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Abstract

This dissertation is devoted to various aspects of the nearest neighbors search.
The nearest neighbor related techniques are applied in diverse areas including
computational geometry, databases, robotic sensing, DNA sequencing, spell
checking, statistical classification, cluster analysis, chemical similarity, com-
puter vision, plagiarism detection, recommendation systems, viral marketing,
social networks, data compression, coding theory and pattern recognition.
The basic concept is the following. Knowledge on a given object may be
considerably increased by examining objects which are similar or in some
way connected to it. The nearest neighbors search provides means to identify
such objects. Depending on the meaning of “similar” or “connected” in a
particular case, an appropriate definition of a neighbor may be introduced.
In this study, we show efficient methods of searching for neighbors in different
cases. Among the numerous contexts in which the nearest neighbors search
is applied, we are going to focus on similarity search in metric spaces and
information dissemination in social networks.

Metric Spaces

In this scenario, we are interested in efficient algorithms for similarity search
in metric spaces. We are given a set of input points in Rd. This set can
be preprocessed to build a data structure which will be used for queries.
The query consists of a single point in Rd and results in finding the nearest
neighbor, i.e., an input point which is closest to the query point in a given
metric. In this dissertation, we consider an equivalent1 problem of finding a
near neighbor, i.e., for a given input set and a radius R, we produce a data
structure which answers the queries for a near neighbor. A near neighbor is

1Each of the problems can be reduced to the other one with small complexity overhead [1].
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any point from the input set which is closer than R to the query point.
There are numerous applications of this problem. For instance, one might

consider document search on the Internet. In the query phase, we upload a
document and we wish to find different versions of the same document on the
web. Another scenario involving the Internet search is finding the most similar
photo to the one provided by the user. Moreover, a broad area of applications
involves using the neighbor search for classification purposes. Classification
of an object can be determined by searching for neighbors among already
classified objects. Thus obtained information can also be used for prediction,
which is a very dynamic field of study. One can make predictions about an
object based on the knowledge on similar objects detected as neighbors.

In this work, we consider high–dimensional spaces and `p metrics. A näıve
query algorithm is to scan all input points and find a near (the nearest)
neighbor. However, the query time linear in the size of the input set is
not acceptable for practical purposes. In applications, we are interested in
algorithms with fast query times, thus we only consider algorithms where the
query time is sub–linear in the size of the input set: O(nγ) for γ < 1. Also,
since our space is high–dimensional, neither the pre–processing time nor the
query time can be exponential in the dimension of the space. Unfortunately,
there are no data structures which satisfy the above conditions.2 Hence, in
this work, we consider the c-approximate near neighbor problem in which the
task is to find any point which is closer than R to the query point but we are
allowed to return a point which is closer than cR.

The problem of the c–approximate near neighbor obtained large attention
in the research community and many efficient data structures were designed [1,
2, 3, 4, 5, 6, 7]. Most of these algorithms satisfy Monte Carlo probabilistic
guarantees. In this work, we focus on algorithms which satisfy stronger Las
Vegas assumptions.

We present various algorithms for `p for p ∈ [1,∞]. However, the best
results were obtained for `2 metric. In particular, for c < 2 and p = 2 we
present an algorithm with almost optimal pre–processing complexity O(dω−1n)

and query time O(dω−1 + dn
1

1+O(ε2 log−1 1
ε ) ) for ε = c − 1. These are, up to

the writer’s knowledge, the best results for Euclidean metric with Las Vegas
guarantees.

We present many versions of the algorithms, which allows smooth tuning
for different trade-offs between the pre–processing and the query time. In

2 Specific conditions for the existence of such algorithms are described in further sections.
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particular, we introduce a query–efficient algorithm, with the query time

O(dω−1) and the pre-processing time n1+O( 1
ε2

log 1
ε
). These results are close

to the best results obtained by Monte Carlo algorithms [6] for both the
query–efficient and the preprocessing–efficient version. Moreover, we present
algorithms for any p ∈ [1,∞]. Unfortunately, the guarantees on the algorithms
become worse, as p moves away from 2.

Some of the results were the effect of collective work and were previously
published. The LSH–based results for c = Ω(

√
d) were an outcome of collective

work and were published in [8]. Enhanced results for c = Ω(
√

log log n) were
published in [9]. All of the remaining algorithms and proofs for algorithms
for any c > 1 were not published before. These results not only relax the
constraints on c but also improve the complexities of the algorithms.

Social Networks

In this section, we look at the nearest neighbors from a different perspective.
We consider social networks in the context of information dissemination (or
alternatively rumor spreading). In this scenario, the neighbors are not entities
which are similar but entities which are in some way related. In this particular
case, a neighbor of a user A is the user who is willing to spread information
produced by A. This relation is asymmetric and cannot be directly embedded
into the metric space framework presented in the previous section.

A typical application for computing neighborhoods is optimizing viral
marketing. The aim is to choose a (possibly small) number of influencers,
who will maximize the number of people reached by the marketing content.
In particular, it is interesting to investigate the dynamics of the information
cascades.3 We want to know, what is a chance that a given cascade will be
large.

The key part of computing such neighborhoods is to understand the
process of information dissemination. The main results of this part of the
dissertation consist of modeling of this process. We investigate known models
and their adequacy to the Twitter network [10]. In particular, we consider the

3A cascade consists of all users who have spread a given information.
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Susceptible, Infected, Recovered (SIR) model.4 We propose a detailed method
for comparing the rumor–spreading models. Moreover, we propose new models
which better fit the real-life cascade distributions: the exp–SIR model and
the multi–source model. In the exp–SIR model, we take into account the
fact that the close relation with the followee increases the chance of spreading
information. In the multi–source model, we assume that information might
be spread outside of our network: by the word of mouth, television, radio,
newspapers, phone etc. We show that both models avoid the ”blow up“
problem which was present in the previous models and that the distribution
of the cascades is much more accurate.

Additionally, we consider a theoretical graph model and show the basic
properties of the SIR model on this graph. We consider directed acyclic
Erdős–Rényi graphs [11], which are based on the following concept. Assume
that the nodes of a graph are labeled with natural numbers from 1 to n.
Directed acyclic Erdős–Rényi graph is a random graph for which each edge
(i, j) such that i < j is sampled independently with probability p. Using this
sampling mechanism we can produce any directed acyclic graph. We show
basic properties of this graph and show that the distribution of information
cascades in this graph satisfies the power law, which is often observed in the
real–life cascade distributions.

The results presented in this part of the thesis are an outcome of collective
work. The results concerning the modeling of information dissemination on
Twitter were presented in [12]. The results concerning cascades in random
graphs were presented in [13].

4 In this model the rumor starts with one Infected node. Each Infected node can change
each of its Susceptible followers to Infected with some constant probability and then moves
to Recovered state. The process repeats until all Infected nodes change to Recovered.
There are different variants of this model. The details are presented in Chapter 6.
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Chapter 1

Introduction

The near neighbor search has numerous applications in image processing,
search engines, recommendation engines, predictions and machine learning [14].
We define the near neighbor problem as follows: for a given input set of points,
a query point and a distance R, return a point (optionally all points) from
the input set, which is closer to the query point than R in the given metric
(typically lp for p ∈ [1,∞]), or report that such a point does not exist. The
input set and the distance R are known in advance. Hence, the input set may
be preprocessed what may result in reducing the query time. The problem
in which the distance R is not known during the preprocessing and our task
is to find the nearest neighbor can be efficiently reduced to the problem
defined as above [1]. Unfortunately, the near neighbors search appears to be
intractable for high dimensional spaces such as ldp for large d. The existence
of an algorithm with a sub–linear in the data size and not exponential in d
query time and with not exponential in d pre-processing would contradict the
strong exponential time hypothesis [15]. In order to overcome this obstacle,
the c–near neighbors problem with c > 1, was introduced. In this problem,
the query result is allowed to contain points which are within the distance
cR from the query point. In other words, the points within the distance R
from the query point are classified as neighbors, the points farther than cR
are classified as non-neighbors, while the rest may be classified into any of
these two categories. This assumption makes the problem easier, for many
metric spaces such as lp when p ∈ [1, 2] or the Hamming space [1]. On one
hand, sub–linear in the input size queries are possible. On the other hand,
the queries and pre-processing times are polynomial in the dimension of the
space.

12



13

Locality sensitive hashing (LSH) is one of the major techniques for solving
the c–near neighbors search. Many LSH functions are mappings which roughly
preserve distances. A random LSH function maps two ’close’ points to two
’close’ hashes with ’large’ probability. Analogously, two ’distant’ points are
mapped to two ’distant’ hashes with ’large’ probability. Roughly speaking,
the LSH is used to reduce the dimension of the input space, what allows to
solve the problem in the lower dimensional space. Thus, the efficiency of the
algorithm strongly depends on the quality of LSH functions used. The crucial
properties of the LSH functions are the probability of false positives and the
probability of false negatives. A false negative is a point which is ’close’ to
the query point, but its hash is ’far away’ from the hash of the query point.
Analogously, the false positive is a point whose distance to the query point is
’large’, but it is mapped to a ’close’ hash.

The previously known algorithms for the c–near neighbors (see e.g., [2, 16])
give Monte Carlo guarantees for returned points, i.e., an input point close
to the query point is returned with some probability. In other words, there
might be false negatives. For example, a common choice of the hash functions
is f(x) = 〈x, v〉 or f(x) = b〈x, v〉c, where v is a vector of numbers drawn
independently from some probability distribution [2, 1, 8]. For a Gaussian
distribution, 〈x, v〉 is also Gaussian with zero mean and standard deviation
equal to ‖x‖2. Hashing functions defined as above are in deed locality sensitive
for l2, but as mentioned above, they only give probabilistic guarantees. In this
part of the thesis, we aim to enhance this by focusing on the c–near neighbors
search without false negatives for l2. In other words, we consider algorithms,
where a point ’close’ to the query point is guaranteed to be returned. These
type of guaranties are often called Las Vegas.

The Las Vegas guaranties are stronger than the Monte Carlo ones. More-
over, an algorithm with Las Vegas guarantees can be adjusted to one with
Monte Carlo guarantees with preserving the complexities. Usually, Las Vegas
algorithms have probabilistic complexities, i.e., we bound the average com-
plexity. Having the algorithm with the Las Vegas guarantees, we might obtain
algorithm with the Monte Carlo guaranties with pessimistic time complexity
equal to the expected time complexity of the original Las Vegas algorithm.
Markov’s inequality implies, that if the expected value of the computation
time is small, then with large probability the computation time is also small.
We can break the computation of the original algorithm after the certain
amount of time passed and return the empty result which gives the algorithm
with Monte Carlo guarantees.
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Throughout this thesis, we assume that n� d and exp(d)� n, where n
is the number of points in the input space and d is the dimensionality of the
space. This represents a situation where the exhaustive scan through all the
input points, as well as the usage of data structures exponentially dependent
on d, become intractable. The typical values to consider could be n = 109

and d = 100.

1.1 Preliminaries

In this section, we present common definitions, simple facts and known
constructions used throughout this part of the thesis. We start with some
crucial definitions:

Definition 1.1.1. In the c–near neighbors without false negatives problem,
we are given a set of points X ∈ Rd, |X| = n, a radius R and metric ‖·‖.
The goal is to build a data structure, which supports fast query operations.
In each query, the data structure receives a point q ∈ Rd. The data structure
returns all points Y ⊂ X such that {x : x ∈ X : ‖q − x‖ ≤ R} ⊂ Y .
Additionally, all the returned points cannot be “far away” from the query
point: ∀x∈Y ‖q − x‖ ≤ cR.

We often consider the simplified version in which we need to find only one
neighbor:

Definition 1.1.2. In the c-near neighbor without false negatives problem, we
are given a set of points X ∈ Rd, |X| = n, a radius R and metric ‖·‖. The
goal is to build a data structure, which supports fast query operations. In each
query, the data structure receives a point q ∈ Rd. If there is a point x ∈ X
such that ‖q− x‖ ≤ R, then the data structure returns any point x′ ∈ X such
that ‖q− x′‖ ≤ cR. If there is no such a point, the data structure could either
return NO or return any point x′ ∈ X such that ‖q − x′‖ ≤ cR.

All algorithms presented in this part works in the more general c–near
neighbors without false negatives problem. Sometimes, for simplicity, we
present results for the c-near neighbor without false negatives problem, i.e., the
problem in which the algorithm returns only one near neighbor. As mentioned
in the introduction, if the neighbor exists it is found with probability 1. The
input set is always assumed to contain n points. The c–near neighbors
search without false negatives with parameter c > 1 and the dimension of
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the space equal to d, is denoted as NNwfn(c, d). The expected query and
pre-processing time complexities of NNwfn(c, d) will be denoted as query(c, d)
and preproc(c, d) respectively.

In this paper, we use the term “pre-processing” to refer to the sum of
the actual pre-processing time and the storage required. W.l.o.g, throughout
this work we assume, that R – a given radius equals 1 (otherwise, all vectors’
lengths might be rescaled by 1/R). It is often convenient to use ε = c − 1
instead of c. Whenever ε appears, it is assumed to be defined as above.
Finally, we use ω to denote the exponent of the fast matrix multiplication
(currently ω ≈ 2.37).

We will often need a data structure which is capable of storing some set of
values for a given key. In the pre-processing phase, we will assign some values
to a given key. In the query phase, we fetch all values assigned to a given key.
Indyk and Motwani [1] provided a hash-map storage. Let us consider the
following standard, fully deterministic construction. For each of the stored
points, we store its bit representation in a binary tree. This way the length
of the branch representing a point equals to its bit-length. Hence, the query
time is proportional to the bit size of the query. The size of the whole tree is
bounded by the total size of the binary representation of all the stored points.

1.1.1 Notation

The considered problems are solved in the standard `p space with metric ‖·‖p:

‖x‖p = (
∑
i

|xi|p)1/p.

By `dp we denote `p in Rd. Euclidean space is lp for p = 2, i.e.:

‖x‖2 =

√∑
i

|xi|2.

For x, y ∈ Rd, 〈x, y〉 denotes the standard scalar product, i.e.:

〈x, y〉 =
d∑
i=1

xiyi.

The random variable X is bounded when:

P [|X| ≤ C] = 1, for some constant C ∈ Rd.
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The random variable X is symmetric when:

P [X ≤ C] = P [X ≥ −C] , for all C ∈ Rd.

[d] denotes the set of all natural numbers from 1 to d:

[d] = {1, 2, ..., d}.

S(d−1)
p denotes a unit sphere in `p, i.e.:

S(d−1)
p = {x : x ∈ Rd, ‖x‖p = 1}.

We will write S(d−1) instead of S(d−1)
2 . Bdp denotes a unit ball in lp, i.e.:

Bdp = {x : x ∈ Rd, ‖x‖p ≤ 1}.

U(a, b) denotes the uniform distribution on the interval [a, b]. The i.i.d is
the abbreviation for independent and identically distributed. Rademacher
distribution is a two–point symmetric discrete distribution on {−1, 1}, i.e., for
random variable X with Rademacher’s distribution, we have P [X = ±1] =
1/2.

Assume that we are given a classificator X which examines if the given
object is in a certain class. If the object is classified as belonging to the class
we have X = 1 and if it’s classified as not belonging to the class, we have
X = 0. Assume that Y is the true class of the object, i.e., Y = 1 if the object
is in the class and Y = 0 otherwise. Our classificator might be wrong. It can
predict X = 1, while Y = 0. Such a prediction is false positive. When X = 0
and Y = 1, we have false negative. The following table illustrate this notions:

prediction︷ ︸︸ ︷
X = 1 X = 0

tr
u
e
la
be
l

︷ ︸︸
︷

Y = 1 True positive False negative

Y = 0 False positive True negative

In our case, we classify object as neighbor. In Monte Carlo versions of the
c–near neighbors problem, classificator could be wrong – there might be false
negatives. In other words, the algorithm might not return point which is a



1.2. RELATED WORK 17

near neighbor. In c–near neighbors without false negatives problem (a.k.a.
c–near neighbors with Las Vegas guaranties), this cannot be the case, i.e.,
there are no false positives and false negatives. More precisely, in all our
algorithms (and many other probabilistic algorithms for the c–near neighbors)
the number of false positives is bounded, thus they are filter out from the
final result. This is the reason why we often consider the probability of false
positive (e.g., in context of some hashing function), bounding this probability
allow bounding the number of false positives. The time of removing the false
positives from the final results contributes to the total query complexity.

1.2 Related Work

There is extensive literature considering near neighbors problem. In this
section, we focus on the most important and the most relevant publications.

1.2.1 Algorithms for constant dimension

There is a number of algorithms for the c–near neighbors problem that assume
constant d [17, 18, 19, 1]. In each of them, either the pre-processing time or the
query time depends exponentially on the dimension of the space. Nevertheless,
these are the best fully deterministic algorithms that are known [17, 1]. A
particularly interesting algorithm, presented in [1], has pre-processing time
nO(1/ε)d and the query time equal to O(d), where ε = c− 1. We use these
results to obtain our algorithms.

1.2.2 Monte Carlo algorithms

There exists an efficient Monte Carlo c–near neighbors algorithm for `1
with the query and the pre-processing complexity equal to O(dn1/c) and
O(n1+1/c + dn), respectively [1]. By reduction, the algorithms for `1 works in
the Hamming space. For `2 in turn, there exists a near to optimal algorithm
with the query and the pre-processing complexity equal to O(dn1/c2+o(1)) and
O(n1+1/c2+o(1) + dn), respectively [2, 3].

Moreover, the algorithms presented in [1] work for lp for any p ∈ [1, 2].
There are also data dependent algorithms that take into account the actual
distribution of the input set. Such algorithms achieve query time O(dnρ+o(1))
and space O(n1+ρ+o(1) + dn), where ρ = 1/(2c2 − 1) [4].
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An interesting algorithm was introduced in [5]. Alion et al. [5] consid-
ered slightly more general problem of Nearest Neighbors in l2 and achieved
O(d log d+ log3 n) query time and nO(1/ε

2) pre-processing time.
Recently, the optimal hashing–based time–space trade-offs for the c–near

neighbors in l2 were considered [6].1 For any pu, pq ≥ 0 such that:

c2
√
pq + (c2 − 1)

√
pu =

√
2c2 − 1,

there is a c–near neighbors algorithm with the storage O(n1+pu+o(1) + dn) and
the query time npq+o(1) + dno(1).

1.2.3 Las Vegas algorithms

Pagh [20] considered the c–near neighbors search without false negatives
for the Hamming space. He obtained results close to those presented in [1].
He showed that the exponents of his algorithm, for cR = log(n/k), differ
by at most a factor of ln 4 in comparison to the bounds in [1]. Recently,
Ahle showed an algorithm for the c–near neighbors without false negatives
for the Hamming space and Braun-Blanquet metric [21, 3]. The complexity
of this algorithm matches the complexity of the Monte Carlo algorithm of
Indyk and Motwani [1]. Indyk [7] provided a deterministic algorithm for l∞
and c = Θ(log1+ρ log d) with the storage O(n1+ρ logO(1) n) and the query time

logO(1) n for some tunable parameter ρ. He proved that the c–near neighbors
without false negatives for l∞ and c < 3 is as hard as the subset query problem
– a long-standing open combinatorial problem. This indicates that the c–near
neighbors without false negatives for l∞ might be hard to solve for any c > 1.

Indyk [22] considered deterministic mappings ln2 → lm1 , for m = n1+o(1),
which might be useful for constructing efficient algorithms for the c–near
neighbors without false negatives. If we were able to efficiently embed l1 into
the Hamming space (which is just {0, 1}d with l1 distance function) with
additional guarantees for false negatives, it would also give an algorithm for
l2 and l1.

1.2.4 Dimension reduction

The dimension reduction with usage of random linear mappings was considered
previously in a more general context. The concentration bounds used to prove

1The authors of this work assume d = no(1).
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this classic result will be very useful in our reductions:

Lemma 1.2.1 (Johnson-Lindenstrauss). Let Y ∈ Rd be chosen uniformly
from the surface of the d-dimensional sphere. Let Z = (Y1, Y2, . . . , Yk) be the
projection onto the first k coordinates, where k < d. Then for any α < 1:

P
[
d

k
‖Z‖22 ≤ α

]
≤ exp(

k

2
(1− α + logα)), (1.1)

1.2.5 Anti-concentration measures

In this thesis, we show the anti-concentration measures for 〈v, x〉, for x ∈
S(d−1)
p , i.e., the upper bound for P [| 〈v, x〉 | ≤ α]. This is crucial subproblem

in the LSH based techniques.
Let us start with a general bound for functions on a sphere. Particularly, in

the small ball probability theorem, we bound P [|f(x)| ≤ α] for some function f
on the unit sphere S(d−1). The theorem conjectured in [23] and proved in [24]
implies that for any Lipschitz function f , with Lipschitz constant L, whose
average over the sphere is 1, we have P [|f(x)| ≤ α] ≤ αc/L

2
, for some constant

c and x ∈ S(d−1).
Carbery and Wright [25] show the following bound for polynomial functions.

There exists an absolute constant c > 0 such that, ifQ : R→ R is a polynomial
of degree at most k and µ is a log-concave probability measure on Rm, then
for all α > 0: (∫

Q2dµ
) 1

2k
µ{x ∈ Rm : |Q(x)| ≤ α} ≤ ckα

1
k .

Since log-concave probability measures are strongly connected to the
surface measure (see Lemma 2 in [23] ), the above result gives an alternative
way of proving the bounds for the probability of false positive presented in
this thesis (see Section 3.3.6). The anti-concentration bound achievable using
[25] gives worse constants than the alternative proof provided in this work.
This is important since this constant is in the exponent of the complexities of
the NNwfn algorithm.

The anti-concentration measures are strongly connected with the Littlewood-
Offord theory. Consider Lévy concentration function:

Q(X,λ) = sup
x

P [X ≤ x ≤ X + λ].
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We have P [|X| ≤ α] ≤ Q(X, 2α). So any bound on the Lévy concentration
function is also a bound on our problem. Bobkov et al. [26] considered bounds
on the Lévy concentration function for X being the sum of independent
random variables with log-concave density function: (Theorem 1.1 in [26]):

Theorem 1.2.2. If X1, . . . , Xk are independent random variables with log-
concave distribution and let S =

∑
iXk. Then for all λ ≥ 0

Q(S, λ) ≤ λ√
V ar(S) + λ2

12

.

The above theorem is used to prove anti-concentration bounds for log-
concave bounded distributions. Let M(X) = ess supX pX(x), where pX is
density function of X. A well-known result of Ball [27] allows us to prove the
better result for uniform distribution (see also Proposition 3.1 in [26]):

Theorem 1.2.3. If X1, . . . , Xk are independent random variables with uni-
form distribution on [−1, 1] and let S =

∑
iXk, then M(S) ≤ 1√

2
.

1.3 Results

In this sections, we summarize our new results for c–near neighbors without
false negatives in `p for p ∈ [1,∞]. The best results are achieved for Euclidean
norm (p = 2), and they get gradually worse as p moves away from 2. In
particular, for p = 2, we present efficient algorithm for any c > 1, while
for p = 1 and p = ∞ our algorithms works for c = Ω(

√
d). We also

consider different trade-offs between pre-processing and query time. The most
query–efficient algorithms achieve query time O(poly(d)) and polynomial
pre-processing time. The most pre-processing–efficient algorithms achieve
pre-processing time O(n poly(d)) and sub–linear query time.

1.3.1 Used Methods

We present two approaches for solving the NNwfn:

• The LSH approach. In this approach, we design Las Vegas LSH
functions, i.e., hash functions which have the property, that, with
probability 1, two “close” points will remain “close” after hashing. Two
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“distant” points will remain “distant” with large probability. Using
these hash functions we construct an algorithm which enables us to
solve NNwfn.

• The counting approach. In this approach, we quantize our space, so
that all points have integer coefficients. After the quantization, there is
a finite number of neighbors for the input points. Thus, we can store
all of them, which gives simple algorithm for NNwfn.

To achieve the best results, both of the techniques are combined with
the dimension reduction technique which helps us decrease the dimension
of the given space to O(log n). This operation adds a factor of d/ log n to
complexities but it enables us to use the algorithms which are exponential
in the dimension. The whole scheme of the used methods is presented in
Figure 1.1 .

The crucial step in building efficient algorithms is dimension reduction.
In Chapter 2, we show how to reduce the c–near neighbors in ld2 (NNwfn(c, d))
to d/ log(n) instances of NNwfn(O(c),O(log n)). The reduction is based on the
well-known Johnson-Lindenstrauss Lemma [28]. We introduce d/ log(n) linear
mappings, each reduces the dimension of the original problem. Each mapping
roughly preserves the length of the vector and additionally at least one of them
does not increase it. The property of not increasing the length of the vector is
crucial. For two ’close’ vectors x, y ∈ Rd: ‖x− y‖2 < 1 and a linear mapping
A, Ax and Ay are ’close’ if and only if ‖Ax−Ay‖2 = ‖A(x− y)‖2 < 1, so A
maps a ’small’ vector x− y, to a ’small’ vector A(x− y).

We show further reductions, which enable us to relax the constraint to c =
ω(
√

log log n). We extend the reduction by using a number of mapping families.
This leads to an interesting sub-problem of solving the c–near neighbors in
(Rk)L, for norm l∞–product(x) := max1≤i≤L‖xi‖2 and the induced metric.
This norm is present in literature and was denoted as max–product or l∞–
product. Apparently, the c–near neighbors search in l∞–product might be
solved using the LSH functions family introduced in Chapter 3.

Moreover, to show the properties of a hash function we study anti–
concentration bounds which leads to interesting geometrical problems. In par-
ticular, we show tight, up to small constant factor, lower bound for the area
of the spherical cup. We demonstrate, that P [| 〈x, y〉 | < α], where x, y are
random points from S(d−1) can be interpreted as the area of a spherical cup.
We show, that P [| 〈x, y〉 | < α] ≤ α

√
d (see Observation 3.3.16) and we argue

that this inequality is tight up to constant.
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LSH solutions for any p ∈ [1,∞]. (1)

Dimension reduction of NNwfn(n, d)
to d/ log n instances of NNwfn(n,O(log n))

for p = 2. (2)

Counting approach for p = 2.
Best results for p = 2. (3)

Dimension reduction of NNwfn(n,O(log n))
to a number of instances of NNwfn(n,O(log log n))

for `∞ product of l2.

LSH solutions for `∞ product of l2. (4)

Embedding from l2 to lp.
Best results for p ∈ [1,∞]. (5)

Figure 1.1: Scheme of the techniques used to achieve final results. (1) - results
are presented in Table 1.1 (p 6= 2). (2) - results are presented in Corollary
1.3.1. (3) - results are presented in Table 1.2. (4) - results are presented in
Table 1.1 for (p = 2). (5) - results are presented in Table 1.3. We only present
results for embedding the counting approach.

In Chapter 4, we round all points and consider NNwfn in integer domain.
In integer domain, there is finite number of points that can be neighbors of
the points from input set. The näıve algorithm would store all of these near
neighbors in a data structure. In the query, we just fetch the right answer
from our storage. Although storing of all possible solutions is exponential
in the dimension of the space, we can obtain the polynomial algorithm by
applying the dimension reduction. This enables us to construct an algorithm
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for any c > 1 for `2. Applying standard metric embedding, we obtain results
for any p ∈ [1,∞].

1.3.2 Dimension reduction

Let us state the crucial results for the dimension reduction. We show that any
instance of c–near neighbors can be reduced to a small number of instances
of dimension logarithmic in the number of input points.

Corollary 1.3.1. For any 1 ≤ α < c and γ log n < d, the NNwfn(c, d)
can be reduced to O(d/(γ log n)) instances of the NNwfn(α, γ log n), where

γ < 2(1−ν)
(α
c
)2−1−2 log α

c
for a tunable parameter ν ∈ [0, 1) and:

query(c, d) = O(d2 + nν + d/(γ log n) query(α, γ log n)),

preproc(c, d) = O(dω−1n+ d/(γ log n) preproc(α, γ log n)).

If the queries are provided in the batches of the size d, we obtain the algorithm
with the query time:

query(c, d) = O(dω−1 + nν + d/(γ log n) query(α, γ log n)).

The tunable parameter ν enables us to achieve different trade–offs between,
the query time overhead in dimension reduction, and the dimension of the
result space. If ν = 0, there is no overhead dependent on n in the query. If ν
is close to 1, the overhead is nearly linear in n, while the dimension of the
resulting space is constant. This corollary will be the building block used to
achieve efficient algorithms for NNwfn.

1.3.3 Results Outline

Table 1.1 summarizes the results for our LSH approach. The most important
results are for p = 2, for which we obtained efficient algorithm for c =
ω(
√

log log n). Moreover, we distinguish cases for p > 2 and p < 2 and the
fast query and the fast pre-processing versions. In the fast query version, the
query time is O(log n) and the pre-processing time is polynomial and depends
on the value of p. In the fast pre-processing version, the pre-processing time
equals O(n log n) and the query time complexity is sub-linear in the number
of points and depends on p.
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Version Preprocessing time Query time

p = 2
c > µ = ω(

√
log log n) (*)

Õ(n1+ ln 3
ln(c/µ)

+o(1)) Õ(no(1))

p ≥ 2 fast query
c > τ̃p = 2d1−1/p (**)

O(n
1+ ln 3

ln(c/τ̃p) ) O(log n)

p ≥ 2, fast pre–processing
c > τ̃p = 2d1−1/p (**)

O(n log n) O(n
ln 3

ln(3c/τ̃p) )

p < 2 fast query

c > τ̂p = 2
√

2d (**)
O(n

1+ ln 3
ln(c/τ̂p) ) O(log n)

p < 2, fast pre–processing

c > τ̂p = 2
√

2d (**)
O(n log n) O(n

ln 3
ln(3c/τ̂p) )

Table 1.1: Results outline for the LSH approach. Results marked with (*)
follow from Theorem 3.4.3. Results marked with (**) follow from Theorem
3.4.1. For simplicity, we omit the dependence of d in complexities.

Table 1.2 summarizes the results for the counting approach for p = 2.
In this table, we distinguish cases for c > 2 and c < 2 and the fast query
and the fast pre-processing versions. In the fast pre-processing version, the
pre-processing time equals O(ndω−1) and is very close to the optimal time
O(nd). In the fast query version, we present complexities for a tunable
parameter ν. When ν = 0, the query complexity equals O(dω) which is close
to the optimal O(d).

The results presented in Table 1.2 for c ≥ 2 can be generalized to any
p ∈ [1,∞] which is presented in Table 1.3. If p = 2, we get sames results
as these presented in Table 1.2. These results gets gradually worse while p
moves away from 2. However, for p 6= 2, for the fast pre-processing version,
the pre-processing time is still close to optimal and for the fast query version,
the query time is close to the optimal.

For simplicity, we omit the results that can be obtained by applying
Lemma 4.0.3 to results of Theorem 3.4.3. This is, we do not show the results
for p ∈ [1,∞] which can be derived for the best results using LSH approach.

Table 1.4 shows the comparison of the important cases of fast pre–
processing and fast query for c = 2 with previous results. We demonstrate
the state of the art algorithms for Monte Carlo, Las Vegas and deterministic
algorithms. Moreover, we show different trade–offs between pre-precessing
and query times. In particular, our pre-processing time efficient Las Vegas
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Version Preprocessing time Query time

fast pre–processing
c < 2 (*)

O(dω−1n) O(dω−1 + dn
1

1+O(ε2 log−1 1
ε ) )

fast query
c < 2 (**)

n1+O( 1−ν
ε2

log 1
ε
) O(dω−1 + nν)

fast pre–processing
c ≥ 2 (*)

O(dω−1n) O(dω−1 + dnO(
1

log c
))

fast query
c ≥ 2 (**)

O(dω−1n+ dn1+O( 1−ν
log c

)/ log n) O(dω−1 + nν)

Table 1.2: table
Results outline for the counting approach for p = 2. We set ε = c− 1 and ν
is a tunable parameter. Results marked with (*) follow from Theorem 4.0.1.

Results marked with (**) follow from Theorem 4.0.2.

Version Preprocessing time Query time

fast pre–processing
c ≥ 2d|1/2−1/p| (*)

O(dω−1n) O(dω−1 + dnO(
1
α
))

fast query
c ≥ 2d|1/2−1/p| (**)

O(dω−1n+ dn1+O( 1−ν
α

)/ log n) O(dω−1 + nν)

Table 1.3: table
Results outline for the counting approach for any p ∈ [1,∞]. Results follow

from Lemma 4.0.3 applied to Theorems 4.0.1 and 4.0.2.
α = log c− |1/2− 1/p| log d.
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author guarantees query pre-processing space

[1] Monte Carlo O(dn1/c) O(n1+1/c + dn) lp for c > 1, p ∈ [1, 2]

[2] Monte Carlo O(dn1/c2+o(1)) O(n1+1/c2+o(1) + dn) l2 for c > 1

[4] Monte Carlo O(dn1/(2c2−1)+o(1)) O(n1+1/(2c2−1)+o(1) + dn) l2 for c > 1

[7] Deterministic logO(1) n O(n1+ρ logO(1) n) l∞ for c = Ω(log1+ρ log d)

[20] Las Vegas O(dnln(4)/c) O(n1+ln(4)/c + dn) Hamming for c > 1

[21] Las Vegas O(dn1/c+o(1)) O(dn1+1/c+o(1)) Hamming for c > 1

[6] Monte Carlo O(d+ n1−O(ε2)+o(1)) O(dn+ n1+o(1)) l2 for c > 1

our results Las Vegas O(dω−1 + dn1−O(ε2 log−1 1
ε
)) O(dω−1n) l2 for c > 1

[6] Monte Carlo no(1) nO(1/ε
2)+o(1) l2 for c > 1

[5] Monte Carlo O(d log d+ log3 n) nO(1/ε
2) l2 for c > 1

our results Las Vegas O(dω−1) nO(1/ε
2 log 1/ε) l2 for c > 1

Table 1.4: Comparison of the results for the c–near neighbors. We present
only “fast query” and “fast pre-processing” parts of results for possibly small
c. Also, results presented in [6] are under assumption that d = no(1)). Results
in [7] are for a tunable parameter ρ. The parameter ε equals c− 1 and ω is
the exponent of fast matrix multiplication.

algorithm in `2 works with pre-processing time equal to O(ndω−1) and the

query time equal to O(dω−1 + dn1−O(ε2 log−1 1
ε
)). While the best results with

Monte Carlo guaranties are of [6] with O(d+n1−O(ε2)+o(1)) and O(dn+n1+o(1))
query and pre-processing times respectively.

Our query time efficient Las Vegas algorithm works with O(dω−1) and
nO(1/ε

2 log 1/ε) query and pre-processing time respectively. While the best
results with Monte Carlo guaranties are of [6, 5] with no(1) and nO(1/ε

2)+o(1)

query and pre-processing times respectively for [6] and O(d log d+ log3 n) and
nO(1/ε

2) query and pre-processing times respectively for [5].



Chapter 2

Dimension Reduction

The natural approach to handle the c–near neighbors problem in a high
dimensional space is to reduce the problem to a number of problems with
smaller dimension. This idea was widely used in algorithms with Monte
Carlo guaranties (see e.g. [1]). In order to obtain Las Vegas guaranties,
we show how to reduce a c–near neighbors problem to a number of c–near
neighbors problems with reduced dimension, in such a away, that for given
two points, the distance between these points is not increased in at least one
instance. In other words, if the points were neighbors in the original space,
they will remain neighbors in at least one of the resulting spaces. This way,
we eliminate the false negatives. Our results are based on the well–known
distribution Johnson-Lindenstrauss Lemma:

Lemma 2.0.1 (Johnson-Lindenstrauss). Let Y ∈ Rd be chosen uniformly
from the surface of a d-dimensional sphere. Let Z = (Y1, Y2, . . . , Yk) be the
projection onto the first k coordinates, where k < d. Then for any α < 1:

P
[
d

k
‖Z‖22 ≤ α

]
≤ exp(

k

2
(1− α + logα)). (2.1)

In some sense we present the Las Vegas version of the above lemma.

In this chapter, we focus only on reductions. In Chapter 3, we show how
to handle the problems in the reduced space using locality sensitive hashing.
In Chapter 4, we show better results using quantization approach.

27
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2.1 Reduction to dimension O(log n)
We will introduce d/k linear mappings A(1), A(2), . . . , A(d/k) : Rd → Rk, where
k < d and show the following properties1:

1. for each point x ∈ Rd, such that ‖x‖2 ≤ 1, there exists 1 ≤ i ≤ d/k,
such that ‖A(i)x‖2 ≤ 1,

2. for each point x ∈ Rd, such that ‖x‖2 ≥ c, where c > 1, the probability
that there exists 1 ≤ i ≤ d/k, such that ‖A(i)x‖2 ≤ 1 is bounded away
from 1.

The Property 1. states, that for a given ’short’ vector (with a length
smaller than 1), there exists always at least one mapping, which transforms
this vector to a vector of length smaller than 1. Moreover, we will show, that
there exists at least one mapping A(i), which does not increase the length
of the vector, i.e., such that ‖A(i)x‖2 ≤ ‖x‖2. The property 2. states, that
we can bound the probability of a ’long’ vector (‖x‖2 > c), being mapped
to a ’short’ one (‖A(i)x‖2 ≤ 1). Using the standard concentration measure
arguments, we will prove that this probability decays exponentially in k.

2.1.1 Linear mappings

In this section, we will introduce linear mappings satisfying properties 1.
and 2. Our technique will depend on the concentration bound used to prove
the classic Johnson-Lindenstrauss Lemma. In Lemma 2.0.1, we take a random
vector and project it onto the first k vectors of the standard basis of Rd. In
our settings, we will project the given vector to a random orthonormal basis
which gives the same guaranties. The mapping A(i) consists of k consecutive

vectors from the random basis of the Rd space scaled by
√

d
k
. The following

reduction describes the basic properties of our construction:

Lemma 2.1.1. For any parameter α ≥ 1 and k < d, there exist d/k linear
mappings A(1), A(2), . . . , A(d/k), from Rd to Rk, such that:

1. for each point x ∈ Rd such that ‖x‖2 ≤ 1, there exists 1 ≤ i ≤ d/k,
which satisfies ‖A(i)x‖2 ≤ 1,

1For simplicity, let us assume that k divides d, this can be achieved by padding extra
dimensions with 0’s.
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2. for each point x ∈ Rd such that ‖x‖2 ≥ c, where c > 1, for each i:
1 ≤ i ≤ d/k, we have

P
[
‖A(i)x‖2 ≤ α

]
< e

k
2

(
1−(α

c
)2+log((α

c
)2)
)

Proof. Let a1, a2, . . . , ad be a random basis of Rd. Each of the A(i) mappings
is represented by a k × d dimensional matrix. We will use A(i) for denoting
both the mapping and the corresponding matrix. The jth row of the matrix

A(i) equals A
(i)
j =

√
d
k
a(i−1)k+j. In other words, the rows of A(i) consist of k

consecutive vectors from the random basis of the Rd space scaled by
√

d
k
.

To prove the first property, observe that A =
∑d

i=1 〈ai, x〉
2 ≤ 1, since

the distance is independent of the basis. Assume on the contrary, that for
each i, ‖A(i)

2 x‖ > 1. It follows that d ≥ dA = k
∑d

i=1‖A(i)x‖22 > d. This
contradiction ends the proof of the first property.

For any x ∈ Rd, such that ‖x‖2 > c, the probability:

P
[
‖A(i)x‖2 ≤ α

]
= P

[
‖A(i)x‖22

c2
≤ (

α

c
)2
]
≤ P

[
‖A(i)x‖22
‖x‖22

≤ (
α

c
)2
]
.

Applying Lemma 2.0.1 ends the proof.

Since log x < x− 1− (x− 1)2/2 for x < 1, the above bound is not trivial
for α < c. The algorithm works as follows: for each i, we project Rd to Rk

using Ai and solve the corresponding problem in the smaller space. For each
query point, we need to merge the solutions obtained for each sub-problem.
This results in reducing the NNwfn(c, d) to d/k instances of NNwfn(α, k).

Lemma 2.1.2. For 1 < α < c and k < d, the NNwfn(c, d) can be reduced
to d/k instances of the NNwfn(α, k). The expected pre-processing time equals
O(dω−1n+ d/k preproc(α, k)) and the expected query time equals O(dω−1 +

d/k e
k
2

(
1−(α

c
)2+log((α

c
)2)
)
n+ d/k query(k, α)).

Proof. We use the assumption that k < d and d4−ω < n to simplify the
complexities. The pre-processing time consists of:

• O(d3): the time of computing a random orthonormal basis of Rd.

• O(dω−1n): the time of changing the basis to a1, a2, . . . , ad.
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• O(dnk): the time of computing A(i)x, for all 1 ≤ i ≤ d, and for all n
points.

• O(d/k preproc(α, k)): the expected pre-processing time of all sub-
problems.

The query time consists of:

• O(dω−1): the amortized time of changing the basis to a1, a2, . . . , ad.
2

• O(d/k e
k
2

(
1−(α

c
)2+log((α

c
)2)
)
n): the expected number of false positives (by

Lemma 2.1.1).

• O(d/k query(k, α)): the expected query time for all sub-problems.

The following corollary simplifies the formulas used in Lemma 2.1.2 and
shows that the NNwfn(c, d) can be reduced to a number of problems of dimen-

sion log n in an efficient way. Namely, setting k =
(

2(1−ν)
1−(α

c
)2+log((α

c
)2)

)
log n we

get:

Corollary 1.3.1. For any 1 ≤ α < c and γ log n < d, the NNwfn(c, d)
can be reduced to O(d/(γ log n)) instances of the NNwfn(α, γ log n), where

γ < 2(1−ν)
(α
c
)2−1−2 log α

c
for a tunable parameter ν ∈ [0, 1) and:

query(c, d) = O(d2 + nν + d/(γ log n) query(α, γ log n)),

preproc(c, d) = O(dω−1n+ d/(γ log n) preproc(α, γ log n)).

If the queries are provided in the batches of the size d, we obtain the algorithm
with the query time:

query(c, d) = O(dω−1 + nν + d/(γ log n) query(α, γ log n)).

Using the bound log x < x − 1 − (x − 1)2/2, we obtain the following
inequality:

γ <
( 2c

c− α
)2

(1− ν),

which will be often more convenient to use.

2 We assume that query comes in batches, this is explicitly explained in Corollary 1.3.1.
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2.2 Reduction to `∞–product

In this section, we give another algorithm which reduces the c–near neighbors
problem to a number of instances in `∞–product of l2 spaces with dimension
O(log log n). Lemma 2.0.1 implies that the NNwfn(c, d) problem can be reduced
to d/ log(n) problems of dimension logarithmic in n. In order to reduce the
dimension even more, we will employ L independent families of linear mappings
introduced in Section 2.1. In each of these families, there will be at least
one mapping, which does not increase the length of the input vector. As a
result, there exists a combination of L mappings (each mapping taken from a
distinct family) which does not increase the input vector length. Also, for any
combination of L mappings, the probability that all the mappings transform
a ’long’ vectors to a ’short; one is small. The structure of the mappings is
presented in Figure 2.1.

A(1,1)

A(i1,1)

A(d/k,1)

...
...

A(1,2)

A(i2,2)

A(d/k,2)

...
...

A(1,L)

A(id,L)

A(d/k,L)

...
...

. . .

Figure 2.1: Each column describes one family of linear mappings, constructed
based on one random, orthonormal basis. The blue path describes one
combination of mappings.

To formalize the above line of thinking, we introduce the following lemma:

Lemma 2.2.1. For any natural number L > 0, there exist Ld/k linear
mappings A(i,j) : Rd → Rk, where k < d, 1 ≤ i ≤ d/k and 1 ≤ j ≤ L, such
that

1. for each point x ∈ Rd which satisfies ‖x‖2 ≤ 1, there exist 1 ≤
i1, i2, . . . , iL ≤ d such that ‖A(ij ,j)x‖2 ≤ 1, for each 1 ≤ j ≤ L.

2. for each point x ∈ Rd which satisfies ‖x‖2 ≥ c, where c > 1, for each
i1, i2, . . . , iL: 1 ≤ i1, i2, . . . , iL ≤ d/k, we have

P
[
∀j : ‖A(ij ,j)x‖2 ≤ α

]
< exp

(
− kL

4
(
c− α
c

)2
)
.



32 CHAPTER 2. DIMENSION REDUCTION

Proof. For each j: 1 ≤ j ≤ L we independently sample the orthonormal
basis of Rd: a1, a2, . . . , ad. The A(i,j) will be created in the same way as in

Lemma 2.1.1, namely, the t–th row of A(i,j) equals A
(i,j)
t =

√
d
k
a(i−1)k+t . The

properties (1) and (2) follow directly from Lemma 2.1.1.

In order to employ Lemma 2.2.1 for a given query q, we need to be able
to find all points in X such that a given combination of mappings transforms
these points and the query point to ’close’ vectors. In other words, we need to
find all c-approximate near neighbors for the transformed input set X̃ ⊂ (Rk)L

in the space equipped with metric: l∞–product(x, y) = max1≤i≤L(‖xi − yi‖),
which is formally defined as follows:

Definition 2.2.1 (the c–near neighbors search in l∞–product). The
⊕

l∞
lp NN(c, L, k)

is defined as follows: given a query point q ∈ (Rk)L and a set X̃ ⊂ (Rk)L of n
input points, find all input points, such that for each 1 ≤ i ≤ L: ‖qi− x̃i‖2 ≤ 1.
Moreover, each x̃ satisfying ∀i‖qi−x̃i‖2 ≤ c, might be returned as well. Finally,
each x such that ∃i‖qi − x̃i‖ > c, must not be returned.

Using the construction from Lemma 2.2.1, the NNwfn(c, d) problem can
be reduced to dL instances of the

⊕
l∞
lp NN(α,L, k). Each of the instances

is represented by indices: {i1, i2, . . . , iL} and the corresponding mappings
A(ij ,j) for 1 ≤ j ≤ L. Each input point x̃ ∈ X̃ comes from the point x ∈ X
by applying the mappings: x̃ = (A(i1,1)x, . . . , A(iL,L)x). Similarly, the query
point q̃, in l∞–product, is created from the query point q in NNwfn(c, d), as
q̃ = (A(i1,1)q, . . . , A(iL,L)q).

Lemma 2.2.2. The NNwfn(c, d) can be reduced to (d/k)L instances of
⊕

l∞
lp NN(α,L, k).

The expected pre-processing time equals:

O(Ld2n+ (d/k)L preprocl∞–product(α,L, k))

and the expected query time equals:

O(Ld2 + (d/k)Le−kL(
c−α
2c

)2n+ (d/k)L queryl∞–product(α,L, k)).

The proof of the Lemma is analogical to the proof of Lemma 2.1.2. The
following corollary presents the simplified version of Lemma 2.2.2. Setting

k = dL−1
(

2c
c−α

)2
log ne we get:
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Corollary 2.2.2.1. For any 1 ≤ α < c, the NNwfn(c, d) can be reduced to dL

instances of
⊕

l∞
lp NN(α,L, L−1γ log n), where γ =

(
2c
c−α

)2
and:

query(c, d) = O(Ld2 + (d/ log(n))L queryl∞–product(α,L, dL−1γ log ne)),

preproc(c, d) = O(Ld2n+ (d/ log(n))L preprocl∞–product(α,L, dL−1γ log ne)).

In this section, we presented mechanisms, which enable us to decrease
the dimension of the initial problem. In Chapters 3 and 4, we show efficient
algorithms for the c–near neighbors problem in this reduced space.



Chapter 3

Locality Sensitive Hashing

In this section, we describe how Locality Sensitive Hashing (LSH) with Las
Vegas guaranties can be used to solve the c–near neighbors without false
negatives problem. In the following Sections 3.3.2–3.3.6, we show the specific
families of such functions.

Definition 3.0.1. The LSH function family without false negatives (or with
Las Vegas guaranties) H is a family of hashing functions h : Rd → Z such
that, for given metric ‖·‖, radius R and constant c > 1:

• (close items have close hashes) For x, y ∈ Rd, if ‖x − y‖ < R, then
|h(x)− h(y)| ≤ 1 for each h ∈ H.

• (distant items have distant hashes) For x, y ∈ Rd, if ‖x− y‖ > cR, then
|h(x)− h(y)| > 1 with probability pfp independent of x and y.

At first, we assume that we have the LSH family with certain properties.
In Section 3.1 and 3.2, we show algorithms for c–near neighbors without false
negatives for lp and l∞–product of lp, respectively. In Section 3.3, we describe
various LSH families and their properties. In Section 3.4, we combine the
results of this chapter into a concise form.

3.1 Algorithm for l2

As mentioned before, w.l.o.g we assume that radius R = 1. The idea for
solving the c-nearest neighbors without false negatives is to hash all input
points and for each hash value store all points with this hash value. For a

34
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query point, we compute its hash and fetch the corresponding bucket from
the storage. We examine all input points which are hashed to the same value
as the query point. This bucket will certainly contain all points close to the
query point and some number of false positives (distant points with close
hashes). In order to decrease the probability of a false positive, we introduce
a new hash function g which is the concatenation of k random h functions.
Each of the input points is hashed by g and the reference to this point is kept
in a single storage data structure.

Namely, each x ∈ Rd will be hashed by g(x) := (h1(x), . . . , hk(x)), where
g is a hash function defined as a concatenation of k random LSH functions h.
If two points are ’close’ in the considered metric, then g transforms these
points to hashes p(1), p(2) ∈ Zk, such that |p(1)i − p

(2)
i | ≤ 1 for all i ∈ k. The

pre-processing algorithm is summarized in the following pseudocode:

Algorithm 1: The pre-processing algorithm

Data: X ⊂ Rd – the set of n input points
Result: M : Zk → 2X – the map storing for each hash α ∈ Zk the

subset of input points with hashes close to α
M = ∅;
for x ∈ X do

α = g(x);
for α′ such that ‖α− α′‖∞ ≤ 1 do

M(α′).push(x);
end

end

The query algorithm consists of examining the bucket for g(query point):
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Algorithm 2: The query algorithm

Data: q ∈ Rd – the query point
M : Zk → 2X – the map storing for each hash α ∈ Zk the

subset of input points with hashes close to α
Result: P ⊂ X – the set of neighbors of q
P = ∅;
for x ∈M(g(q)) do

if x is a neighbor of q then
P.push(x);

end

end

The following theorem gives the properties of the above algorithm:

Theorem 3.1.1. For any c > τ and the number of iterations k > 0, there
exists a c–near neighbors algorithm without false negatives for `p, where
p ∈ [1,∞], with:

• Preprocessing time: O(n(kd+ 3k)),

• Memory usage: O(n3k),

• Expected query time: O(d(|P |+ k + npkfp)).

Where |P | is the size of the result and pfp is the upper bound of probability of
false positives, where pfp and τ = τ(d) depend on a choice of hash functions
family and the dimension of the space.

Also, there exists c–near neighbors algorithm without false negatives for
`p(fast pre-processing version):

• Preprocessing time: O(nkd),

• Memory usage: O(n),

• Expected query time: O(d(|P |+ npkfp) + 3k).

Proof. Since we consider two hashes to be ’close’, when they differ by at most
one, for each hash α ∈ Zk we need to store the reference to every point, that
satisfies ‖α− g(x)‖∞ ≤ 1. Thus, the hash map size is O(n3k). Computing a
single h function in Rd takes O(d). The pre-processing consists of computing
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the 3k hashes for each point in the input set. The query consists of computing
the hash of the query point, looking up all the points with colliding hashes,
filtering out the false positives and returning the neighbors.

In the fast pre-processing version, we store only the initial n points and
during the query phase we iterate through all 3k close hashes.

To bound the query time, we need to limit the number of false positives
npkfp. Setting k = − logpfp n in the “fast query” version of this theorem gives
the following corollary:

Theorem 3.1.2. For any c > τ and for large enough n, there exists a c–near
neighbors without false negatives algorithm for `p, where p ∈ [1,∞] (fast query
version), with:

• Preprocessing time: O(n(d log n+ nγ(1−η))),

• Memory usage: O(n1+γ(1−η)),

• Expected query time: O(d(|P |+ log(n) + nη)).

Where |P | is the size of the result, γ = ln 3
− ln pfp

and pfp and τ are chosen as in

Theorem 3.1.1 and 0 ≤ η < 1 is a tunable parameter.

Proof. The number of iterations k can be chosen arbitrarily, so we will choose
the optimal value. Denote a = − ln pfp and b = ln 3, then set k to be:

k =
⌈
−(1− η) logpfp n

⌉
.

Let us assume that n is large enough so that k ≥ 1. Then, we have:

3k ≤ 3 · (3−(1−η)
logn

log pfp ) = 3 · n(1−η)b/a = 3 · n(1−η)b/a = 3 · n(1−η)γ,

npkfp ≤ np
−(1−η)a
fp = nη.

Substituting 3k and npkfp values in Theorem 3.1.1 gives the complexity
guaranties.

In the “fast pre-processing” version, we need to set k in such a way that
number of false positives dnpkfp and number of hashes that need to be searched

3k is balanced.
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Theorem 3.1.3. For any c > τ and for large enough n, there exists a c–near
neighbors algorithm without false negatives for `p, where p ∈ [1,∞] (fast
pre-processing version), with:

• Preprocessing time: O(dn log(dn)),

• Memory usage: O(n log(dn)),

• Expected query time: O(d|P |+ (dn)
a
a+b ).

Where |P | is the size of the result, a = − ln pfp and b = ln 3 and pfp and τ
are chosen as in Theorem 3.1.1 and 0 ≤ η < 1 is a tunable parameter.

Proof. The number of iterations k can be chosen arbitrarily, so we will choose
the optimal value and set k to be:

k =

⌈
log(nd)

a+ b

⌉
.

Let us assume that n is large enough so that k ≥ 1. We have:

3k ≤ 3 · (3
log(dn)
a+b ) = 3 · e

log(dn)a
a+b = 3 · (dn)

a
a+b ,

dnpkfp ≤ dnp
log(nd)
a+b

fp = dne−
b log(nd)
a+b = dn(dn)−

b
a+b = (dn)

a
a+b .

Substituting 3k and dnpkfp values in Theorem 3.1.1 gives the complexity
guaranties.

3.2 Solving the c-approximate near neighbors

in `∞-products of `p

In Chapter 2, we showed how to reduce c–near neighbors in `2to a number of
instances of c–near neighbors in l∞-products of `2. The

⊕
l∞
lp NN(α,L, k)

can be trivially solved by dealing with each of the NNwfn(α, k) problems
separately. Unfortunately, this gives unacceptable complexities. In order
to improve it, we need to be able to solve the

⊕
l∞
lp NN more efficiently.

We show that c–near neighbors in l∞-products of `p can be solved using the
locality sensitive hash functions for any p ∈ [1,∞].
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Again, we assume that we are given an LSH family without false negatives.
We consider two hashes to be ’close’ if |h(x)−h(x′)| ≤ 1 for a hash function h.
Based on h, we introduce a new hash function g. Each of the input points
is hashed by g and the reference to this point is kept in a single hash map.
For a given query point, we examine all input points which are hashed to the
same value as the query point.

Namely, each x̃ ∈ (Rk)L will be hashed by g(x̃) := (g1(x̃1), . . . , gL(x̃L)),
where gi(x) := (h1(x), h2(x), . . . , hw(x)) is a hash function defined as a con-
catenation of w random LSH functions h. The function g can be also seen as
a concatenation of wL random hash functions h. If two points are ’close’ in
the considered l∞–product metric, then g transforms these points to hashes
p(1), p(2) ∈ ZwL, such that |p(1)i − p

(2)
i | ≤ 1 for all i ∈ wL. The pre-processing

algorithm is summarized in the following pseudocode:

Algorithm 3: The pre-processing algorithm

Data: X ⊂ (Rk)L – the set of n input points
Result: H : ZwL → 2X – the map storing for each hash α ∈ ZwL the

subset of input points with hashes close to α
H = ∅;
for x ∈ X do

α = g(x);
for α′ such that ‖α− α′‖∞ ≤ 1 do

H(α′).push(x);
end

end

The query algorithm consists of examining the bucket for g(query point):
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Algorithm 4: The query algorithm

Data: q ∈ (Rk)L – the query point
Result: P ⊂ X – the set of neighbors of q
P = ∅;
for x ∈ H(g(q)) do

if x is a neighbor of q then
P.push(x);

end

end

The following theorem describes the properties the above algorithm:

Theorem 3.2.1. For L = o(log n) and c > τ(k), the
⊕

l∞
lp NN(c,L,k)

can be solved in the O(kL|P | + k lnn) query time and O(n
1+ log 3
− log(pfp)

+o(1)
)

pre-processing time complexity.

Proof. Since we consider two hashes to be ’close’, when they differ at most by
one, for each hash α ∈ ZwL we need to store the reference to every point, that
satisfies ‖α− g(x)‖∞ ≤ 1. Thus, the hash map size is O(n3wL). Computing
a single h function in Rk takes O(k), so evaluating the g(x) for x ∈ (Rk)L

takes O(wkL). The pre-processing consists of computing the 3wL hashes for
each point in the input set. The query consists of computing the hash of the
query point, looking up all the points with colliding hashes, filtering out the
false positives and returning the neighbors.

For any c > τ(k) and the number of iterations w ≥ 1, there exists a⊕
l∞
lp NN(c,L,k) algorithm with the following properties:

• the pre-processing time: O(n(wkL + 3wL)), where wkL is the time
needed to compute the g(input point) and O(3wL) is the number of the
updated hashes for one input point,

• the expected query time: O(kL(|P | + w + npwLfp )), where wkL is the
time needed to compute the g(query point), npwLfp is the number of false
positives which need to be ignored, |P | denotes the size of the result set.
For each of the candidates, we need to perform a check of complexity
O(kL) to classify the point as a true positive or a false positive.

Above pfp and τ are as in Theorem 3.1.1. The number of iterations w can be
chosen arbitrarily, so we will choose the optimal value. Denote a = − ln pfp
and b = ln 3, then set w to be:
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w =

⌈
log n

La

⌉
.

Let us assume that n is large enough so that w ≥ 1. We have:

3wL ≤ 3L · 3
logn
a = 3 · nb/a+o(1),

npwLfp = ne−awL ≤ ne− logn = O(1).

Hence, for constant c the expected query time is O(kL|P |+k lnn). Subse-
quently, the pre-processing time is: O(n3wL) = O(n1+b/a+o(1)). Substituting
a, b and pfp values gives the complexity guaranties.

3.3 Hash Functions

We will consider hash functions of form

hp(x) = b〈x, v〉c ,

where vRd is drawn from some distribution. In order to argue that properties
of the hash functions, we need will use following two observations:

Observation 3.3.1.

P [|hp(x)− hp(y)| ≤ 1] ≤ P [| 〈x− y, v〉 | < 2] .

Observation 3.3.2.

P [|hp(x)− hp(y)| ≤ 1] ≥ P [| 〈x− y, v〉 | < 1] .

In other words, |hp(x) − hp(y) is “small” iff | 〈x− y, v〉 | is also “small”.
In order to prove that Las Vegas property holds, i.e., to ensure that “close”
points are hashed to “close” values, the distribution of v must be bounded.
In this section, we consider different families of bounded functions. We start
with general bounds for independent variables in Section 3.3.1. We show
slightly better bounds for Rademacher’s variables in Section 3.3.2. Then, we
consider bounded variables with log–concave distributions in Section 3.3.3.
We show that log–concaveness is crucial to improve the performance of hashing
functions. In Section 3.3.4, we consider particular log–concave distribution
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bounded
independent

uniform S(d−1)

log concave

uniform Bd∞ Rademacher’s

Figure 3.1: The structure of hash functions families.

U(−1, 1), and show bounds for it. Since vector v with vi ∼ U(−1, 1), for
i ∈ [d], can be interpreted as a random point from the unit ball in l∞, we call
this LSH family a uniform Bd∞ family. This family gives the best results for
p ∈ [1, 2). In Section 3.3.6, we consider hash functions in which v is drawn

uniformly from S(d−1)
p . Thus, the vector v is dependent. This family gives the

best results for p ∈ [2,∞]. All of the families are presented in Figure 3.1.
The bounds for the probability of false positives are summarized in Ta-

ble 3.1. We introduce constants κ = κc,p = 2dmax{1−1/p,1/2}

c
and κ̃ = κ̃c,p =

2d1/2+|1/2−p|

c
. The bounds for the presented LSH families will work for κ (or

κ̃ of dependent hashing family) bounded by some universal constant. The
bounds become better when κ (or κ̃) is closer to 0. In the uniform S(d−1)

case, for p ≥ 2, we have κ̃ = κ. Let us remind that since pfp is present in the
exponent of the nearest neighbor algorithm, it is important to optimize the
constant.

3.3.1 Bounded independent hash functions

In this section, we show the LSH family defined as:

hp(x) =

⌊
〈x, v〉
ρp

⌋
,

where ρp = d1−
1
p and v is a vector of i.i.d from some symmetric probability

distribution such that |vi| ≤ 1. These assumptions are enough to prove the
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family pfp
bounded independent (hp)

2
3

+ 2κ2

3H2

Rademacher’s (hp)
1
2

+
√

2κ

log–concave (ĥp)
2κ

sd(W )

uniform Bd∞ (ĥp)
√

2κ

uniform S(d−1) (h̃p) κ̃

Table 3.1: Comparison of the results for probability of false positives for
different bounded LSH families. The bound for independent variables is for
E(vi) = 0, E(v2i ) = H2, E(v4i ) ≤ 3H4 (for any H > 0). The bound for the
log–concave distribution is for log–concave distribution W and sd(W ) is the
standard deviation of W .

reasonable bounds for false positives.

Observation 3.3.3 (Close points have close hashes). For any random bounded
vector v ∈ Rd of independent random variables such that: |vi| ≤ 1 for
i = 1, . . . , d and for x, y ∈ Rd, if ‖x− y‖p < 1 then ∀hp|hp(x)− hp(y)| ≤ 1.

Proof. We know that ‖z‖1 ≤ ρp‖z‖p , consequently:

ρp‖x− y‖p ≥ ‖x− y‖1 =
∑
i

|xi − yi| ≥
∑
i

|vi(xi − yi)| = | 〈x− y, v〉 |.

Now, when points are close in `p:

‖x− y‖p < 1 ⇐⇒ ρp‖x− y‖p < ρp =⇒ | 〈x− y, v〉 | < ρp.

Next, by Observation 3.3.2:

1 = P [| 〈x− y, v〉 | < ρp] ≤ P [|hp(x)− hp(y)| ≤ 1] .

This ends the proof.

This observation holds for any bounded distribution. In order to ana-
lyze the properties of the hash functions, we need the following technical
observations:
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Observation 3.3.4. For any z ∈ Rd where, δq = dmin{1/2−1/q,0} and 1/p +
1/q = 1:

‖z‖pδp ≤ ‖z‖2 ≤ ‖z‖pδ−1q .

This observation is a direct consequence of the inequality between means.
The proofs for false positive bounds for independent variables are based on
so-called anti-concentration bounds, which are formalized in the following
lemma:

Lemma 3.3.5. Assume, that we are given the hashing function of the form:

hp(x) =

⌊
〈v, x〉
d1−1/p

⌋
.

If v satisfies the following anti-concentration bound:

P [〈v, x〉 ≤ α] ≤ βα for α satisfying condition Φ(α) for ‖x‖2 = 1,

and ‖x− y‖p > c, x, y ∈ Rd then:

pfp = P [|hp(x)− hp(y)| ≤ 1] < βκc,p for Φ(κc,p),

i.e., the probability of false positive in the c–near neighbors equals βκc,p for
Φ(κc,p).

Proof. By Observation 3.3.1, we have.

P [|hp(x)− hp(y)| > 1] ≥ P [| 〈v, z〉 | > 2ρp] = P
[
| 〈v, z〉
‖z‖2

| > 2ρp
‖z‖2

]
,

where z = x− y. By Observation 3.3.4,

P [|hp(x)− hp(y)| > 1] ≥ P

[
|〈v, z〉
‖z‖2

| > 2dmax{ 1
2
,1−1/p}

‖z‖p

]

≥ P

[
| 〈v, z〉
‖z‖2

| > 2dmax{ 1
2
,1−1/p}

c

]
= P

[
|〈v, z〉
‖z‖2

| > κc,p

]
.

Applying anti–concentration bound finishes the proof.

Now, we proceed to prove the anti–concatenation bound for false positives
for general symmetric and bounded distribution:
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Lemma 3.3.6 (Anti–concentration bound for general distribution). For any
random bounded vector v ∈ Rd of independent, symmetric random variables
such that E(vi) = 0, E(v2i ) = H2, E(v4i ) ≤ 3H4 (for any H > 0). If α < H
and ‖x‖2 = 1, then

P [| 〈v, x〉 | ≤ α] ≤ 1−
(1− α2

H2 )2

3
,

for every metric `p, where p ∈ [1,∞].

Proof. Let X = ‖v, x‖, we have:

P [|X| ≤ α] ≤ 1− P
[
X2 >

α2

H2
H2

]
,

Using the assumption α < H, by Paley-Zygmunt inequality (analogously
to [29]) for variable X2 and θ = α2

H2 < 1:

P [|X| ≤ α] ≤ 1− (1− α2

H2
)2
H4

EX4
,

Using the assumption on the forth moment ends the proof.

Now, we proceed to prove the bound for the false positive for general
symmetric bounded distribution. By Lemma 3.3.5 and Lemma 3.3.6, we have:

Lemma 3.3.7 (The probability of false positives for general distribution).
For any random bounded vector v ∈ Rd such as in Lemma 3.3.6. When
‖x− y‖p > c, x, y ∈ Rd and κc,p < H then:

pfp1 = P [|hp(x)− hp(y)| ≤ 1] < 1−
(
1− (κc,p

H
)2
)2

3
,

for every metric `p, where p ∈ [1,∞] (pfp1 is the probability of false
positive).

3.3.2 Rademacher hash functions

In this section, we consider specific hash functions for Rademacher’s distri-
butions, i.e., P [vi = ±1] = 1

2
. This is the optimal choice of distribution in

Lemma 3.3.7 for bounded distribution |vi| ≤ 1. The optimality follows from
the fact that Rademacher’s variable has the largest variance for bounded
distributions. In this section, we show better false positives bound for these
functions. We start with the anti–concentration bound:
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Lemma 3.3.8. For any random vector v ∈ Rd of independent random vari-
ables such that P [vi = ±1] = 1

2
, for every p ∈ [1,∞] and ‖x‖2 = 1 and

κc,p <
1√
2

, it holds:

P [| 〈v, x〉 | ≤ α] ≤ 1− (1−
√

2α)2

2
.

Proof. Let X = 〈v, x〉. The Khintchine inequality [30] states E|X| ≥ ‖x‖2√
2

=
1√
2
, so:

P [|X| ≤ α] ≤ 1− P
[
|X| > α

E|X|
E|X|

]
,

Since α < 1√
2
, by Paley-Zygmunt inequality for variable |X| and θ = α

E|X| < 1:

P [|X| ≤ α] ≤ 1− (1− α

E|X|
)2

(E|X|)2

E(X2)
,

By the Khintchine inequality and the fact that EX2 = 1, the the statement
of the theorem follows.

By Lemma 3.3.5 and Lemma 3.3.8, we have:

Lemma 3.3.9. For any random vector v ∈ Rd of independent random vari-
ables such that P [vi = ±1] = 1

2
, for every p ∈ [1,∞], x, y ∈ Rd and κc,p <

1√
2

such that ‖x− y‖p > c, it holds:

pfp2 = P [|hp(x)− hp(y)| ≤ 1] < 1− (1−
√

2κc,p)
2

2
.

3.3.3 Bounded log–concave hash functions

In Section 3.3.2, we have proved bounds for hash functions defined as: hp(x) =⌊
d1/p−1 〈x, v〉

⌋
, where v ∈ {−1, 1}d is a random vector satisfying: P [vi = 1] =

1/2. In this section, we will introduce new hash functions ĥp, which improve
over hp for p ∈ [1,∞]. Particularly, the probability of false positives is
decreased, which leads to better complexities of the c–near neighbors algorithm
for c = Θ(dmax{1/2,1−1/p}).

Given a vector x ∈ Rd such that ‖x‖p > c, the probability of a false
positives for hp can be bounded as follows:

pfp = P [|hp(x)− hp(y)| ≤ 1] < 1−
(1−

√
8d
c

)2

2
.
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Even for very large c, pfp is always greater than 1/2. This must be the
case, since for an arbitrarily large vector x = (C,C, 0, 0, . . . , 0), the probability
that this vector will be mapped to 0 equals 1/2. To overcome this obstacle,
we introduce new hash function:

ĥp(x) =
⌊
d1/p−1 〈w, x〉

⌋
,

where w is a vector of independent random variables with log–concave distri-
bution.

In particular, the optimal choice o wi is wi ∼ U(−1, 1). In this section,
we prove general bounds for log–concave distribution. In the next section, we
prove better bounds for wi ∼ U(−1, 1).

To bound the probability of false positives, we need to be able to bound
the probability of P [| 〈w, x〉 | < α]. The anti-concentration bounds can be
proved using general results of [26], because they are strongly connected with
the Littlewood-Offord theory. Consider Lévy concentration function:

Q(X,λ) = sup
x

P [X ≤ x ≤ X + λ].

We have P [|X| ≤ α] ≤ Q(X, 2α). Actually, if X is log–concave and symmetric,
then this inequality turns into equality. So any bound on the Lévy concentra-
tion function is also a bound for our problem. Bobkov et al. [26] considered
bounds on the Lévy concentration function for X being the sum of indepen-
dent random variables with the log–concave density function. Particularly
(Theorem 1.1 in [26]):

Theorem 3.3.10. If X1, . . . , Xk are independent random variables with log–
concave distribution, set S =

∑
iXk. Then for all λ ≥ 0

Q(S, λ) ≤ λ√
V ar(S) + λ2

12

.

The above theorem is used to prove the anti-concentration bounds for the
log–concave bounded distributions:

Lemma 3.3.11 (Anti-concentration bound for any log–concave distributions).
Let x ∈ S(d−1) be a given fixed unit vector and w ∈ Rd be a vector of
independent random variables with log–concave distribution W , then

P [| 〈w, x〉 | < α] ≤ 2α

sd(W )
,



48 CHAPTER 3. LOCALITY SENSITIVE HASHING

where sd(W ) is a standard deviation of W .

Proof. To proof this observation, we apply the bounds for the Lévy concentra-
tion function for log–concave distributions presented in [26]. Let Xi = wixi
and S =

∑
iXk. We have

P [| 〈w, x〉 | < α] = P [|S| < α] ≤ Q(S, 2α).

By applying Theorem 3.3.10 we get:

P [| 〈w, x〉 | ≤ α] ≤ 2α√
V ar(S) + α2

3

≤ 2α√
V ar(S)

.

Since V ar(Xi) = x2iV ar(W ) and V ar(S) = ‖x‖22V ar(W ) = V ar(W ), we
have:

P [| 〈w, x〉 | ≤ α] ≤ 2α

sd(W )
.

If we assume that W is bounded: |W | ≤ 1, the best bound is achieved for
uniform distribution. In this case (W = U(−1, 1)) we have sd(W ) =

√
1/3

and P [| 〈w, x〉 | ≤ α] ≤ 2
√

3α. The above bound for the uniform distribution
is not tight. For this special case, the better bound is introduced in Section
3.3.4. By Lemma 3.3.5 we get:

Lemma 3.3.12. Let x ∈ S(d−1) be a given fixed unit vector and w ∈ Rd be as
in Lemma 3.3.11, then for every p ∈ [1,∞], x, y ∈ Rd such that ‖x− y‖p > c,
it holds:

pfp = P
[
|ĥp(x)− ĥp(y)| ≤ 1

]
<

2κc,p
sd(W )

.

3.3.4 Uniform l∞ ball hash functions

In this section, we prove results for special class of log–concave functions,
i.e., the W ∼ U(−1, 1). Let M(X) = supX pX(x)1, where pX is the density
function of X. A well-known result of Ball [27] will allow us to prove better
result for uniform distribution (see also Proposition 3.1 in [26]):

1M(X) is usually defined using more general essential supremum M(X) =
ess supX pX(x) but this is not necessary in our case.
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Theorem 3.3.13. If X1, . . . , Xk are independent random variables with uni-
form distribution on [−1, 1] and let λ ∈ S(d−1) be some fixed unit vector in `d2
and set S =

∑
i λiXi, then M(S) ≤ 1√

2
.

Now we can prove the anti-concentration bound for uniform distributions.

Observation 3.3.14 (Anti-concentration bound for uniform distributions).
Let x ∈ S(d−1) be a given fixed unit vector and w ∈ Rd be a vector of
independent random variables with U(−1, 1) distribution, then

P [| 〈w, x〉 | < α] ≤
√

2α,

Proof. In order to proof this observation, we apply the bounds for cube slicing
of Ball [27]. Let Xi = wixi and S =

∑
iXk. We have

P [| 〈w, x〉 | < α] =

∫ α

−α
pS(ζ)dζ,

where pS is density function of S. Consequently, we have:

P [| 〈w, x〉 | < α] ≤ 2αM(S) ≤
√

2α.

The last inequality follows from Theorem 3.3.13.

If we assume that variables in w are i.i.d. and bounded, then 〈w, x〉
satisfies assumptions of the Hoefding inequality [31]. This implies that 〈w, x〉
is highly concentrated in the interval (−|x|2, |x|2)S, where S is the standard
deviation of wi. Consequently, if w is a vector of variables with i.i.d. then ĥp
is optimal, up to a constant factor. As the inequality in Ball’s cube slicing
is tight, the inequality in Observation 3.3.14 is also tight, for small α. The
tightness of this bound is further discussed in Section 3.3.5. To improve the
constant in inequality, we need to change used hash functions. For p ≥ 2,
such hash functions are introduced in Section 3.3.6.

Using Lemma 3.3.5 and Lemma 3.3.14, we show the bound for the proba-
bility of false positives for ĥp:

Lemma 3.3.15 (Probability of false positives for ĥp). For every p ∈ [1,∞],
x, y ∈ Rd and κc,p ≤ 1√

2
such that ‖x− y‖p > c, the following holds:

p̂fp = P
[
|ĥp(x)− ĥp(y)| ≤ 1

]
<
√

2κc,p.
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3.3.5 Tightness of bounds

In this section, we study the tightness of inequalities for bounded independent
hash functions. We showed that for two distant points x, y : ‖x− y‖p > cr,
the probability of a collision is “small” when c = Θ(dmax{1−1/p,1/2}). The
natural question arises: Can we bound the probability of a collision for points
‖x − y‖p > c′r for some c′ strictly smaller than c? More formally, is there
c′ = O(cd−λ) for some constant λ?

We will show that such c′ does not exist, i.e., there always exists x̃ such
that ‖x̃‖p is arbitrarily close to cr, and both x̃ and ~0 will end up in the
same or adjacent hash with high probability. More formally, let p ∈ [1,∞]

and hp(x) =
⌊
〈x,v〉
ρp

⌋
, where coordinates of d-dimensional vector v are random

variables vi, such that |vi| ≤ 1 with E(vi) = 0. We will show that there always
exists x̃ such that ‖x̃‖p ≈ dmax{1−1/p,1/2} and |hp(x̃) − hp(~0)| ≤ 1 with high
probability.

For p ≥ 2 denote x0 = (ρp − ε, 0, 0, . . . , 0). We have ‖x0 − ~0‖p = ρp − ε
and:

|hp(x0)− hp(~0)| =
∣∣∣∣ ⌊ρp − ερp

· v1
⌋
− 0

∣∣∣∣ ≤ 1.

For p ∈ [1, 2), denote x1 = d−
1
p
+ 1

2
−ε~1. We have ‖x1‖p = d

1
2
−ε and by

applying Observation 3.3.2 for complementary probabilities:

P
[
|hp(x1)− hp(~0)| > 1

]
≤ P [| 〈x1, v〉 | ≥ ρp] = P

[
|
〈
~1, v
〉
| ≥ d

1
2
+ε
]

= P

[∣∣∣∣∑d
i=1 vi
d

∣∣∣∣ ≥ d−
1
2
+ε

]
≤ 2 · exp

(
−d2ε

2

)
.

The last inequality follows from the well–known Hoeffding [31] inequality
which we state below. Let X1, . . . , Xd be bounded independent random
variables: ai ≤ Xi ≤ bi and X be the mean of these variables X =

∑d
i=1Xi/d.

Theorem 2 of Hoeffding [31] states:

P
[
|X − E

[
X
]
| ≥ t

]
≤ 2 · exp

(
− 2d2t2∑d

i=1(bi − ai)2

)
.

In our case, v1, . . . , vd are bounded by ai = −1 ≤ vi ≤ 1 = bi with Evi = 0.
Hoeffding inequality implies:
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P

[∣∣∣∣∣
∑d

i=1 vi
d

∣∣∣∣∣ ≥ t

]
≤ 2 · exp

(
− 2d2t2∑d

i=1(bi − ai)2

)
= 2 · exp

(
−dt

2

2

)
.

Setting t = d−1/2+ε we obtain the claim:

P

[∣∣∣∣∑d
i=1 vi
d

∣∣∣∣ ≥ d−1/2+ε

]
≤ 2 · exp

(
−d

2ε

2

)
.

The aforementioned probability for p ∈ [1, 2) is bounded by an expression
exponential in d2ε. Even if we would concatenate k random hash functions
(see proof of Theorem 3.1.1 for more details), the chance of a collision would

be at least (1−2e
−d2ε

2 )k. To bound this probability by a constant, the number

k needs to be at least Θ(e
d2ε

2 ), which is exponential for any constant ε. The
probability bounds do not work for ε arbitrary close to 0: we proved that
introduced hash functions for c = d1/2−ε do not work (may give false positives).
One may try to obtain tighter bound, e.g., c = d1/2/ log(d) or show that for
every ε > 0, the approximation factor c = d1/2−ε does not work.

Hence, to obtain a significantly better approximation factor c, one must
introduce a completely new family of hash functions.

3.3.6 Uniform S(d−1) hash functions

In this section, we introduce a new LSH function family: h̃p which is tuned
up for p ≥ 2. Although the improvement is in the constant present in anti-
concentration bound, this is important since this constant is in the exponent
of complexities for the c-approximate nearest neighbor without false negatives.
We define h̃p as follows:

h̃p(x) = bδq 〈w, x〉c , where w is a random vector from the unit sphere S(d−1).

Let us remind that δq = dmin{1/p−1/2,0}. In order to bound the probability of
false positive, we need to be able to bound the probability of P [| 〈w, x〉 | < α].
We cannot use the techniques introduced in previous sections, because random
variables in w are not independent. Instead, the probability can be elegantly
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expressed in geometrical terms. The term 〈w, x〉 can be seen as the first coef-
ficient of a random point from S(d−1). The probability of the complementary
event is proportional to the area of two spherical caps of distance α from the
origin of S(d−1). The fraction between the area of these spherical caps and
the area of the unit ball can be expressed as Iα2(1/2, (d− 1)/2) for |x|2 = 1,
where Ix(a, b) is a regularized incomplete beta function [32]. Bounding the
incomplete beta function gives the following observation:

Observation 3.3.16 (The anti-concentration bound for S(d−1)). Let x ∈
S(d−1) be a given unit vector and w ∈ S(d−1) be a random unit vector, then

P [| 〈w, x〉 | < α] ≤ α
√
d.

Proof. As stated before, the complement of the above probability equals the
area of two spherical caps of the normalized (d− 1)-dimensional sphere (i.e.
the area of the sphere equals 1). For a spherical cap, let 0 ≤ φ ≤ π/2 denote
a colatitude angle, i.e. the largest angle between e1 and a vector from the
spherical cap. As stated in [32], the area of the spherical cap is given by
1/2Isin2 φ((d− 1)/2, 1/2). Substituting α = cosφ, we have:

f(α) = P [| 〈w, x〉 | < α] = Isin2 φ((d− 1)/2, 1/2)

= I1−α2((d− 1)/2, 1/2) = Iα2(1/2, (d− 1)/2),

where the last equality follows from the fact that Ix(a, b) = I1−x(b, a). By
the definition of Ix(a, b), we have:

f ′(α) =
2αα−1(1− α2)

d−1
2

B(1/2, (d− 1)/2)
=

2(1− α2)
d−1
2

B(1/2, (d− 1)/2)

and

f ′′(α) =
−2α(d− 3)(1− α2)

d−5
2

B(1/2, (d− 1)/2)
,

where B(a, b) is a beta function. For d = 2 the function f is convex, so

f(α) ≤ (1− α)f(0) + αf(1) = α.

For d > 2, the function is concave and:

f(α) ≤ f(0) + αf ′(0) =
2α

B(1/2, (d− 1)/2)
.
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The last step is proving, that B(1/2, (d− 1)/2) ≥ 2√
d
. Grenié et al. [33]

proved that:

B(x, y) ≥ xx−1yy−1

(x+ y)x+y−1
.

Applying this inequality gives the following bound:

B(1/2, (d− 1)/2) ≥
(1/2)−1/2(d−1

2
)
d−3
2

(d
2
)
d−2
2

=
(1/2)−1/2(d−1

d
)
d−3
2

(d
2
)
1/2
2

=
2(d−1

d
)
d−3
2

√
d

,

which ends the proof, since g(d) = (d−1
d

)
d−3
2 is decreasing for d ≥ 3 and

g(3) = 1.

For large d, g(d) ≈ e−1/2, what gives a slightly better bound. Given the
above anti-concentration bound we prove the crucial properties of h̃p:

Observation 3.3.17 (Close points have close hashes for h̃p). For x, y ∈ Rd,
if ‖x− y‖p < 1 then ∀h̃p |h̃p(x)− h̃p(y)| ≤ 1.

Proof. We have:

P
[
|h̃p(x)− h̃p(y)| ≤ 1

]
≥ P [| 〈x− y, w〉 |δq ≤ 1] .

Applying, in turn, the Schwarz inequality and Observation 3.3.4 we get:

δq| 〈x− y, w〉 | ≤ δq‖x− y‖2 ≤ ‖x− y‖p ≤ 1.

Hence, the points will inevitably hash into the same or adjacent buckets.

Lemma 3.3.18 (Probability of false positives for h̃p). For every p ∈ [1,∞],
x, y ∈ Rd and κ̃c,p < 1 such that ‖x− y‖p > c, it holds:

p̃fp = P
[
|h̃p(x)− h̃p(y)| ≤ 1

]
< κ̃c,p.

Proof. Let z = x − y and X = ‖z‖−12 〈w, z〉, be a random variable. By
Observation 3.3.1:

p̃fp ≤ P
[
|X|‖z‖2 ≤ 2δ−1q

]
≤ P

[
|X| ≤ 2(‖z‖pδqδp)−1

]
.

The second inequality follows from the Observation 3.3.4. Since δqδp =
d−|1/2−1/p|, we have:

p̃fp ≤ P
[
|X| ≤ 2‖z‖−1p d|1/2−1/p|

]
≤ P

[
|X| ≤ 2c−1d|1/2−1/p|

]
.

Applying the anti-concentration bound ends the proof.
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For p ∈ [2,∞] we have asymptotically the same constraints on c (c =
O(d1−1/p)). In addition, for any p ∈ [2,∞] we have p̃fp < p̂fp. Although
the improvement in the bound for pfp is only in constant, this might be
important for practical cases, because this constant is present in the exponent
of the complexities of the c–near neighbors algorithm. For p ∈ [1, 2) there are
discrepancies between the constraints on c, depending on the hash functions
used. Particularly, the hash functions hp and ĥp work for any c = Ω(

√
d) for

p ∈ [1, 2), while the h̃p works for c = Ω(d1/p).
A natural approach for optimizing both the probability of false positives

and the constraint on c would be to consider hash functions of the form
ȟp = b〈w, x〉c, where w is a random point from S(d−1)

q for 1/q + 1/p = 1.2

The Hölder inequality implies that ’close’ points are hashed to adjacent
buckets. In order to prove the bounds for false positives, we need to bound
P [| 〈w, x〉 | < ε]. We conjecture that this probability can be bounded by
O(ε
√
d) for any p ∈ [1, 2]. This is true for p = 2, since ȟ2 = h̃2. Also for

large d, ȟ1 ≈ ĥ1, because these two functions differ only by the factor of
maxi |ui|, where ui ∼ U(−1, 1). This factor will be close to 1 for large d. Still,
techniques used to prove bounds for h̃p and ĥp seem to be insufficient to prove
more general bounds for ȟp.

3.4 Main results

In this section, we present the main results of this chapter. We combine
the schema for solving the c–near neighbors using the LSH and the bounds
obtained for particular LSH functions. For `2, we apply the dimension
reduction techniques introduced in Chapter 2.

3.4.1 Algorithms for any p

Theorem 3.1.2 and Theorem 3.1.3 with hash functions ĥp (Lemma 3.3.15)
and h̃p (Lemma 3.3.18) gives:

Theorem 3.4.1. For any p ∈ [1,∞] and for any c > τp, we show data
structures for the c–near neighbors with

2There are many possibilities of choosing a random point from a sphere in `p. We
conjecture that the bounds should hold for both geometric surface measure and cone
measure.
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• O(n
1+ ln 3

ln(c/τp) ) preprocessing time and O(log n) query time for the ’fast
query’ algorithm,

• O(n log n) preprocessing time and O(n
ln 3

ln(3c/τp) ) query time for the ’fast
preprocessing’ algorithm.3

We distinguish two cases of the theorem for hash functions ĥp and h̃p respec-
tively:

1. τp = τ̂p = 2
√

2dmax{1−1/p,1/2},

2. τp = τ̃p = 2d1/2+|1/2−1/p|.

3.4.2 Algorithms for p = 2

Combining Corollary 1.3.1 with Theorem 3.1.2, we can obtain the algo-
rithm with the polynomial pre-processing time and the sub-linear query
time. Theorem 3.4.1 states, that for any c > 2

√
d, the NNwfn(c, d) can be

solved in the O(n1+ log 3
log(c/τ̃) ) pre-processing time and the query time equal to

O(d|P | + d log n + d2), where P is the size of the result set and τ̃ = 2
√
d.

Altogether, setting α = c/2 in Corollary 1.3.1, we get:

Theorem 3.4.2. The NNwfn(c, d) can be solved for any c > κ̃ = 16
√

log n
with:

query(c, d) = O(d|P |+ d log n+ d2)

preproc(c, d) = O(dn1+ ln 3
log(c/κ̃)/ log(n)).

The time complexity of the algorithm is the same as for previously in-
troduced algorithm which required c = Ω(

√
d). For large d, the exponent in

the pre-processing is much smaller comparing with the previously introduced
algorithms. We focus on the query efficient version of the problem. It is easy
to obtain results for pre-processing efficient version with pre-processing time
O(n log n).

3 For simplicity, we omitted the factors dependent on d.
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Algorithms for p = 2 and c = ω(
√

log log n)

In order to achieve an efficient algorithm for c = ω(log(log(n))), we will make
a series of reductions. First, using Corollary 1.3.1, we reduce our problem to a
number of NNwfn(O(c),O(log n)) problems. Next, these problems are reduced
to a number of

⊕
l∞
lp NN problems with dimension k of O(log log n). In

the end, we use Theorem 3.2.1 to solve the
⊕

l∞
lp NN . Again one can

produce multiple versions of algorithms giving different trade-offs between
the pre-processing time and the query time. Particularly, the algorithm
with the O(n log n) processing time and the sub-linear query time can be
obtained. The same can be done for Theorem 3.4.3. We omit this to avoid
the unnecessary complications.

Theorem 3.4.3. The NNwfn(c, d) can be solved with:

• pre-processing time Õ(d2n+ dn1+ ln 3
ln(c/µ)

+1/f(n)),

• query time Õ(d2 + dn1/f(n)|P |),

for any c > µ = D
√
f(n) log log n,

where f(n) is any function, which satisfies 1/f(n) = o(1) and D is some
constant.

Proof. There are two consecutive reductions:

1. By Corollary 1.3.1, the NNwfn(c, d) can be reduced to d instances of the
NNwfn(α1, k1).

2. By Corollary 2.2.2.1, the NNwfn(α1, k1) can be reduced to kL1 instances
of the⊕

l∞
lp NN(α2, k2, L).

Accordingly, we set:

1. α1 = c/2 and k1 = dD1 log ne in the first reduction,

2. α2 = c/4, k2 = dD2L
−1 log ne ≤ dD2f(n) log log ne and L = d logn

f(n) log logn
e

in the second reduction.

The constants D1 and D2 are chosen to satisfy Corollaries 1.3.1 and 2.2.2.1.
kL1 can be bounded in the following way:

kL1 = dD1 log neL = Õ(n1/f(n)) = Õ(no(1)).
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The final query complexity, up to factors logarithmic in n, equals:

query(c, d) = Õ(d2 + d query(α1, k1)) =

Õ(d2 + d
(
Lk21 + kL1 queryl∞–product(α2, L, k2)

)
) =

Õ(d2 + dn1/f(n) queryl∞–product(α2, L, k2)) =

Õ(d2 + dn1/f(n)(k2L|P |+ k2 log n+ k2L) =

Õ(d2 + dn1/f(n)|P |) =

Õ(d2 + dno(1)|P |).

The final pre-processing time equals:

preproc(c, d) = Õ(d2n+ d preproc(α1, k1)) =

Õ(d2n+ d
(
Lk21n+ kL1 preprocl∞–product(α2, L, k2)

)
=

Õ(d2n+ dn1/f(n) preprocl∞–product(α2, L, k2) =

Õ(d2n+ dn1+
ln(3)

ln(c/κ)
+1/f(n)),

where κ = 2
√
k2 = D

√
f(n) log log n = µ.

The function f(n) may be chosen arbitrarily. Slowly increasing f(n) will
be chosen for small c close to Θ(log log n). For larger c, one should choose
the maximal possible f(n), to optimize the query time complexity.



Chapter 4

Quantization approach

In this chapter, we show another approach to c–near neighbors without false
negatives. We start with the dimension reduction, presented in Chapter 2,
and afterwards we apply the algorithm presented in [1] to the resulting low–
dimensional instances. This leads to relaxation of the constraints on c and to
improving the complexity of the algorithms. Particularly, for `2:

Theorem 4.0.1. The NNwfn(c, d) in `2 can be solved with the amortized query
time O(dω−1 + nν) and the pre-processing time:

• n1+O( 1−ν
ε2

log 1
ε
) for any c < 2,

• O(dω−1n+ dn1+O( 1−ν
log c

)/ log n) for any c ≥ 2,

for some tunable parameter ν ∈ [0, 1) and ε = c− 1.

We assume, that the queries are provided in batches of size d. This
assumption can be omitted, which leads to an algorithm with the query time
of O(d2 + nν). The above is also valid for the other presented algorithms
(in particular, for Theorem 4.0.2). We focus on the batch version to avoid
unnecessary complexity.

In particular, for ν = 0 and c ≤ 2, we obtain an algorithm with the query

time O(dω−1) and the pre-processing time nO(
1
ε2

log 1
ε
). For small c, our results

are incomparable with the previously discussed algorithms. In particular, our
results are similar to the algorithm presented recently in [6], which works
with the query time no(1) and the pre-processing time nO(1/ε

2)+o(1). However,
results presented in [6] give weaker Monte Carlo guaranties. Increasing the

58
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parameter ν allows us to reduce the preprocessing complexity. For ν = 1/c we
achieve an algorithm with the query time O(n1/c) and the pre-processing time

nO(
1
ε
log 1

ε
). Setting ν = 1− ε2/ log 1

ε
gives the algorithm with the polynomial

pre-processing time independent of c.
In addition, we show the pre-processing efficient versions of the algorithms,

which have an optimal in therms of n, linear complexity.

Theorem 4.0.2. The NNwfn(c, d) in `2 can be solved with the pre-processing
time O(dω−1n) and the amortized query time:

• O(dω−1 + dn
1

1+O(ε2 log−1 1
ε ) ) for any c < 2,

• O(dω−1 + dnO(
1

log c
)) for any c ≥ 2,

where ε = c− 1.

This gives new results for probably the most interesting case from the
practical point of view. In particular, for c ≤ 2, we achieve the query time:

O(dω−1 + dn
1

1+O(ε2 log−1 1
ε ) ) = O(dω−1 + dn1−O(ε2 log−1 1

ε
)) = O(dω−1 + dn1−O(ε3))

Again, our algorithm gives results similar to the ones presented in [6] which
gives the query time equal to O(d+ n1−O(ε2)+o(1)).

The above results can be extended to `p for any p ∈ [1,∞].

Lemma 4.0.3. Let us assume, that there is an algorithm for NNwfn(c, d) for
`2, then there exists algorithm for NNwfn(cd|1/2−1/p|, d) for `p any p ∈ [1,∞].

Proof. Assume, that we are given a query point q ∈ Rd. Consider two cases:

• Let us assume, that p < 2.
If we have ‖q − x‖p ≤ 1, for x ∈ Rd, then the algorithm for NNwfn(c, d)
in `2 will return x, because ‖x− y‖2 ≤ ‖x− y‖p ≤ 1.

Assume that the algorithm returned some x. We have ‖x− y‖2 < c and
consequently:

‖x− y‖p ≤ ‖x− y‖2d|1/2−1/p| < cd|1/2−1/p|.

Thus, ‖x− y‖p < cd|1/2−1/p|.
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• Now, let us assume, that p ≥ 2.
In this case, we will solve NNwfn(c, d) in `2 in space rescaled by d−|1/2−1/p|.
If we have ‖q − x‖p ≤ 1, for x ∈ Rd, then the algorithm for NNwfn(c, d)
in `2 will return x, because ‖x− y‖2d−|1/2−1/p| ≤ ‖x− y‖p ≤ 1.

Assume that the algorithm returned some x. We have ‖x − y‖2 < c
and consequently: ‖q − x‖p ≤ ‖q − x‖2 < cd|1/2−1/p|. Thus, ‖x− y‖p <
cd|1/2−1/p|.

The above lemma combined with Theorems 4.0.1 and 4.0.2 gives the best
algorithms for `p for p ∈ [1,∞], that are presented in this work.

All of the presented algorithms give Las Vegas guaranties, which are
stronger than the Monte Carlo guaranties considered previously by other
authors. The provided algorithms are practical in terms of implementation.

4.1 Nearest neighbors without false negatives

for any c

In this section, we show an efficient algorithm for solving the NNwfn(c, d) in `2.
Indyk and Motwani [1] showed an algorithm with the pre-processing time
nO(1/ε)d and the query time equal to O(d), where ε = c− 1. The idea of the
algorithm is the following. We start with a quantization of the given space,
which reduces the problem to finding the near neighbor in a space with integer
coefficients. After the quantization, there is a finite number of points which
have a neighbor in the input set. It is enough to provide the data structure
which will store all such points with accompanying near neighbors from the
input set. It is proved that the number of neighbors of each input point is
O(1/ε)d. So in total, we need to store nO(1/ε)d such points. We can fetch
a point from the data structure in the time proportional to the size of this
point, thus the query time is O(d). This storage data structure is presented
in Section 1.1.

The above construction gives an algorithm for the c–near neighbors in
`2 with the efficient query time. Unfortunately, unless d = O(log n), the
pre-processing time is exponential. If the dimension is larger than γ log n,
with γ defined as in Corollary 1.3.1, we may reduce the complexity of the
pre-processing by reducing the dimension of the input space.
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4.1.1 Fast query

In this section we prove Theorem 4.0.1:

Theorem 4.0.1. The NNwfn(c, d) in `2 can be solved with the amortized query
time O(dω−1 + nν) and the pre-processing time:

• n1+O( 1−ν
ε2

log 1
ε
) for any c < 2,

• O(dω−1n+ dn1+O( 1−ν
log c

)/ log n) for any c ≥ 2,

for some tunable parameter ν ∈ [0, 1) and ε = c− 1.

Proof. Consider two cases:

• c < 2:

For c < 2, we set α = c+1
2

in Corollary 1.3.1. It follows that NNwfn(c, d)
can be reduced to O(d/(γ log n)) instances of NNwfn(c/2 + 1/2, γ log n)
and:

– the query time equalsO
(
dω−1+nν+d/(γ log n) query( c+1

2
, γ log n)

)
,

– the pre-processing time equalsO
(
dω−1n+d/(γ log n) preproc( c+1

2
, γ log n)

)
.

Since log x < x− 1− (x− 1)2/2 for x < 1,

γ <
2(1− ν)

(α
c
)2 − 1− 2 log α

c

< (1− ν)
( 2c2

c2 − α2

)2
= O

(1− ν
ε2

)
.

Consequently, we reduce the problem to O(d/(γ log n)) instances of
NNwfn( c+1

2
,O(1−ν

ε2
log n)). By [1], each of these instances is solved with

the pre-processing time O
(
1
ε

) 1−ν
ε2

logn
= nO(

1−ν
ε2

log 1
ε
) and with the query

time O(γ log n).

• c ≥ 2:

After setting α to any constant value such that log 2 > logα + 1/2 in
Corollary 1.3.1, we reduce the problem to O(d/(γ log n)) instances of
NNwfn(O(1),O(γ log n)). We have:

γ <
2(1− ν)

(α
c
)2 − 1− 2 log α

c

<
1− ν

log c− logα− 1
2

= O
(1− ν

log c

)
.

Each of these instances is solved with the pre-processing time nO(1)
(1−ν) logn

log c =

n1+O( 1−ν
log c

) and with the query time O(γ log n).

This ends the proof.
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4.1.2 Fast pre-processing

In this section, we prove Theorem 4.0.2. To achieve the algorithm with the
fast, linear pre-processing, we will store all input points in the hash-map.
During the query phase, we will ask the hash-map for all of O(1/ε)d of points
which are close to this query point. This way, most of the computation is
moved from the pre-processing to the query phase. The dimension reduction
is used in a similar manner as in Section 4.1.1. We skip the computation
steps which are analogical to the corresponding ones in the previous section.

Theorem 4.0.2. The NNwfn(c, d) in `2 can be solved with the pre-processing
time O(dω−1n) and the amortized query time:

• O(dω−1 + dn
1

1+O(ε2 log−1 1
ε ) ) for any c < 2,

• O(dω−1 + dnO(
1

log c
)) for any c ≥ 2,

where ε = c− 1.

Proof. Consider two cases:

• For c < 2, after setting α = c/2 + 1/2 in Corollary 1.3.1 we get an
algorithm with:

– the query time: O
(
dω−1 + nν + d/(γ log n) query( c+1

2
, γ log n)

)
=

O
(
nν + nO(

1−ν
ε2

log 1
ε
)
)
,

– the pre-processing time: O
(
dω−1n+d/(γ log n) preproc( c+1

2
, γ log n)

)
=

O(dω−1n).

Let us assume that the query time is O
(
nν + nD

1−ν
ε2

log 1
ε
)

for some
constant D. After setting

ν =
D 1

ε2
log 1

ε

D 1
ε2

log 1
ε

+ 1
,

we get the query time complexity equal to O(n
1

ε2D−1 log−1 1
ε+1 ).

• For c ≥ 2, after setting α to any constant value such that log 2 >
logα + 1/2 and ν = 0 in Corollary 1.3.1, we get the algorithm with:
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– the query time: O
(
dω−1 + nν + d/(γ log n) query(α, γ log n)

)
=

O(dnO(
1

log c
))

– the pre-processing time: O
(
dω−1n+d/(γ log n) preproc(α, γ log n)

)
=

O(dω−1n).

This ends the proof.

One can produce the Monte Carlo version of Theorems 4.0.1 and 4.0.2,
which have only slightly better complexities (some factors of d would be
removed), because the dimension reduction is simpler in this case.



Part II

Nearest Neighbors in Social
Networks
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Chapter 5

Introduction

In this part of the thesis, we study the structure of the neighborhood in
social networks. In general, social networks consists of users who disseminate
information in a directed graph of connections. We construct a neighborhood
with the emphasis on the information dissemination, i.e., roughly speaking
the “weight” of the connection between two users is related to the volume
of information passed between these nodes. Unlike the models presented in
the first part of the thesis, this relation is asymmetric. It is often the case
that, the information flow is unidirectional, e.g., the relation between a social
media influencer and her fan in which only fan responds to the influencer’s
content and not the other way around.

More precisely, we say that a node Q is a neighbor of a node P if there is
a large chance that the information produced by P will be spread by Q. The
decision of spreading of the news depends on many factors like the content
of the message, the personal relationship between P and Q, the time of the
day, the current mood of the receiver etc. In this work, we consider the
probabilistic model in which we treat the impact of all unobserved variables
as a random factor. We assume that there exists a directed graph, such that
the information might be spread only between nodes which are connected in
the graph. Since the information spread process is probabilistic, there are
many realizations of this process. A realization of this process: the starting
node together with all other nodes which passed this information is called a
cascade.

The crucial mechanisms describing the neighborhood are the structure of
the graph and information dissemination model. In this part of the thesis,
we study both of these aspects. In Chapter 6, we consider retweet graph in
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the Twitter network and we propose models for information dissemination in
this graph. We discuss existing models, show their drawbacks and provide
new models which overcome the existing issues. We provide an approach
which enables meaningful comparison of different models of information
dissemination with the real cascade distribution.

In Chapter 7, we study the performance of the basic information dissem-
ination model on random graphs. We consider the directed acyclic version
of Erdős–Rényi graphs. We provide the characteristics of these graphs and
show that the considered model satisfy the basic properties of the cascade
distribution. It is known that the cascades distribution can be approximated
by power–law distribution. We show that this is the case for the Erdős–Rényi
graphs.

5.1 Preliminaries

For two series xn, yn, we will say that xn ∼ yn iff limn→∞
xn
yn

= 1. The same
notation is used when a random variable X satisfies a distribution Dist:
X ∼ Dist.

Zipf distribution is a discrete distribution on set {1, . . . , n}, such that:

P [Z = k] =
1

ksHn,s

for k = 1, . . . , n,

where variable Z has Zipf distribution. Hn,s is a normalizing constant – the
n’th generalized harmonic number. If the variable satisfies Zipf’s distribution,
we would interchangeably say that it satisfy power law. Also, satisfying power
law would usually mean that the distribution can be approximated with small
error by Zipf’s distribution.

Binomial distribution Bin(n, p) is a discrete distribution on set {0, . . . , n}
which is number of successes in a sequence of n experiments, where each of
experiment has probability of success equal to p. We have:

P [Z = k] =

(
n

k

)
pk(1− p)n−k,

where variable Z ∼ Bin(n, p).
Negative binomial distribution NB(r, p) is a discrete distribution on set

of natural numbers which is the number of experiments done until the rth
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failure. We have:

P [Z = k] =

(
k + r − 1

k

)
pk(1− p)r,

where variable Z ∼ NB(r, p).
It is well known that the cumulative distribution functions (cdf’s) of

binomial and negative binomial are connected

Fact 5.1.1. Let X ∼ Bin(n, p) be binomial random variable and let Y ∼
NB(r, 1− p) be negative binomial random variable, then:

P [X < r] = P [Y > n] .

Poisson distribution Pois(λ) is a discrete distribution on set of natural
numbers such that:

P [Z = k] =
λkeλ

k!
,

where variable Z ∼ Pois(λ).
Let us state the well–known Chernoff’s bound:

Theorem 5.1.2. Let X be random variable with binomial distribution: Bin(n, p),
then for any ε > 0

Pr(X ≥ (1 + ε)pn) ≤ e−
ε2pn
2+ε , 0 ≤ ε,

and

Pr(X ≤ (1− ε)pn) ≤ e−
ε2pn

2 , 0 ≤ ε ≤ 1.

5.2 Related Work

In this section we discuss previous studies on the structure of information
dissemination in social networks and the structure of the social network itself.
There are different aspects which were taken into consideration while modeling
the information cascades:

• What is the model of large cascades? [34, 35, 36]

• What is the distribution of cascade sizes? [37]
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• How to optimally choose nodes of the social networks in order to inform
the largest number of nodes in the network? [38, 39]

Most of the work was devoted to study large cascades what is motivated by
optimizing the choice of influencer in viral marketing. In our work, we focus
on the whole distribution of cascades including small ones. In fact, the vast
majority of cascades is very small. For more references on modeling cascades
see [40].

5.2.1 Information Dissemination Models

There are different models of information dissemination used in context of
rumor spreading, viral marketing, infection expansion or distributed com-
puting. One of the most popular is SIR model in which each node spreads
the information with fixed probability p to any other user [41]. The first
models made unrealistic assumption that each node is connected with each
other node. This problem can be avoided when we assume that the infor-
mation is disseminated only along the edges of a given fixed graph (see e.g.,
[42, 43]). One can see that setting one parameter p for all nodes might be to
restricted, thus researchers consider model with a distinct probability pv,w
for all nodes’ pairs v, w (see e.g. [44]). Unfortunately, this model might be
strongly over–fitted, because there is not enough information for most of
the nodes pairs. It might be interesting to introduce small number of latent
variables and affiliate each user with a distribution of these latent variables.
It could strongly reduce the number of variables while distinguishing different
types of users. Moreover, recent research on the power law distributions show
that approximation of such distributions might be generated by a mixing a
number of latent non power law distributions [45, 46]. Unfortunately, we are
not aware of any prior work on such models, thus in this thesis we assume
that models are parametrized by some small number of parameters.

The phantom observed in SIR model is that the very large cascades
are overrepresented [47]. The real cascades distribution is a heavy tail
distribution for which this phantom does not occur [48]. In our work, we
propose enhancements of SIR model which improves the distribution of the
cascades and avoids mentioned blow–up effect. Up to our knowledge, the only
work in which similar models were considered is [37]. However, [37] did not
contain any meticulous measurements of goodness of the fit to the real world
data.
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Another method for correcting the cascade distribution is adding stiffler
effect [49]. The stifflers do not spread the information. Moreover, stiffler can
turn its susceptible neighbors into stifflers. Unfortunately, it is not clear how
to justify such a model in social networks. We can assume that stifflers are
entities who received the information from outside of a given social network
and also disseminate this information outside the network. The models
proposed in this work are more direct and interpretable.

Watts at al. [50] considered threshold based information spreading mech-
anism. A given node spreads the information if the number of its graph
neighbors who spread the news is larger than certain threshold. Although,
it is shown that such information dissemination mechanism produces proper
cascades distribution for large random graphs, there is no evidence that such
a mechanism applies to real social networks.

5.2.2 Graph Models

There are different models of social networks starting from the network itself
and ending with randomly generated graphs. The natural approach is to
use the considered network e.g.: Twiter, Flicktr or Digg [35, 36, 51]. The
simulations presented in this work were done using the Twitter network.
There are various way of defining the graph structure. One might use the
follower–followee relationship. At twitter one can retweet the message written
by user who is not followed by us. Moreover, some of the followers never
disseminate the information produced by the user they follow. Thus, one
might consider a retweet graph in favor of folower-folowee graph as a valid
medium of information dissemination [52]. Formally, the retweet graph is a
directed graph in which there is an arc between two users if and only if we
observe any retweet or any replay between these users. In our simulations
we use retweet graph. Another issue that needs to be taken into account is
the fact that the social network can evolve over time [53]. Moreover, retweet
graph depends on the volume of events in our dataset. In Section 6.2, we
describe experiment which shows, that presented models do not depend on
the specific graph.

A certain properties are satisfied by social networks. The in and out
degrees of the nodes follow the Zipf distribution, i.e., the satisfy power law.
There are similar characteristics related to number of messages sent by a user,
the lengths of threads, number of links between the origin and the node which
is furthest away (exploration depth) etc. [49, 54, 55]. The graphs which are
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known to satisfy such constraints are Kronecker graphs [56]. The Kronecker
graphs are build in a recursive manner: computing the Kronecker product of
two adjacency matrices gives a matrix for new graph.

In our work, we follow the similar approach, i.e., we show the theoretical
properties of the information dissemination on radnom acyclic Erdős–Rényi
graph [11]. We show, that for directed acyclic Erdős–Rényi graphs and the
SIR model the cascade sizes follow the power law. Such graph were previously
used in the research on the properties of large cascades in [57].

5.3 Our Results

Let us outline the results presented in this part of the thesis. We propose a
model of neighborhood in the social networks. The key ingredient of these
models is the process of information dissemination. We study this process on
graphs obtained from real networks but also on graph generated by a random
process.

In Chapter 6, we discuss information dissemination process on Twitter
network [10]. We show a meticulous way of comparing different models. We
propose two new models exp–SIR and multi–source. The summary of KS-test
results are presented in Table 6.1. The exp–SIR model takes into account
the effect of suppressing the interest in new information over time. From
another perspective, the exp–SIR model takes into account the fact that close
relationship with the followee increases the chance of spreading information.
In the multi–source model, we assume that information might be spread
outside of our network: by the word of mouth, television radio, newspapers,
phone etc. We show that both models fix problems which were present in
the previous research and that the obtained distribution of the cascades
is much closer to the real one. In particular, presented models suppress
blow up effect (see Figure 5.1) and strongly improve KS-test score which is
proposed to measure the distance between the real cascades distribution and
the distribution generated by the information dissemination model.

In Chapter 7, we analyze the basic model for information dissemination
on directed acyclic Erdős–Rényi graphs. We show that these models satisfy
the basic property of real cascades: the distribution of cascade sizes satisfies
power law. Moreover, we show the fundamental properties of considered
random graphs. In Theorem 7.1.1 (page 84), we show that the distribution of
the degrees in the graph is approximately uniform. The distribution of the
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Figure 5.1: The comparison of the distributions of all presented models and the
original distribution. The plot for SIR model shows large overrepresentation
of cascades larger than 1000. This is not present for the enhanced exp–SIR
and multi–source models.

degrees is the crucial property that characterizes the graph. In the Theorem
7.2.1 (page 87) we show the the most important result of this chapter, i.e. we
show that the probability of a cascade of size k in random directed acyclic
Erdős–Rényi graph with n vertices is (n(1− (αp))k)−1, where p is a parameter
of the graph and α is the parameter of the SIR model. For small αp the above
formula approximately equals (nαpk)−1 which implies power law distribution
of cascades.



Chapter 6

Infromation Dissemination on
Retweet Graph

In this chapter, we study the structure of neighborhood in social networks
by the example of Twitter network [10]. There are many possible concepts
of neighborhood in the social network with the most trivial being the one
given by the network itself: the neighbors of a given person are people who
follow her in Twitter. This definition does not fully capture the hidden
information dissemination network, because large part of the communication
is done through retweets (retweet is done not necessarily by the follower)
and some followers might never actually respond to the messages written by
the followee. The other commonly used graph structure is so–called retweet
graph [52]. In this graph, the user A is connected with user B, if and only if
the user B retweetted or responded to the message which was produced by
A. The retweet graph might be favored when the main goal is to study the
dissemination of information.

Having the network which links the users and the information dissemina-
tion process, we define the neighborhood of a given user by all people who
propagate the information produced by this user. Similarly, the neighborhood
might have been defined as all people who received the information while have
not actively disseminated it. Is this a proper definition of neighborhood? Un-
fortunately the answer is no, the decision of “retweetting” is not deterministic.
Clearly, it can depend on the message itself but also, the current mood of the
user, the time of the day etc. Thus, the proper definition of the neighborhood
for a given user would be, all users who propagate the information produced
by this user with at least probability p. We consider a random process of
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information dissemination, in which information is propagated with certain
probability. The given realization of this process – a concrete series of retweets
and replays is called cascade. The process of information dissemination is
sometimes called rumor spreading.

As mentioned before, often considered models assume that each user
who received the information propagates it to her neighbors with constant
probability p [41]. In the SIR model each of node is in one of the three
states: Susceptible (S), Infected (I) and Recovered (R). In the beginning
all nodes are in state S, besides one initially infected node (seed) which is
in state I. Next, each infected node will propagate the information to all of
its susceptible neighbors with probability p, changing their state from S to I.
After propagating the information the state of the infected node is changed
to recovered.

Algorithm 5: The SIR algorithm.

Data: p – the probability of spreading the infromation
Result: size – the size of the cascade
size = 0;
/*Mark all nodes as susceptible*/
for n ∈ all nodes() do

n.state = S ;
end
/*Mark one random node i as infected*/
i = random node();
i.state = I;
while there is node with state I do

n = get infected();
n.state = R ;
if bernoulli(p) == 1 then

for m ∈ neigbors(n) do
if m.state == S then

m.state = I ;
size = size+ 1 ;

end

end

end

end
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There are many variants of the SIR model. Often, the infected node infect
each of its neighbor independently with probability p. We will refer to this
model as SIR [41]. For the Twitter network the SIR model seems to be more
relevant than SIR, because usually in the Twitter, unlike the other social
networks, the information is published to all people at once. Nevertheless,
the results presented in this thesis work for both SIR and SIR models.

Algorithm 6: The SIR algorithm.

Data: p – the probability of spreading the infromation
Result: size – the size of the cascade
size = 0;
/*Mark all nodes as susceptible*/
for n ∈ all nodes() do

n.state = S ;
end
/*Mark one random node i as infected*/
i = random node();
i.state = I;
while there is node with state I do

n = get infected();
n.state = R ;
for m ∈ neigbors(n) do

if m.state == S and bernoulli(p) == 1 then
m.state = I ;
size = size+ 1 ;

end

end

end

In this section, we show that both models mentioned before are incorrect
– they suffer from the “blow up” effect. Roughly speaking, if the cascade
becomes large enough, it is likely that it will cover large part of the graph.
This phenomenon does not occur in Twitter network. In this chapter, we
propose the way of measuring how well the model fits the real world data. We
propose models which avoid the blow up factors and show that these models
improve with the respect to the proposed objective functions. Having correct
information spreading model, we can properly compute the neighborhood of
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a given node.

The proposed models are modifications of SIR and SIR models. In
further sections, we will usually describe this modification for SIR model, the
SIR model can be modified in an analogous way.

6.1 Measuring the correctness of the model

Many information–dissemination processes, satisfy the power law, i.e., the
sizes of the cascades are distributed according to the Zipf distribution (see
Section 5.1). The cascades in Twitter network also follow this pattern.

We show that cascades generated using SIR and SIR do not follow this
pattern (see Figure 6.1). As mentioned before, these models suffer from the
blow up effect.

We propose Kolmogorov–Smirnov test (KS-Test) to measure how well the
model fits the data. The KS test is a nonparametric method designed to
compare two distributions based on samples, which is an established method
for fitting power–law distributions [58]. We start with computing empirical
cumulative distribution function (cdf). Then, the result of KS test for two
samples S1 and S2 is ‖cdfS1 − cdfS2‖∞, where cdfS is empirical cdf computed
from sample S. In other words, the KS test is the maximal difference between
values of empirical cdf ’s on the same argument.

All of the parameters are estimated by grid search. In Figure 6.2 we
present dependence between the probability of spreading the information and
the KS test in SIR model.

6.2 Dataset

Our dataset is obtained from 10% sample of the Twitter network gathered
between May 19 to May 30, 2013 [10]. It contained 500 million tweets. We
constructed retweet graph in the following way: we put an edge from user v
to user w if and only if user v replied, retweeted, or mentioned user w. We
obtained a graph with roughly 71 million vertices and 230 million edges.

In order to obtain cascades, we considered all tweets with the same hashtag.
We were interested only in new cascades, thus we keep only these hashtags
which did not occur on the first day in our dataset. This should not affect the
real tweet distribution, because most of the cascades last only few days [59].



6.2. DATASET 77

100 101 102 103

cascade size

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ilit

y

SIR
real

Figure 6.1: The distributions for cascade sizes obtained from SIR simulations
and real distribution of cascade sizes. In the SIR model we observe the
over–representation of very large cascades.
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Figure 6.2: The K-S test values for cascades size distribution obtained from
SIR simulations for different parameters p in SIR.
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After applying this filtering, we obtained 7.7 million new, distinct hashtags.

The obtained retweet graph depends on the volume of the dataset. If
the data set is larger, the graph becomes denser. All parameters presented
in this work might be invalid for a graph obtained from a different dataset.
Nevertheless, we claim that the presented models are general and do not
depend on the specific graph. In order to prove that our models are not
overfitted, we divided our dataset into two equal sets both containing a number
of consecutive days. The training set was used to compute parameters and
these parameters were used for the test set. We compute KS Test values for
all presented models: SIR, exp–SIR, and multi–source, and we discovered
that results for the training and the test set are equal up to 0.001 error. Thus,
we claim that we do not overfit the dataset. All of the subsequent results
were obtained using the whole dataset.

In order to repeat or extend our study but also to enable researchers to
work on new models, the used data was made publicly available [60]. The data
was anonymized in order to satisfy Twitter rules regarding public sharing.

6.3 Exponential Decay

We start with the following observation: people are willing to disseminate
information more often, when they are more related to the author of the
information. The information might be more attractive, when it is produced
by our friend, than when it is produced by unknown person and our friend
only passed it through [61].

The above idea is formalized in the following way. We introduce exp–SIR
(exp–SIR) model. Assume, that given information has been passed k times.
The chance, that it will be passed again equals pk, for some constant p. This
way, probability of passing the information decays in each iteration of the
cascade which avoid blow to occur. In Figure 6.4 we present dependence
between the probability of spreading the information and the KS test in
exp–SIR model. The test result for exp–SIR model with comparison to the
real distribution is 0.0207. This improves over the SIR model for which the
test result with comparison to the real distribution is 0.0447.
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Figure 6.3: The distribution of cascade sizes obtained from exp–SIR simula-
tions and real distribution of cascade sizes. In the exp–SIR model we do not
observe the over–representation of very large cascades which was present in
SIR model.

6.4 Multi source model

The exponential decay improved our model but it is still imperfect. In real life
data, we observe, that many rumors do not have one source in the network. In
deed, we observe only some part of the underlying information dissemination
networks. Information is passed through many other channels including other
social networks but also television or “mouth to mouth” communication. In
this model, we assume that each node can become a source independently
with some fixed probability p. The number of nodes (n) in the graph is very
large, thus the probability (p) of becoming a source is very low. The number of
sources is the binomial distribution: Bin(n, p). By the law of rare events the
binomial distribution can be approximated by Poisson distribution: Pois(np).
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Figure 6.4: The K-S test values for cascades size distribution obtained from
SIR simulations for different parameters p in exp–SIR.

The process is divided into rounds. In each round, all active nodes
propagate information using the Twitter network with exponential model and
also some new sources are informed by some unknown medium. We propose
the following random cascade generation process:

• Draw single origin point and start simulation.

• In each round of the propagation:

– draw number of new origins N ,

– draw N new origins uniformly from the network and start simula-
tion with exponential decay from each of these points.

Although it might happen, that cascades from many sources will have
non-empty intersection, the probability of such event is very low. The
following pseudo–code describes the computation of the size of the cascade:
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Algorithm 7: The multi source algorithm

Data: p – the parameter of the exp–SIR model, λ – parameter of
the Poisson distribution

Result: size – the size of the cascade
rounds = 1;
size = 1;
for round ∈ {1..rounds} do

N = Pois(λ).sample();
for i ∈ {1..N} do

cascade size, cascade rounds =exp–SIR(p);
rounds = max(rounds, round+ cascade rounds);
size = size+ cascade size;

end

end

Where Pois(λ).sample() returns sample from Poisson distribution with
mean λ and exp–SIR returns the size and the number of rounds for cascade
in exp–SIR model with parameter p. The test result for multi-source model
with comparison to the real distribution is 0.0116.

Table 6.1: The K-S test comparison of the discussed models with the real
cascade size distribution.

Model K-S test
SIR 0.0447
exp–SIR 0.0207
multi-source 0.0116

6.5 Computing Neighborhood

Given a model of information dissemination, one can compute the neighbor-
hood of a given node. Let us recall that a neighborhood of a given node
is defined as all nodes who would spread the information produced by this
user with probability not smaller than some fixed value. One can use the
standard Monte Carlo methods, i.e., we sample a number of cascades starting
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Figure 6.5: The distribution of cascade sizes obtained from multi–source
model simulations and real distribution of cascade sizes.

from the node. For all nodes, we maintain the empirical probability that this
node will spread the information. To compute this probability, we divide
the number of times in which the node disseminated the information by the
number of sampled cascades. The certainty of the empirical probability might
be bounded using Chernoff’s bound (Theorem 5.1.2). When the number of
nodes is very large and the probability of dissemination is low, the effect of
multi–source can be neglected in this simulation. This leads to pure exp–SIR
model. The structure of the Twitter network is very hierarchical, i.e., it
locally resembles the tree [43]. With this assumption, one can approximate
the neighborhood directly from the model: if a node is at distance k from the
seed, the probability is pk.
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Chapter 7

Theoretical Model of
Information Dissemination

In this chapter, we study the theoretical models of dissemination which might
lead to power–law distribution of cascades. This is, can we build a model of a
network together with the dissemination process which would guarantee the
power–law distribution of the cascade sizes? In this chapter, we show that
this can be proven for the directed acyclic Erdős–Rényi graphs [11].

Definition 7.1.1. Directed Erdős–Rényi with parameter p, n: der(p, n) is n
vertex directed acyclic graph. The vertices are labeled with numbers from 1
to n. For i < j, the probability of the edge from i to j equals p. All the edges
are sampled independently.

Let us observe that using this simple way of generating random graphs one
can sample any directed acyclic graph. Let us discuss properties of der(p, n)
graphs. First, let us observe that distribution of nodes is roughly uniform.
The expected degree of node i is p(n− i− 1). In the following lemma we will
show the further observations on the distribution of degrees in der(p, n):

Theorem 7.1.1. Assume that X be a distribution of degrees in deg(p, n)
graph, then the following properties hold:

1. P [X = l] ≤ 1
pn

,

2. P [X = l] ≥ 1
2pn

for l < p(n− 1),

3. P [X = l] ≤ exp(− ε2

2+ε
(n−1)p)

pn
for l = (1 + ε)p(n− 1) and ε > 0,

84



7.1. DISTRIBUTION OF CASCADE SIZES 85

4. P [X = l] ≥ 1−exp(− ε
2

2
(n−1)p)

pn
for l = (1− ε)p(n− 1) and 1 > ε > 0.

Proof. Consider the node nr n − l − j which can have potentially l + j
neighbors, then the probability that this node will have exactly l neighbors is(
l+j
l

)
pl(1− p)j, thus:

P [X = l] =
1

n

n−l−1∑
j=0

(
l + j

l

)
pl(1− p)j.

The above expression can be expressed as cdf of the random variable Z with
negative binomial distribution Z ∼ NB(l + 1, 1− p):

P [X = l] =
1

pn
P [Z ≤ n− 1] .

Cdf of the negative binomial distribution can be expressed by the cdf of
binomial distribution (see Fact 5.1.1):

P [X = l] =
1

pn
P [W ≥ l + 1] ,

where W ∼ Bin(n− 1, p). Property 1, follows from the fact that probability
of the event is bounded by 1. Property 2 follows from the fact that median
of the Bin(n − 1, p) is at least bp(n− 1)c. The last two properties follow
directly from Chernoff’s bound (Theorem 5.1.2).

Property 4 means that P [X = l] is very close to zero for l > p(n− 1) and
l bounded from p(n − 1). Property 3 means that P [X = l] is very close to
1
pn

for l < p(n − 1) and l bounded from p(n − 1). Property 2 means that

P [X = l] is at least 1
2pn

for any l < p(n− 1). Finally, property 1 means that

P [X = l] is at most 1
pn

for any l. Figure 7.1 contains the plot of real node

degrees distribution for der(p, n) graph.

7.1 Distribution of Cascade Sizes

In this section, we will formally analyze SIR and SIR models (see Section
6 for definitions). We are going to quantitatively describe the process of
generating cascades in der(p, n) by computing asymptotic distribution of
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Figure 7.1: Real distribution of nodes for der(p, n).

cascade sizes. The final cascade distribution is independent of the spreading
model (SIR vs SIR). We are going to show proof for SIR model, the proof
for SIR model is analogical.

Let us set p to be the probability of the edge in the graph, α be the
parameter of SIR model and β = 1− αp, which is the probability that, the
informed user will not spread it through the given edge. Let pn,k be the
probability that the cascade size is k when starting from vertex 1 in a graph
with n vertices. We are going to produce recurrent dependencies. Clearly
pn,k = 0 for k > n, because cascade cannot be larger than the number of
vertices and p1,1 = 1, since we assume that, the first vertex is always spreading.
Note that by removing the nth vertex (the one who can potentially receive
information from all other vertices) from der(p, n) graph one get just the
der(n− 1, p) graph. For 1 ≤ k ≤ n, we have
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pn,k = pn−1,kβ
k + pn−1,k−1(1− βk−1), (7.1)

where βk is the probability that none of the k informed vertices will spread
the information to the last vertex and (1− βk−1) is the probability that at
least one the k − 1 vertices will spread the information to the last vertex.

Let us notice, that starting from vertex no. i in the n elements graph is
equivalent to starting from vertex no. 1 in n− i+ 1 elements graph. Finally,
the distribution of cascades sizes is given by:

sn,k =

∑n
i=1 pi,k
n

, (7.2)

since we are starting from a random vertex. The following theorem gives
asymptotic values of sn,k for large n.

Theorem 7.2.1. sn,k ∼ (n(1− βk))−1.

Proof. Denoting s̃n,k = nsn,k, we can reformulate the observation thesis.
Namely, it is enough to prove, that
limn→∞s̃n,k = (1− βk)−1. We will prove the thesis by induction by k. Let us
start with k = 1.

s̃n,1 =
n∑
i=1

pi,1 = p1,1 +
n−1∑
i=1

pi+1,1 = 1 + βsn−1,1,

Finally, we have: s̃n,1 = 1−βn
1−β . For k > 1, we have

s̃n,k =
n∑
i=1

pi,k =
n∑
i=1

βkpi−1,k +
n∑
i=1

(1− βk−1) · pi−1,k−1,

so s̃n,k fulfills the same pattern as pn,k, namely:

s̃n,k = βks̃n−1,k + (1− βk−1)s̃n−1,k−1 (7.3)

Easy induction reasoning shows that s̃n,k is monotonic in n and bounded,
so ak = limn→∞ s̃n,k exists. Taking limit on both sides of the equation 7.3 we
get:

ak = βkak + (1− βk−1)ak−1 =
1− βk−1

1− βk
ak−1
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Finally, we have

lim
n→∞

s̃n,k =
1

1− βk

We have sn,k ≈ (n(1− (1− ε)k))−1, taking the Taylor’s expansion of the
function (1− (1− ε)k)−1, we get sn,k ≈ n−1((kε)−1 +O(1)). Since (kε)−1 � 1,
we have sn,k ≈ (nkε)−1. For given large n we can choose such α, that for
small enough k, sn,k will follow the power law distribution. Note that the
identical theorem is satisfied for the SIR model and the proof is analogous
to the proof for SIR model.
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