

Faculty of Mathematics, Informatics, and Mechanics

Radhwan Yousif Sedik Al-Jawadi

New Evolutionary Optimization Algorithms Using

Similarities and Dissimilarities in Binary Strings

PhD dissertation

Supervisor:

Prof. Dr. hab. Marcin Studniarski

Faculty of Mathematics and Computer Science.

University of Lodz

Warsaw 2018

 2

Author’s declaration:

I hereby declare that this dissertation is my own work.

September 11, 2018 …………………………………………..

Radhwan Al-Jawadi

Supervisor’s declaration:

The dissertation is ready to be reviewed

September 11, 2018 …………………………………………..

Prof. Dr. hab. Marcin Studniarski

 i

Keywords: Genetic algorithm, similarity of chromosomes, dissimilarity of chromosomes,

chromosome injection, dynamic schema, free dynamic schema, dynamic dissimilarity,

evolutionary algorithms, initial population, schema analysis, convergence of DSC algorithm.

ACM classification 2012

1- Computing methodologies - Machine learning - Machine learning approaches - Bio-

inspired approaches - Genetic algorithms.

2- Computing methodologies - Artificial intelligence - Search methodologies - Discrete space

search.

Abstract

In this work, six evolutionary algorithms are constructed and programmed by using

Graphic User Interface (GUI) in Matlab. They are designed to search for a global optimum of a

numerical function. These algorithms are based on exploring similarities and dissimilarities

between solutions (chromosomes represented as binary strings) in order to find solutions which

are close to an optimal one. Then a special way to discover a schema of a binary string, called

free schema, is introduced. The effect of a big initial population is studied in the last algorithm.

To prove the efficiency of these algorithms, twenty seven test functions were used. We

used eighteen functions of two variables, one function of four variables, five functions of ten and

100 variables, and five shifted and rotated functions (2, 3-dimentions). The results showed, in

most cases, the superiority of the algorithms proposed in this thesis over the Classical Genetic

Algorithm (CGA) and some other algorithms like the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) and Differential Evolution (DE).

This thesis contains eight chapters. Chapter one is a general introduction to optimization,

then a literature review is presented in the second chapter. In the third chapter, an algorithm

called Dissimilarity and Similarity of Chromosomes (DSC) is described, which has proved

successful in comparison with the CGA. In this algorithm, two genetic operators are used: the

dissimilarity operator and the similarity operator, and also random generation of a part of each

new population. The DSC succeeded in finding optimum solutions for some functions for which

 ii

the CGA failed. The fourth chapter introduces a new algorithm that includes two new operators:

the dynamic dissimilarity operator and the dynamic schema operator, this algorithm is called

DSDSC. The fifth chapter contains descriptions of three new algorithms in which a double

population is applied with various genetic processes, including free dynamic schema, these

algorithms are named DDS, FDS, and MFDS. In the sixth chapter, the last algorithm, which

includes the effect of a big initial population on the MFDS, is constructed, this algorithm is

called IPMFDS. Chapter seven contains the comparison of all our methods with CMA-ES, DE

and GA; also in addition a case study of the knapsack problem is given here. Finally, chapter

eight contains some conclusions of this work.

The proof of convergence is provided only for the DSC algorithm, but it can be easily

modified so as to work for all subsequent algorithms. It is suitable for any search that contains

random generation of a part of population.

Streszczenie

W niniejszej pracy skonstruowano i zaprogramowano sześć algorytmów ewolucyjnych za

pomocą graficznego interfejsu użytkownika (GUI) w programie Matlab. Zostały one

zaprojektowane w celu poszukiwania globalnego optimum funkcji numerycznej. Algorytmy te

opierają się na badaniu podobieństw i różnic między rozwiązaniami (chromosomy

reprezentowane jako łańcuchy binarne) w celu znalezienia rozwiązań bliskich optymalnym.

Następnie wprowadzono specjalny sposób wykrywania schematu ciągu binarnego, zwanego

wolnym schematem. Wpływ dużej populacji początkowej badany jest w ostatnim algorytmie.

Aby udowodnić skuteczność tych algorytmów, zastosowano 27 funkcji testowych.

Zastosowaliśmy 18 funkcji dwóch zmiennych, jedną funkcję czterech zmiennych, 5 funkcji 10 i

100 zmiennych, a także 5 funkcji przesuniętych i obróconych (2 i 3 zmienne). Wyniki pokazały,

w większości przypadków, wyższość algorytmów zaproponowanych w tej pracy w stosunku do

klasycznego algorytmu genetycznego (CGA) i niektórych innych algorytmów, takich jak

strategia adaptacji macierzy kowariancji (CMA-ES) ewolucja różnicowa (DE).

Niniejsza rozprawa zawiera osiem rozdziałów. Rozdział pierwszy jest ogólnym

wprowadzeniem do optymalizacji, a następnie przegląd literatury został przedstawiony w drugim

rozdziale. W rozdziale trzecim opisano algorytm o nazwie Różnice i Podobieństwa

 iii

Chromosomów (DSC), który okazał się skuteczny w porównaniu z CGA. W tym algorytmie

używa się dwóch operatorów genetycznych: operatora odmienności i operatora podobieństwa, a

także losowego generowania części każdej nowej populacji. DSC odnalazł optymalne

rozwiązania dla niektórych funkcji, dla których CGA zawodził. Czwarty rozdział wprowadza

nowy algorytm, który zawiera dwa nowe operatory: dynamiczny operator odmienności i operator

dynamicznego schematu, który to algorytm nazywa się DSDSC. Piąty rozdział zawiera opisy

trzech nowych algorytmów, w których podwójna populacja jest stosowana z różnymi procesami

genetycznymi, w tym wolnym schematem dynamicznym, algorytmy te nazywają się DDS, FDS i

MFDS. W rozdziale szóstym skonstruowany jest ostatni algorytm, który obejmuje efekt dużej

populacji początkowej na MFDS, ten algorytm nazywa się IPMFDS. Rozdział siódmy zawiera

porównanie wszystkich naszych metod z CMA-ES, DE i GA; dodatkowo przedstawiono tutaj

stadium przypadku dla problemu plecakowego. Wreszcie rozdział siódmy zawiera pewne

wnioski z tej pracy.

Dowód zbieżności jest podany tylko dla algorytmu DSC, ale można go łatwo

zmodyfikować, aby działał dla wszystkich kolejnych algorytmów. Jest odpowiedni dla każdego

wyszukiwania, które zawiera losowe generowanie części populacji.

 iv

ACKNOWLEDGEMENTS

First of all, I am grateful to my country, Iraq, especially the Ministry of Higher Education

and Scientific Research (MOHESR) and the Engineering Technical College in Mosul for giving

me this opportunity to study abroad. Also, I appreciate The Republic of Poland and all staff of

the Warsaw University and the University of Lodz, especially my supervisor Prof. Dr. hab.

Marcin Studniarski for his valuable insights and wise guidance during the study period, because

he showed me valuable guidance in writing the doctoral dissertation and published papers.

I would like to thank my wife Aisha Azeez Younus for her support during the PhD study,

as well as also my thanks to my children for their patience with me and their patience of

difficulties of alienation.

Eventually, my sincere gratitude goes to my beloved parents (God's mercy on them), my

sister and my brothers, for their patience and encouragement throughout the study period. I want

to thank all those who helped me out even by a word. I would like to thank all my friends here in

Poland and in Iraq.

Radhwan Al-Jawadi

 v

Abbreviations:

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AES Average number of Evaluations to a Solution

AI Artificial Intelligence

AIA Artificial Immune Algorithms

BA Bee Algorithm

BBO Biogeography Based Optimization

BOA Bayesian Optimization Algorithm

CGA Classical Genetic Algorithm

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DDS Double Dynamic Schema

DE Differential Evolution

DSC Dissimilarity and Similarity of Chromosomes

DSDSC Dynamic Schema with Dissimilarity and Similarity of Chromosomes

EAs Evolutionary Algorithms

EMO Evolutionary Multi-objective Optimization

EO Evolutionary Optimization

ESSE Extended Stochastic Schemata Exploiter

FDS Free Dynamic Schema

fGA forking Genetic Algorithm

FSS Faure sequence sampling

GA Genetic Algorithm

GS Gravitational Search

GUI Graphical User Interface

HBABC Hybrid Particle swarm based Artificial Bee Colony

HGA Homogeneous Genetic Algorithm

HSS Hamersley sequence sampling

 vi

IPMFDS Initial Population with Multi Free Dynamic Schema

IRPEO Improved Real-Coded Population-Based Extreme Optimization

LHS Latin hypercube sampling

MBF Mean Best Fitness Measure

MFDS Multi Free Dynamic Schema

MGG Minimum Generation Gap

NHGA Non-Homogeneous Genetic Algorithm

NPs Nested Partitions

NTVPSO Nonlinear Time-Varying Particle Swarm Optimization

PSO Particle Swarm Optimization

RBSADE Ranking Based Self-Adaptive Differential Evolution

RHS Random Heuristic Search

SC Soft-Computing

SDVRP Split Delivery Vehicle Routing Problem

SGA Simple Genetic Algorithm

SOO Single Objective Optimization

SSE Stochastic Schemata Exploiter

TSP Traveling Salesman Problem

 vii

Contents

ACM classification 2012 ... i

Abstract ... i

Streszczenie... ii

ACKNOWLEDGEMENTS .. iv

Abbreviations: .. v

Contents .. vii

List of Tables .. xii

List of Figures ... xv

CHAPTER ONE: Introduction ... 19

1.1 Overview ... 19

1.2 Theoretical Background of Optimization.. 19

1.3 Principles of Optimization ... 20

1.3.1 Optimization Techniques (Search Algorithms) ... 20

1.3.2 Classical Optimization Techniques .. 22

1.3.3 Advanced Optimization Techniques... 23

1.3.4 Single Objective Optimization ... 25

1.4 Genetic Algorithm ... 26

1.4.1 Genetic Operators .. 26

1.5 Aims of the Thesis ... 27

1.7 Structure of the Thesis ... 28

CHAPTER TWO: Literature Review ... 30

2.1 Introduction ... 30

 viii

2.2 What is a metaheuristic? .. 30

2.3 Some new evolutionary algorithms for SOO .. 32

2.4 Convergence of genetic algorithms .. 33

2.5 Repeated runs of a genetic algorithm.. 37

2.6 Genetic algorithms based on schema theory ... 38

2.7 Poor performance of the GA’s caused by defining length of schemata (messy GA) 39

2.8 Performance measures [53] .. 40

2.9 Initial population effects .. 41

2.10 Modified genetic algorithms... 43

2.11 Hybrid algorithms .. 45

2.12 Using binary encoding in real-valued function optimization 47

CHAPTER THREE: The DSC Algorithm ... 51

3.1 Introduction ... 51

3.2 The idea of similarirty and dissimilarity operators .. 52

3.3 The basics of schema theory .. 54

3.4 Forma analysis of genetic operators ... 54

3.4.1 The DSC algorithm .. 58

3.5 Experimental results... 62

3.6 Discussion of figures.. 76

3.7 Experimental results of GA ... 80

3.8 Convergence of DSC ... 82

3.9 Conclusion ... 87

CHAPTER FOUR: The DSDSC Algorithm ... 89

4.1 Introduction ... 89

4.2 Methodology of DSDSC algorithm .. 89

 ix

4.3 The DSDSC algorithm ... 91

4.4 Schema analysis ... 96

4.5 Experimental results... 97

4.6 Conclusion ... 103

CHAPTER FIVE: The DDS, FDS and MFDS Algorithms 105

5.1 Introduction ... 105

5.2 Double Dynamic Schema (DDS) algorithm .. 105

5.2.1 Methodology ... 106

5.2.1.1 Dissimilarity operator .. 107

5.2.1.2 Similarity operator... 107

5.2.1.3 Dynamic schema operator ... 107

5.2.1.4 Dynamic dissimilarity operator .. 108

5.2.2 The DDS algorithm ... 108

5.2.3 Experimental results .. 111

5.2.3 Conclusion... 120

5.3 Free Dynamic Schema Algorithm (FDS) .. 120

5.3.1 Experimental results .. 122

5.4 The Multi Free Dynamic Schema (MFDS) ... 128

5.4.1 Methodology ... 130

5.4.2 The MFDS algorithm ... 132

5.4.3 Experimental results .. 135

5.4.4 The choice of for Rastrigin, Ackley and Zakharov functions 142

CHAPTER SIX: Initial Population with Multi-Free Dynamic Schema........ 146

6.1 Introduction ... 146

6.2 The IPMFDS algorithm ... 148

 x

6.3 Experimental results... 151

CHAPTER SEVEN: Comparison of all algorithms on selected continuous and

combinatorial optimization problems ... 160

7.1 Comparison of all algorithms ... 160

7.1.1 Comparison of the average number of iterations .. 160

7.1.2 Comparison of the average run time ... 163

7.1.3 Comparison of the number of function evaluations and the success rate 167

7.2 Application of all algorithms on some functions from the CEC 2017 benchmark (2- and

3-dimensional shifted and rotated functions) .. 171

7.3 Application of our algorithms to the knapsack problem .. 175

CHAPTER EIGHT: Conclusions .. 178

Appendix A: Test Functions .. 180

A.1 Easom function [122], [123] .. 180

A.2 Matyas function [124] ... 180

A.3 Beale’s function [125], [126]... 180

A.4 Booth’s function [127] .. 181

A.5 Goldstein-Price function [122] .. 181

A.6 Schaffer function [128] .. 181

A.7 Schwefel’s function [122] ... 181

A.8 Branins’s function [122].. 182

A.9 Six-hump camel back function [122] ... 182

A.10 Shubert’s function [122] .. 183

A.11 Martin and Gaddy function ... 183

A.12 Michalewicz function [122]... 183

A.13 Holder table function [128] ... 183

 xi

A.14 Drop wave function [122] ... 184

A.15 Levy (#13) function [128], [124] ... 184

A.16 Rastrigin’s function ... 184

A.17 Sum Squares function ... 185

A.18 Sphere function ... 185

A.19 Sum of different powers function .. 185

A.20 Ackley’s function [122]... 186

A.21 Zakharov function ... 186

A.22 Rosenbrock’s valley function [101] ... 186

Shifted and rotated test functions (CEC 2017 benchmark) [45].................... 187

A.23 Shifted and Rotated Bent Cigar ... 187

A.24 Shifted and Rotated Sum of Different Power Function .. 187

A.25 Shifted and Rotated Zakharov Function ... 187

A.26 Shifted and Rotated Rosenbrock’s Function .. 188

A.27 Shifted and Rotated Rastrigin’s Function .. 188

References ... 189

 xii

List of Tables

Table 3. 1 The dissimilarity operator. ... 59

Table 3. 2 The similarity operator. .. 60

Table 3. 3 The results for 50 runs of the DSC algorithm (40 chromosomes). 64

Table 3. 4 The results for 50 runs of the DSC algorithm (80 chromosomes). 67

Table 3. 5 The results for 50 runs of the DSC algorithm (160 chromosomes). 69

Table 3. 6 Comparing the mean number of iterations and success rate of functions for 50 runs of

the algorithm (40 vs 80 vs 160 chromosomes). ... 71

Table 3. 7 Comparing the mean number of function evaluations and success rate of CMA-ES,

DE and DSC algorithms (50 runs, max 2500 iterations, 80 chromosomes). 72

Table 3. 8 The number of bits for each function. ... 74

Table 3. 9 The results for 25 runs of the DSC algorithm for 10-dimensional functions (160

chromosomes) with execution time. .. 75

Table 3. 10 Comparing the success rate and the mean number of iterations for the GA, first with

Bit string and next with Double vector parameter ... 81

Table 4. 1 All chromosomes (). Groups of chromosomes. 90

Table 4. 2 The dynamic schema operator .. 92

Table 4. 3 The dynamic dissimilarity operator. ... 93

Table 4. 4 The results for 50 runs of the DSDSC algorithm (80 chromosomes). 98

Table 4. 5 The results for 25 runs of the DSDSC algorithm for 10-dimensional functions with

execution time and comparing with GA ... 101

Table 4. 6 Comparing the mean number of function evaluations and success rate of CMA-ES,

DE and DSDSC algorithms (50 runs, max 2500 iterations, 80 chromosomes). 102

Table 5. 1 Populations (P0) and (P1) and the seven groups of chromosomes. 106

Table 5. 2 The results for 50 runs of the DDS algorithm with run time (80 chromosomes). 112

 xiii

Table 5. 3 The results for 25 runs of the DDS algorithm for 10-dimensional functions with

execution time (160 chromosomes)... 114

Table 5. 4 Comparing the mean number of function evaluations and success rate of CMA-ES,

DE and DDS algorithms (50 runs, max 2500 iterations, 80 chromosomes) 115

Table 5. 5 The number of function evaluations for 50 runs of the DDS algorithm 116

Table 5. 6 Comparing the average numbers of function evaluations for 50 runs of the DSC,

DSDSC and DDS algorithms. ... 118

Table 5. 7 Comparing the average number of functions evaluations and success rate of BA, PSO

and DDS algorithms ... 119

Table 5. 8 The free dynamic schema operator. .. 121

Table 5. 9 The results for 50 runs of the FDS algorithm. ... 123

Table 5. 10 The results for 25 runs of the FDS algorithm for 10-dimensional functions with run

time. ... 125

Table 5. 11 Comparison of CMA-ES, DE and FDS algorithms in terms of mean number of

function evaluations and success rate (50 runs, max 2500 iterations, 80 chromosomes). 127

Table 5. 12 Populations (P0) and (P1) and the twelve groups of chromosomes. 131

Table 5. 13 The results for 50 runs of the MFDS algorithm... 136

Table 5. 14 Comparing the mean number of function evaluations and success rate of CMA-ES,

DE and MFDS algorithms (50 runs, max 2500 iterations, 80 chromosomes) 138

Table 5. 15 The results for 25 runs of the MFDS algorithm with execution time of 10-

dimensional function. ... 139

Table 5. 16 The size of parameter on free dynamic schema (0,) 143

Table 5. 17 The parameter on free dynamic schema (0 or . .. 143

Table 5. 18 Comparing the success rate and mean number of iteration for 25 runs of the MFDS,

GA, CMA-ES algorithms on 100-dimensional functions... 144

Table 5. 19 The parameter on free dynamic schema (0 or . .. 145

 xiv

Table 6. 1 The results for 50 runs of the IPMFDS algorithm (80 chromosomes in P0). 152

Table 6. 2 Comparing the mean number of function evaluations and success rate of CMA-ES,

DE and IPMFDS algorithms (50 runs, max 2500 iterations, 80 chromosomes) 154

Table 6. 3 The results for 50 runs of the IPMFDS algorithm and run time of 10-dimensional

function. ... 155

Table 6. 4 Comparing the success rate and mean number of iterations on 25 runs of the IPMFDS,

GA, CMA-ES algorithms of 100-dimensional functions ... 156

Table 7. 1 Comparing the average number of iterations for 2-dimensional functions for all

algorithms. ... 161

Table 7. 2 Comparing the average number of iterations for 10-dimensional functions with 160

chromosomes for all algorithms .. 162

Table 7. 3 Comparing the average run time for 2-dimensional functions for all algorithms. 164

Table 7. 4 Comparing the average of run time for 10-dimensional functions for all algorithms.

 ... 166

Table 7. 5 Comparing the average number of function evaluations for 2-dimensional functions

with CMA-ES and DE algorithms... 167

Table 7. 6 The success rate for 2-dimensional functions for all our algorithms comparing with

CMA-ES, DE and GA with 80 chromosomes, max. 2500 iterations 169

Table 7. 7 Comparing the number of function evaluation and the success rate for CMA-ES, GA,

MFDS and IPMFDS algorithms for 25 runs on 100-dimensional functions. 170

Table 7. 8 The results for 25 runs of all our algorithms comparing with CMA-ES and DE on 2-

dimensional of shifted and rotated functions. .. 172

Table 7. 9 Application of the IPMDSC, CMA-ES and DE algorithms on two 3-dimensional

shifted and rotated functions from CEC 2017 with 100 runs. ... 174

Table 7. 10 The results of knapsack problem with 50 items, for 20 runs of the DSC,DSDSC and

GA algorithm (80 chromosomes) by using 150 and 500 iterations. ... 177

 xv

List of Figures

Figure 1. 1 Global and local optimization [1]. ... 19

Figure 1. 2 Classification of different search techniques. .. 21

Figure 2. 1 The set of chromosomes available by applying one-point crossover (source: [81],

Figure 4.17) .. 48

Figure 2. 2 The set of chromosomes available by applying the similarity and the dissimilarity

operators... 49

Figure 3. 1 A simulation of similarity and dissimilarity idea. .. 53

Figure 3. 2 Flowchart of the DSC algorithm. .. 61

Figure 3. 3 The average number of iterations and standard deviation of iterations for 2-

dimensional functions with 40 chromosomes for DSC algorithm .. 66

Figure 3. 4 The average number and standard deviation of iterations for 2-dimensional functions

with 80 chromosomes for DSC algorithm ... 68

Figure 3. 5 The average number and standard deviation of iterations for 2-dimensional functions

with 160 chromosomes for DSC algorithm ... 70

Figure 3. 6 The average number and standard deviation of iterations for 10-dimensional

functions with 160 chromosomes for DSC algorithm .. 76

Figure 3. 7 Solutions of Easom Pr.. ... 77

Figure 3. 8 Solutions of Schaffer's problem... 77

Figure 3. 9 Solutions of Holder-table. ... 77

Figure 3. 10 Solutions of Drop-wave problem. ... 77

Figure 3. 11 Solutions of Michalewicz pr.. 77

Figure 3. 12 Solutions of Branins's problem. ... 77

Figure 3. 13: Solutions of Shubert problem: 18 optimal solutions. .. 78

 xvi

Figure 3. 14 Solutions of Six-hump camel back problem. ... 78

Figure 3. 15 Solutions of Levy N.13 pr. .. 78

Figure 3. 16 Solutions of Schwefel’s Pr. ... 78

Figure 3. 17 Finding the best solution for Michalewicz problem in 300 iterations. 78

Figure 3. 18 Finding the best solution for Schaffer problem in 140 iterations. 78

Figure 3. 19 shows the Graphical User Interface (GUI) for the DSC algorithm for the

Michalewicz function. .. 79

Figure 4. 1 Flowchart of the DSDSC algorithm. ... 95

Figure 4. 2 A part of Michalewicz function. .. 96

Figure 4. 3 The average number and standard deviation of iterations for 2-dimensional functions

with 80 chromosomes for DSDSC algorithm .. 99

Figure 4. 4 The GUI of DSDSC algorithm .. 100

Figure 4. 5 Shubert function with 18 optimum solutions .. 100

Figure 4. 6 The average number and standard deviation of iterations for 10-dimensional

functions with 80 chromosomes for DSDSC algorithm ... 102

Figure 5. 1 Flowchart of the DDS algorithm. .. 110

Figure 5. 2 The average number and standard deviation of iterations for 2-dimensional functions

with 80 chromosomes for DDS algorithm ... 113

Figure 5. 3 The average number and standard deviation of iterations for 10-dimensional

functions with 160 chromosomes for DDS algorithm .. 115

Figure 5. 4 Comparing the average numbers of function evaluations for DSC, DSDSC and DDS

algorithms. ... 119

Figure 5. 5 Free dynamic schema operator. ... 122

Figure 5. 6 The average number and standard deviation of iterations for 2-dimensional functions

with 80 chromosomes for FDS algorithm.. 125

 xvii

Figure 5. 7 The average number and standard deviation of iterations for 10-dimensional

functions with 160 chromosomes for FDS algorithm .. 126

Figure 5. 8 shows the solution of Schaffer N.2 function found in 2 iterations 128

Figure 5. 9 Multi free dynamic schema. .. 130

Figure 5. 10 Flowchart of the MFDS algorithm. ... 134

Figure 5. 11 The average number and standard deviation of iterations for 2-dimensional

functions with 80 chromosomes for MFDS algorithm ... 137

Figure 5. 12 The average number and standard deviation of iterations for 4- and 10-dimensional

functions with 80 chromosomes for MFDS algorithm ... 140

Figure 5. 13 shows the multi free dynamic schema on Michalewicz function finding best solution

after 15 iterations (green points belong to the schema). ... 141

Figure 5. 14 shows the multi free dynamic schema on Michalewicz function finding the best

solution (top view, where red points belong to the schema)... 141

Figure 5. 15 shows Schwefel's function, MFDS finding solution in 4 iterations 142

Figure 6. 1 The flowchart of the IPMDS algorithm. .. 150

Figure 6. 2 The average number and standard deviation of iterations for 2-dimensional functions

with 80 chromosomes for IPMFDS algorithm ... 153

Figure 6. 3 The average number and standard deviation of iterations for 10-dimensional

functions with 80 chromosomes for IPMFDS algorithm ... 156

Figure 6. 4 Shubert function: one iteration with small range [-4,4]. ... 158

Figure 6. 5 The behavior of population (P0, P1) after 19 iterations for Michalewicz function. 158

Figure 6. 6 The IPMFDS algorithm has the ability to search in the best area of Michalewicz

function. ... 159

Figure 7. 1 Comparing the average number of iterations for 2-dimensional functions for all

algorithms .. 162

 xviii

Figure 7. 2 Comparing the average number of iterations for 10-dimensional functions for all

algorithms. ... 163

Figure 7. 3 Comparing the average run time for 2-dimensional functions for all algorithms. ... 165

Figure 7. 4 Comparing the average run time for 10-dimensions functions for all algorithms. .. 166

Figure 7. 5 Comparing the average number of function evaluations for 2-dimensional functions

for all algorithms. ... 168

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 19

CHAPTER ONE: Introduction

1.1 Overview

In this chapter we provide an overview of the main optimization methods and

principles. We mention some classical methods as well as some new metaheuristic

methods, and focus on Genetic Algorithms (GA) and other evolutionary optimization

algorithms.

1.2 Theoretical Background of Optimization

The key idea of optimization can be understand from Figure 1. 1, where a

function is shown which has various peak values and each one of them can be considered

as a type of optimum. There are two main types of peak values: global optima and local

optima. The main target in any optimization algorithm is to find a solution (a point in

the domain of) at which a global optimum is attained.

Figure 1. 1 Global and local optimization [1].

Local optima

Global optimum

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 20

1.3 Principles of Optimization

In any problem involving decision making, be it in engineering or in economics,

optimization plays a crucial role. The task of decision making entails choosing between

various alternatives. Our desire to make the "best" decision stands behind the choice. The

goodness of the alternatives is measured by an objective function or performance index.

Optimization theory and techniques deal with selecting the best alternative in the

sense of a given objective function. The area of optimization has received enormous

attention in recent years, primarily because of the rapid progress in computer technology,

including the development and availability of user-friendly software, high-speed and

parallel processors, and artificial neural networks [2].

1.3.1 Optimization Techniques (Search Algorithms)

Optimization techniques or, in other words, search algorithms, are one of possible

ways to help a decision maker to choose a good solution. Optimization algorithms can

also lead to an appropriate solution for real-time applications [3].

In many real world problems, the objectives that are being taken under

consideration while trying to find the solution are in conflict with each other, and

optimizing a particular solution with respect to only a single objective can result in

unacceptable results with respect to other objectives. A reasonable approach to a multi-

objective problem is to investigate a set of solutions, each of which satisfies the

objectives at an acceptable level without allowing one particular objective to dominate

[3].

Figure 1.2 illustrates popular search algorithms such as Uninformed Search,

Guided Random Search Techniques (Heuristic Search), Calculus Based Techniques, etc.

The review [3] provides the comparison and analysis of these algorithms for different

problems.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 21

Figure 1. 2 Classification of different search techniques.

Here are some definitions of guided random search algorithms:

1. Hill Climbing is a graph searching algorithm, this algorithm starts with an

arbitrary solution and then attempts to find a better one by changing one

element of the solution (one bit in the binary encoding). Hill Climbing is

Search Optimization

Calculus Based
Techniques

Indirect Methods

Direct Methods

Guided Random Search
Techniques

Tabu Search

Hill Climbing

Simulated Annealing

Evolutionary
Algorithms

Genetic Programming

Genetic Algorithms

Evolutionary Strategies
Ant Colony

Optimization

Particle Swarm
Optimization

Differential Evolution

Shuffled Frog Leaping

........

Artificial Bee Colony

Enumerative
Techniques

Uninformed Search

Informed Search

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 22

used widely in artificial intelligence fields, for reaching a goal state from a

starting node.

2. Simulated Annealing is a probabilistic single-solution-based technique for

approximating the global optimum of a given function. The name refers

to the technology which includes controlled cooling and heating a material

in order to decrease the defects and raise the volumes of its ingredient

crystals [3].

3. Genetic Algorithms: A Genetic Algorithm (GA) is a search technique used

in computer science to find approximate solutions to optimization and

search problems. Specifically, it is generally an incomplete search.

Genetic algorithms are a particular class of evolutionary algorithms that

use techniques inspired by evolutionary biology such as inheritance,

mutation, selection, and crossover (also called recombination) [4].

4. Tabu Search was introduced in [5] and [6] to solve combinatorial

optimization problems, it has been used effectively for simulation

optimization. It is a solution-to-solution method and the main idea is to

make certain moves or solutions Tabu, that is they cannot be visited as

long as they are on what is called the tabu list. The tabu list is dynamic

and after each move, the latest solution , or the move that resulted in

this solution, is added to the list and the oldest solution or move is

removed from the list [7].

1.3.2 Classical Optimization Techniques

The classical methods of optimization are usually based on updating a single

randomly chosen solution in every iteration by a deterministic procedure, to finally find

the optimal one. Those methods can be classified in two distinct groups: direct methods

and indirect (gradient-based) methods, see Figure 1.2. To reach an optimal solution, just

the constraint functions and the objective function values are utilized in direct techniques.

In the case of the indirect methods both values of functions and their gradients are used in

the process [8], [9].

https://en.wikipedia.org/wiki/Probabilistic_algorithm
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Function_(mathematics)

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 23

The classical methods of optimization are useful in finding the optimum solution

of differentiable functions. These methods are analytical and to specify the optimum

points the differential calculus strategies can be utilized. Since some of the practical

problems involve objective functions that are non-differentiable or even discontinuous,

the classical optimization techniques have limited use in practical applications. Yet, the

study of these classical techniques of optimization is crucial in the process of developing

most of the numerical techniques, which have evolved into advanced techniques more

suitable to today’s practical problems [10].

There are three main classes of problems that can be handled with the classical

optimization techniques, viz., single variable functions, multivariable functions with no

constraints and multivariable functions with both equality and inequality constraints. For

problems with equality constraints, the Lagrange multiplier method can be used. If the

problem has inequality constraints, the conditions of Kuhn-Tucker may be utilized to

recognize the optimum solution. These methods lead to a set of nonlinear simultaneous

equations that may be difficult to solve [10].

1.3.3 Advanced Optimization Techniques

Since 1960’s, more and more attention has been paid to evolutionary methods of

optimization which aspire to mimic the fundamentals of nature evolution. This idea has

influenced the design of optimization algorithms and stochastic searches [8], [9].

Instead of utilizing a single solution (like in the case of classical methods),

evolutionary methods are utilizing sets of random solutions as base populations. To reach

the optimal solutions, these base populations are updated in each iteration. Furthermore,

evolutionary methods can provide multiple solutions to multi-objective problems [8], [9].

One of the most popular fields of evolutionary computation is the Evolutionary

Multi-objective Optimization (EMO), which has proven itself to be successful in various

application fields where multiple objectives appear [11].

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 24

‖Evolutionary Algorithms (EAs) play an important role in the framework of

artificial intelligence (AI) and, in particular in Soft-Computing (SC), when dealing with

multi-objective problems in real-world engineering optimization‖ [12].

The Multi-Objective Optimization (MOO), which can also be named Pareto

optimization, multi-attribute optimization, multi-criteria optimization, multi-objective

programming or vector optimization is a decision making for multiple criteria [13].

Most of the traditional techniques require gradient information and hence it is not

possible to solve non-differentiable optimization problems with the help of such

traditional techniques. Moreover, such techniques often fail to solve optimization

problems that have many local optima. To overcome these difficulties, there is a need to

develop more powerful optimization techniques and for the last three decades there has

been much effort put to develop these techniques. Some of the well-known population-

based optimization techniques are: Genetic Algorithms (GA) [14] which are based on the

principle of evolution of the living beings and Darwinian theories of the survival-of-the-

fittest; Artificial Immune Algorithms (AIA) [15], based on the principle of immune

system of the human being; Ant Colony Optimization (ACO) [16], which mimics the

foraging behavior of the ant; Particle Swarm Optimization (PSO) [17] which uses the

foraging behavior of the swarm of birds; Differential Evolution (DE) [18] which is

similar to GA with specialized crossover and selection method; Shuffled Frog Leaping

(SFL) [19] which works on the principle of communication among the frogs, Artificial

Bee Colony (ABC) [20] mimicking the principle of foraging behavior of a honey bee.

These algorithms have been applied to many engineering optimization problems and

proved especially effective in solving some particular problems. All the above-mentioned

algorithms are nature inspired population-based optimization methods, but they have

some limitations in some aspects [21]. Due to this, more research is required to test

algorithms in different situations to check how suitable they are for a wide variety of

problems. Research is conducted in order to enhance the existing algorithms and to

improve their performance. Enhancement is done either (a) by modifying the existing

algorithms or (b) by hybridizing the existing algorithms. Enhancement due to

modifications in the existing algorithms is reported in GA [22], [23], PSO [24], [25],

https://en.wikipedia.org/wiki/MCDM

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 25

[26], ACO [27], [28], ABC [29], [30], [31], etc. Enhancement can be also done by

combining the strengths of different optimization algorithms, such process is known as

hybridization of algorithms. Hybridization is an effective way to make the algorithm

efficient and it combines the properties of different algorithms. Some of such hybridized

algorithms can be found in [32], [33], [34], [35], [36], [37]. For example, a hybrid

optimization algorithm combining the Biogeography Based Optimization (BBO) and

Artificial Bee Colony (ABC), named Hybrid Particle swarm based Artificial Bee Colony

(HBABC), is described in [21]. In [38] a hybrid algorithm is enhanced, it combines with

the Nested Partitions (NP) technique.

The NP method is introduced in [39] and it is another metaheuristic for

combinatorial optimization that is readily adapted to simulation optimization problems.

The main idea of this method lies in systematically partitioning the feasible region into

subregions, then evaluating the potential of each region, and eventually focusing the

computational effort on the most promising region. This process is carried out iteratively

with each partition nested within the last. The computational effectiveness of the NP

method relies heavily on the partitioning, which, if carried out in a manner such that

fitting solutions are clustered together, can reach a near optimal solution very quickly [7].

In our work, we also use partition of the feasible region into some subregions. It is

attained by fixing a number of highest bits in a bit string for each variable. In this way a

subregion is defined which is further searched by using genetic operators (see the

DSDSC, Chapter 4, and the subsequent algorithms).

1.3.4 Single Objective Optimization

The objective function of a single-objective optimization (SOO) problem may

have more than one global optimum point. For instance, the Shubert problem has 18

optimum solutions, see Figure 3. 13, but it is satisfactory if the algorithm reaches any of

the solutions. This type of optimization is called singe-objective global optimization.

For example in the Travelling Salesman Problem (TSP), given a list of cities and

distance between pairs of cities, the aim is to find the shortest possible route such that

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 26

each city is visited once and we return to the origin city. In this problem the objective is

to minimize the length of the tour [9], [40].

1.4 Genetic Algorithm

Genetic Algorithms (GA) are heuristic search techniques based on the process of

natural evolution. They have found applications in generating useful solutions for

problems involving optimization and search. Natural selection modeling is the base of

GA which does not need computation of any secondary functions like derivatives. Some

advantages of GA which make it more useful in optimization problems are the following:

(a) the probability of local minimum trapping is decreased (b) going from one state to

another requires less computational effort and (c) evaluation of the fitness of each string

guides the search. A benefit of using the GA techniques is that they lead, in most of the

cases, to global optimal solutions [3].

In 1960s, "Evolutionary computing" was introduced by I. Rechenberg in his work

―Evolution strategies‖, and was further developed by other researchers. Genetic

Algorithms (GAs) were discovered by John Holland who suggested this idea in his book

―Adaptation in natural and artificial systems‖ in 1975 [41]. Holland suggested GA as a

heuristic method based on ―survival of the fittest‖. GA proved to be a useful tool for

search and optimization problems [42].

The use of Genetic Algorithms for problem solving is not new. The pioneering

work of J. H. Holland in the 1970’s provided a significant contribution for scientific and

engineering applications [43].

1.4.1 Genetic Operators

There are usually three operators in a typical GA [44]. The first is the selection

operator which produces one or more copies of some individuals from the current

population. Individuals with a good fitness are more likely to be chosen; otherwise, the

individual is eliminated from the solution pool. Then the second operator is the

recombination (known as the ―crossover‖) operator. In the crossover operator two

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 27

individuals from the generation and a crossover point are selected and a swapping

operation is performed on the bit strings to the right-hand side of the crossover points of

both individuals. The crossover operator works for two complementary purposes. First, it

provides new points for further testing within the hyperplanes already represented in the

population. Furthermore, crossover introduces representatives of new hyperplanes into

the population, which has not been represented by either parent structure. Thus the

probability of obtaining a better performing offspring is greatly increased. The third

operator is the ―mutation‖ operator. This operator acts as a background operator and is

used to explore some of the unvisited points in the search space by randomly flipping a

―bit‖ in a population of strings. Frequent application of this operator would lead to a

completely random search and because of that is has usually assigned a very low

probability of its activation [44].

A genetic search starts with a randomly generated initial population within which

each individual is evaluated by means of a fitness function. By using selection,

individuals in this and subsequent generations are duplicated or eliminated according to

their fitness values. Further generations are created by applying GA operators. This

process is designed so as to lead to a generation of highly performing individuals [44].

1.5 Aims of the Thesis

The main purpose of the thesis is to build new evolutionary algorithms which are

able to find best solutions of Single Objective Optimization (SOO) problems. These

algorithms are tested and compared with the Classical Genetic Algorithm (CGA),

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Differential Evolution

(DE). In our six new algorithms we explore the effect of similarity and dissimilarity of

chromosomes in the population, and also effects of discovering the schema. The

algorithms are easy to formulate and understand, they were tested on various problems

with different types of difficulty. For the first algorithm (DSC), we also study it

convergence.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 28

In this thesis, practical experiments were applied on six new evolutionary

algorithms (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS), each algorithm applied on

two-dimensional and ten-dimensional functions, the last two algorithms applied in 100

dimensions on different functions, also applied on some 3-dimensional shifted and

rotated functions taken from CEC 2017 [45]. The results of comparison with other

algorithms such as CMA-ES, DE, show in most cases that the new algorithms are

superior to find the optimum solution. The number of function evaluations was also

calculated.

A beneficial feature of these algorithms is that they do not contain many

parameters, only one parameter in the DSC algorithm, which is the number of

chromosomes in a population. In the DSDSC, DDS, FDS, MFDS algorithms, we have

three parameters: the number of chromosomes in a population, and the minimum and

maximum of the values used in the dynamic dissimilarity, dynamic schema and free

dynamic schema operators. Then in IPMFDS we have the size of initial population which

is also a parameter for the algorithm.

1.7 Structure of the Thesis

The thesis is organized as follows:

Chapter 2: The literature review of single objective optimization, convergence of

genetic algorithms, schema theory and initial population effects.

Chapter 3: Presentation of the DSC algorithm, forma analysis and convergence

of the DSC algorithm.

Chapter 4: Presentation of the DSDSC algorithm, schema analysis.

Chapter 5: Three new algorithms derived from DSDSC, called DDS, FDS and

MFDS.

Chapter 6: A new algorithm is presented which takes advantage of the effect of

a big first population, it is applied with multi free dynamic schema

and called IPMFDS.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 1

 29

Chapter 7: We apply all algorithms to some shifted and rotated functions taken

from CEC 2017 [45], compare all methods with CMA-ES, DE, also

in addition a case study of the knapsack problem is presented.

Chapter 8: Conclusions.

Appendix A: Presents all test functions.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 30

CHAPTER TWO: Literature Review

2.1 Introduction

Different approaches based on the Evolutionary Algorithms (EA) technics for

solving Single Objective Optimization (SOO) problems, have been proposed in recent

years.

In this literature review, we focus on the following topics : metahuristics, single-

objective optimization by using Genetic Algorithms (GAs), repeated runs of a GA, the

role of a schema in GA, poor performance of GAs, performance measures, the effect of

initial population, modified GAs, hybrid algorithms, binary encoding in real-valued

function, and convergence of GAs.

Optimization is essential for finding suitable answers to real life problems. In

particular, genetic (or more generally, evolutionary) algorithms can provide satisfactory

approximate solutions to many problems to which exact analytical results are not

accessible.

2.2 What is a metaheuristic?

Global optimization algorithms can be divided into two groups: deterministic

algorithms and metaheuristic algorithms, see [46]. Metaheuristic methods are helpful for

a wide class of optimization problems where deterministic algorithms are not suitable (for

example, functions with a large number of local extrema).

Metaheuristic was firstly mentioned by Fred Glover in 1986 [47]. According to

[48], a metaheuristic algorithm is defined as: "An iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts for exploring

and exploiting the search space, learning strategies are used to structure information in

order to find efficiently near-optimal solutions".

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 31

Some of the most popular metaheuristic approaches are genetic algorithm,

simulated annealing, tabu search, memetic algorithm, ant colony optimization, particle

swarm optimization, etc. [49].

Since many real-world optimization problems become increasingly complex,

better optimization algorithms are constantly required. Recently, metaheuristic global

optimization algorithms become a popular choice for solving complex and loosely

defined problems, which would be difficult to solve by traditional methods. Gradient and

direct search methods are generally regarded as local search methods. Metaheuristics do

not necessarily require a good initial guess, in contrast to both gradient and direct search

methods, where an initial guess is highly important for obtaining convergence towards

the optimal solution [50].

Metaheuristics require a large number of function evaluations. They are often

characterized as population-based stochastic search routines which assure a high

probability of escaping the local optimal solutions when compared to gradient-based and

direct search algorithms [50].

There are differences between single solution based metaheuristics and population

based metaheuristics. The methods of single solution based meta-heuristics include

Simulated Annealing, Microcanonic Annealing, Threshold Accepting Method, Noising

Method, Tabu Search, Variable Neighborhood Search, Guided Local Search, Iterated

Local Search. The methods of population based metaheuristics are as follows [51], [52]:

1. Evolutionary computation: Genetic algorithm, Evolution Strategy, Evolutionary

programming, Genetic programming.

2. Swarm intelligence: Ant colony optimization, Particle swarm optimization,

Bacterial foraging optimization algorithm, Bee colony optimization-based

algorithms, Artificial immune systems, Biogeography-based optimization.

3. Other evolutionary algorithms: estimation of distribution algorithms, differential

evolution, Coevolutionary algorithms, cultural algorithms, Scatter Search, Path

Relinking.

Evolutionary Algorithms (EAs) constitute a large class of optimization

procedures, including classical GAs, that are inspired by the process of natural evolution.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 32

As Eiben and Smith [53] observe, ―there are many different variants of evolutionary

algorithms. The common underlying idea behind all these techniques is the same: given a

population of individuals within some environment that has limited resources,

competition for those resources causes natural selection (survival of the fittest)‖.

Different implementations of EAs (e.g., genetic algorithm, genetic programming,

evolutionary strategy) can essentially be summarized by the following steps:

1. Initialize a population randomly and evaluate each candidate;

2. Select parents;

3. Recombine pairs of parents;

4. Mutate the resulting offspring;

5. Evaluate each new candidate;

6. Select individuals for the next generation;

7. Repeat from Step 2 until a stopping criterion is satisfied.

Our algorithms presented in this thesis can be considered as evolutionary algorithms,

because they work on the same principles. However, there are two differences. The first

one is that our algorithms do not use mutation, but we have included random generation

of a part of generation at each iteration; this process, instead of mutation, enhances the

diversity of a new population. The second difference is that, instead of selection, we use

copying of the best chromosome several times and inserting it in different places of a

population.

Moreover, as the authors of [53] notice, ―during selection the best individuals are

not chosen deterministically, and typically even the weak individuals have some chance

of becoming a parent or of surviving‖. In our algorithms some of the weak chromosomes

become ―parents‖ for genetic operators (like similarity or dissimilarity operator) but the

weakest of them are replaced by randomly generated new chromosomes.

2.3 Some new evolutionary algorithms for SOO

Chang et al. [54] propose two new operators which are added to the classical GA:

duplication and fabrication. Duplication is a procedure producing multiple copies of the

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 33

best-fit chromosome from some elite base. It is similar to what has been done in the DSC

algorithm (see Chapter 3). The difference is that in [54] the duplicated chromosomes

replace the worst chromosomes in the population, while in the DSC algorithm the copies

of the best chromosome replace randomly chosen chromosomes. Fabrication is a

procedure producing new chromosomes (called artificial chromosomes) from a given

elite chromosome base, by using some chromosome matrix. There is some analogy with

the similarity operator, however, fabrication can use more than two chromosomes from

the elite base and is based on random assignment. Another difference is that we use only

binary strings as chromosomes, while in [54] chromosomes as strings of symbols from a

given finite set are used.

In [55] it is written that a modern evolutionary optimization method, Extreme

Optimization was proposed and has since been applied to a number of combinatorial

optimization problems successfully. However, Extreme Optimization has rarely been

applied to continuous optimization problems. Therefore, Zeng et al. [55] have

recommended the use of an Improved Real-Coded Population-Based Extreme

Optimization (IRPEO) method in order to solve problems associated with unconstrained

optimization. Basic IRPEO operations consist of real-coded random generation of the

initial population, individual evaluation and population fitness evaluation, selection of

bad elements according to the power-law probability distribution, new population

generation according to the uniform random mutation, update of population through

unconditional acceptance of new population. The authors have applied the IRPEO on 10

test functions with 30 dimensions, experimental results showing that IRPEO is

competitive and even better compared to selected versions of Genetic Algorithm with

different mutation operators. On the contrary, the algorithms presented in this thesis have

been tested on 27 test functions of 2, 3, 4, 10 and 100 variables, and also on the knapsack

problem.

2.4 Convergence of genetic algorithms

The concept of Evolutionary Algorithm (EA) is a collective name for those

probabilistic optimization algorithms, that design is inspired by principles of biological

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 34

evolution. In fact there are more similarities than differences, a general convergence

theory is possible [56].

Rudolph [57] has proved, by using the Markov chain analysis, that the simple

genetic algorithm, with proportional selection, crossover and mutation, converges to the

optimal solution if the mutation rate is non-zero and the algorithm maintains the best

solution found over time. However, as the author of [58] comment, ―such a result is

weak, because it is noticed that a simple random search in the space of the bit strings also

converges in the same manner towards the optimum. Nothing is mentioned about the

convergence speed and it can be noted that the crossover does not play any role in the

result of convergence‖.

In [56] the author presents results that generalize the previously developed theory

of convergence to arbitrary search spaces. These results are general enough to be useful

for a broad class of evolutionary algorithms.

In our work we use random generation of a part of population at each iteration.

This random generation gives an effect similar to mutation with non-zero rate, and also

the best solution found so far is always passed to the next iteration, therefore a

convergence theorem is possible (see Section 3.8).

In [59] the author discusses convergence of a general algorithm model called

Random Heuristic Search (RHS). It is described by a heuristic function where

is a simplex in
. Given the current population , the next population is

obtained by applying some stochastic transition rule . For , the value is the

probability distribution that is sampled independently times produce the next

population.

As the author writes, ― The precise definition of logarithmic time to convergence

faces several obstacles. The most obvious is that ergodic random heuristic search does

not converge, since it corresponds to an ergodic Markov chain. Because genetic search is

typically conducted with some nonzero level of mutation, it follows that convergence,

strictly speaking, does not typically take place for GAs. The naive definition of

convergence as time to discover the optimal is generally useless as well. The ―no free

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 35

lunch theorem‖ (Wolpert & Macready, 1995) implies that, even with an elitest strategy

and aggregating (or collapsing) all populations containing the optimal into an absorbing

state, time to convergence is in general no better than that achieved by enumeration‖.

Therefore, instead of classical convergence, the author examines conditions under which

the logarithmic convergence holds, that is, the number of generations required for the

inequality ‖ ‖ to hold is , where := , is

the -th iterate of , and . However, the obtained result requires infinite

populations, a condition which is never satisfied in practical applications.

In the article [60], the authors state that genetic algorithms are widely used in

solving some world optimization challenges, but few rigorous results on their

convergence can be found in the literature. They show that, with a proper rigorous

multistage Markov chain modeling and with simple probabilistic arguments, some

convergence results for GAs can be derived. In particular, for a GA with superindividual

(elitist model), the probability that the current population contains an optimal solution

converges to one as the number of iteration tends to infinity. In [60], a new crossover

operator is defined. It is further extended in another paper [61], where some

modifications of the algorithms from [60] are introduced and their theoretical

convergence is established. All these algorithms have a superindividual. Numerical

comparisons among these algorithms are also included.

In [62], the authors consider a non-homogeneous genetic algorithm (NHGA)

which uses two parameters (probability of mutation and probability of crossover) which

can change during the execution of the algorithm. For an elitist version of this algorithm,

they prove its almost sure convergence to some population containing an optimal point.

By using the theory of Markov chains with finite state space, and the Chapman–

Kolmogorov equation, they studied the probability of crossover and mutation for NHGA.

Then the authors compare the NHGA with the homogeneous genetic algorithm (HGA).

They show by some examples that there exists a non-empty subset E* of the state space

that is more frequently visited when the NHGA is used. They also observe that, in the

NHGA, the mutation probability should, at the beginning, be bigger that in the canonical

genetic algorithm, to allow the algorithm to expand its search space. Finally, they

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 36

conclude that the bigger the population size is, the closer the results for both algorithms

are, but it should be noted that the computational effort increases when the size of

population increases.

In [63] the authors develop sufficient conditions required for finiteness of the

mean convergence time of a genetic algorithm with elitism. They also establish a lower

bound for the probability of finding an optimal solution in the first m iterations. The

results presented in [63] can also be extended to other optimization schemes.

 In [64] the authors consider several versions of a genetic algorithm and obtain

theoretical estimates for their convergence. They proved the convergence of the mean

fitness of a population to the optimal value of a given function. This result is obtained for

two types of GA: with crossover and mutation, and with crossover, inversion and

mutation. It can also be extended to other variations of genetic operators. However, in the

point of view of the authors, real-coded genetic algorithms are of special interest, but

their result cannot be applied to such algorithms.

In [65] the author has obtained some stopping criteria in genetic algorithm theory,

for a general model of the algorithm being a special case of the Random Heuristic Search

(RHS). The approach adopted to this problem was to obtain upper bounds for the number

of iterations necessary to ensure finding an optimal solution with a prescribed probability.

Here ―finding an optimal solution‖ means that the current population contains at least one

copy of an individual belonging to a given set of optimal solutions.

In [66] the author studies stopping criteria for a genetic algorithm designed for

solving multi-objective optimization problem. This algorithm is described in terms of a

general Markov chain model. He establishes an upper bound for the number of iterations

which must be executed in order to produce, with a prescribed probability, a population

consisting entirely of optimal solutions. Since populations may contain multiple copies of

the same element, this stopping criterion can only guarantee that at least one minimal

solution is found.

In the next paper [67] the author improves the previous stopping criteria so that

they enable one to find, with a prescribed probability, all minimal solutions in a finite

multiobjective optimization problem.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 37

In this thesis, we have proved the convergence of DSC algorithm in Section 3.8,

this proof is suitable for any search algorithm that contains in a part of population the

random generation.

2.5 Repeated runs of a genetic algorithm

In our work presented in later chapters we frequently use repeated runs of the

tested algorithms to get better results. It is therefore interesting to review some theoretical

considerations concerning repeated runs of genetic algorithms which are described in

[68], [69].

The authors of [68] write ―In given industrial application where the GA is

suitable, the probability of its success cannot be too low. If the GA cannot perform with a

probability of success of say 10 or 20%, then the application of GA to that particular

application is risky and likely to be non-productive.‖ However, if the algorithm is run

many times on the same data, the probability of finding a good solution at least in one of

the runs is of course higher. Because on this idea, the following arrangement is made in

[69]: Suppose: instead of a single run of the GA, the GA algorithm runs times, where

 , on the same data. Each run is independent, with no information passed between

two runs. the best solution found is recorded after the end of each run. Then the

randomly generated chromosomes are used to the begin the next run.

Suppose the probability of success of a single run is . A success means that

the best solution found so far is the correct (i.e. optimum) solution. Suppose the

probability of success after runs of the algorithm is . It is the probability that any

one of the best solutions is the correct solution. Since the runs are independent, we

have

If a user specifies a minimum acceptable value for (e.g. 0.95), the

required number of runs is simply

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 38

Thus provided that is known, one can guarantee the RGA’s overall

probability of success. A general technique is: Given any stochastic optimization method

with probability of success , by applying it times independently, one can increase its

probability of success to . This is known as probability amplification or probability

boasting [69].

2.6 Genetic algorithms based on schema theory

The aim of the paper [70] was to improve the search performance of the

Stochastic Schemata Exploiter (SSE, already known in the literature) without sacrificing

its convergence speed. For this purpose, the authors introduce the Extended Stochastic

Schemata Exploiter (ESSE) and the cross-generational elitist selection SSE (cSSE). In the

ESSE, once the common schemata list is defined from the common schemata which are

extracted from the individuals in the sub-populations, the list is modified by deleting

individual schemata, updating similar schemata, and so on. In the cSSE, a cross-

generational elitist selection was introduced to the original SSE. In the numerical

examples, SSE, ESSE and cSSE are compared with a genetic algorithm (GA) with

Minimum Generation Gap (MGG) and the Bayesian Optimization Algorithm (BOA).

Several numerical results show that the GA with MGG can find better global solutions

although the convergence speed is sacrificed. In comparing the convergence speed of

different algorithms, the authors notice that the cSSE and BOA are fastest among them.

In [71], a new type of multi-population GA called forking Genetic Algorithm

(fGA) was suggested by Tsutsui and Fujimoto. The fGA was designed to solve multi-

modal problems, which are hard to be solved by the traditional GAs since they have

many local optima. The fGA algorithm was prepared to search for a single global

optimum by keeping track of potential local optima. The population structure consists of

a parent population and a variable number of child populations. When a certain level of

similarity is detected in the parent population, the algorithm creates a child population by

using the similarity calculated from the binary strings encoding (genotypic forking) or by

using the Euclidean distance between individuals (phenotypic forking) to measure a

phenotypic similarity. The division of the search space in genotypic forking is based on

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 39

the so-called temporal and salient schemata, which detect the convergence of bit

positions in the binary encoding. The child and the parent populations are not allowed to

overlap.

The temporal schema reflects the population state in the current iteration, while

the salient schema is calculated from the last iterations. The schemata are strings

consisting of the letters ―0‖, ―1‖, and ―*‖ but the temporal schema contains a 0 or 1 if

more than a predetermined percentage of the individuals have the same value in a

gene, otherwise ―*‖ is inserted.

 The fGA is tested on two problems as test functions. One is a FM Sound’s

parameter identification problem and the other is Oliver’s 30 City Travel Salesperson

Problem. The results of experiments show that the fGA outperforms the standard GA.

In this thesis we use the idea of schema to find the optimum solution in a search

space, in Section 3.3 we present the basics of schema theory, also we propose a free

dynamic schema operator in Chapter 5.

2.7 Poor performance of the GA’s caused by defining length of

schemata (messy GA)

Schemata are similarity subsets. In simple GAs, schemata may be represented by

the usual similarity template notation, where a wildcard character (usually a *) is used to

indicate positional indifference. In messy GAs, genes are allowed to change position, and

in the messy coding, the ordering of a gene does not directly affect its allele's fitness [72].

 The distance between the leftmost and rightmost 1 in a bit string is called the

defining length of this string. For example, the defining length of string 00100110 is 4,

and defining length of string 10000001 is 7 [72].

As the authors of [73] write (Section 6.3), the reason of poor performance of the

classical GA on some specially constructed ―deceptive‖ functions is that the useful

schemata (i.e. the ones that lead to good solutions) have too large defining lengths.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 40

Consequently, the building blocks for an optimal solution are easily destroyed by

crossover.

The following example taken from [72] explains this problem: ―For example,

suppose the schema 00**** is highly fit and the schema ****00 is highly fit , but the

schema 00***00 is much less fit than its complement, 11***11, which itself is a building

block of the optimal point, 1111111. In the particular case, the GA will tend to converge

to points representative of the less fit schema (perhaps points like 0011100), because with

high probability, crossover will tend to disrupt the needed combination (11***11)‖.

In our algorithms we overcome this difficulty by using the dissimilarity operator,

this operator can change 0’s in the schema 00***00 to 1’s by testing the dissimilarity

between the current chromosome and the second one, then generating randomly 0 or 1

[see Chapter 3].

2.8 Performance measures [53]

The quality assessment of an evolutionary algorithm usually involves empirical

comparisons between the given EA and other algorithms. also the parameter tuning for

good performance requires some experimental work to compare different versions of the

same algorithm. Since some parameters of EAs are random, performance measures have

statistical nature, which means that a number of experiments must be performed to obtain

sufficient experimental data.

There are three basic performance criteria:

• Success Rate (SR)

• Effectiveness (solution quality)

• Efficiency (speed)

The Success Rate (SR) can be defined as the percentage of runs in which success

occurs, where success mean finding a solution with desired quality. However, it is

difficult or impossible to use for problems where the optimum solution cannot be

identified.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 41

The Mean Best Fitness Measure (MBF) can be defined for any problem that is

dealt with by an EA. Suppose that, is a measure of effectiveness that at the end of each

run, the EA records the best fitness obtained. The MBF is the average of these values for

all runs.

Talking about the algorithm efficiency or speed, it is often measured in elapsed

computer time or user time. However, these measures depend on the hardware, operating

system, compiler, and so on. In other words, repeating the same experiments, elsewhere,

may yield different results.

It is always measured on a number of independent runs. Therefore the Average

number of Evaluations to a Solution (AES) is used as a measure of efficiency,

―Sometimes the average number of evaluations to termination measure is used instead of

the AES, but this has clear disadvantages. Namely, for runs finding no solutions, the

specified maximum number of evaluations will be used when calculating this average.

This means that the values obtained will depend on how long the unsuccessful runs are

allowed to continue. That is, this measure mixes the AES and the SR measures, and the

outcome figures are hard to interpret‖.

In our work we have used the SR, MBF and AES measures.

2.9 Initial population effects

According to [74], the initial population is important in an evolutionary algorithm,

since it affects the speed of convergence and the final answer quality. In case there is no

available information about a solution, random initialization is applied as a method to

produce the candidate solutions for the initial population.

In [74] a novel initialization of the population is proposed that uses opposition-

based learning to generate initial populations which can be used instead of a purely

random initialization. Through the conducted experiments it is demonstrated that when an

opposition-based population replaces random initialization, the convergence speed is

accelerated. Thus it is proposed that opposition-based approach should be used in the

optimization of a population initialization. The multimodal and unimodal test functions

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 42

are used to verify the experiment. The experiment results record the average convergence

speed 10% faster. According to the proposed algorithm, it is recommended that one

should start with an appropriate population in cases where there is no information related

to a solution. The authors have applied their idea to Differential Evolution, but it is also

applicable to other population-based optimization algorithms, for instance, the genetic

algorithms that form a future direction of the authors’ work.

The authors of [75] conducted some initial population difference tests for the real

coded genetic algorithms. Whereas the genetic algorithms are commonly used

metaheuristics for global optimization, very little research has been done on the

generation of initial populations. In [75] authors search for an answer to the question

what is the effect of initial populations. Also, does the initial population play a role in the

performance of a genetic algorithm, and if so, how it should be generated? They study the

characteristics of different point generators, using four main criteria: ‖the uniform

coverage and the genetic diversity of the points as well as the speed and the usability of

the generator‖. With a simple academic example, the authors show that initial population

has a significant effect on the best objective functional value over several generations.

Then they focus on studying different methods of generating an initial population for the

case without a priori information on the location of the global minima.

In [76] the authors present a systematic review of the existing population

initialization techniques. They categorize these techniques according to three criteria:

randomization, compositionality and generality. Each criterion leads to some division of

the methods into several sub-categories. The authors stress that the area of population

initialization methods was one of the least explored in evolutionary algorithms.

There is a common step in all evolutionary algorithms - it is a population

initialization. The role of this step is to provide an initial guess of solutions. Then,

subsequently, these planned solutions will be improved in the process of optimization

until the stop criterion is met. If these initially guessed solutions are good, the EA can

find the optimum solution quickly, otherwise, the EA can be prevented from finding the

optimum solution.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 43

In our work, we have used a big initial population in the last algorithm (IPMFDS)

in Chapter 6. It shows better results comparing with other our algorithms and also with

CMA-ES and DE for most tested functions.

In [77] the authors proposed genetic algorithm with variable population size

(GAVaPS) This method depends on the concept of age and life of the individual. When

an individual is created, either during the first generation or through the variation

operator, it has age zero. Then, for each generation the individual survives, his age

increases by 1. At birth, the lifetime of each individual is determined and corresponds to

the number of generations in which the individual survives in the population. When the

age of the individual exceeds the lifetime, the individual dies and is disposed of. In each

generation, a certain fraction of the current population is allowed to regenerate. Each

individual has an equal probability of being selected for reproduction. The selection is

achieved indirectly by utilizing the lifetime that is assigned to individuals. Those with

higher than average fitness have a greater lifetime than those with less than average

fitness. The idea is that the better the individual is, the more it should be allowed to stay

in the population, and thus propagate its traits to future individuals.

2.10 Modified genetic algorithms

In [23] the authors developed an effective new technology to improve the speed

of convergence of a genetic optimization algorithm. They applied this modification of

the GA to chemical engineering problem. They have investigated and provided a number

of sampling techniques to create a good initial populations that encourages exploration

through the search space. These sampling techniques include ―Latin hypercube sampling

(LHS), Faure sequence sampling (FSS), and Hamersley sequence sampling (HSS)‖, these

samples are used to select a good first population group. The performance of the

proposed algorithm is compared with an algorithm having the random initial population

in terms of solution quality and speed of convergence. Their technology provides a better

solution and their algorithm converges to the global optimal solution faster than the

classical GA.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 44

In [78] the author pointed that the best chromosome is not always improved in

every generation in the simple genetic algorithm. Good solutions obtained, can be

destroyed by crossover or mutation or both of them. The modified GA aims is to avoid

this disadvantage by changing order of genetic operations: selection now appears after

crossover and mutation. This algorithm has been proposed to determine a parameter for

the E. coli fed-batch fermentation model. The use of the proposed modified GA for a

parameter identification of fermentation processes is highly efficient and effective which

is illustrated by the simulation results.

In [79] the authors propose a new Genetic Algorithm (GA) to optimize

multimodal continuous functions, this method uses a genetic algorithm with real-value

coding (RCGA) and applies several existing techniques such as the real coding and the

composition of sub-populations based on the entropy theory. The idea of RCGA is based

on careful balance between both tasks usual in heuristic search: "intensification" and

"diversification". The authors divide the classical GA into three processes. The first

process creates several appropriate subpopulations by using the theory of information

entropy. The second process applies genetic operators to each subpopulation to gradually

enrich it with better individuals. The last process determines the best point among the

best solutions issued by each of the previous subpopulations. Then, in some

neighborhood of this point, a new population is generated for a traditional GA. In this

way, the population is fully renovated after each generation. The size of the

neighborhood is reduced after each generation. A comparison of performances with

several stochastic global search methods is included, using some test functions. The

technique is advisable to solve highly multimodal problems.

In [80] the authors suggest a modified method based on GA called Box Complex

(BC), which has developed from the Simplex method of optimization. This method gives

gradual convergence with small population size, and it has also some ability to escape

from getting trapped in local minima. To avoid the big computational effort with bigger

population, the authors suggest to integrate the convergence feature of Box Complex

method with global search feature of GA. At every generation, they add new member(s)

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 45

to the population, by replacing the equal number of the most inferior member(s). Hence

the population size is constant.

2.11 Hybrid algorithms

In [49] the author introduced a hybrid genetic algorithm, consisting of Genetic

Algorithm (GA), heuristics and Ant Colony Optimization (ACO). It was proposed to

solve Split Delivery Vehicle Routing Problem (SDVRP) and was tested this problem.

Due to the constraints of a SDVRP, it is not possible to directly use classical GA for this

problem to obtain a feasible set of offspring. A modification of crossover is necessary, or

another possibility is to remove infeasible solutions after mutation and replace them with

the solutions having higher fitness value in the old population. Briefly, the hybrid

algorithm generates and evaluates a big initial population (1000) by using ACO, then it

choses 500 routes of the best solutions, then puts them in the modified genetic algorithm

to form an initial generation. A single iteration of the modified GA chooses the best 5

routes of the previous generation and adds them to the future generation (elitism), then

chooses 2 parents randomly from the previous generation and performs a one-point

crossover, then applies the heuristics to build new routes and adds them to the future

generation; this procedure is repeated until 50 population members are created. Then the

algorithm evaluate the fitness of the future generation and sorts it according to the

shortest distance. This is repeated for 100 iterations of the modified GA to get results.

The hybrid GA shows the ability to provide better results and faster computational time

for the datasets the author’s study.

In our work we have applied a similar idea of big initial population in IPMFDS.

First, the initial population is evaluated, then the best solutions are taken from it and

inserted as the first generation to the original MFDS algorithm. We use 500, 1000 and

2000 elements in the initial population for 2-, 10- and 100-dimensional functions

respectively.

The authors of [32] say that the field of mobile robotics, the global path planning

is a challenging problem because of its complexity and nature which is nondeterministic

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 46

polynomial-time hard (NP-hard). To solve this problem, they suggested a new hybrid

optimization algorithm by developing the PSO and DE algorithms, then integrating them.

The developed PSO is called Nonlinear Time-Varying PSO (NTVPSO) to update the

positions of particles velocities in the hybrid algorithm, trying to avoid stagnation. The

updated DE named the Ranking Based Self-Adaptive DE (RBSADE), is enhanced to

include the personal best experience of particles in the hybrid algorithm. Whereas particle

swarm optimization considered most popular in global path planning because of its high

convergence speed and simplicity, on the other hand, the basic PSO has problems with

balancing exploration and exploitation, and also suffers from recession, hence its

efficiency may be restricted in solving global path planning. The authors of [32] named

this hybrid algorithm HNTVPSO-RBSADE, which integrates NTVPSO with RBSADE.

At first the particles depend on moving rules in NTVPSO to change their positions and

velocities. Then the RBSADE algorithm is enhanced to include the best positions of

particles to avoid stagnant. On four numerical simulations and a Monte-Carlo experiment

this algorithm is tested against four evolutionary algorithms: Adaptive Differential

Evolution (JADE), Time- Varying Particle Swarm Optimization (TVPSO), Gravitational

Search (GS) and modified Genetic Algorithm (mGA), and outperforms the other four

algorithms.

In [36] two famous algorithms: Biogeography Based Optimization (BBO) and

Artificial Bee Colony (ABC) are used to form a hybrid algorithm called (HBBABC). It

utilizes the exploitation features of BBO and exploration features of ABC. This hybrid

algorithm was tested on 14 benchmark problems to confirm its performance taking into

account discrete design variables and 5 engineering design optimization problems.

Different criteria are also taken into account like Mean Solution, Best Solution, T-test,

Success Rate and other criteria. Overall performance of HBBABC is better than BBO and

ABC in experimental results with using the same criteria above.

In [33] the author proposes a new real-coded evolutionary algorithm to apply on

path synthesis of a four-bar linkage. In this new evolutionary algorithm the author

combines Differential Evolution (DE) with the Real-valued Genetic Algorithm (RGA).

This hybrid algorithm is called ―GA–DE hybrid algorithm.‖ The content of the crossover

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 47

is the only difference between the proposed algorithm and RGA: the author replaces the

crossover operation in the RGA with differential vector perturbation, with the best

individual or some excellent individuals as the base vectors. This method was tested on

four cases which showed that more accurate solutions were obtained for three cases than

those gained by other evolutionary methods.

2.12 Using binary encoding in real-valued function optimization

Arabas [81] in Section 4.11 poses the question if it is worth using binary encoding

in EAs for solving numerical optimization problems. After analyzing several examples,

he concludes that this method is not advisable because it introduces serious perturbations

into the search process. The reason is that the distance in the space of binary string (the

space of genotypes) is different from the distance in (the space of phenotypes).

Consequently, two chromosomes which are close to each other as binary strings, after

decoding may be positioned far from each other in , and vice versa. The author

presents the following example of an irregular behavior of the binary crossover operator

in : assuming that we have two parents and

(, denoted as black circles, the following points can be

reached by one-point crossover (white circles):

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 48

Figure 2. 1 The set of chromosomes available by applying one-point

crossover (source: [81], Figure 4.17)

We see that some point lying ―between‖ the two parents cannot be reached, while

some other points far from the parents can.

In this context we would like to analyze the behavior of two operators introduced

in this thesis in Chapter 3: the similarity and the dissimilarity operator. Considering the

same example, we now have the following two sets of points:

 green squares - points that can be reached by the similarity operator,

 red stars – points that can be reached by the dissimilarity operator:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 49

Similarity Dissimilarity

P1 0 1 0 0 0 1 1 0 P1 0 1 0 0 0 1 1 0

P2 0 1 1 1 1 0 0 1 P2 0 1 1 1 1 0 0 1

Result of Similarity operator Result of Dissimilarity operator

G.P 0 1 * * * * * * R.P * * 1 1 1 0 0 1

Where G.P = Green Points, R.P = Red Points

Figure 2. 2 The set of chromosomes available by applying the similarity

and the dissimilarity operators

We can see from this picture that some of the generated points are really far from

the parents. However, contrary to Figure 2.1, now all the points lying ―between‖ the

parents (that is, points of the square determined by them) are covered by the

chromosomes generated by our operators. Note that our algorithms do not use the

classical one-point crossover that has irregular behavior presented on Figure 2.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

* * * *

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 2

 50

In our algorithms we have chosen the binary representation instead of the real-

value representation because binary representation can be used both for real problems and

binary problems (like the knapsack problem). The binary encoding is especially

important in our similarity and dissimilarity operators (see Chapter 3) which have high

probability to find new better solutions near to the existing points in a population, as

shown in Figure 2.2. Also, the schema theory is used another way in the dynamic schema

and dynamic free schema operators (see Chapters 4 and 5) to specify most suitable

chromosomes for the optimum solution.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 51

CHAPTER THREE: The DSC Algorithm

3.1 Introduction

In this chapter, a new evolutionary optimization algorithm is described which

explores similarities and dissimilarities in pairs of chromosomes. This procedure divides

each population into three not equal parts, and then applies new genetic operators to the

first two of them. Our algorithm is called Dissimilarity and Similarity of Chromosomes

(DSC) and its purpose is to find optimal solutions in numerical optimization problems.

For the construction of the two genetic operators used here – the dissimilarity

operator and the similarity operator – the notion of a schema plays an important role. The

explanation of the idea of a schema is given in Section 3.3.

To demonstrate the performance of the DSC algorithm, it is run on 18 two-

dimensional, one four-dimensional and five ten-dimensional optimization problems

described in the literature, and compared with the well-known GA, Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) and Differential Evolution (DE) algorithms.

The results of tests show the superiority of our strategy in the majority of cases.

The concept of dividing a population into parts and then working with schemata

and similarity for each part separately, is already known in the literature. For example, in

the paper by Han et al. [82] the population was divided into three parts based on the

fitness of chromosomes (the best, the middle and the worst fitness groups) and then the

common schema in a population was discovered by using clustering. Later, for the first

and the third part of a population, the number of chromosomes that have some similarity

with the schema was calculated. The percentage of positions on which the individual

agrees with the schema defines the similarity between an individual and a schema.

A general approach to estimate the expected first hitting time (i.e., the time when

the algorithm finds an optimal solution) was proposed by Yu and Zhou [83]. It is based

on analysis of EAs with different configurations. This method works with three mutation

operators, a recombination operator and a time variant mutation operator. We are

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 52

planning to examine the possibility of applying a similar theoretical analysis to our DSC

algorithm in further research.

In this chapter we present both theoretical and experimental results on the new

DSC algorithm. The chapter is organized as follows. In Section 3.2, we introduce two

genetic operators that are used in the DSC: the similarity operator and the dissimilarity

operator. They are precisely defined in Section 3.4 in terms of forma analysis of Radcliffe

[84]. Section 3.3 presents a basics of schema theory. Section 3.5 gives the analysis of

experimental results. Section 3.6 contains the discussion of figures. Section 3.7 contains

some information about the parameters setting in GA used for comparison with our

algorithms. In Section 3.8, convergence of DSC is presented. Finally, some conclusions

for the DSC are mentioned in Section 3.9.

3.2 The idea of similarirty and dissimilarity operators

In this section, we explain by a simple example how our two genetic operators

could help in obtaning better solutions.

Suppose is a one-dimensional function with the domain [0,1], as shown in Fig.

3.1. This domain is represented by binary representation consisting of four bits,

(0000,0001,…,1111), that means the range is divided into 16 segments.

The principle of similarity operator is as follows: Suppose there are two best

solutions in a population : 0010 and 1011, colored in gray. If the similarity operator is

applied (see Table 3.2), and bits number 1 and 4 for each chromsome are not the same,

then we put * in the second chrmosomes instead of them, and then randomlly put 0 or 1

in positions having *s. Thus, a better solution is possible to be found, as shown in the

green part in Figure 3. 1.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 53

Bits: 1234

Ch.1: 0010

Ch.2: 1011

Ch.2: *01*

Ch.2: 1010

Now the principle of dissimilarity operator: Suppose there are the same

chromosomes in gray color. If the dissimilarity operator is applied, and bits number 2 and

3 for each chromsome are the same, then we put * in the second chrmosomes instead of

them, and then randomlly put 0 or 1 in positions having *s. Thus, a better solution is

possible to be found, as shown in the red part in Figure 3. 1.

Bits: 1234

Ch.1: 0010

Ch.2: 1011

Ch.2: 1**1

Ch.2: 1101

Figure 3. 1 A simulation of similarity and dissimilarity idea.

1
1

1
1

1
1

1
0

1
1

0
1

1
1

0
0

1
0

1
1

1
0

1
0

1
0

0
1

1
0

0
0

0
1

1
1

0
1

1
0

0
1

0
1

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0 1 0.5

f(x)

x

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 54

3.3 The basics of schema theory

In this section, some base for the concept of a schema is provided. A schema is a

template that gives the representation of a set of solutions of genetic algorithms. In binary

coding, a schema is usually presented as a string of symbols from the alphabet { 0, 1, * },

where the character * can be interpreted as a "0 or 1 is all ok". For example, the schema

01*00* represents 4 chromosomes: 010000, 011000, 010001 and 011001. Generally, a

schema is a frame for groups of chromosomes that have the same fixed sections [85].

Definition 3.3 in [85], says: ―according to the schema theorem, under the

operation of the genetic operators such as selection, mutation and crossover, the schema

with a low order, short defining length and its average fitness higher than the population

average fitness will increase exponentially in the offspring‖. A schema that involves less

locations with *s is more specific than a schema with more locations with *s [86].

Note that it is not true that every subset of the set of bit strings of length L can be

described as a schema; in fact, the vast majority cannot. There are possible bit strings

of length , and thus
 possible subsets of strings, but there are only possible

schemas. However, a central assumption of the traditional GA theory is that schemas are

in fact the building blocks that the GA processes effectively under the operators of

selection, mutation, and single-point crossover [14].

3.4 Forma analysis of genetic operators

In this section, we define and analyze two genetic operators used in our DSC

algorithm.

We apply the abstract forma analysis presented in [84], so that our definitions

may be applied in a more general setting than only for binary schemata. First, we must

review some definitions.

Let be a finite search space of some genetic algorithm. A function

 is called an equivalence relation over if and only if it satisfies the following

three conditions:

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 55

1.

2.

3.

We denote by the set of all equivalence relations over . Given two equivalence

relations , we define their intersection by

where denotes logical conjunction (―and‖).

For a given set , we call a subset a basis for if and only if the

following two conditions hold:

1. spans , that is, every element of can be constructed by intersection of

some subset of :

 Span .

2. is independent, that is, no member of can be constructed by intersection of

other members of :

 .

Given an equivalence relation , we define to be the set of formae

(equivalence classes) induced by . Further, given a set of equivalence relations

 , with , where is the number of elements of , we

define to be the set of vectors of formae given as the Cartesian product

A set of equivalence relations is said to cover if and only if for each

pair of different solutions in there exists some relation in under which the pair are not

equivalent:

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 56

Let be a basis for a set of equivalence relations that covers . The

members of are called basic equivalence relations, or genes. For a given relation

 , the members of are called basic formae, or alleles.

A set of equivalence relations is said to be orthogonal if and only if,

given any equivalence classes induced by different members of , their intersection is

nonempty:

 ⋂

Let be a set of formae defined over a search space , and let . The

similarity set of (defined with respect to and written ∑) is the intersection of all

those formae to which each solution in belongs:

 ∑ {

For a given set , we define the genetic representation

function by

 []
 []

 []

where, for given and , we denote by [] the equivalence class of under

 :

[]

Now, we are able to define the two genetic operators used in our DSC algorithm.

The first one, the similarity operator, can be defined without any extra assumption on the

considered set of equivalence relations. It is in fact equal to the random respectful

recombination operator ([84], Def. 59) defined by

where is the set of integers, is the ith element of the similarity set

∑ under some arbitrary enumeration, and ∑ . The number

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 57

 is interpreted as a random control parameter; thus returns a randomly

selected element of the similarity set of and . The similarity operator is defined as

The second operator, the dissimilarity operator, is defined under the additional

assumption that an orthogonal basis for is given that covers .

Then it follows from ([84], Thm. 25) that is a bijection. Moreover, we assume that

each basic relation divides the search space into two equivalence classes (i.e. ,for

each gene, there are only two alleles available). For each , we can thus define the

complement of the class [] , denoted by [] ̅̅ ̅̅ ̅, as follows:

[] ̅̅ ̅̅ ̅

Of course, [] ̅̅ ̅̅ ̅ is also some equivalence class under . Since is bijective, we can also

define the opposite element to , denoted ̅, as follows:

 ̅
 ([]

̅̅ ̅̅ ̅̅ ̅ []
̅̅ ̅̅ ̅̅ ̅ []

̅̅ ̅̅ ̅̅ ̅)

Then we define the dissimilarity operator (depending on two elements and a

random control parameter) by

 ̅

It follows from the theory presented in [84] that the similarity operator possesses

some properties required by a ―good‖ recombination (crossover) operator. In particular, it

respects the formae with respect to which it is defined, in the sense that we always have

 ∑ . On the other hand, the dissimilarity operator does not have such

properties; it is a composition of the similarity operator and the operation of taking the

opposite of the first argument.

In our DSC algorithm, the chromosomes (i.e., the values of) are simply binary

strings of a fixed length, and the basic equivalence relations in are determined by fixed

positions in a string (i.e., two strings are equivalent if they have the same value at a given

position). Then the equivalence relations from Span are the usual schemata (each

schema is determined by a finite number of fixed positions in a string). In this particular

case, the similarity operator is equivalent to the well-known uniform crossover (see [84],

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 58

p. 370), while the dissimilarity operator is equivalent to the uniform crossover applied to

 ̅ and .

3.4.1 The DSC algorithm

The following optimization problem is considered:

 []

where is a given function.

In the algorithm described below, we use a standard encoding of chromosomes as

in the book of Michalewicz [87]. In particular, it uses the following formula to decode a

real number []

where is the length of a binary string and ―decimal‖ represents the decimal value of

this string. The value of for each variable depends on the length of the interval

[]. To encode a point , a decimal string of length ∑

 is used.

Let be a positive integer divisible by 8. The DSC algorithm consists of the

following steps:

1. Generate M chromosomes, each chromosome representing a point .

2. Compute the values of the fitness function f for each chromosome in the

population.

3. Sort the chromosomes according to the descending (for maximization) or

ascending (for minimization) values of the fitness function, divide the population

into three not equal groups: G1 is the first quarter, G2 is the second quarter and

G3 is the second half of population.

4. Copy times the first chromosome and put it in positions in the first half of the

population randomly, replacing the original chromosomes, where .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 59

5. Compare pairs of chromosomes for the first half of the population to find

dissimilarities and similarities. Check each two following chromosomes, i.e. the

first and the second, the second and the third, and so on, by comparing the

respective bits, as follows:

 (a) For chromosomes in G1 (from 1 to), if the two bits are equal, put a star

(*) in the second (following) chromosome; otherwise leave this bit without

change in the second chromosome. Then put randomly 0 or 1 in the bits with

stars (*). Compare this new second chromosome with the third one, and so

on.

Table 3. 1 The dissimilarity operator.

Before change: example for the first quarter of chromosomes

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B 1 0 1 1 0 0 0 1

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B * 0 1 1 0 * 0 *

After change: put randomly 0 or 1 in (*) bits

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B 1 0 1 1 0 0 0 0

(b) For chromosomes in G2 (from to), if the two bits are not equal,

put a star (*) in the second (following) chromosome; otherwise leave this bit

without change in the second chromosome. Then put randomly 0 or 1 in the

bits with stars (*). Compare this new second chromosome with the third one,

and so on.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 60

Table 3. 2 The similarity operator.

Before change: example for second quarter of chromosomes

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B 1 0 1 1 0 0 0 1

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B 1 * * * * 0 * 1

After change: put randomly 0 or 1 in (*) bits

Chromosome A 1 1 0 0 1 0 1 1

Chromosome B 1 1 0 1 0 0 1 1

6. All chromosomes B created this way replace the original ones on positions from 2

to . Then generate randomly chromosomes for G3. These will replace the

second half of the chromosomes (on positions from to).

7. Go to step 2 and repeat until the stopping criterion is reached.

Notes.

(a) The genetic operator performing the operations shown in Table 3. 1 on a pair

of chromosomes A and B is called the dissimilarity operator, and the genetic operator

performing the operations shown in

Table 3. 2 is called the similarity operator.

(b) The stopping criterion for the algorithm depends on the example being

considered, see Section 3.5.

To maintain population diversity, Sultan et al. [88] proposed a simple injection

strategy to the population. They use fix point injection, which means that they introduce

new randomly generated chromosomes to the population for certain numbers of

generations. A similar strategy in the DSC algorithm has been applied by generating the

second half of each population randomly.

Figure 3. 2 presents the flowchart of the DSC algorithm.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 61

Figure 3. 2 Flowchart of the DSC algorithm.

Divide the population into 3 groups: G1 is the first quarter, G2 is the second
quarter and G3 is the second half of population.

Evaluate and sort the population according to fitness function, copy C times the

first solution and insert randomly between ().

For the first quarter (1..M/4) of solutions (G1), apply the dissimilarity operator to

the first and the second chromosome, then to the (new) and the third

chromosome, and so on.

Initialize population with solutions representing points .

Decode chromosomes to find , using the formula

, where [] is the range of .

No

Is the stopping criterion satisfied ?

For the last half of solutions (M/2+1..M) (G3), generate randomly new

chromosomes.

For second quarter (M/4..M/2) of solutions (G2), apply the similarity operator to

the first and the second chromosome, then to the (new) second and the third

chromosome, and so on.

Print the best solution and the number of iterations.

Yes

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 62

In the paper by M. Lewchuk [89], the author introduces a genetic invariance

algorithm which is a modification of the classical GA. He uses a uniform crossover

operator with is equivalent to our similarity operator, and he also uses sorting of the

population according to the fitness function values. However, the crossover is applied

only to a pair of individuals for which the difference in their function values is minimum

over all pairs. Note that the uniform crossover and the sorting procedure is used in our

DSC algorithm, but we also use a new dissimilarity operator and random regeneration of

a part of population in each iteration; these last two procedures do not appear in the

genetic invariance algorithm.

In Berretta et al. [90] the authors define the Recombine() procedure (pp. 78-79)

which contains three genetic operators called ―rebel‖, ―conciliator‖ and ―obsequent‖.

They take some alleles from two parents P1 and P2 to copy in the offspring first as

follows:

1. ―rebel‖ copies alleles of P2 which are different from P1,

2. ―conciliator‖ copies alleles in common to P1 and P2,

3. ―obsequent‖ copies alleles of P1 which are different from P2.

Then the procedure chooses the alleles for the remaining positions in the

offspring. This can be done by using several different algorithms (random or

deterministic). It should be noted that the ―rebel" operator is very similar to our

dissimilarity operator, in fact, there are equivalent if a random selection is chosen for the

second part of the procedure. In the same way, the ―conciliator‖ is equivalent to our

similarity operator, and ―obsequent‖ is equivalent to our dissimilarity operator applied to

P2 and P1 (in reverse order).

3.5 Experimental results

In this section, we report on computational testing (by using the Matlab software)

of the DSC algorithm on 22 test functions taken from literature (Appendix A). After each

test, the result of DSC has been compared with the known global optimum and with the

result of a classical GA taken from our experiments (see Table 3.10), also, in Table 3.7 a

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 63

comparison of the mean number of function evaluations and success rate of CMA-ES,

DE and DSC algorithms presented.

The results are presented in Table 3.3–3.6 below. We have applied the algorithm

with 40 chromosomes (see the results in table 3.3), 80 chromosomes (Table 3.4) and 160

chromosomes (Table 3.5). The DSC algorithm has found optimum solutions for some

optimization prob- lems (Schwefel's) that the classical genetic algorithm cannot solve,

with the minimum success rate 92% with 80 chromosomes for Schwefel's function (Table

3.4) and the maximum success rate 100% for the remaining problems. Observe that with

160 chromosomes we have got 100% success rate even for the Schwefel's example. On

the other hand, for 10-dimensional problems, the success rate for the DSC is worse than

GA, we use the following parameters for GA (population type is bit string, 200

chromosome, two point crossover, 2500 iterations as maximum), see Table 3.9.

In Table 3. 6 we compare the mean number of iterations for all successful runs of

the proposed DSC (40, 80 and 160 chromosomes). Then we compare the rates of success

of the DSC and the classical GA algorithms. The algorithm was stopped when either the

maximum number of iterations (fixed to 2500) was reached or the difference between the

obtained minimum/maximum fitness and the global optimum was less than or equal to

the threshold given in the second column.

The success rates for the GA presented for comparison in the last columns of

Table 3. 3-3.7 were taken from the best results of our experimental work (Bit

string or Double vector for the population type); these results were obtained for

populations 80 chromosomes, 2500 iterations, two point crossover, see Table 3. 10 for

more details.

Table 3. 7 presents the comparison of CMA-ES, DE and DSC algorithms in terms

of mean number of function evaluations and success rate for 50 runs, maximum number

of iterations 2500, with population size equal to 80 chromosomes.

We have recognized that, for most problems, using 80 chromosomes gives the

best results in terms of both success rate and the number of function evaluations.

The DSC algorithm keeps the best solution from each iteration at the first position

until it is replaced by a better one.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 64

Note that the maximum average rate of iterations was especially high (561) for

the Schwefel function (2-D) for 92% success rate, for which the classical genetic

algorithm failed to find solution, see Table 3.4.

Table 3.9 shows the test of DSC algorithm on 10-dimensional problems (Sum

Squares, Sphere function, Sum of Different Powers, Zakharov, Rastrigin) with 160

chromosomes and the number of iterations fixed to 2000.

It should be noted that, in addition to the experiments reported here, it is proved in

research [91] that the DSC algorithm is superior over the CGA for the problem of

minimizing a global scalarization function of a multiobjective optimization problem (a

global scalarization function is introduced in [92]).

Figures 3.3-3.6 present the average number of iterations with standard deviation

of iterations for 2-dimensional functions by using 40, 80 and 160 chromosomes for DSC

algorithm, also for 10-dimensional functions. Section 3.7 contains the processing time of

DSC algorithm on tested function.

Finally, the execution time of the DSC algorithm displayed as output. A computer

with 2.4 MHz core i5, 8 GB RAM was used. In Table 3.3-3.5 and Table 3.9 we show the

minimum, maximum and average run time in seconds for all tested functions.

Table 3. 3 The results for 50 runs of the DSC algorithm (40

chromosomes).

Function
name

Threshold

of stopping

criteria

Min

number of

iteration /

Min time in
seconds

Max

number of

iteration /

Max time in
seconds

Mean no. of

iterations for

all successful

runs /
Average time

Std.Dev.

of mean

no. of Iter.

Mean of

the best

solution

fitness from

all

successful
runs

Rate of
success

DSC

Rate of

success

GA

Easom 0.001
31 464 181

95.6 -0.99543 100%
100%

DV
0.0139 0.1450 0.0673

Matyas 0.001
4 391 64

67.3 0.000505 100%
100%

DV
0.0046 0.1214 0.0214

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 65

Beale's 0.001
5 1349 179

230.1 0.000517 100%
70%

DV
0.0053 0.4730 0.0663

Booth's 0.005
13 1181 321

338.6 0.00247 90%
100%

DV
0.0051 0.4091 0.1682

Goldstein

–Price
0.001

46 896 287
189.1 3.00038 100%

100%

DV
0.0197 0.3907 0.1282

Schaffer

N.2
0.001

24 1533 476
360.8 4.11E-05 100%

70%

DV
0.0163 0.414345 0.137

Schwefel's 0.01
94 2390 506

574.1 0.07317 50%
0%

BS 0.0367 0.7968 0.3176

Branins's

rcos
0.001

16 2332 171
406.3 0.39853 100%

100%
DV

0.0152 0.5922 0.069

Six-hump

camel

back

0.001

9 215 73

54.3 -1.03125 100%
100%

DV
0.0100 0.0644 0.0295

Shubert 0.01
5 149 67

60.4 -186.715 100%
100%

DV
0.0043 0.0977 0.0200

Martin

and

Gaddy

0.001

7 438 53

64.4 3.95E-05 100%
40%

DV
0.0057 0.0959 0.0191

Michalewicz 0.04
40 1500 346

319.3 38.81764 100%
80%

DV
0.0166 0.3666 0.0975

Holder

table
0.001

9 535 100
95.6 -19.2035 100%

80%
DV

0.0086 0.0775 0.0336

Drop-

wave
0.001

30 1621 420
432.2 -0.99517 100%

100%

BS
0.0134 0.5932 0.1520

Levy N.

13
0.001

47 1700 504
437.5 0.000583 98%

100%

BS
0.0161 0.714964 0.159699

Rastrigin’s 0.001
16 330 127

79.2 0.00505 100%
100%

BS
0.0087 0.0982 0.0366

sphere 0.001 15 395 155 98.5 0.003588 100% 100%

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 66

0.0129 0.0927 0.0435
BS

Rosenbrock

valley
0.001

5 896 270
167 0.000564 100%

100%

BS
0.0104 0.1971 0.0650

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Figure 3. 3 The average number of iterations and standard deviation of

iterations for 2-dimensional functions with 40 chromosomes for DSC

algorithm

0

100

200

300

400

500

600

700

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

hu
m

p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 67

Table 3. 4 The results for 50 runs of the DSC algorithm (80

chromosomes).

Function

name

Threshold

of

stopping

criteria

Min

number

of

iterations

/ Min

time in

seconds

Max

number

of

iterations

/ Max

time in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev. of

mean no.

of Iter

Mean of

the best

solution

fitness

from all

successful

runs

Rate of

success

DSC

Rate of

success

GA

Easom 0.001
16 286 88

49.2 -0.99579 100%
100%

DV
0.0113 0.1500 0.0570

Matyas 0.001
6 72 31

20.6 0.000492 100%
100%

DV
0.0029 0.0322 0.0228

Beale's 0.001
4 646 93

105 0.00059 100% 70% DV
0.0064 0.3881 0.0592

Booth's 0.001
5 980 151

202 0.003198 100%
100%

DV
0.0079 0.6063 0.1041

Goldstein–

Price
0.001

11 242 134
78 3.00036 100%

100%

DV
0.0085 0.1203 0.0481

Schaffer N.2 0.001
5 605 278

244 4.11E-05 100% 70% DV
0.0055 0.2685 0.0942

Schwefel's 0.01
51 1829 561

599 0.015643 92%
0%

BS 0.0273 1.1530 0.5606

Branins's

rcos
0.001

3 580 86
120 0.39853 100%

100%

DV
0.0063 0.4356 0.0451

Six-hump

camel back
0.001

2 115 39
26.4 -1.03129 100%

100%

DV
0.0036 0.0511 0.0183

Shubert 0.01
11 773 198

224 -186.716 100%
100%

DV
0.0102 0.4209 0.1144

Martin and

Gaddy
0.001

6 151 36
34 3.02E-05 100% 40% DV

0.0046 0.1002 0.0152

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 68

Michalewicz 0.04
26 713 207

164 38.81257 100% 80% DV
0.0156 0.4407 0.1228

Holder table 0.001
4 163 47

36 -19.8125 100% 80% DV
0.0052 0.1077 0.0310

Drop-wave 0.001
13 816 201

176 -0.99487 100%
100%

BS
0.0130 0.3333 0.0902

Levy N. 13 0.001
29 816 290

169 0.000547 100%
100%

BS
0.0167 0.3892 0.1958

Rastrigin’s 0.001
14 181 71

89.6 0.007197 100%
100%

BS
0.0156 0.1576 0.0429

sphere 0.001
19 186 75

42.3 0.004133 100%
100%

BS
0.0163 0.1158 0.0376

Rosenbrock’s

valley
0.001

5 438 101
93.3 0.00059 100%

100%

BS
0.0100 0.1532 0.0433

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Figure 3. 4 The average number and standard deviation of iterations for

2-dimensional functions with 80 chromosomes for DSC algorithm

0

100

200

300

400

500

600

700

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 69

Table 3. 5 The results for 50 runs of the DSC algorithm (160

chromosomes).

Function

name

Threshold

of

stopping

criteria

Min

number

of

iteration/

Min time

in

seconds

Max

number

of

iteration/

Max time

in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Rate of

success

DSC

Rate of

success

GA

Easom 0.001
11 141 61

28.6 -0.99927 100%
100%

DV
0.0165 0.1223 0.0508

Matyas 0.001
2 29 13

7.7 0.000434 100%
100%

DV
0.0089 0.0266 0.0174

Beale's 0.001
2 212 48

46.2 0.000523 100%
70%

DV
0.0087 0.1426 0.0410

Booth's 0.001
6 1018 123

174.4 0.000595 100%
100%

DV
0.0124 0.6386 0.0856

Goldstein–

Price
0.001

12 106 44
22.5 3.000484 100%

100%

DV
0.0164 0.0725 0.0360

Schaffer

N.2
0.001

6 731 107
133.4 0.00045 100%

70%

DV
0.0127 0.5040 0.0808

Schwefel's 0.01
26 2301 517

834.2 0.07051 100%
0%

BS 0.0275 1.8039 0.5735

Branins's

rcos
0.001

2 324 40
59.4 0.398517 100%

100%

DV
0.0089 0.2122 0.0347

Six-hump

camel back
0.001

1 41 14
9.7 -1.03106 100%

100%

DV
0.0049 0.0352 0.0178

Shubert 0.01
10 457 111

104.3 -186.716 100%
100%

DV
0.0170 0.3327 0.0847

Martin

and Gaddy
0.001

3 38 14
9 0.000513 100%

40%

DV
0.0044 0.0325 0.0178

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 70

Michalewicz 0.04
6 297 93

69.2 38.81715 100%
80%

DV
0.0128 0.2089 0.0683

Holder

table
0.001

6 725 84
113 -19.2078 100%

80%

DV
0.0133 0.4730 0.0624

Drop-wave 0.001
14 708 122

144.2 -0.99954 100%
100%

BS
0.0178 0.4518 0.0857

Levy N. 13 0.001
4 538 117

113.5 0.000471 100%
100%

BS
0.0112 0.3565 0.0840

Rastrigin’s 0.001
17 116 53

22.3 0.000442 100%
100%

BS
0.0201 0.0810 0.0429

sphere 0.001
1 42 12

17.2 0.000445 100% 100% BS
0.0018 0.0347 0.0166

Rosenbrock’s

valley
0.001

5 199 45
53.3 0.000533 100%

100%

BS
0.0119 0.1279 0.0364

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Figure 3. 5 The average number and standard deviation of iterations for

2-dimensional functions with 160 chromosomes for DSC algorithm

0

100

200

300

400

500

600

700

800

900

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

h
u

m
p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 71

Table 3. 6 Comparing the mean number of iterations and success rate

of functions for 50 runs of the algorithm (40 vs 80 vs 160 chromosomes).

Function name

Mean no.

of

iterations

for all

successful

runs 40

ch.

Mean no.

of

iterations

for all

successful

runs 80

ch.

Mean no.

of

iterations

for all

successful

runs 160

ch.

Rate of

success

DSC

(40 ch.)

Rate of

success

DSC

(80 ch.)

Rate of

success

DSC

(160 ch.)

Rate of

success

GA

Easom 349 88 61 100% 100% 100%
100%

DV

Matyas 40 31 13 100% 100% 100%
100%

DV

Beale's 217 93 48 98% 100% 100% 70% DV

Booth's 528 151 123 98% 100% 100%
100%

DV

Goldstein–

Price
182 134 44 100% 100% 100%

100%

DV

Schaffer N.2 239 278 107 100% 100% 100% 70% DV

Schwefel's 1554 561 557 60% 92% 100%
0%

BS

Branins's rcos 152 86 40 100% 100% 100%
100%

DV

Six-hump

camel back
58 39 14 100% 100% 100%

100%

DV

Shubert 500 198 111 100% 100% 100%
100%

DV

Martin and

Gaddy
53 36 14 100% 100% 100% 40% DV

Michalewicz 395 207 93 100% 100% 100% 80% DV

Holder table 304 47 84 100% 100% 100% 80% DV

Drop-wave 505 194 122 100% 100% 100%
100%

BS

Levy N. 13 452 209 117 100% 100% 100%
100%

BS

Rastrigin’s 127 71 53 100% 100% 100%
100%

BS

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 72

sphere 155 75 12 100% 100% 100%
100%

BS

Rosenbrock’s

valley
270 101 45 100% 100% 100%

100%

BS

BS= bit string, DV= double vector as a parameter of population type in GA toolbox.

Table 3.7 presents a comparative study of success rate and the number of function

evaluations for the CMA-ES (Covariance Matrix Adaptation Evolution Strategy), DE

(Differential Evolution) and DSC algorithms; it shows the DSC algorithm is the most

successful one (see, especially, the Drop-wave function). The Matlab codes for the CMA-

ES and DE algorithms were taken from [93] and [94], respectively. We have used 80

chromosomes 2500 iterations for all.

Table 3. 7 Comparing the mean number of function evaluations and

success rate of CMA-ES, DE and DSC algorithms (50 runs, max 2500

iterations, 80 chromosomes).

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

DSC

success

rate

Function

evaluations of

DSC

Easom 70% 17053 100% 3240 100% 7588

Matyas 100% 500 100% 2700 100% 2480

Beale 100% 460 100% 3060 100% 7440

Booth's 100% 492 100% 2820 100% 12080

Goldstein–

Price
100% 1812 100% 1620 100% 10720

Schaffer N.2 90% 6726 100% 5016 100% 8356

Schwefel's 0% ---- 0% ---- 92% 44880

Branins's

rcos
100% 6876 100% 840 100% 6880

Six-hump

camel
100% 780 100% 2160 100% 3120

Shubert 90% 2220 100% 8160 100% 15840

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 73

Martin and

Gaddy
100% 1660 100% 2400 100% 2880

Michalewicz 100% 1848 0% --- 100% 16560

Drop-wave 50% 26470 94% 9048 100% 13788

Levy N. 13 100% 606 100% 1958 100% 9216

Rastrigin’s 80% 13134 100% 2388 100% 8022

Sphere 100% 720 100% 1800 100% 4500

Ackley d=4 100% 2240 100% 3480 100% 30240

Rosenbrock’s 100% 1644 100% 4560 100% 8080

Sum Squares

d=10
100% 3600 100% 6200 25% 309760

Sphere d=10 100% 3840 100% 9200 100% 119360

Sum of

Different

Powers d=10
100% 480 100% 4300 100% 2240

Zakharov

d=10
0% --- 100% 124400 12% 289280

Rastrigin

d=10
0% --- 100% 7200 0% ----

Table 3.8 presents the number of bits that were used for each function depending

on the size of range for . This number was calculated by using the difference of

upper and lower bound of the domain multiplied by 10000 to divide the domain to small

parts, i.e., for each . Then, to find the appropriate number of bits,

we find the smallest integer such that (see p. 33 of the

Michalewicz book [87]). For example for the Easom function we have, for both and

(100-(-100)) *10000 =2000000 and , so this range is represented by

21 bits.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 74

Table 3. 8 The number of bits for each function.

Function name
No. of bits for

No. of bits for

Easom 21 21

Matyas 18 18

Beale's 17 17

Booth's 18 18

Goldstein–Price 16 16

Schaffer N.2 21 21

Schwefel's 24 24

Branins's rcos 18 18

Six-hump camel back 16 16

Shubert 18 18

Martin and Gaddy 17 17

Michalewicz 18 15

Holder table 18 18

Drop-wave 17 17

Levy N. 13 18 18

Rastrigin’s 17 17

sphere 17 17

Ackley d=4 20 20

Sum Squares 18 18

Sum of Different Powers 15 15

Zakharov 18 18

Rosenbrock’s valley 16 16

Table 3.9 presents the best value of 10-dimensional functions for 25 runs of the

DSC algorithm, here we used 160 chromosomes and the number of iterations was fixed

to 2000, with execution time shown under the respective number of iterations.Figure 3.6

represents the average number of iterations with standard deviation of iterations for 10-

dimensional functions by using 160 chromosomes for DSC algorithm.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 75

Table 3. 9 The results for 25 runs of the DSC algorithm for 10-

dimensional functions (160 chromosomes) with execution time.

Function

name
Threshold

Min

number

of

iteration/

Min time

in

seconds

Max

number

of

iteration

/ Max

time in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of

mean

no. of

Iter.

 Mean of

the best

solution

fitness

from all

successful

runs

Rate of

success

DSC

Rate of

success

GA

Sum

Squares

d=10

0.1

1421 1989 1936

151.9 0.21577 25%
100%

BS
2.0701 3.3096 2.8726

Sphere

d=10
0.1

359 1396 746
272.9 0.09027 100%

100%

BS 0.5064 1.954 1.0558

Sum of

Different

Powers

d=10

0.1

2 39 14

11.3 0.02001 100%
100%

BS 0.003426 0.08239 0.0243

Zakharov

d=10
0.1

449 1992 1808
539.3 0.63340 12%

100%

BS 0.9185 3.9840 2.8476

Rastrigin

d=10
0.1

2000 2000 2000
0 15.32815 0%

100%

BS 2.6243 2.9219 2.6687

Ackley

d=4
0.001

123 939 378
203 0.071314 100%

100%

BS 0.1589 1.2559 0.5032

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 76

Figure 3. 6 The average number and standard deviation of iterations for

10-dimensional functions with 160 chromosomes for DSC algorithm

3.6 Discussion of figures

Figure 3.7 shows a two-dimensional view of the Easom function. It can be seen

that the DSC algorithm has reached the best solution at the blue point at .

Figure 3. 8 shows a two-dimensional view of Schaffer's function. It can be seen that

DSC algorithm has reached the best solution at the blue point on the focus view in the

right upper corner of the figure. For this function, it is difficult to reach an optimal

solution because it contains multiple local minima near to the best one.

Figures 3.9-3.16 show two-dimensional views of Shubert problem with 18

optimal solution points, Branins's problem with 3 optimal solutions, Six-hump camel

back problem with two optimum points and Holder table problem with 4 optimum points.

For the remaining problems: Michalewicz problem, Drop-wave problem, Schwefel's

problem, Levy N.13 problem there is only one optimal solution for each.

Figures 3.17, 3.18 show how the best fitness values of the population evolve with

the number of iterations. Here the red colour means jumping to a better solution.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Sum
Square

Sphere Sum of
Different

Zakharov Ackley

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 77

Figure 3. 7 Solutions of Easom Pr..

Figure 3. 8 Solutions of Schaffer's problem.

Figure 3. 9 Solutions of Holder-table.

Figure 3. 10 Solutions of Drop-wave

problem.

Figure 3. 11 Solutions of Michalewicz pr.

Figure 3. 12 Solutions of Branins's problem.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 78

Figure 3. 13: Solutions of Shubert

problem: 18 optimal solutions.

Figure 3. 14 Solutions of Six-hump camel

back problem.

Figure 3. 15 Solutions of Levy N.13 pr.

Figure 3. 16 Solutions of Schwefel’s Pr.

Figure 3. 17 Finding the best solution for

Michalewicz problem in 300 iterations.

Figure 3. 18 Finding the best solution for

Schaffer problem in 140 iterations.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 79

Figure 3.19 shows the Graphical User Interface (GUI) for DSC algorithm, that

was designed and programed by the author. It contains inputs for function description,

number of dimensions, range of [] for the function under test, number of elements

(chromosomes), maximum number of iterations, a choice box for minimum or maximum.

Also, the results will output at the right side as follows: the graph of a function, the best

value for with values of , the number of bits that are used to represent a solution,

execution time and the number of iterations. This figure shows the Michalewicz problem.

Figure 3. 19 shows the Graphical User Interface (GUI) for the DSC

algorithm for the Michalewicz function.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 80

3.7 Experimental results of GA

In the GA toolbox we used the following options (they also apply to later chapters):

1. Population type specifies the type of the input to the fitness function. We used

bit string \ double vector .

2. Population size = 80 chromosomes

3. Creation function = feasible population. ―GA creates a random initial population

using a creation function. We can specify the range of the vectors in the initial

population in the Initial range field in Population options. Feasible population

creates a random initial population that satisfies all bounds and linear

constraints‖ [95].

4. Initial population = default. ―The algorithm begins by creating a random initial

population, the default value of Initial range in the Population options is [0;1]‖

[95].

5. Fitness scaling = Rank

6. Selection = Roulette

7. Mutation function = Uniform.— Uniform mutation is a two-step process. First,

the algorithm selects a fraction of the vector entries of an individual for

mutation, where each entry has a probability Rate of being mutated. ―The default

value of Rate is 0.01. In the second step, the algorithm replaces each selected

entry by a random number selected uniformly from the range for that entry‖

[95].

8. Crossover function = two point.

9. Stopping criteria = 2500 iterations.

10. Fitness limit = 0.001 is the threshold of stopping criteria (for most functions).

Table 3.10 presents the experimental results of GA success rate and mean number

of iterations by using 80 chromosomes and maximum 2500 iterations, on two types of

population (bit string, Double vector). These results used in our comparison with all

algorithms in addition to CMA-ES and DE algorithms.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 81

Table 3. 10 Comparing the success rate and the mean number of

iterations for the GA, first with Bit string and next with Double vector

parameter

Function

name
Threshold

Rate of

success

GA

Bit string

Mean no.

of

iterations

for all

successful

runs with

bit string

Rate of

success

GA

Double

vector

Mean no.

of

iterations

for all

successful

runs with

double

vector

Easom 0.001 0% --- 100% 124

Matyas 0.001 90% 220 100% 125

Beale's 0.001 0% --- 70% 204

Booth's 0.001 0% --- 100% 75

Goldstein–

Price
0.001 0% --- 100% 82

Schaffer N.2 0.001 0% --- 70% 93

Schwefel's 0.001 0% --- 0% ---

Branins's

rcos
0.001 0% --- 100% 68

Six-hump

camel back
0.001 0% --- 100% 75

Shubert 0.01 0% --- 100% 64

Martin and

Gaddy
0.001 0% --- 40% 320

Michalewicz 0.04 20% 95 80% 72

Holder table 0.001 0% --- 80% 240

Drop-wave 0.001 100% 51 0% ---

Levy N. 13 0.001 100% 51 0% ---

Rastrigin’s 0.001 100% 51 100% 51

Sphere 0.001 100% 51 50% 63

Ackley d=4 0.001 100% 51 0% ---

Rosenbrock’s

valley
0.001 100% 51 0% ---

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 82

3.8 Convergence of DSC

In this section we present a theorem on the convergence in mean of the DSC

algorithm. The idea of the proof is similar to that of [64] but a more rigorous

mathematical formulation is given here, especially concerning the considered probability

space. In our considerations, we will use the theory of denumerable stochastic processes

described in [96]. Below we consider the minimization problem only.

Let n be the size of population , and m – the number of bits in a chromosome.

Let be the set of all chromosomes of size m. Then the search space of the DSC

algorithm is the following finite set:

 ⏟

 is the set of all possible populations of size n, where each population is a sequence of n

bit strings of the same length m. Each population can also be considered as one bit string

concatenated from all chromosomes in the population.

Denote by the population of the DSC algorithm after k iterations (k = 1,2,…).

Let be the fitness function of the algorithm. Define a function ̅ on

populations by

 ̅

In the sequel, the mean of a random variable will be defined by [] ∫

where is the measure associated with some probability space. To be able to compute

the mean of the ,̅ we must show that it is a measurable simple function. Of course, ̅has

only a finite number of values because there is only a finite number of possible

populations.

 We now define a denumerable stochastic process for the DSC algorithm. Let be

a sequence space ([96], p. 43) whose elements are of the form , where

 are elements of , is the initial population, and is the population

obtained in iteration k of the algorithm:

 = { }

We define the k-th outcome function as follows:

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 83

Let be the family of all unions of subsets of of the form

 (1)

where are some subsets of . Observe that

 ⋃

so it is easy to verify that is a Borel field. We will prove that

Take any set of the form (1). We have

Define

where is an arbitrary set. Then, of course, the Borel field generated by all

sets of the form is included in the Borel field generated by all sets of the form

 .

To construct a denumerable stochastic process on , we must define a sequence of

functions { } such that, for every fixed k and for each , the set is a set

in . We can achieve this by taking (the k-th outcome function; see

[96], p. 47). Now define

 ⋃

It can be shown that is not a Borel field. Let be the smallest Borel field containing .

Consider a basic cylinder set

where . We define a measure on basic cylinder sets as follows:

where is the probability that the DSC algorithm will generate population in

iteration under the condition that it has generated population in iteration . It

can be shown ([96], p.43) that can be uniquely extended to the sets of . It is also

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 84

known that can be extended to a measure on the smallest Borel field containing

([96], p.43). Now we define by adding to all subsets of sets of measure zero. Then

we extend to be a measure on as follows: let , then where

and for some , where . Then we define .

We have thus constructed a probability space (). From now on, we will use

the notation Pr instead of . Observe that the population of the DSC algorithm

constructed in iteration depending on event is given by

We now define a random variable as follows:

 ̅

The mean of can be computed by

 ̅ ∑
 (2)

where

 { (̅) }

Observe that the sum in (2) has only a finite number of nonzero terms. Moreover, we

have

 ̅ ∑

 (̅)

where {

 } { (̅)| } .

Then the set can be represented as

where
 (̅)

 }, .

Then

 ̅ ∑

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 85

Theorem (convergence of DSC algorithm)

We have

 ̅

For the proof of the theorem, we will need the following

Lemma

Let and let be a population generated in iteration of the DSC algorithm.

Then

 { ()}

where is the second half of which is generated randomly.

Proof. Let

 be the event that we do not generate at the -th random

generation in iteration (

). Then (

)

 (we generate

 at a single random generation of a chromosome if and only if each bit of a generated

chromosome is equal to the corresponding bit of , which holds with probability ½ for

each of positions). This implies that (

)

 . Then

 { ()} {⋂

} ∏ {
 }

 ∏(

)

 (

)

Proof of the theorem. Define

 . Without restriction of generality,

we may assume that for all (if this is not the case, we can add a suitable

negative constant to to achieve this inequality). Denote

 { (̅) }

Suppose that there are individuals

 with fitness in the space . Consider the

event that no solution is found in the first iteration. Since

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 86

we have

 (

)

where the last equality follows from the Lemma. We have thus proved that .

Now we can prove by induction that , where is the event that no solution

is found in the -th iteration. Suppose that:

We will show that . Indeed, if a solution is found in iteration , then in

iteration it is moved by sorting procedure to the top of population, and it is not

destroyed; therefore, the solution is also found in iteration . Using this inclusion, we

find that

 ()

 ()

Since
 and the events {

 } and are

independent, we obtain

where the last equality follows from the Lemma. Using condition (4), then conditions (3)

and (5), we get

We have thus proved by induction that

 Hence the probability that the solution has been found in iteration k can be estimated as

follows:

Observe that, for each k, and for each
 , we have

 .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 87

Hence,

 ̅ ∑

 ∑

We will also prove that

 ̅ ∑

This inequality follows because one of the values

 is equal to (a solution can

always be selected at any iteration k), and for this value
 , we have (

) .

Therefore, the term is one of the (non-positive) terms in the sum

∑

Using inequalities (6) and (7) we obtain

 ̅

→

This proves that ̅ .

3.9 Conclusion

A new meta-heuristic optimization algorithm called Dissimilarity and Similarity

of Chromosomes (DSC) is introduced. DSC can be simply implemented, without too

many parameters. It includes two genetic operators (the dissimilarity and similarity

operators), population sorting and random generation of a part of population. The

experiments have shown quick convergence and good global searching ability of the

algorithm. The DSC algorithm is easy to understand and uses a simple classical

representation of points in

The DSC algorithm has only one parameter to be set by the user: the number of

chromosomes. Therefore it is easier to test than the classical GA where the user must try

multiple runs to test different combinations of parameters. For all the examples, 80

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 3

 88

chromosomes are enough to solve the problem. As Table 3. 6 shows, there is a significant

difference in the rate of success between 40 chromosomes and 80 chromosomes.

Table 3. 7 shows comparison of CMA-ES, DE and DSC algorithms in terms of

mean number of function evaluations and success rate. We see that the CMA-ES and DE

algorithms have not found the solution for Schwefel's function, but DSC algorithm has

found the solution in 92% of success rate. However, for 10-dimensional test functions

CMA-ES and DE are better than DSC for some functions.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 89

CHAPTER FOUR: The DSDSC Algorithm

4.1 Introduction

This chapter presents an optimization algorithm called Dynamic Schema with

Dissimilarity and Similarity of Chromosomes (DSDSC) which is a modification of the

DSC algorithm described in the previous chapter. To show the effectiveness of the

algorithm, it is tested and compared with the GA, CMA-ES and DE algorithms, it is run

on 18 two-dimensional, one four-dimensional and five ten-dimensional optimization

problems taken from literature. It has been found that, in most cases, the method is better

than the classical genetic algorithm.

In the DSDSC algorithm, we use the notion of schema in another way. It is

required that the schema has fixed high significant bit(s) for each variable , then we put

*’s on some of the remaining bits by using the similarity operator. This type of schema is

used to determine the area of the solution in search space.

The DSDSC is (like the DSC before) inspired by the schema theory and the

mechanism of similarity and dissimilarity of chromosomes. This procedure depends on

dividing each generation into four equal parts and then applying different genetic

operators to each of them. The presented algorithm is designed to find optimal solutions

to numerical optimization problems.

This chapter is organized as follows. In Section 4.2 the methodology of the

DSDSC algorithm are introduced. Section 4.3 describes the DSDSC algorithm and shows

its flowchart. Section 4.4 gives the schema analysis of the algorithm. Section 4.5 gives

the analysis of experimental results. Finally, conclusions are presented in Section 4.6.

4.2 Methodology of DSDSC algorithm

The DSDSC algorithm starts with a population of elements representing a

number of solutions to the problem. This population is divided into four equal groups and

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 90

some different operators to these groups are applied. This will be discussed in Section

4.3.

Briefly, the DSDSC creates new chromosomes by exploring dynamic

dissimilarity, similarity, dynamic schema and random generation of new chromosomes.

Table 4.1 shows all chromosomes () divided into 4 groups (G1, G2,

G3, G4).

Table 4. 1 All chromosomes (). Groups of chromosomes.

Ch1

Ch. …

Ch. …

ChM/4

G1: To the first group the dynamic

dissimilarity operator is applied.

ChM/4+1

Ch. …

Ch. …

ChM/2

G2: To the second group the similarity

operator is applied.

ChM/2+1

Ch. …

Ch. …

ChM/2+M/4

G3: To the third group the dynamic schema

operator is applied.

ChM/2+M/4+1

Ch. …

Ch. …

ChM

G4: The fourth group is generated randomly.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 91

4.3 The DSDSC algorithm

The following optimization problem is considered:

 []

where

 is a given function.

In the algorithm described below, the encoding of chromosomes is the same as in

Chapter 3.

Let be a positive integer divisible by 8. The DSDSC algorithm consists of the

following steps:

1) Generate chromosomes, each chromosome representing a point .

2) Compute the values of the fitness function for each chromosome in the population.

3) Sort the chromosomes according to the descending (for maximization) or ascending

(for minimization) values of the fitness function. Then divide the population into

four equal groups (G1, G2, G3, G4).

4) Copy times the first chromosome and put it in positions in the first half of the

population randomly, replacing the original chromosomes, where .

5) Apply the dynamic schema operator to the chromosomes and (that is, the

chromosomes on the positions 1 and , respectively). This operator works as

follows (see Table 4.2):

(a) First, divide each chromosome onto n parts corresponding to variables ,

the -th part having length . Next, for each variable , generate a random integer

 from the set {3,…, }. Define the ―gray‖ part of as the first segment of

length of the string corresponding to . Define the ―white‖ part of as the

second segment of length of the same string.

(b) For the ―white‖ parts of both chromosomes, if the two bits are not equal, put a star

(*) in the schema, then copy this schema times and put it in the third part of

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 92

population (G3) between positions and , then put randomly 0

or 1 in the positions having *. The positions marked in gray are kept unchanged.

Note. The name ―dynamic schema operator‖ is justified by the fact that the

lengths of ―gray‖ and ―white‖ segments of chromosomes may vary from iteration to

iteration.

Table 4. 2 The dynamic schema operator

Before change: an example for finding schema from the first chromosome and the chromosome on position

M/4. Here shadow bits are not destroyed.

No. of Ch.

Ch1 1 1 0 0 1 0 1 0 1 0

ChM/4 0 1 1 0 0 1 0 0 0 1

Schema 1 1 * 0 * * 1 0 * *

After finding the schema: put it in M/2…M/2+M/4 positions

ChM/2+1 1 1 * 0 * * 1 0 * *

ChM/2+2 1 1 * 0 * * 1 0 * *

Ch. … 1 1 * 0 * * 1 0 * *

Ch. … 1 1 * 0 * * 1 0 * *

ChM/2+M/4 1 1 * 0 * * 1 0 * *

After change: put randomly 0 or 1 in (*) bits

ChM/2+1 1 1 1 0 1 0 1 0 0 1

ChM/2+2 1 1 1 0 0 0 1 0 1 1

Ch. … 1 1 0 0 1 0 1 0 1 0

Ch. … 1 1 0 0 0 1 1 0 0 0

ChM/2+M/4 1 1 1 0 1 1 1 0 1 1

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 93

Compare pairs of chromosomes for the first half (G1, G2) of the population by

applying the dynamic dissimilarity and similarity operators (see Table 4.3 and Table 3.2).

Check each two following chromosomes, i.e. the first and the second, the second and the

third, and so on, by comparing the respective bits, as follows:

(a) For chromosomes in the first quarter (G1) of the population (from 1 to),

apply the dynamic dissimilarity operator, dividing each chromosome onto n

parts corresponding to variables , the -th part having length .

Next, for each variable , generate a random integer from the set {3,…,

 }. Define the ―gray‖ part of as the first segment of length of the string

corresponding to . Define the ―white‖ part of as the second segment of

length of the same string. The ―gray‖ part of is not destroyed. In the

white‖ part of , if the two bits are equal, put a star (*) in the second

(following) chromosome; otherwise, leave this bit without a change in the

second chromosome. Then put randomly 0 or 1 in the bits with stars (*).

Compare this new second chromosome with the third one, and so on.

(b) For chromosomes in the second quarter (G2) of the population (from

to), apply the similarity operator (see Chapter 3).

Table 4. 3 The dynamic dissimilarity operator.

Before change: an example for the first quarter of chromosomes.

Ch. A 1 1 0 0 1 0 1 0 1 0

Ch. B 1 0 1 0 0 1 0 0 1 1

Ch. A 1 1 0 0 1 0 1 0 1 0

Ch. B 1 0 1 * 0 1 1 * * 1

After change: put randomly 0 or 1 in (*) bits

Ch. A 1 1 0 0 1 0 1 0 1 0

Ch. B 1 0 1 1 0 1 0 1 0 1

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 94

7) All chromosomes B created in this way replace the original ones in positions from 2

to . New chromosomes are also generated in the way described at Step 5 on

positions from to . Then generate randomly chromosomes for

the fourth group of the population. These will replace the fourth group of the

chromosomes (on positions from to).

8) Go to Step 2 and repeat until the stopping criterion is reached.

Notes:

a. We call the genetic operator performing the operations shown in Table 4.3 on

a pair of chromosomes A and B the dynamic dissimilarity operator, and the

genetic operator performing the operations shown in Table 3.2 the similarity

operator.

b. The dynamic schema operator is shown in Table 4.2, it uses different sizes of

fixed segments (gray color) and applies the similarity operator on the rest of

chromosome.

c. The stopping criterion for the algorithm depends on the example being

considered, see Section 4.5.

Figure 4. 1 shows the flowchart of the DSDSC algorithm.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 95

Figure 4. 1 Flowchart of the DSDSC algorithm.

No

Yes

Is the stopping criterion satisfied ?

For the last quarter (M/2+M/4+1..M) of solutions (G4), generate randomly new

chromosomes.

For the third quarter (M/2+1..M/2+M/4) of solutions (G3), apply the dynamic

schema generated from Ch1 and ChM/4, then generate new solutions by changing

(*) to (0 or 1) randomly.

For the second quarter (M/4+1..M/2) of solutions (G2), apply the similarity

operator to the first and the second chromosome, then to the (new) second and

the third chromosome, and so on.

For the first quarter (M/4) of solutions (G1), apply the dynamic dissimilarity

operator to the first and the second chromosome, then to the (new) second and

the third chromosome, and so on.

Divide the population into 4 groups: G1, G2, G3 and G4.

Evaluate and sort the population according to fitness function, copy C times the

first solution and insert randomly between (2..M/2).

Decode chromosomes to find , using the formula

, where [a, b] is the range of .

Initialize population with M solutions representing points .

Print the best solution and the number of iterations.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 96

4.4 Schema analysis

A schema represents a number of similar strings, thus, a schema can be thought of

as a representation of a certain region in the search space. The schema that represents the

region containing the best solution must increase in the population to get the solutions in

the best region [87], [9]. For example, assuming to have a part of the Zbigniew

Michalewicz function , where

 [], as shown in Figure 4. 2, it is clear the maximum solution has

[] in the region [0,1]. This function has many local maximum solutions of which

only one is global, as shown in Figure 4. 2. Consider this region [0, 1] of represented

by bits . Assume that we have two types of schemata: H0= (0 * * . . .*)

representing the left region where [], and H1= (1 * * . . . *) representing the

right region, where []. Since it is required to find a global optimum solution, it

must be focused on schema H1 since it represents the region of a global solution. Also

the same thing for [9] . However, it is possible that the region of a global optimal

solution cannot be found this way. In such a case, the similarity operator and random

generation of a part of chromosomes could help to find a better region.

Figure 4. 2 A part of Michalewicz function.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 97

4.5 Experimental results

In this section, we report on computational testing (by using the Matlab software)

of the DSDSC algorithm on 22 test functions taken from literature:18 functions of 2

variables, one function of 4 variable and 5 functions of 10 variables. The result of

DSDSC has been compared with the known global optimum and with the result of a

classical GA taken from our experiments (Table 3.10), also, compared with CMA-ES and

EA algorithms. The results are presented in Table 4.4, for 18 functions of 2 and in Table

4.5for 5 functions of 10 variables with one function of 4 variables, with the known

optimal solutions mentioned in Appendix A. The algorithm with 80 chromosomes has

been applied with the stopping criterion that the difference between the best solution and

known optimal solution is less than the threshold specified in the second column (Tables

4.4, 4.5).

The DSDSC algorithm has found optimum solutions for some optimization

problems (like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm

cannot reach to 100% success rate with bit string or double vector, as shown in Table 4.4,

column nine. All success rates are 100% with 80 chromosomes for all problems.

The DSDSC algorithm keeps the best solution from each iteration at the first

position until it is replaced by a better one.

Note that the maximum number of iterations to found the best solution was

especially high (471) for the Rosenbrock’s valley function as shown in Table 4. 4. Also,

the success rate for Michalewicz problem was 100% compared with the classical GA

algorithm where it was 80% with the same number of chromosomes and generations. On

the other hand, column three in Table 4. 4Table 4.4 shows the minimum number of

iterations for finding an optimal solution was between 2 and 9 for all 18 test functions.

Column five shows the average number of iterations for all successful runs. Table 4.5

shows the results for 10-dimensional functions with 160 chromosomes and the number of

iterations fixed to 2000; both tables also show the run time (Min., Max., and Average).

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 98

Table 4. 4 The results for 50 runs of the DSDSC algorithm (80

chromosomes).

Function

name
Threshold

Min

number

of

iterations

/ Min

time in

seconds

Max

number

of

iterations

/ Max

time in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successf

ul runs

Rate of

success

DSDSC

Rate of

success

GA

Easom 0.001
6 238 51

47.8 -0.9992 100%
100%

DV 0.0095 0.2297 0.0516

Matyas 0.001
2 28 11

5.7 0.00040 100%
100%

DV 0.0043 0.0291 0.012

Beale's 0.001
5 166 49

38.5 0.00047 100% 70% DV
0.0078 0.1301 0.0568

Booth's 0.001
4 65 20

16.4 0.00057 100%
100%

DV 0.0068 0.0576 0.0205

Goldstein–

Price
0.001

5 85 34
18.6 3.0004 100%

100%

DV 0.0074 0.0825 0.0364

Schaffer N.

2
0.001

4 189 71
45.2 0.00028 100%

70%

DV 0.0072 0.1503 0.0747

Schwefel's 0.001
6 282 41

49.4 0.00064 100%
0%

BS 0.0070 0.2284 0.0477

Branins's

rcos
0.001

5 203 28
42.4 0.39832 100%

100%

DV 0.0057 0.2461 0.0252

Six-hump

camel back
0.001

5 127 18
24.5 -1.0310 100%

100%

DV 0.0098 0.1347 0.0244

Shubert 0.01

3 67 19

13.3

-

186.71

9

100%
100%

DV 0.0044 0.0772 0.0208

Martin and

Gaddy
0.001

4 38 15
8.4 0.00043 100%

40%

DV 0.0082 0.0360 0.0169

Michalewicz 0.04
9 280 67

57
38.8182

100%

80%

DV 0.0063 0.2123 0.0395

Holder

table
0.001

3 45 12
8 -19.208 100%

80%

DV 0.0057 0.0466 0.0188

Drop-wave 0.001 7 172 48 36.8 -0.9996 100% 100%

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 99

0.0094 0.2758 0.0539 BS

Levy N. 13 0.001
5 202 45

38.7 0.00044 100%
100%

BS 0.0069 0.2124 0.0486

Rastrigin’s 0.001
8 127 25

17.1 0.00037 100%
100%

BS 0.0127 0.0585 0.0203

Sphere 0.001
3 19 7

8.2
0.00041

6
100%

100%

BS 0.0082 0.0173 0.0122

Rosenbrock’s

valley
0.001

3 471 115
102.1

0.00053

5
100%

100%

BS 0.0104 0.1899 0.0536

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation. .

Figure 4. 3 The average number and standard deviation of iterations for

2-dimensional functions with 80 chromosomes for DSDSC algorithm

Figure 4. 4 shows the GUI of DSDSC algorithm on Michalewicz function, Figure

4. 5 shows the GUI of DSDSC algorithm with Shubert function that has 18 optimum

solutions.

0

20

40

60

80

100

120

140

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

hu
m

p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 100

Figure 4. 4 The GUI of DSDSC algorithm

Figure 4. 5 Shubert function with 18 optimum solutions

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 101

Table 4. 5 The results for 25 runs of the DSDSC algorithm for 10-

dimensional functions with execution time and comparing with GA

Function

name
Threshold

Min

number of

iterations

Max

number of

iterations

Mean no.

of iterations

for all

successful

runs

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Rate of

success

DSDSC

Rate

of

success

GA

Sum

Squares

d=10

0.1

37 597 145

128.7 0.072731 100%

100%

BS 0.057789 0.89309 0.221053

Sphere

d=10
0.1

17 72 31

12.4 0.069036 100%
100%

BS
0.0251 0.1032 0.0464

Sum of

different

powers

d=10

0.1

1 5 3

1.2 0.073843 100%
100%

BS
0.0018 0.0092 0.0056

Zakharov

d=10
0.1

76 595 217

116 0.077189 100%
100%

BS
0.1056 0.7596 0.2883

Rastrigin

d=10
0.1

159 1978 1045

467 0.148285 92%

100%

BS 0.2105 2.5300 1.3786

Ackley d=4 0.001

73 1706 644

532.2 0.000979 80%
100%

BS
0.0480 1.3318 0.6595

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 102

Figure 4. 6 The average number and standard deviation of iterations for

10-dimensional functions with 80 chromosomes for DSDSC algorithm

Table 4.6 presents a comparison of CMA-ES, DE and DSDSC algorithms in

terms of mean number of function evaluations and success rate, by using 50 different

runs, with 2500 maximum number of iterations and population size is 80 chromosomes.

Table 4. 6 Comparing the mean number of function evaluations and

success rate of CMA-ES, DE and DSDSC algorithms (50 runs, max 2500

iterations, 80 chromosomes).

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

DSDSC

success

rate

Function

evaluations of

DSDSC

Easom 70% 17053 100% 3240 100% 4080

Matyas 100% 500 100% 2700 100% 880

Beale 100% 460 100% 3060 100% 3920

Booth's 100% 492 100% 2820 100% 1600

0

200

400

600

800

1000

1200

Sphere Sum of
Different

Zakharov Rastrigin Ackley

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 103

Goldstein–

Price
100% 1812 100% 1620 100% 2720

Schaffer N.2 90% 6726 100% 5016 100% 5680

Schwefel's 0% ---- 0% ---- 100% 3280

Branins's

rcos
100% 6876 100% 840 100% 2240

Six-hump

camel
100% 780 100% 2160 100% 1440

Shubert 90% 2220 100% 8160 100% 1520

Martin and

Gaddy
100% 1660 100% 2400 100% 1200

Michalewicz 100% 1848 0% --- 100% 5360

Drop-wave 50% 26470 94% 9048 100% 3840

Levy N. 13 100% 606 100% 1958 100% 3600

Rastrigin’s 80% 13134 100% 2388 100% 2000

Sphere 100% 720 100% 1800 100% 560

Ackley d=4 100% 2240 100% 3480 80% 90160

Rosenbrock’s 100% 1644 100% 4560 100% 9200

4.6 Conclusion

In this section, a new meta-heuristic optimization algorithm called DSDSC is

introduced. DSDSC can be simply implemented, without too many parameters. It

includes three genetic operators (the dynamic schema, dynamic dissimilarity and

similarity operators), population sorting and random generation of a part of the

population.

The experiments have shown quick convergence and the good global searching

ability of the algorithm. The DSDSC algorithm is easy to understand and uses a simple

classical representation of points in

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 4

 104

The DSDSC algorithm has only two parameters to be set by the user: the number

M of chromosomes and parameter in Step 5(a) in the algorithm. Therefore, it is easier

to test than the classical GA where the user must try multiple runs to test different

combinations of parameters. For all the examples, 80 chromosomes are enough to solve

the problem. We see from Table 4.6 that the CMA-EA and DE algorithms did not find

the solution for Schwefel's function, but DSDSC algorithm has found the solution in

100% of success rate.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 105

CHAPTER FIVE: The DDS, FDS and MFDS Algorithms

5.1 Introduction

This chapter contains the following three algorithms:

1. Double Dynamic Schema with DSC algorithm (DDS Algorithm).

2. Free Dynamic Schema (FDS).

3. Multi Free Dynamic Schema (MFDS).

5.2 Double Dynamic Schema (DDS) algorithm

The idea of double population in evolutionary algorithms was used to improve the

search for optimal solution also to increase the diversity of a population. In [97] the

authors have used a double population with Swarm Optimization Algorithm for

optimization problems, in [98] a dual-population genetic algorithm was presented, which

employs two populations, where the main population was used to find a good solution to

the given problem and the second population was used to evolve and provide controlled

diversity to the main population.

In this section a new evolutionary algorithm for solving optimization problems

called Double Dynamic Schema with Dissimilarity and Similarity of Chromosomes

(DDS) is presented. This algorithm is complementary to our previous algorithms called

Dynamic Schema with Dissimilarities and Similarities of Chromosomes (DSDSC) ([99]

or Chapter 4) and Dissimilarity and Similarity of Chromosomes (DSC) ([100] or Chapter

3). In the DDS algorithm a new technique is used, that is, double population of

chromosomes working together to improve the efficiency of optimization and increase

the chance to reach the best solution, where the first population is the original one and the

second one is a copy of the first one, but different types of operations are applied to it.

Briefly, the algorithm aims at finding the optimal solution by fixing the highest

bits of a chromosome (i.e., fixing the highest bits of all variables which are

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 106

contained in the chromosome) and changing the lower bits at the same time, thus the

algorithm focuses on the searching in a small area that may contain the optimal solution.

5.2.1 Methodology

The DDS starts with a random population (P0) of M elements representing a

number of solutions to the problem. This population is sorted, then a new population (P1)

is formed which is a copy of a part of (P0), Each population (P0, P1) is divided into

several equal groups and some different operators are applied to these groups (see Table

5. 1).

Table 5. 1 Populations (P0) and (P1) and the seven groups of

chromosomes.

Original Groups of Chromosomes (P0) Copy Groups of Chromosomes (P1)

Ch1

G1: To the first
group the dynamic

dissimilarity

operator is applied.

Ch1

G5: To the fifth
group the

dissimilarity

operator is applied.

Ch2 Ch2

Ch. … Ch. …

Ch. … Ch. …

ChM/4 ChM/4

ChM/4+1

G2: To the second
group the similarity

operator is applied.

ChM/4+1

G6: To the sixth
group the dynamic

dissimilarity

operator is applied.

ChM/4+2 ChM/4+2

Ch. … Ch. …

Ch. … Ch. …

ChM/2 ChM/2

ChM/2+1

G3: To the third
group the dynamic

schema operator is

applied.

ChM/2+1

G7: To the seventh
group the dynamic

schema operator is

applied.

ChM/2+2 ChM/2+2

Ch. … Ch. …

Ch. … Ch. …

ChM/2+ M/4 ChM/2+ M/4

ChM/2+ M/4+1

G4: The fourth
group is generated

randomly.

ChM/2+ M/4+2

Ch. …

Ch. …

ChM

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 107

Briefly, the DDS creates new chromosomes by exploring dissimilarity, similarity,

dynamic schema and dynamic dissimilarity. These operators are described as follows:

5.2.1.1 Dissimilarity operator

For the first two chromosomes (A,B) in a group, check all corresponding bits: if

the two bits are equal, put a star (*) in the second (B) chromosome; otherwise leave this

bit without change in the second chromosome. Then put randomly 0 or 1 in the bits with

stars (*). Compare this new second chromosome with the third chromosome in the group,

and so on (see Table 3. 1).

5.2.1.2 Similarity operator

For two chromosomes (A,B), check each corresponding bits: if the two bits are

not equal, put a star (*) in the second (B) chromosome; otherwise leave this bit without

change in the second chromosome. Then put randomly 0 or 1 in the bits with stars (*).

Compare this new second chromosome with the third one and so on (see Table 3.2).

5.2.1.3 Dynamic schema operator

The dynamic schema operator is applied onto two chromosomes (A, B). This

operator works as follows (see Table 4. 2):

First, divide each chromosome into n parts corresponding to variables ,

the i-th part having length , where is the number of bits for . Next, for each

variable , generate a random integer from the set {3,…, }. Define the ―gray‖

part of as the first segment of length of the string corresponding to . Define the

―white‖ part of as the second segment of length of the same string.

For the ―white‖ parts of both chromosomes, if the two bits are not equal, put a star

(*) in the schema; otherwise leave this bit without change in the schema. After finding

the schema, copy it K = M/4 times and put it in group (G3), then put randomly 0 or 1 in

the positions having (*). The positions marked in ―gray‖ are kept unchanged.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 108

Note. The name ―dynamic schema operator‖ is justified by the fact that the

lengths of ―gray‖ and ―white‖ segments of chromosomes may vary from iteration to

iteration (see Table 4.2).

5.2.1.4 Dynamic dissimilarity operator

The dynamic dissimilarity operator is applied onto two chromosomes (A, B). This

operator works similarly to the dynamic schema operator only to find the ―gray‖ and

―white‖ parts corresponding to variables . The ―gray‖ part of is not

destroyed, in the ―white‖ part of , if the two bits are equal, put a star (*) in the second

(B) chromosome; otherwise, leave this bit without change in the second chromosome.

Then put randomly 0 or 1 in the bits with stars (*) in the second chromosome. Compare

this new second chromosome with the third one in the same way, and so on (see Table

4.2).

5.2.2 The DDS algorithm

The following optimization problem is considered:

 []

where

 is a given function.

In the algorithm described below, the encoding of chromosomes is the same as in

Chapter 3.

Let be a positive integer divisible by 8. The DDS algorithm consists of the

following steps:

1. Generate chromosomes, each chromosome representing a point

 . Divide the chromosomes into two populations (P0) and (P1), where (P0)

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 109

consists of four groups (G1, G2, G3, G4), and (P1) consists of three groups (G5, G6,

G7), each group having M/4 chromosomes.

2. Compute the values of the fitness function for each chromosome in the population

(G1,…,G7).

3. Sort the chromosomes according to the descending (for maximization) or ascending

(for minimization) values of the fitness function.

4. Copy the groups (G1, G2) onto (G5, G6), replacing the original chromosomes.

5. Copy times the first chromosome and put it in C randomly chosen positions in the

first half of population (P0), replacing the original chromosomes, where .

6. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 from

populations (P0), (that is, the chromosomes on positions 1 and M/4, respectively).

Copy this schema M/4 times and put it in (G3).

7. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 from

populations (P0), (that is, the chromosomes on positions 1 and respectively).

Copy this schema times and put it in (G7).

8. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively. Apply the dissimilarity and dynamic dissimilarity operators to groups

(G5) and (G6) respectively.

9. All the chromosomes created in Steps 6 to 8 replace the original ones in positions from

2 to in populations (P0) and (P1). Then randomly generate chromosomes for

group (G4).

10. Go to Step 2 and repeat until the stopping criterion is reached.

Note:

 The stopping criterion for the algorithm depends on the example being

considered, see Section 5.2.3.

In Figure 5.1 we show the DDS algorithm flowchart.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 110

Figure 5. 1 Flowchart of the DDS algorithm.

Initialize population with solutions to representing points . Divide

the solutions into seven groups (G1,…,G7), four groups in population (P0), three groups

in population (P1)

Decode chromosomes to find , using the formula

, where [a, b] is the range of .

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations

(P0). Copy this schema M /4 times and put it in (G3).

Copy times the first solution and put it in randomly in the first half of population (P0),

replacing the original solutions, where C = M/8.

Copy the groups (G1, G2) onto (G5, G6), replacing the original chromosomes.

Evaluate the values of the fitness function for each chromosome in (G1,…,G7), sort

according to the descending (for max.) or ascending (for min.) values of .

1.

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations

(P0). Copy this schema M /4 times and put it in (G7).

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively. Apply the dissimilarity and dynamic dissimilarity operators to groups

(G5) and (G6) respectively. Then randomly generate chromosomes for group (G4).

2.

Is the stopping criterion satisfied ?

Print the best solution and the number of iterations.

NO

Yes

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 111

5.2.3 Experimental results

In this section, we report on computational testing (by using the Matlab R2015b

software on a computer having CPU core i5 2.4 MHz, 8 GB RAM) of the DDS algorithm

on 18 functions of 2 variables, one function of 4 variable and 5 functions of 10 variables.

The test functions are taken from literature. After each test, the result of DDS has been

compared with the known global optimum and with the result of a classical GA taken

from our experiments (Table 3. 10), also, compared with CMA-ES and EA algorithms.

All 22 tested functions with optimal solutions are mentioned in Appendix A. We have

applied the algorithm with 80 chromosomes (P0) with the stopping criterion that the

difference between our best solution and the known optimal solution is less than or equal

to a given threshold. This threshold was equal to 0.001 for most two-dimentional

functions, 0.01 for the Shubert function, 0.04 for the Michalewicz function, and 0.1 for

ten-dimensional functions.

The DDS algorithm has found optimum solutions for some optimization problems

(like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm cannot reach

to 100% success rate with bit string or double vector, as shown in Table 5. 2, column

nine. For our algorithm all success rates are 100% with 80 chromosomes in (P0) for all

problems.

The DDS algorithm keeps the best solution from each iteration at the first position

until it is replaced by a better one.

Note that the average number of iterations to find the best solution was especially

high (71) for the Michalewicz function, see Table 5.2. For 10-dimenisional problems we

used 160 chromosomes for population (P0) with maximum 2000 iterations. Table 5. 3

shows the minimum, maximum and average numbers of function evaluations for 25 runs

of the DDS algorithm. Table 5.4 shows a comparison of CMA-ES, DE and DDS

algorithms in terms of mean number of function evaluations and success rate.

Table 5.5shows the number of function evaluations for 50 runs of the DDS

algorithm for all functions.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 112

Figures 5.2. 5.3 present the average number of iterations with standard deviation

of iterations for 2-dimensional and 10-dimensional functions respectively for DDS

algorithm.

Table 5. 2 The results for 50 runs of the DDS algorithm with run time

(80 chromosomes).

Function

name

Min

number

of

iterations

/ Min

time in

seconds

Max

number

of

iterations

/ Max

time in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev

. of

mean

no. of

Iter.

Mean of

the best

solution

for all

successfu

l runs

Success

rate of

DSC

And

DSDSC

Success

rate of

DDS

Rate of

success

GA

Easom
4 291 62

71 -0.9993 100% 100%
100%

DV 0.0080 0.3147 0.0685

Matyas
2 10 5

1.4 0.00048 100% 100%
100%

DV 0.0053 0.0202 0.0089

Beale's
2 74 16

16.6 0.00049 100% 100%
70%

DV 0.0055 0.0816 0.0203

Booth's
2 48 17

11.7 0.00051 100% 100%
100%

DV 0.0054 0.0504 0.0208

Goldstein–

Price

2 62 20
13.3 3.00049 100% 100%

100%

DV 0.0091 0.0678 0.0248

Schaffer N.2
2 39 14

8.2 0.00035 100% 100%
70%

DV 0.0055 0.0478 0.0186

Schwefel's
8 253 65

56.7 0.00068 100% 100%
0%

BS 0.0120 0.2724 0.0726

Branins's

rcos

2 103 9
15.4 0.39841 100% 100%

100%

DV 0.0052 0.1095 0.01368

Six-hump

camel back

2 61 8
9.8 -1.0311 100% 100%

100%

DV 0.0053 0.0670 0.0125

Shubert
2 169 33

34 -186.714 100% 100%
100%

DV 0.0058 0.1928 0.0421

Martin and

Gaddy

2 11 6
1.8 0.00044 100% 100%

40%

DV 0.0054 0.0146 0.0097

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 113

Michalewicz
2 546 71

103 38.8184 100% 100%
80%

DV 0.0055 0.5291 0.0721

Holder table
4 87 24

19.4 -19.208 100% 100%
80%

DV 0.0089 0.0979 0.0297

Drop-wave
6 189 44

40 -0.9995 100% 100%
100%

BS 0.0099 0.1982 0.0493

Levy N. 13

4 47 19

11 0.00052 100% 100%
100%

BS 0.0080 0.0685 0.0248

Rastrigin’s
8 133 38

29.4 0.00041 100% 100%
100%

BS 0.0130 0.1539 0.0492

Sphere
2 10 4

2 0.00334 100% 100%
100%

BS 0.0059 0.0184 0.0125

Rosenbrock’s

valley

3 102 24
32.7 0.00055 100% 100%

100%

BS 0.0059 0.9985 0.0307

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Figure 5. 2 The average number and standard deviation of iterations for

2-dimensional functions with 80 chromosomes for DDS algorithm

0

20

40

60

80

100

120

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

h
u

m
p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 114

Table 5. 3 The results for 25 runs of the DDS algorithm for 10-

dimensional functions with execution time (160 chromosomes).

Function

name

Min

number

of

iterations

/ Min

time in

seconds

Max

number of

iterations/

Max time

in seconds

Mean no. of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution for

all

successful

runs

Success rate

of DSC

And

DSDSC

Success

rate of

DDS

Success

rate of

GA

Sum

Squares

d=10

38 251 128
70.7 0.07277 100% 25%

100%
BS

0.1007 0.6413 0.3354

Sphere

d=10

14 38 23
18 0.07304 100% 100%

100%

BS
0.0351 0.0954 0.0582

Sum of

different

powers

d=10

1 7 4

1.5 0.02955 100% 100%
100%

BS
0.0029 0.0210 0.0113

Zakharov

d=10

18 1691 468
378 0.32031

12% DSC

100%

DSDSC

80%
100%

BS

0.0495 4.2347 1.6494

Rastrigin

d=10

2000 2000 2000
0 24.333

0% DSC

92%
DSDSC

0%
100%

BS

4.3092 4.5206 4.3889

Ackley

d=4

57 1767 802
635 0.02594 100% 50%

100%

BS
0.07358 3.2348 2.5438

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 115

Figure 5. 3 The average number and standard deviation of iterations for

10-dimensional functions with 160 chromosomes for DDS algorithm

Table 5. 4 Comparing the mean number of function evaluations and

success rate of CMA-ES, DE and DDS algorithms (50 runs, max 2500

iterations, 80 chromosomes)

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

DDS

success

rate

Function

evaluations of

DDS

Easom 70% 17053 100% 3240 100% 8680

Matyas 100% 500 100% 2700 100% 700

Beale 100% 460 100% 3060 100% 2240

Booth's 100% 492 100% 2820 100% 2380

Goldstein–

Price
100% 1812 100% 1620 100% 2800

Schaffer N.2 90% 6726 100% 5016 100% 1960

Schwefel's 0% ---- 0% ---- 100% 9100

Branins's

rcos
100% 6876 100% 840 100% 1260

0
100
200
300
400
500
600
700
800
900

Sum
Square

Sphere Sum of
Different

Zakharov Ackley

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 116

Six-hump

camel
100% 780 100% 2160 100% 1120

Shubert 90% 2220 100% 8160 100% 4620

Martin and

Gaddy
100% 1660 100% 2400 100% 840

Michalewicz 100% 1848 0% --- 100% 9940

Drop-wave 50% 26470 94% 9048 100% 6160

Levy N. 13 100% 606 100% 1958 100% 2660

Rastrigin’s 80% 13134 100% 2388 100% 5320

Sphere 100% 720 100% 1800 100% 560

Rosenbrock’s

valley
100% 1644 100% 4560 100% 3360

Table 5. 5 The number of function evaluations for 50 runs of the DDS

algorithm

Function name

Min No. of

function

evaluations

Max No. of

function

evaluations

Average No. of

function

evaluations

Easom 560 40740 8680

Matyas 280 1400 700

Beale's 280 10360 2240

Booth's 280 6720 2380

Goldstein–Price 280 8680 2800

Schaffer N.2 280 5460 1960

Schwefel's 1120 35420 9100

Branins's rcos 280 14420 1260

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 117

Six-hump camel back 280 8540 1120

Shubert 280 23660 4620

Martin and Gaddy 280 1540 840

Michalewicz 280 76440 9940

Holder table 560 12180 3360

Drop-wave 840 26460 6160

Levy N. 13 560 6580 2660

Rastrigin’s 1120 18620 5320

Rosenbrock 420 14280 3360

Sum Squares 10-D 10640 70280 35840

Sphere 10-D 3920 10640 6440

Sum of different powers

10-D
280 1960 1120

Zakharov 10-D 22400 475160 131040

Rastrigin 10-D *** *** ***

In Table 5.6 we compare the average number of function evaluations among the

DSC, DSDSC and DDS algorithms, also Figure 5.4 presents the values of Table 5.6. It

is clear that the DDS algorithm has the best values for most tested functions.

Table 5.7 presents a comparison of the success rate and the number of function

evaluations (for two-dimensional functions only) for three algorithms: Bees Algorithm

(BA), Particle Swarm Optimization (PSO), and DDS. The results for BA and PSO are

taken from [101].

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 118

Table 5. 6 Comparing the average numbers of function evaluations for

50 runs of the DSC, DSDSC and DDS algorithms.

Function name DSC DSDSC DDS

Eesom 7040 4080 8680

Matyas 2480 880 700

Beale's 7440 3920 2240

Booth's 12080 1600 2380

Goldstein–Price 10720 2720 2800

Schaffer N.2 22240 5680 1960

Schwefel's 44880 3280 9100

Branins's rcos 6880 2240 1260

Six-hump camel back 3120 1440 1120

Shubert 2560 1520 4620

Martin and Gaddy 2880 1200 840

Michalewicz 16560 5360 9940

Holder table 3760 960 3360

Drop-wave 15520 3840 6160

Levy N. 13 23200 3600 2660

Rastrignins 5680 2000 5320

Rosenbrock’s valley 8080 9200 3360

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 119

Figure 5. 4 Comparing the average numbers of function evaluations for

DSC, DSDSC and DDS algorithms.

Table 5. 7 Comparing the average number of functions evaluations and

success rate of BA, PSO and DDS algorithms

Function name BA
Fun. Eval.

of BA
PSO

Fun. Eval.

of PSO
DDS

Fun. Eval.

of DDS

Easom 72% 5868 100% 2094 100% 8680

Shubert 0% --- 100% 3046 100% 4620

Schwefel's 85% 5385 86% 3622 100% 9100

Goldstein–Price 7% 9628 100% 1465 100% 2800

Martin and

Gaddy
100% 1448 3% 9707 100% 840

Rosenbrock 46% 7197 100% 1407 100% 3360

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ee
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

–
P

ri
ce

Sc
h

af
fe

r
N

.2

Sc
h

w
ef

el
's

B
ra

n
in

s'
s

rc
o

s

Si
x-

hu
m

p
ca

m
el

 b
ac

k

Sh
u

b
er

t

M
ar

ti
n

 a
n

d
 G

ad
d

y

Zb
ig

ni
ew

 M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-w

av
e

Le
vy

 N
. 1

3

R
as

tr
ig

ni
n

s

R
o

se
n

b
ro

ck
’s

 v
al

le
y

DSC

DSDSC

DDS

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 120

5.2.3 Conclusion

The DDS is a new multi-population evolutionary algorithm that uses two

populations. This algorithm uses different operators to find the optimal solution, where

through the dynamic schema operator the algorithm obtains the best area of solutions, and

searches within that area in each iteration as it detects the schema from the best solution

in the population. The dynamic dissimilarity operator performs searching in a wide range

of solutions in (G1) and (G6), where the high bits are kept without change and the lower

bits are changed. The dissimilarity and similarity operators possess the ability of

searching in the whole search space because every bit of a chromosome can be changed

by them. The fifth operator generates chromosomes randomly in (G4) to help increasing

the diversity and not to stick in a local optimum solution.

We have applied the GA, DSC, DSDSC, DDS algorithms on 22 test functions taken

from literature (Appendix A) with 2 and 10 dimensions. The results show the DDS

algorithm is superior on the GA and DSC and DSDSC algorithms for most two-

dimensions functions.

Through our experiments we found that whenever the function range is small like (-

1, 1) or (-5, 5), the solution was obtained faster compared to the larger range (-500,500).

5.3 Free Dynamic Schema Algorithm (FDS)

This algorithm is very similar to DDS algorithm (see Section 5.2 or [102]). The

only change is that the dynamic schema operator (applied to G3 and G7) is now replaced

by the free dynamic schema operator in which the schema is found from the first

chromosome only, as explained in Table 5.8.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 121

Table 5. 8 The free dynamic schema operator.

Before change: an example for finding schema from the first chromosome.

 Here shadow bits are not destroyed.

No. of Ch.

Ch1 1 1 0 0 1 0 1 0 1 0

Schema 1 1 * * * * 1 * * *

After finding the schema: put it in positions.

ChM/2+1 1 1 * * * * 1 * * *

ChM/2+2 1 1 * * * * 1 * * *

Ch. … 1 1 * * * * 1 * * *

Ch. … 1 1 * * * * 1 * * *

ChM/2+M/4 1 1 * * * * 1 * * *

After change: put randomly 0 or 1 in (*) bits.

ChM/2+1 1 1 1 1 1 0 1 0 0 1

ChM/2+2 1 1 1 0 0 0 1 1 1 1

Ch. … 1 1 0 1 1 0 1 1 1 0

Ch. … 1 1 0 1 0 1 1 0 0 0

ChM/2+M/4 1 1 1 0 1 1 1 0 1 1

Suppose is a one-dimensional function with range [0,1], as shown in Figure 5.5,

This function is represented by binary representation consisting of four bits,

(0000,0001,…,1111), that means the range is divided into 16 segments.

The principle of free schema is as follows: Suppose there is a solution 0100

colored in gray, if the free schema operator is applied, for example with , then bits

number 1 and 2 are not changed, but in bits 3 and 4 we put *s in the discovered schema

(01**). Then we randomly put 0 or 1 in positions having *s. Here the schema will cover

all the subspace colored with green, in the same way another schema (10**) will cover all

the subspace colored in red, as shown in Figure 5.5.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 122

Bits: 1234

Ch.1: 0100

Schema: 01**

Sol.1: 0111

Sol.2: 0110

Sol.3: 0101

Figure 5. 5 Free dynamic schema operator.

5.3.1 Experimental results

In this section, we report on computational testing of the FDS algorithm on 18

functions of 2 variables, one function of 4 variable and 5 functions of 10 variables. After

each test, the result of FDS has been compared with the known global optimum and with

the result of a CGA taken from our experimental result (see Table 3.10), also, in Table

1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

 0 1 0.5

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 123

5.11 a comparison of the mean number of function evaluations and success rate of CMA-

ES, DE and FDS algorithms is presented. All 22 tested functions with optimal solutions

are mentioned in Appendix A. We have applied the algorithm with 80 chromosomes (P0)

with the stopping criterion that the difference between our best solution and the known

optimal solution is less than or equal to a given threshold.

The FDS algorithm has found optimum solutions for some optimization problems

(like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm cannot reach

with 100% success rate with bit string or double vector, as shown in Table 5. 9, column

nine. For our algorithm all success rates are 100% with 80 chromosomes in (P0) for all

problems. Table 5. 10 shows the minimum, maximum and average numbers of iterations

with standard deviation of iterations and comparison with GA for 25 runs of the FDS

algorithm for 10-dimensional functions with 160 chromosomes in (P0).

Figures 5.6, 5.7 present the average number of iterations with standard deviation

of iterations for 2-dimensional and 10-dimensional functions respectively for the FDS

algorithm.

The FDS algorithm keeps the best solution from each iteration at the first position

until it is replaced by a better one.

Table 5. 9 The results for 50 runs of the FDS algorithm.

Function

name
Threshold

Min

number

of

iteration/

Min time

in seconds

Max

number

of

iterations/

Max time

in seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successf

ul runs

Success

rate of

FDS

Rate of

success

GA

Easom 0.001

24 241 89

51.9

-

0.9993
6

100%
100%
DV

0.02824 0.26588 0.1024

Matyas 0.001
2 14 6

2.6
0.0004

75
100%

100%

DV
0.00542 0.01726 0.0101

Beale's 0.001 2 18 8 4 0.0004 100% 70%

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 124

0.00555 0.02215 0.0123
99 DV

Booth's 0.001
3 37 12

6.7
0.0005

37
100%

100%

DV
0.00672 0.03861 0.0152

Goldstein–

Price
0.001

10 115 35
21.6

3.0005

07
100%

100%

DV
0.01423 0.12671 0.0409

Schaffer N.2 0.001
2 58 16

11.7
0.0003

6
100%

70%

DV
0.00588 0.06565 0.0204

Schwefel's 0.001
11 130 39

27.5
0.0006

62
100%

0%

BS 0.01554 0.13659 0.046

Branins's

rcos
0.001

2 89 11
15.8

0.3984

25
100%

100%

DV
0.00496 0.12197 0.0171

Six-hump

camel back
0.001

2 27 7

5.3

-

1.0311

1

100%
100%

DV
0.00550 0.03045 0.0110

Shubert 0.01

3 134 45

50.4

-

186.71

7

100%
100%

DV
0.00445 0.15403 0.0562

Martin and

Gaddy
0.001

2 12 5
2.5

0.0004

71
100%

40%

DV
0.00171 0.01534 0.0093

Michalewicz 0.04
3 166 55

37.8
38.815

36
100%

80%
DV

0.00902 0.17056 0.0605

Holder table 0.001
4 55 19

12.5 -19.208 100%
80%

DV
0.007824 0.062127 0.0239

Drop-wave 0.001

7 111 45

23.5

-

0.9995

2

100%
100%

BS
0.011624 0.122926 0.0502

Levy N. 13 0.001

4 63 19

11.2
0.0005

41
100%

100%

BS
0.007922 0.066639 0.0235

Rastrigin’s 0.001
11 131 58

31.4
0.0003

92646
100%

100%

BS
0.0199 0.1079 0.0555

Sphere 0.001
2 15 7

3.5
0.0004

6
100%

100%

BS
0.00693 0.0222 0.0161

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 125

Rosenbrock’s

valley
0.001

4 56 18
13.2

0.0006

23
100%

100%

BS
0.0088 0.0538 0.0255

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation.

Figure 5. 6 The average number and standard deviation of iterations for

2-dimensional functions with 80 chromosomes for FDS algorithm

Table 5. 10 The results for 25 runs of the FDS algorithm for 10-

dimensional functions with run time.

Function

name
Threshold

Min

number

of

iterations

/ Min

time in

seconds

Max

number

of

iterations

/ Max

time in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Success

rate of

FDS

Success

rate of

GA

Sum

Squares

d=10

0.1
164 634 320

141 0.082916 100% 100% BS
0.3055 1.1877 0.6115

Sphere 0.1 29 102 51 17 0.083032 100% 100% BS

0

10

20

30

40

50

60

70

80

90

100

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

hu
m

p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 126

d=10
0.0534 0.1781 0.0928

Sum of

different

powers

d=10

0.1

2 9 4

2.1 0.03835 100% 100% BS
0.0032 0.0599 0.0115

Zakharov

d=10
0.1

180 1711 581
395 0.087195 100% 100% BS

0.4853 4.4823 1.5508

Rastrigin

d=10
0.1

680 1953 1159
454.4 1.490886

32%

84%*
100% BS

2.1410 6.1124 3.9758

Ackley

d=4
0.001

111 1334 536
465 0.001406 86% 100% BS

0.1133 2.4283 1.3704

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation.

*we found this result by changing the size of to a random number from {0, 1,..,

 }, with 200 chromosomes and 2000 iterations.

By comparing the results for the DDS and FDS algorithms, we can see that the

FDS is better than DDS for two-dimensional functions, while DDS is better than FDS for

ten-dimensional functions.

Figure 5. 7 The average number and standard deviation of iterations for

10-dimensional functions with 160 chromosomes for FDS algorithm

0

200

400

600

800

1000

1200

1400

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 127

Table 5.11 presents a comparative study of success rate and the number of

function evaluations for all successful runs for the CMA-ES, DE, FDS algorithms, on 50

runs, max 2500 iterations, 80 chromosomes, for 2-dimensional functions.

Table 5. 11 Comparison of CMA-ES, DE and FDS algorithms in terms

of mean number of function evaluations and success rate (50 runs, max

2500 iterations, 80 chromosomes).

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

FDS

success

rate

Function

evaluations of

FDS

Easom 70% 17053 100% 3240 100% 12460

Matyas 100% 500 100% 2700 100% 840

Beale 100% 460 100% 3060 100% 1120

Booth's 100% 492 100% 2820 100% 1680

Goldstein–

Price
100% 1812 100% 1620 100% 4900

Schaffer N.2 90% 6726 100% 5016 100% 2240

Schwefel's 0% ---- 0% ---- 100% 5460

Branins's

rcos
100% 6876 100% 840 100% 1540

Six-hump

camel
100% 780 100% 2160 100% 980

Shubert 90% 2220 100% 8160 100% 6300

Martin and

Gaddy
100% 1660 100% 2400 100% 700

Michalewicz 100% 1848 0% --- 100% 7700

Drop-wave 50% 26470 94% 9048 100% 6300

Levy N. 13 100% 606 100% 1958 100% 2660

Rastrigin’s 80% 13134 100% 2388 100% 8120

Sphere 100% 720 100% 1800 100% 980

Ackley d=4 100% 2240 100% 3480 86% 85760

Rosenbrock’s 100% 1644 100% 4560 100% 2520

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 128

Figure 5. 8 shows that, for one of the tested functions (Schaffer), the solution has

been found in 2 iterations by using the FDS algorithm.

Figure 5. 8 shows the solution of Schaffer N.2 function found in 2

iterations

5.4 The Multi Free Dynamic Schema (MFDS)

In this section we describe the Multi Free Dynamic Schema (MFDS) algorithm,

which contains 5 types of operators (dynamic dissimilarity, similarity, dissimilarity,

dynamic schema, free dynamic schema) and random generation of chromosomes. The

free dynamic schema operator is applied 6 times. The dissimilarity, similarity, dynamic

schema, dynamic dissimilarity operators and random generation were applied in the DDS

algorithm, see Tables 3.1, 3.2, 4.2 and 4.3 for more details. The free dynamic schema

operator was applied in FDS algorithm, see Table 5.8.

After noticing that the FDS algorithm was more effective than DSC, DSDSC and

DDS algorithms in terms of speed in finding the best solution (a comparison of all

algorithm is presented in Chapter 7), we now propose here another way of using the same

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 129

principle as in FDS, but now a larger number of schema types (six) are selected at

random from the first quarter of the sorted generation.

Suppose is a one-dimensional function with domain [0, 1], as shown in Figure

5.9, This function is represented by binary representation consisting of four bits,

(0000,0001,…,1111), that means the range is divided into 16 segments.

The principle of multi free schema is the following: Suppose there are best

solutions, and the free dynamic schema operator is applied when , ,…, .

The same idea of free schema is used but here with more free schemas as shown in

Figure 5.9. Here we discover multi free schema (101*), (0***), and so on. Then we

randomly put 0 or 1 in positions having *s. Here the multi free schema will cover all the

subspaces colored with red, as shown in Figure 5.9.

Bits: 1234

Ch.1: 1010

Schema : 101*

Sol.1: 1011

Sol.2: 1010

Here another example, the first bit is fixed.

Bits: 1234

Ch.1: 0100

Schema : 0***

Sol.1: 0000

Sol.2: 0001

Sol.3: 0010

….

Sol.8: 0111

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 130

Figure 5. 9 Multi free dynamic schema.

5.4.1 Methodology

The MFDS algorithm starts with a random population (P0) of elements

representing a number of solutions to the problem. This population is sorted, then a new

population (P1) is formed whose first 40% of chromosomes are copied from a part of

(P0). The population (P0) is divided into for equal groups (G1, G2, G3, G4), then

population (P1) is divides into 8 not equal groups (G5,G6,…,G12). Then we apply

different operators to these groups (see Table 5. 12).

To groups (G1, G2, G3) of population (P0), the dynamic dissimilarity, similarity,

dynamic schema operators are applied, and in (G4), random chromosomes are generated,

respectively. To groups (G5, G6) of population (P1), the dissimilarity and dynamic

dissimilarity operators are applied respectively, where each of (G5,G6) represents 20% of

population (P1), For the next groups (G7,G8,…,G12), where each group represents 10%

of population (P1), six types of free dynamic schema are applied, where chromosomes

were randomly chosen from the first quarter of sorted population (P0), see Table 5. 12.

1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

 0 0.5 1

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 131

The free dynamic schema was mentioned in Table 5.8, but it was only used for

the best chromosome in the population of the FDS algorithm. In this algorithm

(MFDS) it is used six times, for different chromosomes and various random fixed part

sizes . Each free dynamic schema represents a group of solutions, these solutions are

close to the area of best solutions because they are chosen form the first quarter in the

sorted population (P0).

Table 5. 12 Populations (P0) and (P1) and the twelve groups of

chromosomes.

ORIGINAL GROUPS OF CHROMOSOMES(P0) COPY GROUPS OF CHROMOSOMES(P1)

Ch1

G1: To the first group the dynamic

dissimilarity operator is applied.

20% of

population

G5: To the fifth group the
dissimilarity operator is applied.

Ch2

Ch. …

Ch. …

ChM/4

20% of

population

G6: To the six group the dynamic

dissimilarity operator is applied.
ChM/4+1

G2: To the second group the

similarity operator is applied.

ChM/4+2

Ch. …

Ch. … 10% of

population

G7: To this group the free dynamic

schema operator is applied.
ChM/2

ChM/2+1

G3: To the third group the
dynamic schema operator is

applied.

10% of

population

G8: To this group the free dynamic
schema operator is applied.

ChM/2+2

Ch. … 10% of

population

G9: To this group the free dynamic

schema operator is applied
Ch. …

ChM/2+M/4 10% of

population

G10: To this group the free

dynamic schema operator is applied
ChM/2+M/4+1

G4: The fourth group is generated

randomly.

ChM/2+M/4+2 10% of

population
G11: To this group the free

dynamic schema operator is applied
Ch. …

Ch. … 10% of

population
G12: To this group the free

dynamic schema operator is applied
ChM

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 132

5.4.2 The MFDS algorithm

The following optimization problem is considered:

 []

where

 is a given function.

In the algorithm described below, the encoding of chromosomes is the same as in

Chapter 3.

Let M be a positive integer divisible by 8. The MFDS algorithm consists of the

following steps:

1. Generate 2M chromosomes, each chromosome representing a point .

Divide the chromosomes into two populations (P0) and (P1), where (P0) consists of

four groups (G1, G2, G3, G4), and (P1) consists of eight groups (G5, G6,…, G12),

each group in (P0) having M/4 chromosomes, but in (P1) the size is equal to 20% of

population for (G5, G6) and 10% for (G7, ... , G12) .

2. Compute the values of the fitness function f for each chromosome in the population

(G1,…, G12).

3. Sort the chromosomes according to the descending (for maximization) or ascending

(for minimization) values of the fitness function.

4. Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes.

5. Copy C times the first chromosome and put it in C randomly chosen positions in the

first half of population (P0), replacing the original chromosomes, where C = M/8.

6. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4 from

populations (P0), (that is, the chromosomes on positions 1 and M/4, respectively).

Copy this schema M/4 times and put it in (G3).

7. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively. Apply the dissimilarity and dynamic dissimilarity operators to group

(G5) and (G6) respectively.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 133

8. Apply the free dynamic schema operator 6 times to generate six groups (G7,…, G12).

To generate each group, a chromosome is chosen randomly from the first quarter of

solutions in (P0). Then put 0 or 1 randomly in positions having *s in each group.

9. All the chromosomes created in Steps 4 to 8 replace the original ones in positions

from 2 to 2M in populations (P0) and (P1). Then randomly generate chromosomes for

group (G4).

10. Go to Step 2 and repeat until the stopping criterion is reached.

Note:

The stopping criterion for the algorithm depends on the example being

considered, see Section 5.4.3. The free dynamic schema operator is shown

in Table 5.8. that uses different sizes of fixed segments (gray color) and

changing all the rest of chromosome by using (*)’s, then randomly put (0,1)

to generate a new solutions.

The flowchart of MFDS algorithm is shown in Figure 5.10.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 134

Figure 5. 10 Flowchart of the MFDS algorithm.

Generate 2M solutions, each one representing a point . Divide the solutions into

two populations (P0) and (P1), (P0) is consists of four equal groups (G1,…, G4). But (P1)

consists of eight groups (G5,…,G12), where the size is equal to 20% of population for

(G5,G6) and 10% for (G7,... ,G12).

Decode chromosomes to find , using the formula

, where [a, b] is the range of .

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations

(P0). Copy this schema M /4 times and put it in (G3).

Copy times the first solution and put it in randomly in the first half of population (P0),

replacing the original solutions, where C = M/8.

Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes.

Evaluate the values of the fitness function for each chromosome in (G1,…,G12). sort

according to the descending for Max. or ascending for Min..

3.

Apply the similarity and dynamic dissimilarity operators to group (G5) and (G6)

respectively

Is the stopping criterion satisfied ?

Print the best solution and the number of iterations.

NO

Yes

From first quarter of (P0) Apply the free dynamic schema operator 6 times to generate

groups (G7,…, G12).

Choose randomly 6 chromosomes from the first quarter of (P0) and apply the free dynamic

schema operator 6 times to generate groups (G7,…, G12). Put 0 or 1 in position having *s.

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively, Then randomly generate chromosomes for group (G4) in (P0).

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 135

5.4.3 Experimental results

In this section, we report on computational testing of the MFDS algorithm on 18

functions of 2 variables, one function of 4 variable, 5 functions of 10 variables and 100

variables, also the execution time is reported. After each test, the result of MFDS has

been compared with the known global optimum and with the result of a CGA taken from

taken from our experimental result (see Table 3.10), also, in Table 5.14 a comparison of

the mean number of function evaluations and success rate of CMA-ES, DE and FDS

algorithms is presented. All 22 tested functions with optimal solutions are mentioned in

Appendix A. We have applied the algorithm with 80 chromosomes (P0) with the stopping

criterion that the difference between our best solution and the known optimal solution is

less than or equal a given threshold.

The MFDS algorithm has found optimum solutions for some optimization

problems (like Beale's, Schaffer n.2, Schwefel's,) that the classical genetic algorithm

cannot reach to 100% success rate with bit string or double vector, as shown in Table

5.13 the results for 50 runs of MFDS algorithm (the results for 50 runs of the MFDS

algorithm). For our algorithm all success rates are 100% with 80 chromosomes in (P0)

for all problems.

Table 5.14 presents a comparative study of success rate and the number of

function evaluations for all successful runs for the CMA-ES, DE, MFDS algorithms, on

50 runs, max 2500 iterations, 80 chromosomes. Table 5.15. presents the results of MFDS

for some 4- and 10-dimensional functions.

Figures 5.11, 5.12 present the average number of iterations with standard

deviation of iterations for 2-, 4- and 10-dimensional functions for MFDS.

The MFDS algorithm keeps the best solution from each iteration at the first position

until it is replaced by a better one.

Here it is possible to note the effect of multi free dynamic schema by decreasing the

average number of iterations for most functions comparing with previous algorithms.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 136

Table 5. 13 The results for 50 runs of the MFDS algorithm

Function

name
Threshold

Min

number of

iterations/

Min time

in seconds

Max

number of

iterations/

Max time

in seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Success

rate of

MFDS

Rate of

success

GA

Easom 0.001

6 175 58

42.5 -0.99938 100%

100
%

DV 0.01869 0.2521 0.08722

Matyas 0.001

2 9 5

1.5 0.000331 100%

100
%

DV 0.00660 0.01758 0.01101

Beale's 0.001
2 24 7

3.7 0.000544 100%
70%

DV 0.00668 0.03775 0.0141

Booth's 0.001
3 27 10

4.5 0.000545 100%
100
%

DV 0.00850 0.04361 0.01816

Goldstein

–Price
0.001

6 52 21

10.4 3.000434 100%

100

%

DV 0.0108 0.07839 0.03482

Schaffer

N.2
0.001

3 30 11 6.3
0.000402 100%

70%

DV 0.00661 0.04746 0.01967

Schwefel's 0.001
4 69 29 14.1

0.000662 100%
0%

BS 0.0066 0.10088 0.04650

Branins's

rcos
0.001

2 60 7

8.1 0.398406 100%

100

%

DV 0.0066 0.08871 0.01480

Six-hump

camel

back

0.001

2 15 5

2.7 -1.03119 100%

100

%

DV 0.006 0.02500 0.01208

Shubert 0.01

2 75 26

15.2 -186.714 100%

100
%

DV 0.0149 0.12685 0.05036

Martin

and

Gaddy

0.001

2 9 5

2 0.00043 100%
40%

DV 0.0067 0.01672 0.01121

Michalewicz 0.04
4 116 30

24 38.8096 100%
80%

DV 0.0089 0.1614 0.0450

Holder

table
0.001

2 28 12
5 -19.2081 100%

80%

DV 0.0078 0.0435 0.02048

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 137

Drop-

wave
0.001

5 69 30

16.6 -0.99949 100%

100

%

BS 0.0165 0.1005 0.0467

Levy N. 13 0.001

5 32 11

6 0.00045 100%

100
%

BS 0.0115 0.0496 0.02047

Rastrigin’s 0.001
7 85 41

19.7 0.000459 100%
100%

BS 0.0160 0.1202 0.05336

Sphere 0.001
2 10 5

2 0.000452 100%
100%

BS 0.0128 0.0774 0.0202

Rosenbrock’s

valley
0.001

2 40 13
9.7 0.000609 100%

100%

BS 0.0127 0.07139 0.0265

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation.

Figure 5. 11 The average number and standard deviation of iterations

for 2-dimensional functions with 80 chromosomes for MFDS algorithm

0

10

20

30

40

50

60

70

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
ef

el

B
ra

n
in

s

Si
x-

h
u

m
p

Sh
u

b
e

rt

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 138

Table 5. 14 Comparing the mean number of function evaluations and

success rate of CMA-ES, DE and MFDS algorithms (50 runs, max 2500

iterations, 80 chromosomes)

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

MFDS

success

rate

Function

evaluations of

MFDS

Easom 70% 17053 100% 3240 100% 8120

Matyas 100% 500 100% 2700 100% 700

Beale 100% 460 100% 3060 100% 980

Booth's 100% 492 100% 2820 100% 1400

Goldstein–

Price
100% 1812 100% 1620 100% 2940

Schaffer N.2 90% 6726 100% 5016 100% 1540

Schwefel's 0% ---- 0% ---- 100% 4060

Branins's

rcos
100% 6876 100% 840 100% 980

Six-hump

camel
100% 780 100% 2160 100% 700

Shubert 90% 2220 100% 8160 100% 3640

Martin and

Gaddy
100% 1660 100% 2400 100% 700

Michalewicz 100% 1848 0% --- 100% 4200

Drop-wave 50% 26470 94% 9048 100% 4200

Levy N. 13 100% 606 100% 1958 100% 1540

Rastrigin’s 80% 13134 100% 2388 100% 5740

Sphere 100% 720 100% 1800 100% 700

Ackley d=4 100% 2240 100% 3480 100% 25760

Rosenbrock’s 100% 1644 100% 4560 100% 1820

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 139

Table 5. 15 The results for 25 runs of the MFDS algorithm with

execution time of 10-dimensional function.

Function

name
Threshold

Min

number of

iterations/

Min time in

seconds

Max

number of

iterations/

Max time

in seconds

Mean no.

of

iterations

for all

successful

runs

Std. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Rate of

success

MFDS

Rate of

success

GA

Sum

Squares

d=10

0.01
77 438 245

100.1 0.07856 100%
100%

BS
0.18143 1.01937 0.58881

Sphere

d=10
0.01

19 68 46
10.8 0.08259 100%

100%

BS 0.04683 0.15147 0.10561

Sum of

Different

Powers

d=10

0.01

2 7 3

1.2 0.04680 100%
100%

BS 0.00375 0.02471 0.01004

Zakharov

d=10
0.1

107 700 373
156.6 0.09010 54%

100%

BS 0.32029 2.00436 1.07996

Rastrigin

d=10
0.01

157 456 294
70.8 0.07169 100%*

100%
BS 0.56427 1.64128 1.04986

Ackley

d=4
0.001

53 269 161
59.8 0.00071 100%*

100%
BS 0.07750 0.38244 0.22120

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, Std.Dev. = standard deviation.

* For this function we change the in dynamic schema and free dynamic schema

to be a random number from {0, 1,…, }.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 140

Figure 5. 12 The average number and standard deviation of iterations

for 4- and 10-dimensional functions with 80 chromosomes for MFDS

algorithm

The following Figures (5.13 and 5.14) show the behavior of a schema while

finding the best solution for the Michalewicz function. It is clear that the chromosomes

are focused on the best solution. Fig. 5.13 shows three dimensional view, the green

points represent the population (P1), the blue points represent the population (P0). Fig.

5.14 shows the top view where the red points for population (P1) are focused on the best

solution.

In Fig. 5.13, we can see different groups of green points which belong to different

schemas, each schema has a group of solutions close together.

This algorithm can help searching or exploring different solutions in search space

thus providing possibility in finding a solution with a lower number of iterations.

0

50

100

150

200

250

300

350

400

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 141

Figure 5. 13 shows the multi free dynamic schema on Michalewicz

function finding best solution after 15 iterations (green points belong to

the schema).

Figure 5. 14 shows the multi free dynamic schema on Michalewicz

function finding the best solution (top view, where red points belong to

the schema).

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 142

Fig. 5.15 shows one of the tested function (Schwefel's) where the MFDS

algorithm found the optimum solution in 4 iterations.

Figure 5. 15 shows Schwefel's function, MFDS finding solution in 4

iterations

5.4.4 The choice of for Rastrigin, Ackley and Zakharov functions

By changing the size of parameter (for Rastrigin and Ackley functions) in

range {0,1,…, }, we allow the gray part to contain all bits in (we make a mask for

the best or worst randomly). This idea gives a chance to keep the best without

change and give a chance to the worst to change all bits to be better. Each schema

from 6 types of free dynamic schema could be like in the following Table 5. 16, in this

example it’s clear if and , this operation will keep without change and

change all bits in .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms …Chapter 5

 143

Table 5. 16 The size of parameter on free dynamic schema (0,)

No. of

Ch.

 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1

 0 0 0 0 * * * * * * * * * * * * 0 0 0 0 0 0 1 1

On the other hand we faced a problem with the Zakharov function, by applying 10

dimensions with a range [-5, 10]. Since the result of success did not exceed 60%, we

changed the parameter to obtain 100% success rate for all dynamic operators (dynamic

dissimilarity, dynamic schema, 6 types of free dynamic schema) as follows :

1. for dynamic dissimilarity we used .

2. for dynamic schema . See Table 5.16.

3. for 6 types of free dynamic schema . randomly for each

 , this means we make a mask for randomly to keep

the best without change if , or changing by putting (*)s in all

bits of then generate {0,1} randomly instead of (*)s. See Table 5. 17.

In this example (Table 5. 17) the algorithm will keep the and without any

change and change all bits of .

Table 5. 17 The parameter on free dynamic schema (0 or .

No. of

Ch.

 =

 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1

 0 0 0 0 0 0 1 0 * * * * * * * * 0 0 0 0 0 0 1 1

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 5

 144

Table 5.18 presents the results of 25 runs on 100-dimesional functions by using

MFDS, CMA-ES and GA, we notice that CMA-ES have 0% success rate on Rastrigin

function, in GA we have found the best solutions by using bit string and double vector

with 200 chromosomes and two point crossover. We used 200 chromosomes, maximum

2000 iterations and threshold 0.1 for all algorithms in this comparison.

Table 5. 18 Comparing the success rate and mean number of iteration

for 25 runs of the MFDS, GA, CMA-ES algorithms on 100-dimensional

functions

Function

name

Min

number of

iterations

Max

number of

iterations

Mean no. of

iterations

for all

successful

runs

Mean of the

best solution

fitness from

all successful

runs

Std.Dev.

of mean

no. of

Iter.

Success

rate of

MFDS

Success

rate of

GA /

Avr. of

Iter.

Success

rate of

CMA-

ES /

Avr. of

Iter.

Sum

Squares

d=100

479 1211 695

0.09675 119
100%

100%

273 It.
DV

100%

541 It. 7.33375 16.064 10.2286

Sphere

d=100

421 656 445

0.08958 47.5
100%

100%

234 It.
DV

100%

286 It.
5.3693 8.7836 6.5059

Sum of

Different

Powers

d=100

3 17 7

0.09685 3.3
100%

100%

85 It.
DV

100%

89 It. 0.0642 0.3157 0.1413

Rastrigin

d=100

505 1141 656

0.09864 127
100%

100%

218 It.
DV

0%

don’t
find 6.6197 15.221 10.1945

Ackley

d=100

236 495 339

0.08955 87
100%

100%

BS

97 It.

0% DV

100%

401 It. 4.0450 9.1167 6.1949

BS= bit string, DV= double vector as a parameter of population type in GA

toolbox, with maximum 2000 iterations, two point crossover, 200 chromosomes,

Std.Dev. = standard deviation.

*** For these functions we used copying the gray part from to as explained

in Table 5.19.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 5

 145

For 100-dimensional functions, we have applied a new change in the MFDS

algorithm: we appended one condition that if the number of dimensions is greater than

10, we apply coping the grey part of to in the best chromosome in a free dynamic

schema procedure, where i j, i, j are chosen randomly as shown in Table 5.19 (the

remaining bits in don’t change), this condition was added only for two groups of free

dynamic schema in population (P1). Here we assume that = because we must copy

the same number of highest bits from to .

Table 5. 19 The parameter on free dynamic schema (0 or .

 01010…010 0 0 0 0 1 0101 ……. 0 0 0 0 1 010 01010…10100

copy

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 146

CHAPTER SIX: Initial Population with Multi-Free Dynamic

Schema

6.1 Introduction

To start solving an optimization problem by using a GA, the initial population

generation is important. The population size usually remains the same in all generations.

The main difficulty concerning the initial population is that randomly generated

chromosomes may not satisfy the constraints of the problem. Another big difficulty is

that the initial population can be disproportionate to the problem [103]. In [103] the

population size was 100 chromosomes, but other authors used more than 100 in problems

with very large solution spaces [104].

In [105] the authors proposed using a random size of the initial population. The

minimum population size should be determined according to the problem size. The initial

population is produced by randomly determining p chromosomes, where p is a population

size [105].

In [106], [107] the influence of the population size is be discussed based on the

Genetic Algorithm (GA) facility. The population is examined for the population with a

fixed generations number, the examination is carried out between 5 and 200

chromosomes. For 200 generations, the optimal population size has been found to be 100

chromosomes [106], [107].

The population may contain non-useful and useful individuals. The operation is

reasonably better if the population contains only useful individuals [108]. That is, the GA

can faster obtain the best solution when the best chromosomes exist in the initial

population.

A brief outline for a variety methods of maintaining population diversity was

provided in [109]. The population diversity is effectively used to study the premature

convergence. The degree of population diversity is directly associated with premature

convergence [109], [110]. The mechanisms of preserving the diversity can help the

optimization process in two ways. A diverse population is appropriate for dealing with

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 147

multimodal functions and it can be used to simultaneously explore several landscape

fitness hills. Diversity-preserving methods are able to support global exploration and able

to help locating several local and global optima [110].

For the initial population, the essential challenge is that the individuals may not

satisfy the restrictions of the problem. For reaching the optimal solution by some

successive generation, the GA must improve the populations’ individuals [111].

The chromosomes are randomly generated, in order to collect the initial

population. The population size 100 chromosomes was considered in [112] and this

number of chromosomes has been utilized in previous studies such as [113], [104], also

in examples with big solution spaces, the initial population should be larger than 100.

Numerical experiments highlighted that the populations utilizing very small or

very large number of chromosomes number could lead to attain insignificant solutions

[114]. In addition, the population size of a range between 20 to 60 was applied and

employed to three problem types in [115].

The population size can be considered as one of the most important topics of the

evolutionary computation. An argument is commonly raised that a ―small‖ population

size can guide the algorithm to poor solutions and a ―large‖ population size can lead to

make the algorithm to spend more computation time until finding a solution [116]. The

center of mass was suggested to be used as an alternative method for measuring the

diversity of the population level. This theoretical approach of the initial random

population diversity analysis and measure is important. Also, it could be necessary for

designing the GAs because of the initial population relations with other GA parameters

and because of its relations to the premature convergence problem [116].

In [117], the researchers studied the effect of the first generation as well as the

diversity of the first generation on reaching the optimal solution of GAs. There is a

hypothesis saying that ―higher diversity in initial populations for Genetic Algorithms can

reduce the number of iterations required to reach an optimum and potentially increase

solution quality‖ [117]. It seems that for small populations it may be better to generate

structured chromosomes than random ones, and diversity can help to measure how

structured the initial population is [117].

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 148

In this chapter a new optimization algorithm (IPMFDS) is proposed taking

advantage of the effect of initial population. We have used a big initial population of 500,

1000 and 3000 chromosomes for 2-, 10- and 100-dimensional functions, respectively.

This initial population is evaluated and sorted, then we choose a number of the best

chromosomes to form first population in the IPMFDS algorithm. This first population is

of size 80, 160 and 200 chromosomes for 2-, 10- and 100-dimensional functions,

respectively. By this method, when the best chromosomes are present in the initial

population, the algorithm can find the optimal solution very fast.

6.2 The IPMFDS algorithm

The following optimization problem is considered:

 []

where

 is a given function.

In the algorithm described below, the encoding of chromosomes is the same as in

Chapter 3.

Let M be a positive integer divisible by 8. The IPMFDS algorithm consists of the

following steps:

1. Generate a big initial population (P), with size corresponding to the number of

variables in the problem (i.e., 500, 1000, 3000 for 2, 10, 100 variables

respectively), of chromosomes which represent the points . Then

decode, evaluate and sort fitness function values of chromosomes in ascending

order for minimization, and descending order for maximization, then get the best

 chromosomes that can be collected from the initial population.

2. Put the 2M chromosomes in the population (P0) and (P1), where (P0) consists of

four groups (G1, G2, G3, G4), and (P1) consists of eight groups (G5, G6,…, G12),

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 149

each group in (P0) having M/4 chromosomes, but in (P1) the size is equal to 20%

of population for (G5, G6) and 10% for (G7, ... , G12).

3. Compute the values of the fitness function f for each chromosome in the

population (G1,…, G12).

4. Sort the chromosomes according to the descending (for maximization) or

ascending (for minimization) values of the fitness function.

5. Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes.

6. Copy C times the first chromosome and put it in C randomly chosen positions in

the first half of population (P0), replacing the original chromosomes, where C =

M/10.

7. Apply the dynamic schema operator for chromosomes A = Ch1 and B = ChM/4

from populations (P0), (that is, the chromosomes on positions 1 and M/4,

respectively). Copy this schema M/4 times and put it in (G3).

8. Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively. Apply the dissimilarity and dynamic dissimilarity operators to

group (G5) and (G6) respectively.

9. Apply the free dynamic schema operator 6 times to generate six groups (G7,…,

G12), to generate each free schema chromosome is chosen randomly from first

quarter of solution in (P0). The put 0 or 1 randomly in positions having *s in each

group.

10. All the chromosomes created in Steps 5 to 9 replace the original ones in positions

from 2 to 2M in populations (P0) and (P1). Then randomly generate chromosomes

for group (G4).

11. Go to Step 3 and repeat until the stopping criterion is reached.

Note: The stopping criterion for the algorithm depends on the example being

considered, see Section 5.4.3.

The flowchart of IPMFDS algorithm is shown in Figure 6. 1.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 150

Figure 6. 1 The flowchart of the IPMDS algorithm.

Put the 2M chromosomes in the population (P0) and (P1). (P0) consists of four equal groups

(G1,…, G4), and (P1) consists of eight groups (G5,…,G12), where the size is equal to 20%

of population for (G5,G6) and 10% for (G7,... ,G12).

Decode chromosomes to find , using the formula

, where [a, b] is the range of .

Apply the dynamic schema operator for chromosomes Ch1 and ChM /4 from populations

(P0). Copy this schema M /4 times and put it in (G3).

Copy times the first solution and put it in randomly in the first half of population (P0),

replacing the original solutions, where C = M/8.

Copy the first 40% from (P0) onto (G5, G6), replacing the original chromosomes.

Evaluate the values of the fitness function for each chromosome in (G1,…,G12). sort

according to the descending for Max. or ascending for Min..

4.

Apply the similarity and dynamic dissimilarity operators to group (G5) and (G6)

respectively

Is the stopping criterion satisfied ?

Print the best solution and the number of iterations.

NO

Yes

Apply the free dynamic schema operator 6 times to groups (G7,…, G12).

Generate a big initial population (P) of 500 or 1000 chromosomes, each ch. represents

points . Then decode, evaluate and sort values of the fitness function according

to the descending for Max. or ascending for Min., then get the best 2M. solutions.

sort.

Choose randomly 6 chromosomes from first quarter of (P0) and apply the free dynamic

schema operator 6 times to generate groups (G7,…, G12). Put 0 or 1 in position having *s.

Apply the dynamic dissimilarity and similarity operators to groups (G1) and (G2)

respectively, Then randomly generate chromosomes for group (G4) in (P0).

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 151

6.3 Experimental results

In this section, we report on computational testing of the IPMFDS algorithm on

18 functions of 2 variables, one function of 4 variable, 5 functions of 10 variables and 5

functions of 100 variables , also the execution time is reported. After each test, the result

of IPMFDS has been compared with the known global optimum and with the result of a

CGA taken from our experimental results . All 22 tested functions with optimal solutions

are mentioned in Appendix A. We have applied the algorithm with the initial population

(P) as given in the Introduction: 500 chromosomes when applied to 2 dimensions, and set

(P0) to 80 chromosomes, see Table 6.1. But the initial population (P) of 1000, 3000

chromosomes is used with 10-, 100-dimensional functions, see Tables 6.1, 6.3, 6.4. The

stopping criterion is that the difference between our best solution and the known optimal

solution is less than or equal to a given threshold, see Tables 6.1, 6.3, 6.4.

Table 6.2 presents a comparative study of success rate and the number of function

evaluations for all successful runs for the CMA-ES, DE, IPMFDS algorithms, on 50 runs,

max 2500 iterations, 80 chromosomes.

Figure 6. 2, 6.3 present the average number of iterations with standard deviation

of iterations for 2-dimensional and 10-dimensional functions for IPMFDS algorithm.

The IPMFDS algorithm has found optimum solutions for some optimization

problems (like Beale's, Schaffer N.2, Schwefel's,) that the classical genetic algorithm

cannot reach to 100% success rate with bit string or double vector for population type, as

shown in Table 6.1, column nine. For our algorithm all success rates are 100% with 80

chromosomes in (P0) for all problems.

Note that the average number of iterations was really low to find the optimal

solutions, this was by effect of the big initial population.

The IPMFDS algorithm keeps the best solution from each iteration at the first

position until it is replaced by a better one.

Figure 6.4 shows the implementation of Shubert function with small range [-4, 4],

here it’s clear the IPMFDS algorithm has found the optimum solution in one iteration

after applying a big initial population on this small range.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 152

Table 6. 1 The results for 50 runs of the IPMFDS algorithm (80

chromosomes in P0).

Function

name

Threshold

of

stopping

criteria

Min

number

of

iterations/

Min time

in

seconds

Max

number

of

iterations/

Max time

in

seconds

Mean no.

of

iterations

for all

successful

runs/

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successfu

l runs

Success

rate of

IPMFDS

Rate of

success

GA

Easom 0.001
5 235 38

46 -0.99938 100%
100%

DV 0.0140 0.3685 0.06620

Matyas 0.001
2 7 4

1.2 0.000415 100%
100%

DV 0.00711 0.0161 0.01120

Beale's 0.001
2 27 8

5 0.000403 100%
70%
DV 0.00688 0.0427 0.01581

Booth's 0.001
3 29 8

4 0.000447 100%
100%

DV 0.0083 0.0442 0.01597

Goldstein–

Price
0.001

3 22 11
4.4

3.00057

100%

100%

DV 0.00872 0.0388 0.02115

Schaffer

N.2
0.001

2 20 8
3.6 0.000368 100%

70%
DV 0.00688 0.0337 0.01677

Schwefel's 0.001
2 27 15

5.9 0.000484 100%
0%

BS 0.01295 0.0836 0.0277

Branins's

rcos
0.001

2 144 17
29 0.398312 100%

100%

DV 0.00680 0.2047 0.0287

Six-hump

camel back
0.001

2 60 8
10.8 -1.03115 100%

100%
DV 0.00659 0.0933 0.0158

Shubert 0.01
2 39 11

6.8 -186.717 100%
100%

DV 0.0056 0.0629 0.0218

Martin and

Gaddy
0.001

2 8 4
1.4 0.000395 100%

40%

DV 0.00681 0.0154 0.0103

Michalewicz 0.04
2 234 27

34.4 38.81845 100%
80%
DV 0.00887 0.3313 0.0464

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 153

Holder

Table
0.001

3 15 7
3 -19.2081 100%

80%
DV 0.00767 0.0273 0.0149

Drop-wave 0.001
2 117 23

21 -0.9995 100%
100%

BS 0.01294 0.1679 0.0379

Levy N. 13 0.001
2 30 10

5.4 0.000405 100%
100%

BS 0.00693 0.0479 0.0188

Rastrigin’s 0.001
7 66 33

13.1 0.000408 100%*
100%

BS 0.01007 0.0730 0.0427

Sphere 0.001
2 14 6

3.3 0.000419 100%
100%

BS 0.00180 0.0285 0.0194

Rosenbrock’s

valley
0.001

2 35 15
9.4 0.000559 100%

100%

BS 0.00429 0.0495 0.0268

BS= bit string, DV= double vector as a parameter of population type in GA toolbox,

Std.Dev. = standard deviation.

Figure 6. 2 The average number and standard deviation of iterations for

2-dimensional functions with 80 chromosomes for IPMFDS algorithm

0

5

10

15

20

25

30

35

40

45

50

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

Sc
h

af
fe

rN
2

Sc
h

w
e

fe
l

B
ra

n
in

s

Si
x-

h
u

m
p

Sh
u

b
er

t

M
ar

ti
n

-G
ad

d
y

M
ic

h
al

ew
ic

z

H
o

ld
er

 t
ab

le

D
ro

p
-W

av
e

Le
vy

 N
.1

3

R
as

tr
ig

in
s

Sp
h

er
e

R
o

se
n

b
ro

ck

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 154

Table 6. 2 Comparing the mean number of function evaluations and

success rate of CMA-ES, DE and IPMFDS algorithms (50 runs, max

2500 iterations, 80 chromosomes)

function

name

CMA-ES

success

rate

Function

evaluations

of CMA-ES

DE

success

rate

Function

evaluations

of DE

IPMFDS

success

rate

Function

evaluations of

IPMFDS

Easom 70% 17053 100% 3240 100% 6080

Matyas 100% 500 100% 2700 100% 640

Beale 100% 460 100% 3060 100% 1280

Booth's 100% 492 100% 2820 100% 1280

Goldstein–

Price
100% 1812 100% 1620 100% 1760

Schaffer N.2 90% 6726 100% 5016 100% 1280

Schwefel's 0% ---- 0% ---- 100% 2400

Branins's

rcos
100% 6876 100% 840 100% 2720

Six-hump

camel
100% 780 100% 2160 100% 1280

Shubert 90% 2220 100% 8160 100% 1760

Martin and

Gaddy
100% 1660 100% 2400 100% 640

Michalewicz 100% 1848 0% --- 100% 4320

Drop-wave 50% 26470 94% 9048 100% 3680

Levy N. 13 100% 606 100% 1958 100% 1600

Rastrigin’s 80% 13134 100% 2388 100% 5280

Sphere 100% 720 100% 1800 100% 960

Ackley d=4 100% 2240 100% 3480 100% 8160

Rosenbrock’s 100% 1644 100% 4560 100% 2400

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 155

Table 6. 3 The results for 50 runs of the IPMFDS algorithm and run

time of 10-dimensional function.

Function

name
Threshold

Min

number

of

iterations

/ Min

time in

seconds

Max

number

of

iterations

/ Max

time in

seconds

Mean no. of

iterations

for all

successful

runs /

Average

time

Std.Dev.

of mean

no. of

Iter.

Mean of

the best

solution

fitness

from all

successful

runs

Success

rate of

IPMFDS

Success

rate of

GA

Sum

Squares

d=10

0.1

127 388 268

76.9 0.076726 100%
100%

BS
0.396452 1.171682 0.79964

Sphere

d=10
0.1

112 602 351

145.6 0.016648 100%
100%

BS 0.263907 1.383436 0.81086

Sum of

Different

Powers

d=10

0.1

2 9 4

2 0.012048 100%
100%

BS 0.007757 0.033951 0.019697

Zakharov

d=10
0.1

337 2000 1209

631 1.561844 60%
100%

BS 0.975018 5.721531 3.465392

Rastrigin

d=10
0.01

129 482 277

195 0.081194 100%*
100%

BS 0.466429 1.722902 0.99826

Ackley

d=4
0.001

31 94 51

42 0.007941 100%*
100%

BS 0.055756 0.135876 0.080212

* In this function we change the in dynamic schema and free dynamic schema

to be in the random range in the grey parts.

Table 6.4 presents the success rate, for CMA-ES, GA and IPMFDS, for 5 test

functions of 100 variables, with min and max the number of iterations given for IPMFDS

only. It is clear that the CMA-ES algorithm fails to find the solutions for Rastrigin

function with 100-dimensions with threshold = 0.1, this table also shows the average

number of iterations for CMA-ES and GA. In GA, we have found the best solutions by

using bit string or double vector with 200 chromosomes and two point crossover. For

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 156

CMA-ES and IPMFDS we have also used 200 chromosomes, and maximum 2000

iterations for all algorithms in this comparison.

Figure 6. 3 The average number and standard deviation of iterations for

10-dimensional functions with 80 chromosomes for IPMFDS algorithm

Table 6. 4 Comparing the success rate and mean number of iterations

on 25 runs of the IPMFDS, GA, CMA-ES algorithms of 100-

dimensional functions

Function

name

Min

number

of

iterations

Max

number

of

iterations

Mean no. of

iterations

for all

successful

runs

Mean of

the best

solution

fitness

from all

successful

runs

Std.Dev.

of mean

no. of

Iter.

Success

rate of

IPMFDS

Success

rate of

GA /

Avr. of

Iter.

Success

rate of

CMA-

ES /

Avr. of

Iter.

Sum

Squares

d=100

495 784 635

0.09899 108

100%

100%

273 It.

DV

100%

541 It. 8.8878 17.98339 12.50090

0

200

400

600

800

1000

1200

1400

Mean of iterations

Standard deviation

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 157

Sphere

d=100

359 612 486

0.08995 62

100%

100%

234 It.

DV

100%

286 It. 7.2347 11.32734 8.864059

Sum of

Different

Powers

d=100

3 16 8

0.083024 3.04

100%

100%

85 It.

DV

100%

89 It. 0.2160 0.50533 0.335193

Rastrigind

d=100

409 1130 643

0.09586 159

100%

100%

218 It.

DV

0%

Don’t

find 6.892259 19.76294 11.94528

Ackely

d=100

289 630 369

0.08465 84

100%

100%

BS

97 It.

0%

DV

100%

401 It. 4.045013 10.82567 7.94879

*** For all functions, we apply the condition that if the number of dimensions is

greater than 10, we make copy of the high significant bits from to in the same way

as described in Chapter 5, see Table 5. 19.

Fig. 6.4 shows how we can reach the optimum solution in 1 iteration by using a small

area of search for the Shubert function. Figure 6.5 shows a top view of Michalewicz

function to display the behavior of IPMFDS algorithm, the population (P1) is colored by

red, it’s clear that it focuses on the area of best solution, on the other hand the blue points

are for population (P0), that have more distribution in the search space for this function,

this figure was made for 19 iterations with the first population of 500 chromosomes.

The Figure 6.6 shows the three-dimensional view of Michalewicz function, it

shows how the best solution is handled. Solutions are concentrated near the optimal

solution as shown in green points, on the other hand blue solutions represent the random

re-generation of a part of the population, this figure was taken after 7 iterations. This

means that the IPMFDS algorithm has the ability to search in the best area of a function.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 158

Figure 6. 4 Shubert function: one iteration with small range [-4,4].

Figure 6. 5 The behavior of population (P0, P1) after 19 iterations for

Michalewicz function.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 6

 159

Figure 6. 6 The IPMFDS algorithm has the ability to search in the best

area of Michalewicz function.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 160

CHAPTER SEVEN: Comparison of all algorithms on selected

continuous and combinatorial optimization problems

7.1 Comparison of all algorithms

In this section three types of comparison are reported, according to the following

criteria: the average number of iterations, the average execution time, the average number

of function evaluations and the success rate. This shows the performance of all

algorithms introduced in this thesis: DSC, DSDSC, DDS, FDS, MFDS, IPMFDS, with

figures that present graphically the obtained values.

7.1.1 Comparison of the average number of iterations

In this subsection we compare the average number of iterations for all six

algorithms described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS), and for

known algorithms (CMA-ES, DE, GA), for all test functions with 2 dimensions, as

shown in Table 7.1. Figure 7.1 presents the values from Table 7.1, it’s clear that MFDS

and IPMFDS have the minimum average number of iterations to find the solutions for

most tested functions.

Table 7.2 presents the comparison of the average number of iterations for 10-

dimensional problems for all six algorithms from this thesis (DSC, DSDSC, DDS, FDS,

MFDS, IPMFDS), and Figure 7.2 shows the values from Table7.2.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 161

Table 7. 1 Comparing the average number of iterations for 2-

dimensional functions for all algorithms.

Function

name
DSC DSDSC DDS FDS MFDS IPMDFS CMA-ES DE

GA

DV

Easom 88 51 62 89 58 38 384 41 124

Matyas 31 11 5 6 5 4 9 34 125

Beale's 93 49 16 8 7 8 8 38 204

Booth's 151 20 17 12 10 8 8 35 75

Goldstein–

Price
134 34 20 35 21 11 31 21 82

Schaffer N.2 278 71 14 16 11 8 112 63 93

Schwefel's 561 41 65 39 29 15 * * *

Branins's

rcos
86 28 9 11 7 17 115 11 68

Six-hump

camel back
39 18 8 7 5 8 13 27 75

Shubert 198 19 33 45 26 11 37 102 64

Martin and

Gaddy
36 15 6 5 5 4 28 30 320

Michalewicz 207 67 71 55 30 27 31 500 72

Holder Table 47 12 24 19 12 7 * 113 240

Drop-wave 201 48 44 45 30 23 441 25 *

Levy N. 13 290 45 19 19 11 10 10 20 *

Rastrigin’s 71 25 38 58 41 33 219 23 51

Sphere 75 7 4 7 5 6 12 44 63

Ackley d=4 348 644 805 536 161 51 38 57 *

Rosenbrock’s 101 115 24 18 13 15 27 41 *

*Doesn’t find solution.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 162

Figure 7. 1 Comparing the average number of iterations for 2-

dimensional functions for all algorithms

Table 7. 2 Comparing the average number of iterations for 10-

dimensional functions with 160 chromosomes for all algorithms

Function

name
DSC DSDSC DDS FDS MFDS IPMDFS

Sum

Squares

d=10

1936 145 128 320 245 268

Sphere

d=10
746 31 23 51 46 351

0

50

100

150

200

250

300

350

400

450

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

CMA-ES

DE

GA DV

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 163

Sum of

Different

Powers

d=10

14 3 4 4 3 4

Zakharov

d=10
1808 217 468 581 373 1209

Rastrigin

d=10
*** 1045 *** 1159 294 277

*** No success for this function.

Figure 7. 2 Comparing the average number of iterations for 10-

dimensional functions for all algorithms.

7.1.2 Comparison of the average run time

In this subsection we present a comparison of the average run time among all six

algorithms that are described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS)

for all tested functions with 2 dimensions, as shown in Table 7.3. Figure 7.3 presents the

values from Table7.3, it is clear that the IPMFDS algorithm is the faster one, for most

functions . These results are obtained on a computer with 2.4 MHz core i5, 8 GB RAM.

0

500

1000

1500

2000

2500

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 164

Table 7. 3 Comparing the average run time for 2-dimensional functions

for all algorithms.

Function name DSC DSDSC DDS FDS MFDS IPMDFS

Easom 0.057025 0.05162 0.06854 0.10246 0.08722 0.06620

Matyas 0.022821 0.01257 0.00890 0.01018 0.01101 0.01120

Beale's 0.059205 0.05682 0.02033 0.01230 0.01412 0.01581

Booth's 0.104111 0.02052 0.02088 0.01525 0.01816 0.01597

Goldstein–

Price
0.048197 0.03643 0.02487 0.04092 0.03482 0.02115

Schaffer N.2 0.094244 0.07470 0.01865 0.02046 0.01967 0.01677

Schwefel's 0.560628 0.04776 0.07268 0.04629 0.04650 0.02770

Branins's rcos 0.045151 0.02526 0.0136 0.01717 0.01480 0.02879

Six-hump

camel back
0.018381 0.02446 0.01255 0.01105 0.01208 0.01587

Shubert 0.114426 0.02082 0.04216 0.05621 0.05036 0.02188

Martin and

Gaddy
0.015214 0.01696 0.00970 0.0093 0.01123 0.01035

Michalewicz 0.12288 0.03951 0.07212 0.06059 0.04506 0.04642

Holder Table 0.031067 0.01882 0.02977 0.02392 0.02042 0.01496

Drop-wave 0.090239 0.05398 0.04936 0.05029 0.04676 0.03797

Levy N. 13 0.195895 0.04869 0.02487 0.02350 0.02047 0.01888

Rastrigin’s 0.04296 0.02036 0.04922 0.05550 0.05336 0.04279

sphere 0.03764 0.01222 0.01252 0.01612 0.02026 0.01942

Rosenbrock’s

valley
0.04330 0.05360 0.03077 0.02552 0.02657 0.02680

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 165

Figure 7. 3 presents the comparison of all algorithms by time for 2-dimensional

functions, it is clear that the IPMFDS algorithm is the fastest one, for most functions .

Figure 7. 3 Comparing the average run time for 2-dimensional functions

for all algorithms.

Below, a comparison of the average run time is presented among all six

algorithms that are described in this thesis (DSC, DSDSC, DDS, FDS, MFDS, IPMFDS)

for all tested functions with 10 dimensions, as shown in Table 7.4. Figure 7.4 presents the

values from Table 7.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

Ea
so

m

M
at

ya
s

B
ea

le
's

B
o

o
th

's

G
o

ld
st

ei
n

–P
ri

ce

Sc
h

af
fe

r
N

.2

Sc
h

w
ef

el
's

B
ra

n
in

s'
s

rc
o

s

Si
x-

hu
m

p
ca

m
el

 b
ac

k

Sh
u

b
er

t

M
ar

ti
n

 a
n

d
 G

ad
d

y

M
ic

h
al

ew
ic

z

H
o

ld
er

 T
ab

le

D
ro

p
-w

av
e

Le
vy

 N
. 1

3

R
as

tr
ig

in
’s

sp
h

e
re

R
o

se
n

b
ro

ck
’s

 v
al

le
y

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 166

Table 7. 4 Comparing the average of run time for 10-dimensional

functions for all algorithms.

Function name

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

Sum Squares

d=10
2.872696 0.221053 0.335435 0.611585 0.588812 0.79964

Sphere d=10 1.055842 0.046462 0.05829 0.092892 0.105611 0.81086

Sum of

Different

Powers d=10

0.024399 0.005628 0.011352 0.011509 0.010049 0.019697

Zakharov d=10 2.847633 0.288333 1.649469 1.550803 1.079965 3.465392

Rastrigin d=10 2.668789 1.378663 4.388916 3.975838 1.049863 0.99826

Figure 7. 4 Comparing the average run time for 10-dimensions

functions for all algorithms.

It can be noted from the previous Table 7.4 that the run time rate was improved in

most cases, especially when we used 1000 elements in the first initial generation for 10

dimensions. Also, as shown in Figure 7. 4, it is clear the fastest algorithms for most

functions were DSDSC and MFDS.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 167

7.1.3 Comparison of the number of function evaluations and the success rate

In this subsection a comparison of the average number of function evaluations is

presented for all the six algorithms that are described in this thesis (DSC, DSDSC, DDS,

FDS, MFDS, IPMFDS) and for two known algorithms (CMA-ES, DE), for all the test

functions of 2 variables. The results are shown in Table 7. 5 and presented on a diagram

in Figure 7.5. Also, a comparison of the success rates is presented in Table 7.6.

Table 7. 5 Comparing the average number of function evaluations for 2-

dimensional functions with CMA-ES and DE algorithms

Function

name
DSC DSDSC DDS FDS MFDS IPMDFS CMA_ES DE

Easom 7040 4080 8680 12460 8120 6080 17053 3240

Matyas 2480 880 700 840 700 640 500 2700

Beale's 7440 3920 2240 1120 980 1280 460 3060

Booth's 12080 1600 2380 1680 1400 1280 492 2820

Goldstein–

Price
10720 2720 2800 4900 2940 1760 1812 1620

Schaffer N.2 22240 5680 1960 2240 1540 1280 6726 5016

Schwefel's 44880 3280 9100 5460 4060 2400 --- ---

Branins's rcos 6880 2240 1260 1540 980 2720 6876 840

Six-hump

camel
3120 1440 1120 980 700 1280 780 2160

Shubert 15840 1520 4620 6300 3640 1760 2220 8160

Martin and

Gaddy
2880 1200 840 700 700 640 1660 2400

Michalewicz 16560 5360 9940 7700 4200 4320 1848 ---

Holder Table 3760 960 3360 2660 1680 1120 --- ---

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 168

Drop-wave 16080 3840 6160 6300 4200 3680 26470 9048

Levy N. 13 23200 3600 2660 2660 1540 1600 606 1958

Rastrigin’s 5680 2000 5220 8120 5740 5280 13134 2388

Sphere 75 560 560 980 700 960 720 1800

Ackley d=4 30240 90160 112700 85760 25760 8160 2240 3480

Rosenbrock’s 101 9200 3360 2520 1820 2400 1644 4560

 Figure 7. 5 Comparing the average number of function evaluations for

2-dimensional functions for all algorithms.

0

5000

10000

15000

20000

25000

30000

DSC

DSDSC

DDS

FDS

MFDS

IPMDFS

CMA_ES

DE

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 169

It seems obvious that the DDS and IPMDFS algorithms have the lowest numbers

of function evaluations comparing with others algorithms, for most of the tested

functions, see Figure 7.5.

Table 7.6 presents a comparison of success rate, for 9 algorithms (DSC, DSDSC,

DDS, FDS, MFDS, IPMFDS, CMA-ES, DE, GA), for 2-dimensional test functions, with

population size 80 chromosomes and maximum 2500 iterations.

Table 7. 6 The success rate for 2-dimensional functions for all our

algorithms comparing with CMA-ES, DE and GA with 80

chromosomes, max. 2500 iterations

Function

name
DSC DSDSC DDS FDS

MFDS

And

IPMFDS

CMA_ES DE GA

Easom 100% 100% 100% 100% 100% 70% 100%
100%

DV

Matyas 100% 100% 100% 100% 100% 100% 100%
100%

DV

Beale's 100% 100% 100% 100% 100% 100% 100% 70% DV

Booth's 100% 100% 100% 100% 100% 100% 100%
100%

DV

Goldstein–

Price
100% 100% 100% 100% 100% 100% 100%

100%

DV

Schaffer N.2 100% 100% 100% 100% 100% 90% 100% 70% DV

Schwefel's 92% 100% 100% 100% 100% 0% 0% 0% BS

Branins's

rcos
100% 100% 100% 100% 100% 100% 100%

100%

DV

Six-hump

camel
100% 100% 100% 100% 100% 100% 100%

100%

DV

Shubert 100% 100% 100% 100% 100% 90% 100%
100%

DV

Martin and

Gaddy
100% 100% 100% 100% 100% 100% 100%

40%

DV

Michalewicz 100% 100% 100% 100% 100% 100% 0% 80% DV

Holder Table 100% 100% 100% 100% 100% --- --- 80% DV

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 170

Drop-wave 100% 100% 100% 100% 100% 50% 94%
100%

BS

Levy N. 13 100% 100% 100% 100% 100% 100% 100%
100%

BS

Rastrigin’s 100% 100% 100% 100% 100% 80% 100%
100%

BS

Sphere 100% 100% 100% 100% 100% 100% 100%
100%

BS

Ackley d=4 100% 80% 50% 86% 100% 100% 100%
100%

BS

Rosenbrock’s 100% 100% 100% 100% 100% 100% 100%
100%

BS

Below, a comparison of the number of function evaluations and success rate is

presented, for four algorithms (CMA-ES, GA, MFDS, IPMFDS), for five tested functions

of 100 variables, with threshold equal to 0.1. The results are shown in Table 7.7.

Table 7. 7 Comparing the number of function evaluation and the

success rate for CMA-ES, GA, MFDS and IPMFDS algorithms for 25

runs on 100-dimensional functions.

Function

name

CMA-ES

Mean of

function

evaluation

Success

rate of

CMA-

ES

GA Mean of

function

evaluation

Success

rate

GA

MFDS

Mean of

function

evaluation

Success

rate of

MFDS

IPMFDS

Mean of

function

evaluation

Success

rate of

IPMFDS

Sum

Squares

d=100

81324 100% 54600
100%

DV
139000 100% 127635 100%

Sphere

d=100
51636 100% 48200

100%

DV
89000 100% 97200 100%

Sum of

Different

Powers

d=100

16164 100% 17000
100%

DV
1600 100% 1600 100%

Rastrigin

d=100

Don’t

find

solution
0% 43600

100%

DV
128600 100% 128600 100%

Ackley

d=100
72180 100% 19400

100%
BS

67800 100% 73800 100%

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 171

7.2 Application of all algorithms on some functions from the CEC 2017

benchmark (2- and 3-dimensional shifted and rotated functions)

In this section, we report on computational testing of 8 algorithms (DSC, DSDSC,

DDS, FDS, MFDS, IPMFDS, CMA-ES, DE), on five two-dimensional shifted and

rotated functions (Bent Cigar, Sum of Different Power, Zakharov, Rosenbrock’s,

Rastrigin’s) [45], by using 300 chromosomes, maximum 5000 iterations and 100 runs.

Table 7.8 presents these results.

We have also performed an experiment on two three-dimensional shifted and

rotated functions (Bent Cigar, Sum of Different Power). We have applied three

algorithms (IPMFDS, CMA-ES, DE), by using 300 chromosomes, maximum 5000

iterations and 100 runs. We notice that for the Shifted and Rotated Bent Cigar function

the CMA-ES algorithm has not found the optimum solution, the IPMFDS has found the

solution only with 2% success rate, while the DE algorithm is the best one that has found

optimum solution with 100% success rate. On the other hand, for Shifted and Rotated

Sum of Different Power, all three algorithms have got 100% success rate and the

IPMFDS is the fastest one. Table 7.9 presents these experimental results.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 172

Table 7. 8 The results for 25 runs of all our algorithms comparing with CMA-ES and DE on 2-dimensional

of shifted and rotated functions.

Function name

 DSC DSDSC DSS FDS

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Shif. Rot. Bent

Cigar
12% 802 64160 12% 1246 99680 20% 1520 121600 24% 1427 114160

Shif. Rot. Sum

of Different

Power

100% 240 19200 100% 21 1680 100% 25 2000 100% 29 2320

Shif. Rot.

Zakharov
100% 394 31520 100% 22 1760 100% 31 2480 100% 45 3600

Shif. Rot.

Rosenbrock’s
32% 711 56880 72% 895 71600 96% 490 39200 96% 286 22880

Shif. Rot.

Rastrigin’s

50% 1197 95760 100% 408 32640 100% 363 29040 100% 318 25440

Shif. Rot. = Shifted and Rotated.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 173

Function name

MFDS IPMDSC CMA-ES DE

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Success

rate

Mean of

iteration

Mean of

function

evaluations

Shif. Rot. Bent

Cigar
85% 1138 90240 92% 1031 82480 100% 24 1920 100% 119 9520

Shif. Rot. Sum

of Different

Power

100% 11 880 100% 14 1120 100% 12 960 100% 40 3200

Shif. Rot.

Zakharov
100% 10 800 100% 15 1200 100% 14 1120 100% 41 3280

Shif. Rot.

Rosenbrock’s
100% 263 21040 100% 238 19040 100% 45 3600 100% 107 8560

Shif. Rot.

Rastrigin’s

100% 74 5920 100% 102 8160 0% (doesn’t find the solution) 100% 66 5280

Shif. Rot. = Shifted and Rotated.

We used these values: [

] for sifted and rotated functions.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 174

Table 7. 9 Application of the IPMDSC, CMA-ES and DE algorithms on

two 3-dimensional shifted and rotated functions from CEC 2017 with

100 runs.

Function name

IPMDSC CMA-ES DE

Success

rate

Mean of

iteration

Mean of

function

evaluation

Success

rate

Mean of

iteration

Mean of

function

evaluation

Success

rate

Mean of

iteration

Mean of

function

evaluation

Shif. Rot. Bent

Cigar
2% 55 16500 0% (doesn’t find the solution) 100% 316 94800

Shif. Rot. Sum

of Different

Power

100% 4 1200 100% 9 2700 100% 39 11700

In three-dimensional rotated functions we used these values:

 [],

 where are:

 [

]

 [

]

 [

]

where is equal to 30.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 175

7.3 Application of our algorithms to the knapsack problem

The knapsack problem or rucksack problem is a problem in combinatorial

optimization: given a set of items, each with a weight and a value, determine the count of

each item to include in a collection so that the total weight is less than or equal to a given

limit and the total value is as large as possible. It derives its name from the problem faced

by someone who is constrained by a fixed-size knapsack and must fill it with the most

useful items [118], [119].

In [120] the authors studied a 0-1 knapsack problem. There are many problems in

this category, NP-hard, and large cases of such problems can only be addressed using

heuristic algorithms. They analyzed experimentally the behavior of a few GA-based

algorithms on several sets of randomly generated test problems. They used in all

experiments the population size equal to 100, mutation and crossover rates fixed to 0.05

and 0.65, respectively; the authors used a simple one-point crossover. As a performance

measure, they used the best solution found within 500 generations.

The formulation of a knapsack problem can be utilized to describe other problems

like, for example, the feature selection problem that frequently occurs in the context of

construction of an analytical model [118], [121].

The most common problem being solved is the 0-1 knapsack problem, which

restricts the number of copies of each kind of item to zero or one. Given a set

of n items numbered from 1 up to , each with a weight and a value , along with a

maximum weight capacity ,

 ∑

 ∑

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 176

Here represents the fitness function and is a binary vector,

indicating selected items, i.e., if the -th item is selected into the knapsack,

and otherwise [118].

Informally, the problem is to maximize the sum of the values of the items in the

knapsack so that the sum of the weights is less than or equal to the knapsack's capacity.

Example of problem (7.1) with 50 items:

We have taken the GA program and data of a knapsack problem from [122],

where .

weight-set =

[23,47,22,15,42,30,15,32,47,33,15,38,44,7,16,34,30,33,3,2,43,31,46,17,30,1,34,2

1,30,21,29,21,36,14,18,21,13,3,27,44,33,11,9,31,40,40,30,9,41,31]

price-set =

[27,34,9,22,8,17,22,21,23,19,7,36,11,42,37,16,10,26,10,50,23,46,37,3,14,16,35,1

4,15,44,49,2,45,3,15,1,34,44,19,25,43,28,26,4,30,24,49,11,48,13];

In Table 7.10, we have applied 7 algorithms to the knapsack problem with 150

and 500 iterations, with population size 80. We notice that in 150 iterations the GA has

not reached to the highest value for given data, but DSDSC has found the best value

(915) as maximum value and IPMFDS is found the next best value (912) as maximum

value. These algorithms have reached solutions better than GA (904) and other

algorithms. On the other hand, we notice that in 500 iterations the GA, DSC and DSDSC

algorithms have reached the optimum solution (920), also the other algorithms have

better values in 500 iterations than 150 iterations. We conclude that the DSDSC and

IPMFDS algorithms are better than GA to find the highest value with 150 iterations.

The version of GA are used here in this problem was bit string. We have made

some changes in our algorithms: the size of fixed part of higher bits has decreased to a

random value between 1and 5 in the dynamic schema, free dynamic schema and dynamic

dissimilarity operators in DSDSC, DDS, FDS, MFDS, IPMFDS algorithms.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 7

 177

Table 7. 10 The results of knapsack problem with 50 items, for 20 runs

of the DSC,DSDSC and GA algorithm (80 chromosomes) by using 150

and 500 iterations.

Algorithm

name

Min value /

Min time

in seconds/

150 It.

Max value/

Max time

in seconds/

150 It.

Mean values

for all runs/

Average

time/ 150 It.

Min value /

Min time in

seconds/

500 It.

Max value/

Max time in

seconds/

500 It.

Mean values

for all runs/

Average

time/ 500 It.

GA

885 904 893 904 920 912

0.312 0.521 0.38655 1.092 1.3112 1.1388

DSC

850 903 885 888 920 907

0.81123 0.96721 0.88556 2.6208 3.0264 2.872

DSDSC

878 915 895 898 920 904

0.88961 1.02081 0.9828 2.641 2.964 2.73

DDS

868 907 885 894 914 904

0.81723 1.07231 0.88773 2.846 3.2108 2.9322

FDS

838 893 864 857 893 866

1.025 1.1501 1.08566 3.0160 3.527 3.406

MFDS

848 902 878 876 913 899

1.0967 1.2413 1.1825 2.979 3.441 3.198

IPMFDS

866 912 875 881 912 892

1.0623 1.0915 1.0882 3.178 3.920 3.271

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 8

 178

CHAPTER EIGHT: Conclusions

We see that our algorithms have ability to find the optimum solutions for two-

dimensional functions in 100% success rate, but CMA-EA and DE haven’t this ability for

some tested functions (like Easom, Rastrigin’s, Schwefel's).

In the IPMFDS algorithm, where the first initial population generates enough

population diversity, and we use the different types of dynamic schema, free dynamic

schema, similarity and dissimilarity operators with new random generation in each

population, it is not a problem to find the global maximum/minimum solution, also

random generation of a part of chromosomes supports population diversity in each

iteration, especially with two-dimensional functions.

In free dynamic schema, when fixing the higher bits of each , it means that we

select the area to be searched for the best solution iteration after iteration, and when the

fixed bits are increased, the search area will be more specific.

For ten-dimensional functions, we found it better to make a mask on some and

change the others completely, this idea gives a high percentage of success rate. Also we

have seen that the CMA-ES doesn’t find the optimum solutions for the Zakharov, and

Rastrigin’s functions in ten dimensions.

The fastest algorithm in terms of time was IPMFDS with two-dimensional

functions but not with ten-dimensional functions. The fastest algorithm with ten-

dimensional functions was DSDSC.

The lowest number of function evaluations was in the IPMFDS algorithm

comparing with other algorithms for the most tested functions.

The dynamic schema, free dynamic schema and dynamic dissimilarity operators

have big ability and possibility to reach the optimum solution.

In complex problems which had multiple local solutions, we discovered that,

when the range of the function was reduced, the optimal solution was found faster.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Chapter 8

 179

In the knapsack problem we have observed that the DSDSC and DDS algorithms

give the best solutions comparing to other algorithms (GA, DSC, FDS, MFDS,

IPMFDS) in 150 iterations, in 500 iterations three algorithms (GA, DSC and DSDSC)

reached to the optimum solution for the given data.

For the rotated and shifted functions that we have tested (taken from CEC 2017),

we noted that the GA has not found the solutions for these functions; also CMA-ES has

not found the best solution for one function (Rastrigin’s), but our algorithms have found

the optimum solution with different rates of success. We notice that for the first four

algorithms (DSC, DSDSC, DDS, FDS) the success rates are low, but for the last two

algorithms (MFDS, IPMFDS) we have reached 100% as a success rate for most tested

functions.

We have applied the last two algorithms (MFDS, IPMFDS) to several 100-

dimensional problems, and we notice the ability of these algorithms to solve these

problems after making some changes in the algorithms, that is, copying higher bits from

 to in the best chromosome (where and are chosen randomly), while CMA-ES

fails to find the solution for the Rastrigin function with = 100. On the other hand, the

CGA has ability to find the optimum solution by using bit string in the population type

better than double vector with all tested functions with 100 dimensions.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 180

Appendix A: Test Functions

A.1 Easom function [123], [124]

The Easom function is a unimodal test function, where the global minimum

occurs in a small area relative to the search space. The function is used for minimization.

It has two variables and the following definition:

The test area is usually restricted to the square

 . Its global minimum is equal to .

A.2 Matyas function [125]

This function has two variables and the following definition:

The test area is usually restricted to the square .

The global minimum value at .

A.3 Beale’s function [126], [127]

This function has two variables and the following definition:

The test area is usually restricted to the square .

 The global minimum value at .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 181

A.4 Booth’s function [128]

This function has two variables and the following definition:

Test area is usually restricted to the square .

The global minimum value at .

A.5 Goldstein-Price function [123]

This function has two variables and the following definition:

 The test area is usually restricted to the square . The

global minimum value is equal is obtainable for .

A.6 Schaffer function [129]

This function is defined in the search domain [], as follows:

and has the global min .

A.7 Schwefel’s function [123]

The Schwefel’s function is misleading in that the best local minima are positioned

far from the global minimum. Thus, the optimization algorithm may face an incorrect

convergence. The function can be defined by the following equation:

 ∑ (√)

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 182

The test area is usually restricted to the hypercube ,

 . Its global minimum .

In this work, this formula is used:

 ∑ (√)

for two dimensions and the minimum solution = 0 at (420.9687, 420.9687).

A.8 Branins’s function [123]

The Branin function has two parameters and it can be considered as a global

optimization assessment function. The function contains three global optima and can be

defined according to the following equation:

where

It has three global minima equal to and located as

follows: .

A.9 Six-hump camel back function [123]

The Six-hump camel back function is basically a global optimization assessment

function. This function possesses six local minima, inside the bounded area. Furthermore,

two of the six minima are global. This function can be defined by the following equation:

 (

 ⁄)

The test area is usually restricted to the rectangle −3 ≤ ≤ 3, −2 ≤ ≤ 2. Two

global minima equal to are located at

and .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 183

A.10 Shubert’s function [123]

This is a multimodal test function. It has two variables and the following

definition:

 (∑ []

) (∑ []

)

The test area is usually restricted to the square .

It has eighteen global minimum equal to .

A.11 Martin and Gaddy function

This function has two variables and the following definition:

The test area is usually restricted to the square 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, where the

global minimum value at .

A.12 Michalewicz function [123]

The Michalewicz functions is basically a multimodal testing function. It is defined

as follows:

The domain is [] , [] and the maximum value is at

 [130].

A.13 Holder table function [129]

The holder table function has multiple local minima with four global minima at:

 -19.2085.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 184

It is defined as follows:

 | (|
√

|)|

A.14 Drop wave function [123]

This is a multimodal test function. This function has two variables and the

following definition:

 (√

)

The test area is usually restricted to the square

 .

A.15 Levy (#13) function [129], [125]

This function has two variables and the following definition:

 [] [] ,

where [], and the global minimum value is at .

A.16 Rastrigin’s function

The Rastrigin function has several local minima. It is highly multimodal, but

locations of the minima are regularly distributed.

 ∑ [

]

The function is usually evaluated on the hypercube [], for

all , where the global minimum value is at .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 185

A.17 Sum Squares function

The Sum Squares function also referred to as the Axis Parallel Hyper-Ellipsoid

function, has no local minimum except the global one. It is continuous, convex and

unimodal. It is defined as follows:

 ∑

The function is usually evaluated on the hypercube [], for all

 , although this may be restricted to the hypercube [], for all

 . The global minimum is at .

A.18 Sphere function

The Sphere function has variables and the following definition. It is continuous,

convex and unimodal.

 ∑

The function is usually evaluated on the hypercube [], for all

 . The global minimum is at .

A.19 Sum of different powers function

This function has variables and the following definition. We have used =10.

 ∑

The function is usually evaluated on the hypercube [], for all

 . The global minimum is at .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 186

A.20 Ackley’s function [123]

Ackley’s function is a widely used multimodal test function. It has the following

definition:

 (√

∑

) (

∑

)

It is recommended to set . Test area is usually

restricted to the hypercube [], i = 1, . . . ,d. The global minimum

is at .

A.21 Zakharov function

This function has d variables and the following definition. 10 dimensions have

been used.

 ∑

 ∑

 ∑

The function is usually evaluated on the hypercube [], for all

 . The global minimum is at .

A.22 Rosenbrock’s valley function [101]

This function has d variables and the following definition

 ∑ [
]

The function is usually evaluated on the hypercube [], for all

 . The global minimum is at .

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 187

Shifted and rotated test functions (CEC 2017 benchmark) [45]

The test functions in this part are shifted by and rotated by where

 : shifted global optimum which is randomly distributed in [-80,80],

 : rotation matrix.

A.23 Shifted and Rotated Bent Cigar

where is

 ∑

The properties of this function are: unimodal, non-separable, smooth but narrow

ridge.

A.24 Shifted and Rotated Sum of Different Power Function

where is

 ∑

The properties of this function are: unimodal, non-separable, symmetric.

A.25 Shifted and Rotated Zakharov Function

where is

 ∑

 ∑

 ∑

The properties of this function are: unimodal, non-separable.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…Appendix

 188

A.26 Shifted and Rotated Rosenbrock’s Function

 ((

))

where is

 ∑ [
]

The properties of this function are: multi-modal, non-separable, the number of local

optima is huge.

A.27 Shifted and Rotated Rastrigin’s Function

where is

 ∑ [

]

The properties of this function are: multi-modal, non-separable, the number of local

optima is huge and second best local optimum is far from the global optimum.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 189

References

[1] Y. Xinjie and G. Mitsuo, Introduction to Evolutionary Algorithms. Springer-

Verlag London Limited, 2010.

[2] E. K.P. Chong and S. H. ZAK, An Introduction to Optimization. Wiley, USA,

2001.

[3] R. Subramani and C. Vijayalakshmi, ―A review on advanced optimization

techniques,‖ ARPN J. Eng. Appl. Sci., vol. 11, no. 19, pp. 11675–11683, 2016.

[4] T. El-Ghazali, Metaheuristics From Design to Implementation. JohnWiley & Sons,

Inc., Hoboken, New Jersey, Canada, 2009.

[5] F. Glover, ―Tabu Search - Part I,‖ ORSA J. Comput., vol. 1, no. 3, pp. 190–206,

1989.

[6] F. Glover, ―Tabu search - Part II,‖ ORSA J. Comput., vol. 2, no. 1, pp. 4–32, 1990.

[7] S. Ólafsson, ―Metaheuristics,‖ Handbooks Oper. Res. Manag. Sci., pp. 633–654,

2006.

[8] K. Amouzgar, ―Multi-Objective Optimization using Genetic Algorithms,‖ Thesis

Work. Tek. Hogsk., p. 79, 2012.

[9] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley

& Sons, New York, 2001.

[10] S. S. Rao, Engineering Optimization: Theory and Practice. John Wiley & Sons,

Inc., 2009.

[11] H. Ishibuchi and Y. Nojima, ―Optimization of scalarizing functions through

evolutionary multiobjective optimization,‖ Lect. Notes Comput. Sci. 4403 Evol.

Multi-Criterion Optim. - EMO , Springer, Berlin, pp. 51–65, 2007.

[12] G. Venturelli, E. Benini, and Ł. Łaniewski-Wołłk, ―A kriging-assisted

multiobjective evolutionary algorithm,‖ Appl. Soft Comput., vol. 58, pp. 155–175,

2017.

[13] S. Bandyopadhyay and S. Saha, Unsupervised Classification, chapter 2, Some

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 190

Single- and Multiobjective Optimization techniques. Springer-Verlag Berlin

Heidelberg., 2013.

[14] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1999.

[15] J. D. Farmer, N. H. Packard, and A. S. Perelson, ―The immune system, adaptation,

and machine learning,‖ Physica, vol. 22, no. 1–3, pp. 187–204, 1986.

[16] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics, Springer N., vol. 146.

Springer New York Dordrecht Heidelberg London, 2010.

[17] J. Kennedy and R. Eberhart, ―Particle swarm optimization,‖ 1995 IEEE Int. Conf.

Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995.

[18] R. Storn and K. Price, ―Differential evolution – A simple and efficient heuristic for

global optimization over continuous spaces,‖ J. Glob. Optim., vol. 11, no. 4, pp.

341–359, 1997.

[19] D. Mora-Melia, P. L. Iglesias-Rey, F. J. Martinez-Solano, and P. Munoz-Velasco,

―The efficiency of setting parameters in a modified shuffled frog leaping algorithm

applied to optimizing water distribution networks,‖ Water (Switzerland), vol. 8,

no. 182, p. 14, 2016.

[20] D. Karaboga, ―An idea based on honey bee swarm for numerical optimization,‖

Tech. report-TR06, Erciyes Univ. Eng. Fac. Comput. Eng. Dep. Kayseri/Türkiye,

vol. technical, 2005.

[21] R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced

Optimization Techniques, Chapter 2. Springer-Verlag London, 2012.

[22] J. Liu and L. Tang, ―A modified genetic algorithm for single machine scheduling,‖

Comput. Civ. Infrastruct. Eng., vol. 37, pp. 43–46, 1999.

[23] C. Preechakul and S. Kheawhom, ―Modified genetic algorithm with sampling

techniques for chemical engineering optimization,‖ J. Ind. Eng. Chem., vol. 15, no.

1, pp. 110–118, 2009.

[24] H. Cui and O. Turan, ―Application of a new multi-agent hybrid co-evolution based

particle swarm optimisation methodology in ship design,‖ CAD Comput. Aided

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 191

Des., vol. 42, no. 11, pp. 1013–1027, 2010.

[25] I. Montalvo, J. Izquierdo, R. Pérez-García, and M. Herrera, ―Improved

performance of PSO with self-adaptive parameters for computing the optimal

design of Water Supply Systems,‖ Eng. Appl. Artif. Intell., vol. 23, no. 5, pp. 727–

735, 2010.

[26] A. R. Yildiz, ―A novel particle swarm optimization approach for product design

and manufacturing,‖ Int. J. Adv. Manuf. Technol., vol. 40, no. 5–6, pp. 617–628,

2009.

[27] H. Yu, G. Gu, H. Liu, J. Shen, and J. Zhao, ―A modified ant colony optimization

algorithm for tumor marker gene selection,‖ Genomics. Proteomics

Bioinformatics, vol. 7, no. 4, pp. 200–208, 2009.

[28] Q. Shen, J.-H. Jiang, J.-C. Tao, G.-L. Shen, and R.-Q. Yu, ―Modified ant colony

optimization algorithm for variable selection in QSAR modeling: QSAR studies of

cyclooxygenase inhibitors.,‖ J. Chem. Inf. Model., vol. 45, no. 4, pp. 1024–9,

2005.

[29] D. Karaboga and B. Akay, ―A modified Artificial Bee Colony (ABC) algorithm

for constrained optimization problems,‖ Appl. Soft Comput. J., vol. 11, no. 3, pp.

3021–3031, 2011.

[30] S. Sajeevan and N. Padmavathy, ―Optimal allocation and sizing of distributed

generation using artificial bee colony Algorithm,‖ Int. Res. J. Eng. Technol., vol.

3, no. 2, pp. 1–11, 2016.

[31] W. Mao, H.-Y. Lan, and H.-R. Li, ―A new modified artificial bee colony algorithm

with exponential function adaptive steps,‖ Comput. Intell. Neurosci., vol. 2016, no.

i, p. 13, 2016.

[32] B. Tang, Z. Zhu, and J. Luo, ―Hybridizing particle swarm optimization and

differential evolution for the mobile robot global path planning,‖ Int. J. Adv.

Robot. Syst., vol. 13, no. 3, p. 17, 2016.

[33] W. Y. Lin, ―A GA-DE hybrid evolutionary algorithm for path synthesis of four-bar

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 192

linkage,‖ Mech. Mach. Theory, vol. 45, no. 8, pp. 1096–1107, 2010.

[34] Y. P. Chang, ―An ant direction hybrid differential evolution algorithm in

determining the tilt angle for photovoltaic modules,‖ Expert Syst. with Appl.

Elsevier, vol. 37, no. 7, pp. 5415–5422, 2010.

[35] Y. Marinakis and M. Marinaki, ―A hybrid multi-swarm particle swarm

optimization algorithm for the probabilistic traveling salesman problem,‖ Comput.

Oper. Res., vol. 37, no. 3, pp. 432–442, 2010.

[36] V. Savsani, ―HBBABC: A hybrid optimization algorithm combining

Biogeography Based Optimization (BBO) and Artificial Bee Colony (ABC)

optimization for obtaining global solution of discrete design problems,‖ I

nternational J. Comput. Eng. Res., vol. 2, no. 7, pp. 85–97, 2012.

[37] Y.-T. Kao and E. Zahara, ―A hybrid genetic algorithm and particle swarm

optimization for multimodal functions,‖ Appl. Soft Comput., vol. 8, no. 2, pp. 849–

857, 2008.

[38] L. Shi, C. Chen, and E. Yucesan, ―Simultaneous simulation experiments and

nested partition for discrete resource allocation in supply chain management,‖

Proc. Winter Simul. Conf., pp. 395–401, 1999.

[39] L. Shi and S. Olafsson, ―Two-stage nested partitions method for stochastic

optimization,‖ Methodol. Comput. Appl. Probab., vol. 2, no. 3, pp. 271–291, 2000.

[40] I. Younas, ―Using Genetic Algorithms for Large Scale Optimization of

Assignment , Planning and Rescheduling Problems,‖ Doctoral Thesis in

Electronics and Computer Systems Stockholm, Sweden, 2014.

[41] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence. Second edition:

MIT Press, 1975.

[42] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Springer-

Verlag Berlin Heidelberg, 2008.

[43] K. F. Man, K. S. Tang, and S. Kwong, ―Genetic algorithms : Concepts and

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 193

applications,‖ IEEE Trans. Ind. Electron., vol. 43, no. 5, pp. 519–534, 1996.

[44] S. A.-H. Soliman and A.-A. H. Mantawy, Modern Optimization Techniques with

Applications in Electric Power Systems, chapter 2, Mathematical Optimization

Techniques. Springer, 2012.

[45] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu, ―Problem

Definitions and Evaluation Criteria for the CEC 2017 Special Session and

Competition on Single Objective Real-Parameter Numerical Optimization,‖

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm,

2017.

[46] K. Manda, S. C. Satapathy, and B. Poornasatyanarayana, ―Population based meta-

heuristic techniques for solving optimization problems : A selective survey,‖ Int. J.

Emerg. Technol. Adv. Eng., vol. 2, no. 11, pp. 206–211, 2012.

[47] F. Glover, ―PATHS FOR INTEGER PROGRAMMING,‖ Comput. Ops. Res., vol.

13, no. 5, pp. 533–549, 1986.

[48] I. H. Osman and G. Laporte, ―Metaheuristics: A bibliography,‖ Ann. Oper. Res.,

vol. 63, no. 5, pp. 511–623, 1996.

[49] G. P. Rajappa, ―Solving Combinatorial Optimization Problems Using Genetic

Algorithms and Ant Colony Optimization,‖ 2012.

[50] A. Fita, ―Metaheuristic start for gradient based optimization algorithms,‖ Am. J.

Comput. Appl. Math., vol. 5, no. 3, pp. 88–99, 2015.

[51] I. Boussaïd, J. Lepagnot, and P. Siarry, ―A survey on optimization metaheuristics,‖

Inf. Sci. Elsevier, vol. 237, pp. 82–117, 2013.

[52] A. Cruz-bernal, ―Meta-Heuristic optimization techniques and its applications in

robotics,‖ INTECH, World Larg. Sci. , Technol. Med. Open Access B. Publ., pp.

53–75, 2013.

[53] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer

Heidelberg New York Dordrecht London, 2015.

[54] P. Chang, Y. Wang, and C. Liu, ―New operators for faster convergence and better

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 194

solution quality in modified genetic algorithm,‖ Wang L., Chen K., Ong Y.S. Adv.

Nat. Comput. ICNC 2005. Lect. Notes Comput. Sci. vol 3611. Springer, Berlin,

Heidelb., pp. 983–991, 2005.

[55] G. Q. Zeng, K. Di Lu, J. Chen, Z. J. Zhang, Y. X. Dai, W. W. Peng, and C. W.

Zheng, ―An improved real-coded population-based extremal optimization method

for continuous unconstrained optimization problems,‖ Math. Probl. Eng., vol.

2014, pp. 1–10, 2014.

[56] I. C. D. Informatik, C. Dortmund, and G. Rudolph, ―Convergence of Evolutionary

Algorithms in General Search Spaces,‖ pp. 0–4, 1996.

[57] G. U. Rudolph, ―Convergence analysis of canonical genetic algorithms,‖ IEEE

Trans. Neural Networks, vol. 5, no. 1, pp. 96–101, 1994.

[58] J. Dréo, P. Alain, P. Siarry, and E. Taillard, Metaheuristics for Hard Optimization.

Springer-Verlag Berlin Heidelberg, 2006.

[59] M. D. Vose, ―Logarithmic convergence of random heuristic search.‖ Evolutionary

Computation, pp. 395–404, 1997.

[60] C. C. Y. Dorea, J. A. G. Jr, R. Morgado, and G. C. Andre, ―Multistage Markov

chain modeling of the genetic algorithm and convergence results,‖ Numer. Funct.

Anal. Optim., vol. 2, no. 31, pp. 163–171, 2010.

[61] A. G. C. Pereira and V. S. M. Campos, ―Multistage non homogeneous Markov

chain modeling of the non homogeneous genetic algorithm and convergence

results,‖ Commun. Stat. - Theory Methods, vol. 45, no. 6, pp. 1794–1804, 2016.

[62] J. A. Rojas Cruz and A. G. C. Pereira, ―The elitist non-homogeneous genetic

algorithm: Almost sure convergence,‖ Stat. Probab. Lett., vol. 83, no. 10, pp.

2179–2185, 2013.

[63] J. A. R. Cruz and I. C. Diniz, ―Mean convergence time of inhomogeneous genetic

algorithm with elitism,‖ Numer. Funct. Anal. Optim., vol. 37, no. 8, pp. 966–974,

2016.

[64] R. R. Sharapov and A. V. Lapshin, ―Convergence of genetic algorithms,‖ Pattern

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 195

Recognit. Image Anal., vol. 16, no. 3, pp. 392–397, 2006.

[65] M. Studniarski, ―Stopping criteria for a general model of genetic algorithm,‖ Pr.

Nauk. Politech. Warszawaskiej, vol. 169, no. 4, pp. 1–8, 2009.

[66] M. Studniarski, ―Stopping criteria for genetic algorithms with application to

multiobjective optimization,‖ PPSN XI, Part I, LNCS 6238, Springer-Verlag

Berlin Heidelb., pp. 697–706, 2010.

[67] M. Studniarski, ―Finding all minimal elements of a finite partially ordered set by

genetic algorithm with a prescribed probabilty,‖ Numer. Algebr. Control Optim.,

vol. 1, no. 3, pp. 389–398, 2011.

[68] S. Y. Yuen, C. K. Fong, and H. S. Lam, ―Guaranteeing the probability of success

using repeated runs of genetic algorithm,‖ Image Vis. Comput., vol. 19, pp. 551–

560, 2001.

[69] S. Yin, H. Shan, C. Ki, S. Feng, and C. Kin, ―A robust iterative hypothesis testing

design of the repeated genetic algorithm,‖ Image Vis. Comput., vol. 23, pp. 972–

980, 2005.

[70] E. Kita and T. Maruyama, Genetic Algorithm Based on Schemata Theory, chapter

3 from the book Evolutionary Algorithms. InTech, 2011.

[71] S. Tsutsui and Y. Fujimoto, ―Forking genetic algorithm with blocking and

shrinking modes (fGA),‖ Proc. 5th Int. Conf. Genet. Algorithms, pp. 206–215,

1993.

[72] D. E. Goldberg, ―Messy Genetic Algorithms : Motivation , Analysis , and First

Results,‖ Complex Syst., vol. 3, pp. 493–530, 1989.

[73] S. Forrest and M. Mitchell, ―What makes a problem hard for a genetic algorithm?

Some anomalous results and their explanation,‖ Mach. Learn., vol. 13, no. 2, pp.

285–319, 1993.

[74] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, ―A novel population

initialization method for accelerating evolutionary algorithms,‖ Comput. Math.

with Appl., vol. 53, no. 10, pp. 1605–1614, 2007.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 196

[75] H. Maaranen, K. Miettinen, and A. Penttinen, ―On initial populations of a genetic

algorithm for continuous optimization problems,‖ J. Glob. Optim., vol. 37, no. 3,

pp. 405–436, 2007.

[76] B. Kazimipour, X. Li, and A. K. Qin, ―A Review of Population Initialization

Techniques for Evolutionary Algorithms,‖ IEEE Congr. Evol. Comput., pp. 2585–

2992, 2014.

[77] J. Arabas, Z. Michalewicz, and J. Mulawka, ―GAVaPS - genetic algorithm with

varying population size,‖ in First IEEE Conf. on Evolutionary Computation,

Piscataway, NJ, 1994. IEEE Press., 1994, pp. 73–78.

[78] O. Roeva, ―A modified genetic algorithm for parmeter identification of

frementation processes,‖ Biotechnol. Biotechnol. Equip., vol. 20, no. 1, pp. 202–

209, 2006.

[79] M. Bessaou and P. Siarry, ―A genetic algorithm with real-value coding to optimize

multimodal continuous functions,‖ Struct. Multidiscip. Optim., vol. 23, pp. 63–74,

2001.

[80] N. Patel and N. Padhiyar, ―Modified genetic algorithm using Box Complex

method : Application to optimal control problems,‖ J. Process Control, vol. 26, pp.

35–50, 2015.

[81] J. Arabas, Wyklady z Algorytmow Ewolucyjnych (Lectures on Evolutionary

Algorithms). Warszawa: Wydawnictwa Naukowo-Techniczne, 2001.

[82] X. Han, Y. Liang, Z. Li, G. Li, X. Wu, B. Wang, G. Zhao, and C. Wu, ―An

efficient genetic algorithm for optimization problems with time-consuming fitness

evaluation,‖ Int. J. Comput. Methods, vol. 12, no. 1, p. 1350106 (24 pages), 2015.

[83] Y. Yu and Z. Zhou, ―A new approach to estimating the expected first hitting time

of evolutionary algorithms,‖ Artif. Intell., vol. 172, no. 15, pp. 1–48, 2008.

[84] N. J. Radcliffe, ―The algebra of genetic algorithms,‖ Ann. Math. Artif. Intell., vol.

10, no. 4, pp. 339–384, 1994.

[85] Z. Yuan and L. I. Bingfen, ―The empirical study of the schema theory of genetic

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 197

algorithm based on 3-satisfiability problem,‖ Jt. Int. Mech. Electron. Inf. Technol.

Conf., pp. 448–453, 2015.

[86] M. M. Lankhorst, ―Genetic algorithms in data analysis,‖ Groningen : s.n., 1996.

[87] Michalewicz Zbigniew, Genetic Algorithms + Data Structures = Evolution

Programs, (3ed). Springer series Artificial Intelligence, 1996.

[88] A. B. M. Sultan, R. Mahmod, M. N. Sukaiman, and M. R. Abu Bakar,

―Maintaining diversity for genetic algorithm: a case of timetabling problem,‖ J.

Teknol. Malaysia, vol. 44, no. D, pp. 123–130, 2006.

[89] M. Lewchuk, ―Genetic invariance: A new type of genetic algorithm,‖ Tech. Rep.

TR 92-05, Dept. Comput. Sci. Univ. Alberta, 1992.

[90] M. G. C. Resende and J. P. de Sousa, Metaheuristics: Computer-Decision Making.

Springer Science+ Business Media, LL, 2004.

[91] M. Studniarski, R. Al-jawadi, and A. Younus, ―An evolutionary optimization

method based on scalarization for multi-objective problems,‖ Borzemski L.,

Świątek J., Wilimowska Z. Inf. Syst. Archit. Technol. Proc. 38th Int. Conf. Inf. Syst.

Archit. Technol. – ISAT 2017. Adv. Intell. Syst. Comput. Spri, vol. 656, pp. 48–58,

2018.

[92] E. Rahmo and M. Studniarski, ―A new global scalarization method for

multiobjective optimization with an arbitrary ordering cone,‖ Appl. Math., vol. 8,

pp. 154–163, 2017.

[93] ―CMA-ES. Matlab program.‖ URL https://www.mathworks.com/

matlabcentral/fileexchange/52898-cma-es-in-matlab.

[94] K. V. Price, ―Differential Evolution,‖

http://www.dii.unipd.it/~alotto/didattica/corsi/Elettrotecnica%20computazionale/

DE.pdf, pp. 187–214, 2013.

[95] ―How the Genetic Algorithm Works - MATLAB & Simulink,‖

http://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html. .

[96] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 198

Graduate Texts in Mathematics. Springer New York Dordrecht Heidelberg

London, 1976.

[97] Y. Wu, G. Sun, K. Su, L. Liu, H. Zhang, B. Chen, and M. Li, ―Dynamic self-

adaptive double population particle swarm optimization algorithm based on lorenz

equation,‖ J. Comput. Commun., vol. 5, no. 13, pp. 9–20, 2017.

[98] T. Park and K. R. Ryu, ―A dual-population genetic algorithm for adaptive diversity

control,‖ IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 865–884, 2010.

[99] R. Al-Jawadi, ―An optimization algorithm based on dynamic schema with

dissimilarities and similarities of chromosomes,‖ Int. J. Comput. Electr. Autom.

Control Inf. Eng., vol. 7, no. 8, pp. 1278–1285, 2016.

[100] R. Al-jawadi, M. Studniarski, and A. Younus, ―New genetic algorithm based on

dissimilaries and similarities,‖ Comput. Sci. Journal, AGH Univ. Sci. Technol.

Pol., vol. 19, no. 1, p. 19, 2018.

[101] A. S. Eesa, A. M. A. Brifcani, and Z. Orman, ―A new tool for global optimization

problems- cuttlefish algorithm,‖ Int. J. Comput. Electr. Autom. Control Inf. Eng.,

vol. 8, no. 9, pp. 1198–1202, 2014.

[102] R. Al-Jawadi and M. Studniarski, ―An Optimization Algorithm Based on Multi-

Dynamic Schema of Chromosomes,‖ Int. Conf. Artif. Intell. Soft Comput.

Springer, Cham., vol. 10841, pp. 279–289, 2018.

[103] M. Amiri and M. Khajeh, ―Developing a bi-objective optimization model for

solving the availability allocation problem in repairable series – parallel systems

by NSGA II,‖ J. Ind. Eng. Int., vol. 12, no. 1, pp. 61–69, 2016.

[104] J. Safari, ―Multi-objective reliability optimization of series-parallel systems with a

choice of redundancy strategies,‖ Reliab. Eng. Syst. Saf., vol. 108, no. 1, pp. 10–

20, 2012.

[105] M. Aghaei, A. Zeinal, H. Mostafa, and A. Ardakan, ―Redundancy allocation

problem for k -out-of- n systems with a choice of redundancy strategies,‖ J. Ind.

Eng. Int., vol. 13, no. 1, pp. 81–92, 2017.

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 199

[106] S. Gotshall and B. Rylander, ―Optimal population size and the genetic algorithm,‖

Proc. Genet. Evol. Comput. Conf., pp. 1–5, 2000.

[107] O. Roeva, ―Influence of the population size on the genetic algorithm performance

in case of cultivation process modelling,‖ Proc. 2013 Fed. Conf. Comput. Sci. Inf.

Syst. pp., pp. 371–376, 2013.

[108] V. R. P and M. B. V, ―Improving the performance of genetic algorithm by

reducing the population size,‖ I nternational J. Comput. Eng. Res., vol. 3, no. 8,

pp. 86–91, 2013.

[109] T. Friedrich and P. S. Oliveto, ―Analysis of Diversity-Preserving Mechanisms for

Global Exploration,‖ Evol. Comput., vol. 17, no. 4, pp. 455–476.

[110] D. Gupta and S. Ghafir, ―An overview of methods maintaining diversity in genetic

algorithms,‖ Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 5, pp. 56–60, 2012.

[111] C. Elegbede and K. Adjallah, ―Availability allocation to repairable systems with

genetic algorithms : a multi-objective formulation,‖ Reliab. Eng. Syst. Saf., vol. 82,

no. 1, pp. 319–330, 2003.

[112] H. Zoulfaghari, A. Z. Hamadani, and M. A. Ardakan, ―Bi-objective redundancy

allocation problem for a system with mixed repairable and non-repairable

components,‖ ISA Trans., vol. 53, no. 1, pp. 17–24, 2014.

[113] K. Deb, A. Member, A. Pratap, S. Agarwal, and T. Meyarivan, ―A fast and elitist

multiobjective genetic algorithm: NSGA-II,‖ IEEE Trans. Evol. Comput., vol. 6,

no. 2, pp. 182–197, 2002.

[114] F. A. Badroo, ―The applicability of genetic algorithm in cryptanalysis : A survey,‖

Int. J. Comput. Appl. (0975 – 8887), vol. 130, no. 9, pp. 42–46, 2017.

[115] T. Soule, A. Piszcz, and T. Soule, ―Genetic programming : Optimal population

sizes for varying complexity problems,‖ GECCO’06, Seattle, Washington, USA,

Conf., 2006.

[116] D. Hougen, ―Initial population for genetic algorithms : A metric approach,‖ Proc.

2007 Int. Conf. Genet. Evol. Methods, GEM 2007, June 25-28, 2007, Las Vegas,

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 200

Nevada, USA, Hamid R. Arab. Jack Y. Yang Mary Qu Yang (Eds), pp. 43-49,

CSREA Press., 2007.

[117] P. A. Diaz-gomez and D. F. Hougen, ―Empirical study : Initial population diversity

and genetic algorithm performance,‖ Artif. Intell. Pattern Recognit., pp. 334–341,

2007.

[118] E. Stripling, S. vanden Broucke, and B. Baesens, ―Solving the Knapsack Problem

with a Simple Genetic Algorithm.‖ Data Science Briefings, the DataMiningApps

newsletter. http://www.dataminingapps.com/2017/03/solving-the-knapsack-

problem-with-a-simple-genetic-algorithm/, 2017.

[119] U. Arıkan, ―L2 : Algorithms : Knapsack Problem & BnB,‖

people.sutd.edu.sg/~ugur_arikan/Documents/Tutorials/.../L2.pdf, 2016.

[120] Z. Michalewicz and J. Arabas, ―Genetic Algorithms for the 0 / 1 Knapsack

Problem,‖ in Raś Z.W., Zemankova M. (eds) Methodologies for Intelligent Systems.

ISMIS 1994. Lecture Notes in Computer Science (Lecture Notes in Artificial

Intelligence), Springer, 1994, vol. 869, pp. 134–143.

[121] C. Queen, ―Genetic Algorithms Applied to the Knapsack Problem,‖ math.stmarys-

ca.edu/wp-content/uploads/.../Christopher-Queen.pdf, 2016.

[122] S. Sadeghyan, ―solving 0-1knapsack problem by using Genetic Algorithm matlab.‖

https://github.com/5amron/solving-0-1-knapsack-problem-by-using-Genetic-

Algorithm-matlab, https://github.com/5amron/solving-0-1-knapsack-problem-by-

using-Genetic-Algorithm-matlab, 2017.

[123] M. Molga and C. Smutnicki, ―Test functions for optimization needs,‖ Comput.

Inform. Sci., pp. 1–43, 2005.

[124] H. Pohlheim, ―Examples of objective functions,‖ GEATbx Examples, 2007.

[125] K. Chwastek, M. Najgebauer, and J. Szczyglowski, ―Performance of some novel

optimization algorithms,‖ Prz. Elektrotechniczny, vol. 88, no. 12, pp. 191–193,

2012.

[126] M. Vali, ―Rotational mutation genetic algorithm on optimization problems,‖ arXiv

Radhwan Y. Al-Jawadi New Evolutionary Optimization Algorithms…References

 201

Prepr. arXiv1307.5838. Jul 22, 2013.

[127] V. Seksaria, ―Multimodal optimization by sparkling squid populations,‖ arXiv

Prepr. arXiv1401.0858. 2014 Jan 5, 2014.

[128] S. E. K. Fateen and A. Bonilla-Petriciolet, ―Gradient-based cuckoo search for

global optimization,‖ Math. Probl. Eng., vol. 2014, p. 12, 2014.

[129] S. K. Mishra, ―Some new test functions for global optimization and performance

of repulsive particle swarm method,‖ https//ssrn.com/abstract=926132 or

http//dx.doi.org/10.2139/ssrn.926132, 2006.

[130] M. Gen, R. Cheng, and L. Lin, Network Models and Optimization : Multiobjective

GA Approach. Springer Science & Business Media, 2009.

