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Abstract 

In this work, six evolutionary algorithms are constructed and programmed by using 

Graphic User Interface (GUI) in Matlab. They are designed to search for a global optimum of a 

numerical function. These algorithms are based on exploring similarities and dissimilarities 

between solutions (chromosomes represented as binary strings) in order to find solutions which 

are close to an optimal one. Then a special way to discover a schema of a binary string, called 

free schema, is introduced. The effect of a big initial population is studied in the last algorithm.  

To prove the efficiency of these algorithms, twenty seven test functions were used. We 

used eighteen functions of two variables, one function of four variables, five functions of ten and 

100 variables, and five shifted and rotated functions (2, 3-dimentions). The results showed, in 

most cases, the superiority of the algorithms proposed in this thesis over the Classical Genetic 

Algorithm (CGA) and some other algorithms like the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) and Differential Evolution (DE). 

This thesis contains eight chapters. Chapter one is a general introduction to optimization, 

then a literature review is presented in the second chapter. In the third chapter, an algorithm 

called Dissimilarity and Similarity of Chromosomes (DSC) is described, which has proved 

successful in comparison with the CGA. In this algorithm, two genetic operators are used: the 

dissimilarity operator and the similarity operator, and also random generation of a part of each 

new population. The DSC succeeded in finding optimum solutions for some functions for which 
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the CGA failed. The fourth chapter introduces a new algorithm that includes two new operators: 

the dynamic dissimilarity operator and the dynamic schema operator, this algorithm is called 

DSDSC. The fifth chapter contains descriptions of three new algorithms in which a double 

population is applied with various genetic processes, including free dynamic schema, these 

algorithms are named DDS, FDS, and MFDS. In the sixth chapter, the last algorithm, which 

includes the effect of a big initial population on the MFDS, is constructed, this algorithm is 

called IPMFDS. Chapter seven contains the comparison of all our methods with CMA-ES,  DE 

and GA; also in addition a case study of the knapsack problem is given here. Finally, chapter 

eight contains some conclusions of this work. 

The proof of convergence is provided only for the DSC algorithm, but it can be easily 

modified so as to work for all subsequent algorithms. It is suitable for any search that contains 

random generation of a part of population. 

 

Streszczenie 

W niniejszej pracy skonstruowano i zaprogramowano sześć algorytmów ewolucyjnych za 

pomocą graficznego interfejsu użytkownika (GUI) w programie Matlab. Zostały one 

zaprojektowane w celu poszukiwania globalnego optimum funkcji numerycznej. Algorytmy te 

opierają się na badaniu podobieństw i różnic między rozwiązaniami (chromosomy 

reprezentowane jako łańcuchy binarne) w celu znalezienia rozwiązań bliskich optymalnym. 

Następnie wprowadzono specjalny sposób wykrywania schematu ciągu binarnego, zwanego 

wolnym schematem. Wpływ dużej populacji początkowej badany jest w ostatnim algorytmie.  

Aby udowodnić skuteczność tych algorytmów, zastosowano 27 funkcji testowych. 

Zastosowaliśmy 18 funkcji dwóch zmiennych, jedną funkcję czterech zmiennych, 5 funkcji 10 i 

100 zmiennych, a także 5 funkcji przesuniętych i obróconych (2 i 3 zmienne). Wyniki pokazały, 

w większości przypadków, wyższość algorytmów zaproponowanych w tej pracy w stosunku do 

klasycznego algorytmu genetycznego (CGA) i niektórych innych algorytmów, takich jak 

strategia adaptacji macierzy kowariancji (CMA-ES) ewolucja różnicowa (DE).  

Niniejsza rozprawa zawiera osiem rozdziałów. Rozdział pierwszy jest ogólnym 

wprowadzeniem do optymalizacji, a następnie przegląd literatury został przedstawiony w drugim 

rozdziale. W rozdziale trzecim opisano algorytm o nazwie Różnice i Podobieństwa 



 iii 

 

Chromosomów (DSC), który okazał się skuteczny w porównaniu z CGA. W tym algorytmie 

używa się dwóch operatorów genetycznych: operatora odmienności i operatora podobieństwa, a 

także losowego generowania części każdej nowej populacji. DSC odnalazł optymalne 

rozwiązania dla niektórych funkcji, dla których CGA zawodził. Czwarty rozdział wprowadza 

nowy algorytm, który zawiera dwa nowe operatory: dynamiczny operator odmienności i operator 

dynamicznego schematu, który to algorytm nazywa się DSDSC. Piąty rozdział zawiera opisy 

trzech nowych algorytmów, w których podwójna populacja jest stosowana z różnymi procesami 

genetycznymi, w tym wolnym schematem dynamicznym, algorytmy te nazywają się DDS, FDS i 

MFDS. W rozdziale szóstym skonstruowany jest ostatni algorytm, który obejmuje efekt dużej 

populacji początkowej na MFDS, ten algorytm nazywa się IPMFDS. Rozdział siódmy zawiera 

porównanie wszystkich naszych metod z CMA-ES, DE i GA; dodatkowo przedstawiono tutaj 

stadium przypadku dla problemu plecakowego. Wreszcie rozdział siódmy zawiera pewne 

wnioski z tej pracy.  

Dowód zbieżności jest podany tylko dla algorytmu DSC, ale można go łatwo 

zmodyfikować, aby działał dla wszystkich kolejnych algorytmów. Jest odpowiedni dla każdego 

wyszukiwania, które zawiera losowe generowanie części populacji.  
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CHAPTER ONE: Introduction  

 

1.1 Overview 

In this chapter we provide an overview of the main optimization methods and 

principles. We mention some classical methods as well as some new metaheuristic 

methods, and focus on Genetic Algorithms (GA) and other evolutionary optimization 

algorithms.  

 

1.2 Theoretical Background of Optimization 

The key idea of optimization can be understand from Figure 1. 1, where a 

function is shown which has various peak values and each one of them can be considered 

as a type of optimum. There are two main types of peak values: global optima and local 

optima. The main target in any optimization algorithm is to find a solution (a point   in 

the domain of   ) at which a global optimum is attained. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 1 Global and local optimization [1]. 
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1.3 Principles of Optimization  

In any problem involving decision making, be it in engineering or in economics, 

optimization plays a crucial role. The task of decision making entails choosing between 

various alternatives. Our desire to make the "best" decision stands behind the choice. The 

goodness of the alternatives is measured by an objective function or performance index.  

Optimization theory and techniques deal with selecting the best alternative in the 

sense of a given objective function. The area of optimization has received enormous 

attention in recent years, primarily because of the rapid progress in computer technology, 

including the development and availability of user-friendly software, high-speed and 

parallel processors, and artificial neural networks [2]. 

 

1.3.1 Optimization Techniques (Search Algorithms) 

Optimization techniques or, in other words, search algorithms, are one of possible 

ways to help a decision maker to choose a good solution. Optimization algorithms can 

also lead to an appropriate solution for real-time applications [3]. 

In many real world problems, the objectives that are being taken under 

consideration while trying to find the solution are in conflict with each other, and 

optimizing a particular solution with respect to only a single objective can result in 

unacceptable results with respect to other objectives. A reasonable approach to a multi-

objective problem is to investigate a set of solutions, each of which satisfies the 

objectives at an acceptable level without allowing one particular objective to dominate 

[3].  

Figure 1.2 illustrates popular search algorithms such as Uninformed Search, 

Guided Random Search Techniques (Heuristic Search), Calculus Based Techniques, etc. 

The review [3] provides the comparison and analysis of these algorithms for different 

problems.  
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Figure 1. 2 Classification of different search techniques. 

 

Here are some definitions of guided random search algorithms:  

1. Hill Climbing is a graph searching algorithm, this algorithm starts with an 

arbitrary solution and then attempts to find a better one by changing one 

element of the solution (one bit in the binary encoding). Hill Climbing is 

Search Optimization  

Calculus Based 
Techniques 

Indirect Methods 

Direct Methods 

Guided Random Search 
Techniques 

Tabu Search 

Hill Climbing 

Simulated Annealing 

Evolutionary 
Algorithms 

Genetic Programming 

Genetic Algorithms 

Evolutionary Strategies 
Ant Colony 

Optimization  

Particle Swarm 
Optimization 

Differential Evolution 

Shuffled Frog Leaping  

........ 

Artificial Bee Colony 

Enumerative 
Techniques 

Uninformed Search 

Informed Search 



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms …Chapter 1 

 22 

 

used widely in artificial intelligence fields, for reaching a goal state from a 

starting node.  

2. Simulated Annealing is a probabilistic single-solution-based technique for 

approximating the global optimum of a given function.  The name refers 

to the technology which includes controlled cooling and heating a material 

in order to decrease the defects and raise the volumes of its ingredient 

crystals [3].  

3. Genetic Algorithms: A Genetic Algorithm (GA) is a search technique used 

in computer science to find approximate solutions to optimization and 

search problems. Specifically, it is generally an incomplete search. 

Genetic algorithms are a particular class of evolutionary algorithms that 

use techniques inspired by evolutionary biology such as inheritance, 

mutation, selection, and crossover (also called recombination) [4]. 

4. Tabu Search was introduced in [5] and [6] to solve combinatorial 

optimization problems, it has been used effectively for simulation 

optimization. It is a solution-to-solution method and the main idea is to 

make certain moves or solutions Tabu, that is they cannot be visited as 

long as they are on what is called the tabu list. The tabu list    is dynamic 

and after each move, the latest solution   , or the move that resulted in 

this solution, is added to the list and the oldest solution or move is 

removed from the list [7]. 

 

1.3.2 Classical Optimization Techniques 

The classical methods of optimization are usually based on updating a single 

randomly chosen  solution in every iteration by a deterministic procedure, to finally find 

the optimal one. Those methods can be classified in two distinct groups: direct methods 

and indirect (gradient-based) methods, see Figure 1.2. To reach an optimal solution, just 

the constraint functions and the objective function values are utilized in direct techniques. 

In the case of the indirect methods both values of functions and their gradients are used in 

the process [8], [9]. 

https://en.wikipedia.org/wiki/Probabilistic_algorithm
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Function_(mathematics)
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The classical methods of optimization are useful in finding the optimum solution 

of differentiable functions. These methods are analytical and to specify the optimum 

points the differential calculus strategies can be utilized. Since some of the practical 

problems involve objective functions that are non-differentiable or even discontinuous, 

the classical optimization techniques have limited use in practical applications. Yet, the 

study of these classical techniques of optimization is crucial in the process of developing 

most of the numerical techniques, which have evolved into advanced techniques more 

suitable to today’s practical problems [10]. 

There are three main classes of problems that can be handled with the classical 

optimization techniques, viz., single variable functions, multivariable functions with no 

constraints and multivariable functions with both equality and inequality constraints. For 

problems with equality constraints, the Lagrange multiplier method can be used. If the 

problem has inequality constraints, the conditions of Kuhn-Tucker may be utilized to 

recognize the optimum solution. These methods lead to a set of nonlinear simultaneous 

equations that may be difficult to solve [10]. 

 

1.3.3 Advanced Optimization Techniques 

Since 1960’s, more and more attention has been paid to evolutionary methods of 

optimization which aspire to mimic the fundamentals of nature evolution. This idea has 

influenced the design of optimization algorithms and stochastic searches [8], [9].  

Instead of utilizing a single solution (like in the case of classical methods), 

evolutionary methods are utilizing sets of random solutions as base populations. To reach 

the optimal solutions, these base populations are updated in each iteration. Furthermore, 

evolutionary methods can provide multiple solutions to multi-objective problems [8], [9]. 

One  of the most popular fields of evolutionary computation is the Evolutionary 

Multi-objective Optimization (EMO), which has proven itself to be successful in various 

application fields where multiple objectives appear [11]. 
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‖Evolutionary Algorithms (EAs) play an important role in the framework of 

artificial intelligence (AI) and, in particular in Soft-Computing (SC), when dealing with 

multi-objective problems in real-world engineering optimization‖ [12]. 

The Multi-Objective Optimization (MOO), which can also be named Pareto 

optimization, multi-attribute optimization, multi-criteria optimization, multi-objective 

programming or vector optimization is a decision making for multiple criteria [13]. 

Most of the traditional techniques require gradient information and hence it is not 

possible to solve non-differentiable optimization problems with the help of such 

traditional techniques. Moreover, such techniques often fail to solve optimization 

problems that have many local optima. To overcome these difficulties, there is a need to 

develop more powerful optimization techniques and for the last three decades there has 

been much effort put to develop these techniques. Some of the well-known population-

based optimization techniques are: Genetic Algorithms (GA) [14] which are based on the 

principle of evolution of the living beings and Darwinian theories of the survival-of-the-

fittest; Artificial Immune Algorithms (AIA) [15], based on the principle of immune 

system of the human being; Ant Colony Optimization (ACO) [16], which mimics the 

foraging behavior of the ant; Particle Swarm Optimization (PSO) [17] which uses the 

foraging behavior of the swarm of birds; Differential Evolution (DE) [18] which is 

similar to GA with specialized crossover and selection method; Shuffled Frog Leaping 

(SFL) [19] which works on the principle of communication among the frogs, Artificial 

Bee Colony (ABC) [20] mimicking the principle of foraging behavior of a honey bee. 

These algorithms have been applied to many engineering optimization problems and 

proved especially effective in solving some particular problems. All the above-mentioned 

algorithms are nature inspired population-based optimization methods, but they have 

some limitations in some aspects [21]. Due to this, more research is required to test 

algorithms in different situations to check how suitable they are for a wide variety of 

problems. Research is conducted in order to enhance the existing algorithms and to 

improve their performance. Enhancement is done either (a) by modifying the existing 

algorithms or (b) by hybridizing the existing algorithms. Enhancement due to 

modifications in the existing algorithms is reported in GA [22], [23], PSO [24], [25], 

https://en.wikipedia.org/wiki/MCDM
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[26], ACO [27], [28], ABC [29], [30], [31], etc. Enhancement can be also done by 

combining the strengths of different optimization algorithms, such process is known as 

hybridization of algorithms. Hybridization is an effective way to make the algorithm 

efficient and it combines the properties of different algorithms. Some of such hybridized 

algorithms can be found in [32], [33], [34], [35], [36], [37]. For example, a hybrid 

optimization algorithm combining the Biogeography Based Optimization (BBO) and 

Artificial Bee Colony (ABC), named Hybrid Particle swarm based Artificial Bee Colony 

(HBABC), is described in [21]. In [38] a hybrid algorithm is enhanced, it combines with 

the Nested Partitions (NP) technique. 

The NP method is introduced in [39] and it is another metaheuristic for 

combinatorial optimization that is readily adapted to simulation optimization problems. 

The main idea of this method lies in systematically partitioning the feasible region into 

subregions, then evaluating the potential of each region, and eventually focusing the 

computational effort on the most promising region. This process is carried out iteratively 

with each partition nested within the last. The computational effectiveness of the NP 

method relies heavily on the partitioning, which, if carried out in a manner such that 

fitting solutions are clustered together, can reach a near optimal solution very quickly [7].  

In our work, we also use partition of the feasible region into some subregions. It is 

attained by fixing a number of highest bits in a bit string for each variable. In this way a 

subregion is defined which is further searched by using genetic operators (see the 

DSDSC, Chapter 4, and the subsequent algorithms).      

 

1.3.4 Single Objective Optimization 

The objective function of a single-objective optimization (SOO) problem may 

have more than one global optimum point. For instance, the Shubert problem has 18 

optimum solutions, see Figure 3. 13, but it is satisfactory if the algorithm reaches any of 

the solutions. This type of optimization is called singe-objective global optimization. 

For example in the Travelling Salesman Problem (TSP), given a list of cities and 

distance between pairs of cities, the aim is to find the shortest possible route such that 
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each city is visited once and we return to the origin city. In this problem the objective is 

to minimize the length of the tour [9], [40]. 

 

1.4 Genetic Algorithm 

Genetic Algorithms (GA) are heuristic search techniques based on the process of 

natural evolution. They have found applications in generating useful solutions for 

problems involving optimization and search. Natural selection modeling is the base of 

GA which does not need computation of any secondary functions like derivatives. Some 

advantages of GA which make it more useful in optimization problems are the following: 

(a) the probability of local minimum trapping is decreased (b) going from one state to 

another requires less computational effort and (c) evaluation of the fitness of each string 

guides the search. A benefit of using the GA techniques is that they lead, in most of the 

cases, to global optimal solutions [3]. 

In 1960s, "Evolutionary computing" was introduced by I. Rechenberg in his work 

―Evolution strategies‖, and was further developed by other researchers. Genetic 

Algorithms (GAs) were discovered by John Holland who suggested this idea in his book 

―Adaptation in natural and artificial systems‖ in 1975 [41]. Holland suggested GA as a 

heuristic method based on ―survival of the fittest‖. GA proved to be a useful tool for 

search and optimization problems [42]. 

The use of Genetic Algorithms for problem solving is not new. The pioneering 

work of J. H. Holland in the 1970’s provided a significant contribution for scientific and 

engineering applications [43]. 

 

1.4.1 Genetic Operators 

There are usually three operators in a typical GA [44]. The first is the selection 

operator which produces one or more copies of some individuals from the current 

population.  Individuals with a good fitness are more likely to be chosen; otherwise, the 

individual is eliminated from the solution pool. Then the second operator is the 

recombination (known as the ―crossover‖) operator. In the crossover operator two 
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individuals from the generation and a crossover point are selected and a swapping 

operation is performed on the bit strings to the right-hand side of the crossover points of 

both individuals. The crossover operator works for two complementary purposes. First, it 

provides new points for further testing within the hyperplanes already represented in the 

population. Furthermore, crossover introduces representatives of new hyperplanes into 

the population, which has not been represented by either parent structure. Thus the 

probability of obtaining a better performing offspring is greatly increased. The third 

operator is the ―mutation‖ operator. This operator acts as a background operator and is 

used to explore some of the unvisited points in the search space by randomly flipping a 

―bit‖ in a population of strings. Frequent application of this operator would lead to a 

completely random search and because of that is has usually assigned a very low 

probability of its activation [44]. 

A genetic search starts with a randomly generated initial population within which 

each individual is evaluated by means of a fitness function. By using selection, 

individuals in this and subsequent generations are duplicated or eliminated according to 

their fitness values. Further generations are created by applying GA operators. This 

process is designed so as to lead to a generation of highly performing individuals [44]. 

 

1.5 Aims of the Thesis 

The main purpose of the thesis is to build new evolutionary algorithms which are 

able to find best solutions of Single Objective Optimization (SOO) problems. These 

algorithms are tested and compared with the Classical Genetic Algorithm (CGA), 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Differential Evolution 

(DE). In our six new algorithms we explore the effect of similarity and dissimilarity of 

chromosomes in the population, and also effects of discovering the schema. The 

algorithms are easy to formulate and understand, they were tested on various problems 

with different types of difficulty. For the first algorithm (DSC), we also study it 

convergence.  



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms …Chapter 1 

 28 

 

In this thesis, practical experiments were applied on six new evolutionary 

algorithms (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS), each algorithm applied on 

two-dimensional and ten-dimensional functions, the last two algorithms applied in 100 

dimensions on different functions, also applied on some 3-dimensional shifted and 

rotated functions taken from CEC 2017 [45]. The results of comparison with other 

algorithms such as CMA-ES, DE, show in most cases that the new algorithms are 

superior to find the optimum solution. The number of function evaluations was also 

calculated. 

A beneficial feature of these algorithms is that they do not contain many 

parameters, only one parameter in the DSC algorithm, which is the number of 

chromosomes in a population. In the DSDSC, DDS,  FDS, MFDS algorithms, we have 

three parameters: the number of chromosomes in a population, and the minimum and 

maximum of  the values    used in the dynamic dissimilarity, dynamic schema and free 

dynamic schema operators. Then in IPMFDS we have the size of initial population which 

is also a parameter for the algorithm.  

 

1.7 Structure of the Thesis 

The thesis is organized as follows: 

Chapter 2: The literature review of single objective optimization, convergence of 

genetic algorithms, schema theory and initial population effects. 

Chapter 3: Presentation  of the DSC algorithm, forma analysis and convergence 

of the DSC algorithm. 

Chapter 4: Presentation of the DSDSC algorithm, schema analysis. 

Chapter 5: Three new algorithms derived from DSDSC, called DDS, FDS and 

MFDS. 

Chapter 6: A new algorithm  is presented which takes advantage of the effect of 

a big first population, it is applied with multi free dynamic schema 

and called IPMFDS. 
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Chapter 7: We apply all algorithms to some shifted and rotated functions taken 

from CEC 2017 [45], compare all methods with CMA-ES, DE, also 

in addition a case study of  the knapsack problem is presented.  

Chapter 8: Conclusions. 

Appendix A: Presents all test functions. 
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CHAPTER TWO: Literature Review 

 

2.1 Introduction  

Different approaches based on the Evolutionary Algorithms (EA) technics for 

solving Single Objective Optimization (SOO) problems, have been proposed in recent 

years. 

In this literature review, we focus on the following topics : metahuristics, single-

objective optimization by using Genetic Algorithms (GAs), repeated runs of a GA, the 

role of a schema in GA, poor performance of  GAs, performance measures, the effect of 

initial population, modified GAs, hybrid algorithms, binary encoding in real-valued 

function,  and convergence of GAs.  

Optimization is essential for finding suitable answers to real life problems. In 

particular, genetic (or more generally, evolutionary) algorithms can provide satisfactory 

approximate solutions to many problems to which exact analytical results are not 

accessible.  

 

2.2 What is a metaheuristic?  

Global optimization algorithms can be divided into two groups: deterministic 

algorithms and metaheuristic algorithms, see [46]. Metaheuristic methods are helpful for 

a wide class of optimization problems where deterministic algorithms are not suitable (for 

example, functions with a large number of local extrema).  

Metaheuristic was firstly mentioned by Fred Glover in 1986 [47]. According to 

[48], a metaheuristic algorithm is defined as: "An iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for exploring 

and exploiting the search space, learning strategies are used to structure information in 

order to find efficiently near-optimal solutions".  
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Some of the most popular metaheuristic approaches are genetic algorithm, 

simulated annealing, tabu search, memetic algorithm, ant colony optimization, particle 

swarm optimization, etc. [49]. 

Since many real-world optimization problems become increasingly complex, 

better optimization algorithms are constantly required. Recently, metaheuristic global 

optimization algorithms become a popular choice for solving complex and loosely 

defined problems, which would be difficult to solve by traditional methods. Gradient and 

direct search methods are generally regarded as local search methods. Metaheuristics do 

not necessarily require a good initial guess, in contrast to both gradient and direct search 

methods, where an initial guess is highly important for obtaining convergence towards 

the optimal solution [50]. 

Metaheuristics require a large number of function evaluations. They are often 

characterized as population-based stochastic search routines which assure a high 

probability of escaping the local optimal solutions when compared to gradient-based and 

direct search algorithms [50]. 

There are differences between single solution based metaheuristics and population 

based metaheuristics. The methods of single solution based meta-heuristics include 

Simulated Annealing, Microcanonic Annealing, Threshold Accepting Method, Noising 

Method, Tabu Search, Variable Neighborhood Search, Guided Local Search, Iterated 

Local Search. The methods of  population based metaheuristics are as follows [51], [52]: 

1. Evolutionary computation: Genetic algorithm, Evolution Strategy, Evolutionary 

programming, Genetic programming.  

2. Swarm intelligence: Ant colony optimization, Particle swarm optimization, 

Bacterial foraging optimization algorithm, Bee colony optimization-based 

algorithms, Artificial immune systems, Biogeography-based optimization. 

3. Other evolutionary algorithms: estimation of distribution algorithms, differential 

evolution, Coevolutionary algorithms, cultural algorithms, Scatter Search, Path 

Relinking.  

Evolutionary Algorithms (EAs) constitute a large class of optimization 

procedures, including classical GAs, that are inspired by the process of natural evolution. 
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As Eiben and Smith [53] observe, ―there are many different variants of evolutionary 

algorithms. The common underlying idea behind all these techniques is the same: given a 

population of individuals within some environment that has limited resources, 

competition for those resources causes natural selection (survival of the fittest)‖. 

Different implementations of EAs (e.g., genetic algorithm, genetic programming, 

evolutionary strategy) can essentially be summarized by the following steps: 

1. Initialize a population randomly and evaluate each candidate; 

2. Select parents; 

3. Recombine pairs of parents; 

4. Mutate the resulting offspring; 

5. Evaluate each new candidate; 

6. Select individuals for the next generation; 

7. Repeat from Step 2 until a stopping criterion is satisfied. 

Our algorithms presented in this thesis can be considered as evolutionary algorithms, 

because they work on the same principles. However, there are two differences. The first 

one is that our algorithms do not use mutation, but we have included random generation 

of a part of generation at each iteration;  this process, instead of mutation, enhances the 

diversity of a new population. The second difference is that, instead of selection, we use 

copying of the best chromosome several times and inserting it in different places of a 

population. 

Moreover, as the authors of  [53] notice,  ―during selection the best individuals are 

not chosen deterministically, and typically even the weak individuals have some chance 

of becoming a parent or of surviving‖. In our algorithms some of the weak chromosomes 

become ―parents‖ for genetic operators (like similarity or dissimilarity operator) but the 

weakest of them are replaced by randomly generated new chromosomes.   

 

2.3 Some new evolutionary algorithms for SOO 

Chang et al. [54] propose two new operators which are added to the classical GA: 

duplication and fabrication. Duplication is a procedure producing multiple copies of the 
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best-fit chromosome from some elite base. It is similar to what has been done in the DSC 

algorithm (see Chapter 3). The difference is that in [54] the duplicated chromosomes 

replace the worst chromosomes in the population, while in the  DSC algorithm the copies 

of the best chromosome replace randomly chosen chromosomes. Fabrication is a 

procedure producing new chromosomes (called artificial chromosomes) from a given 

elite chromosome base, by using some chromosome matrix. There is some analogy with 

the similarity operator, however, fabrication can use more than two chromosomes from 

the elite base and is based on random assignment. Another difference is that we use only 

binary strings as chromosomes, while in [54] chromosomes as strings of symbols from a 

given finite set are used. 

In [55] it is written that a modern evolutionary optimization method, Extreme 

Optimization was proposed and has since been applied to a number of combinatorial 

optimization problems successfully. However, Extreme Optimization has rarely been 

applied to continuous optimization problems. Therefore, Zeng et al. [55] have 

recommended the use of an Improved Real-Coded Population-Based Extreme 

Optimization (IRPEO) method in order to solve problems associated with unconstrained 

optimization. Basic IRPEO operations consist of real-coded random generation of the 

initial population, individual evaluation and population fitness evaluation, selection of 

bad elements according to the power-law probability distribution, new population 

generation according to the uniform random mutation, update of population through 

unconditional acceptance of new population. The authors have applied the IRPEO on 10 

test functions with 30 dimensions, experimental results showing that IRPEO is 

competitive and even better compared to selected versions of Genetic Algorithm with 

different mutation operators. On the contrary, the algorithms presented in this thesis have 

been tested on 27 test functions of 2, 3, 4, 10 and 100 variables, and also on the knapsack 

problem. 

 

2.4 Convergence of genetic algorithms 

The concept of Evolutionary Algorithm (EA) is a collective name for those 

probabilistic optimization algorithms, that design is inspired by principles of biological 
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evolution. In fact there are more similarities than differences, a general convergence 

theory is possible  [56]. 

Rudolph [57] has proved, by using the Markov chain analysis, that the simple 

genetic algorithm, with proportional selection, crossover and mutation, converges to the 

optimal solution if the mutation rate is non-zero and the algorithm maintains the best 

solution found over time. However, as the author of [58] comment, ―such a result is 

weak, because it is noticed that a simple random search in the space of the bit strings also 

converges in the same manner towards the optimum. Nothing is mentioned about the 

convergence speed and it can be noted that the crossover does not play any role in the 

result of convergence‖.  

In [56] the author presents results that generalize the previously developed theory 

of convergence to arbitrary search spaces. These results are general enough to be useful 

for a broad class of evolutionary algorithms. 

In our work we use random generation of a part of population at each iteration. 

This random generation gives an effect similar to mutation with non-zero rate, and also 

the best solution found so far is always passed to the next iteration, therefore a 

convergence theorem is possible (see Section 3.8). 

In [59] the author discusses convergence of a general algorithm model called 

Random Heuristic Search (RHS). It is described by a heuristic function       where    

is a simplex in   
. Given the current population    , the next population            is 

obtained by applying some stochastic transition rule  . For       , the value      is the 

probability distribution that is sampled independently   times produce the next 

population.  

As the author writes, ― The precise definition of logarithmic time to convergence 

faces several obstacles. The most obvious is that ergodic random heuristic search does 

not converge, since it corresponds to an ergodic Markov chain. Because genetic search is 

typically conducted with some nonzero level of mutation, it follows that convergence, 

strictly speaking, does not typically take place for GAs. The naive definition of 

convergence as time to discover the optimal is generally useless as well. The ―no free 
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lunch theorem‖ (Wolpert & Macready, 1995) implies that, even with an elitest strategy 

and aggregating (or collapsing) all populations containing the optimal into an absorbing 

state, time to convergence is in general no better than that achieved by enumeration‖.  

Therefore, instead of  classical convergence, the author examines conditions under which 

the logarithmic convergence holds, that is, the number of generations   required for the 

inequality ‖           ‖     to hold is         , where     :=         ,    is 

the  -th iterate of  , and       . However, the obtained result requires infinite 

populations, a condition which is never satisfied in practical applications. 

In the article [60], the authors state that genetic algorithms are widely used in 

solving some world optimization challenges, but few rigorous results on their 

convergence can be found in the literature. They show that, with a proper rigorous 

multistage Markov chain modeling and with simple probabilistic arguments, some 

convergence results for GAs can be derived. In particular, for a GA with superindividual 

(elitist model), the probability that the current population contains an optimal solution 

converges to one as the number of iteration tends to infinity. In [60], a new crossover 

operator is defined. It is further extended in another paper [61], where some 

modifications of the algorithms from [60] are introduced and their theoretical 

convergence is established. All these algorithms have a superindividual. Numerical 

comparisons among these algorithms are also included. 

In [62], the authors consider a non-homogeneous genetic algorithm (NHGA) 

which uses two parameters (probability of mutation and probability of crossover) which 

can change during the execution of the algorithm. For an elitist version of this algorithm, 

they prove its almost sure convergence to some population containing an optimal point.  

By using the theory of Markov chains with finite state space, and the Chapman–

Kolmogorov equation, they studied the probability of crossover and mutation for NHGA. 

Then the authors compare the NHGA with the homogeneous genetic algorithm (HGA). 

They show by some examples that there exists a non-empty subset E* of the state space 

that is more frequently visited when the NHGA is used. They also observe that, in the 

NHGA, the mutation probability should, at the beginning, be bigger that in the canonical 

genetic algorithm, to allow the algorithm to expand its search space. Finally, they 
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conclude that the bigger the population size is, the closer the results for both algorithms 

are, but it should be noted that the computational effort increases when the size of 

population increases. 

In [63] the authors develop sufficient conditions required for finiteness of the 

mean convergence time of a genetic algorithm with elitism. They also establish a lower 

bound for the probability of finding an optimal solution in the first m iterations. The 

results presented in [63] can also be extended to other optimization schemes.  

 In [64] the authors consider several versions of a genetic algorithm and obtain 

theoretical estimates for their convergence. They proved the convergence of the mean 

fitness of a population to the optimal value of a given function. This result is obtained for 

two types of GA: with crossover and mutation, and with crossover, inversion and 

mutation. It can also be extended to other variations of genetic operators. However, in the 

point of view of the authors, real-coded genetic algorithms are of special interest, but 

their result cannot be applied to such algorithms. 

In [65] the author has obtained some stopping criteria in genetic algorithm theory, 

for a general model of the algorithm being a special case of the Random Heuristic Search 

(RHS). The approach adopted to this problem was to obtain upper bounds for the number 

of iterations necessary to ensure finding an optimal solution with a prescribed probability. 

Here ―finding an optimal solution‖ means that the current population contains at least one 

copy of an individual belonging to a given set of optimal solutions. 

In [66] the author studies stopping criteria for a genetic algorithm designed for 

solving multi-objective optimization problem. This algorithm is described in terms of a 

general Markov chain model. He establishes an upper bound for the number of iterations 

which must be executed in order to produce, with a prescribed probability, a population 

consisting entirely of optimal solutions. Since populations may contain multiple copies of 

the same element, this stopping criterion can only guarantee that at least one minimal 

solution is found.  

In the next paper [67] the author improves the previous stopping criteria so that 

they enable one to find, with a prescribed probability, all minimal solutions in a finite 

multiobjective optimization problem. 



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms …Chapter 2 

 37 

 

In this thesis, we have proved the convergence of DSC algorithm in Section 3.8, 

this proof is suitable for any search algorithm that contains in a part of population the 

random generation. 

 

2.5 Repeated runs of a genetic algorithm 

In our work presented in later chapters we frequently use repeated runs of the 

tested algorithms to get better results. It is therefore interesting to review some theoretical 

considerations concerning repeated runs of genetic algorithms which are described in 

[68], [69]. 

The authors of [68] write ―In given industrial application where the GA is 

suitable, the probability of its success cannot be too low. If the GA cannot perform with a 

probability of success of say 10 or 20%, then the application of GA to that particular 

application is risky and likely to be non-productive.‖ However, if the algorithm is run 

many times on the same data, the probability of finding a good solution at least in one of 

the runs is of course higher. Because on this idea, the following arrangement is made in 

[69]: Suppose: instead of a single run of the GA, the GA algorithm runs   times, where 

   , on the same data. Each run is independent, with no information passed between  

two runs. the best solution  found is recorded after the end of each run. Then the 

randomly generated chromosomes are used to the begin the next run.          

Suppose the probability of success of a single run is     . A success means that 

the best solution found so far is the correct (i.e. optimum) solution. Suppose the 

probability of success after   runs of the algorithm is     . It is the probability that any 

one of the   best solutions is the correct solution. Since the   runs are independent, we 

have 

               
                  

If a user specifies a minimum acceptable value for      (e.g.      0.95), the 

required number of   runs is simply 
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Thus provided that      is known, one can guarantee the RGA’s overall 

probability of success. A general technique is: Given any stochastic optimization method 

with probability of success   , by applying it   times independently, one can increase its 

probability of success to   . This is known as probability amplification or probability 

boasting [69]. 

  

2.6 Genetic algorithms based on schema theory  

The aim of the paper [70] was to improve the search performance of the 

Stochastic Schemata Exploiter (SSE, already known in the literature) without sacrificing 

its convergence speed. For this purpose, the authors introduce the Extended Stochastic 

Schemata Exploiter (ESSE) and the cross-generational elitist selection SSE (cSSE). In the 

ESSE, once the common schemata list is defined from the common schemata which are 

extracted from the individuals in the sub-populations, the list is modified by deleting 

individual schemata, updating similar schemata, and so on. In the cSSE, a cross-

generational elitist selection was introduced to the original SSE. In the numerical 

examples, SSE, ESSE and cSSE are compared with a genetic algorithm (GA) with 

Minimum Generation Gap (MGG) and the Bayesian Optimization Algorithm (BOA). 

Several numerical results show that the GA with MGG can find better global solutions 

although the convergence speed is sacrificed. In comparing the convergence speed of 

different algorithms, the authors notice that the cSSE and BOA are fastest among them. 

In [71], a new type of multi-population GA called forking Genetic Algorithm 

(fGA) was suggested by Tsutsui and Fujimoto. The fGA was designed to solve multi-

modal problems, which are hard to be solved by the traditional GAs since they have 

many local optima. The fGA algorithm was prepared to search for a single global 

optimum by keeping track of potential local optima. The population structure consists of 

a parent population and a variable number of child populations. When a certain level of 

similarity is detected in the parent population, the algorithm creates a child population by 

using the similarity calculated from the binary strings encoding (genotypic forking) or by 

using the Euclidean distance between individuals (phenotypic forking) to measure a 

phenotypic similarity. The division of the search space in genotypic forking is based on 
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the so-called temporal and salient schemata, which detect the convergence of bit 

positions in the binary encoding. The child and the parent populations are not allowed to 

overlap. 

The temporal schema reflects the population state in the current iteration, while 

the salient schema is calculated from the last    iterations. The schemata are strings 

consisting of the letters ―0‖, ―1‖, and ―*‖ but the temporal schema contains a 0 or 1 if 

more than a predetermined percentage      of the individuals have the same value in a 

gene, otherwise ―*‖ is inserted. 

 The fGA is tested on two problems as test functions. One is a FM Sound’s 

parameter identification problem and the other is Oliver’s 30 City Travel Salesperson 

Problem. The results of experiments show that the fGA outperforms the standard GA. 

In this thesis we use the idea of schema to find the optimum solution in a search 

space, in Section 3.3 we present the basics of schema theory, also we propose a free 

dynamic schema operator in Chapter 5. 

 

2.7 Poor performance of the GA’s caused by defining length of 

schemata  (messy GA)  

Schemata are similarity subsets. In simple GAs, schemata may be represented by 

the usual similarity template notation, where a wildcard character (usually a *) is used to 

indicate positional indifference. In messy GAs, genes are allowed to change position, and 

in the messy coding, the ordering of a gene does not directly affect its allele's fitness [72].  

 The distance between the leftmost and rightmost 1 in a bit string is called the 

defining length of this string. For example, the defining length of string 00100110 is 4, 

and defining length of string 10000001 is 7 [72]. 

As the authors of [73] write (Section 6.3), the reason of poor performance of the 

classical GA on some specially constructed ―deceptive‖ functions is that the useful 

schemata (i.e. the ones that lead to good solutions) have too large defining lengths. 
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Consequently, the building blocks for an optimal solution are easily destroyed by 

crossover. 

The following example taken from [72] explains this problem: ―For example, 

suppose the schema 00**** is highly fit and the schema ****00 is highly fit , but the 

schema 00***00 is much less fit than its complement, 11***11, which itself is a building 

block of the optimal point, 1111111. In the particular case, the GA will tend to converge 

to points representative of the less fit schema (perhaps points like 0011100), because with 

high probability, crossover will tend to disrupt the needed combination (11***11)‖.  

In our algorithms we overcome this difficulty by using the dissimilarity operator, 

this operator can change 0’s in the schema 00***00 to 1’s by testing the dissimilarity 

between the current chromosome and the second one, then generating randomly 0 or 1 

[see Chapter 3]. 

 

2.8 Performance measures [53]  

The quality assessment of an evolutionary algorithm usually involves empirical 

comparisons between the given EA and other algorithms. also the parameter tuning for 

good performance requires some experimental work to compare different versions of the 

same algorithm. Since some parameters of  EAs are random, performance measures have 

statistical nature, which means that a number of experiments must be performed to obtain 

sufficient experimental data. 

There are three basic performance criteria: 

• Success Rate (SR)  

• Effectiveness (solution quality)  

• Efficiency (speed) 

The Success Rate (SR) can be defined as the percentage of runs in which success 

occurs, where success mean finding a solution with desired quality. However, it is 

difficult or impossible to use for problems where the optimum solution cannot be 

identified.  
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The Mean Best Fitness Measure (MBF) can be defined for any problem that is 

dealt with by an EA. Suppose that, is a measure of effectiveness that at the end of each 

run, the EA records the best fitness obtained. The MBF is the average of these values for 

all runs. 

Talking about the algorithm efficiency or speed, it is often measured in elapsed 

computer time or user time. However, these measures depend on the hardware, operating 

system, compiler, and so on. In other words, repeating the same experiments, elsewhere, 

may yield different results.  

It is always measured on a number of independent runs. Therefore the Average 

number of Evaluations to a Solution (AES) is used as a measure of efficiency, 

―Sometimes the average number of evaluations to termination measure is used instead of 

the AES, but this has clear disadvantages. Namely, for runs finding no solutions, the 

specified maximum number of evaluations will be used when calculating this average. 

This means that the values obtained will depend on how long the unsuccessful runs are 

allowed to continue. That is, this measure mixes the AES and the SR measures, and the 

outcome figures are hard to interpret‖. 

In our work we have used the SR, MBF and AES measures. 

 

2.9 Initial population effects  

According to [74], the initial population is important in an evolutionary algorithm, 

since it affects the speed of convergence and the final answer quality. In case there is no 

available information about a solution, random initialization is applied as a method to 

produce the candidate solutions for the initial population.  

In [74] a novel initialization of the population is proposed that uses opposition-

based learning to generate initial populations which can be used instead of a purely 

random initialization. Through the conducted experiments it is demonstrated that when an 

opposition-based population replaces random initialization, the convergence speed is 

accelerated. Thus it is proposed that opposition-based approach should be used in the 

optimization of a population initialization. The multimodal and unimodal test functions 
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are used to verify the experiment. The experiment results record the average convergence 

speed 10% faster. According to the proposed algorithm, it is recommended that one 

should start with an appropriate population in cases where there is no information related 

to a solution. The authors have applied their idea to Differential Evolution, but it is also 

applicable to other population-based optimization algorithms, for instance, the genetic 

algorithms that form a future direction of the authors’ work.  

The authors of [75] conducted some initial population difference tests for the real 

coded genetic algorithms. Whereas the genetic algorithms are commonly used 

metaheuristics for global optimization, very little research has been done on the 

generation of initial populations. In [75] authors search for an answer to the question 

what is the effect of initial populations. Also, does the initial population  play a role in the 

performance of a genetic algorithm, and if so, how it should be generated? They study the 

characteristics of different point generators, using four main criteria: ‖the uniform 

coverage and the genetic diversity of the points as well as the speed and the usability of 

the generator‖. With a simple academic example, the authors show that initial population 

has a significant effect on the best objective functional value over several generations. 

Then they focus on studying different methods of generating an initial population for the 

case without a priori information on the location of the global minima. 

In [76] the authors present a systematic review of the existing population 

initialization techniques. They categorize these techniques according to three criteria: 

randomization, compositionality and generality. Each criterion leads to some division of 

the methods into several sub-categories. The authors stress that the area of population 

initialization methods was one of the least explored in evolutionary algorithms. 

There is a common step in all evolutionary algorithms - it is a population 

initialization. The role of this step is to provide an initial guess of solutions. Then, 

subsequently, these planned solutions will be improved in the process of optimization 

until the stop criterion is met. If these initially guessed solutions are good, the EA can 

find the optimum solution quickly, otherwise, the EA can be prevented from finding the 

optimum solution.    
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In our work, we have used a big initial population in the last algorithm (IPMFDS) 

in Chapter 6. It shows better results comparing with other our algorithms and also with 

CMA-ES and DE for most tested functions.   

In [77] the authors proposed genetic algorithm with variable population size 

(GAVaPS) This method depends on the concept of age and life of the individual. When 

an individual is created, either during the first generation or through the variation 

operator, it has age zero. Then, for each generation the individual survives, his age 

increases by 1. At birth, the lifetime of each individual is determined and corresponds to 

the number of generations in which the individual survives in the population. When the 

age of the individual exceeds the lifetime, the individual dies and is disposed of. In each 

generation, a certain fraction of the current population is allowed to regenerate. Each 

individual has an equal probability of being selected for reproduction. The selection is 

achieved indirectly by utilizing the lifetime that is assigned to individuals. Those with 

higher than average fitness have a greater lifetime than those with less than average 

fitness. The idea is that the better the individual is, the more it should be allowed to stay 

in the population, and thus propagate its traits to future individuals.  

 

2.10 Modified genetic algorithms 

In [23] the authors developed an effective new technology to improve the speed 

of convergence of a genetic optimization algorithm. They applied this modification of  

the GA to chemical engineering problem. They have investigated and provided a number 

of sampling techniques to create a good initial populations that encourages exploration 

through the search space. These sampling techniques include ―Latin hypercube sampling 

(LHS), Faure sequence sampling (FSS), and Hamersley sequence sampling (HSS)‖, these 

samples are used to select a good first population group. The performance of the 

proposed algorithm is compared with an algorithm having the random initial population 

in terms of solution quality and speed of convergence. Their technology provides a better 

solution and their algorithm converges to the global optimal solution faster than the 

classical GA. 
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In [78] the author pointed that the best chromosome is not always improved in 

every generation in the simple genetic algorithm. Good solutions obtained, can be 

destroyed by crossover or mutation or both of them. The modified GA aims is to avoid 

this disadvantage by changing order of genetic operations: selection now appears after 

crossover and mutation. This algorithm has been proposed to determine a parameter for 

the E. coli fed-batch fermentation model. The use of the proposed modified GA for a 

parameter identification of fermentation processes is highly efficient and effective which 

is illustrated by the simulation results. 

In [79] the authors propose a new Genetic Algorithm (GA) to optimize 

multimodal continuous functions, this method uses a genetic algorithm with real-value 

coding (RCGA) and applies several existing techniques such as the real coding and the 

composition of sub-populations based on the entropy theory. The idea of RCGA is based 

on careful balance between both tasks usual in heuristic search: "intensification" and 

"diversification". The authors divide the classical GA into three processes. The first 

process creates several appropriate subpopulations by using the theory of information 

entropy. The second process applies genetic operators to each subpopulation to gradually 

enrich it with better individuals. The last process determines the best point among the 

best solutions issued by each of the previous subpopulations. Then, in some 

neighborhood of this point, a new population is generated for a traditional GA. In this 

way, the population is fully renovated after each generation. The size of the 

neighborhood is reduced after each generation. A comparison of performances with 

several stochastic global search methods is included, using some test functions. The 

technique is advisable to solve highly multimodal problems. 

In [80] the authors suggest a modified method based on GA called Box Complex 

(BC), which has developed from the Simplex  method of optimization. This method gives 

gradual convergence with small population size, and it has also some ability to escape 

from getting trapped in local minima. To avoid the big computational effort with bigger 

population, the authors suggest to integrate the convergence feature  of Box Complex 

method with global search feature of GA. At every generation, they add new member(s) 
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to the population, by replacing the equal number of the most inferior member(s). Hence 

the population size is constant. 

 

2.11 Hybrid algorithms 

In [49] the author introduced a hybrid genetic algorithm, consisting of Genetic 

Algorithm (GA), heuristics and Ant Colony Optimization (ACO). It was proposed to 

solve  Split Delivery Vehicle Routing Problem (SDVRP) and was tested this problem.   

Due to the constraints of a SDVRP, it is not possible to directly use classical GA for this 

problem to obtain a feasible set of offspring. A modification of crossover is necessary, or 

another possibility is to remove infeasible solutions after mutation and replace them with 

the solutions having higher fitness value in the old population. Briefly, the hybrid 

algorithm generates and evaluates a big initial population (1000) by using ACO, then it 

choses 500 routes of the best solutions, then puts them in the modified genetic algorithm 

to form an initial generation. A single iteration of the modified GA chooses the best 5 

routes of the previous generation and adds them to the future generation  (elitism), then 

chooses 2 parents randomly from the previous generation and performs a one-point 

crossover, then applies the heuristics to build new routes and adds them to the future 

generation; this procedure is repeated until 50 population members are created. Then the 

algorithm evaluate the fitness of the future generation and sorts it according to the 

shortest distance. This is repeated for 100 iterations of the modified GA to get results. 

The hybrid GA shows the ability to provide better results and faster computational time 

for the datasets the author’s study.     

In our work we have applied a similar idea of big initial population in IPMFDS. 

First, the initial population is evaluated, then the best solutions are taken from it and 

inserted as the first generation to the original MFDS algorithm. We use 500, 1000 and 

2000 elements in the initial population for 2-, 10- and 100-dimensional functions 

respectively. 

The authors of [32] say that the field of mobile robotics, the global path planning 

is a challenging problem because of its complexity and nature which is nondeterministic 
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polynomial-time hard (NP-hard). To solve this problem, they suggested a new hybrid 

optimization algorithm by developing the PSO and DE algorithms, then integrating them. 

The developed PSO is called Nonlinear Time-Varying PSO (NTVPSO) to update the 

positions of particles velocities in the hybrid algorithm, trying to avoid stagnation. The 

updated DE named the Ranking Based Self-Adaptive DE (RBSADE), is enhanced to 

include the personal best experience of particles in the hybrid algorithm. Whereas particle 

swarm optimization considered most popular in global path planning because of its high 

convergence speed and simplicity, on the other hand, the basic PSO has problems with 

balancing exploration and exploitation, and also suffers from recession, hence its 

efficiency may be restricted in solving global path planning. The authors of [32] named 

this hybrid algorithm HNTVPSO-RBSADE, which integrates NTVPSO with RBSADE. 

At first the particles depend on moving rules in NTVPSO to change their positions and 

velocities. Then the RBSADE algorithm is enhanced to include the best positions of 

particles to avoid stagnant. On four numerical simulations and a Monte-Carlo experiment 

this algorithm is tested against four evolutionary algorithms: Adaptive Differential 

Evolution (JADE), Time- Varying Particle Swarm Optimization (TVPSO), Gravitational 

Search (GS) and modified Genetic Algorithm (mGA), and outperforms the other four 

algorithms. 

In [36] two famous algorithms: Biogeography Based Optimization (BBO) and 

Artificial Bee Colony (ABC) are used to form a hybrid algorithm called (HBBABC). It 

utilizes the exploitation features of BBO and exploration features of ABC. This hybrid 

algorithm was tested on 14 benchmark problems to confirm its performance taking into 

account discrete design variables and 5 engineering design optimization problems. 

Different criteria are also taken into account like Mean Solution, Best Solution, T-test, 

Success Rate and other criteria. Overall performance of HBBABC is better than BBO and 

ABC in experimental results with using the same criteria above.    

In [33] the author proposes a new real-coded evolutionary algorithm to apply on  

path synthesis of a four-bar linkage. In this new evolutionary algorithm the author 

combines Differential Evolution (DE) with the Real-valued Genetic Algorithm (RGA). 

This hybrid algorithm is called ―GA–DE hybrid algorithm.‖ The content of the crossover 
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is the only difference between the proposed algorithm and RGA: the author replaces the 

crossover operation in the RGA with differential vector perturbation, with the best 

individual or some excellent individuals as the base vectors. This method was tested on 

four cases which showed that more accurate solutions were obtained for three cases than 

those gained by other evolutionary methods. 

 

2.12 Using binary encoding in real-valued function optimization 

Arabas [81] in Section 4.11 poses the question if it is worth using binary encoding 

in EAs for solving numerical optimization problems. After analyzing several examples, 

he concludes that this method is not advisable because it introduces serious perturbations 

into the search process. The reason is that the distance in the space of binary string (the 

space of genotypes) is different from the distance in    (the space of phenotypes). 

Consequently, two chromosomes which are close to each other as binary strings, after 

decoding may be positioned far from each other in   , and vice versa. The author 

presents the following example of an irregular behavior of the binary crossover operator 

in   : assuming that we have two parents                           and  

(                        , denoted as black circles, the following points can be 

reached by one-point crossover (white circles): 
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Figure 2. 1 The set of chromosomes available by applying one-point 

crossover (source: [81], Figure 4.17)  

 

We see that some point lying ―between‖ the two parents cannot be reached, while 

some other points far from the parents can.  

In this context we would like to analyze the behavior of two operators introduced 

in this thesis in Chapter 3: the similarity and the dissimilarity operator. Considering the 

same example, we now have the following two sets of points:  

 green squares - points that can be reached by the similarity operator, 

 red stars – points that can be reached by the dissimilarity operator: 
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Similarity   Dissimilarity 

P1 0 1 0 0 0 1 1 0  P1 0 1 0 0 0 1 1 0 

P2 0 1 1 1 1 0 0 1  P2 0 1 1 1 1 0 0 1 

Result of Similarity operator                        Result of Dissimilarity operator 

G.P 0 1 * * * * * *  R.P * * 1 1 1 0 0 1 

Where G.P = Green Points, R.P = Red Points 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2 The set of chromosomes available by applying the similarity 

and the dissimilarity operators  

 

We can see from this picture that some of the generated points are really far from 

the parents. However, contrary to Figure 2.1, now all the points lying ―between‖ the 

parents (that is, points of the square determined by them) are covered by the 

chromosomes generated by our operators. Note that our algorithms do not use the 

classical one-point crossover that has irregular behavior presented on Figure 2.1.   
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In our algorithms we have chosen the binary representation instead of the real-

value representation because binary representation can be used both for real problems and  

binary problems (like the knapsack problem). The binary encoding is especially 

important in our similarity and dissimilarity operators (see Chapter 3)  which have high 

probability to find new better solutions near to the existing points in a population, as 

shown in Figure 2.2. Also, the schema theory is used another way in the dynamic schema 

and dynamic free schema operators (see Chapters 4 and 5) to specify most suitable 

chromosomes for the optimum solution.       
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CHAPTER THREE: The DSC Algorithm 

 

3.1 Introduction  

In this chapter, a new evolutionary optimization algorithm is described which 

explores similarities and dissimilarities in pairs of chromosomes. This procedure divides 

each population into three not equal parts, and then applies new genetic operators to the 

first two of them. Our algorithm is called Dissimilarity and Similarity of Chromosomes 

(DSC) and its purpose is to find optimal solutions in numerical optimization problems. 

For the construction of the two genetic operators used here – the dissimilarity 

operator and the similarity operator – the notion of a schema plays an important role. The 

explanation of the idea of a schema is given in Section 3.3.  

To demonstrate the performance of the DSC algorithm, it is run on 18 two-

dimensional, one four-dimensional and five ten-dimensional optimization problems 

described in the literature, and compared with the well-known GA, Covariance Matrix 

Adaptation Evolution Strategy (CMA-ES) and Differential Evolution (DE) algorithms. 

The results of tests show the superiority of our strategy in the majority of cases. 

The concept of dividing a population into parts and then working with schemata 

and similarity for each part separately, is already known in the literature. For example, in 

the paper by Han et al. [82] the population was divided into three parts based on the 

fitness of chromosomes (the best, the middle and the worst fitness groups) and then the 

common schema in a population was discovered by using clustering. Later, for the first 

and the third part of a population, the number of chromosomes that have some similarity 

with the schema was calculated. The percentage of positions on which the individual 

agrees with the schema defines the similarity between an individual and a schema. 

A general approach to estimate the expected first hitting time (i.e., the time when 

the algorithm finds an optimal solution) was proposed by Yu and Zhou [83]. It is based 

on analysis of EAs with different configurations. This method works with three mutation 

operators, a recombination operator and a time variant mutation operator. We are 
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planning to examine the possibility of applying a similar theoretical analysis to our DSC 

algorithm in further research. 

In this chapter we present both theoretical and experimental results on the new 

DSC algorithm. The chapter is organized as follows. In Section 3.2, we introduce two 

genetic operators that are used in the DSC: the similarity operator and the dissimilarity 

operator. They are precisely defined in Section 3.4 in terms of forma analysis of Radcliffe 

[84]. Section 3.3 presents a basics of schema theory. Section 3.5 gives the analysis of 

experimental results. Section 3.6 contains the discussion of figures. Section 3.7 contains 

some information about the parameters setting in GA used for comparison with our 

algorithms.  In Section 3.8, convergence of DSC is presented. Finally, some conclusions 

for the DSC are mentioned in Section 3.9. 

 

3.2 The idea of similarirty and dissimilarity operators  

In this section, we explain by a simple example how our two genetic operators 

could help in obtaning better solutions.  

Suppose    is a one-dimensional function with the domain [0,1], as shown in Fig. 

3.1. This domain is represented by binary representation consisting of four bits, 

(0000,0001,…,1111), that means the range is divided into 16 segments.  

The principle of similarity operator is as follows: Suppose there are two best 

solutions in a population : 0010 and 1011, colored in gray. If the similarity operator is 

applied (see Table 3.2), and bits number 1 and 4 for each chromsome are not the same, 

then we put * in the second chrmosomes instead of them, and then randomlly put 0 or 1 

in positions having *s. Thus, a better solution is possible to be found, as shown in the 

green part in Figure 3. 1. 
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Bits:    1234    

Ch.1:      0010 

Ch.2:      1011 

Ch.2:      *01* 

Ch.2:      1010  

Now the principle of dissimilarity operator: Suppose there are the same 

chromosomes in gray color. If the dissimilarity operator is applied, and bits number 2 and 

3 for each chromsome are the same, then we put * in the second chrmosomes instead of 

them, and then randomlly put 0 or 1 in positions having *s. Thus, a better solution is 

possible to be found, as shown in the red part in Figure 3. 1. 

Bits:    1234    

Ch.1:      0010 

Ch.2:      1011 

Ch.2:      1**1 

Ch.2:      1101  

 

Figure 3. 1 A simulation of similarity and dissimilarity idea. 
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3.3 The basics of schema theory 

In this section, some base for the concept of a schema is provided. A schema is a 

template that gives the representation of a set of solutions of genetic algorithms. In binary 

coding, a schema is usually presented as a string of symbols from the alphabet { 0, 1, * }, 

where the character * can be interpreted as a "0 or 1 is all ok". For example, the schema  

01*00* represents 4 chromosomes: 010000, 011000, 010001 and 011001. Generally, a 

schema is a frame for groups of chromosomes that have the same fixed sections [85]. 

Definition 3.3 in [85], says: ―according to the schema theorem, under the 

operation of the genetic operators such as selection, mutation and crossover, the schema 

with a low order, short defining length and its average fitness higher than the population 

average fitness will increase exponentially in the offspring‖. A schema that involves less 

locations with *s  is more specific than a schema with more locations with *s [86]. 

Note that it is not true that every subset of the set of bit strings of length L can be 

described as a schema; in fact, the vast majority cannot. There are    possible bit strings 

of length  , and thus    
 possible subsets of strings, but there are only    possible 

schemas. However, a central assumption of the traditional GA theory is that schemas are 

in fact the building blocks that the GA processes effectively under the operators of 

selection, mutation, and single-point crossover [14]. 

 

3.4 Forma analysis of genetic operators  

In this section, we define and analyze two genetic operators used in our DSC 

algorithm. 

We apply the abstract forma analysis presented in [84], so that our definitions 

may be applied in a more general setting than only for binary schemata. First, we must 

review some definitions. 

Let   be a finite search space of some genetic algorithm. A function       

        is called an equivalence relation over   if and only if it satisfies the following 

three conditions: 
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1.                    

2.                                   

3.                                                  

We denote by      the set of all equivalence relations over  . Given two equivalence 

relations         , we define their intersection           by 

                            

where   denotes logical conjunction (―and‖).                    

For a given set        , we call a subset     a basis for   if and only if the 

following two conditions hold: 

1.   spans  , that is, every element of   can be constructed by intersection of 

some subset of  : 

      Span                                  . 

2.   is independent, that is, no member of   can be constructed by intersection of 

other members of  : 

                    . 

Given an equivalence relation        , we define    to be the set of formae 

(equivalence classes) induced by   . Further, given a set of equivalence relations 

       , with                 , where     is the number of elements of   , we 

define    to be the set of vectors of formae given as the Cartesian product 

       
    

        
  

A set of equivalence relations        is said to cover   if and only if for each 

pair of different solutions in   there exists some relation in   under which the pair are not 

equivalent: 
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Let   be a basis for a set of equivalence relations        that covers  . The 

members of   are called basic equivalence relations, or genes. For a given relation   

 , the members of    are called basic formae, or alleles. 

A set of equivalence relations        is said to be orthogonal if and only if, 

given any     equivalence classes induced by different members of  , their intersection is 

nonempty: 

                      ⋂  

   

   

   

Let   be a set of formae defined over a search space  , and let      . The 

similarity set of   (defined with respect to   and written ∑   ) is the intersection of all 

those formae to which each solution in   belongs: 

                       ∑     {
                       
                                                   

 

For a given set                      , we define the genetic representation 

function            by 

       [ ]  
 [ ]  

   [ ]  
   

where, for given        and    , we denote by [ ]  the equivalence class of   under 

 : 

[ ]                    

Now, we are able to define the two genetic operators used in our DSC algorithm. 

The first one, the similarity operator, can be defined without any extra assumption on the 

considered set   of equivalence relations. It is in fact equal to the random respectful 

recombination operator                  ([84], Def. 59) defined by 

                     

where   is the set of integers,         is the ith element of the similarity set 

∑        under some arbitrary enumeration, and           ∑         . The number 
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  is interpreted as a random control parameter; thus           returns a randomly 

selected element of the similarity set of   and  . The similarity operator is defined as  

                      

The second operator, the dissimilarity operator, is defined under the additional 

assumption that an orthogonal basis                 for   is given that covers  . 

Then it follows from ([84], Thm. 25) that    is a bijection. Moreover, we assume that 

each basic relation     divides the search space   into two equivalence classes (i.e. ,for 

each gene, there are only two alleles available). For each    , we can thus define the 

complement of the class [ ] , denoted by [ ] ̅̅ ̅̅ ̅, as follows: 

[ ] ̅̅ ̅̅ ̅                  

Of course, [ ] ̅̅ ̅̅ ̅ is also some equivalence class under  . Since     is bijective, we can also 

define the opposite element to  , denoted  ̅, as follows: 

 ̅    
  ( [ ]  

̅̅ ̅̅ ̅̅ ̅ [ ]  
̅̅ ̅̅ ̅̅ ̅  [ ]  

̅̅ ̅̅ ̅̅ ̅)  

Then we define the dissimilarity operator (depending on two elements         and a 

random control parameter      ) by 

                ̅       

It follows from the theory presented in [84] that the similarity operator possesses 

some properties required by a ―good‖ recombination (crossover) operator. In particular, it 

respects the formae with respect to which it is defined, in the sense that we always have 

           ∑       . On the other hand, the dissimilarity operator does not have such 

properties; it is a composition of the similarity operator and the operation of taking the 

opposite of the first argument. 

In our DSC algorithm, the chromosomes (i.e., the values of   ) are simply binary 

strings of a fixed length, and the basic equivalence relations in   are determined by fixed 

positions in a string (i.e., two strings are equivalent if they have the same value at a given 

position). Then the equivalence relations from Span   are the usual schemata (each 

schema is determined by a finite number of fixed positions in a string). In this particular 

case, the similarity operator is equivalent to the well-known uniform crossover (see [84], 
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p. 370), while the dissimilarity operator is equivalent to the uniform crossover applied to 

 ̅ and  . 

 

3.4.1 The DSC algorithm 

The following optimization problem is considered:  

        

                                             

    [     ]         

where          is a given function. 

In the algorithm described below, we use a standard encoding of chromosomes as 

in the book of Michalewicz [87]. In particular, it uses the following formula to decode a 

real number     [     ]    

                          
     

     
 

where    is the length of a binary string and ―decimal‖ represents the decimal value of 

this string. The value of    for each variable depends on the length of the interval  

[     ]. To encode a point          , a decimal string of length   ∑   
 
    is used.  

Let   be a positive integer divisible by 8. The DSC algorithm consists of the 

following steps: 

1. Generate M chromosomes, each chromosome representing a point          .  

2. Compute the values of the fitness function f for each chromosome in the 

population. 

3. Sort the chromosomes according to the descending (for maximization) or 

ascending (for minimization) values of the fitness function, divide the population 

into three not equal groups: G1 is the first quarter, G2 is the second quarter and 

G3 is the second half of population. 

4. Copy   times the first chromosome and put it in   positions in the first half of the 

population randomly, replacing the original chromosomes, where        .   
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5. Compare pairs of chromosomes for the first half of the population to find 

dissimilarities and similarities. Check each two following chromosomes, i.e. the 

first and the second, the second and the third, and so on, by comparing the 

respective bits, as follows:   

 (a) For chromosomes in G1 (from 1 to    ), if the two bits are equal, put a star 

(*) in the second (following) chromosome; otherwise leave this bit without 

change in the second chromosome. Then put randomly 0 or 1 in the bits with 

stars (*). Compare this new second chromosome with the third one, and so 

on. 

 

Table 3. 1 The dissimilarity operator. 

Before change: example for the first quarter of chromosomes 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 1 

 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B * 0 1 1 0 * 0 * 

After change: put randomly 0 or 1 in (*) bits 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 0 

 

(b) For chromosomes in G2 (from       to    ), if the two bits are not equal, 

put a star (*) in the second (following) chromosome; otherwise leave this bit 

without change in the second chromosome. Then put randomly 0 or 1 in the 

bits with stars (*). Compare this new second chromosome with the third one, 

and so on.  
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Table 3. 2 The similarity operator. 

Before change: example for second quarter of chromosomes 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 1 

 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 * * * * 0 * 1 

After change: put randomly 0 or 1 in (*) bits 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 1 0 1 0 0 1 1 

 

6. All chromosomes B created this way replace the original ones on positions from 2 

to    . Then generate randomly chromosomes for G3. These will replace the 

second half of the chromosomes (on positions from       to  ). 

7. Go to step 2 and repeat until the stopping criterion is reached. 

Notes.  

(a) The genetic operator performing the operations shown in Table 3. 1 on a pair 

of chromosomes A and B is called the dissimilarity operator, and the genetic operator 

performing the operations shown in  

Table 3. 2 is called the similarity operator. 

(b) The stopping criterion for the algorithm depends on the example being 

considered, see Section 3.5. 

To maintain population diversity, Sultan et al. [88] proposed a simple injection 

strategy to the population. They use fix point injection, which means that they introduce 

new randomly generated chromosomes to the population for certain numbers of 

generations. A similar strategy in the DSC algorithm has been applied by generating the 

second half of each population randomly. 

Figure 3. 2 presents the flowchart of the DSC algorithm. 
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Figure 3. 2 Flowchart of the DSC algorithm. 

 

Divide the population into 3 groups: G1 is  the first quarter, G2 is the second 
quarter and G3 is the second half of population. 

Evaluate and sort the population according to fitness function, copy C times the 

first solution and insert randomly between (      ). 

For the first quarter (1..M/4) of solutions (G1), apply the dissimilarity operator to 

the first and the second chromosome, then to the (new) and the third 

chromosome, and so on. 

 

Initialize population with    solutions representing points          . 

Decode chromosomes to find          , using the formula 

                         
   

     
, where [   ] is the range of     . 

No 

Is the stopping criterion satisfied ? 

For the last half of solutions (M/2+1..M) (G3), generate randomly new 

chromosomes. 

For second quarter (M/4..M/2 ) of solutions (G2), apply the similarity operator to 

the first and the second chromosome, then to the (new) second and the third 

chromosome, and so on. 

 

Print the best solution and the number of iterations. 

Yes 
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In the paper by M. Lewchuk [89], the author introduces a genetic invariance 

algorithm which is a modification of the classical GA. He uses a uniform crossover 

operator with is equivalent to our similarity operator, and he also uses sorting of the 

population according to the fitness function values. However, the crossover is applied 

only to a pair of individuals for which the difference in their function values is minimum 

over all pairs. Note that the uniform crossover and the sorting procedure is used in our 

DSC algorithm, but we also use a new dissimilarity operator and random regeneration of 

a part of population in each iteration; these last two procedures do not appear in the 

genetic invariance algorithm. 

In Berretta et al. [90] the authors define the Recombine() procedure (pp. 78-79) 

which contains three genetic operators called ―rebel‖, ―conciliator‖ and ―obsequent‖. 

They take some alleles from two parents P1 and P2 to copy in the offspring first as 

follows: 

1. ―rebel‖ copies alleles of P2 which are different from P1, 

2. ―conciliator‖ copies alleles in common to P1 and P2, 

3. ―obsequent‖ copies alleles of P1 which are different from P2. 

Then the procedure chooses the alleles for the remaining positions in the 

offspring. This can be done by using several different algorithms (random or 

deterministic). It should be noted that the ―rebel" operator is very similar to our 

dissimilarity operator,  in fact, there are equivalent if a random selection is chosen for the 

second part of the procedure. In the same way, the ―conciliator‖ is equivalent to our 

similarity operator, and ―obsequent‖ is equivalent to our dissimilarity operator applied to 

P2 and P1 (in reverse order). 

 

3.5 Experimental results  

In this section, we report on computational testing (by using the Matlab software) 

of the DSC algorithm on 22 test functions taken from literature (Appendix A). After each 

test, the result of DSC has been compared with the known global optimum and with the 

result of a classical GA taken from our experiments (see Table 3.10), also, in Table 3.7 a 
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comparison of the mean number of function evaluations and success rate of CMA-ES, 

DE and DSC algorithms presented.  

The results are presented in Table 3.3–3.6 below. We have applied the algorithm 

with 40 chromosomes (see the results in table 3.3), 80 chromosomes (Table 3.4) and 160 

chromosomes (Table 3.5). The DSC algorithm has found optimum solutions for some 

optimization prob- lems (Schwefel's) that the classical genetic algorithm cannot solve, 

with the minimum success rate 92% with 80 chromosomes for Schwefel's function (Table 

3.4) and the maximum success rate 100% for the remaining problems. Observe that with 

160 chromosomes we have got 100% success rate even for the Schwefel's example. On 

the other hand, for 10-dimensional problems, the success rate for the DSC is worse than 

GA, we use the following parameters for GA (population type is bit string, 200 

chromosome, two point crossover, 2500 iterations as maximum), see Table 3.9. 

In Table 3. 6 we compare the mean number of iterations for all successful runs of 

the proposed DSC (40, 80 and 160 chromosomes). Then we compare the rates of success 

of the DSC and the classical GA algorithms. The algorithm was stopped when either the 

maximum number of iterations (fixed to 2500) was reached or the difference between the 

obtained  minimum/maximum fitness and the global optimum was less than or equal to 

the threshold given in the second column.  

The success rates for the GA presented for comparison in the last columns of  

Table 3. 3-3.7 were taken from the best results of our experimental work (Bit 

string or  Double vector for the population type); these results were obtained for 

populations 80 chromosomes, 2500 iterations, two point crossover, see Table 3. 10 for 

more details.  

Table 3. 7 presents the comparison of CMA-ES, DE and DSC algorithms in terms 

of mean number of function evaluations and success rate for 50 runs, maximum number 

of  iterations 2500, with population size equal to 80 chromosomes. 

We have recognized that, for most problems, using 80 chromosomes gives the 

best results in terms of both success rate and the number of function evaluations. 

The DSC algorithm keeps the best solution from each iteration at the first position 

until it is replaced by a better one. 
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Note that the maximum average rate of iterations was especially high (561) for 

the Schwefel function (2-D) for 92% success rate, for which the classical genetic 

algorithm failed to find solution, see Table 3.4.  

Table 3.9 shows the test of DSC algorithm on 10-dimensional problems (Sum 

Squares, Sphere function, Sum of Different Powers, Zakharov, Rastrigin) with 160 

chromosomes and the number of iterations fixed to 2000.  

It should be noted that, in addition to the experiments reported here, it is proved in 

research [91] that the DSC algorithm is superior over the CGA for the problem of 

minimizing a global scalarization function of a multiobjective optimization problem (a 

global scalarization function is introduced in [92]).  

Figures 3.3-3.6 present the average number of iterations with standard deviation 

of iterations for 2-dimensional functions by using 40, 80  and 160 chromosomes for DSC 

algorithm, also for 10-dimensional functions. Section 3.7 contains the processing time of 

DSC algorithm on tested function. 

Finally, the execution time of the DSC algorithm displayed as output. A computer 

with 2.4 MHz core i5, 8 GB RAM was used. In Table 3.3-3.5 and Table 3.9 we show the 

minimum, maximum and average run time in seconds for all tested functions.      

 

Table 3. 3  The results for 50 runs of the DSC algorithm (40 

chromosomes). 

Function 
name 

Threshold  

of stopping 

criteria 

Min 

number of 

iteration / 

Min time in 
seconds 

Max 

number of 

iteration / 

Max time in 
seconds 

Mean no. of 

iterations for 

all successful 

runs / 
Average time 

Std.Dev. 

of mean 

no. of Iter. 

Mean of  

the best 

solution 

fitness from 

all 

successful 
runs 

Rate of 
success 

DSC 

Rate of 

success 

GA 

Easom 0.001 
31 464 181 

95.6 -0.99543 100% 
100% 

DV 
0.0139 0.1450 0.0673 

Matyas 0.001 
4 391 64 

67.3 0.000505 100% 
100% 

DV 
0.0046 0.1214 0.0214 
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Beale's 0.001 
5 1349 179 

230.1 0.000517 100% 
70% 

DV 
0.0053 0.4730 0.0663 

Booth's 0.005 
13  1181 321 

338.6 0.00247 90% 
100% 

DV 
0.0051 0.4091 0.1682 

Goldstein

–Price 
0.001 

46 896 287 
189.1 3.00038 100% 

100% 

DV 
0.0197 0.3907 0.1282 

Schaffer 

N.2 
0.001 

24 1533 476 
360.8 4.11E-05 100% 

70% 

DV 
0.0163 0.414345 0.137 

Schwefel's 0.01 
94 2390 506 

574.1 0.07317 50% 
0% 

BS 0.0367 0.7968 0.3176 

Branins's 

rcos 
0.001 

16 2332 171 
406.3 0.39853 100% 

100% 
DV 

0.0152 0.5922 0.069 

Six-hump 

camel 

back 

0.001 

9 215 73 

54.3 -1.03125 100% 
100% 

DV 
0.0100 0.0644 0.0295 

Shubert 0.01 
5 149 67 

60.4 -186.715 100% 
100% 

DV 
0.0043 0.0977 0.0200 

Martin 

and 

Gaddy 

0.001 

7 438 53 

64.4 3.95E-05 100% 
40% 

DV 
0.0057 0.0959 0.0191 

Michalewicz 0.04 
40 1500 346 

319.3 38.81764 100% 
80% 

DV 
0.0166 0.3666 0.0975 

Holder 

table 
0.001 

9 535 100 
95.6 -19.2035 100% 

80% 
DV 

0.0086 0.0775 0.0336 

Drop-

wave 
0.001 

30 1621 420 
432.2 -0.99517 100% 

100% 

BS 
0.0134 0.5932 0.1520 

Levy N. 

13 
0.001 

47 1700 504 
437.5 0.000583 98% 

100% 

BS 
0.0161 0.714964 0.159699 

Rastrigin’s 0.001 
16 330 127 

79.2 0.00505 100% 
100% 

BS 
0.0087 0.0982 0.0366 

sphere  0.001 15 395 155 98.5 0.003588 100% 100% 
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0.0129 0.0927 0.0435 
BS 

Rosenbrock 

valley 
0.001 

5 896 270 
167 0.000564 100% 

100% 

BS 
0.0104 0.1971 0.0650 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation.  

 

 

Figure 3. 3 The average number of iterations and standard deviation of 

iterations for 2-dimensional functions with 40 chromosomes for DSC 

algorithm 
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Table 3. 4  The results for 50 runs of the DSC algorithm (80 

chromosomes). 

Function 

name 

Threshold  

of 

stopping 

criteria 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number 

of 

iterations

/ Max 

time in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. of 

mean no. 

of Iter 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Rate of 

success 

DSC 

Rate of 

success 

GA 

Easom 0.001 
16 286 88 

49.2 -0.99579 100% 
100% 

DV 
0.0113 0.1500 0.0570 

Matyas 0.001 
6 72 31 

20.6 0.000492 100% 
100% 

DV 
0.0029 0.0322 0.0228 

Beale's 0.001 
4 646 93 

105 0.00059 100% 70% DV 
0.0064 0.3881 0.0592 

Booth's 0.001 
5 980 151 

202 0.003198 100% 
100% 

DV 
0.0079 0.6063 0.1041 

Goldstein–

Price 
0.001 

11 242 134 
78 3.00036 100% 

100% 

DV 
0.0085 0.1203 0.0481 

Schaffer N.2 0.001 
5 605 278 

244 4.11E-05 100% 70% DV 
0.0055 0.2685 0.0942 

Schwefel's 0.01 
51 1829 561 

599 0.015643 92%  
0% 

BS 0.0273 1.1530 0.5606 

Branins's 

rcos 
0.001 

3 580 86 
120 0.39853 100% 

100% 

DV 
0.0063 0.4356 0.0451 

Six-hump 

camel back 
0.001 

2 115 39 
26.4 -1.03129 100% 

100% 

DV 
0.0036 0.0511 0.0183 

Shubert 0.01 
11 773 198 

224 -186.716 100% 
100% 

DV 
0.0102 0.4209 0.1144 

Martin and 

Gaddy 
0.001 

6 151 36 
34 3.02E-05 100% 40% DV 

0.0046 0.1002 0.0152 
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Michalewicz 0.04 
26 713 207 

164 38.81257 100% 80% DV 
0.0156 0.4407 0.1228 

Holder table 0.001 
4 163 47 

36 -19.8125 100% 80% DV 
0.0052 0.1077 0.0310 

Drop-wave 0.001 
13 816 201 

176 -0.99487 100% 
100% 

BS 
0.0130 0.3333 0.0902 

Levy N. 13 0.001 
29 816 290 

169 0.000547 100% 
100% 

BS 
0.0167 0.3892 0.1958 

Rastrigin’s 0.001 
14 181 71 

89.6 0.007197 100% 
100% 

BS 
0.0156 0.1576 0.0429 

sphere  0.001 
19 186 75 

42.3 0.004133 100% 
100% 

BS 
0.0163 0.1158 0.0376 

Rosenbrock’s 

valley 
0.001 

5 438 101 
93.3 0.00059 100% 

100% 

BS 
0.0100 0.1532 0.0433 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation. 

 

 

Figure 3. 4 The average number and standard deviation of iterations for 

2-dimensional functions with 80 chromosomes for DSC algorithm 
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Table 3. 5  The results for 50 runs of the DSC algorithm (160 

chromosomes). 

Function 

name 

Threshold  

of 

stopping 

criteria 

Min 

number 

of 

iteration/ 

Min time 

in 

seconds 

Max 

number 

of 

iteration/ 

Max time 

in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Rate of 

success 

DSC 

Rate of 

success 

GA 

Easom 0.001 
11 141 61 

28.6 -0.99927 100% 
100% 

DV 
0.0165 0.1223 0.0508 

Matyas 0.001 
2 29 13 

7.7 0.000434 100% 
100% 

DV 
0.0089 0.0266 0.0174 

Beale's 0.001 
2 212 48 

46.2 0.000523 100% 
70% 

DV 
0.0087 0.1426 0.0410 

Booth's 0.001 
6 1018 123 

174.4 0.000595 100% 
100% 

DV 
0.0124 0.6386 0.0856 

Goldstein–

Price 
0.001 

12 106 44 
22.5 3.000484 100% 

100% 

DV 
0.0164 0.0725 0.0360 

Schaffer  

N.2 
0.001 

6 731 107 
133.4 0.00045 100% 

70% 

DV 
0.0127 0.5040 0.0808 

Schwefel's 0.01 
26 2301 517 

834.2 0.07051 100%  
0% 

BS 0.0275 1.8039 0.5735 

Branins's 

rcos 
0.001 

2 324 40 
59.4 0.398517 100% 

100% 

DV 
0.0089 0.2122 0.0347 

Six-hump 

camel back 
0.001 

1 41 14 
9.7 -1.03106 100% 

100% 

DV 
0.0049 0.0352 0.0178 

Shubert 0.01 
10 457 111 

104.3 -186.716 100% 
100% 

DV 
0.0170 0.3327 0.0847 

Martin 

and Gaddy 
0.001 

3 38 14 
9 0.000513 100% 

40% 

DV 
0.0044 0.0325 0.0178 
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Michalewicz 0.04 
6 297 93 

69.2 38.81715 100% 
80% 

DV 
0.0128 0.2089 0.0683 

Holder 

table 
0.001 

6 725 84 
113 -19.2078 100% 

80% 

DV 
0.0133 0.4730 0.0624 

Drop-wave 0.001 
14 708 122 

144.2 -0.99954 100% 
100% 

BS 
0.0178 0.4518 0.0857 

Levy N. 13 0.001 
4 538 117 

113.5 0.000471 100% 
100% 

BS 
0.0112 0.3565 0.0840 

Rastrigin’s 0.001 
17 116 53 

22.3 0.000442 100% 
100% 

BS 
0.0201 0.0810 0.0429 

sphere 0.001 
1 42 12 

17.2 0.000445 100% 100% BS 
0.0018 0.0347 0.0166 

Rosenbrock’s 

valley 
0.001 

5 199 45 
53.3 0.000533 100% 

100% 

BS 
0.0119 0.1279 0.0364 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation. 

 

Figure 3. 5 The average number and standard deviation of iterations for 

2-dimensional functions with 160 chromosomes for DSC algorithm 
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Table 3. 6  Comparing the mean number of iterations and success rate 

of functions for 50 runs of the algorithm (40 vs 80 vs 160 chromosomes). 

Function name 

Mean no. 

of 

iterations 

for all 

successful 

runs 40 

ch. 

Mean no. 

of 

iterations 

for all 

successful 

runs  80 

ch. 

Mean no. 

of 

iterations 

for all 

successful 

runs  160 

ch. 

Rate of 

success 

DSC 

(40 ch.) 

Rate of 

success 

DSC 

(80 ch.) 

Rate of 

success 

DSC 

(160 ch.) 

Rate of 

success 

GA 

Easom 349 88 61 100% 100% 100% 
100% 

DV 

Matyas 40 31 13 100% 100% 100% 
100% 

DV 

Beale's 217 93 48 98% 100% 100% 70% DV 

Booth's 528 151 123 98% 100% 100% 
100% 

DV 

Goldstein–

Price 
182 134 44 100% 100% 100% 

100% 

DV 

Schaffer N.2 239 278 107 100% 100% 100% 70% DV 

Schwefel's 1554 561 557 60% 92% 100% 
0% 

BS 

Branins's rcos 152 86 40 100% 100% 100% 
100% 

DV 

Six-hump 

camel back 
58 39 14 100% 100% 100% 

100% 

DV 

Shubert 500 198 111 100% 100% 100% 
100% 

DV 

Martin and 

Gaddy 
53 36 14 100% 100% 100% 40% DV 

Michalewicz 395 207 93 100% 100% 100% 80% DV 

Holder table 304 47 84 100% 100% 100% 80% DV 

Drop-wave 505 194 122 100% 100% 100% 
100% 

BS 

Levy N. 13 452 209 117 100% 100% 100% 
100% 

BS 

Rastrigin’s 127 71 53 100% 100% 100% 
100% 

BS 
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sphere  155 75 12 100% 100% 100% 
100% 

BS 

Rosenbrock’s 

valley 
270 101 45 100% 100% 100% 

100% 

BS 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox. 
 

Table 3.7 presents a comparative study of success rate and the number of function 

evaluations for the CMA-ES (Covariance Matrix Adaptation Evolution Strategy), DE 

(Differential Evolution) and DSC algorithms; it shows the DSC algorithm is the most 

successful one (see, especially, the Drop-wave function). The Matlab codes for the CMA-

ES and DE algorithms were taken from [93] and [94], respectively. We have used 80 

chromosomes 2500 iterations for all. 

 

Table 3. 7 Comparing the mean number of function evaluations and 

success rate of CMA-ES, DE and DSC algorithms (50 runs, max 2500 

iterations, 80 chromosomes). 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

DSC 

success 

rate 

Function 

evaluations of 

DSC 

Easom 70% 17053 100% 3240 100% 7588 

Matyas 100% 500 100% 2700 100% 2480 

Beale 100% 460 100% 3060 100% 7440 

Booth's 100% 492 100% 2820 100% 12080 

Goldstein–

Price 
100% 1812 100% 1620 100% 10720 

Schaffer N.2 90% 6726 100% 5016 100% 8356 

Schwefel's 0% ---- 0% ---- 92% 44880 

Branins's 

rcos 
100% 6876 100% 840 100% 6880 

Six-hump 

camel 
100% 780 100% 2160 100% 3120 

Shubert 90% 2220 100% 8160 100% 15840 
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Martin and 

Gaddy 
100% 1660 100% 2400 100% 2880 

Michalewicz 100% 1848 0% --- 100% 16560 

Drop-wave 50% 26470 94% 9048 100% 13788 

Levy N. 13 100% 606 100%  1958 100% 9216 

Rastrigin’s 80% 13134 100%  2388 100% 8022 

Sphere 100% 720 100% 1800 100% 4500 

Ackley d=4 100% 2240 100% 3480 100% 30240 

Rosenbrock’s  100% 1644 100% 4560 100% 8080 

Sum Squares 

d=10 
100% 3600 100% 6200 25% 309760 

Sphere d=10 100% 3840 100% 9200 100%  119360 

Sum of 

Different 

Powers  d=10 
100% 480 100% 4300 100%  2240 

Zakharov 

d=10 
0% --- 100% 124400 12% 289280 

Rastrigin 

d=10 
0% --- 100% 7200 0% ---- 

 

Table 3.8 presents the number of bits that were used for each function depending 

on the size of range for        . This number was calculated by using the difference of 

upper and lower bound of the domain multiplied by 10000 to divide the domain to small 

parts, i.e.,               for each    . Then, to find the appropriate number of bits, 

we find the smallest integer    such that                      (see p. 33 of the 

Michalewicz book [87]). For example for the Easom function we have, for both    and    

(100-(-100)) *10000 =2000000 and              , so this range is represented by 

21 bits. 
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Table 3. 8 The number of bits for each function. 

Function name 
No. of bits for 

   

No. of bits for 

   

Easom 21 21 

Matyas 18 18 

Beale's 17 17 

Booth's 18 18 

Goldstein–Price 16 16 

Schaffer N.2 21 21 

Schwefel's 24 24 

Branins's rcos 18 18 

Six-hump camel back 16 16 

Shubert 18 18 

Martin and Gaddy 17 17 

Michalewicz 18 15 

Holder table 18 18 

Drop-wave 17 17 

Levy N. 13 18 18 

Rastrigin’s 17 17 

sphere 17 17 

Ackley d=4 20 20 

Sum Squares 18 18 

Sum of Different Powers 15 15 

Zakharov 18 18 

Rosenbrock’s valley 16 16 

 

Table 3.9 presents the best value of 10-dimensional functions for 25 runs of the 

DSC algorithm, here we used 160 chromosomes and the number of iterations was fixed 

to 2000, with execution time shown under the respective number of iterations.Figure 3.6 

represents  the average number of iterations with standard deviation of iterations for 10-

dimensional functions by using 160 chromosomes for DSC algorithm. 
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Table 3. 9  The results for 25 runs of the DSC algorithm for 10-

dimensional functions (160 chromosomes) with execution time. 

Function 

name 
Threshold 

Min 

number 

of 

iteration/ 

Min time 

in 

seconds 

Max 

number 

of 

iteration

/ Max 

time in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time  

Std.Dev. 

of 

mean 

no. of 

Iter. 

 Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Rate of 

success 

DSC 

Rate of 

success 

GA 

Sum 

Squares 

d=10 

0.1 

1421 1989 1936 

151.9 0.21577 25% 
100% 

BS 
2.0701 3.3096 2.8726 

Sphere 

d=10 
0.1 

359 1396 746 
272.9 0.09027 100% 

100% 

BS 0.5064 1.954 1.0558 

Sum of 

Different 

Powers  

d=10 

0.1 

2 39 14 

11.3 0.02001 100% 
100% 

BS 0.003426 0.08239 0.0243 

Zakharov 

d=10 
0.1 

449 1992 1808 
539.3 0.63340 12% 

100% 

BS 0.9185 3.9840 2.8476 

Rastrigin 

d=10 
0.1 

2000 2000 2000 
0 15.32815 0% 

100% 

BS 2.6243 2.9219 2.6687 

Ackley 

d=4 
0.001 

123 939 378 
203 0.071314 100% 

100% 

BS 0.1589 1.2559 0.5032 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation.  
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Figure 3. 6 The average number and standard deviation of iterations for 

10-dimensional functions with 160 chromosomes for DSC algorithm 

 

3.6 Discussion of figures 

Figure 3.7 shows a two-dimensional view of the Easom function. It can be seen 

that the DSC algorithm has reached the best solution at the blue point at          . 

Figure 3. 8 shows a two-dimensional view of Schaffer's function. It can be seen that 

DSC algorithm has reached the best solution at the blue point on the focus view in the 

right upper corner of the figure. For this function, it is difficult to reach an optimal 

solution because it contains multiple local minima near to the best one.  

Figures 3.9-3.16 show two-dimensional views of Shubert problem with 18 

optimal solution points, Branins's problem with 3 optimal solutions, Six-hump camel 

back problem with two optimum points and Holder table problem with 4 optimum points. 

For the remaining problems: Michalewicz problem, Drop-wave problem, Schwefel's 

problem, Levy N.13 problem there is only one optimal solution for each. 

Figures 3.17, 3.18 show how the best fitness values of the population evolve with 

the number of iterations. Here the red colour means jumping to a better solution.  
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Figure 3. 7 Solutions of Easom Pr..  

 

Figure 3. 8 Solutions of Schaffer's problem. 

 

Figure 3. 9 Solutions of Holder-table.  

 

Figure 3. 10 Solutions of Drop-wave 

problem. 

 

Figure 3. 11 Solutions of Michalewicz pr. 

 

Figure 3. 12 Solutions of Branins's problem. 
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Figure 3. 13: Solutions of Shubert 

problem: 18 optimal solutions. 

 

Figure 3. 14 Solutions of Six-hump camel 

back problem. 

 

Figure 3. 15 Solutions of Levy N.13 pr. 

 

Figure 3. 16 Solutions of Schwefel’s Pr. 

 

Figure 3. 17 Finding the best solution for 

Michalewicz problem in 300 iterations. 

 

Figure 3. 18 Finding the best solution for 

Schaffer problem in 140 iterations. 
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Figure 3.19 shows the Graphical User Interface (GUI) for DSC algorithm, that 

was designed and programed by the author. It contains inputs for function description, 

number of dimensions, range of [     ] for the function under test, number of elements 

(chromosomes), maximum number of iterations, a choice box for minimum or maximum. 

Also, the results will output at the right side as follows: the graph of a function, the best 

value for      with values of   , the number of bits that are used to represent a solution, 

execution time and the number of iterations. This figure shows the Michalewicz problem. 

 

 

Figure 3. 19 shows the Graphical User Interface (GUI) for the DSC 

algorithm for the Michalewicz function. 
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3.7  Experimental results of GA   

In the GA toolbox we used the following options (they also apply to later chapters): 

1. Population type specifies the type of the input to the fitness function. We used  

bit string \ double vector . 

2. Population size = 80 chromosomes  

3. Creation function = feasible population. ―GA creates a random initial population 

using a creation function. We can specify the range of the vectors in the initial 

population in the Initial range field in Population options. Feasible population 

creates a random initial population that satisfies all bounds and linear 

constraints‖ [95]. 

4. Initial population = default. ―The algorithm begins by creating a random initial 

population, the default value of Initial range in the Population options is [0;1]‖ 

[95]. 

5. Fitness scaling = Rank 

6. Selection = Roulette 

7. Mutation function = Uniform.— Uniform mutation is a two-step process. First, 

the algorithm selects a fraction of the vector entries of an individual for 

mutation, where each entry has a probability Rate of being mutated. ―The default 

value of Rate is 0.01. In the second step, the algorithm replaces each selected 

entry by a random number selected uniformly from the range for that entry‖ 

[95]. 

8. Crossover function = two point.  

9. Stopping criteria = 2500 iterations. 

10. Fitness limit = 0.001 is the threshold of stopping criteria (for most functions). 

 

Table 3.10 presents the experimental results of GA success rate and mean number 

of iterations by using 80 chromosomes and maximum 2500 iterations, on two types of 

population (bit string,  Double vector). These results used in our comparison with all 

algorithms in addition to CMA-ES and DE algorithms. 
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Table 3. 10 Comparing the success rate and the mean number of 

iterations for the GA, first with Bit string and next with Double vector 

parameter     

Function 

name 
Threshold 

Rate of 

success 

GA 

Bit string 

Mean no. 

of 

iterations 

for all 

successful 

runs with 

bit string 

Rate of 

success 

GA 

Double 

vector 

Mean no. 

of 

iterations  

for all 

successful 

runs with 

double 

vector 

Easom 0.001 0% --- 100% 124 

Matyas 0.001 90% 220 100% 125 

Beale's 0.001 0% --- 70% 204 

Booth's 0.001 0% --- 100% 75 

Goldstein–

Price 
0.001 0% --- 100% 82 

Schaffer N.2 0.001 0% --- 70% 93 

Schwefel's  0.001 0% --- 0% --- 

Branins's 

rcos 
0.001 0% --- 100% 68 

Six-hump 

camel back 
0.001 0% --- 100% 75 

Shubert 0.01 0% --- 100% 64 

Martin and 

Gaddy 
0.001 0% --- 40% 320 

Michalewicz 0.04 20% 95 80% 72 

Holder table 0.001 0%  --- 80% 240 

Drop-wave 0.001 100% 51 0% --- 

Levy N. 13 0.001 100%  51 0% --- 

Rastrigin’s 0.001 100% 51 100% 51 

Sphere 0.001 100% 51 50% 63 

Ackley d=4  0.001 100% 51 0% --- 

Rosenbrock’s 

valley 
0.001 100% 51 0% --- 
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3.8 Convergence of DSC  

In this section we present a theorem on the convergence in mean of the DSC 

algorithm. The idea of the proof is similar to that of [64] but a more rigorous 

mathematical formulation is given here, especially concerning the considered probability 

space. In our considerations, we will use the theory of denumerable stochastic processes 

described in [96]. Below we consider the minimization problem only.    

Let n be the size of population  , and m – the number of bits in a chromosome. 

Let   be the set of all chromosomes of size m. Then the search space of the DSC 

algorithm is the following finite set: 

          ⏟          
         

 

  is the set of all possible populations of size n, where each population is a sequence of n 

bit strings of the same length m. Each population can also be considered as one bit string 

concatenated from all chromosomes in the population.  

Denote by    the population of the DSC algorithm after k iterations (k  = 1,2,…). 

Let            be the fitness function of the algorithm. Define a function   ̅ on 

populations     by  

  ̅       
    

     

In the sequel, the mean of a random variable   will be defined by  [ ]  ∫     
 

 

where   is the measure associated with some probability space. To be able to compute 

the mean of the  ,̅ we must show that it is a measurable simple function. Of course,   ̅has 

only a finite number of values because there is only a finite number of possible 

populations. 

 We now define a denumerable stochastic process for the DSC algorithm. Let   be 

a sequence space ([96], p. 43) whose elements are of the form            , where 

        are elements of  ,    is the initial population, and    is the population 

obtained in iteration k of the algorithm:  

  = {                   } 

We define the k-th outcome function as follows: 
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Let    be the family of all unions of subsets of   of the form  

                                                     (1) 

where         are some subsets of  . Observe that  

                                   ⋃              

 

   

     

so it is easy to verify that    is a Borel field. We will prove that            

Take any set    of the form (1). We have  

                                      

Define 

                                          

where         is an arbitrary set. Then, of course, the Borel field     generated by all 

sets of the form    is included in the Borel field       generated by all sets of the form 

  . 

To construct a denumerable stochastic process on  , we must define a sequence of 

functions {  } such that, for every fixed k and for each      , the set           is a set 

in   . We can achieve this by taking              (the k-th outcome function; see 

[96], p. 47). Now define  

    ⋃  

 

   

 

It can be shown that   is not a Borel field. Let   be the smallest Borel field containing  . 

Consider a basic cylinder set 

                                 

where            . We define a measure   on basic cylinder sets as follows: 

                                           

where             is the probability that the DSC algorithm will generate population    in 

iteration   under the condition that it has generated population      in iteration    . It 

can be shown ([96], p.43) that   can be uniquely extended to the sets of  . It is also 
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known that   can be extended to a measure   on the smallest Borel field   containing   

([96], p.43). Now we define   by adding to   all subsets of sets of measure   zero. Then 

we extend   to be a measure on   as follows: let    , then       where     

and    for some    , where       . Then we define          . 

We have thus constructed a probability space (     ). From now on, we will use 

the notation Pr instead of  . Observe that the population of the DSC algorithm 

constructed in iteration   depending on event    is given by  

               

We now define a random variable       as follows: 

        ̅          
       

     

The mean of   can be computed by 

   ̅    ∑        
                                                   (2) 

where 

  
     {      (̅     )   } 

Observe that the sum in (2) has only a finite number of nonzero terms. Moreover, we 

have  

   ̅    ∑  

    

           (̅     )     

where     {  
    

     
 }  { (̅     )|   }               . 

Then the set   can be represented as 

    
    

      
         

     
              

where   
        (̅     )    

 },        . 

Then  

   ̅    ∑  
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Theorem (convergence of DSC algorithm) 

We have 

   ̅          
   

     

For the proof of the theorem, we will need the following 

Lemma 

Let        and let    be a population generated in iteration   of the DSC algorithm. 

Then  

  {       (   )}     
 

  
 
 
  

where           is the second half of    which is generated randomly. 

Proof. Let   
 
 be the event that we do not generate    at the  -th random 

generation in iteration    (      
 

 
        ). Then   (    

 )   
 

   (we generate 

   at a single random generation of  a chromosome if and only if each bit of a generated 

chromosome is equal to the corresponding bit of   , which holds with probability ½ for 

each of   positions). This implies that    (  
 
)    

 

   . Then  

  {       (  )}    {⋂  
 

 
 

   

}  ∏  {  
 }

 
 

   

 ∏(  
 

  
)

 
 

   

 (  
 

  
)

 
 
  

Proof of the theorem. Define      
 

   
 

 
 . Without restriction of generality, 

we may assume that        for all     (if this is not the case, we can add a suitable 

negative constant to   to achieve this inequality). Denote  

           {      (̅     )    } 

Suppose that there are   individuals   
      

  with fitness    in the space  . Consider the 

event    that no solution is found in the first iteration. Since  
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we have 

            
      

                 
            (  

 

  
)

 
 
   

where the last equality follows from the Lemma. We have thus proved that          . 

Now we can prove by induction that          , where    is the event that no solution 

is found in the  -th iteration. Suppose that: 

                                                                                        

We will show that        . Indeed, if a solution is found in iteration    , then in 

iteration   it is moved by sorting procedure to the top of population, and it is not 

destroyed; therefore, the solution is also found in iteration  . Using this inclusion, we 

find that  

            
  (       )

  (    )
 

      

        
                                        

Since       
            and the events {  

          } and      are 

independent, we obtain  

                 
                      

                                  

 

where the last equality follows from the Lemma. Using condition (4), then conditions (3) 

and (5), we get 

                                          

We have thus proved by induction that  

           

 Hence the probability that the solution has been found in iteration k can be estimated as 

follows: 

                      

 

Observe that, for each k, and for each   
               , we have      

 . 
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Hence, 

   ̅    ∑  
      

 

   

  
      ∑    

 

   

  
                                 

We will also prove that  

   ̅    ∑  
      

 

   

  
                                                    

This inequality follows because one of the values   
      

  is equal to     (a solution can 

always be selected at any iteration k ), and for this value   
 , we have   (  

 )          . 

Therefore, the term           is one of the (non-positive) terms in the sum 

∑   
      

 
     

    

Using inequalities (6) and (7) we obtain   

      ̅                        
   
→     

This proves that    ̅       .   

 

3.9 Conclusion  

A new meta-heuristic optimization algorithm called Dissimilarity and Similarity 

of Chromosomes (DSC) is introduced. DSC can be simply implemented, without too 

many parameters. It includes two genetic operators (the dissimilarity and similarity 

operators), population sorting and random generation of a part of population. The 

experiments have shown quick convergence and good global searching ability of the 

algorithm. The DSC algorithm is easy to understand and uses a simple classical 

representation of points in   
 
  

The DSC algorithm has only one parameter to be set by the user: the number   of 

chromosomes. Therefore it is easier to test than the classical GA where the user must try 

multiple runs to test different combinations of parameters. For all the examples, 80 
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chromosomes are enough to solve the problem. As Table 3. 6 shows, there is a significant 

difference in the rate of success between 40 chromosomes and 80 chromosomes.   

Table 3. 7 shows comparison of CMA-ES, DE and DSC algorithms in terms of 

mean number of function evaluations and success rate. We see that the CMA-ES and DE 

algorithms have not found the solution for Schwefel's function, but DSC algorithm has 

found the solution in 92% of success rate. However, for 10-dimensional test functions  

CMA-ES and DE are better than DSC for some functions.  
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CHAPTER FOUR: The DSDSC Algorithm  

 

4.1 Introduction 

This chapter presents an optimization algorithm called Dynamic Schema with 

Dissimilarity and Similarity of Chromosomes (DSDSC) which is a modification of the 

DSC algorithm described in the previous chapter. To show the effectiveness of the 

algorithm, it is tested and compared with the GA, CMA-ES and DE algorithms, it is run 

on 18 two-dimensional, one four-dimensional and five ten-dimensional optimization 

problems taken from literature. It has been found that, in most cases, the method is better 

than the classical genetic algorithm. 

In the DSDSC algorithm, we use the notion of schema in another way. It is 

required that the schema has fixed high significant bit(s) for each variable   , then we put 

*’s on some of the remaining bits by using the similarity operator. This type of schema is 

used to determine the area of the solution in search space.  

The DSDSC is (like the DSC before) inspired by the schema theory and the 

mechanism of similarity and dissimilarity of chromosomes. This procedure depends on 

dividing each generation into four equal parts and then applying different genetic 

operators to each of them. The presented algorithm is designed to find optimal solutions 

to numerical optimization problems. 

This chapter is organized as follows. In Section 4.2 the methodology of the 

DSDSC algorithm are introduced. Section 4.3 describes the DSDSC algorithm and shows 

its flowchart. Section 4.4 gives the schema analysis of the algorithm. Section 4.5 gives 

the analysis of experimental results. Finally, conclusions are presented in Section 4.6. 

 

4.2 Methodology of DSDSC algorithm 

The DSDSC algorithm starts with a population of   elements representing a 

number of solutions to the problem. This population is divided into four equal groups and 
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some different operators to these groups are applied. This will be discussed in Section 

4.3. 

Briefly, the DSDSC creates new chromosomes by exploring dynamic 

dissimilarity, similarity, dynamic schema and random generation of new chromosomes.  

Table 4.1 shows all   chromosomes (        ) divided into 4 groups (G1, G2, 

G3, G4).  

 

Table 4. 1 All   chromosomes (        ). Groups of chromosomes. 

Ch1 

Ch. … 

Ch. … 

ChM/4 

G1: To the first group the dynamic 

dissimilarity operator is applied. 

ChM/4+1 

Ch. … 

Ch. … 

ChM/2 

G2: To the second group the similarity 

operator is applied. 

ChM/2+1 

Ch. … 

Ch. … 

ChM/2+M/4 

G3: To the third group the dynamic schema 

operator is applied. 

ChM/2+M/4+1 

Ch. … 

Ch. … 

ChM 

G4: The fourth group is generated randomly. 
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4.3 The DSDSC algorithm 

The following optimization problem is considered:  

        

                                          

    [     ]         

where    
 

    is a given function. 

In the algorithm described below, the encoding of chromosomes is the same as in 

Chapter 3. 

Let   be a positive integer divisible by 8. The DSDSC algorithm consists of the 

following steps:  

1) Generate   chromosomes, each chromosome representing a point          .  

2) Compute the values of the fitness function   for each chromosome in the population. 

3) Sort the chromosomes according to the descending (for maximization) or ascending 

(for minimization) values of the fitness function. Then divide the population into 

four equal groups (G1, G2, G3, G4). 

4) Copy   times the first chromosome and put it in   positions in the first half of the 

population randomly, replacing the original chromosomes, where       .  

5) Apply the dynamic schema operator to the chromosomes     and       (that is, the 

chromosomes on the positions 1 and    , respectively). This operator works as 

follows (see Table 4.2): 

(a) First, divide each chromosome onto n parts corresponding to variables          , 

the  -th part having length   . Next, for each variable   , generate a random integer 

   from the set {3,…,     }. Define the ―gray‖ part of    as the first segment of 

length    of the string corresponding to   . Define the ―white‖ part of    as the 

second segment of length       of the same string. 

(b) For the ―white‖ parts of both chromosomes, if the two bits are not equal, put a star 

(*) in the schema, then copy this schema     times and put it in the third part of 
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population (G3) between positions       and        , then put randomly 0 

or 1 in the positions having *. The positions marked in gray are kept unchanged. 

Note. The name ―dynamic schema operator‖ is justified by the fact that the 

lengths of ―gray‖ and ―white‖ segments of chromosomes may vary from iteration to 

iteration.  

 

Table 4. 2 The dynamic schema operator 

Before change: an example for finding schema from the first chromosome and the chromosome on position 

M/4. Here shadow bits are not destroyed. 

No. of Ch. 

      

            
  

    

Ch1 1 1 0 0 1 0 1 0 1 0 

ChM/4 0 1 1 0 0 1 0 0 0 1 

Schema 1 1 * 0 * * 1 0 * * 

After finding the schema: put it in M/2…M/2+M/4 positions 

ChM/2+1 1 1 * 0 * * 1 0 * * 

ChM/2+2 1 1 * 0 * * 1 0 * * 

Ch. … 1 1 * 0 * * 1 0 * * 

Ch. … 1 1 * 0 * * 1 0 * * 

ChM/2+M/4 1 1 * 0 * * 1 0 * * 

After change: put randomly 0 or 1 in (*) bits 

ChM/2+1 1 1 1 0 1 0 1 0 0 1 

ChM/2+2 1 1 1 0 0 0 1 0 1 1 

Ch. … 1 1 0 0 1 0 1 0 1 0 

Ch. … 1 1 0 0 0 1 1 0 0 0 

ChM/2+M/4 1 1 1 0 1 1 1 0 1 1 
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Compare pairs of chromosomes for the first half (G1, G2) of the population by 

applying the dynamic dissimilarity and similarity operators (see Table 4.3 and Table 3.2). 

Check each two following chromosomes, i.e. the first and the second, the second and the 

third, and so on, by comparing the respective bits, as follows:  

(a) For chromosomes in the first quarter (G1) of the population (from 1 to    ), 

apply the dynamic dissimilarity operator, dividing each chromosome onto n 

parts corresponding to variables          , the  -th part having length   . 

Next, for each variable   , generate a random integer    from the set {3,…, 

    }. Define the ―gray‖ part of    as the first segment of length    of the string 

corresponding to   . Define the ―white‖ part of    as the second segment of 

length       of the same string. The ―gray‖ part of    is not destroyed. In the 

white‖ part of   , if the two bits are equal, put a star (*) in the second 

(following) chromosome; otherwise, leave this bit without a change in the 

second chromosome. Then put randomly 0 or 1 in the bits with stars (*). 

Compare this new second chromosome with the third one, and so on.  

(b) For chromosomes in the second quarter (G2) of the population (from       

to    ), apply the similarity operator (see Chapter 3). 

 

Table 4. 3 The dynamic dissimilarity operator. 

Before change: an example for the first quarter of chromosomes. 

 
      

                  

Ch. A 1 1 0 0 1 0 1 0 1 0 

Ch. B 1 0 1 0 0 1 0 0 1 1 

Ch. A 1 1 0 0 1 0 1 0 1 0 

Ch. B 1 0 1 * 0 1 1 * * 1 

After change: put randomly 0 or 1 in (*) bits 

Ch. A 1 1 0 0 1 0 1 0 1 0 

Ch. B 1 0 1 1 0 1 0 1 0 1 
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7) All chromosomes B created in this way replace the original ones in positions from 2 

to    . New chromosomes are also generated in the way described at Step 5 on 

positions from       to        . Then generate randomly chromosomes for 

the fourth group of the population. These will replace the fourth group of the 

chromosomes (on positions from           to  ). 

8) Go to Step 2 and repeat until the stopping criterion is reached. 

Notes: 

a. We call the genetic operator performing the operations shown in Table 4.3 on 

a pair of chromosomes A and B the dynamic dissimilarity operator, and the 

genetic operator performing the operations shown in Table 3.2 the similarity 

operator. 

b. The dynamic schema operator is shown in Table 4.2, it uses different sizes of 

fixed segments (gray color) and applies the similarity operator on the rest of 

chromosome. 

c. The stopping criterion for the algorithm depends on the example being 

considered, see Section 4.5. 

 

Figure 4. 1 shows the flowchart of the DSDSC algorithm.  
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Figure 4. 1 Flowchart of the DSDSC algorithm. 

 

No 

Yes 

Is the stopping criterion satisfied ? 

For the last quarter (M/2+M/4+1..M) of solutions (G4), generate randomly new 

chromosomes. 

For the third quarter (M/2+1..M/2+M/4 ) of solutions (G3), apply the dynamic 

schema generated from Ch1 and ChM/4, then generate new solutions by changing 

(*) to (0 or 1) randomly. 

 

For the second quarter (M/4+1..M/2 ) of solutions (G2), apply the similarity 

operator to the first and the second chromosome, then to the (new) second and 

the third chromosome, and so on. 

 

For the first quarter (M/4) of solutions (G1), apply the dynamic dissimilarity 

operator to the first and the second chromosome, then to the (new) second and 

the third chromosome, and so on. 

Divide the population into 4 groups: G1, G2, G3 and G4. 

Evaluate and sort the population according to fitness function, copy C times the 

first solution and insert randomly between (2..M/2). 

Decode chromosomes to find          , using the formula      

                    
   

     
, where [a, b] is the range of     . 

Initialize population with M solutions representing points          . 

Print the best solution and the number of iterations. 
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4.4 Schema analysis 

A schema represents a number of similar strings, thus, a schema can be thought of 

as a representation of a certain region in the search space. The schema that represents the 

region containing the best solution must increase in the population to get the solutions in 

the best region [87], [9]. For example, assuming to have a part of the Zbigniew 

Michalewicz function                                         , where 

      [   ], as shown in Figure 4. 2, it is clear the maximum solution has    

[       ] in the region [0,1]. This function has many local maximum solutions of which 

only one is global, as shown in Figure 4. 2. Consider this region [0, 1] of    represented 

by   bits         . Assume that we have two types of schemata: H0= (0 * * . . .*) 

representing the left region where    [     ], and H1= (1 * * . . . *) representing the 

right region, where    [     ]. Since it is required to find a global optimum solution, it 

must be focused on schema H1 since it represents the region of a global solution. Also 

the same thing for    [9] . However, it is possible that the region of a global optimal 

solution cannot be found this way. In such a case, the similarity operator and random 

generation of a part of chromosomes could help to find a better region. 

 

 

Figure 4. 2 A part of Michalewicz function. 
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4.5 Experimental results 

In this section, we report on computational testing (by using the Matlab software) 

of the DSDSC algorithm on 22 test functions taken from literature:18 functions of 2 

variables, one function of 4 variable and 5 functions of 10 variables. The result of 

DSDSC has been compared with the known global optimum and with the result of a 

classical GA taken from our experiments (Table 3.10), also, compared with CMA-ES and  

EA algorithms. The results are presented in Table 4.4, for 18 functions of  2 and in Table 

4.5for 5 functions of 10 variables with one function of 4 variables, with the known 

optimal solutions mentioned in Appendix A. The algorithm with 80 chromosomes has 

been applied with the stopping criterion that the difference between the best solution and 

known optimal solution is less than the threshold specified in the second column (Tables 

4.4, 4.5). 

The DSDSC algorithm has found optimum solutions for some optimization 

problems (like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm 

cannot reach to 100% success rate with bit string or double vector, as shown in Table 4.4, 

column nine. All success rates are 100% with 80 chromosomes for all problems.  

The DSDSC algorithm keeps the best solution from each iteration at the first 

position until it is replaced by a better one.  

Note that the maximum number of iterations to found the best solution was 

especially high (471) for the Rosenbrock’s valley function as shown in Table 4. 4. Also, 

the success rate for Michalewicz problem was 100% compared with the classical GA 

algorithm where it was 80% with the same number of chromosomes and generations. On 

the other hand, column three in Table 4. 4Table 4.4 shows the minimum number of 

iterations for finding an optimal solution was between 2 and 9 for all 18 test functions. 

Column five shows the average number of iterations for all successful runs. Table 4.5 

shows the results for 10-dimensional functions with 160 chromosomes and the number of 

iterations fixed to 2000; both tables also show the run time (Min., Max., and Average). 

  

 



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms …Chapter 4 

 98 

 

Table 4. 4 The results for 50 runs of the DSDSC algorithm (80 

chromosomes). 

Function 

name 
Threshold 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number 

of 

iterations

/ Max 

time in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successf

ul runs 

Rate of 

success 

DSDSC 

Rate of 

success 

GA 

Easom 0.001 
6 238 51 

47.8 -0.9992 100% 
100% 

DV 0.0095 0.2297 0.0516 

Matyas 0.001 
2 28 11 

5.7 0.00040 100% 
100% 

DV 0.0043 0.0291 0.012 

Beale's 0.001 
5 166 49 

38.5 0.00047 100% 70% DV 
0.0078 0.1301 0.0568 

Booth's 0.001 
4 65 20 

16.4 0.00057 100% 
100% 

DV 0.0068 0.0576 0.0205 

Goldstein–

Price 
0.001 

5 85 34 
18.6 3.0004 100% 

100% 

DV 0.0074 0.0825 0.0364 

Schaffer N.

2 
0.001 

4 189 71 
45.2 0.00028 100% 

70%  

DV 0.0072 0.1503 0.0747 

Schwefel's  0.001 
6 282 41 

49.4 0.00064 100%  
0% 

BS 0.0070 0.2284 0.0477 

Branins's 

rcos 
0.001 

5 203 28 
42.4 0.39832 100% 

100% 

DV 0.0057 0.2461 0.0252 

Six-hump 

camel back 
0.001 

5 127 18 
24.5 -1.0310 100% 

100% 

DV 0.0098 0.1347 0.0244 

Shubert 0.01 

3 67 19 

13.3 

-

186.71

9 

100% 
100% 

DV 0.0044 0.0772 0.0208 

Martin and 

Gaddy 
0.001 

4 38 15 
8.4 0.00043 100% 

40%  

DV 0.0082 0.0360 0.0169 

Michalewicz 0.04 
9 280 67 

57 
38.8182 

 
100% 

80%  

DV 0.0063 0.2123 0.0395 

Holder 

table 
0.001 

3 45 12 
8 -19.208 100% 

80%  

DV 0.0057 0.0466 0.0188 

Drop-wave 0.001 7 172 48 36.8 -0.9996 100% 100% 
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0.0094 0.2758 0.0539 BS 

Levy N. 13 0.001 
5 202 45 

38.7 0.00044 100% 
100% 

BS 0.0069 0.2124 0.0486 

Rastrigin’s 0.001 
8 127 25 

17.1 0.00037 100% 
100% 

BS 0.0127 0.0585 0.0203 

Sphere 0.001 
3 19 7 

8.2 
0.00041

6 
100% 

100% 

BS 0.0082 0.0173 0.0122 

Rosenbrock’s 

valley 
0.001 

3 471 115 
102.1 

0.00053

5 
100% 

100% 

BS 0.0104 0.1899 0.0536 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation. . 

 

 

Figure 4. 3 The average number and standard deviation of iterations for 

2-dimensional functions with 80 chromosomes for DSDSC algorithm 

 

Figure 4. 4 shows the GUI of DSDSC algorithm on Michalewicz function, Figure 

4. 5 shows the GUI of DSDSC algorithm with Shubert function that has 18 optimum 

solutions. 
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Figure 4. 4 The GUI of DSDSC algorithm  

 

 

Figure 4. 5  Shubert function with 18 optimum solutions 
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Table 4. 5 The results for 25 runs of the DSDSC algorithm for 10-

dimensional functions with execution time  and comparing with GA 

Function 

name 
Threshold 

Min 

number of 

iterations 

Max 

number of 

iterations 

Mean no. 

of iterations 

for all 

successful 

runs 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Rate of 

success 

DSDSC 

Rate 

of 

success 

GA 

Sum 

Squares 

d=10 

0.1 

37 597 145 

128.7 0.072731 100% 

100% 

BS 0.057789 0.89309 0.221053 

Sphere 

d=10 
0.1 

17 72 31 

12.4 0.069036 100% 
100% 

BS 
0.0251 0.1032 0.0464 

Sum of 

different 

powers 

d=10 

0.1 

1 5 3 

1.2 0.073843 100% 
100% 

BS 
0.0018 0.0092 0.0056 

Zakharov 

d=10  
0.1 

76 595 217 

116 0.077189 100% 
100% 

BS 
0.1056 0.7596 0.2883 

Rastrigin 

d=10  
0.1 

159 1978 1045 

467 0.148285 92% 

100% 

BS 0.2105 2.5300 1.3786 

Ackley d=4  0.001 

73 1706 644 

532.2 0.000979 80% 
100% 

BS 
0.0480 1.3318 0.6595 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation. 
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Figure 4. 6 The average number and standard deviation of iterations for 

10-dimensional functions with 80 chromosomes for DSDSC algorithm 

 

Table 4.6 presents a comparison of CMA-ES, DE and DSDSC algorithms in 

terms of mean number of function evaluations and success rate, by using 50 different 

runs, with  2500 maximum number of iterations and population size is 80 chromosomes. 

 

Table 4. 6 Comparing the mean number of function evaluations and 

success rate of CMA-ES, DE and DSDSC algorithms (50 runs, max 2500 

iterations, 80 chromosomes). 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

DSDSC 

success 

rate 

Function 

evaluations of 

DSDSC 

Easom 70% 17053 100% 3240 100% 4080 

Matyas 100% 500 100% 2700 100% 880 

Beale 100% 460 100% 3060 100% 3920 

Booth's 100% 492 100% 2820 100% 1600 

0
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Sphere Sum of
Different
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Mean of iterations

Standard deviation
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Goldstein–

Price 
100% 1812 100% 1620 100% 2720 

Schaffer N.2 90% 6726 100% 5016 100% 5680 

Schwefel's 0% ---- 0% ---- 100% 3280 

Branins's 

rcos 
100% 6876 100% 840 100% 2240 

Six-hump 

camel 
100% 780 100% 2160 100% 1440 

Shubert 90% 2220 100% 8160 100% 1520 

Martin and 

Gaddy 
100% 1660 100% 2400 100% 1200 

Michalewicz 100% 1848 0% --- 100% 5360 

Drop-wave 50% 26470 94% 9048 100% 3840 

Levy N. 13 100% 606 100%  1958 100% 3600 

Rastrigin’s 80% 13134 100%  2388 100% 2000 

Sphere 100% 720 100% 1800 100% 560 

Ackley d=4 100% 2240 100% 3480 80% 90160 

Rosenbrock’s  100% 1644 100% 4560 100% 9200 

 

4.6 Conclusion  

In this section, a new meta-heuristic optimization algorithm called DSDSC is 

introduced. DSDSC can be simply implemented, without too many parameters. It 

includes three genetic operators (the dynamic schema, dynamic dissimilarity and 

similarity operators), population sorting and random generation of a part of the 

population. 

The experiments have shown quick convergence and the good global searching 

ability of the algorithm. The DSDSC algorithm is easy to understand and uses a simple 

classical representation of points in  
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The DSDSC algorithm has only two parameters to be set by the user: the number 

M of chromosomes and    parameter in Step 5(a) in the algorithm. Therefore, it is easier 

to test than the classical GA where the user must try multiple runs to test different 

combinations of parameters. For all the examples, 80 chromosomes are enough to solve 

the problem. We see from Table 4.6 that the CMA-EA and DE algorithms did not find 

the solution for Schwefel's function, but DSDSC algorithm has found the solution in 

100% of success rate. 
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CHAPTER FIVE: The DDS, FDS and MFDS Algorithms  

 

5.1 Introduction 

This chapter contains the following three algorithms: 

1. Double Dynamic Schema with DSC algorithm (DDS Algorithm). 

2. Free Dynamic Schema (FDS). 

3. Multi Free Dynamic Schema (MFDS).  

 

5.2 Double Dynamic Schema (DDS) algorithm  

The idea of double population in evolutionary algorithms was used to improve the 

search for optimal solution also to increase the diversity of a population. In [97] the 

authors have used a double population with Swarm Optimization Algorithm for 

optimization problems, in [98] a dual-population genetic algorithm was presented, which 

employs two populations, where the main population was used to find a good solution to 

the given problem and the second population was used to evolve and provide controlled 

diversity to the main population.   

In this section a new evolutionary algorithm for solving optimization problems 

called Double Dynamic Schema with Dissimilarity and Similarity of Chromosomes 

(DDS) is presented. This algorithm is complementary to our previous algorithms called 

Dynamic Schema with Dissimilarities and Similarities of Chromosomes (DSDSC) ([99] 

or Chapter 4) and Dissimilarity and Similarity of Chromosomes (DSC) ([100] or Chapter 

3). In the DDS algorithm a new technique is used, that is, double population of 

chromosomes working together to improve the efficiency of optimization and increase 

the chance to reach the best solution, where the first population is the original one and the 

second one is a copy of the first one, but different types of operations are applied to it. 

Briefly, the algorithm aims at finding the optimal solution by fixing the highest 

bits of a chromosome (i.e., fixing the highest bits of all variables           which are 
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contained in the chromosome) and changing the lower bits at the same time, thus the 

algorithm focuses on the searching in a small area that may contain the optimal solution.  

 

5.2.1 Methodology 

The DDS starts with a random population (P0) of M elements representing a 

number of solutions to the problem. This population is sorted, then a new population (P1) 

is formed which is a copy of a part of (P0), Each population (P0, P1) is divided into 

several equal groups and some different operators are applied to these groups (see Table 

5. 1). 

Table 5. 1 Populations (P0) and (P1) and the seven groups of 

chromosomes. 

Original Groups of Chromosomes (P0) Copy Groups of Chromosomes (P1) 

Ch1 

G1: To the first 
group the dynamic 

dissimilarity 

operator is applied. 

Ch1 

G5: To the fifth 
group the 

dissimilarity 

operator is applied. 

Ch2 Ch2 

Ch. … Ch. … 

Ch. … Ch. … 

ChM/4 ChM/4 

ChM/4+1 

G2: To the second 
group the similarity 

operator is applied. 

ChM/4+1 

G6: To the sixth 
group the dynamic 

dissimilarity 

operator is applied. 

ChM/4+2 ChM/4+2 

Ch. … Ch. … 

Ch. … Ch. … 

ChM/2 ChM/2 

ChM/2+1 

G3: To the third 
group the dynamic 

schema operator is 

applied. 

ChM/2+1 

G7: To the seventh 
group the dynamic 

schema operator is 

applied. 

ChM/2+2 ChM/2+2 

Ch. … Ch. … 

Ch. … Ch. … 

ChM/2+ M/4 ChM/2+ M/4 

ChM/2+ M/4+1 

G4: The fourth 
group is generated 

randomly. 

 

ChM/2+ M/4+2 

Ch. … 

Ch. … 

ChM 
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Briefly, the DDS creates new chromosomes by exploring dissimilarity, similarity, 

dynamic schema and dynamic dissimilarity. These operators are described as follows: 

 

5.2.1.1 Dissimilarity operator 

For the first two chromosomes (A,B) in a group, check all corresponding bits: if 

the two bits are equal, put a star (*) in the second (B) chromosome; otherwise leave this 

bit without change in the second chromosome. Then put randomly 0 or 1 in the bits with 

stars (*). Compare this new second chromosome with the third chromosome in the group, 

and so on (see Table 3. 1). 

 

5.2.1.2 Similarity operator 

For two chromosomes (A,B), check each corresponding bits: if the two bits are 

not equal, put a star (*) in the second (B) chromosome; otherwise leave this bit without 

change in the second chromosome. Then put randomly 0 or 1 in the bits with stars (*). 

Compare this new second chromosome with the third one and so on (see Table 3.2). 

 

5.2.1.3 Dynamic schema operator 

The dynamic schema operator is applied onto two chromosomes (A, B). This 

operator works as follows (see Table 4. 2): 

First, divide each chromosome into n parts corresponding to variables          , 

the i-th part having length   , where     is the number of bits for   . Next, for each 

variable   , generate a random integer    from the set {3,…,     }. Define the ―gray‖ 

part of    as the first segment of length    of the string corresponding to   . Define the 

―white‖ part of    as the second segment of length       of the same string. 

For the ―white‖ parts of both chromosomes, if the two bits are not equal, put a star 

(*) in the schema; otherwise leave this bit without change in the schema. After finding 

the schema, copy it K = M/4 times and put it in group (G3), then put randomly 0 or 1 in 

the positions having (*). The positions marked in ―gray‖ are kept unchanged.  
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Note. The name ―dynamic schema operator‖ is justified by the fact that the 

lengths of ―gray‖ and ―white‖ segments of chromosomes may vary from iteration to 

iteration (see Table 4.2).  

 

5.2.1.4 Dynamic dissimilarity operator 

The dynamic dissimilarity operator is applied onto two chromosomes (A, B). This 

operator works similarly to the dynamic schema operator only to find the ―gray‖ and 

―white‖ parts corresponding to variables          . The ―gray‖ part of    is not 

destroyed, in the ―white‖ part of   , if the two bits are equal, put a star (*) in the second 

(B) chromosome; otherwise, leave this bit without change in the second chromosome. 

Then put randomly 0 or 1 in the bits with stars (*) in the second chromosome. Compare 

this new second chromosome with the third one in the same way, and so on (see Table 

4.2). 

 

5.2.2 The DDS algorithm  

The following optimization problem is considered:  

   
 

    

                                          

    [     ]         

where    
 

    is a given function. 

In the algorithm described below, the encoding of chromosomes is the same as in 

Chapter 3. 

Let   be a positive integer divisible by 8. The DDS algorithm consists of the 

following steps:  

1. Generate        chromosomes, each chromosome representing a point 

         . Divide the chromosomes into two populations (P0) and (P1), where (P0) 
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consists of four groups (G1, G2, G3, G4), and (P1) consists of three groups (G5, G6, 

G7), each group having M/4 chromosomes. 

2. Compute the values of the fitness function   for each chromosome in the population 

(G1,…,G7). 

3. Sort the chromosomes according to the descending (for maximization) or ascending 

(for minimization) values of the fitness function.  

4. Copy the groups (G1, G2) onto (G5, G6), replacing the original chromosomes. 

5. Copy   times the first chromosome and put it in C randomly chosen positions in the 

first half of population (P0), replacing the original chromosomes, where        . 

6. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 from 

populations (P0), (that is, the chromosomes on positions 1 and M/4, respectively). 

Copy this schema M/4 times and put it in (G3).  

7. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4  from 

populations (P0), (that is, the chromosomes on positions 1 and     respectively). 

Copy this schema     times and put it in (G7). 

8. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively. Apply the dissimilarity and dynamic dissimilarity operators to groups 

(G5) and (G6) respectively. 

9. All the chromosomes created in Steps 6 to 8 replace the original ones in positions from 

2 to      in populations (P0) and (P1). Then randomly generate chromosomes for 

group (G4). 

10. Go to Step 2 and repeat until the stopping criterion is reached. 

Note: 

 The stopping criterion for the algorithm depends on the example being 

considered, see Section 5.2.3. 

 

In Figure 5.1 we show the DDS algorithm flowchart. 
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Figure 5. 1 Flowchart of the DDS algorithm. 

Initialize population with         solutions to representing points          . Divide 

the solutions into seven groups (G1,…,G7), four groups in population (P0), three groups 

in population (P1) 

Decode chromosomes to find          , using the formula 

                         
   

     
, where [a, b] is the range of     . 

 

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations 

(P0). Copy this schema M /4 times and put it in (G3). 

 

Copy   times the first solution and put it in randomly in the first half of population (P0), 

replacing the original solutions, where C = M/8.  

Copy the groups (G1, G2) onto (G5, G6), replacing the original chromosomes. 

Evaluate the values of the fitness function   for each chromosome in (G1,…,G7), sort 

according to the descending (for max.) or ascending (for min.) values of  . 

1.  

 

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations 

(P0). Copy this schema M /4 times and put it in (G7). 

 

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively. Apply the dissimilarity and dynamic dissimilarity operators to groups 

(G5) and (G6) respectively. Then randomly generate chromosomes for group (G4). 

2. 

 
Is the stopping criterion satisfied ? 

 

Print the best solution and the number of iterations. 

 

NO 

Yes 
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5.2.3 Experimental results 

In this section, we report on computational testing (by using the Matlab R2015b 

software on a computer having CPU core i5 2.4 MHz, 8 GB RAM) of the DDS algorithm 

on 18 functions of 2 variables, one function of 4 variable  and 5 functions of 10 variables. 

The test functions are taken from literature. After each test, the result of DDS has been 

compared with the known global optimum and with the result of a classical GA taken 

from our experiments (Table 3. 10), also, compared with CMA-ES and  EA algorithms. 

All 22 tested functions with optimal solutions are mentioned in Appendix A. We have 

applied the algorithm with 80 chromosomes (P0) with the stopping criterion that the 

difference between our best solution and the known optimal solution is less than or equal 

to a given threshold. This threshold was equal to 0.001 for most two-dimentional 

functions, 0.01 for the Shubert function, 0.04 for the Michalewicz function, and 0.1 for 

ten-dimensional functions. 

The DDS algorithm has found optimum solutions for some optimization problems 

(like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm cannot reach 

to 100% success rate with bit string or double vector, as shown in Table 5. 2, column 

nine. For our algorithm all success rates are 100% with 80 chromosomes in (P0) for all 

problems.  

The DDS algorithm keeps the best solution from each iteration at the first position 

until it is replaced by a better one. 

Note that the average number of iterations to find the best solution was especially 

high (71) for the Michalewicz function, see Table 5.2. For 10-dimenisional problems we 

used 160 chromosomes for population (P0) with maximum 2000 iterations. Table 5. 3 

shows the minimum, maximum and average numbers of function evaluations for 25 runs 

of the DDS algorithm. Table 5.4 shows a comparison of CMA-ES, DE and DDS 

algorithms in terms of mean number of function evaluations and success rate. 

Table 5.5shows the number of function evaluations for 50 runs of the DDS 

algorithm for all functions. 
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Figures 5.2. 5.3 present the average number of iterations with standard deviation 

of iterations for 2-dimensional and 10-dimensional functions respectively for DDS 

algorithm. 

 

Table 5. 2 The results for 50 runs of the DDS algorithm with run time 

(80 chromosomes). 

Function 

name 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number 

of 

iterations

/ Max 

time in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev

. of 

mean 

no. of 

Iter. 

Mean of  

the best 

solution 

for all 

successfu

l runs 

Success 

rate of 

DSC 

And 

DSDSC 

Success 

rate of 

DDS 

Rate of 

success 

GA 

Easom 
4 291 62 

71 -0.9993 100% 100% 
100% 

DV 0.0080 0.3147 0.0685 

Matyas 
2 10 5 

1.4 0.00048 100% 100% 
100% 

DV 0.0053 0.0202 0.0089 

Beale's 
2 74 16 

16.6 0.00049 100% 100% 
70% 

DV 0.0055 0.0816 0.0203 

Booth's 
2 48 17 

11.7 0.00051 100% 100% 
100% 

DV 0.0054 0.0504 0.0208 

Goldstein–

Price 

2 62 20 
13.3 3.00049 100% 100% 

100% 

DV 0.0091 0.0678 0.0248 

Schaffer N.2 
2 39 14 

8.2 0.00035 100% 100% 
70% 

DV 0.0055 0.0478 0.0186 

Schwefel's 
8 253 65 

56.7 0.00068 100% 100% 
0% 

BS 0.0120 0.2724 0.0726 

Branins's 

rcos 

2 103 9 
15.4 0.39841 100% 100% 

100% 

DV 0.0052 0.1095 0.01368 

Six-hump 

camel back 

2 61 8 
9.8 -1.0311 100% 100% 

100% 

DV 0.0053 0.0670 0.0125 

Shubert 
2 169 33 

34 -186.714 100% 100% 
100% 

DV 0.0058 0.1928 0.0421 

Martin and 

Gaddy 

2 11 6 
1.8 0.00044 100% 100% 

40% 

DV 0.0054 0.0146 0.0097 
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Michalewicz 
2 546 71 

103 38.8184 100% 100% 
80% 

DV 0.0055 0.5291 0.0721 

Holder table 
4 87 24 

19.4 -19.208 100% 100% 
80% 

DV 0.0089 0.0979 0.0297 

Drop-wave 
6 189 44 

40 -0.9995 100% 100% 
100% 

BS 0.0099 0.1982 0.0493 

Levy N. 13 

4 47 19 

11 0.00052 100% 100% 
100% 

BS 0.0080 0.0685 0.0248 

Rastrigin’s 
8 133 38 

29.4 0.00041 100% 100% 
100% 

BS 0.0130 0.1539 0.0492 

Sphere 
2 10 4 

2 0.00334 100% 100% 
100% 

BS 0.0059 0.0184 0.0125 

Rosenbrock’s 

valley 

3 102 24 
32.7 0.00055 100% 100% 

100% 

BS 0.0059 0.9985 0.0307 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation.  

 

 

Figure 5. 2 The average number and standard deviation of iterations for 

2-dimensional functions with 80 chromosomes for DDS algorithm 
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Table 5. 3 The results for 25 runs of the DDS algorithm for 10-

dimensional functions with execution time (160 chromosomes). 

Function 

name 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number of 

iterations/ 

Max time 

in seconds 

Mean no. of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution for 

all 

successful 

runs 

Success rate 

of DSC 

And 

DSDSC 

Success 

rate of 

DDS 

Success 

rate of 

GA 

Sum 

Squares 

d=10 

38 251 128 
70.7 0.07277 100% 25% 

100% 
BS 

0.1007 0.6413 0.3354 

Sphere 

d=10 

14 38 23 
18 0.07304 100% 100% 

100% 

BS 
0.0351 0.0954 0.0582 

Sum of 

different 

powers 

d=10 

1 7 4 

1.5 0.02955 100% 100% 
100% 

BS 
0.0029 0.0210 0.0113 

Zakharov 

d=10 

18 1691 468 
378 0.32031 

12% DSC 

100% 

DSDSC 

80% 
100% 

BS 

0.0495 4.2347 1.6494 

Rastrigin 

d=10 

2000 2000 2000 
0 24.333 

0% DSC 

92% 
DSDSC 

0% 
100% 

BS 

4.3092 4.5206 4.3889 

Ackley 

d=4 

57 1767 802 
635 0.02594 100% 50% 

100% 

BS 
0.07358 3.2348 2.5438 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation.  
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Figure 5. 3 The average number and standard deviation of iterations for 

10-dimensional functions with 160 chromosomes for DDS algorithm 

 

Table 5. 4 Comparing the mean number of function evaluations and 

success rate of CMA-ES, DE and DDS algorithms (50 runs, max 2500 

iterations, 80 chromosomes) 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

DDS 

success 

rate 

Function 

evaluations of 

DDS 

Easom 70% 17053 100% 3240 100% 8680 

Matyas 100% 500 100% 2700 100% 700 

Beale 100% 460 100% 3060 100% 2240 

Booth's 100% 492 100% 2820 100% 2380 

Goldstein–

Price 
100% 1812 100% 1620 100% 2800 

Schaffer N.2 90% 6726 100% 5016 100% 1960 

Schwefel's 0% ---- 0% ---- 100% 9100 

Branins's 

rcos 
100% 6876 100% 840 100% 1260 

0
100
200
300
400
500
600
700
800
900

Sum
Square

Sphere Sum of
Different

Zakharov Ackley

Mean of iterations

Standard deviation
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Six-hump 

camel 
100% 780 100% 2160 100% 1120 

Shubert 90% 2220 100% 8160 100% 4620 

Martin and 

Gaddy 
100% 1660 100% 2400 100% 840 

Michalewicz 100% 1848 0% --- 100% 9940 

Drop-wave 50% 26470 94% 9048 100% 6160 

Levy N. 13 100% 606 100%  1958 100% 2660 

Rastrigin’s 80% 13134 100%  2388 100% 5320 

Sphere 100% 720 100% 1800 100% 560 

Rosenbrock’s 

valley  
100% 1644 100% 4560 100% 3360 

 

Table 5. 5 The number of function evaluations for 50 runs of the DDS 

algorithm 

Function name 

Min No. of 

function 

evaluations 

Max No. of 

function 

evaluations 

Average No. of 

function 

evaluations 

Easom 560 40740 8680 

Matyas 280 1400 700 

Beale's 280 10360 2240 

Booth's 280 6720 2380 

Goldstein–Price 280 8680 2800 

Schaffer N.2 280 5460 1960 

Schwefel's 1120 35420 9100 

Branins's rcos 280 14420 1260 
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Six-hump camel back 280 8540 1120 

Shubert 280 23660 4620 

Martin and Gaddy 280 1540 840 

Michalewicz 280 76440 9940 

Holder table 560 12180 3360 

Drop-wave 840 26460 6160 

Levy N. 13 560 6580 2660 

Rastrigin’s 1120 18620 5320 

Rosenbrock 420 14280 3360 

Sum Squares 10-D 10640 70280 35840 

Sphere 10-D 3920 10640 6440 

Sum of different powers 

10-D 
280 1960 1120 

Zakharov 10-D 22400 475160 131040 

Rastrigin 10-D *** *** *** 

 

In Table 5.6 we compare the average number of function evaluations among the 

DSC, DSDSC and  DDS algorithms, also Figure 5.4 presents the values of  Table 5.6. It 

is clear that the DDS algorithm has the best values for most tested functions.   

Table 5.7 presents a comparison of the success rate and the number of function 

evaluations (for two-dimensional functions only) for three algorithms: Bees Algorithm 

(BA), Particle Swarm Optimization (PSO), and DDS. The results for BA and PSO are 

taken from [101]. 
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Table 5. 6 Comparing the average numbers of function evaluations for 

50 runs of the DSC, DSDSC and DDS algorithms. 

Function name DSC DSDSC  DDS  

Eesom 7040 4080 8680 

Matyas 2480 880 700 

Beale's 7440 3920 2240 

Booth's 12080 1600 2380 

Goldstein–Price 10720 2720 2800 

Schaffer N.2 22240 5680 1960 

Schwefel's 44880 3280 9100 

Branins's rcos 6880 2240 1260 

Six-hump camel back 3120 1440 1120 

Shubert 2560 1520 4620 

Martin and Gaddy 2880 1200 840 

Michalewicz 16560 5360 9940 

Holder table 3760 960 3360 

Drop-wave 15520 3840 6160 

Levy N. 13 23200 3600 2660 

Rastrignins 5680 2000 5320 

Rosenbrock’s valley 8080 9200 3360 
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Figure 5. 4 Comparing the average numbers of function evaluations for 

DSC, DSDSC and DDS algorithms.  

  

Table 5. 7 Comparing the average number of functions evaluations and 

success rate of BA, PSO and DDS algorithms  

Function name BA 
Fun. Eval. 

of BA 
PSO 

Fun. Eval. 

of PSO 
DDS 

Fun. Eval. 

of DDS 

Easom 72% 5868 100% 2094 100% 8680 

Shubert 0% --- 100% 3046 100% 4620 

Schwefel's 85% 5385 86% 3622 100% 9100 

Goldstein–Price 7% 9628 100% 1465 100% 2800 

Martin and 

Gaddy 
100% 1448 3% 9707 100% 840 

Rosenbrock 46% 7197 100% 1407 100% 3360 
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5.2.3 Conclusion  

The DDS is a new multi-population evolutionary algorithm that uses two 

populations. This algorithm uses different operators to find the optimal solution, where 

through the dynamic schema operator the algorithm obtains the best area of solutions, and 

searches within that area in each iteration as it detects the schema from the best solution 

in the population. The dynamic dissimilarity operator performs searching in a wide range 

of solutions in (G1) and (G6), where the high bits are kept without change and the lower 

bits are changed. The dissimilarity and similarity operators possess the ability of 

searching in the whole search space because every bit of a chromosome can be changed 

by them. The fifth operator generates chromosomes randomly in (G4) to help increasing 

the diversity and not to stick in a local optimum solution. 

We have applied the GA, DSC, DSDSC, DDS algorithms on 22 test functions taken 

from literature (Appendix A) with 2 and 10 dimensions. The results show the DDS 

algorithm is superior on the GA and DSC and DSDSC algorithms for most two-

dimensions functions.  

Through our experiments we found that whenever the function range is small like (-

1, 1) or (-5, 5), the solution was obtained faster compared to the larger range (-500,500). 

 

5.3 Free Dynamic Schema Algorithm (FDS)  

This algorithm is very similar to DDS algorithm (see Section 5.2 or [102]). The 

only change is that the dynamic schema operator (applied to G3 and G7) is now replaced 

by the free dynamic schema operator in which the schema is found from the first 

chromosome only, as explained in Table 5.8. 
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Table 5. 8 The free dynamic schema operator. 

Before change: an example for finding schema from the first chromosome. 

 Here shadow bits are not destroyed. 

No. of Ch. 
      

                  

Ch1 1 1 0 0 1 0 1 0 1 0 

Schema 1 1 * * * * 1 * * * 

After finding the schema: put it in    ....        positions. 

ChM/2+1 1 1 * * * * 1 * * * 

ChM/2+2 1 1 * * * * 1 * * * 

Ch. … 1 1 * * * * 1 * * * 

Ch. … 1 1 * * * * 1 * * * 

ChM/2+M/4 1 1 * * * * 1 * * * 

After change: put randomly 0 or 1 in (*) bits. 

ChM/2+1 1 1 1 1 1 0 1 0 0 1 

ChM/2+2 1 1 1 0 0 0 1 1 1 1 

Ch. … 1 1 0 1 1 0 1 1 1 0 

Ch. … 1 1 0 1 0 1 1 0 0 0 

ChM/2+M/4 1 1 1 0 1 1 1 0 1 1 

 

Suppose   is a one-dimensional function with range [0,1], as shown in Figure 5.5, 

This function is represented by binary representation consisting of four bits, 

(0000,0001,…,1111), that means the range is divided into 16 segments.  

The principle of free schema is as follows: Suppose there is a solution 0100 

colored in gray, if the free schema operator is applied, for example with     , then bits 

number 1 and 2 are not changed, but in bits 3 and 4 we put *s in the discovered schema 

(01**). Then we randomly put 0 or 1 in positions having *s. Here the schema will cover 

all the subspace colored with green, in the same way another schema (10**) will cover all 

the subspace colored in red, as shown in Figure 5.5. 
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Bits:    1234    

Ch.1:      0100 

Schema: 01** 

Sol.1:     0111 

Sol.2:     0110  

Sol.3:     0101 

 

 

Figure 5. 5 Free dynamic schema operator. 

 

5.3.1 Experimental results 

In this section, we report on computational testing of the FDS algorithm on 18 

functions of 2 variables, one function of 4 variable and 5 functions of 10 variables. After 

each test, the result of FDS has been compared with the known global optimum and with 

the result of a CGA taken from our experimental result (see Table 3.10), also, in Table 
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5.11 a comparison of the mean number of function evaluations and success rate of CMA-

ES, DE and FDS algorithms is presented. All 22 tested functions with optimal solutions 

are mentioned in Appendix A. We have applied the algorithm with 80 chromosomes (P0) 

with the stopping criterion that the difference between our best solution and the known 

optimal solution is less than or equal to a given threshold. 

The FDS algorithm has found optimum solutions for some optimization problems 

(like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm cannot reach 

with 100% success rate with bit string or double vector, as shown in Table 5. 9, column 

nine. For our algorithm all success rates are 100% with 80 chromosomes in (P0) for all 

problems. Table 5. 10 shows the minimum, maximum and average numbers of iterations 

with standard deviation of iterations and comparison with GA for 25 runs of the FDS 

algorithm for 10-dimensional functions with 160 chromosomes in (P0). 

Figures 5.6, 5.7 present the average number of iterations with standard deviation 

of iterations for 2-dimensional and 10-dimensional functions respectively for the FDS 

algorithm. 

The FDS algorithm keeps the best solution from each iteration at the first position 

until it is replaced by a better one. 

 

Table 5. 9 The results for 50 runs of the FDS algorithm. 

Function 

name 
Threshold   

Min 

number 

of 

iteration/ 

Min time 

in seconds 

Max 

number 

of 

iterations/ 

Max time 

in seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successf

ul runs 

Success 

rate of 

FDS  

Rate of 

success 

GA 

Easom 0.001 

24 241 89 

51.9 

-

0.9993
6 

100% 
100% 
DV 

0.02824 0.26588 0.1024 

Matyas 0.001 
2 14 6 

2.6 
0.0004

75 
100% 

100% 

DV 
0.00542 0.01726 0.0101 

Beale's 0.001 2 18 8 4 0.0004 100% 70% 
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0.00555 0.02215 0.0123 
99 DV 

Booth's 0.001 
3 37 12 

6.7 
0.0005

37 
100% 

100% 

DV 
0.00672 0.03861 0.0152 

Goldstein–

Price 
0.001 

10 115 35 
21.6 

3.0005

07 
100% 

100% 

DV 
0.01423 0.12671 0.0409 

Schaffer N.2 0.001 
2 58 16 

11.7 
0.0003

6 
100% 

70% 

DV 
0.00588 0.06565 0.0204 

Schwefel's 0.001 
11 130 39 

27.5 
0.0006

62 
100%  

0% 

BS 0.01554 0.13659 0.046 

Branins's 

rcos 
0.001 

2 89 11 
15.8 

0.3984

25 
100% 

100% 

DV 
0.00496 0.12197 0.0171 

Six-hump 

camel back 
0.001 

2 27 7 

5.3 

-

1.0311

1 

100% 
100% 

DV 
0.00550 0.03045 0.0110 

Shubert 0.01 

3 134 45 

50.4 

-

186.71

7 

100% 
100% 

DV 
0.00445 0.15403 0.0562 

Martin and 

Gaddy 
0.001 

2 12 5 
2.5 

0.0004

71 
100% 

40% 

DV 
0.00171 0.01534 0.0093 

Michalewicz 0.04 
3 166 55 

37.8 
38.815

36 
100% 

80% 
DV 

0.00902 0.17056 0.0605 

Holder table 0.001 
4 55 19 

12.5 -19.208 100% 
80% 

DV 
0.007824 0.062127 0.0239 

Drop-wave 0.001 

7 111 45 

23.5 

-

0.9995

2 

100% 
100% 

BS 
0.011624 0.122926 0.0502 

Levy N. 13 0.001 

4 63 19 

11.2 
0.0005

41 
100% 

100% 

BS 
0.007922 0.066639 0.0235 

Rastrigin’s 0.001 
11 131 58 

31.4 
0.0003

92646 
100% 

100% 

BS 
0.0199 0.1079 0.0555 

Sphere 0.001 
2 15 7 

3.5 
0.0004

6 
100% 

100% 

BS 
0.00693 0.0222 0.0161 
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Rosenbrock’s 

valley 
0.001 

4 56 18 
13.2 

0.0006

23 
100% 

100% 

BS 
0.0088 0.0538 0.0255 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation. 

 

 

Figure 5. 6 The average number and standard deviation of iterations for 

2-dimensional functions with 80 chromosomes for FDS algorithm 

 

Table 5. 10  The results for 25 runs of the FDS algorithm for 10-

dimensional functions with run time. 

Function 

name 
Threshold 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number 

of 

iterations

/ Max 

time in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Success 

rate of 

FDS 

Success 

rate of 

GA 

Sum 

Squares 

d=10 

0.1 
164 634 320 

141 0.082916 100% 100% BS 
0.3055 1.1877 0.6115 

Sphere 0.1 29 102 51 17 0.083032 100% 100% BS 
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d=10 
0.0534 0.1781 0.0928 

Sum of 

different 

powers 

d=10 

0.1 

2 9 4 

2.1 0.03835 100% 100% BS 
0.0032 0.0599 0.0115 

Zakharov 

d=10 
0.1 

180 1711 581 
395 0.087195 100% 100% BS 

0.4853 4.4823 1.5508 

Rastrigin 

d=10 
0.1 

680 1953 1159 
454.4 1.490886 

32% 

84%* 
100% BS 

2.1410 6.1124 3.9758 

Ackley 

d=4 
0.001 

111 1334 536 
465 0.001406 86% 100% BS 

0.1133 2.4283 1.3704 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation. 

*we found this result by changing the size of    to a random number from {0, 1,.., 

  }, with 200 chromosomes and 2000 iterations. 

By comparing the results for the DDS and FDS algorithms, we can see that the 

FDS is better than DDS for two-dimensional functions, while DDS is better than FDS for 

ten-dimensional functions. 

 

 

Figure 5. 7 The average number and standard deviation of iterations for 

10-dimensional functions with 160 chromosomes for FDS algorithm 
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Table 5.11 presents a comparative study of success rate and the number of 

function evaluations for all successful runs for the CMA-ES, DE, FDS algorithms, on 50 

runs, max 2500 iterations, 80 chromosomes, for 2-dimensional functions.  

 

Table 5. 11 Comparison of CMA-ES, DE and FDS algorithms in terms 

of mean number of function evaluations and success rate (50 runs, max 

2500 iterations, 80 chromosomes). 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

FDS 

success 

rate 

Function 

evaluations of 

FDS 

Easom 70% 17053 100% 3240 100% 12460 

Matyas 100% 500 100% 2700 100% 840 

Beale 100% 460 100% 3060 100% 1120 

Booth's 100% 492 100% 2820 100% 1680 

Goldstein–

Price 
100% 1812 100% 1620 100% 4900 

Schaffer N.2 90% 6726 100% 5016 100% 2240 

Schwefel's 0% ---- 0% ---- 100% 5460 

Branins's 

rcos 
100% 6876 100% 840 100% 1540 

Six-hump 

camel 
100% 780 100% 2160 100% 980 

Shubert 90% 2220 100% 8160 100% 6300 

Martin and 

Gaddy 
100% 1660 100% 2400 100% 700 

Michalewicz 100% 1848 0% --- 100% 7700 

Drop-wave 50% 26470 94% 9048 100% 6300 

Levy N. 13 100% 606 100%  1958 100% 2660 

Rastrigin’s 80% 13134 100%  2388 100% 8120 

Sphere 100% 720 100% 1800 100% 980 

Ackley d=4 100% 2240 100% 3480 86% 85760 

Rosenbrock’s  100% 1644 100% 4560 100% 2520 
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Figure 5. 8 shows that, for one of the tested functions (Schaffer), the  solution has 

been found in 2 iterations by using the FDS algorithm. 

 

Figure 5. 8 shows the solution of Schaffer N.2 function found in 2 

iterations 

 

5.4 The Multi Free Dynamic Schema (MFDS)  

In this section we describe the Multi Free Dynamic Schema (MFDS) algorithm, 

which contains 5 types of operators (dynamic dissimilarity, similarity, dissimilarity, 

dynamic schema, free dynamic schema) and random generation of chromosomes. The 

free dynamic schema operator is applied 6 times. The dissimilarity, similarity, dynamic 

schema, dynamic dissimilarity operators and random generation were applied in the DDS 

algorithm, see Tables 3.1, 3.2, 4.2 and 4.3 for more details. The free dynamic schema 

operator was applied in FDS algorithm, see Table 5.8.     

After noticing that the FDS algorithm was more effective than  DSC, DSDSC and 

DDS algorithms in terms of speed in finding the best solution (a comparison of all 

algorithm is presented in Chapter 7), we now propose here another way of using the same 
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principle as in FDS, but now a larger number of schema types (six) are selected at 

random from the first quarter of the sorted generation.  

Suppose   is a one-dimensional function with domain [0, 1], as shown in Figure 

5.9, This function is represented by binary representation consisting of four bits, 

(0000,0001,…,1111), that means the range is divided into 16 segments.  

The principle of multi free schema is the following: Suppose there are   best 

solutions, and the free dynamic schema operator is applied when     ,     ,…,     . 

The same idea of free schema is used but here with more free schemas as shown in 

Figure 5.9. Here we discover multi free schema (101*), (0***), and so on. Then we 

randomly put 0 or 1 in positions having *s. Here the multi free schema will cover all the 

subspaces colored with red, as shown in Figure 5.9.  

Bits:     1234    

Ch.1:       1010 

Schema : 101* 

Sol.1:      1011 

Sol.2:      1010  

 

Here another example, the first bit is fixed. 

Bits:     1234    

Ch.1:       0100 

Schema : 0*** 

Sol.1:      0000 

Sol.2:      0001  

Sol.3:      0010 

…. 

Sol.8:      0111 
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Figure 5. 9 Multi free dynamic schema.  

 

5.4.1 Methodology 

The MFDS algorithm starts with a random population (P0) of   elements 

representing a number of solutions to the problem. This population is sorted, then a new 

population (P1) is formed whose first 40% of chromosomes are copied from a part of 

(P0). The population (P0) is divided into for equal groups (G1, G2, G3, G4), then 

population (P1) is divides into 8 not equal groups (G5,G6,…,G12). Then we apply 

different operators to these groups (see Table 5. 12). 

To groups (G1, G2, G3) of population (P0), the dynamic dissimilarity, similarity, 

dynamic schema operators are applied, and in (G4), random chromosomes are generated, 

respectively. To groups (G5, G6) of population (P1), the dissimilarity and dynamic 

dissimilarity operators are applied respectively, where each of (G5,G6) represents 20% of 

population (P1), For the next groups (G7,G8,…,G12), where each group represents 10% 

of population (P1), six types of free dynamic schema are applied, where chromosomes 

were randomly chosen from the first quarter of sorted population (P0), see Table 5. 12.  
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The free dynamic schema was mentioned in Table 5.8, but it was only used for 

the best chromosome     in the population of the FDS algorithm. In this algorithm 

(MFDS) it is used six times, for different chromosomes and various random fixed part 

sizes   . Each free dynamic schema represents  a group of solutions, these solutions are 

close to the area of best solutions because they are chosen form the first quarter in the 

sorted population (P0). 

 

Table 5. 12 Populations (P0) and (P1) and the twelve groups of 

chromosomes. 

ORIGINAL GROUPS OF CHROMOSOMES(P0) COPY GROUPS OF CHROMOSOMES(P1) 

Ch1 

G1: To the first group the dynamic 

dissimilarity operator is applied. 

20% of 

population 

G5: To the fifth group the 
dissimilarity operator is applied. 

Ch2 

Ch. … 

Ch. … 

ChM/4 

20% of 

population 

G6: To the six group the dynamic 

dissimilarity operator is applied. 
ChM/4+1 

G2: To the second group the 

similarity operator is applied. 

ChM/4+2 

Ch. … 

Ch. … 10% of 

population 

G7: To this group the free dynamic 

schema operator is applied. 
ChM/2 

ChM/2+1 

G3: To the third group the 
dynamic schema operator is 

applied. 

10% of 

population 

G8: To this group the free dynamic 
schema operator is applied. 

ChM/2+2 

Ch. … 10% of 

population 

G9: To this group the free dynamic 

schema operator is applied 
Ch. … 

ChM/2+M/4 10% of 

population 

G10: To this group the free 

dynamic schema operator is applied 
ChM/2+M/4+1 

G4: The fourth group is generated 

randomly. 

ChM/2+M/4+2 10% of 

population 
G11: To this group the free 

dynamic schema operator is applied 
Ch. … 

Ch. … 10% of 

population 
G12: To this group the free 

dynamic schema operator is applied 
ChM 
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5.4.2 The MFDS algorithm 

The following optimization problem is considered:  

   
 

    

                                          

    [     ]         

where    
 

    is a given function. 

In the algorithm described below, the encoding of chromosomes is the same as in 

Chapter 3. 

Let M be a positive integer divisible by 8. The MFDS algorithm consists of the 

following steps:  

1. Generate 2M chromosomes, each chromosome representing a point          . 

Divide the chromosomes into two populations (P0) and (P1), where (P0) consists of 

four groups (G1, G2, G3, G4), and (P1) consists of eight groups (G5, G6,…, G12), 

each group in (P0) having M/4 chromosomes, but in (P1) the size is equal to 20% of 

population for (G5, G6) and 10% for (G7, ... , G12) . 

2. Compute the values of the fitness function  f for each chromosome in the population 

(G1,…, G12). 

3. Sort the chromosomes according to the descending (for maximization) or ascending 

(for minimization) values of the fitness function.  

4. Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes. 

5. Copy C times the first chromosome and put it in C randomly chosen positions in the 

first half of population (P0), replacing the original chromosomes, where C = M/8. 

6. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 from 

populations (P0), (that is, the chromosomes on positions 1 and M/4, respectively). 

Copy this schema M/4 times and put it in (G3).  

7. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively. Apply the dissimilarity and dynamic dissimilarity operators to group 

(G5) and (G6) respectively. 
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8. Apply the free dynamic schema operator 6 times to generate six groups (G7,…, G12). 

To generate each group, a chromosome is chosen randomly from the first quarter of 

solutions in (P0). Then put 0 or 1 randomly in positions having *s in each group.  

9. All the chromosomes created in Steps 4 to 8 replace the original ones in positions 

from 2 to 2M in populations (P0) and (P1). Then randomly generate chromosomes for 

group (G4). 

10. Go to Step 2 and repeat until the stopping criterion is reached. 

 

Note: 

The stopping criterion for the algorithm depends on the example being 

considered, see Section 5.4.3.  The free dynamic schema operator is shown 

in Table 5.8. that uses different sizes of fixed segments (gray color) and 

changing all the rest of chromosome by using (*)’s, then randomly put (0,1) 

to generate a new solutions.   

The flowchart of MFDS algorithm is shown in Figure 5.10.    
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Figure 5. 10 Flowchart of the MFDS algorithm. 

Generate 2M solutions, each one representing a point          . Divide the solutions into 

two populations (P0) and (P1), (P0) is consists of four equal groups (G1,…, G4). But (P1) 

consists of eight groups (G5,…,G12), where the size is equal to 20% of population for 

(G5,G6) and 10% for (G7,... ,G12). 

Decode chromosomes to find          , using the formula 

                         
   

     
, where [a, b] is the range of     . 

 

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations 

(P0). Copy this schema M /4 times and put it in (G3).  

 

Copy   times the first solution and put it in randomly in the first half of population (P0), 

replacing the original solutions, where C = M/8.  

Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes. 

Evaluate the values of the fitness function   for each chromosome in (G1,…,G12). sort 

according to the descending for Max. or ascending for Min.. 

3.  

 

Apply the similarity and dynamic dissimilarity operators to group (G5) and (G6) 

respectively 

 

Is the stopping criterion satisfied ? 

 

Print the best solution and the number of iterations. 

 

NO 

Yes 

From first quarter of (P0) Apply the free dynamic schema operator 6 times to generate 

groups (G7,…, G12). 

 

Choose randomly 6 chromosomes from the first quarter of (P0) and apply the free dynamic 

schema operator 6 times to generate groups (G7,…, G12). Put 0 or 1 in position having *s. 

 

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively, Then randomly generate chromosomes for group (G4) in (P0).  
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5.4.3 Experimental results  

In this section, we report on computational testing of the MFDS algorithm on 18 

functions of 2 variables, one function of 4 variable, 5 functions of 10 variables and 100 

variables,  also the execution time is reported. After each test, the result of MFDS has 

been compared with the known global optimum and with the result of a CGA taken from 

taken from our experimental result (see Table 3.10), also, in Table 5.14 a comparison of 

the mean number of function evaluations and success rate of CMA-ES, DE and FDS 

algorithms is presented. All 22 tested functions with optimal solutions are mentioned in 

Appendix A. We have applied the algorithm with 80 chromosomes (P0) with the stopping 

criterion that the difference between our best solution and the known optimal solution is 

less than or equal a given threshold. 

The MFDS algorithm has found optimum solutions for some optimization 

problems (like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm 

cannot reach to 100% success rate with bit string or double vector, as shown in Table 

5.13 the results for 50 runs of MFDS algorithm (the results for 50 runs of the MFDS 

algorithm). For our algorithm all success rates are 100% with 80 chromosomes in (P0) 

for all problems.  

Table 5.14 presents a comparative study of success rate and the number of 

function evaluations for all successful runs for the CMA-ES, DE, MFDS algorithms, on 

50 runs, max 2500 iterations, 80 chromosomes. Table 5.15. presents the results of  MFDS 

for some 4- and 10-dimensional functions. 

Figures 5.11, 5.12 present the average number of iterations with standard 

deviation of iterations for 2-, 4- and 10-dimensional functions for MFDS. 

The MFDS algorithm keeps the best solution from each iteration at the first position 

until it is replaced by a better one.  

Here it is possible to note the effect of multi free dynamic schema by decreasing the 

average number of iterations for most functions comparing with previous algorithms. 
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Table 5. 13 The results for 50 runs of the MFDS algorithm 

Function 

name 
Threshold 

Min 

number of 

iterations/ 

Min time 

in seconds 

Max 

number of 

iterations/ 

Max time 

in seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Success 

rate of 

MFDS 

Rate of 

success 

GA 

Easom 0.001 

6 175 58 

42.5 -0.99938 100% 

100
% 

DV 0.01869 0.2521 0.08722 

Matyas 0.001 

2 9 5 

1.5 0.000331 100% 

100
% 

DV 0.00660 0.01758 0.01101 

Beale's 0.001 
2 24 7 

3.7 0.000544 100% 
70% 

DV 0.00668 0.03775 0.0141 

Booth's 0.001 
3 27 10 

4.5 0.000545 100% 
100
% 

DV 0.00850 0.04361 0.01816 

Goldstein

–Price 
0.001 

6 52 21 

10.4 3.000434 100% 

100

% 

DV 0.0108 0.07839 0.03482 

Schaffer  

N.2 
0.001 

3 30 11 6.3 
0.000402 100% 

70% 

DV 0.00661 0.04746 0.01967  

Schwefel's  0.001 
4 69 29 14.1 

0.000662 100% 
0% 

BS 0.0066 0.10088 0.04650  

Branins's 

rcos 
0.001 

2 60 7 

8.1 0.398406 100% 

100

% 

DV 0.0066 0.08871 0.01480 

Six-hump 

camel 

back 

0.001 

2 15 5 

2.7 -1.03119 100% 

100

% 

DV 0.006 0.02500 0.01208 

Shubert 0.01 

2 75 26 

15.2 -186.714 100% 

100
% 

DV 0.0149 0.12685 0.05036 

Martin 

and 

Gaddy 

0.001 

2 9 5 

2 0.00043 100% 
40% 

DV 0.0067 0.01672 0.01121 

Michalewicz 0.04 
4 116 30 

24 38.8096 100% 
80% 

DV 0.0089 0.1614 0.0450 

Holder 

table 
0.001 

2 28 12 
5 -19.2081 100% 

80% 

DV 0.0078 0.0435 0.02048 
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Drop-

wave 
0.001 

5 69 30 

16.6 -0.99949 100% 

100

% 

BS 0.0165 0.1005 0.0467 

Levy N. 13 0.001 

5 32 11 

6 0.00045 100% 

100
% 

BS 0.0115 0.0496 0.02047 

Rastrigin’s 0.001 
7 85 41 

19.7 0.000459 100% 
100% 

BS 0.0160 0.1202 0.05336 

Sphere 0.001 
2 10 5 

2 0.000452 100% 
100% 

BS 0.0128 0.0774 0.0202 

Rosenbrock’s 

valley 
0.001 

2 40 13 
9.7 0.000609 100% 

100% 

BS 0.0127 0.07139 0.0265 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation. 

 

 

Figure 5. 11 The average number and standard deviation of iterations 

for 2-dimensional functions with 80 chromosomes for MFDS algorithm 
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Table 5. 14 Comparing the mean number of function evaluations and 

success rate of CMA-ES, DE and MFDS algorithms (50 runs, max 2500 

iterations, 80 chromosomes) 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

MFDS 

success 

rate 

Function 

evaluations of 

MFDS 

Easom 70% 17053 100% 3240 100% 8120 

Matyas 100% 500 100% 2700 100% 700 

Beale 100% 460 100% 3060 100% 980 

Booth's 100% 492 100% 2820 100% 1400 

Goldstein–

Price 
100% 1812 100% 1620 100% 2940 

Schaffer N.2 90% 6726 100% 5016 100% 1540 

Schwefel's 0% ---- 0% ---- 100% 4060 

Branins's 

rcos 
100% 6876 100% 840 100% 980 

Six-hump 

camel 
100% 780 100% 2160 100% 700 

Shubert 90% 2220 100% 8160 100% 3640 

Martin and 

Gaddy 
100% 1660 100% 2400 100% 700 

Michalewicz 100% 1848 0% --- 100% 4200 

Drop-wave 50% 26470 94% 9048 100% 4200 

Levy N. 13 100% 606 100%  1958 100% 1540 

Rastrigin’s 80% 13134 100%  2388 100% 5740 

Sphere 100% 720 100% 1800 100% 700 

Ackley d=4 100% 2240 100% 3480 100% 25760 

Rosenbrock’s  100% 1644 100% 4560 100% 1820 
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Table 5. 15 The results for 25 runs of the MFDS algorithm  with 

execution time of 10-dimensional function. 

Function 

name 
Threshold 

Min 

number of 

iterations/ 

Min time in 

seconds 

Max 

number of 

iterations/ 

Max time 

in seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs 

Std. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Rate of 

success 

MFDS 

Rate of 

success 

GA 

Sum 

Squares 

d=10 

0.01 
77 438 245 

100.1 0.07856 100% 
100% 

BS 
0.18143 1.01937 0.58881 

Sphere 

d=10 
0.01 

19 68 46 
10.8 0.08259 100% 

100% 

BS 0.04683 0.15147 0.10561 

Sum of 

Different 

Powers 

d=10 

0.01 

2 7 3 

1.2 0.04680 100% 
100% 

BS 0.00375 0.02471 0.01004 

Zakharov 

d=10  
0.1 

107 700 373 
156.6 0.09010 54%  

100% 

BS 0.32029 2.00436 1.07996 

Rastrigin 

d=10  
0.01 

157 456 294 
70.8 0.07169 100%* 

100% 
BS 0.56427 1.64128 1.04986 

Ackley 

d=4 
0.001 

53 269 161 
59.8 0.00071 100%* 

100% 
BS 0.07750 0.38244 0.22120 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, Std.Dev. = standard deviation. 
 

* For this function we change the    in dynamic schema and free dynamic schema 

to be a random number from {0, 1,…,   }. 
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Figure 5. 12 The average number and standard deviation of iterations 

for 4- and 10-dimensional functions with 80 chromosomes for MFDS 

algorithm 

 

The following Figures (5.13 and 5.14) show the behavior of a schema while 

finding the best solution for the Michalewicz function. It is clear that the chromosomes 

are focused on the  best solution. Fig. 5.13 shows three dimensional view, the green 

points  represent the population (P1), the blue points represent the population (P0). Fig. 

5.14 shows the top view where the red points for population (P1) are focused on the best 

solution. 

In Fig. 5.13, we can see different groups of green points which belong to different 

schemas, each schema has a group of solutions close together. 

This algorithm can help searching or exploring different solutions in search space 

thus providing possibility in finding a solution with a lower number of iterations. 
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Figure 5. 13 shows the multi free dynamic schema on Michalewicz 

function finding best solution after 15 iterations (green points belong to 

the schema).   

 

 

Figure 5. 14 shows the multi free dynamic schema on Michalewicz 

function finding the best solution (top view, where red points belong to 

the schema).   
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Fig. 5.15 shows one of the tested function (Schwefel's) where the MFDS 

algorithm found the optimum solution in 4 iterations.   

    

 

Figure 5. 15 shows Schwefel's function, MFDS finding solution in 4 

iterations   

 

5.4.4 The choice of    for Rastrigin, Ackley and Zakharov functions  

By changing the size of     parameter (for Rastrigin and Ackley functions) in 

range {0,1,…,  }, we allow the gray part to contain all bits in    (we make a mask for 

the best or worst    randomly). This idea gives a chance to keep the best    without 

change and give a chance to the worst    to change all bits to be better. Each schema 

from 6 types of free dynamic schema could be like in the following Table 5. 16, in this 

example it’s clear if      and      , this operation will keep    without change and 

change all bits in   . 
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Table 5. 16 The size of    parameter on free dynamic schema (0,    )

No. of 

Ch. 

         

                  

    0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

        0 0 0 0 * * * * * * * * * * * * 0 0 0 0 0 0 1 1 

 

On the other hand we faced a problem with the Zakharov function, by applying 10 

dimensions with a range [-5, 10]. Since the result of success did not exceed 60%, we 

changed the parameter    to obtain 100% success rate for all dynamic operators (dynamic 

dissimilarity,  dynamic schema, 6 types of free dynamic schema) as follows : 

1. for dynamic dissimilarity we used                . 

2. for  dynamic schema               . See Table 5.16.  

3. for 6 types of free dynamic schema                . randomly for each 

           , this means we make a mask for           randomly to keep 

the best    without change if        , or changing      by putting (*)s in all 

bits of    then generate {0,1} randomly instead of (*)s. See Table 5. 17.  

In this example (Table 5. 17) the algorithm will keep the    and    without any 

change and change all bits of   . 

 

Table 5. 17 The    parameter on free dynamic schema (0 or    . 

No. of 

Ch. 

         

  =               

    0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

        0 0 0 0 0 0 1 0 * * * * * * * * 0 0 0 0 0 0 1 1 
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Table 5.18 presents the results of 25 runs on 100-dimesional functions by using 

MFDS, CMA-ES and GA, we notice that CMA-ES have 0% success rate on Rastrigin 

function, in GA we have found the best solutions by using bit string and double vector 

with 200 chromosomes and two point crossover. We used 200 chromosomes, maximum 

2000 iterations and threshold 0.1 for all algorithms in this comparison. 

 

Table 5. 18 Comparing the success rate and mean number of iteration 

for 25 runs of the MFDS, GA, CMA-ES algorithms on 100-dimensional 

functions  

Function 

name 

Min 

number of 

iterations 

Max 

number of 

iterations 

Mean no. of 

iterations 

for all 

successful 

runs 

Mean of  the 

best solution 

fitness from 

all successful 

runs 

Std.Dev. 

of mean 

no. of 

Iter. 

Success 

rate of 

MFDS 

Success 

rate of 

GA / 

Avr. of 

Iter. 

Success 

rate of 

CMA-

ES / 

Avr. of 

Iter. 

Sum 

Squares 

d=100 

479 1211 695 

0.09675 119 
100% 

*** 

100% 

273 It. 
DV 

100% 

541 It. 7.33375 16.064 10.2286 

Sphere 

d=100 

421 656 445 

0.08958 47.5 
100% 

*** 

100% 

234 It. 
DV 

100% 

286 It. 
5.3693 8.7836 6.5059 

Sum of  

Different 

Powers 

d=100 

3 17 7 

0.09685 3.3 
100% 

*** 

100% 

85 It. 
DV 

100% 

89 It. 0.0642 0.3157 0.1413 

Rastrigin

d=100 

505 1141 656 

0.09864 127 
100% 

*** 

100% 

218 It. 
DV 

0% 

don’t 
find 6.6197 15.221 10.1945 

Ackley 

d=100 

236 495 339 

0.08955 87 
100% 

*** 

100% 

BS 

97 It. 

0% DV 

100% 

401 It. 4.0450 9.1167 6.1949 

BS= bit string, DV= double vector as a parameter of population type in GA 

toolbox, with maximum 2000 iterations, two point crossover, 200 chromosomes, 

Std.Dev. = standard deviation.  

*** For these functions we used copying the gray part from    to   as explained 

in Table 5.19. 
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For 100-dimensional functions, we have applied a new change in the MFDS 

algorithm: we appended one condition that if the number of dimensions is greater than 

10, we apply coping the grey part of    to    in the best chromosome in a free dynamic 

schema procedure, where i j, i, j are chosen randomly as shown in Table 5.19 (the 

remaining bits in    don’t change), this condition was added only for two groups of free 

dynamic schema in population (P1).  Here we assume that   =   because we must copy 

the same number of highest bits from    to   . 

 

Table 5. 19 The    parameter on free dynamic schema (0 or    . 

                

    01010…010 0 0 0 0 1 0101 ……. 0 0 0 0 1 010 01010…10100 

 

  
copy 
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CHAPTER SIX: Initial Population with Multi-Free Dynamic 

Schema 

 

6.1 Introduction 

To start solving an optimization problem by using a GA, the initial population 

generation is important. The population size usually remains the same in all generations. 

The main difficulty concerning the initial population is that randomly generated 

chromosomes may not satisfy the constraints of the problem. Another big difficulty is 

that the initial population can be disproportionate to the problem [103]. In [103] the 

population size was 100 chromosomes, but other authors used more than 100 in problems 

with very large solution spaces [104].  

In [105] the authors proposed using a random size of the initial population. The 

minimum population size should be determined according to the problem size. The initial 

population is produced by randomly determining p chromosomes, where p is a population 

size [105].  

In [106], [107] the influence of the population size is be discussed based on the 

Genetic Algorithm (GA) facility. The population is examined for the population with a 

fixed generations number, the examination is carried out between 5 and 200 

chromosomes. For 200 generations, the optimal population size has been found to be 100 

chromosomes [106], [107]. 

The population may contain non-useful and useful  individuals. The operation is 

reasonably better if the population contains only useful individuals [108]. That is, the GA 

can faster obtain the best solution when the best chromosomes exist in the initial 

population. 

A brief outline for a variety methods of maintaining population diversity was 

provided in [109]. The population diversity is effectively used to study the premature 

convergence. The degree of population diversity is directly associated with premature 

convergence [109], [110]. The mechanisms of preserving the diversity can help the 

optimization process in two ways. A diverse population is appropriate for dealing with 
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multimodal functions and it can be used to simultaneously explore several landscape 

fitness hills. Diversity-preserving methods are able to support global exploration and able 

to help locating several local and global optima [110]. 

For the initial population, the essential challenge is that the individuals may not 

satisfy the restrictions of the problem.  For reaching the optimal solution by some  

successive generation, the GA must improve the populations’ individuals [111]. 

The chromosomes are randomly generated, in order to collect the initial 

population. The population size 100 chromosomes was considered in [112] and this 

number of chromosomes has been utilized in previous studies such as [113], [104], also 

in examples with big solution spaces, the initial population should be larger than 100.  

Numerical experiments highlighted that the populations utilizing very small or 

very large number of chromosomes number could lead to attain insignificant solutions 

[114]. In addition,  the population size of a range between 20 to 60 was applied and 

employed to three problem types in [115]. 

The population size can be considered as one of the most important topics of the 

evolutionary computation. An argument is commonly raised that a ―small‖ population 

size can guide the algorithm to poor solutions and a ―large‖ population size can lead to 

make the algorithm to spend more computation time until finding a solution [116]. The 

center of mass was suggested to be used as an alternative method for measuring the 

diversity of the population level. This theoretical approach of the initial random 

population diversity analysis and measure is important. Also, it could be necessary for 

designing the GAs because of the initial population relations with other GA parameters 

and because of its relations to the premature convergence problem [116].  

In [117], the researchers studied the effect of the first generation as well as the 

diversity of the first generation on reaching the optimal solution of GAs. There is a 

hypothesis saying that ―higher diversity in initial populations for Genetic Algorithms can 

reduce the number of iterations required to reach an optimum and potentially increase 

solution quality‖ [117]. It seems that for small populations it may be better to generate 

structured chromosomes than random ones, and diversity can help to measure how 

structured the initial population is [117]. 
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In this chapter a new optimization algorithm (IPMFDS) is proposed taking 

advantage of the effect of initial population. We have used a big initial population of 500, 

1000 and 3000 chromosomes for 2-, 10- and 100-dimensional functions, respectively. 

This initial population is evaluated and sorted, then we choose a number of the best 

chromosomes to form first population in the IPMFDS algorithm. This first population is 

of size 80, 160 and 200 chromosomes for 2-, 10- and 100-dimensional functions, 

respectively. By this method, when the best chromosomes are present in the initial 

population, the algorithm can find the optimal solution very fast. 

 

6.2 The IPMFDS algorithm 

The following optimization problem is considered:  

   
 

    

                                          

    [     ]         

where    
 

    is a given function. 

 

In the algorithm described below, the encoding of chromosomes is the same as in 

Chapter 3. 

Let M be a positive integer divisible by 8. The IPMFDS algorithm consists of the 

following steps: 

1. Generate a big initial population (P), with size corresponding to the number of 

variables in the problem (i.e., 500, 1000, 3000 for 2, 10, 100 variables 

respectively), of chromosomes which represent the points          . Then 

decode, evaluate and sort fitness function values of chromosomes in ascending 

order for minimization, and descending order for maximization, then get the best 

   chromosomes that can be collected from the initial population. 

2. Put the 2M chromosomes in the population (P0) and (P1), where (P0) consists of 

four groups (G1, G2, G3, G4), and (P1) consists of eight groups (G5,  G6,…, G12), 
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each group in (P0) having M/4 chromosomes, but in (P1) the size is equal to 20% 

of population for (G5, G6) and 10% for (G7, ... , G12).  

3. Compute the values of the fitness function f for each chromosome in the 

population (G1,…, G12). 

4. Sort the chromosomes according to the descending (for maximization) or 

ascending (for minimization) values of the fitness function.  

5. Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes. 

6. Copy C times the first chromosome and put it in C randomly chosen positions in 

the first half of population (P0), replacing the original chromosomes, where C  = 

M/10. 

7. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 

from populations (P0), (that is, the chromosomes on positions 1 and M/4, 

respectively). Copy this schema M/4 times and put it in (G3).  

8. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively. Apply the dissimilarity  and dynamic dissimilarity operators to 

group (G5) and (G6) respectively. 

9. Apply the free dynamic schema operator 6 times to generate six groups (G7,…, 

G12), to generate each free schema chromosome is chosen randomly from first 

quarter of solution in (P0). The put 0 or 1 randomly in positions having *s in each 

group.  

10. All the chromosomes created in Steps 5 to 9 replace the original ones in positions 

from 2 to 2M in populations (P0) and (P1). Then randomly generate chromosomes 

for group (G4). 

11. Go to Step 3 and repeat until the stopping criterion is reached. 

 

Note: The stopping criterion for the algorithm depends on the example being 

considered, see Section 5.4.3. 

The flowchart of IPMFDS algorithm is shown in Figure 6. 1. 
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Figure 6. 1 The flowchart of the IPMDS algorithm. 

Put the 2M chromosomes in the population (P0) and (P1). (P0) consists of four equal groups 

(G1,…, G4), and (P1) consists of eight groups (G5,…,G12), where the size is equal to 20% 

of population for (G5,G6) and 10% for (G7,... ,G12). 

Decode chromosomes to find          , using the formula 

                         
   

     
, where [a, b] is the range of     . 

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations 

(P0). Copy this schema M /4 times and put it in (G3). 

 

Copy   times the first solution and put it in randomly in the first half of population (P0), 

replacing the original solutions, where C = M/8. 

Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes. 

Evaluate the values of the fitness function   for each chromosome in (G1,…,G12). sort 

according to the descending for Max. or ascending for Min.. 

4.  

 

Apply the similarity and dynamic dissimilarity operators to group (G5) and (G6) 

respectively 

 

Is the stopping criterion satisfied ? 

 

Print the best solution and the number of iterations. 

 

NO 

Yes 

Apply the free dynamic schema operator 6 times to groups (G7,…, G12). 

 

Generate a big initial population (P) of 500 or 1000 chromosomes, each ch. represents 

points          . Then decode, evaluate and sort values of the fitness function   according 

to the descending for Max. or ascending for Min., then get the best 2M. solutions.  

sort. 

 

 

Choose randomly 6 chromosomes from first quarter of (P0) and apply the free dynamic 

schema operator 6 times to generate groups (G7,…, G12). Put 0 or 1 in position having *s. 

 

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2) 

respectively, Then randomly generate chromosomes for group (G4) in (P0).  

 
  



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms…Chapter 6 

 151 

 

6.3 Experimental results 

In this section, we report on computational testing of the IPMFDS algorithm on 

18 functions of 2 variables, one function of 4 variable, 5 functions of 10 variables and  5 

functions of 100 variables , also the execution time is reported. After each test, the result 

of IPMFDS has been compared with the known global optimum and with the result of a 

CGA taken from our experimental results . All 22 tested functions with optimal solutions 

are mentioned in Appendix A. We have applied the algorithm with the initial population 

(P) as given in the Introduction: 500 chromosomes when applied to 2 dimensions, and set 

(P0) to 80 chromosomes, see Table 6.1. But the initial population (P) of 1000, 3000 

chromosomes is used with 10-, 100-dimensional functions, see Tables 6.1, 6.3, 6.4. The 

stopping criterion is that the difference between our best solution and the known optimal 

solution is less than or equal to a given threshold, see Tables 6.1, 6.3, 6.4.  

Table 6.2 presents a comparative study of success rate and the number of function 

evaluations for all successful runs for the CMA-ES, DE, IPMFDS algorithms, on 50 runs, 

max 2500 iterations, 80 chromosomes. 

Figure 6. 2, 6.3 present the average number of iterations with standard deviation 

of iterations for 2-dimensional and 10-dimensional functions for IPMFDS algorithm. 

The IPMFDS algorithm has found optimum solutions for some optimization 

problems (like Beale's, Schaffer N.2, Schwefel's,) that the classical genetic algorithm 

cannot reach to 100% success rate with bit string or double vector for population type, as 

shown in Table 6.1, column nine. For our algorithm all success rates are 100% with 80 

chromosomes in (P0) for all problems.  

Note that the average number of iterations was really low to find the optimal 

solutions, this was by effect of the big initial population.  

The IPMFDS algorithm keeps the best solution from each iteration at the first 

position until it is replaced by a better one.  

Figure 6.4 shows the implementation of Shubert function with small range [-4, 4], 

here it’s clear the IPMFDS algorithm has found the optimum solution in one iteration 

after applying a big initial population on this small range. 
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Table 6. 1 The results for 50 runs of the IPMFDS algorithm (80 

chromosomes in P0). 

Function 

name 

Threshold  

of 

stopping 

criteria 

Min 

number 

of 

iterations/ 

Min time 

in 

seconds 

Max 

number 

of 

iterations/ 

Max time 

in 

seconds 

Mean no. 

of 

iterations 

for all 

successful 

runs/ 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successfu

l runs 

Success 

rate of  

IPMFDS 

Rate of 

success 

GA 

Easom 0.001 
5 235 38 

46 -0.99938 100% 
100% 

DV 0.0140 0.3685 0.06620 

Matyas 0.001 
2 7 4 

1.2 0.000415 100% 
100% 

DV 0.00711 0.0161 0.01120 

Beale's 0.001 
2 27 8 

5 0.000403 100% 
70% 
DV 0.00688 0.0427 0.01581 

Booth's 0.001 
3 29 8 

4 0.000447 100% 
100% 

DV 0.0083 0.0442 0.01597 

Goldstein–

Price 
0.001 

3 22 11 
4.4 

3.00057 

 
100% 

100% 

DV 0.00872 0.0388 0.02115 

Schaffer  

N.2 
0.001 

2 20 8 
3.6 0.000368 100% 

70% 
DV 0.00688 0.0337 0.01677 

Schwefel's  0.001 
2 27 15 

5.9 0.000484 100% 
0% 

BS 0.01295 0.0836 0.0277 

Branins's 

rcos 
0.001 

2 144 17 
29 0.398312 100% 

100% 

DV 0.00680 0.2047 0.0287 

Six-hump 

camel back 
0.001 

2 60 8 
10.8 -1.03115 100% 

100% 
DV 0.00659 0.0933 0.0158 

Shubert 0.01 
2 39 11 

6.8 -186.717 100% 
100% 

DV 0.0056 0.0629 0.0218 

Martin and 

Gaddy 
0.001 

2 8 4 
1.4 0.000395 100% 

40% 

DV 0.00681 0.0154 0.0103 

Michalewicz 0.04 
2 234 27 

34.4 38.81845 100% 
80% 
DV 0.00887 0.3313 0.0464 
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Holder 

Table 
0.001 

3 15 7 
3 -19.2081 100% 

80% 
DV 0.00767 0.0273 0.0149 

Drop-wave 0.001 
2 117 23 

21 -0.9995 100% 
100% 

BS 0.01294 0.1679 0.0379 

Levy N. 13 0.001 
2 30 10 

5.4 0.000405 100% 
100% 

BS 0.00693 0.0479 0.0188 

Rastrigin’s 0.001 
7 66 33 

13.1 0.000408 100%* 
100% 

BS 0.01007 0.0730 0.0427 

Sphere 0.001 
2 14 6 

3.3 0.000419 100% 
100% 

BS 0.00180 0.0285 0.0194 

Rosenbrock’s 

valley 
0.001 

2 35 15 
9.4 0.000559 100% 

100% 

BS 0.00429 0.0495 0.0268 

BS= bit string, DV= double vector as a parameter of population type in GA toolbox, 

Std.Dev. = standard deviation.  
 

 

Figure 6. 2 The average number and standard deviation of iterations for 

2-dimensional functions with 80 chromosomes for IPMFDS algorithm 
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Table 6. 2 Comparing the mean number of function evaluations and 

success rate of CMA-ES, DE and IPMFDS algorithms (50 runs, max 

2500 iterations, 80 chromosomes) 

function 

name 

CMA-ES 

success 

rate 

Function 

evaluations 

of CMA-ES 

DE 

success 

rate 

Function 

evaluations 

of DE 

IPMFDS 

success 

rate 

Function 

evaluations of 

IPMFDS 

Easom 70% 17053 100% 3240 100% 6080 

Matyas 100% 500 100% 2700 100% 640 

Beale 100% 460 100% 3060 100% 1280 

Booth's 100% 492 100% 2820 100% 1280 

Goldstein–

Price 
100% 1812 100% 1620 100% 1760 

Schaffer N.2 90% 6726 100% 5016 100% 1280 

Schwefel's 0% ---- 0% ---- 100% 2400 

Branins's 

rcos 
100% 6876 100% 840 100% 2720 

Six-hump 

camel 
100% 780 100% 2160 100% 1280 

Shubert 90% 2220 100% 8160 100% 1760 

Martin and 

Gaddy 
100% 1660 100% 2400 100% 640 

Michalewicz 100% 1848 0% --- 100% 4320 

Drop-wave 50% 26470 94% 9048 100% 3680 

Levy N. 13 100% 606 100%  1958 100% 1600 

Rastrigin’s 80% 13134 100%  2388 100% 5280 

Sphere 100% 720 100% 1800 100% 960 

Ackley d=4 100% 2240 100% 3480 100% 8160 

Rosenbrock’s  100% 1644 100% 4560 100% 2400 
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Table 6. 3 The results for 50 runs of the IPMFDS algorithm and run 

time of 10-dimensional function. 

Function 

name 
Threshold 

Min 

number 

of 

iterations

/ Min 

time in 

seconds 

Max 

number 

of 

iterations

/ Max 

time in 

seconds 

Mean no. of 

iterations 

for all 

successful 

runs / 

Average 

time 

Std.Dev. 

of mean 

no. of 

Iter. 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Success 

rate of 

IPMFDS 

Success 

rate of 

GA 

Sum 

Squares 

d=10 

0.1 

127 388 268 

76.9 0.076726 100% 
100% 

BS 
0.396452 1.171682 0.79964 

Sphere 

d=10 
0.1 

112 602 351 

145.6 0.016648 100% 
100% 

BS 0.263907 1.383436 0.81086 

Sum of  

Different 

Powers 

d=10 

0.1 

2 9 4 

2 0.012048 100% 
100% 

BS 0.007757 0.033951 0.019697 

Zakharov 

d=10 
0.1 

337 2000 1209 

631 1.561844 60% 
100% 

BS 0.975018 5.721531 3.465392 

Rastrigin

d=10 
0.01 

129 482 277 

195 0.081194 100%* 
100% 

BS 0.466429 1.722902 0.99826 

Ackley 

d=4 
0.001 

31 94 51 

42 0.007941 100%* 
100% 

BS 0.055756 0.135876 0.080212 

* In this function we change the    in dynamic schema and free dynamic schema 

to be in the random range          in the grey parts.   

Table 6.4 presents the success rate, for CMA-ES, GA and IPMFDS, for 5 test 

functions of 100 variables, with min and max the number of iterations given for IPMFDS 

only. It is clear that the CMA-ES algorithm fails to find the solutions for Rastrigin 

function with 100-dimensions with threshold = 0.1, this table also shows the average 

number of iterations for CMA-ES and GA. In GA, we have found the best solutions by 

using bit string or double vector with 200 chromosomes and two point crossover. For 
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CMA-ES and IPMFDS we have also used 200 chromosomes, and maximum 2000 

iterations for all algorithms in this comparison. 

 

Figure 6. 3 The average number and standard deviation of iterations for 

10-dimensional functions with 80 chromosomes for IPMFDS algorithm 

 

Table 6. 4 Comparing the success rate and mean number of iterations 

on 25 runs of the IPMFDS, GA, CMA-ES algorithms of 100-

dimensional functions  

Function 

name 

Min 

number 

of 

iterations 

Max 

number 

of 

iterations 

Mean no. of 

iterations 

for all 

successful 

runs 

Mean of  

the best 

solution 

fitness 

from all 

successful 

runs 

Std.Dev. 

of mean 

no. of 

Iter.  

Success 

rate of 

IPMFDS 

Success 

rate of 

GA / 

Avr. of 

Iter. 

Success 

rate of 

CMA-

ES / 

Avr. of 

Iter. 

Sum 

Squares 

d=100 

495 784 635 

0.09899 108 

100% 

*** 

100% 

273 It. 

DV 

100% 

541 It. 8.8878 17.98339 12.50090 

0

200

400

600

800

1000

1200

1400

Mean of iterations

Standard deviation
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Sphere 

d=100 

359 612 486 

0.08995 62 

100% 

*** 

100% 

234 It. 

DV 

100% 

286 It. 7.2347 11.32734 8.864059 

Sum of  

Different 

Powers 

d=100 

3 16 8 

0.083024 3.04 

100% 

*** 

100% 

85 It. 

DV 

100% 

89 It. 0.2160 0.50533 0.335193 

Rastrigind

d=100 

409 1130 643 

0.09586 159 

100% 

*** 

100% 

218 It. 

DV 

0% 

Don’t 

find 6.892259 19.76294 11.94528 

Ackely 

d=100 

289 630 369 

0.08465 84 

100% 

*** 

100% 

BS    

97 It. 

0% 

DV 

100% 

401 It. 4.045013 10.82567 7.94879 

*** For all functions, we apply the condition that if the number of dimensions is 

greater than 10, we make copy of the high significant bits from    to    in the same way 

as described in Chapter 5, see Table 5. 19.  

  

Fig. 6.4 shows how we can reach the optimum solution in 1 iteration by using a small 

area of search for the Shubert function. Figure 6.5 shows a top view of Michalewicz 

function to display the behavior of IPMFDS algorithm, the  population (P1) is colored by 

red, it’s clear that it focuses on the area of best solution, on the other hand the blue points 

are for population (P0), that have more distribution in the search space for this function, 

this figure was made for 19 iterations with the first population of 500 chromosomes.  

The Figure 6.6 shows the three-dimensional view of Michalewicz function, it 

shows how the best solution is handled. Solutions are concentrated near the optimal 

solution as shown in green points, on the other hand blue solutions represent the random 

re-generation of a part of the population, this figure was taken after 7 iterations. This 

means that the IPMFDS algorithm has the ability to search in the best area of a function. 
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Figure 6. 4 Shubert function: one iteration with small range [-4,4]. 

 

 

Figure 6. 5 The behavior of population (P0, P1) after 19 iterations for 

Michalewicz function. 
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Figure 6. 6 The IPMFDS algorithm has the ability to search in the best 

area of Michalewicz function.  
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CHAPTER SEVEN: Comparison of all algorithms on selected 

continuous and combinatorial optimization problems 

 

7.1 Comparison of all algorithms  

In this section three types of  comparison are reported, according to the following 

criteria: the average number of iterations, the average execution time, the average number 

of function evaluations and the success rate. This shows the performance of all 

algorithms introduced in this thesis: DSC, DSDSC, DDS, FDS, MFDS, IPMFDS, with 

figures that present graphically the obtained values. 

 

7.1.1 Comparison of the average number of iterations  

In this subsection we compare the average number of iterations for all six 

algorithms described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS), and for 

known algorithms (CMA-ES, DE, GA), for all test functions with 2 dimensions, as 

shown in Table 7.1. Figure 7.1 presents the values from Table 7.1, it’s clear that MFDS 

and IPMFDS have the minimum average number of iterations to find the solutions for 

most tested functions.   

Table 7.2 presents the comparison of the average number of iterations for 10- 

dimensional problems for all six algorithms from this thesis (DSC, DSDSC,  DDS, FDS, 

MFDS, IPMFDS), and Figure 7.2 shows the values from Table7.2. 
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Table 7. 1 Comparing the average number of iterations for 2-

dimensional functions for all algorithms.   

Function 

name 
DSC DSDSC DDS FDS MFDS IPMDFS CMA-ES DE 

GA 

DV 

Easom 88 51 62 89 58 38 384 41 124 

Matyas 31 11 5 6 5 4 9 34 125 

Beale's 93 49 16 8 7 8 8 38 204 

Booth's 151 20 17 12 10 8 8 35 75 

Goldstein–

Price 
134 34 20 35 21 11 31 21 82 

Schaffer N.2 278 71 14 16 11 8 112 63 93 

Schwefel's  561 41 65 39 29 15 * * * 

Branins's 

rcos 
86 28 9 11 7 17 115 11 68 

Six-hump 

camel back 
39 18 8 7 5 8 13 27 75 

Shubert 198 19 33 45 26 11 37 102 64 

Martin and 

Gaddy 
36 15 6 5 5 4 28 30 320 

Michalewicz 207 67 71 55 30 27 31 500 72 

Holder Table 47 12 24 19 12 7 * 113 240 

Drop-wave 201 48 44 45 30 23 441 25 * 

Levy N. 13 290 45 19 19 11 10 10 20 * 

Rastrigin’s 71 25 38 58 41 33 219 23 51 

Sphere 75 7 4 7 5 6 12 44 63 

Ackley d=4 348 644 805 536 161 51 38 57 * 

Rosenbrock’s 101 115 24 18 13 15 27 41 * 

*Doesn’t find solution.  
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Figure 7. 1 Comparing the average number of iterations for 2-

dimensional functions for all algorithms 

  

Table 7. 2 Comparing the average number of iterations for 10-

dimensional functions with 160 chromosomes for all algorithms 

Function 

name 
DSC DSDSC DDS FDS MFDS IPMDFS 

Sum 

Squares 

d=10 

1936 145 128 320 245 268 

Sphere 

d=10 
746 31 23 51 46 351 
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Sum of  

Different 

Powers 

d=10 

14 3 4 4 3 4 

Zakharov 

d=10  
1808 217 468 581 373 1209 

Rastrigin 

d=10  
*** 1045 *** 1159 294 277 

*** No success for this function.  

 

 

Figure 7. 2 Comparing the average number of iterations for 10-

dimensional functions for all algorithms. 

 

7.1.2 Comparison of the average run time  

In this subsection we present a comparison of the average run time among all six 

algorithms that are described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS) 

for all tested functions with 2 dimensions, as shown in Table 7.3. Figure 7.3 presents the 

values from Table7.3, it is clear that the IPMFDS algorithm is the faster one, for most 

functions . These results are obtained on a computer with 2.4 MHz core i5, 8 GB RAM. 
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Table 7. 3 Comparing the average run time for 2-dimensional functions 

for all algorithms. 

Function name DSC DSDSC DDS FDS MFDS IPMDFS 

Easom 0.057025 0.05162 0.06854 0.10246 0.08722 0.06620 

Matyas 0.022821 0.01257 0.00890 0.01018 0.01101 0.01120 

Beale's 0.059205 0.05682 0.02033 0.01230 0.01412 0.01581 

Booth's 0.104111 0.02052 0.02088 0.01525 0.01816 0.01597 

Goldstein–

Price 
0.048197 0.03643 0.02487 0.04092 0.03482 0.02115 

Schaffer N.2 0.094244 0.07470 0.01865 0.02046 0.01967 0.01677 

Schwefel's 0.560628 0.04776 0.07268 0.04629 0.04650 0.02770 

Branins's rcos 0.045151 0.02526 0.0136 0.01717 0.01480 0.02879 

Six-hump 

camel back 
0.018381 0.02446 0.01255 0.01105 0.01208 0.01587 

Shubert 0.114426 0.02082 0.04216 0.05621 0.05036 0.02188 

Martin and 

Gaddy 
0.015214 0.01696 0.00970 0.0093 0.01123 0.01035 

Michalewicz 0.12288 0.03951 0.07212 0.06059 0.04506 0.04642 

Holder Table 0.031067 0.01882 0.02977 0.02392 0.02042 0.01496 

Drop-wave 0.090239 0.05398 0.04936 0.05029 0.04676 0.03797 

Levy N. 13 0.195895 0.04869 0.02487 0.02350 0.02047 0.01888 

Rastrigin’s 0.04296 0.02036 0.04922 0.05550 0.05336 0.04279 

sphere 0.03764 0.01222 0.01252 0.01612 0.02026 0.01942 

Rosenbrock’s 

valley 
0.04330 0.05360 0.03077 0.02552 0.02657 0.02680 
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Figure 7. 3 presents the comparison of all algorithms by time for 2-dimensional 

functions, it is clear that the IPMFDS algorithm is the fastest one, for most functions . 

 

Figure 7. 3 Comparing the average run time for 2-dimensional functions 

for all algorithms. 

 

 

 

Below, a comparison of the average run time is presented among all six 

algorithms that are described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS) 

for all tested functions with 10 dimensions, as shown in Table 7.4. Figure 7.4 presents the 

values from Table 7.4.  
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Table 7. 4 Comparing the average of run time for 10-dimensional 

functions for all algorithms.   

Function name  
  

DSC 

  

DSDSC 

  

DDS 

  

FDS 

  

MFDS 

  

IPMDFS 

Sum Squares 

d=10 
2.872696 0.221053 0.335435 0.611585 0.588812 0.79964 

Sphere d=10 1.055842 0.046462 0.05829 0.092892 0.105611 0.81086 

Sum of  

Different 

Powers d=10 

0.024399 0.005628 0.011352 0.011509 0.010049 0.019697 

Zakharov d=10 2.847633 0.288333 1.649469 1.550803 1.079965 3.465392 

Rastrigin d=10 2.668789 1.378663 4.388916 3.975838 1.049863 0.99826 

  

 

Figure 7. 4 Comparing the average run time for 10-dimensions 

functions for all algorithms.  

 

It can be noted from the previous Table 7.4 that the run time rate was improved in 

most cases, especially when we used 1000 elements in the first initial generation for 10 

dimensions. Also, as shown in Figure 7. 4, it is clear the fastest algorithms for most 

functions were DSDSC and MFDS. 
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7.1.3 Comparison of the number of function evaluations and the success rate  

In this subsection a comparison of the average number of function evaluations is 

presented for all the six algorithms that are described in this thesis (DSC, DSDSC, DDS, 

FDS, MFDS, IPMFDS) and for two known algorithms (CMA-ES, DE), for all the test 

functions of 2 variables. The results are shown in Table 7. 5 and presented on a diagram 

in Figure 7.5. Also, a comparison of the success rates is presented in Table 7.6. 

 

Table 7. 5 Comparing the average number of function evaluations for 2-

dimensional functions with CMA-ES and DE algorithms  

Function 

name 
DSC DSDSC DDS FDS MFDS IPMDFS CMA_ES DE 

Easom 7040 4080 8680 12460 8120 6080 17053 3240 

Matyas 2480 880 700 840 700 640 500 2700 

Beale's 7440 3920 2240 1120 980 1280 460 3060 

Booth's 12080 1600 2380 1680 1400 1280 492 2820 

Goldstein–

Price 
10720 2720 2800 4900 2940 1760 1812 1620 

Schaffer N.2 22240 5680 1960 2240 1540 1280 6726 5016 

Schwefel's 44880 3280 9100 5460 4060 2400 --- --- 

Branins's rcos 6880 2240 1260 1540 980 2720 6876 840 

Six-hump 

camel 
3120 1440 1120 980 700 1280 780 2160 

Shubert 15840 1520 4620 6300 3640 1760 2220 8160 

Martin and 

Gaddy 
2880 1200 840 700 700 640 1660 2400 

Michalewicz 16560 5360 9940 7700 4200 4320 1848 --- 

Holder Table 3760 960 3360 2660 1680 1120 --- --- 
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Drop-wave 16080 3840 6160 6300 4200 3680 26470 9048 

Levy N. 13 23200 3600 2660 2660 1540 1600 606 1958 

Rastrigin’s 5680 2000 5220 8120 5740 5280 13134 2388 

Sphere 75 560 560 980 700 960 720 1800 

Ackley d=4 30240 90160 112700 85760 25760 8160 2240 3480 

Rosenbrock’s  101 9200 3360 2520 1820 2400 1644 4560 

 

  Figure 7. 5 Comparing the average number of function evaluations for 

2-dimensional functions for all algorithms. 
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It seems obvious that the DDS and IPMDFS algorithms have the lowest numbers 

of function evaluations comparing with others algorithms, for most of the tested 

functions, see Figure 7.5. 

Table 7.6 presents a comparison of success rate, for 9 algorithms (DSC, DSDSC, 

DDS, FDS, MFDS, IPMFDS, CMA-ES, DE, GA), for 2-dimensional test functions, with 

population size 80 chromosomes and maximum 2500 iterations.  

 

Table 7. 6 The success rate for 2-dimensional functions for all our 

algorithms comparing with CMA-ES, DE and GA with 80 

chromosomes,  max. 2500 iterations 

Function 

name 
DSC DSDSC DDS FDS 

MFDS 

And 

IPMFDS 

CMA_ES DE GA 

Easom 100% 100% 100% 100% 100% 70% 100% 
100% 

DV 

Matyas 100% 100% 100% 100% 100% 100% 100% 
100% 

DV 

Beale's 100% 100% 100% 100% 100% 100% 100% 70% DV 

Booth's 100% 100% 100% 100% 100% 100% 100% 
100% 

DV 

Goldstein–

Price 
100% 100% 100% 100% 100% 100% 100% 

100% 

DV 

Schaffer N.2 100% 100% 100% 100% 100% 90% 100% 70% DV 

Schwefel's 92%  100% 100% 100% 100% 0% 0% 0% BS 

Branins's 

rcos 
100% 100% 100% 100% 100% 100% 100% 

100% 

DV 

Six-hump 

camel 
100% 100% 100% 100% 100% 100% 100% 

100% 

DV 

Shubert 100% 100% 100% 100% 100% 90% 100% 
100% 

DV 

Martin and 

Gaddy 
100% 100% 100% 100% 100% 100% 100% 

40%   

DV 

Michalewicz 100% 100% 100% 100% 100% 100% 0% 80%  DV 

Holder Table 100% 100% 100% 100% 100% --- --- 80%  DV 
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Drop-wave 100% 100% 100% 100% 100% 50% 94% 
100% 

BS 

Levy N. 13 100% 100% 100% 100% 100% 100% 100% 
100% 

BS 

Rastrigin’s 100% 100% 100% 100% 100% 80% 100% 
100% 

BS 

Sphere 100% 100% 100% 100% 100% 100% 100% 
100% 

BS 

Ackley d=4 100% 80% 50% 86% 100% 100% 100% 
100% 

BS 

Rosenbrock’s  100% 100% 100% 100% 100% 100% 100% 
100% 

BS 

 

Below, a comparison of the number of function evaluations and success rate is 

presented, for four algorithms (CMA-ES, GA, MFDS, IPMFDS), for five tested functions 

of 100 variables, with threshold equal to 0.1. The results are shown in Table 7.7. 

 

Table 7. 7 Comparing the number of function evaluation and the 

success rate for CMA-ES, GA, MFDS and IPMFDS algorithms for 25 

runs on 100-dimensional functions. 

Function 

name 

CMA-ES 

Mean of 

function 

evaluation 

Success 

rate of 

CMA-

ES 

GA Mean of 

function 

evaluation  

Success 

rate 

GA 

MFDS 

Mean of 

function 

evaluation 

Success 

rate of 

MFDS 

IPMFDS 

Mean of 

function 

evaluation  

Success 

rate of 

IPMFDS 

Sum 

Squares 

d=100 

81324 100% 54600 
100% 

DV 
139000 100% 127635 100% 

Sphere 

d=100 
51636 100% 48200 

100% 

DV 
89000 100% 97200 100% 

Sum of  

Different 

Powers 

d=100 

16164 100% 17000 
100% 

DV 
1600 100% 1600 100% 

Rastrigin 

d=100 

Don’t 

find 

solution 
0% 43600 

100%

DV 
128600 100% 128600 100% 

Ackley 

d=100 
72180 100% 19400 

100% 
BS 

67800 100% 73800 100% 



Radhwan Y. Al-Jawadi                                   New Evolutionary Optimization Algorithms…Chapter 7 

 171 

 

7.2 Application of all algorithms on some functions from the CEC 2017 

benchmark (2- and 3-dimensional shifted and rotated functions) 

In this section, we report on computational testing of 8 algorithms (DSC, DSDSC, 

DDS, FDS, MFDS, IPMFDS, CMA-ES, DE), on five two-dimensional shifted and 

rotated functions (Bent Cigar, Sum of Different Power, Zakharov, Rosenbrock’s, 

Rastrigin’s) [45], by using 300 chromosomes, maximum 5000 iterations and 100 runs.  

Table 7.8 presents these results.  

We have also performed an experiment on two three-dimensional shifted and 

rotated functions (Bent Cigar, Sum of Different Power). We have applied three 

algorithms (IPMFDS, CMA-ES, DE), by using 300 chromosomes, maximum 5000 

iterations and 100 runs. We notice that for the Shifted and Rotated Bent Cigar function 

the CMA-ES algorithm has not found the optimum solution, the IPMFDS has found the 

solution only with 2% success rate, while the DE algorithm is the best one that has found 

optimum solution with 100% success rate. On the other hand, for Shifted and Rotated 

Sum of Different Power, all three algorithms have got 100% success rate and the 

IPMFDS is the fastest one. Table 7.9 presents these experimental results. 
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Table 7. 8 The results for 25 runs of all our algorithms comparing with CMA-ES and DE on 2-dimensional 

of shifted and rotated functions. 

Function name 

 DSC DSDSC DSS FDS 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Shif. Rot. Bent 

Cigar 
12% 802 64160 12% 1246 99680 20% 1520 121600 24% 1427 114160 

Shif. Rot. Sum 

of Different 

Power 

100% 240 19200 100% 21 1680 100% 25 2000 100% 29 2320 

Shif. Rot. 

Zakharov 
100% 394 31520 100% 22 1760 100% 31 2480 100% 45 3600 

Shif. Rot. 

Rosenbrock’s 
32% 711 56880 72% 895 71600 96% 490 39200 96% 286 22880 

Shif. Rot. 

Rastrigin’s 

50% 1197 95760 100% 408 32640 100% 363 29040 100% 318 25440 

Shif. Rot. = Shifted and Rotated. 
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Function name 

MFDS IPMDSC CMA-ES DE 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluations 

Shif. Rot. Bent 

Cigar 
85% 1138 90240 92% 1031 82480 100% 24 1920 100% 119 9520 

Shif. Rot. Sum 

of Different 

Power 

100% 11 880 100% 14 1120 100% 12 960 100% 40 3200 

Shif. Rot. 

Zakharov 
100% 10 800 100% 15 1200 100% 14 1120 100% 41 3280 

Shif. Rot. 

Rosenbrock’s 
100% 263 21040 100% 238 19040 100% 45 3600 100% 107 8560 

Shif. Rot. 

Rastrigin’s 

100% 74 5920 100% 102 8160 0% (doesn’t find the solution) 100% 66 5280 

Shif. Rot. = Shifted and Rotated. 

We used these values:               [
                
                

] for sifted and rotated functions.   
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Table 7. 9 Application of the IPMDSC, CMA-ES and DE algorithms on 

two 3-dimensional shifted and rotated functions from CEC 2017 with  

100 runs. 

Function name 

IPMDSC CMA-ES DE 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluation 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluation 

Success 

rate 

Mean of 

iteration 

Mean of  

function 

evaluation 

Shif. Rot. Bent 

Cigar 
2% 55 16500 0% (doesn’t find the solution) 100% 316 94800 

Shif. Rot. Sum 

of Different 

Power 

100% 4 1200 100% 9 2700 100% 39 11700 

 

In three-dimensional rotated functions we used these values: 

                 [      ],  

 where          are: 

      [
   
              

             
] 

      [
             

   
              

] 

      [
                
               

   

] 

where   is equal to 30. 
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7.3 Application of our algorithms to the knapsack problem  

The knapsack problem or rucksack problem is a problem in combinatorial 

optimization: given a set of items, each with a weight and a value, determine the count of 

each item to include in a collection so that the total weight is less than or equal to a given 

limit and the total value is as large as possible. It derives its name from the problem faced 

by someone who is constrained by a fixed-size knapsack and must fill it with the most 

useful items [118], [119]. 

In [120] the authors studied a 0-1 knapsack problem. There are many problems in 

this category, NP-hard, and large cases of such problems can only be addressed using 

heuristic algorithms. They analyzed experimentally the behavior of a few GA-based 

algorithms on several sets of randomly generated test problems. They used in all 

experiments the population size equal to 100, mutation and crossover rates fixed to 0.05 

and 0.65, respectively; the authors used a simple one-point crossover. As a performance 

measure, they used the best solution found within 500 generations. 

The formulation of a knapsack problem can be utilized to describe other problems 

like, for example, the feature selection problem that frequently occurs in the context of 

construction of an analytical model [118], [121]. 

The most common problem being solved is the 0-1 knapsack problem, which 

restricts the number    of copies of each kind of item to zero or one. Given a set 

of n items numbered from 1 up to  , each with a weight    and a value   , along with a 

maximum weight capacity  , 

               ∑       

 

   

  

 

          ∑          
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Here      represents the fitness function and               is a binary vector, 

indicating selected items, i.e.,        if the  -th item is selected into the knapsack, 

and      otherwise [118]. 

Informally, the problem is to maximize the sum of the values of the items in the 

knapsack so that the sum of the weights is less than or equal to the knapsack's capacity. 

Example of problem (7.1) with 50 items:  

We have taken the GA program and data of a knapsack problem from [122], 

where      . 

weight-set = 

[23,47,22,15,42,30,15,32,47,33,15,38,44,7,16,34,30,33,3,2,43,31,46,17,30,1,34,2

1,30,21,29,21,36,14,18,21,13,3,27,44,33,11,9,31,40,40,30,9,41,31]  

price-set = 

[27,34,9,22,8,17,22,21,23,19,7,36,11,42,37,16,10,26,10,50,23,46,37,3,14,16,35,1

4,15,44,49,2,45,3,15,1,34,44,19,25,43,28,26,4,30,24,49,11,48,13]; 

 

In Table 7.10, we have applied 7 algorithms to the knapsack problem with 150 

and 500 iterations, with population size 80. We notice that in 150 iterations the GA has 

not reached to the highest value for given data, but DSDSC has found the best value 

(915)  as maximum value and IPMFDS is found the next best value (912) as maximum 

value. These algorithms have reached solutions better than GA (904) and other 

algorithms. On the other hand, we notice that in 500 iterations the GA, DSC and DSDSC 

algorithms have reached the optimum solution (920), also the other algorithms have 

better values in 500 iterations than 150 iterations. We conclude that the DSDSC and 

IPMFDS algorithms are better than GA to find the highest value with 150 iterations.  

The version of GA are used here in this problem was bit string. We have made 

some changes in our algorithms: the size of fixed part of higher bits has decreased to a 

random value between 1and 5 in the dynamic schema, free dynamic schema and dynamic 

dissimilarity operators  in DSDSC, DDS, FDS, MFDS, IPMFDS algorithms.   
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Table 7. 10  The results of knapsack problem with 50 items, for 20 runs 

of the DSC,DSDSC and GA algorithm (80 chromosomes) by using 150 

and 500 iterations. 

Algorithm 

name 

Min value / 

Min time 

in seconds/ 

150 It. 

Max value/ 

Max time 

in seconds/ 

150 It. 

Mean values 

for all runs/ 

Average 

time/ 150 It. 

Min value / 

Min time in 

seconds/ 

500 It. 

Max value/ 

Max time in 

seconds/  

500 It. 

Mean values 

for all runs/ 

Average 

time/ 500 It. 

GA 

885 904 893 904 920 912 

0.312 0.521 0.38655 1.092 1.3112 1.1388 

DSC 

850 903 885 888 920 907 

0.81123 0.96721 0.88556 2.6208 3.0264 2.872 

DSDSC 

878 915 895 898 920 904 

0.88961 1.02081 0.9828 2.641 2.964 2.73 

DDS 

868 907 885 894 914 904 

0.81723 1.07231 0.88773 2.846 3.2108 2.9322 

FDS 

838 893 864 857 893 866 

1.025 1.1501 1.08566 3.0160 3.527 3.406 

MFDS 

848 902 878 876 913 899 

1.0967 1.2413 1.1825 2.979 3.441 3.198 

IPMFDS 

866 912 875 881 912 892 

1.0623 1.0915 1.0882 3.178 3.920 3.271 
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CHAPTER EIGHT: Conclusions 

 

We see that our algorithms have ability to find the optimum solutions for two- 

dimensional functions in 100% success rate, but CMA-EA and DE haven’t this ability for 

some tested functions (like Easom, Rastrigin’s, Schwefel's). 

In the IPMFDS algorithm, where the first initial population generates enough 

population diversity, and we use the different types of dynamic schema, free dynamic 

schema, similarity and dissimilarity operators with new random generation in each 

population, it is not a problem to find the global maximum/minimum solution, also 

random generation of a part of chromosomes supports population diversity in each 

iteration, especially with two-dimensional functions.    

In free dynamic schema, when fixing the higher bits of each   , it means that we 

select the area to be searched for the best solution iteration after iteration, and when the 

fixed bits are increased, the search area will be more specific.   

For ten-dimensional functions, we found it better to make a mask on some    and 

change the others completely, this idea gives a high percentage of success rate. Also we 

have seen that the CMA-ES doesn’t find the optimum solutions for the Zakharov, and 

Rastrigin’s functions in ten dimensions. 

The fastest algorithm in terms of time was IPMFDS with two-dimensional 

functions but not with ten-dimensional functions. The fastest algorithm with ten-

dimensional functions was DSDSC. 

The lowest number of function evaluations was in the IPMFDS algorithm 

comparing with other algorithms for the most tested functions. 

The dynamic schema, free dynamic schema and dynamic dissimilarity operators 

have big ability and possibility to reach the optimum solution. 

In complex problems which had multiple local solutions, we discovered that, 

when the range of the function was reduced, the optimal solution was found faster. 
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In the knapsack problem we have observed that the DSDSC and  DDS  algorithms 

give the best solutions comparing to other algorithms (GA, DSC,  FDS, MFDS, 

IPMFDS) in 150 iterations, in 500 iterations three algorithms (GA, DSC and DSDSC) 

reached to the optimum solution for the given data.  

For the rotated and shifted functions that we have tested  (taken from CEC 2017), 

we noted that the GA has not found the solutions for these functions; also CMA-ES has 

not found the best solution for one function (Rastrigin’s), but our algorithms have found 

the optimum solution with different rates of success. We notice that for the first four 

algorithms (DSC, DSDSC, DDS, FDS) the success rates are low, but for the last two 

algorithms (MFDS, IPMFDS) we have reached 100% as a success rate for most tested 

functions.  

We have applied the last two algorithms (MFDS, IPMFDS) to several 100-

dimensional problems, and we notice the ability of these algorithms to solve these 

problems after making some changes in the algorithms, that is, copying higher bits from 

   to    in the best chromosome (where   and   are chosen randomly), while CMA-ES   

fails to find the solution for the Rastrigin function with   = 100. On  the other hand, the 

CGA has ability to find the optimum solution by using bit string in the population type 

better than double vector with all tested functions with 100 dimensions. 
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Appendix A: Test Functions  

 

A.1 Easom function [123], [124] 

The Easom function is a unimodal test function, where the global minimum 

occurs in a small area relative to the search space. The function is used for minimization. 

It has two variables and the following definition: 

                                         

The test area is usually restricted to the square                   

   . Its global minimum is equal to          . 

 

A.2 Matyas function [125] 

This function has two variables and the following definition: 

                          

The test area is usually restricted to the square                  . 

The global minimum value  at             . 

 

A.3 Beale’s function [126], [127] 

This function has two variables and the following definition: 

                                                  

The test area is usually restricted to the square                      . 

 The global minimum value  at               .  
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A.4 Booth’s function [128] 

This function has two variables and the following definition: 

                           

Test area is usually restricted to the square                  . 

The global minimum value at            . 

 

A.5 Goldstein-Price function [123] 

This function has two variables and the following definition: 

                                                     

                                    

 The test area is usually restricted to the square                . The 

global minimum value is equal             is obtainable for             . 

 

A.6  Schaffer function [129] 

This function is defined in the search domain       [        ], as follows:  

           
               

                 
 

and has the global min          . 

 

A.7 Schwefel’s function [123] 

The Schwefel’s function is misleading in that the best local minima are positioned 

far from the global minimum. Thus, the optimization algorithm may face an incorrect 

convergence. The function can be defined by the following equation: 

                ∑         (√    )
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The test area is usually restricted to the hypercube                 ,    

        . Its global minimum                                  . 

In this work, this formula is used: 

                ∑         (√    )

 

   

 

for two dimensions and the minimum solution     = 0 at ( 420.9687, 420.9687). 

 

A.8 Branins’s function [123] 

The Branin function has two parameters and it can be considered as a global 

optimization assessment function. The function contains three global optima and can be 

defined according to the following equation: 

                                                

where         
   

         
 

 
               

 

   
 

It has three global minima equal to                     and located as 

follows:                                              . 

 

A.9 Six-hump camel back function [123] 

The Six-hump camel back function is basically a global optimization assessment 

function. This function possesses six local minima, inside the bounded area. Furthermore, 

two of the six minima are global. This function can be defined by the following equation: 

         (       

 
 ⁄ )    

              
     

  

The test area is usually restricted to the rectangle −3 ≤    ≤ 3, −2 ≤    ≤ 2. Two 

global minima equal to              are located at                          

and                 . 
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A.10 Shubert’s function [123] 

This is a multimodal test function. It has two variables and the following 

definition: 

         (∑     [         ]

 

   

)  (∑     [         ]

 

   

) 

The test area is usually restricted to the square                     . 

It has eighteen global minimum equal to               . 

 

A.11 Martin and Gaddy function 

This function has two variables and the following definition: 

                
                  

The test area is usually restricted to the square 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, where the 

global minimum value at           . 

 

A.12 Michalewicz function [123]  

The Michalewicz functions is basically a multimodal testing function. It is defined 

as follows:  

                                         

The domain is    [       ] ,    [       ] and the maximum value is at  

                                [130]. 

 

A.13 Holder table function [129] 

The holder table function has multiple local minima with four global minima at: 

                                                                     

                      -19.2085.  
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It is defined as follows:  

          |               (|  
√  

    
 

 
|)| 

 

A.14 Drop wave function [123] 

This is a multimodal test function. This function has two variables and the 

following definition: 

           
     (  √  

    
 )

      
    

    
 

The test area is usually restricted to the square                          

           . 

 

A.15 Levy (#13) function [129], [125] 

This function has two variables and the following definition: 

                           [           ]         [           ] , 

where         [       ], and the global minimum value is at           . 

 

A.16 Rastrigin’s function  

The Rastrigin function has several local minima. It is highly multimodal, but 

locations of the minima are regularly distributed. 

         ∑ [  
            

  ]
 

   
 

The function is usually evaluated on the hypercube      [          ], for 

all          , where the global minimum value is at                .  
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A.17 Sum Squares function 

The Sum Squares function also referred to as the Axis Parallel Hyper-Ellipsoid 

function, has no local minimum except the global one. It is continuous, convex and 

unimodal. It is defined as  follows: 

     ∑    
 

 

   
 

The function is usually evaluated on the hypercube      [      ], for all 

         , although this may be restricted to the hypercube      [          ], for all 

         .  The global minimum is at            . 

 

A.18 Sphere function 

The Sphere function has   variables and the following definition. It is continuous, 

convex and unimodal.  

     ∑   
 

 

   
 

The function is usually evaluated on the hypercube      [          ], for all 

         .  The global minimum is at            . 

 

A.19 Sum of different powers function 

This function has   variables and the following definition. We have used  =10.  

      ∑     
   

 

   
 

The function is usually evaluated on the hypercube      [    ], for all    

      . The global minimum is at           . 
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A.20 Ackley’s function [123]  

Ackley’s function is a widely used multimodal test function. It has the following 

definition: 

           (   √
 

 
∑  

 

 

   

)     (
 

 
∑         

 

   

)            

It is recommended to set                      . Test area is usually 

restricted to the hypercube      [              ], i = 1, . . . ,d. The global minimum 

is at           . 

 

A.21 Zakharov function 

This function has d variables and the following definition. 10 dimensions have 

been used. 

     ∑   
 

 

   
  ∑       

 

   
    ∑       

 

   
   

The function is usually evaluated on the hypercube    [     ], for all    

      . The global minimum is at           . 

 

A.22 Rosenbrock’s valley function [101]  

This function has d variables and the following definition 

         ∑ [              
          ]

   

   
 

The function is usually evaluated on the hypercube    [            ], for all    

      . The global minimum is at           . 
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Shifted and rotated test functions (CEC 2017 benchmark) [45] 

The test functions in this part are shifted by    and rotated by   where 

 : shifted global optimum which is randomly distributed in [-80,80],  

 : rotation matrix.  

A.23 Shifted and Rotated Bent Cigar  

                    
  

where     is 

        
     ∑   

 
 

   
 

 
The properties of this function are: unimodal, non-separable, smooth but narrow 

ridge.  

 

A.24 Shifted and Rotated Sum of Different Power Function 

                    
  

where    is 

       ∑     
   

 

   
 

The properties of this function are: unimodal, non-separable, symmetric.  

 

A.25 Shifted and Rotated Zakharov Function 

                   
  

where    is   

      ∑   
 

 

   
  ∑       

 

   
    ∑       

 

   
   

The properties of this function are: unimodal, non-separable. 
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A.26 Shifted and Rotated Rosenbrock’s Function  

         ( (
          

   
)   )    

  

where    is   

          ∑ [              
          ]

   

   
 

The properties of this function are: multi-modal, non-separable, the number of local 

optima is huge.  

 

A.27 Shifted and Rotated Rastrigin’s Function  

                    
  

where    is   

          ∑ [  
            

  ]
 

   
 

The properties of this function are: multi-modal, non-separable, the number of local 

optima is huge and second best local optimum is far from the global optimum.  
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