisely compensated by the total effect of rev(α′
1), . . . , rev(α′

4).

Proof of theorem 9.21.

Second part of two—case when τ is A-thick.

Consider a solution of C. In particular the sum eff(α1) + . . . + eff(αj), as well as
eff(rev(α′

1)) + . . .+ eff(rev(α′
j)), is necessarily non-negative for every j = 1, . . . , 4. There-

fore, as a direct corollary of claim 9.29, for every i ∈ N the path

ρ1 α
i
1 ρ2 α

i
2 ρ3 α

i
3 ρ4 α

i
4 ρ5 ρ

′
5 (α′

4)i ρ′
4 (α′

3)i ρ′
3 (α′

2)i ρ′
2 (α′

1)i ρ′
1

is also a (0, 0)-run. For bounding the lengths of cycles we use claim 9.28 and apply
lemma 9.27 to C, to deduce that C admits a non-negative integer solution of norm
polynomial in A = p(nM)n. This, together with the bounds on lengths of cycles
π1, . . . , π4 and π′

1, . . . , π
′
4 in the definition of A-thick run, entails required bounds on

the lengths of the pumpable cycles. Finally, the lengths of the extremal factors ρ1 and
ρ′

1 can be also bounded: if ρ1 (resp. ρ′
1) is long enough it must admit a repetition of

configuration, we add one more cycle determined by the first (resp. last) such repetition,
thus increasing k from 8 to 10.

For proving theorem 9.22 we will need a slightly more elaborate pumping. By the defini-
tion of thick run, both coordinates are bounded by A along ρ1 and ρ′

1. W.l.o.g. assume
that no configuration repeats in each of the two runs, and hence their lengths are bounded
by A2.
Let Cδ denote the union of of U and U ′ enhanced, this time, by the two equalities

(x, y) + (δx, δy) = (x′, y′).

The two additional variables δx, δy describe, intuitively, possible differences between the
total effect of πa1

1 , . . . , πa4
4 and the total effect of rev(π′

1)a′
1 , . . . , rev(π′

4)a′
4 . The projection

of any solution of Cδ on variables (δx, δy) we call below a shift.

164

9.3. DICHOTOMY ATWORK – PUMPING LEMMA & SHORT RUN PROPERTY

Claim 9.30.

For some non-negative integer m bounded polynomially with respect to A, all the four
vectors (0,m), (m, 0), (0,−m) and (−m, 0) are shifts.

Proof of claim 9.30.

We reason analogously as in the proof of claim 9.28, but this time we rely on the assump-
tion that intersection of the cones SeqCone(v1, v2, v3, v4) and SeqCone(v′

1, v
′
2, v

′
3, v

′
4) is

non-trivial, and hence contains, for some v ∈ R2
≥0 and a ∈ R≥0, the points v and v+(0, a).

By scaling we obtain an integer point v′ ∈ N2 and a non-negative integer m1 ∈ N so that
v′ and v′ + (0,m1) both belong to the intersection of cones. Therefore the vector (0,m1)
is a shift. Likewise we obtain three other non-negative integers m2,m3,m4 ∈ N such that
(m2, 0), (0,−m3) and (−m4, 0) are all shifts. Each of the integers m1, . . . ,m4 can be
bounded polynomially in A using lemma 9.27. As shifts are stable under multiplication
by non-negative integers, it is enough to take as m the least common multiple of the
four integers.

Figure 9.31.

v′
2

v1

v2

v4

v3

v′
1

v′
2

v1

v2

v4

v3

v′
1

Contracted paths ρ̃, ρ̃′ (left) and reconstructed (0, 0)-run τ̄ = ρ̄ ρ̄′ (right).

Proof of theorem 9.22.

Second part of two—case when τ is A-thick.

We use m from the last claim to modify all factors of τ except for ρ1 and ρ′
1, in order to

reduce their lengths to at most n ·m2. W.l.o.g. assume m to be larger than A (take a
sufficient multiplicity of m otherwise); this assumption allows us to proceed uniformly,

165

CHAPTER 9. UTILITY RESULTS FOR vass2

irrespectively whether v1 is positive or not. Observe that any path longer than n·m2 must
contain two configurations with the same control state whose vectors are coordinate-wise
congruent modulo m. As long as this happens, we remove the infix; note that this
operation changes the effect of the whole path by a multiplicity of m on every coordinate.
If this operation is performed on factors ρ2, ρ3, ρ4, ρ5, ρ

′
5, ρ

′
4, ρ

′
3, ρ

′
2, the paths ρ, ρ′ are

transformed into contracted paths (see the left picture in figure 9.31) of the form:

ρ̃ = ρ1 ρ̃2 ρ̃3 ρ̃4 ρ̃5, ρ̃′ = ρ̃′
5 ρ̃

′
4 ρ̃

′
3 ρ̃

′
2 σ1,

each of total length at most 5n ·m2. Importantly, their effects eff(ρ̃) and eff(ρ̃′) are
bounded polynomially in A, and their difference is (coordinate-wise) divisible by m:

eff(ρ̃)− eff(rev(ρ̃′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

Our aim is now to pump up the cycles π1, . . . , π4 and rev(π′
1), . . . , rev(π′

4) (see the right
picture in figure 9.31), to finally end up with the paths of the form

ρ̄ = ρ1 π
a1
1 ρ̃2 π

a2
2 ρ̃3 π

a3
3 ρ̃4 π

a4
4 ρ̃5, ρ̄′ = ρ̃′

5 (π′
4)a′

4 ρ̃′
4 (π′

3)a′
3 ρ̃′

3 (π′
2)a′

2 ρ̃′
2 (π′

1)a′
1 ρ′

1,

(9.8)

such that τ̄ = ρ̄ ρ̄′ is a (0, 0)-run. In other words, we aim at eff(ρ̄) = eff(rev(ρ̄′)). We
are going to use lemma 9.27 twice. For j = 2, . . . , 5 let cj := eff(ρ1ρ̃2 . . . ρ̃j) ∈ Z2, and
let fj be the minimal non-negative vector such that the configuration cj−1 + fj enables
ρ̃j . For j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such that the
configuration cj + ej enables πj .® Finally, let e5 be the minimal non-negative vector such
that c5 + e5 ≥ (0, 0). Analogously to the system U (9.3)–(9.6), we define the system Ũ
of linear inequalities:

a1mv1 ≥ max(e2, f2)
a1mv1 + a2mv2 ≥ max(e2, e3, f3)

a1mv1 + a2mv2 + a3mv3 ≥ max(e3, e4, f4)
a1mv1 + a2mv2 + a3mv3 + a4mv4 ≥ max(e4, e5, f5)

In words, Ũ requires that every prefix of ρ̄ is enabled in the source (0, 0)-configuration,
and that the number of repetitions of every cycle πi is divisible by m. Clearly Ũ has a non-
negative integer solution, as v1 is either positive, or vertical or horizontal in which case v2
is positive on the relevant coordinate. Likewise we define a system of inequalities Ũ ′ that
requires that every prefix of rev(ρ̄′) is enabled in the target (0, 0)-configuration. Consider
some fixed solutions of Ũ and Ũ ′ bounded, by the virtue of lemma 9.27, polynomially
in A. We have thus two fixed runs ρ̄ and rev(ρ̄′) of the form (9.8), with source vector
(0, 0); the number of repetitions of each cycles is divisible by m, and the difference of
their effects is (coordinate-wise) divisible by m:

eff(ρ̄)− eff(rev(ρ̄′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

As shifts are closed under addition, by claim 9.30 we know that (am, bm) is a shift.
Substituting (am, bm) for (δx, δy) in the system Cδ yields a system which admits, again
by lemma 9.27, a solution bounded polynomially in A. We use such a solution to
increase the numbers of repetitions of respective cycles a1, . . . , a4 and a′

4, . . . , a
′
1 in ρ̄

and ρ̄′, respectively. This turns the path τ̄ = ρ̄ ρ̄′ into a (0, 0)-run of length bounded
polynomially in A.

166

Chapter 10

Closing remarks

In this dissertation, we present an extensive set of results that fall within the general
quest for simplifying more complex systems. We propose a relatively simple framework of
register and timed synthesis games—a generalisation of the Church’s synthesis problem
to infinite-state systems. The computability results we obtain for controllers with a
limited number of registers or clocks allow us to easily settle the corresponding variants
of the deterministic separability problem. Unusually, this solution is common to both
models. Unusually—as, often, in spite of their far-reaching similarities, timed and register
automata generate inconsistencies which make it impossible to apply uniform proof
techniques. Our set of results is completed by the definite solution to the deterministic
membership problem (resolving one-register/clock corner cases), and by the introduction
of a run pumping technique based on geometric observations, with potential application
in proving further results for vass.

Open problems
While working on the results of this dissertation, we encountered several problems which
have not yet been resolved. These include:

I decidability status of dra- and dta-separability problem
Unlike the corresponding synthesis result, separability resists an undecidability proof
because of its simpler, more constraining structure.

I decidability status of regular separability for vass2
So far, the only positive results obtained in this area assume one of the separated
languages belongs to vass1 (cf. [38]). This is the simplest as yet unsolved case of the
general regular separability problem of languages of vassk.

We leave these questions open as a set-up for further research work.

167

Bibliography

[1] S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed Systems
Using Tree Automata. Logical Methods in Computer Science, Volume 14, Issue
2, May 2018. URL: https://lmcs.episciences.org/4489, doi:10.23638/LMCS-
14(2:8)2018.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126:183–235, 1994.

[3] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: a
determinizable class of timed automata. Theor. Comput. Sci., 211:253–273, January
1999.

[4] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed
automata. In Proc. of HSCC’99, HSCC ’99, pages 19–30, London, UK, UK, 1999.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=646879.710314.

[5] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller syn-
thesis for timed automata. In Proc. of SSSC’98, volume 31 of 5th IFAC Confer-
ence on System Structure and Control, pages 447–452, 1998. URL: http://www.
sciencedirect.com/science/article/pii/S1474667017420325, doi:https://
doi.org/10.1016/S1474-6670(17)42032-5.

[6] Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar,
Prakash Saivasan, and Georg Zetzsche. The complexity of regular abstractions of
one-counter languages. In Proc. LICS’16, pages 207–216, 2016.

[7] Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly
pushdown languages. In Proc. of STACS’06, STACS’06, pages 420–431, Berlin,
Heidelberg, 2006. Springer-Verlag. URL: http://dx.doi.org/10.1007/11672142_
34, doi:10.1007/11672142_34.

[8] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson,
Wang Yi, and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd International
Conference on the Quantitative Evaluation of Systems, QEST ’06, pages 125–126,
Washington, DC, USA, 2006. IEEE Computer Society. doi:10.1109/QEST.2006.59.

[9] Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie.
Reachability in two-dimensional vector addition systems with states is PSPACE-
complete. In Proc. LICS’15, pages 32–43, 2015.

169

https://lmcs.episciences.org/4489
https://doi.org/10.23638/LMCS-14(2:8)2018
https://doi.org/10.23638/LMCS-14(2:8)2018
http://dl.acm.org/citation.cfm?id=646879.710314
http://www.sciencedirect.com/science/article/pii/S1474667017420325
http://www.sciencedirect.com/science/article/pii/S1474667017420325
https://doi.org/https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/https://doi.org/10.1016/S1474-6670(17)42032-5
http://dx.doi.org/10.1007/11672142_34
http://dx.doi.org/10.1007/11672142_34
https://doi.org/10.1007/11672142_34
https://doi.org/10.1109/QEST.2006.59

BIBLIOGRAPHY

[10] Mikołaj Bojańczyk. Slightly infinite sets. unpublished. URL: https://www.mimuw.
edu.pl/~bojan/paper/atom-book.

[11] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal
sets. Log. Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

[12] Mikolaj Bojańczyk and Sławomir Lasota. A machine-independent characterization
of timed languages. In Proc. ICALP 2012, pages 92–103, 2012.

[13] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using
timed automata. In Proc. of FOSSACS’05, FOSSACS’05, pages 219–233, Berlin,
Heidelberg, 2005. Springer-Verlag. doi:10.1007/978-3-540-31982-5_14.

[14] Thomas Brihaye, Thomas A. Henzinger, Vinayak S. Prabhu, and Jean-François
Raskin. Minimum-time reachability in timed games. In Lars Arge, Christian Cachin,
Tomasz Jurdziński, and Andrzej Tarlecki, editors, Proc. of ICALP’07, pages 825–837,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[15] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society, 138:295–311,
1969. URL: http://www.jstor.org/stable/1994916.

[16] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of
Parikh automata and related models. In Rudolf Freund, Markus Holzer, Carlo
Mereghetti, Friedrich Otto, and Beatrice Palano, editors, Proc. of NCMA’11, volume
282 of books@ocg.at, pages 103–119. Austrian Computer Society, 2011.

[17] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In Martín
Abadi and Luca de Alfaro, editors, Proc. of CONCUR’05, pages 66–80, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[18] Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of
lossy channel systems. In Proc. LICS 2008, pages 205–216, 2008.

[19] Dmitry Chistikov, Wojciech Czerwinski, Piotr Hofman, Michal Pilipczuk, and
Michael Wehar. Shortest paths in one-counter systems. In Proc. of FOSSACS’16,
pages 462–478, 2016.

[20] Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Proc.
ICALP’16, pages 128:1–128:13, 2016.

[21] The 2016 alonzo church award for outstanding contributions to logic and computa-
tion. https://siglog.org/the-2016-alonzo-church-award-for-outstanding-
contributions-to-logic-and-computation/, 2016.

[22] Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and Charles Paperman.
Regular separability of parikh automata. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, Proc. of ICALP’17, volume 80, pages
117:1–117:13, 2017. URL: http://drops.dagstuhl.de/opus/volltexte/2017/
7497, doi:10.4230/LIPIcs.ICALP.2017.117.

170

https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1007/978-3-540-31982-5_14
http://www.jstor.org/stable/1994916
https://siglog.org/the-2016-alonzo-church-award-for-outstanding-contributions-to-logic-and-computation/
https://siglog.org/the-2016-alonzo-church-award-for-outstanding-contributions-to-logic-and-computation/
http://drops.dagstuhl.de/opus/volltexte/2017/7497
http://drops.dagstuhl.de/opus/volltexte/2017/7497
https://doi.org/10.4230/LIPIcs.ICALP.2017.117

BIBLIOGRAPHY

[23] Lorenzo Clemente, Wojciech Czerwiński, Slawomir Lasota, and Charles Paperman.
Regular Separability of Parikh Automata. In The 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017)), Varsovie, Poland,
2017. URL: https://hal.archives-ouvertes.fr/hal-01587616, doi:10.4230/
LIPIcs.ICALP.2017.117.

[24] Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman.
Separability of Reachability Sets of Vector Addition Systems. In Proc. of STACS’17,
volume 66 of LIPICs, pages 24:1–24:14, 2017. URL: http://drops.dagstuhl.de/
opus/volltexte/2017/7009, doi:10.4230/LIPIcs.STACS.2017.24.

[25] Lorenzo Clemente, Piotr Hofman, and Patrick Totzke. Timed Basic Parallel
Processes. In Wan Fokkink and Rob van Glabbeek, editors, Proc. of CON-
CUR’19, volume 140 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 15:1–15:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10917,
doi:10.4230/LIPIcs.CONCUR.2019.15.

[26] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Determinisabil-
ity of One-Clock Timed Automata. In Igor Konnov and Laura Kovács, edi-
tors, 31st International Conference on Concurrency Theory (CONCUR 2020),
volume 171 of Leibniz International Proceedings in Informatics (LIPIcs), pages
42:1–42:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12854, doi:
10.4230/LIPIcs.CONCUR.2020.42.

[27] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed games
and deterministic separability. arXiv e-prints, page arXiv:2004.12868, April 2020.
arXiv:2004.12868.

[28] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed games and
deterministic separability. In Proc. of ICALP 2020, pages 121:1–121:16, 2020.

[29] Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed Games and
Deterministic Separability. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 121:1–121:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/
2020/12528, doi:10.4230/LIPIcs.ICALP.2020.121.

[30] Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The
diagonal problem for higher-order recursion schemes is decidable. In Proc. of
LICS’16, 2016. URL: http://doi.acm.org/10.1145/2933575.2934527, doi:10.
1145/2933575.2934527.

[31] Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers.
In Proc. of CONCUR’99, CONCUR ’99, pages 242–257, London, UK, UK, 1999.
Springer-Verlag.

171

https://hal.archives-ouvertes.fr/hal-01587616
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
http://drops.dagstuhl.de/opus/volltexte/2017/7009
http://drops.dagstuhl.de/opus/volltexte/2017/7009
https://doi.org/10.4230/LIPIcs.STACS.2017.24
http://drops.dagstuhl.de/opus/volltexte/2019/10917
https://doi.org/10.4230/LIPIcs.CONCUR.2019.15
https://drops.dagstuhl.de/opus/volltexte/2020/12854
https://doi.org/10.4230/LIPIcs.CONCUR.2020.42
https://doi.org/10.4230/LIPIcs.CONCUR.2020.42
http://arxiv.org/abs/2004.12868
https://drops.dagstuhl.de/opus/volltexte/2020/12528
https://drops.dagstuhl.de/opus/volltexte/2020/12528
https://doi.org/10.4230/LIPIcs.ICALP.2020.121
http://doi.acm.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527

BIBLIOGRAPHY

[32] Wojciech Czerwiński and Sławomir Lasota. Regular Separability of One Counter
Automata. Logical Methods in Computer Science, Volume 15, Issue 2, June 2019.
URL: https://lmcs.episciences.org/5563.

[33] Wojciech Czerwinski, Slawomir Lasota, Christof Löding, and Radoslaw Piórkowski.
New Pumping Technique for 2-Dimensional VASS. In Peter Rossmanith, Pinar
Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2019), volume 138
of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:14,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
URL: http://drops.dagstuhl.de/opus/volltexte/2019/11006, doi:10.4230/
LIPIcs.MFCS.2019.62.

[34] Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla,
K. Narayan Kumar, and Prakash Saivasan. Regular Separability of Well-Structured
Transition Systems. In Sven Schewe and Lijun Zhang, editors, 29th Inter-
national Conference on Concurrency Theory (CONCUR 2018), volume 118
of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:18,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/9573, doi:10.4230/LIPIcs.
CONCUR.2018.35.

[35] Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla,
K. Narayan Kumar, and Prakash Saivasan. Regular Separability of Well-Structured
Transition Systems. In Sven Schewe and Lijun Zhang, editors, 29th Inter-
national Conference on Concurrency Theory (CONCUR 2018), volume 118
of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:18,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/9573, doi:10.4230/LIPIcs.
CONCUR.2018.35.

[36] Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of
regular languages by subsequences and suffixes. In Proc. of ICALP’14, ICALP’13,
pages 150–161, Berlin, Heidelberg, 2013. Springer-Verlag. URL: http://dx.doi.
org/10.1007/978-3-642-39212-2_16, doi:10.1007/978-3-642-39212-2_16.

[37] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note
on decidable separability by piecewise testable languages. In Proc. of FCT’15, 2015.
URL: http://dx.doi.org/10.1007/978-3-319-22177-9_14, doi:10.1007/978-
3-319-22177-9_14.

[38] Wojciech Czerwiński and Georg Zetzsche. An approach to regular separability in
vector addition systems. In Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’20, page 341–354, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3373718.3394776.

[39] Wojciech Czerwiński and Slawomir Lasota. Regular separability of one counter
automata. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–12, 2017. doi:10.1109/LICS.2017.8005079.

172

https://lmcs.episciences.org/5563
http://drops.dagstuhl.de/opus/volltexte/2019/11006
https://doi.org/10.4230/LIPIcs.MFCS.2019.62
https://doi.org/10.4230/LIPIcs.MFCS.2019.62
http://drops.dagstuhl.de/opus/volltexte/2018/9573
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
http://drops.dagstuhl.de/opus/volltexte/2018/9573
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
http://dx.doi.org/10.1007/978-3-642-39212-2_16
http://dx.doi.org/10.1007/978-3-642-39212-2_16
https://doi.org/10.1007/978-3-642-39212-2_16
http://dx.doi.org/10.1007/978-3-319-22177-9_14
https://doi.org/10.1007/978-3-319-22177-9_14
https://doi.org/10.1007/978-3-319-22177-9_14
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1109/LICS.2017.8005079

BIBLIOGRAPHY

[40] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register
automata. ACM Trans. Comput. Log., 10(3):16:1–16:30, 2009. doi:10.1145/
1507244.1507246.

[41] C. Dima. Computing reachability relations in timed automata. In Proc. of LICS’02,
pages 177–186, 2002.

[42] Deepak D’Souza and P. Madhusudan. Timed control synthesis for external speci-
fications. In Helmut Alt and Afonso Ferreira, editors, Proc. of STACS’02, pages
571–582, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[43] Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in two-dimensional
unary vector addition systems with states is NL-complete. In Proc. of LICS ’16,
pages 477–484, 2016.

[44] John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is
PSPACE-complete. Information and Computation, 243:26–36, 2015. URL: http://
www.sciencedirect.com/science/article/pii/S0890540114001564, doi:http:
//dx.doi.org/10.1016/j.ic.2014.12.004.

[45] Diego Figueira, Piotr Hofman, and Slawomir Lasota. Relating timed and regis-
ter automata. Math. Struct. Comput. Sci., 26(6):993–1021, 2016. doi:10.1017/
S0960129514000322.

[46] Olivier Finkel. Undecidable problems about timed automata. In Proc. of FOR-
MATS’06, FORMATS’06, pages 187–199, Berlin, Heidelberg, 2006. Springer-Verlag.
URL: http://dx.doi.org/10.1007/11867340_14, doi:10.1007/11867340_14.

[47] R. Fraïssé. Theory of relations. North-Holland, 1953.

[48] Martin Fränzle, Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Effective
definability of the reachability relation in timed automata. Information Process-
ing Letters, 153:105871, 2020. URL: http://www.sciencedirect.com/science/
article/pii/S0020019019301541, doi:https://doi.org/10.1016/j.ipl.2019.
105871.

[49] Laurent Fribourg. A closed-form evaluation for extended timed automata. Technical
report, CNRS & ECOLE NORMALE SUPERIEURE DE CACHAN, 1998.

[50] David Gale and F. M. Stewart. 13. Infinite Games with Perfect Information, pages
245–266. Princeton University Press, 2016. URL: https://doi.org/10.1515/
9781400881970-014, doi:doi:10.1515/9781400881970-014.

[51] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in Timed Automata
with Diagonal Constraints. In Sven Schewe and Lijun Zhang, editors, Proc. of CON-
CUR’18, volume 118 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 28:1–28:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9566,
doi:10.4230/LIPIcs.CONCUR.2018.28.

[52] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling
diagonal constraints in timed automata. In Isil Dillig and Serdar Tasiran, editors,

173

https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
http://www.sciencedirect.com/science/article/pii/S0890540114001564
http://www.sciencedirect.com/science/article/pii/S0890540114001564
https://doi.org/http://dx.doi.org/10.1016/j.ic.2014.12.004
https://doi.org/http://dx.doi.org/10.1016/j.ic.2014.12.004
https://doi.org/10.1017/S0960129514000322
https://doi.org/10.1017/S0960129514000322
http://dx.doi.org/10.1007/11867340_14
https://doi.org/10.1007/11867340_14
http://www.sciencedirect.com/science/article/pii/S0020019019301541
http://www.sciencedirect.com/science/article/pii/S0020019019301541
https://doi.org/https://doi.org/10.1016/j.ipl.2019.105871
https://doi.org/https://doi.org/10.1016/j.ipl.2019.105871
https://doi.org/10.1515/9781400881970-014
https://doi.org/10.1515/9781400881970-014
https://doi.org/doi:10.1515/9781400881970-014
http://drops.dagstuhl.de/opus/volltexte/2018/9566
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28

BIBLIOGRAPHY

Computer Aided Verification, pages 41–59, Cham, 2019. Springer International
Publishing.

[53] Stefan Göller and Paweł Parys. Bisimulation finiteness of pushdown systems is
elementary. In Proc. of LICS’20, pages 521–534, 2020.

[54] Jean Goubault-Larrecq and Sylvain Schmitz. Deciding Piecewise Testable Separabil-
ity for Regular Tree Languages. In Proc. of ICALP’16, volume 55 of LIPIcs, pages
97:1–97:15, 2016. URL: http://drops.dagstuhl.de/opus/volltexte/2016/6232,
doi:10.4230/LIPIcs.ICALP.2016.97.

[55] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting
Local Time Semantics for Networks of Timed Automata. In Wan Fokkink and Rob
van Glabbeek, editors, Proc. of CONCUR 2019, volume 140 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 16:1–16:15, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.
de/opus/volltexte/2019/10918, doi:10.4230/LIPIcs.CONCUR.2019.16.

[56] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and
downward closures of higher-order pushdown automata. In Proc. of POPL’16, POPL
2016, pages 151–163, New York, NY, USA, 2016. ACM. URL: http://doi.acm.
org/10.1145/2837614.2837627, doi:10.1145/2837614.2837627.

[57] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for
timed automata. Information and Computation, 251:67–90, 2016. URL: http://www.
sciencedirect.com/science/article/pii/S0890540116300438, doi:https://
doi.org/10.1016/j.ic.2016.07.004.

[58] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for
5-dimensional vector addition systems. Theor. Comput. Sci., 8:135–159, 1979.
doi:10.1016/0304-3975(79)90041-0.

[59] H. B. Hunt, III. On the decidability of grammar problems. J. ACM, 29(2):429–447,
April 1982. URL: http://doi.acm.org/10.1145/322307.322317, doi:10.1145/
322307.322317.

[60] Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on timed au-
tomata. In Proc. of ICALP’07, pages 838–849, Berlin, Heidelberg, 2007. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=2394539.2394637.

[61] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2):329–363, 1994.

[62] Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147–195, 1969.

[63] Ayrat Khalimov, Benedikt Maderbacher, and Roderick Bloem. Bounded synthesis
of register transducers. In Shuvendu Lahiri and Chao Wang, editors, Automated
Technology for Verification and Analysis, Lecture Notes in Computer Science, pages
494–510, 2018. 16th International Symposium on Automated Technology for Verifi-
cation and Analysis, ATVA 2018 ; Conference date: 07-10-2018 Through 10-10-2018.
doi:10.1007/978-3-030-01090-4_29.

174

http://drops.dagstuhl.de/opus/volltexte/2016/6232
https://doi.org/10.4230/LIPIcs.ICALP.2016.97
http://drops.dagstuhl.de/opus/volltexte/2019/10918
http://drops.dagstuhl.de/opus/volltexte/2019/10918
https://doi.org/10.4230/LIPIcs.CONCUR.2019.16
http://doi.acm.org/10.1145/2837614.2837627
http://doi.acm.org/10.1145/2837614.2837627
https://doi.org/10.1145/2837614.2837627
http://www.sciencedirect.com/science/article/pii/S0890540116300438
http://www.sciencedirect.com/science/article/pii/S0890540116300438
https://doi.org/https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/0304-3975(79)90041-0
http://doi.acm.org/10.1145/322307.322317
https://doi.org/10.1145/322307.322317
https://doi.org/10.1145/322307.322317
http://dl.acm.org/citation.cfm?id=2394539.2394637
https://doi.org/10.1007/978-3-030-01090-4_29

BIBLIOGRAPHY

[64] Bartek Klin, Sławomir Lasota, and Szymon Toruńczyk. Nondeterministic and
co-nondeterministic implies deterministic, for data languages. Proc. of FOSSACS’21,
12650:365–384, 03 2021. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7984108/, doi:10.1007/978-3-030-71995-1{_}19.

[65] Eryk Kopczynski. Invisible pushdown languages. In Proc. of LICS’16, pages
867–872, 2016. URL: http://doi.acm.org/10.1145/2933575.2933579, doi:10.
1145/2933575.2933579.

[66] S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In STOC’82, pages 267–281, 1982.

[67] Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems. In Sundar
Sarukkai and Sandeep Sen, editors, Proc. of FSTTCS’05, volume 3821 of LNCS,
pages 310–321. Springer, 2005. URL: http://dx.doi.org/10.1007/11590156_25.

[68] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. of CAV’11,
volume 6806 of LNCS, pages 585–591. Springer, 2011.

[69] Slawomir Lasota. Decidability border for petri nets with data: WQO dichotomy
conjecture. In Fabrice Kordon and Daniel Moldt, editors, Proc. PETRI NETS 2016,
volume 9698 of Lecture Notes in Computer Science, pages 20–36. Springer, 2016.
doi:10.1007/978-3-319-39086-4_3.

[70] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM
Trans. Comput. Logic, 9(2):10:1–10:27, 2008. URL: http://doi.acm.org/10.1145/
1342991.1342994, doi:10.1145/1342991.1342994.

[71] Michel Latteux. Langages à un compteur. J. Comput. Syst. Sci., 26(1):14–33, 1983.

[72] Oded Maler and Amir Pnueli. On recognizable timed languages. In Igor Walukiewicz,
editor, Proc. of FOSSACS’04, volume 2987 of LNCS, pages 348–362. Springer Berlin
Heidelberg, 2004. URL: http://dx.doi.org/10.1007/978-3-540-24727-2_25,
doi:10.1007/978-3-540-24727-2_25.

[73] Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC ’81, page 238–246, New York, NY, USA, 1981. Association for Computing
Machinery. doi:10.1145/800076.802477.

[74] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In
STOC’81, pages 238–246, 1981.

[75] Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput.
Sci., 297(1-3):337–354, March 2003. URL: http://dx.doi.org/10.1016/S0304-
3975(02)00646-1, doi:10.1016/S0304-3975(02)00646-1.

[76] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał
Szynwelski. Learning nominal automata. In Proc. of POPL’17, POPL 2017, pages
613–625, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/
3009837.3009879, doi:10.1145/3009837.3009879.

175

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984108/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984108/
https://doi.org/10.1007/978-3-030-71995-1{_}19
http://doi.acm.org/10.1145/2933575.2933579
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1145/2933575.2933579
http://dx.doi.org/10.1007/11590156_25
https://doi.org/10.1007/978-3-319-39086-4_3
http://doi.acm.org/10.1145/1342991.1342994
http://doi.acm.org/10.1145/1342991.1342994
https://doi.org/10.1145/1342991.1342994
http://dx.doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.1145/800076.802477
http://dx.doi.org/10.1016/S0304-3975(02)00646-1
http://dx.doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.1016/S0304-3975(02)00646-1
http://doi.acm.org/10.1145/3009837.3009879
http://doi.acm.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879

BIBLIOGRAPHY

[77] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for
strings over infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, July 2004.
doi:10.1145/1013560.1013562.

[78] Brian Nielsen and Arne Skou. Automated test generation from timed automata.
International Journal on Software Tools for Technology Transfer, 5(1):59–77, Nov
2003. doi:10.1007/s10009-002-0094-1.

[79] Joël Ouaknine and James Worrell. On the language inclusion problem for timed
automata: Closing a decidability gap. In 19th IEEE Symposium on Logic in
Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings,
pages 54–63, 2004. doi:10.1109/LICS.2004.1319600.

[80] Joël Ouaknine and James Worrell. On the decidability and complexity of Metric
Temporal Logic over finite words. Logical Methods in Computer Science, Volume
3, Issue 1, February 2007. URL: https://lmcs.episciences.org/2230, doi:
10.2168/LMCS-3(1:8)2007.

[81] Thomas Place, Lorijn Rooijen, and Marc Zeitoun. Separating regular languages
by piecewise testable and unambiguous languages. In Krishnendu Chatterjee
and Jirí Sgall, editors, Proc. of MFCS’13, pages 729–740. Springer, 2013. URL:
http://dx.doi.org/10.1007/978-3-642-40313-2_64, doi:10.1007/978-3-642-
40313-2_64.

[82] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular lan-
guages by locally testable and locally threshold testable languages. LMCS, 10(3),
2014. URL: http://dx.doi.org/10.2168/LMCS-10(3:24)2014, doi:10.2168/
LMCS-10(3:24)2014.

[83] Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and
Elias Koutsoupias, editors, Proc. of ICALP’14, pages 342–353, Berlin, Heidelberg,
2014. Springer. URL: http://dx.doi.org/10.1007/978-3-662-43951-7_29, doi:
10.1007/978-3-662-43951-7_29.

[84] Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic.
Logical Methods in Computer Science, 12(1), 2016. URL: http://dx.doi.org/10.
2168/LMCS-12(1:5)2016, doi:10.2168/LMCS-12(1:5)2016.

[85] Michael O. Rabin. Weakly definable relations and special automata. In Yehoshua
Bar-Hillel, editor, Mathematical Logic and Foundations of Set Theory, vol-
ume 59 of Studies in Logic and the Foundations of Mathematics, pages 1 – 23.
Elsevier, 1970. URL: http://www.sciencedirect.com/science/article/pii/
S0049237X08719293, doi:https://doi.org/10.1016/S0049-237X(08)71929-3.

[86] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–358, February 1953.
doi:10.1090/s0002-9947-1953-0053041-6.

[87] J. Richard Büchi. Symposium on decision problems: On a decision method in re-
stricted second order arithmetic. In Ernest Nagel, Patrick Suppes, and Alfred Tarski,

176

https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/s10009-002-0094-1
https://doi.org/10.1109/LICS.2004.1319600
https://lmcs.episciences.org/2230
https://doi.org/10.2168/LMCS-3(1:8)2007
https://doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1007/978-3-642-40313-2_64
http://dx.doi.org/10.2168/LMCS-10(3:24)2014
https://doi.org/10.2168/LMCS-10(3:24)2014
https://doi.org/10.2168/LMCS-10(3:24)2014
http://dx.doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1007/978-3-662-43951-7_29
http://dx.doi.org/10.2168/LMCS-12(1:5)2016
http://dx.doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.2168/LMCS-12(1:5)2016
http://www.sciencedirect.com/science/article/pii/S0049237X08719293
http://www.sciencedirect.com/science/article/pii/S0049237X08719293
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71929-3
https://doi.org/10.1090/s0002-9947-1953-0053041-6

BIBLIOGRAPHY

editors, Logic, Methodology and Philosophy of Science, volume 44 of Studies in Logic
and the Foundations of Mathematics, pages 1–11. Elsevier, 1966. URL: https://www.
sciencedirect.com/science/article/pii/S0049237X09705646, doi:https://
doi.org/10.1016/S0049-237X(09)70564-6.

[88] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008.

[89] P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, and Lakshmi
Manasa. Timed automata with integer resets: Language inclusion and expressiveness.
In Proc. of FORMATS’08, FORMATS ’08, pages 78—92, Berlin, Heidelberg, 2008.
Springer-Verlag. doi:10.1007/978-3-540-85778-5_7.

[90] Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up
parsing techniques. SIAM Journal on Computing, 5(2):231–250, 1976. URL: http:
//dx.doi.org/10.1137/0205019, arXiv:http://dx.doi.org/10.1137/0205019,
doi:10.1137/0205019.

[91] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber.
Time to learn - learning timed automata from tests. In Étienne André and Mariëlle
Stoelinga, editors, Proc. of FORMATS’19, pages 216–235, Cham, 2019. Springer
International Publishing.

[92] Ramanathan S. Thinniyam and Georg Zetzsche. Regular Separability and Intersec-
tion Emptiness Are Independent Problems. In Arkadev Chattopadhyay and Paul
Gastin, editors, Proc. of FSTTCS’19, volume 150 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 51:1–51:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2019/11613, doi:10.4230/LIPIcs.FSTTCS.2019.51.

[93] Stavros Tripakis. Folk theorems on the determinization and minimization of timed
automata. Inf. Process. Lett., 99(6):222–226, September 2006.

[94] Leslie G. Valiant. Regularity and related problems for deterministic pushdown
automata. J. ACM, 22(1):1–10, January 1975. URL: http://doi.acm.org/10.
1145/321864.321865, doi:10.1145/321864.321865.

[95] Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Jour-
nal of Computer and System Sciences, 23(3):299–325, 1981. URL: http://www.
sciencedirect.com/science/article/pii/0022000081900672, doi:http://dx.
doi.org/10.1016/0022-0000(81)90067-2.

[96] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. An algorithm for learning
real-time automata. In Proc of. the Annual Belgian-Dutch Machine Learning
Conference (Benelearn’078), 2007.

177

https://www.sciencedirect.com/science/article/pii/S0049237X09705646
https://www.sciencedirect.com/science/article/pii/S0049237X09705646
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1007/978-3-540-85778-5_7
http://dx.doi.org/10.1137/0205019
http://dx.doi.org/10.1137/0205019
http://arxiv.org/abs/http://dx.doi.org/10.1137/0205019
https://doi.org/10.1137/0205019
https://drops.dagstuhl.de/opus/volltexte/2019/11613
https://drops.dagstuhl.de/opus/volltexte/2019/11613
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
http://doi.acm.org/10.1145/321864.321865
http://doi.acm.org/10.1145/321864.321865
https://doi.org/10.1145/321864.321865
http://www.sciencedirect.com/science/article/pii/0022000081900672
http://www.sciencedirect.com/science/article/pii/0022000081900672
https://doi.org/http://dx.doi.org/10.1016/0022-0000(81)90067-2
https://doi.org/http://dx.doi.org/10.1016/0022-0000(81)90067-2

	List of theorems
	Acknowledgements
	Tale
	Overview
	Models of computation
	Automata with clocks (NTA/DTA)
	Automata with registers (NRA/DRA)
	Automata with counters (VASS)

	Contributions grouped by problems
	Synthesis problem and synthesis games
	Deterministic separability problem
	Deterministic membership problem
	Pumping technique for VASS of dimension two

	Source materials

	Preliminaries
	Models of computation with infinite space of configurations
	Labelled transition systems (LTS)
	Sets with atoms
	Atoms
	Atom automorphisms
	Invariance

	Register automata (RA)
	Register constraints
	Nondeterministic register automata with guessing (NRAg)
	Nondeterministic register automata without guessing (NRA)
	Deterministic register automata (DRA)
	One-register automata
	Invariance of register automata
	Varieties of register automata

	Timed automata (TA)
	Timed words and languages
	Clock constraints and regions
	Nondeterministic timed automata (NTA)
	Deterministic timed automata (DTA)

	Vector addition systems with states (VASS)
	Computational problems
	Synthesis problem and synthesis game
	Deterministic separability problems
	Deterministic membership problems

	Generalised synthesis problems and games
	Generalised deterministic LTS synthesis game
	Register synthesis game
	Timed synthesis game

	Synthesis game for solving deterministic separability
	Motivating examples
	Reduction to generalised synthesis problem

	Solving k-register synthesis problem
	Atom-blind synthesis problem
	Eliminating winning controller's registers
	Eliminating atoms

	Solving k-clock timed synthesis problems
	Simplifying assumptions
	Zero-starting winning conditions
	Strictly monotonic winning conditions

	Elliminating winning controller's clocks
	Case of bounded constants in clock constraints
	Case of unbounded constants in clock constraints

	Elliminating time

	Solving deterministic membership problems
	Decidability of 1-DRA membership for 1-NRA
	Proof of lemma 7.2
	Other atoms

	Lower bounds for NRA
	Invariance of timed automata

	Decidability of 1-DTA membership for 1-NTA
	Proof of lemma 7.30

	Lower bounds for NTA

	Undecidability in case of unbounded number of registers/clocks
	Lossy counter machines
	Representing LCM runs as words
	Representing LCM runs as timed words
	Undecidability of DTA membership
	Undecidability of timed synthesis
	Definition of a game leading to undecidability
	Intuitition
	Proofs

	Representing LCM runs as data words
	Undecidability of DRA membership
	Undecidability of register synthesis
	Local errors and local correctness
	Definition of a game with undecidable register synthesis problem
	Proofs
	Eliminating guessing

	Utility results for VASS of dimension 2
	Supporting definition – sequential cones
	Thin/thick dichotomy of runs
	Proof of theorem 9.7
	Proof of theorem 9.8

	Dichotomy at work – pumping lemma & short run property
	Proof thin
	Proof thick

	Closing remarks
	Bibliography

