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Abstract

Looking at severe plastic deformation experiments, it seems that crystalline materials at yield
behave as a special kind of anisotropic, compressible, highly viscous fluid. In the presented
approach the plastic behaviour of crystalline solids is treated as a highly viscous material flow
through an adjustable crystal lattice.

The main purpose of this dissertation is to investigate model of a plastic flow of a highly
viscous fluid that describes the ultrafine structure formation induced by severe plastic deforma-
tion. The idea behind is to apply and further develop methods known from fluid mechanics
to modelling crystal solids.

We first provide the thermodynamic description of a fluid like - Eulerian model of crystal
plasticity. The model derivation is based on the application of the Gibbs potential to obtain a rate
type stress strain constitutive relation. The result is compared to the approaches of traditional
plasticity.

The second part of this thesis is devoted to the mathematical analysis of a simplified problems
originating from the visco-elastic model derived to describe flows of crystal plastic materials. Even
after simplifications, neglecting the plastic effects, the problem seems to be difficult to establish
local-in-time existence of a smooth solution and the existence of a weak solution. We propose
a regularisation of the stress evolution equation and prove the global-in-time existence of a weak
solutions, in the case of two dimensional bounded domain, for general initial data. The results,
obtained by the Galerkin method, hold true for the periodic case.

We then give a thorough description of the numerical methods used in the dissertation. Nec-
essary tools in order to discretize the fluid model of crystal plasticity both in space and time,
such that: triangulation of a domain, proper finite dimensional spaces and time discretization
schemes, are recalled. The discrete system resulting from the weak formulation of the considered
system is solved by means of the Newton’s method.

Further the results of numerical simulations are reported. Performed simulations aim to jus-
tify that the presented approach is capable of capturing large strains in typical experimental
settings. We give a detailed description of performed numerical simulations. Two different de-
formation settings were considered: uniaxial compression and channel extrusion. In the case of
a simple compression we deal with a free boundary problem. For this reason we employ the
Arbitrary Lagrangian Eulerian (ALE) approach in the sense that we use the Eulerian formula-
tion on a moving mesh which captures the free boundary. As a test example we analyse a plane
strain compression in a channel die and an uniaxial compression of a pillar-shaped sample. The
second case focuses on 2-turn equal channel angular pressing (ECAP) in two dimensions. We
take advantage of the Eulerian formulation and obtain high strains in a single 2-turn ECAP pass.
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Introduction

0.1 Origin of the problem

The title of the thesis is Fluid Model of Crystal Plasticity - Mathematical Properties and Com-
puter Simulations. The topic arises from the material science where the investigation of polycrys-
talline materials is of a great importance. In particular, the properties of materials are strongly
related to their microstructure. Crystalline matter is anisotropic. This means that the instanta-
neous and time-dependent deformation of crystalline aggregates depends on the direction of the
mechanical loads and geometrical constraints imposed. An essential consequence of the crystalline
anisotropy of material is that its mechanical properties are orientation dependent.

We are interested in modelling and investigating large deformations of advanced materials,
that outperform conventional materials with superior mechanical properties such as toughness,
hardness, accompanied by relatively good ductility, and durability. Moreover, advanced materials
may have also novel properties including the ability to memorize shape or respond to environ-
mental changes, this is however beyond the scope of this dissertation.

The mechanical properties of crystalline materials are determined by several factors, the
average grain size of the material plays a significant, and often a dominant, role. A new advanced
materials can be developed by further grain refinement. In general, the smaller the grain size, the
bigger the strength of a material. This behaviour is described through the empirical Hall–Petch
relation σy = σ0 + kyd

− 1
2 , where σy stands for yield stress, σ0 is friction stress, ky is a constant

of yielding, and d is grain size [1, 2]. Expected mechanical properties are exhibited by ultra fine
grain (UFG) materials, namely polycrystals having very small grains with average grain sizes less
than 1µm.

Experimental studies show that applying severe plastic deformation (SPD) is suitable to
obtain small grain size. SPD techniques are characterized by imposing high strains without
introducing any change in the overall dimensions of the material. Several metal forming processes
achieving severe plastic deformations are now available. Let us list major SPD processes:

• Equal channel angular pressing (ECAP), Segal [3, 4, 5],

• High pressure torsion (HPT), Bridgman [6, 7],

• Accumulative roll bonding (ARB), Saito, Tsuji, Utsunomiya, Sakai [8],

• Cyclic extrusion compression (CRC), Richert, Richert [9],

• Repetitive corrugation and straightening (RCS), Huang, Zhu, Jiang, Lowe [10].

For detailed description of SPD processes that are addressed in this work see Section 0.2.
Note that conventional metal processing (extrusion or rolling) cannot impose very high strains
because the dimensions of a sample are reduced.

13
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The objective of this Ph.D. thesis is the development of a model able to capture the behaviour
of crystalline material processed by severe plastic deformation. We aim to describe very large
deformations, that are typical for fluid models, thus the Eulerian formulation is employed. Nu-
merical simulation equipped with necessary mathematical analysis, can predict microstructure
evolution, including the material hardening, shear band formation and strain localization.

0.2 Techniques for severe plastic deformation processing

The origin of metal processing goes back to the ancient age. At that time SPD processes were
used in blacksmith’s production to fabricate quality steel with superior properties, consisted of
striking and repetitive folding and forging. We refer to the early metal-working of ancient China,
the high-quality Damascus steel in the Middle East, and the Wootz steel in ancient India, see
[11, 12].

Contemporary studies were started by Bridgman [6, 7] who introduced High-Pressure Torsion
(HPT) process. He studied how the mechanical properties of materials can improve subjected to
large deformation under high applied pressures. For his contribution to this field he was awarded
the Nobel Prize in Physics in 1946.

The next breakthrough in the field of material science was the introduction of new analytical
tools, such as orientation imaging microscopy, transmission electron microscope (TEM), and
electron back-scatter diffraction (EBSD). These tools demonstrated that materials processed by
SPD contain ultrafine grains.

We chose the equal channel angular extrusion and high pressure torsion because it has proven
highly suitable for experimental and theoretical studies. The nature of the imposed deformation
is a simple shear.

0.2.1 Equal-channel angular pressing

Since it was first developed by Segal [3, 4, 5], ECAP became a popular topic of investigation. A
work piece is extruded several times through a die in the shape of curved channel with a 90◦−angle
turn. Each pass introduces additional strain, see Figure 1.

The main advantages of using ECAP, also known as equal channel angular extrusion (ECAE),
in comparison to alternative experiments are minor changes in the cross-section of the billet and
the possibility to look at various amounts of strain in a specimen. This is accomplished by
extruding the work piece around a corner. ECAP owes its popularity to the following factors: its
relatively simple setting, applicability to materials with different crystal structures, applicability
to fairly large billets so that there is the potential for applications.

Moreover, in this work we also focus on multi-pass ECAP (e.g. 2-turn ECAP) as a simple
method for imposing a high strain in a single pass of ECAP.

0.2.2 High-pressure torsion

As already mentioned, the studies of HPT originate in the early work of Bridgman [6, 7]. Later
in the eighties the topic was extensively studied in Russia [13].

In a modern HPT facility a sample in the form of disk, is placed between two anvils. A plunger,
the top anvil, applies compressive pressure (typically several GPa). Simultaneously, a support,
the bottom anvil, rotates and imposes a torsional strain.
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Figure 1: Schematic illustration of a typical ECAP facility, showing the shearing plane within
the die.

0.3 Framework and outline of the thesis

The thesis consists of three broad areas: mathematical modelling of responses of elasto-visco-
plastic materials, mathematical analysis of newly developed models, and the development of
numerical schemes to capture the behaviour of such materials. In the centre of this overall
investigation are fully Eulerian models for large deformations of crystal plastic materials.

0.3.1 Modelling of large deformation crystal plasticity

To start with, the approach via continuum mechanics is recalled. After a review of kinematics,
balance equations, and the second law of thermodynamics we discuss one-dimensional mechanical
analogues of elasto-visco-plastic elements. It provides a motivation for consideration of a rate
type material models.

Later in Section 1.3 we address a constitutive theory, focusing on a stress-strain relation.
Starting point to the modelling of large deformation plasticity is to employ the multiplicative
decomposition of the deformation gradient. We present two approaches to modelling large defor-
mations. Multiplicative decomposition by Kroner [14, 15] and natural configuration by Rajagopal
[16, 17], both lead to the additive decomposition of the deformation gradient, but are based on
different thermodynamical basis.

Following the paper by [18], we employ the Gibbs potential to derive an equation, which
describes the evolution of the Cauchy stress. For detailed discussion on models of a rate type

f(Ṫ ,T ,L) = 0, (1)

where the constitutive relation contains the Cauchy stress T , the rate of stress Ṫ , and the velocity
gradient L, we refer to [19, 18]. The comparison between the derivation of the rate type stress-
strain relation using the Helmholtz and the Gibbs potential is given. The emphasis is on the
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Figure 2: Schematic illustration of a typical HPT facility.

application of the Gibbs potential to obtain a rate-type model, describing flow of crystal plastic
material through adjustable lattice.

Next step is to equip the derived model with plastic effects. Section 1.4 covers the description
of crystal plastic behaviour and introduces all necessary variables and constitutive assumptions.
For formulation of rate dependent flow rule and hardening law, we refer to early references such
as Asaro et al.[20, 21, 22] and Hill et al. [23].

Later in Section 1.4.5 we discuss possible extension of the rate dependent flow rule by a rate
independent implicit constitutive relation, see [24, 25].

Finally we employ a maximization of the rate of entropy production principle [16, 17] to
derive governing equations for crystal plasticity on a different thermodynamic basis. The goal is
to replace the single crystal hypothesis, by postulating proper rate of dissipation function, see
Section 1.5.

The obtained model is fully Eulerian. What is important is the Eulerian description of the
evolution of the crystal lattice. The classical derivation is compared to a new way of deriving
crystal plasticity equations. In particular we aim to focus on underlying assumptions, advantages
and drawbacks.

0.3.2 Mathematical analysis of a rate-type fluid model arising from crystal
plasticity

Chapter 2 addresses mathematical properties of the incompressible version of considered model.
We make several simplifying assumptions and analyse a model that captures essential mathemat-
ical difficulties. Despite our effort we were unable to show the existence of the solution to the
derived system, see Appendix B. Therefore, attention is focused on particular regularization that
enables us to prove the global in time existence of a weak solution. Note that in comparison with
standard Maxwell type fluid model considered system lacks viscous contribution to the momen-
tum balance. The proposed regularisation helps us to improve a priori estimates that are then
shown to be sufficient to establish the large data existence of a weak solution.
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0.3.3 Numerical methods and simulations

Numerical analysis of the derived models is based on the Finite Element Method. In Chapter 3 we
give a thorough description of the numerical methods used in the dissertation. To start with we
provide a brief overview of Crystal Plasticity Finite Element Methods as well as Finite Element
Methods dedicated to visco-elastic problems.

Later in Sections (3.1)-(3.4.1) we recall necessary tools in order to discretize the fluid in
model of crystal plasticity both in space and time, such that: triangulation of a domain, proper
finite dimensional spaces and time discretization schemes. The discrete system resulting form the
weak formulation of the considered system is solved by means of the Newton’s method. Also the
discussion on the choice of finite elements focuses on velocity-pressure-stress triples, that satisfy
the stability condition is provided, see Section 3.5.

Section 3.6 covers an Arbitrary Lagrangian Eulerian (ALE) method to study free boundary
problem. The crystal plasticity equation are reformulated in ALE coordinates, which enables us
to compute the problems in time-varying domains.

Finally, in Chapter 4 the results of performed numerical simulations are discussed in detail.
We present three numerical examples: channel-die compression, micropillar compression, and 2-
turn equal channel angular extrusion. The first two settings refer to experimental studies and are
dedicated to comparison of the results, see [26, 27]. We propose a finite element discretization
scheme for a numerical solution in an Arbitrary Lagrangian Eulerian coordinates. Our numerical
predictions are in a good agreement with experiments. The third one is a novel computational
example, motivated by papers of Rosochowski and Olejnik, [28, 29]. We show that elastic stretches
are important part of the model, because they allow us to reduce high values of stress in the
vicinity of inner turns of the 2-turn channel.

All numerical computations are performed for system describing crystal plasticity in Eulerian
coordinates and we solve fully coupled problems. We show the ability of our model to capture
high strains, in particular in the case of compression we are able to cover nominal strain up to 0.4.

We conclude with a short overview of achieved results.
Some of the results presented in this thesis are published in the peer-reviewed journals:

• P. Minakowski, J. Hron, J. Kratochvíl, M. Kružík, J. Málek, Plastic deformation treated as
material adjustable crystal lattice flow through crystal lattice, Materials Science and Engi-
neering, IOP Conference Series, Vol. 63, 012130
http://doi:10.1088/1757-899X/63/1/012130

• P. Minakowski, Fluid Model of Crystal Plasticity: Numerical Simulations of 2-turn Equal
Channel Angular Extrusion, Technische Mechanik, 2014, 34, 213-221,
http://www.ovgu.de/ifme/zeitschrift_tm/2014_Heft3_4/07_Minakowski_color.pdf

Additional results in the theory of anisotropic Orlicz spaces and its applications in continuum
mechanics are published here:

• P. Gwiazda, P. Minakowski and A. Wróblewska-Kamińska, Elliptic problem in generalized
Orlicz-Musielak spaces, Central European Journal of Mathematics, December 2012, Volume
10, Issue 6, 2019-2032, http://link.springer.com/article/10.2478/s11533-012-0126-3

• P. Gwiazda, P. Minakowski and A. Świerczewska-Gwiazda, On the anisotropic Orlicz spaces
applied in the problems of continuum mechanics, Discrete and Continuous Dynamical Sys-
tems. Series S., (Vol. 6, No. 5) October 2013
http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8337

http://doi:10.1088/1757-899X/63/1/012130
http://www.ovgu.de/ifme/zeitschrift_tm/2014_Heft3_4/07_Minakowski_color.pdf
 http://link.springer.com/article/10.2478/s11533-012-0126-3
 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8337
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0.4 Potential applications

The development of advanced materials leads to the design and introduction of new products
in a wide range of commercial sectors. Among SPD procedures ECAP, HPT, are already well-
established methods for commercial production of UFG materials. Examples include the fabrica-
tion of titanium dental implants to support crowns. Due to significant improvement of mechanical
properties of CP Grade 1 Titanium processed by ECAP, one can reduce a diameter of an implant.
Moreover, currently fabrication of bulk nanostructured materials is of a great interest.

0.5 List of Notations

We indicate here after repeated patters in the notations used in the thesis.

a scalars
a = aiei vectors
ai lattice vectors
ai reciprocal dual lattice vectors
A = Aijei ⊗ ej second-order tensors
A = Aijklei ⊗ ej ⊗ ek ⊗ el fourth-order tensors in the current configuration
A = AIJKLeI ⊗ eJ ⊗ eK ⊗ eL fourth-order tensors in the reference configuration
Ah finite element space
a acceleration
O
A= ∂A

∂t + v · ∇A−∇vA−A∇vT upper convected Oldroyd material time derivative
Ad A− 1

d(trA)I, deviatoric part of tensor
a⊗ b = aibj outer product of two vectors
A : B = AijBij scalar product of two second-order tensors
A : B = AijklBkl scalar product of forth-order and second-order tensors
b volume force
E = 1

2(FF T − I) left Cauchy-Green tensor
E Young’s modulus
d space dimension
D = 1

2

(
∇v +∇vT

)
symmetric part of the velocity gradient, strain rate

Div divergence w.r.t the reference configuration
div divergence w.r.t the current configuration
{ei}di=1 Cartesian basis in the current configuration
{eI}dI=1 Cartesian basis in the reference configuration
η specific entropy
ε specific internal energy, one dimensional strain
εe one dimensional elastic strain
εp one dimensional plastic strain
F deformation gradient
Fe elastic part of the deformation gradient
Fp plastic part of the deformation gradient
Grad gradient w.r.t the reference configuration
G Gibbs potential
∇ gradient w.r.t the current configuration
γ̇ shear rate
I identity matrix
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J detF Jacobian
κR reference configuration
κp(t) natural/relaxed configuration
κt current configuration
ξ rate of entropy production
m(α) α−th normal to slip direction
µ, µν viscosity
µe, λe Lame coefficients
n normal vector
ν, ν(α) slip rate
ν0 reference slip rate
νacc accumulated slip
νpois Poisson’s ratio
p pressure
P first Piola-Kirchhoff stress tensor
Ψ Helmholtz free energy
r density of energy sources
Re Reynolds number
% density
S Kirchhoff stress tensor
s(α) α−th slip direction
Σ second Piola-Kirchhoff stress tensor
σ one dimensional stress
σY yield stress
q heat flux
v velocity
t time
T Cauchy stress tensor
τ (α) resolved shear stress
τ

(α)
c critical resolved shear stress
τ0 reference stress
Th triangulation
θ temperature
u displacement
[uvw] (uvw) crystallographic direction family
W = 1

2

(
∇v −∇vT

)
antisymmetric part of velocity gradient, spin

Wi Weissenberg number
x point in the current configuration
X point in the reference configuration
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Chapter 1

Mathematical modelling

1.1 Continuum Mechanics

In this thesis we employ the continuum description of matter at length scales that are large
compared to the molecular scale. Continuum physics aims to describe materials with variables
such as velocity, density, stress, etc., under an assumption that a given number of molecules
is large enough to warrant the use of a smooth continuum description. We briefly recall basic
concepts of solid and fluid mechanics, introduce necessary quantities, and derive balance laws,
see [30]. All the details are included in the corresponding appendixes.

1.1.1 Kinematics

Let Ω0 denote the reference configuration of a body at a given time t0 and let Ωt denote the
current configuration at time t. The material point, which was at the position X ∈ Ω0 in the
reference configuration, is in the current configuration at time t in the position

x = χ(X, t) for X ∈ Ω0, x ∈ Ωt. (1.1)

The mapping χ(X, t) is one-to-one from Ω0 onto Ωt, continuously differentiable with respect
to the position and time, see Figure 1.1. For a fixed time t, the mapping χ(X, t) considered as a
function of X is called the deformation at time t.

F
reference

configuration

current
configuration

. X
. x = χ(X,t)χ

Figure 1.1: Reference and current configuration

In this chapter we will assume that all introduced functions are as regular as needed for all
the mathematical operations performed to be justified.

The tensor field
F =

∂χ(X, t)

∂X
(1.2)

is referred to as the deformation gradient. We denote the determinant of F by J and assume its
non-negativity

J = detF > 0. (1.3)

21



22 CHAPTER 1. MATHEMATICAL MODELLING

The displacement, the velocity, and the acceleration are defined through

u(X, t) = χ(X, t)−X, (1.4)

v(X, t) =
∂χ(X, t)

∂t
, (1.5)

a(X, t) =
∂2χ(X, t)

∂t2
. (1.6)

Notice that vectors v and a are independent of reference time t0.

1.1.2 Lagrangian and Eulerian description

We distinguish between the Lagrangian description of the motion, where we track the trajectory
of individual fluid parcel as it moves from the initial position and the Eulerian description, for
which a velocity field v at position x at time t is given.

Any field quantity ϕ can be expressed in the Lagrangian coordinates as a function of the
reference position. This is called material description

ϕ = ϕ̄(X, t) : Ω0 × [0,∞) 7→ Rd.

In the Eulerian framework a quantity ϕ is defined in the current configuration. This is called
the spatial description and is given by

ϕ = ϕ̃(x, t) : Ωt × [0,∞) 7→ Rd.

Since the mapping χ(X, t) is invertible in X for fixed t, it has an inverse

X = χ−1(x, t).

Eulerian and Lagrangian descriptions are related through

ϕ̄(X, t) = ϕ̃(χ(X, t), t), ϕ̃(x, t) = ϕ̄(χ−1(x, t), t). (1.7)

We introduce the following notation for derivatives in the Lagrangian coordinates

ϕ̇ =
d

dt
ϕ̄(X, t), Gradϕ =

∂ϕ̄(X, t)

∂X
, Divϕ = tr Gradϕ. (1.8)

In the Eulerian coordinates, corresponding derivatives, read as follows
∂ϕ̃(x, t)

∂t
, ∇ϕ =

∂ϕ̃(x, t)

∂x
, divϕ = tr∇ϕ. (1.9)

Notice, that we distinguish between gradients and time derivatives with respect to the reference
(Gradϕ, ϕ̇) and the current (∇ϕ, ∂ϕ∂t ) configurations. For the sake of brevity, where there is no
confusion we omit superposed notation (ϕ = ϕ̄ = ϕ̃).

In what follows the correspondence between the reference (Lagrangian) and the current (Eu-
lerian) configuration is frequently mentioned and we take advantage of following relations, for
details we refer to Appendix C. By the chain-rule, for ϕ (a scalar field) and ϕ (a vector field) it
holds

Gradϕ = F T∇ϕ, Gradϕ = ∇ϕF . (1.10)
Moreover, Eulerian and Lagrangian time derivatives read

ϕ̇(x, t) =
∂ϕ(x, t)

∂t
+ v(x, t) · ∇(ϕ(x, t)), (1.11)

ϕ̇(x, t) =
∂ϕ(x, t)

∂t
+∇(ϕ(x, t))v(x, t). (1.12)

The spatial gradient of the velocity and the deformation gradient are related through

∇v = Ḟ F−1. (1.13)
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1.1.3 Balance equations

The evolution of the state of a body is subject to the balance of mass, momentum, angular
momentum, total energy per unit mass and the second law of thermodynamics. We briefly derive
balance equations. To this aim we recall the Reynold’s transport theorem

d

dt

∫
Ωt

ϕdx =
d

dt

∫
Ω0

ϕJ dX =

∫
Ω0

(
d

dt
ϕJ + ϕ

d

dt
J

)
dX

=

∫
Ω0

((
∂

∂t
ϕ+ v∇ϕ

)
J + ϕJdiv v

)
dX

=

∫
Ωt

∂ϕ

∂t
+ div (ϕv) dx =

∫
Ωt

∂ϕ

∂t
dx +

∫
∂Ωt

ϕv · ndS.

(1.14)

Mass conservation

In a closed region Ωt, the mass M of a body is conserved, namely

M =

∫
Ωt

%(x, t) dx,
d

dt
M = 0, (1.15)

where %(x, t) stands for the density. From (1.15) and (1.14) we obtain

d

dt

∫
Ωt

%(x, t) dx =

∫
Ωt

∂%(x, t)

∂t
+ div (%(x, t)v(x, t)) dx = 0. (1.16)

Let us consider a fixed domain B such that B ⊂ Ωt. Then the mass of the fluid contained in
B is conserved ∫

B

∂%(x, t)

∂t
+ div (%(x, t)v(x, t)) dx = 0. (1.17)

Since B is arbitrary and all quantities are smooth enough we multiply (1.17) by 1
|B| and pass

to the limit with |B| → 0+, we get mass balance in the Eulerian coordinates

∂%(x, t)

∂t
+ div (%(x, t)v(x, t)) = 0. (1.18)

Analogous procedure will be conducted to obtain other balance laws in a differential form.
In the Lagrangian coordinates condition (1.15) yields

d

dt

∫
Ωt

%(x, t) dx =
d

dt

∫
Ω0

%(X, t) detF (X, t) dX = 0, (1.19)

what implies that
%(X, t) detF (X, t) = %(X, 0) = Const. (1.20)

In the case of an incompressible material (1.18) and (1.20) reduce to

div v(x, t) = 0 and detF (X, t) = 1. (1.21)
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Balance of linear momentum

The derivation of the balance of linear momentum,
∫

Ωt
%(x, t)v(x, t) dx, is based on two principles.

The change of the linear momentum equals the sum of volume forces b acting on a body Ωt and
the Cauchy traction t acting on a surface ∂Ωt,

d

dt

∫
Ωt

%(x, t)v(x, t) dx =

∫
Ωt

b(x, t) dx +

∫
∂Ωt

t(x, t,n(x, t)) dS. (1.22)

The Cauchy’s stress theorem states that there exists a second-order tensor field T (x, t), called
the Cauchy stress tensor, independent of the normal vector n(x, t), such that t(x, t,n) is a linear
function of n = n(x, t),

t(x, t,n) = T (x, t)n. (1.23)

Formulae (1.22), (1.23), together with the Reynold’s theorem (1.14), the mass balance (1.18)
and the divergence theorem imply

d

dt

∫
Ωt

%(x, t)v(x, t) dx =

∫
Ωt

b(x, t) dx +

∫
∂Ωt

T (x, t)ndS∫
Ωt

%
∂v

∂t
+ %v∇v + v

(
∂%

∂t
+ div (%v)

)
︸ ︷︷ ︸

=0

dx =

∫
Ωt

b dx +

∫
Ωt

divT dx

The local balance of linear momentum in Eulerian framework has the form

%(x, t)v̇(x, t)− divT (x, t) = %(x, t)b(x, t). (1.24)

Transforming (1.24) to Lagrangian coordinates yields

%(X, 0)
d

dt
v(X, t)−DivP (X, t) = b(X, t), (1.25)

where P (X, t) stands for the first Piola-Kirchhoff stress

P = (detF )TF−T . (1.26)

Moreover, we define two auxiliary stress measures the Kirchhoff stress S and the second Piola-
Kirchhoff stress Σ. The Kirchhoff stress is related to the Cauchy stress by the determinant of
the deformation gradient, therefore it is sometimes called the weighted Cauchy stress

S =
T

%
or S = T detF . (1.27)

To motivate (1.27) we refer to the mass balance in Lagrangian coordinates (1.20), remembering
that the determinant of the deformation gradient represents the ratio of the current volume to
the reference volume. Thus, for isochoric deformation the Kirchhoff stress equals the Cauchy
stress.

The second Piola-Kirchhoff stress reads

Σ = F−1P . (1.28)

Introduced stress measures are related through

T = J−1FΣF T ,

S = FΣF T .
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Balance of angular momentum

Together with the linear momentum we require that the change of the angular momentum,∫
Ωt
x× %(x, t)v(x, t) dx, equals the sum of the moments of all forces acting on Ωt, therefore

d

dt

∫
Ωt

x× %(x, t)v(x, t) dx =

∫
Ωt

x× b(x, t) dx +

∫
∂Ωt

x× t(x, t,n) dS. (1.29)

The local balance of the angular momentum in the Eulerian coordinates states the symmetry
of the Cauchy stress tensor,

T (x, t) = T (x, t)T . (1.30)

Notice that the symmetry condition for the first Piola-Kirchhoff stress, reads

P (X, t)F T = FP (X, t)T . (1.31)

Balance of energy

We introduce the balance of energy as equilibrium between temporal change of the sum of the
kinetic energy K and the internal energy E and the sum of the mechanical W and the thermal Q
power,

d

dt
(K(Ωt) + E(Ωt)) =W(Ωt) +Q(Ωt). (1.32)

Contributions to the energy balance reads as follows

K(Ωt) =

∫
Ωt

1

2
%|v|2 dx, (1.33)

E(Pt) =

∫
Ωt

%ε dx, (1.34)

W(Ωt) =

∫
∂Ωt

Tv · ndS +

∫
Ωt

b · v dx, (1.35)

Q(Ωt) = −
∫
∂Ωt

q · ndS +

∫
Ωt

%r dx, (1.36)

where ε is the specific internal energy, q is the heat flux vector, and r is the specific heat source.
Substituting the explicit forms for K, E , W, and Q into (1.32) yields

d

dt

∫
Ωt

%

(
ε+

1

2
|v|2

)
dx =

∫
∂Ωt

Tv · ndS +

∫
Ωt

b · v dx−
∫
∂Ωt

q · ndS +

∫
Ωt

%r dx (1.37)

We transform the first therm on the right hand side according to the chain rule∫
∂Ωt

Tv · ndS =

∫
Ωt

vdiv T +

∫
Ωt

T : ∇v. (1.38)

From the divergence theorem, (1.24), (1.38) and the mass balance we get∫
Ωt

%ε̇ dx =

∫
Ωt

T : D dx +−
∫

Ωt

div q dx +

∫
Ωt

%r dx. (1.39)

Therefore, the local form of the energy conservation reads

%(x, t)ε̇(x, t) = %(x, t)r(x, t)− div q(x, t) + T (x, t) : D(x, t), (1.40)



26 CHAPTER 1. MATHEMATICAL MODELLING

where D stands for the symmetric part of the velocity gradient.
Lagrangian form of (1.40) reads

%(X, 0)ε̇(X, t) = %(X, 0)r(X, t)−Div q(X, t) + P (X, t) : Ḟ (X, t). (1.41)

The second law of thermodynamics

We require that the second law is fulfilled, namely the production of the entropy is non-negative

H(Pt) =
d

dt
S(Ωt)− J (Ωt) ≥ 0, (1.42)

where S and J stand for the internal entropy and the entropy flow (the rate at which the entropy
is transferred to Ωt), respectively.

S(Ωt) =

∫
Ωt

%η dx, (1.43)

J (Ωt) = −
∫
∂Ωt

j · ndS +

∫
Ωt

j dx, (1.44)

where η is the specific entropy, j the entropy flux, and j the entropy supply.
Moreover, we assume that there exists scalar temperature field θ, such that

θ > 0, j =
q

θ
, j =

%r

θ
. (1.45)

Note that the entropy and the heat flow are in the same direction, and neither can vanish
without the other.

Combining explicit forms of S and J with (1.42) and (1.45) yields Clausius-Duhem inequality

d

dt

∫
Ωt

%η dx ≥ −
∫
∂Ωt

q

θ
· ndS +

∫
Ωt

%r

θ
dx. (1.46)

As a consequence of (1.14), the divergence theorem, and (1.46) we find out that∫
Ωt

(
%η̇ + div

(q
θ

)
− %r

θ

)
dx ≥ 0, (1.47)

and
%η̇ + div

(q
θ

)
− %r

θ
≥ 0. (1.48)

We introduce one more state variable the Helmholtz free energy Ψ, also referred to as the
specific free energy. The relation between thermodynamic variables reads as follows

Ψ := ε− θη. (1.49)

We restrict attention to the isothermal case, θ = Const., that implies

div
(q
θ

)
=

1

θ
div q − 1

θ2
q · ∇θ =︸︷︷︸

θ=Const.

1

θ
div q. (1.50)

The inequality (1.48) together with total energy balance (1.40), (1.50), and equation (1.49)
yields

T : D − %Ψ̇ ≥ 0.
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We introduce the specific rate of dissipation ξ as

%ξ := T : D − %Ψ̇ ≥ 0. (1.51)

It is convenient to divide (1.51) by density and reformulate that equality in therms of the Kirchhoff
stress

ξ = S : D − Ψ̇ ≥ 0. (1.52)

We conclude this section stressing that in this thesis the evolution of the state of the body is
subject to the balance of mass, momentum, angular momentum, energy, and the second law of
thermodynamics which in the Eulerian coordinates takes the form

%̇+ %div v = 0, (1.53a)

%v̇ − divT = b, T = T T , (1.53b)
%ε̇ = %r − div q + T : D, (1.53c)

T : D − %Ψ̇ ≥ 0. (1.53d)

Moreover, since we distinguish between the Cauchy stress and the Kirchhoff stress

%̇+ %div v = 0, (1.54a)

%v̇ − div (%S) = %b′, S = ST , (1.54b)

ε̇ = r − 1

%
div q + S : D, (1.54c)

S : D − Ψ̇ ≥ 0. (1.54d)

where b′ is a specific external force.
Both formulations are often used in the thesis, but we particularly focus on the Kirchhoff

stress. It is worth to recall that in the case of isochoric deformations T and S are equal.
The system (1.53) applies to a body without specifying its kind. Thus, to indicate what kind

of a material we are modelling, we need to add a proper constitutive relation which describes the
response of a material to external stimuli. Another reason why we need extra equations comes
from the fact that from (1.53) one is not able to determine deformation.

1.2 Elasto-Visco-Plasticity

This section is devoted to comparison of different classes of material responses. We aim to give
a motivation and show that it is necessary to consider rate-type models. To this aim we provide
a discussion of one dimensional elastic, viscous and plastic constitutive responses, namely we
investigate its stress-strain behaviour under a uni-axial loading. Note that usually in the literature
visco-elastic and plastic models are discussed separately.

Within this section we use notation σ and ε for the one dimensional stress and strain, respec-
tively (in contrary to Section 1.1 where ε stands for the specific internal energy).
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a)

d)

b)
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Figure 1.2: Elementary rheological models

1.2.1 One-dimensional mechanical analogues

We use simple one-dimensional rheological elements, shown in Figure 1.2, to amplify different
classes of constitutive responses.

An elastic element (Figure 1.2a) represents a fully recoverable behaviour. A spring element,
is an analogue of a linear elastic material. The stress-strain relation, referred to as Hooke’s law,
can be written as

σ = Eε, (1.55)

where proportionality constant E is called the Young’s modulus.
A viscous element (Figure 1.2b) represents response where the stress is a function of a rate

of strain. The dash-pot is a cylinder filled with viscous fluid, which resists motion via viscous
friction. The response of a linear dash-pot, reads

σ = µε̇, (1.56)

where µ is the viscosity of a fluid.
An inextensible cord (Figure 1.2c) exhibits strain limiting behaviour. Unlike the implications

of the Hooke’s law (1.55) the strains remain small, ε ≤ L, when the stress blows up. We mention
inextensible cord because similarly to frictional device it posses threshold and can be modelled
in a class of implicit constitutive models, which are referred to as limiting strain models. For
details we refer to [25, 31].
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A plastic element (Figure 1.2d) is one where the strain remains zero until the stress exceeds
a certain value (yield stress σY ). Detailed description of a frictional device is covered in Section
1.2.3.

1.2.2 Viscoelasticity

Viscoelastic material exhibits both elastic and viscous behaviours. We can join linear spring and
linear dash-pot in parallel and get well known visco-elastic Kelvin-Voigt element. On the other
these elements connected in series give the Maxwell element, see Figure 1.3. By combining (1.55)
and (1.56) with the geometry of considered elements, one can derive stress-strain relation for
those models

Maxwell model
µ

E
σ̇ + σ = µε̇, (1.57)

Kelvin-Voigt model σ = Eε+ µε̇. (1.58)

Visco-elastic models are capable of describing non-linear response exhibited by most of the
materials during creep and stress relaxation tests. For more details on visco-elastic behaviour we
refer to [32].

Maxwell element Kelvin-Voigt element

Figure 1.3: Visco-elastic models

1.2.3 One dimensional plastic element

The response of a frictional device, see Figure 1.4, is characterized as follows. The stress in the
frictional device cannot be greater in absolute value than the yield stress σY . This is called the
yield condition and is given by

|σ| ≤ σY . (1.59)

Change in the configuration of frictional device is possible only if ε̇p 6= 0. If the absolute value
of the applied stress is less than the yield stress, no change in εp takes place, i.e., ε̇p = 0. If stress
equals to yield stress, the frictional device experiences slip in the direction of the applied stress,
with slip rate ν ≥ 0, namely {

ε̇p = ν for σ = σY

ε̇p = −ν for σ = −σY
. (1.60)

Note that the evolution of plastic strain, for any admissible stress (1.60) can be rewritten as a
single equation

ε̇p = ν sign(σ), (1.61)

which is refereed to as a flow rule. It is important to specify proper constitutive law for the slip
rate ν. Notice that the point (0, 0) belongs to the response graph, see Figure 1.4 (right).
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σ

εp
.

σY
σY

-σY

.

Figure 1.4: One-dimensional frictional element

1.2.4 Elasto/visco-plasticity

At first we focus on a parallel connection of viscous and plastic elements, see Figure 1.5. The
total stress is a sum of viscous and plastic contributions

σ = σv + σp, ε = εe = εp.

Stress-strain relation reads as follows

σ = µε̇+ σY sign(ε̇) (1.62)

and is referred to as the Bingham model.

σ

ε
.

μ

σY

σY

Figure 1.5: One-dimensional mechanical analogue of the Bingham model

Now let consider a device consisting of elastic and plastic element connected in series, see
Figure 1.6

εe

E σY

εp

Figure 1.6: One-dimensional mechanical analogue

The total strain ε splits into elastic and plastic contributions

ε = εe + εp, σ = σe = σp.
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The stress in the spring with Young’s modulus E is σ

σ = Eεe = E(ε− εp). (1.63)

Equations (1.61) and (1.63) give us the set of stress-strain constitutive relation. We can either
couple (1.63) with the evolution of the plastic strain (1.61){

σ = Eεe = E(ε− εp)
ε̇p = ν sign(σ)

, (1.64)

or consider the stress-strain relation in a rate form{
σ̇ = Eε̇e = E(ε̇− ε̇p)
ε̇p = ν sign(σ)

. (1.65)

System (1.64) together with the proper definition of the slip rate ν is a one-dimensional version
of a wide class of models. For instance, putting ν = ν(σ) = |σ|N leads to the Norton-Hoff model.

In the thesis we focus on a class of a rate type models, thus the considered stress-strain
constitutive equation is in the form (1.65). Having one-dimensional case as a toy example we
proceed to general rate type materials.

1.2.5 Generalization of one-dimensional models

In the previous section we presented one-dimensional analogues of basic mechanical responses
and combined it into couple of well known models. We aim to provide the description of material
behaviour in higher space dimensions. In the view of models (1.57), (1.58), (1.62), and (1.65), we
generalise the stress σ as the Cauchy stress T and the strain rate ε̇ as the symmetric part of the
velocity gradient D. The skew-symmetric part of the velocity gradient is denoted by W . Notice
that this approach is purely phenomenological. In Section 1.3 we give thermodynamic derivation
of a rate-type fluid model.

Since we are interested in models that contain the rate of stress (1.65), among several prin-
ciples and assumptions which one have to take into account when formulating a constitutive
equation, material objectivity is crucial. The principle of material objectivity says that the form
of the constitutive equation does not depend on a motion of an observer. For details on frame
indifference and objective stress tensors, see Appendix E, where we explain consequences of the
material objectivity principle such as, that the material time derivative ∂T

∂t +v∇T := ∂T
∂t +vk

∂T
∂x+k

is not objective.
The objective form of the time derivative of a tensor can be written in the form

Oa
T =

∂T

∂t
+ v∇T − (WT − TW ) + a(DT + TD), a ∈ [−1, 1]. (1.66)

For a = 1, derivative (1.66) is referred to as the lower convected Oldroyd derivative

Ol
T =

∂T

∂t
+ v∇T + T∇v + (∇v)TT , (1.67)

for a = −1, as the upper convected Oldroyd derivative

Ou
T =

∂T

∂t
+ v∇T − T (∇v)T −∇vT , (1.68)
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and for a = 0, as the Jaumann derivative

OJ
T =

∂T

∂t
+ v∇T −WT + TW . (1.69)

Moreover, there exist some widely used visco-elastic models without objective time derivative,
as the Maxwell model

∂T

∂t
+ γT = D

or the transport model
∂T

∂t
+ v · ∇T + γT = D.

A parallel combination of the Maxwell element and a viscous element with viscosity ν is
refereed to as the Oldroyd model. Then the stress is splitted into the Newtonian part and the
elastic part

T = TNewtonian + T elastic,

where
TNewtonian = 2νD,

and
∂

∂t
T elastic + v · ∇T elastic −∇vT elastic − (∇v)TT elastic + γT elastic = 2µD. (1.70)

From the modelling point of view this approach is well suited for polymeric material. The
Newtonian law corresponds to solvent and (1.70) describes the behaviour of a polymer.

When there is no confusion or there is no need to specify objective time derivative, superscript
is omitted. We conclude by stating the generalised stress strain constitutive relation (1.65)

O
T= CD, (1.71)

where C stands for elastic compliance tensor, see Section 1.3.5.

1.3 Constitutive theory

Starting point to the constitutive theory is a multiplicative decomposition of the deformation
gradient. We present and compare two approaches, by Kröner [14, 15]) and Rajagopal, Srinivasa
[16, 17]. Later we show how to obtain rate type model through the Gibbs potential [18] and the
Helmholtz potential [20, 21, 22], see Appendix D.

1.3.1 Multiplicative decomposition of the deformation gradient

In order to model large deformations, namely elastic-plastic deformations at finite strains we
assume the multiplicative decomposition of the deformation gradient F (Kröner [14], Lee and
Liu [15]). The decomposition is based on the introduction of intermediate configuration, also
known as relaxed or lattice configuration, corresponding to the unloaded state of a material,
which is deformed only plastically, see Figure 1.7.
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F

Fp Fe

reference
configuration

relaxed
configuration

current
configuration

. X
. x = χ(X,t)

Figure 1.7: Schematic of the Kröner decomposition

The multiplicative decomposition reads

F = FeFp, (1.72)

where Fe stands for elastic distortion (stretch and rotation of the lattice) and Fp for plastic
distortion (distortion of the lattice due to formation of dislocations). All the volumetric changes
are assumed to result from the elastic stretches in the lattice,

detFp = 1, detF = detFe > 0. (1.73)

The multiplicative decomposition of the deformation gradient finds a solid and consistent
physical justification in the slip theory of crystals, see also Section 1.4 below.

Following Rajagopal and Srinivasa [16, 17, 33], the deformation from the natural configuration
to the current configuration represents the elastic deformation of the body. By natural configu-
ration of a material we understand the configuration which is attained when all external stimuli
are removed [33]. In order to quantify this, we introduce F κp as the gradient of the deformation
from κp(t) to κt. In order to quantify the local structural changes in the material, we introduce
the tensor G := F κr→κp(t) , which is the gradient of the mapping from κr to κp(t), see Figure 1.8.

F

G
κp(t)

reference
configuration

natural
configuration

current
configuration

. X
. x = χ(X,t)κR

κp(t)

κt

F

Figure 1.8: Schematic of the current natural configuration of the body

Thus changes in G represent microstructural changes. They are related through

F κp = F κrG
−1,

(
J = det(F κp) det(G)

)
. (1.74)
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These approaches vary through the thermodynamical underpinnings to the traditional plas-
ticity, but leads to the same result, namely the additive decomposition of the velocity gradient.

As pointed out by Rajagopal and Srinivasa [16] within classical plasticity literature it is usual
to specify some evolution equation for the plastic strain and then to define the rate of dissipation
as the inner product of the stress with the rate of plastic strain, see e.g. [34, 35]. This approach
is reflected in Section 1.4.2 where single crystal hypothesis is discussed.

On the other hand, one can choose different set of assumptions, namely make constitutive
assumptions on the nature of the work done, the Helmholtz potential and the rate of dissipation.
By postulating that the rate of dissipation per unit volume is the maximum possible, we arrive
at the form of the evolution equation for G, see Section 1.5.

For the detailed comparison of classical plasticity with the presented approach, see [16, Sec-
tion VI. Comparison with traditional approaches to plasticity] and [17, I.1. Dissipation and
inelasticity].

1.3.2 The additive decomposition of the velocity gradient

The multiplicative decomposition (1.72) leads to the additive decomposition of the velocity gra-
dient.

Equation (1.72) together with (1.13) yields

∇v = Ḟ F−1 = (ḞeFp + FeḞp)(FeFp)−1,

∇v = Ḟe(Fe)−1 + Fe(Ḟp(Fp)−1)(Fe)−1.
(1.75)

Let us denote by Le and Lp elastic and plastic parts of the velocity gradient (also called distortion-
rate tensors) through

Le = ḞeFe
−1, Lp = Ḟp(Fp)−1. (1.76)

We conclude with decomposition

∇v = Le + FeLpFe
−1. (1.77)

On the other hand, the second approach (1.74), gives us analogous result. We apply the
material time derivative to F κp

Ḟ κp = Ḟ κp |Gfixed + Ḟ κp |F κrfixed = ∇vF κp + (−F κpĠG−1). (1.78)

and rewrite (1.78) into
∇v = Ḟ κp(F κp)

−1 + F κpĠG−1(F κp)
−1. (1.79)

In what follows we use the classical notation, set Fe := F κp and Fp := G

Le = Ḟ κp(F κp)
−1 = ḞeFe

−1,

Lp = ĠG−1 = Ḟp(Fp)−1.

Moreover, we introduce additional notation. The elastic stretching De, the elastic spin We,
the plastic stretching Dp, and the plastic spin Wp

De =
1

2

(
Le + Le

T
)
, We =

1

2

(
Le −Le

T
)

(1.80)

Dp =
1

2

(
FeLpFe

−1 + (FeLpFe
−1)T

)
, Wp =

1

2

(
FeLpFe

−1 − (FeLpFe
−1)T

)
. (1.81)
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We can relate the above tensors with the elastic Green strain Ee,

Ee =
1

2

(
Fe

TFe − I
)
, (1.82)

by

De =
1

2

(
Le + Le

T
)

=
1

2

(
ḞeFe

−1 + Fe
−T Ḟe

T
)
, (1.83)

We =
1

2

(
Le −Le

T
)

=
1

2

(
ḞeFe

−1 − Fe
−T Ḟe

T
)
, (1.84)

Ėe =
1

2

(
Fe

T Ḟe + Ḟe
T
Fe

)
=

1

2
Fe

T
(
ḞeFe

−1 + Fe
−T Ḟe

T
)
Fe = Fe

TDeFe. (1.85)

Notice that the relation between Ėe and D reads

Ėe = Fe
TDeFe = Fe

T (D −Dp)Fe. (1.86)

1.3.3 Stress-strain dependence

In early references, such as [23, 20, 21, 22], the authors postulate that the Jaumann rate of the
Kirchhoff stress is related to the elastic rate of stretching by usual elastic moduli tensor. In
this approach the constitutive equation is obtained as a rate of stress which is derived from a
Helmholtz potential.

To the author’s knowledge the description of this phenomena, which is thermodynamically
admissible and uses a Helmholtz potential does not lead to the Jaumann rate type model, see [36].
The detailed derivation of the evolution equation for the Cauchy stress based on the Helmholtz
potential is provided in Appendix D.

In the following sections we present the approach of using the Gibbs potential to derive a
rate-type model, see [18].

1.3.4 Gibbs potential approach - stress dependence

In the case of the Helmholtz potential, the stress is defined as the derivative of the Helmholtz
potential with respect to the elastic Green tensor (D.2). We would like to avoid dependency on
the strain. As pointed out for example in Málek et al. [37], from the casual point of view, it is
more natural to consider deformation as effect and force as cause and not otherwise. To this aim
we transform the Helmholtz potential into the Gibbs potential G(S, θ). The relation is given by
the Legendre transformation

Ψ(S, θ) = G(S, θ)− ∂G(S, θ)

∂S
: S. (1.87)

We recall the thermodynamic variables, and assume that they depend on the temperature θ and
the Kirchhoff stress S:

ε(S, θ) - specific internal energy,
Ψ(S, θ) - specific Helmholtz potential,
η(S, θ) - specific entropy.

Following [18] we stipulate that for the given Gibbs potential the specific internal energy and the
specific entropy read

ε(S, θ) = G(S, θ)− ∂G(S, θ)

∂S
: S − ∂G(S, θ)

∂θ
, (1.88)
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η(S, θ) = −∂G(S, θ)

∂θ
. (1.89)

Since thermodynamic variables are related through (1.49) we substitute (1.87) into (1.40),

%

(
˙

G− ∂G

∂S
: S − ∂G

∂θ
θ

)
= %r − div q + %S : D,

−%θ
˙∂G

∂θ
+ %

(
∂G

∂S
: Ṡ − ∂G

∂S
: Ṡ −

˙∂G

∂S
: S

)
= %r − div q + %S : D,

%θη̇ − %
(
∂2G

∂S2 Ṡ +
∂2G

∂S∂θ
θ̇

)
: S = %r − div q + %S : D.

For isothermal processes we get

%θη̇ = %r − div q + %

(
S :

(
D +

∂2G

∂S2 Ṡ

))
.

Further we identify the rate of dissipation (the rate of entropy production per unit mass) as

ξ = S :

(
D +

∂2G

∂S2 Ṡ

)
= S :

(
D −AṠ

)
, (1.90)

where A = −∂2G
∂S2 . Note that if the Gibbs potential is in the form

G = −S : AS

2
then − ∂2G

∂S2 = A.

We refer to fourth order symmetric tensor A as elastic compliance tensor.

Objective rate of stress

The relation (1.90) contains the material derivative of the Kirchhoff stress, Ṡ = ∂
∂tS + v∇S,

which is not objective. We require a rate of stress to satisfy frame-indifference principle, for more
details see Appendix E.

We can avoid this obstacle in two ways. For the isotropic material we use an "objectivity
trick", namely show that necessary corotational terms do not contribute to the dissipation. In
the anisotropic case, we slightly modify the above procedure and the objective time derivative of
S appears in a natural way. For both approaches we provide the details next.

Isotropic material

In order to obtain the objective stress-strain constitutive relation we follow [18]. The right hand
side of (1.90) contains D and A, that are both objective tensors, and Ṡ, which itself is not
objective (however S : AS is objective). To overcome this difficulty we notice that, AS is
isotropic function of S and take the form

AS = α1I + α2S + α3S
2,

where αi (i = 1, 2, 3) are scalar functions of the invariants of S. From the representation of AS
we can observe that

(AS)S = S(AS).
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Now let us consider an arbitrary tensor B and the expression

S : A(BS − SB).

From the symmetry of A and S (S = ST ) together with the above observation we obtain

S : A(BS − SB) = AS : (BS − SB) = B : ((AS)S − S(AS)) = 0. (1.91)

Next we specify B := W , where W is a skew-symmetric part of the velocity gradient.
By adding (1.91) to (1.90) we get

ξ = S :
(
D −A(Ṡ + WS − SW )

)
= S : D∗, (1.92)

where
D∗ = D −A(Ṡ + WS − SW ). (1.93)

Since A is invertible, we put C = A−1 and from (1.93) we obtain relation

Ṡ + WS − SW = C(D −D∗). (1.94)

To reformulate (1.93) in terms of the Cauchy stress we substitute S = T /% and deduce

Ṫ + Tdiv v + WT − TW = %C(D −D∗). (1.95)

Anisotropic material

By anisotropy of a material we indicate dependence of the Gibbs potential on a rotated stress

G = G(S, θ) = G(RTSR, θ), (1.96)

where R is a rotation tensor that is objective, see Appendix E. Examples of such objective
rotation tensors are given below.

Repeating the procedure above leading to (1.90) we obtain

ξ = S : D +
∂2G

∂S
2 Ṡ : S = S : D −A Ṡ : S, (1.97)

where A = −∂2G

∂S
2 and G(S) = −S:AS

2 .

Substituting S = RTSR yield

ξ = S : D −A Ṡ : RTSR = S :

(
D −RA ˙

RTSRRT

)
= S :

(
D −RA(Ṙ

T
SR + RT ṠR + RTSṘ)RT

)
= S :

(
D −RART (RṘ

T
S + Ṡ + SṘRT )RRT

)
= S :

(
D −A(Ṡ + ΩTS + SΩ)

)
,

(1.98)

where A = RART and Ω = ṘRT . Notice that in this case the objective time derivative appears
automatically without any need to add extra terms.

By choosing different rotated stress tensors, we end up with different objective time deriva-
tives. For example, by choosing R as the spatial rotation whose rate is related to the skew-
symmetric part of the velocity gradient W , we get the Jaumann derivative of the stress. This
derivative is extensively used in the crystal plasticity literature, see e.g. [21]. On the other hand,
if we choose R to be the body rotation, then we will get the Green-McInnis-Naghdi derivative.
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1.3.5 Elasticity

It remains to specify an elastic response. We employ the framework of finite elasticity. A number
of models has been proposed to describe a material response undergo finite deformations.

A material is said to be Cauchy elastic if the Cauchy stress tensor is a function of the defor-
mation gradient

T = G(F ). (1.99)

Elastic stress-strain relation in which the stress can be obtained from the strain energy (po-
tential) function, are referred to as Green elasticity also known as hyperelasticity

T =
∂W(E)

∂E
, (1.100)

where E stands for a strain measure.
Hypoelastic materials are described by a relation between the rate of stress and the rate of

strain

Ṫ = C Ė. (1.101)

In Section 1.3 we introduced the elasticity tensors C and C. We restrict attention to linear
isotropic elasticity and quadratic strain energy function

Ψ(E) =
1

2
E : CE. (1.102)

Therefore recalling (D.2) and (D.3) yields

T =
∂Ψ(E)

∂E
⇒ T = CE = λe(trE)I + 2µeE, (1.103)

where λe and µe are the Lame coefficients. Fourth order elasticity tensor C is given by

C = λeI ⊗ I + 2µeI,
CIJKL = λeδIJδKL + µe(δIKδJL + δJKδIL).

In a crystal with cubic symmetry (such as face-centered cubic FCC or body-centered cubic
BCC), with the Cartesian axes oriented along the cube edges, the nonzero elements of C are the
same ones as for the isotropic solid, but the three values C11, C12 and C44 are independent. So,
for FCC crystals the elasticity matrix takes the following form

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 , (1.104)

where we used Voigt single index notation for the components of T and E

(T1, T2, T3, T4, T5, T6)T = (T11, T22, T33, T23, T13, T12)T

(E1, E2, E3, E4, E5, E6)T = (E11, E22, E33, 2E23, 2E13, 2E12)T
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and rewrite constitutive relation (1.103) in the form

T1

T2

T3

T4

T5

T6

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





E1

E2

E3

E4

E5

E6

 .

Moreover, the rate form (1.71) and equivalently (1.101) reads

O
T= CĖ = λe(tr Ė)I + 2µeĖ. (1.105)

1.4 Crystal Plasticity

In crystal plasticity theory, the material plastic deformation is modelled using the slip system
activity concept. Dislocations are assumed to move across the crystal lattice along specific slip
systems, which are characterized by specific crystallographic planes and directions. When the
material is subjected to loading, the applied stress resolved along the slip direction on the slip
plane initiates and controls the extent of dislocation glide. This latter has the effect of shearing
the material whereas the material volume remains unchanged and the crystal lattice remains
constant. Moreover, the crystal lattice can deform elastically. However, elastic strains are small
compared to plastic strains and are sometimes neglected in crystal plasticity models.

A summary of the modelling concepts underlying the plastic deformation of crystallographic
structures is presented in this section.

The total deformation F of a crystal structure is assumed to be composed of two separable
deformations Fe and Fp, see (1.72). The elastic contribution represents the lattice rotation and
distortion. The plastic deformation is associated with sliding between crystal blocks. The motion
of dislocations occurs in a certain slip directions on certain slip plane, see Figure 1.9. We assume
that plastic deformation does not change the structure of the lattice.

slip plane

slip direction

Figure 1.9: Rearrangement of atoms in elastic and plastic (slip) deformations

We introduce the concept of lattice vectors also known as a Bravais lattice, where a1, a2, a3

are primitive which form a basis in R3 and span the lattice, see Figure 1.10. Moreover, together
with lattice vectors we define reciprocal dual lattice vectors by

a1 =
a2 × a3

a1 · (a2 × a3)
, (1.106)

with a2 and a3 defined by cyclically permuting 1, 2, and 3. Note that ai · aj = δij even if basis
{ai} is not orthogonal.

The slip directions (s(α)) and normal vectors to the slip planes (m(α)) can be specified once
and for all times in terms of lattice vectors.
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a) b)

a1
a2

a3s(1)

s(3)s(2)

m(1)

Figure 1.10: Face center cubic FCC crystal structure (a) and some example slip system, the plane
along which the crystal will slide is shown in grey (b).

These vectors for α−th (α = 1, 2, . . . , N) slip direction are given by the crystallographic
structure and are represented as

s
(α)
0 = s

(α)
i ai(x, 0), (1.107)

m
(α)
0 = m

(α)
i ai(x, 0), (1.108)

where s(α)
i and m(α)

i are constant coefficients. For example, the slip direction s(1) = a1 + a2 is
called (110) direction.

Stated precisely, our description contains slip directions

s(α), α = 1, 2, . . . , N, (1.109)

and slip planes are identified by their normals

m(α), α = 1, 2, . . . , N. (1.110)

A slip plane with a slip direction is refereed to as slip system.
The slip systems are labelled by a superscript α , with α = 1, 2, . . . , N where N is the total

number of slip systems. The vectors s(α)
0 and m

(α)
0 denote the slip directions and the slip plane

normal in the reference and intermediate configurations. In the current state they are represented
by (1.109) and (1.110), respectively.

The slip plane is mostly a crystallographic plane which has the highest density of atoms,
and slip directions in these planes are directions in which the atoms are most closely packed, see
Figure 1.11 (c). Most common crystal structures in metals are

• face-centered cubic (FCC), e.g. Al, Cu, Ni, Ag;

• body-centered cubic (BCC), e.g. Ta, V, Mo, Cr.

Schematics of corresponding structures are shown in Figure 1.11 (a) and (b).
The substantial work on the subject may be traced to papers by Taylor [38], Hill [39], Rice

[40], Asaro [41], and Asaro and Needleman [22].

1.4.1 The evolution of the lattice

Let us recall the multiplicative decomposition F = FeFp (1.72). The tensor Fp defines the
stress-free intermediate configuration. In this configuration resulting from plastic shearing along
well-defined slip planes of the crystal lattice, the orientation of the crystal lattice is identical to
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a) b) c)

Figure 1.11: Unit cell of FCC crystal (a); unit cell of BCC crystal (b); a triangular portion of
the slip plane (corresponding slip directions are parallel to the sides of the triangle).

the orientation in the reference state. The tensor Fe reflects the lattice deformation and local
rigid body rotations.

We assume that the lattice vectors can distort elastically together with Fe

ai(x, t) = Fe(x, t)ai(x, 0)⇒ s(α)(x, t) = Fe(x, t)s(α)(x, 0) (1.111)

The rate form of (1.111) reads

ȧi(x, t) = Leai(x, t)⇒ ṡ(α)(x, t) = Les
(α)(x, t). (1.112)

Following Srinivasa [36], we connect the evolution of the lattice vectors to the lattice rate Le

through

Le = ḞeFe
−1 =

d∑
i=1

ȧi ⊗ ai ⇐⇒ ȧj = Leaj . (1.113)

To see that (1.113) holds, we first multiply
∑d

i=1 ȧi ⊗ ai by aj (ai · aj = δij) and observe
that

Le =

d∑
i=1

ȧi ⊗ ai ⇒ ȧj = Leaj .

On the other hand, the opposite implication, i.e.

Le =

d∑
i=1

ȧi ⊗ ai ⇐ ȧj = Leaj

follows from the definition of the reciprocal basis (1.106).

1.4.2 Single Crystal Hypothesis

Plastic effects are modelled as the deformations of a material due to the flow of material dislo-
cations through the lattice. The single-crystal hypothesis is based on the assumption that the
motion of dislocations in crystalline materials takes place in preferred slip directions on preferred
slip planes. The plastic part of the velocity gradient Lp is assumed to be given by [40]
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Lp =

N∑
α=1

ν(α)s
(α)
0 ⊗m

(α)
0 ,

Dp =
N∑
α=1

ν(α)sym
(
s

(α)
0 ⊗m

(α)
0

)
,

(1.114)

where ν(α)(x, t) stands for the slip rates, which are the functions that oppose the slip on individual
slip system and are given by a flow rule (1.120) below. The initial slip directions s(α)

0 refer to the
reference configuration, we introduce the current slip directions and those normal to the current
slip directions, which depend on the deformation gradient through the relation

s(α) = Fes
(α)
0 , m(α) = Fe

−Tm
(α)
0 .

From (1.77) we again obtain the additive decomposition of ∇v,

∇v = Le +

N∑
α=1

ν(α)Fes
(α)
0 ⊗m

(α)
0 (Fe)−1 = Le +

N∑
α=1

ν(α)s(α) ⊗m(α). (1.115)

As pointed out in Section 1.3.1 we aim to avoid the single crystal hypothesis by choosing
different type of constitutive assumptions. The procedure is described in Section 1.5.

Decomposition of the velocity gradient

To conclude we express the velocity gradient in terms of the lattice basis vectors. Substituting
the elastic and the plastic parts from (1.113) and (1.115) into (1.77) yields

∇v =
d∑
i=1

ȧi ⊗ ai +
N∑
α=1

ν(α)s(α) ⊗m(α). (1.116)

Resolved shear stress

Resolved shear stress is the shear component of an applied stress resolved along a slip plane that
is other than perpendicular or parallel to the stress axis.

We define the resolved shear stress as

τ (α) = s(α) : Sm(α) for α = 1, . . . , N. (1.117)

1.4.3 The flow rule and hardening

The slip rates are then formulated as a function of the resolved shear stress τ (α) and the critical
resolved shear stress τ (α)

c

ν(α) = F
(
τ (α), ταc

)
(1.118)

and the evolution of material state as a function of the slip rates

τ (α)
c = G

(
ν(α)

)
. (1.119)
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In its simplest form (1.118), the viscoplastic behaviour is described by a power law, as first
introduced by Hutchinson [42] and used in computations by Peirce, Asaro and Needleman [21]

ν(α) = ν0sgn
(
τ (α)

)( |τ (α)|
τ

(α)
c

)1/m

, (1.120)

where m is a rate sensitivity parameter, and ν0 is a reference slip rate.
The hardening rule (1.119) represents the strain-induced evolution of the material resistance

to plastic deformation. This strain-induced evolution is a consequence of the increased num-
ber of dislocations present in the material during plastic deformation. The critical stresses τ (i)

c

representing dissipative internal forces that oppose the slip are assumed to be governed by the
evolution equation

τ̇c
(α) =

∑
j

Hαβ|ν(β)|, (1.121a)

τ (α)
c |t=0 = τ0, (1.121b)

where the hardening coefficients Hij are functions of accumulated slip rate.
One of the possible forms of the hardening matrix components, proposed by Asaro et al. [21]

reads

Hαβ = H0sech2

(
H0νacc
τs − τ0

)
(1.122)

with the initial hardening rateH0 = 8.9τ0, the saturation strength τs = 1.8τ0 and the accumulated
slip

νacc(t) =
∑
α

∫ t

0
|ν(α)|dt. (1.123)

1.4.4 The second law of thermodynamics

Let us notice that under the above assumptions the second law of thermodynamics is satisfied

ξ = T : Dp =

N∑
α=1

ν(α)T :
(
s(α) ⊗m(α)

)
=

N∑
α=1

ν(α)τ (α) =

N∑
α=1

ν0|τ (α)|

(
|τ (α)|
τ

(α)
c

) 1
m

≥ 0. (1.124)

A rate sensitive formulation is used here in order to avoid the non-uniqueness problem asso-
ciated with a perfect plastic case. On the other hand, one wish to pass to the rate independent
limit in (1.120). In Section 1.4.5 we present an approach, where the limiting case is described by
an implicit function relating the slip rates, the resolved shear stresses and the critical resolved
shear stresses

H
(
ν(α), τ (α), τ (α)

c

)
= 0. (1.125)

1.4.5 Implicit constitutive relation

Implicit constitutive theory plays an important role in the modelling of material response. Unified
thermodynamic framework for implicitly constituted materials has been introduced by Rajagopal
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[24, 25], and Rajagopal and Srinivasa [43]. Instead of demanding an explicit relation, e.g. (1.120)
we admit discontinuities, in particular to model threshold condition (1.125).

Gwiazda, Málek et al. have recently developed a mathematical theory for models involving
implicit constitutive relations [44, 45].

In the constitutive relation (1.120) exponent 1
m is responsible for material rate sensitivity.

Formula (1.120) is an approximation of the rate independent limit m→ 0, see Figure 1.12.
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Figure 1.12: Plot of three approximations of the rate independent case.

In the limiting case material response is given by the yield condition:{
ν(α) = 0 =⇒ |τ (α)| < τ

(α)
c

|ν(α)| > 0 =⇒ τ (α) = τc
ν(α)

|ν(α)|
. (1.126)

The conditions (1.126) are equivalent to the implicit relation

f
(
|τ (α)|ν(α) − ν(α)τ (α)

c

)
+
(
|τ (α)| − τ (α)

c

)
+

= 0, (1.127)

where (x)+ = max{x, 0} and function f satisfies following conditions

• The only root of f is zero
f(X) = 0⇐⇒ X = 0.

• If |τ (α)| > τ
(α)
c then

(
|τ (α)| − τ (α)

c

)
+

=
(
|τ (α)| − τ (α)

c

)
≥ 0 and we require both summands

of (1.127) to be zero separately, thus

f(X) 6= −
(
|τ (α)| − τ (α)

c

)
.
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In the proceeding sections we investigate following admissible functions f

f(X) = |X|,
f(X) = X2,

f(X) = exp(X)− 1,

f(X) =
1

2
arctan(X),

f(X) =
1

1 + exp(−X)
− 1

2
.

The convergence of the finite element approximations of implicit power-law-like models for
viscous incompressible fluids have been investigated by Diening et al. in [46].

We performed the preliminary numerical studies of two dimensional compression and com-
pared the implicit formulation with explicit approximations. The results indicate that the forma-
tion of shear bands is faster in the perfect plastic case. The main numerical difficulty encountered
is the divergence of the Newton’s solver due to the non-differentiable functions in implicit formu-
lation (1.127). Solver is very sensitive with respect to the initial conditions and its parameters.

1.5 Maximization of the rate of entropy production

In Section 1.4.2 we stated the single crystal hypothesis by identifying the plastic part of the
velocity gradient with a sum of contributions of individual slip system

Lp =
N∑
α=1

ν(α)s
(α)
0 ⊗m

(α)
0 .

Instead of making the above assumption, we can employ the procedure of maximization of
the rate of dissipation, see [33]. The form of Dp have to be identified. To this aim we make an
assumption on one scalar function, the rate of dissipation. The general procedure in the case of
rate type model is described in [18, Section 7. The maximum rate of dissipation hypothesis and
its consequences]. For details we refer to [16, 17].

We describe the procedure in the case of crystal plasticity. Let us assume that dissipation
rate is proportional to the resolved shear stress

ξ̂ =
∑
α

ν0|τ (α)|β+1

=
∑
α

ν0|S : s(α) ⊗m(α)|β+1 =
∑
α

ν0|S : Fe(s
(α)
0 ⊗m

(α)
0 )Fe

−1|β+1

=
∑
α

ν0|Fe
TSFe

−T : (s
(α)
0 ⊗m

(α)
0 )|β+1, β ≥ 1, ν0 > 0.

(1.128)

Our goal is to maximize ξ̂ =
∑

i ν0|S : (s(α) ⊗m(α))|β+1, w.r.t S under the constraint

ξ = S : Dp = S : (FeLpFe
−1) = Fe

TSFe
−T : Lp. (1.129)

The maximization is done using the method of Lagrange multipliers. For the auxiliary La-
grange function

L = ξ̂ + λ(ξ̂ − Fe
TSFe

−T : Lp),
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the necessary condition for finding extremes of L

∂L

∂S
= 0,

leads to

1 + λ

λ

∂ξ̂

∂S
= FeLpFe

−1,

1 + λ

λ

∂ξ̂

∂S
: S = FeLpFe

−1 : S,

1 + λ

λ
=

ξ̂

∂ξ̂
∂S : S

=

∑
α ν0|Fe

TSFe
−T : (s

(α)
0 ⊗m

(α)
0 )|β+1

(β + 1)
(∑

α ν0|Fe
TSFe

−T : (s
(α)
0 ⊗m

(α)
0 )|β

)
Fe(s

(α)
0 ⊗m

(α)
0 )Fe

−1 : S
,

1 + λ

λ
=

1

β + 1
.

We obtain
Lp =

∑
α

ν0sgn (τ (α))|τ (α)|β
(
s(α) ⊗m(α)

)
.

Let us now introduce the flow rule which connects slip rates and resolved shear stresses

ν(α) := ν0sgn (τ (α))|τ (α)|β.

We can rewrite Dp as

Dp =
∑
α

ν(α)sym
(
s(α) ⊗m(α)

)
.

In general we derive a system of governing constitutive equations in dependence on a specific
form of dissipation. The unknowns are: the density %, the velocity v, and the Kirchhof stress S

%̇+ %div v = 0,

%v̇ − div %S = 0,

A
O
S= D −D∗,

where tensor A is given through the Gibbs potential G as

A = −∂
2G(S)

∂S2 ⇐⇒ G(S) = −1

2
S : AS

and D∗ is specified accordingly to chosen dissipation.
It is interesting to investigate other forms of the rate of dissipation. Some examples and

resulting models are given in Appendix F.

1.5.1 Incompressibility

Commonly used crystal plasticity assumption is incompressibility. In that case we restrict ourself
to the materials with zero divergence, trD = 0, and for which the Gibbs potential depends on
deviatoric part of the Kirchhoff stress G = G(Sd), where Sd = S − 1

dtrS and d is the space
dimension.
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Dissipation in an incompressible case became (since trD = 0)

ξ = S : D − Ψ̇ = Sd : D − Ψ̇.

Mass conservation and balance equations

div v = 0, (1.130a)

v̇ − divSd +∇p = 0, (1.130b)

p = −1

d
trS, (1.130c)

A
O

Sd = D −D∗. (1.130d)

1.6 Non-dimensional scaling

The aim this section is to perform non-dimensional scaling of the considered model and present
typical scales of the problem. We start with a more general set of equations to show how our
model ranks among elasto-visco-plastic models. Special emphasis is placed on the similarities and
differences with well known models and dimensionless quantities as Reynolds and Weissenberg
numbers. Let us consider the following system

%̇+ %div v = 0, (1.131a)
%v̇ − µν∆v − divT = 0, (1.131b)

O
T +

1

λ
T = 2µe(D −Dp) + λetr (D −Dp)I, (1.131c)

where µν is the viscosity, λ is the relaxation time (known from visco-elastic models), λe and µe
are the Lame coefficients, the objective Jaumann derivative of a stress tensor can be written in
the form

O
T=

∂T

∂t
+ v∇T −WT + TW , (1.132)

and Dp stands for the plastic part of D

Dp =
∑
α

ν(α)sym
(
s(α) ⊗m(α)

)
.

Notice that for relaxation time λ = 0 with µν > 0 we recover classical compressible Navier-
Stokes system. The model with λ 6= 0, µν > 0 is referred to as the Johnson-Segalman model with
parameter a = 0, see (1.66).

We are interested in a system where µν = 0 and λ =∞. In the spirit of visco-elastic models
we can say that there is no viscous solvent, i.e. model of caoutchouc-rubber.

Let us now make the system (1.131) non-dimensional. We introduce characteristic values l0,
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v0, t0, %0, T0, namely quantities intrinsic to the system:

length x∗ =
x

l0
,

velocity v∗ =
v

v0
,

time t∗ =
t

t0
,

density %∗ =
%

%0
,

Cauchy stress T ∗ =
T

T0
.

Derivatives w.r.t. time and space are scaled according to the above equalities,

∂

∂x
=

1

l0

∂

∂x∗
,

∂

∂t
=

1

t0

∂

∂t∗
.

Since we deal with material time derivative (denoted by superposed dot) it is convenient to choose
reference time as t0 = l0

v0
,

d

dt
=

∂

∂t
+ (v · ∇),

d

dt∗
=

1

t0

∂

∂t∗
+
v0

l0
(v∗ · ∇∗).

At first we scale the momentum balance (1.131b). Dimensional quantities are replaced by
nondimensionalized multiplied by corresponding scales. For the sake of brevity asterisks are
omitted

%0v
2
0

l0

(
%
∂

∂t
v + %v∇v

)
− µν

v0

l20
∆v − T0

l0
divT = 0,

%0v0l0

(
%
∂

∂t
v + %v∇v

)
− µν∆v − T0l0

v0︸︷︷︸
=µ

divT = 0.

Let us define the viscosity in our system µ = T0l0
v0

and divide by it

%0v0l0
µ

(
%
∂

∂t
v + %v∇v

)
− µν

µ
∆v − divT = 0.

We introduce the Reynolds number

Re =
%0v0l0
µ

,

Re

(
%
∂

∂t
v + %v∇v

)
− µν

µ
∆v − divT = 0.

The stress evolution equation (1.131c) reads as follows

v0T0

l0

O
T +

T0

λ
T = 2µe

v0

l0
(D −Dp) + λe

v0

l0
tr (D −Dp)I. (1.133)
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Due to the plastic effects additional time scale appear. Since Dp =
∑

α ν
(α)sym

(
s(α) ⊗m(α)

)
we introduce the reference slip rate ν0 of dimension [1/s] and require that

ν0 =
v0

l0
. (1.134)

Let us replace the Lame coefficient in terms of the Young modulus E [Pa] and the Poisson
ratio νpois [nondimensional]

µe =
E

2(1 + νpois)
, λe =

Eνpois
(1 + νpois)(1− 2νpois)

.

We multiply (1.133) by l0
v0E

.

T0

E

O
T +

T0

E

l0
v0λ

T =
1

1 + νpois
(D −Dp) +

νpois
(1 + νpois)(1− 2νpois)

tr (D −Dp)I

and introduce the Weissenberg number

Wi =
λv0

l0
,

T0

E

O
T +

T0

E

1

Wi
T =

1

1 + νpois
(D −Dp) +

νpois
(1 + νpois)(1− 2νpois)

tr (D −Dp)I.

Note that in contrary to the scaling of visco-elastic models, the dimension of the terms of (1.133)
is [Pa/s]. The term T0

E
1

WiT in our case is artificial. The units in the mass balance (1.131a) reduce
and the equation remains without any dimensionless number

%̇+ %div v = 0.

It remains to express T0 in therms of the Young’s modulus

T0 = cE.

The the general nondimensionalized system reads

%̇+ %div v = 0,

Re

(
%
∂

∂t
v + %v∇v

)
− µν

µ
∆v − divT = 0,

c
O
T +

c

Wi
T =

1

1 + νpois
(D −Dp) +

νpois
(1 + νpois)(1− 2νpois)

tr (D −Dp)I.

In the center of our attention is the system without the viscous contribution µν = 0 and with
the time scale λ =∞

%̇+ %div v = 0, (1.135a)

Re

(
%
∂

∂t
v + %v∇v

)
− divT = 0, (1.135b)

c
O
T=

1

1 + νpois
(D −Dp) +

νpois
(1 + νpois)(1− 2νpois)

tr (D −Dp)I, (1.135c)

Dp =
v0

l0 ν0

∑
α

ν(α)sym
(
s(α) ⊗m(α)

)
. (1.135d)
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1.6.1 Typical scales of the problem

Having the nondimensionalized system (1.135) we present the typical values for our problem:

v0 = 10−5m/s = 10µm/s,

l0 = 10−2m,

ν0 =
v0

l0
= 10−31/s,

T0 = 108Pa = 100MPa,

%0 = 3000kg/m3,

E = 1000T0.

The characteristic values imply very high viscosity

µ = 103s 100 MPa = 1011Pa s,

and in consequence very low Reynolds number

Re =
3000 kg/m3 10−5m/s 10−2m

1011Pa s
≈ 10−15.

The results considered material is highly viscous for comparison typical viscosity of viscoelastic
pitch is of order 108 Pa s. Due to the smallness of the Reynolds number the quasi-static assumption
would be justified. Although we keep this term for computational purposes.
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1.7 Formulation of the problem

To sum up we present the system of equations we aim to solve. At first we formulate the system
which is an outcome of the modelling. Later we show the simplification that is made for the sake
of mathematical analysis.

Let T > 0, Ω ⊂ Rd open, %0 : Ω → R, v0 : Ω → Rd, S0 : Ω → Rd×d, ai0 : Ω → Rd, i =
1, 2, . . . , d, vD : ΓD → Rd, t : ΓN → Rd. The system is satisfied inside the domain Ω ⊂ Rd, the
boundary ∂Ω consists of two non-intersecting parts ΓD and ΓN corresponding to the Dirichlet
and the Neumann boundary conditions, respectively. We look for the density %, the velocity v,
the Kirchhoff stress S, and the lattice vectors a1, a2, . . . , ad (s(α) and m(α) are given through
lattice vectors) satisfying

%̇+ %div v = 0 in Ω× (0, T ), (1.136a)
%v̇ = div (%S) in Ω× (0, T ), (1.136b)

A
O
S = D −

N∑
α=1

ν(α)sym
(
s(α) ⊗m(α)

)
in Ω× (0, T ), (1.136c)

d∑
i=1

ȧi ⊗ ai = ∇v −
N∑
α=1

ν(α)
(
s(α) ⊗m(α)

)
in Ω× (0, T ), (1.136d)

%(x, 0) = %0(x) ∀x ∈ Ω, (1.136e)
v(x, 0) = v0(x) ∀x ∈ Ω, (1.136f)
S(x, 0) = S0(x) ∀x ∈ Ω, (1.136g)
ai(x, 0) = ai0(x) ∀x ∈ Ω, (1.136h)

v = vD on ΓD × (0, T ), (1.136i)
Sn = t on ΓN × (0, T ). (1.136j)

Chapter 2 is devoted to the mathematical analysis of the simplified problem. We assume
incompressibility, namely the mass balance (1.136a) is equivalent to the divergence free condition
(1.21). This incompressible case has been discussed in Section 1.5.1, we put % = 1, p = −1

2trS
and for the sake of brevity denote the deviatioric part of stress as S. Moreover, plastic effects
are neglected, thus equation (1.136d) and corresponding unknowns are not taken into account.

Let T > 0, Ω ⊂ R2 periodic, v0 : Ω→ R2, S0 : Ω→ R2×2. Find the velocity v, the pressure
p, and the Kirchhoff stress S such that

div v = 0, in Ω× (0, T ),

∂v

∂t
+ v∇v +∇p = divS, in Ω× (0, T ),

∂S

∂t
+ v∇S + WS − SW = D in Ω× (0, T ),

v(x, 0) = v0(x) ∀x ∈ Ω,

S(x, 0) = S0(x) ∀x ∈ Ω.

In Chapter 4 we provide a numerical solutioins to the system (1.136), however it can refor-
mulated according to the specific experimental setting.
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Chapter 2

Mathematical analysis of a rate-type
fluid model arising from crystal
plasticity

The mathematical theory of initial and boundary value problems involving visco-elastic fluids
gained attention during the last three decades. For the incompressible model Oldroyd-B model,
there is a vast amount of results in the literature, see Section 2.2. We aim to provide the analytical
result for a rate-type fluid model originated in crystal plasticity. In comparison with Oldroyd-
B model our system lacks viscous contribution to the momentum balance, thus the momentum
equation is similar to the Euler equation. This makes the analysis of the complete problem (1.136)
difficult. We propose a regularisation of the rate type equation for the extra (elastic) stress S.
This reguralization helps us to improve a priori estimates that are then shown to be sufficient
to establish the large data existence of a weak solution. There exists studies of stress diffusive
Oldroyd-type models, but to the author’s knowledge the system investigated in this chapter have
not been studied so far.

2.1 Problem formulation

The system (1.136) derived in Chapter 1 describes behaviour of crystal plastic material. For
the sake of mathematical analysis of the system we make the following simplifications: consider
the incompressible case and neglect plastic effects. The following problem captures essential
mathematical difficulties, find (v,S, p) spatially periodic in [0, L]d × (0, T ) such that

div v = 0, (2.1a)
∂v

∂t
+ v∇v +∇p = divS, (2.1b)

∂S

∂t
+ v∇S + WS − SW = D. (2.1c)

Despite our effort we were unable to show the existence of the solution to the system (2.1).
Detail description of the structure of standard a priori estimates to system (2.1) in two dimensions
are given in Appendix B. Therefore we propose two different regularizations, namely adding a
regularization therm −∆S or −∆ ∂

∂tS.
Here we will not give the physical justification for proposed regularizing term. In the literature

one can find visco-elasitc models with a diffusive term appearing in the evolution equation for the

53
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visco-elastic stress tensor that are an outcome of modelling, see e.g. diffusive Peterlin model [47]
or [48, 49]. Moreover, numerical stability of the effect of stress diffusive term into the classical
Oldroyd-B constitutive equation has been studied in [50].

2.2 Overview of the known results

2.2.1 Visco-elastic fluids

Let us recall that the evolution of visco-elastic fluids is governed by the system of equations

div v = 0,

%

(
∂v

∂t
+ [∇v]v

)
= divT ,

T = −pI + Sν + Se,

Sν = 2µνD,
O
Se +Se = 2µeD,

where explicitly splitted the stress tensor into the Newtonian part Sν and visco-elstic part Se. We
present the overview of various mathematical results dealing with the questions of the existence
of solutions to the viscoelastic flows and in particular with the Oldroyd-B model.

To the author’s knowledge, the first result on incompressible Oldroyd-B fluids was obtained
by Guillopé and Saut [51]. The result concerns local existence of regular strong solutions and
existence of global solutions for small initial data in an Hilbert framework. The main obstacle
was the fact that, in general, there is no appropriate energy estimate for such non-Newtonian
fluid. For the review paper we refer to Fernández-Cara, Guillén and Ortega [52].

The existence of global weak solutions for a model with corotational time derivative was
established by Lions and Masmoudi [53]. This seems to be one of the most significant results in
this area. Due to the similarity of considered system of equations to system (2.1) we would like
to recall the result. Main theorem of [53] in two dimensional, periodic case, reads as follows

Theorem 1.

div v = 0

∂v

∂t
+ v∇v − µν∆v +∇p = divT

∂T

∂t
+ v∇T + TW −WT + aT = bD

v|t=0 = v0 ∈ L2(Ω), T |t=0 = T 0 ∈ L2(Ω)

. (2.2)

Moreover, div v0 = 0 in D′, T = T T , and all functions are assumed to be periodic.
Then there exists a global weak solution (v,T , p) to the system (2.2) such that, for all T ∈ (0,∞)

v ∈ L2(0, T ;H1), T ∈ C([0,∞);L2),

p ∈ L1(0, T ;W 2,1) ∩ L2(0, T ;W 1,1) ∩ Lq(0, T ;Lr),

where µν > 0, a, b ≥ 0, 1 ≤ q <∞, r = q
q−1 and

∫
Ω p dx = 0.
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The authors use an essential feature of the Jaumann objective time derivative (and only for
them), namely that the energy estimates are available. The above theorem was generalised by
Bejaoui and Majdoub in [54] where the authors replaced the Laplacian therm by div (f(D)) with
tensorial function f , which is C1, monotone, coercive with p−growth.

For the well-posedness results in scaling invariant Besov spaces, we refer to the work of
Chemin and Masmoudi [55], where they also give some blow-up criterions both for two and three
dimensions. Further interesting results concerning the local well posedness of the initial boundary
value problem for the Oldroyd type fluids have been done in several other studies, see [56, 57].

On the other hand, there are relatively few results for the compressible model. Lei [58] proved
the local and global existence of classical solutions for a compressible Oldroyd-B system in a torus
with small initial data. He also studied the incompressible limit problem and showed that the
compressible flows with well-prepared initial data converge to incompressible ones when the Mach
number converges to zero. For recent studies on strong solutions of 3D compressible Oldroyd-B
fluids we refer to Fung and Zi [59].

All the results mentioned above take advantage of the presence of the Newtonian stress tensor
and in consequence of the boundedness of the velocity gradient. Our model lacks the viscous
term and we must deal with mathematical disadvantages. The system (2.1) has its origin in the
modelling of crystal plastic materials. In the context of visco-elastic models, one can think of a
model of a material where there is no solvent e.g. caoutchouc rubber.

2.2.2 Euler equation

Due to the similar structure, we dedicate the second part of this overview to the incompressible
Euler equations

div v = 0,

∂v

∂t
+ v∇v +∇p = f(= divS),

v(x, 0) = v0,

(2.3)

where we can think that the divergence of stress divS plays a role of a driving force. We consider
as solvabilty of the Euler equation important in the context of the system (2.3).

The Euler equation can be viewed as a limit of the Navier-Stokes equations when passing
with the Reynold’s number to infinity.

The vorticity ω = curlv is a key quantity in an analysis of the motion of an incompressible
inviscid fluid. Applying vorticity to equation (2.3) yields

div v = 0,

∂ω

∂t
+ v∇ω − ω∇v = curlf ,

ω = curlv.

(2.4)

In the presence of physical boundaries, the above system is supplemented with the perfect slip
boundary condition

v · n = 0.

In two dimensions the vorticity is a scalar quantity

ω = curlv = ∂1v2 − ∂2v1,
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further due to the incompressibility

curl (v∇v) = ∂1(vi∂iv2)− ∂2(vi∂iv1) = vi∂i(∂1v2 − ∂2v1) = v∇ω.

Finally we obtain
∂ω

∂t
+ v∇ω = curlf . (2.5)

In what follows we confine to two dimensions.
This is important that the equations

div v = 0, ω = curlv, v · n = 0

completely determine the velocity in terms of the vorticity. More precisely, the operator

v(x) = K(ω(x)) = ∇ 1

2π

∫
Ω
ω(y) log |x− y|dy +∇Φ(x),

where ∇ = (−∂2, ∂1) and Φ is a harmonic function on Ω with a Neumann boundary condition so
that Kω · n = 0 on ∂Ω. K : ω 7→ v is a continuous linear map from Cα(Ω) to Cα+1(Ω) (with
α > 0), and also from Hs(Ω) to Hs+1(Ω).

The first theorems on the local in time existence and uniqueness of solutions were obtained
by Lichtenstein [60] and Günhter [61]. The global solvability in two space dimensions was proved
by Wolibner [62]. Concerning classical solutions we present more modern result by Kato [63] that
includes an external force

Theorem 2. Let v0 ∈ C1+δ(Ω̄), div v0 = 0, v0 · n = 0, and f ∈ C1+δ,0(Ω̄ × (0, T )), where
0 < δ < 1. Then there exists a solution (v, p)of (2.3) such that v, p, and all their derivatives that
appear in (2.3) belong to C(Ω̄× (0, T )). Such a solution is unique up to an arbitrary function of
time which may be added to pressure.

The global-in-time existence of a unique weak solution to (2.3) in two dimensions was estab-
lished by Yudovich in [64]. The result hold true for initial vorticity

ω0 ∈ L∞(Ω). (2.6)

Later in [65] Yudovich extended his results and released assumption (2.6).
Following [65], let us define an admissible class and a Yudovich space.

Definition 1. Admissible class. A function θ : [p0,∞) → (0,∞) is said to be admissible if the
auxiliary function ψ defined for a > 0 by

ψθ(a) = inf

{
aε

ε
θ

(
1

ε

)
, 0 < ε ≤ 1

p0

}
satisfies ∫ ∞

1

da

aψθ(a)
=∞.

Definition 2. Space Yθ. Given an admissible class θ, with p0 > 1, we denote Yθ the space of the
divergence free vector fields f ∈ L2(Ω) tangent to the boundary, such that curlf ∈

⋂
p>p0

Lp(Ω),
and such that there exists cf > 0 such that

‖f‖Lp ≤ cfθ(p) for p ≥ p0. (2.7)

Note that it is a Banach space endowed with the following norm:

‖f‖Yθ = ‖f‖L2 + sup
p≥p0

‖curlf‖Lp
θ(p)

.

Theorem 3. (Yudovich [65]). Assume that the boundary ∂Ω of the domain is C2. Given v0 in
Yθ , there exists a unique weak solution v to (2.3) in L∞(0,∞;Yθ).
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Logarithmic Sobolev inequality

Here we recall a logarithmic Sobolev inequality that plays a crucial role in a priori estimates.
That kind of critical Sobolev inequalities have been extensively studied in the context of the
Euler equations, see e.g. Kozono [66, 67].

Proposition 1. Let f ∈W s,p for n < sp, then

‖f‖L∞ ≤ C
(

1 + ‖|∇|
n
p f‖Lp (1 + ln(e+ ‖f‖W s,p))

1− 1
p

)
.

For n = p = s = 2 we obtain Brezis–Gallouet inequality, see [68]

‖f‖L∞ ≤ C
(

1 + ‖∇f‖L2

(
ln+(‖f‖W 2,2)

) 1
2

)
, (2.8)

where ln+ =

{
1 for x < e

lnx for x ≥ e
.

Before we prove Proposition 1 we recall basic properties of the Fourier transform.
For a bounded domain Ω ⊂ R2 is well known that an H2(Ω) function can be extended by an

H2(R2) function. More precisely one can construct an extension P such that:

• operator P is a bounded operator from H1(Ω) into H1(R2)

• operator P is a bounded operator from H2(Ω) into H2(R2)

• Pf |Ω = f for every f ∈ H1(Ω)

Let f ∈ H2(Ω). Let g = Pf and we denote by ĝ the Fourier transform of g. We have

‖(1 + |ξ|)ĝ‖L2(R2) ≤ C‖f‖H1(Ω), (2.9)

‖(1 + |ξ|2)ĝ‖L2(R2) ≤ C‖f‖H2(Ω), (2.10)
‖f‖L∞(Ω) ≤ ‖g‖L∞(R2) ≤ C‖ĝ‖L1(R2). (2.11)

Proof. (Proposition 1)

‖ĝ‖L1(R2) =

∫
|ξ|<R

|ĝ|dξ +

∫
|ξ|≥R

|ĝ|dξ

=

∫
|ξ|<R

(1 + |ξ|)|ĝ| 1

1 + |ξ|
dξ +

∫
|ξ|≥R

(1 + |ξ|2)|ĝ| 1

1 + |ξ|2
dξ

≤

(∫
|ξ|<R

(1 + |ξ|)2|ĝ|2dξ

) 1
2
(∫
|ξ|<R

1

(1 + |ξ|)2
dξ

) 1
2

+

(∫
|ξ|≥R

(1 + |ξ|2)2|ĝ|2dξ

) 1
2
(∫
|ξ|≥R

1

(1 + |ξ|2)2
dξ

) 1
2

≤C‖f‖H1 (ln(e+R))
1
2 + C‖f‖H2

1

1 +R
.

(2.12)

Inequality (2.12) holds for every R ≥ 0. We put R = ‖f‖H2 and by (2.11) we get (2.8)

‖f‖L∞(Ω) ≤ C
(

1 + ‖f‖H1

(
ln+(‖f‖H2)

) 1
2

)
.
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2.3 Existence of a global weak solution to the regularised problem

We consider the model 2.1 regularized by −∆ ∂
∂tS. It describes a flow of crystal plastic material

in a two dimensional periodic domain. Note that one can multiply the regularization term by an
arbitrary small constant −ε∆ ∂

∂tS, however we are unable to pass to the limit with ε → 0 so for
the sake of brevity we put ε = 1.

The system of governing equations reads. Find v(x, t) : Ω×[0, T ) 7→ R2, p(x, t) : Ω× [0, T ) 7→ R,
and S(x, t) : Ω× [0, T ) 7→ R2×2

sym such that

div v = 0, (2.13a)
∂v

∂t
+ v∇v +∇p = divS, (2.13b)

∂S

∂t
+ v∇S + WS − SW − ε∆ ∂

∂t
S = D, (2.13c)

v(x, 0) = v0, (2.13d)
S(x, 0) = S0. (2.13e)

Let us now define a weak solution and state the main result.

Definition 3. Let Ω ⊂ R2 open. Let v0 ∈ L2
0,div(Ω) and S0 ∈ L2(Ω). Then the couple

(v,S) ∈ L∞(0, T ;W 1,2
0,div(Ω))× L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω))

with ∂v
∂t ∈ L

1(0, T ; (W 1,2
0,div(Ω))∗) is called a global weak solution to the system (2.13) corresponding

to data v0 and S0, if

∫
Ω

∂v

∂t
ϕdx +

∫
Ω

(v · ∇v)ϕdx = −
∫

Ω
S : D(ϕ) dx ∀ϕ ∈ {C∞0 (Ω× (−∞, T ))2,divϕ = 0},

(2.14a)∫
Ω

∂S

∂t
Σ dx +

∫
Ω
v∇S : Σ dx +

∫
Ω
SW : Σ−WS : Σ dx

+ ε

∫
Ω
∇∂S
∂t

: ∇Σ dx =

∫
Ω
D : Σ dx ∀Σ ∈ {C∞0 (Ω× (−∞, T ))2×2},

(2.14b)

Theorem 4. Existence of Weak Solution. There exists a global weak solution to the problem
(2.13) such that (2.14) is satisfied.

2.3.1 A priori estimates

We present formal a priori estimates for system (2.13) on a two dimensional periodic domain Ω.

First a priori estimate

We multiply (2.13b) by the velocity v and integrate

∫ T

0

∫
Ω

∂v

∂t
· v dx dt +

∫ T

0

∫
Ω
v∇v · v dx dt +

∫ T

0

∫
Ω
∇p · v dx dt =

∫ T

0

∫
Ω

divS · v dx dt,



2.3. EXISTENCE OF A GLOBAL WEAK SOLUTION 59

1

2

∫ T

0

d

dt

∫
Ω
|v|2 dx dt− 1

2

∫ T

0

∫
Ω
|v|2div v dx dt︸ ︷︷ ︸

=0

+
1

2

∫ T

0

∫
∂Ω

(v · n)|v|2 dS dt︸ ︷︷ ︸
=0

=

∫ T

0

∫
Ω
p div v dx dt︸ ︷︷ ︸

=0

−
∫ T

0

∫
∂Ω

(v · n) p dS dt︸ ︷︷ ︸
=0

+

∫ T

0

∫
Ω
S : ∇v dx dt.

The underbraced terms above are equal to zero due to the divergence free condition (2.13a)
and the boundary conditions∫

Ω
∇pv = −

∫
Ω
pdiv v = 0,∫

Ω
v∇v · v =

1

2

∫
Ω
v · ∇|v|2 = −1

2

∫
Ω
|v|2div v = 0.

Finally we obtain

1

2

∫ T

0

d

dt
‖v‖2L2

dt = −
∫ T

0

∫
Ω
S : ∇v dx dt = −

∫ T

0

∫
Ω
S : D dx dt. (2.15)

Now, we multiply (2.13c) by the stress S and integrate

∫ T

0

∫
Ω

∂S

∂t
: S dx dt +

∫ T

0

∫
Ω
v∇S : S dx dt +

∫ T

0

∫
Ω

(SW −WS) : S dx dt

−
∫ T

0

∫
Ω

∆
∂

∂t
S : S dx dt =

∫ T

0

∫
Ω
D : S dx dt,

1

2

∫ T

0

d

dt

∫
Ω
|S|2 dx dt− 1

2

∫ T

0

∫
Ω

div v|S|2 dx dt +
1

2

∫ T

0

∫
∂Ω

(v · n)|S|2 dS dt

+

∫ T

0

∫
Ω

(SW −WS) : S dx dt︸ ︷︷ ︸
=0

+

∫ T

0

d

dt

∫
Ω
|∇S|2 dx dt

−
∫ T

0

∫
∂Ω

(S · n)∇S dS dt =

∫ T

0

∫
Ω
D : S dx dt.

Again, the inertia term equals zero due to relation∫
Ω
v∇S : S dx =

1

2

∫
Ω
v · ∇|S|2 dx = −1

2

∫
|S|2div v dx = 0.

Moreover, notice that the co-rotational term disappears when multiplied by S

−WS : S + SW : S = SijWjkSik −WijSjkSik = SijWjkSki −WijSjkSki

= tr (SWS)− tr (WSS) = tr (SWS)− tr (STWS) = 0.
(2.16)

Finally
1

2

∫ T

0

d

dt
‖S‖2L2 dt +

1

2

∫ T

0

d

dt
‖∇S‖2L2 dt =

∫ T

0

∫
Ω
D : S dx dt. (2.17)
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We sum up (2.15) and (2.17), the integration over time yields

‖v(t)‖2L2 + ‖S(t)‖2L2 + ‖∇S(t)‖2L2 = ‖v(0)‖2L2 + ‖S(0)‖2L2 + ‖∇S(0)‖2L2 a.e. t ∈ (0, T ). (2.18)

Equation (2.18) indicates

v ∈ L∞(0, T ;L2(Ω)), S ∈ L∞(0, T ;W 1,2(Ω)).

Second a priori estimate

We multiply (2.13b) by −∆v and integrate

−
∫ T

0

∫
Ω

(
∂v

∂t

)
: ∆v dx dt−

∫ T

0

∫
Ω

(v∇v) : ∆v dx dt−
∫ T

0

∫
Ω

(∇p) : ∆v dx dt

= −
∫ T

0

∫
Ω

(divS) : ∆v dx dt,∫ T

0

∫
Ω
∇
(
∂v

∂t

)
: ∇v dx dt +

∫ T

0

∫
Ω
∇(v∇v) : ∇v dx dt +

∫ T

0

∫
Ω
∇(∇p) : ∇v dx dt

=

∫ T

0

∫
Ω
∇(divS) : ∇v dx dt,

1

2

∫ T

0

d

dt
‖∇v‖2L2 +

∫ T

0

∫
Ω
∇(v∇v) : ∇v dx dt︸ ︷︷ ︸

=0

−
∫ T

0

∫
Ω

(∇p) : ∇(div v) dx dt︸ ︷︷ ︸
=0

=

∫ T

0

∫
Ω
∇(divS) : ∇v dx dt.

Note that the inertia term vanishes, i.e.

∫
Ω
∇(v∇v) : ∇v dx =

∫
Ω
∂k(vj∂jvi)∂kvi dx = 0

due to the two dimensional divergence free condition

∂v1

∂x1
= −∂v2

∂x2

and corresponding cancellations.
Thus we obtain

1

2

∫ T

0

d

dt
‖∇v‖2L2 dt =

∫ T

0

∫
Ω
∇(divS) : ∇v dx dt. (2.19)

Now, we multiply (2.13b) by −∆S and integrate over domain
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∫ T

0

∫
Ω

∂S

∂t
: ∆S dx dt +

∫ T

0

∫
Ω
v∇S : ∆S dx dt +

∫ T

0

∫
Ω

(SW −WS) : ∆S dx dt

−
∫ T

0

∫
Ω

∆
∂

∂t
S : ∆S dx dt =

∫ T

0

∫
Ω
D : ∆S dx dt,

1

2

∫ T

0

d

dt

∫
Ω
|∇S|2 dx dt−

∫ T

0

∫
Ω

([∇v]∇S) : ∇S dx dt +

∫ T

0

∫
Ω

(SW −WS) : ∆S dx dt

+
1

2

∫ T

0

d

dt

∫
Ω
|∆S|2 dx dt = −

∫ T

0

∫
Ω
∇D : ∇S dx dt,

The form of convective is provided by the following equality∫
Ω
∇(v∇S) : ∇S dx =

∫
Ω
∂vk

∂Sij
∂xk

∂Sij
∂xl

+ vk
∂2Sij
∂xl∂xk

∂Sij
∂xl︸ ︷︷ ︸

=0 twice by parts

dx =

∫
Ω

([∇v]∇S) : ∇S dx. (2.20)

We get

1

2

∫ T

0

d

dt

(
‖∇S‖2L2 + ‖∆S‖2L2

)
dt =

∫ T

0

∫
Ω

([∇v]∇S) : ∇S dx dt︸ ︷︷ ︸
A

−
∫ T

0

∫
Ω

(WS − SW ) : ∆S dx dt︸ ︷︷ ︸
B

−
∫ T

0

∫
Ω
∇D : ∇S dx dt.

(2.21)

Moreover, similarly to the first a priori estimate we take advantage of the right hand sides
cancellation, ∫

Ω
∇(D) : ∇S dx =

∫
Ω
∇∇v : ∇S dx =

∫
Ω
∇(∂ivj) : ∇Sij dx

= −
∫

Ω
∇(vj) : ∇∂iSij dx = −

∫
Ω
∇(divS) : ∇v dx.

Summing up (2.19) and (2.21) yields

∫ T

0

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
dt = 2

∫ T

0

∫
Ω

([∇v]∇S) : ∇S dx︸ ︷︷ ︸
A

−
∫

Ω
(WS − SW ) : ∆S dx︸ ︷︷ ︸

B

dt

(2.22)

The next step is the estimation of the right hand side of (2.22). For term A we apply
embedding theorem (Proposition 5) and interpolation inequality (Proposition 7)

∫
Ω
|([∇v]∇S) : ∇S| dx ≤ ‖∇v‖L2‖∇S‖L4‖∇S‖L4 ≤ ‖∇v‖L2‖S‖2W 1,4 ≤︸︷︷︸

embedding

‖∇v‖L2‖S‖2
W

3
2 ,2

‖∇v‖L2‖S‖2
W

3
2 ,2

≤︸︷︷︸
interpolation

C‖∇v‖L2‖S‖W 1,2‖S‖W 2,2 ≤ C‖∇v‖2L2‖∇S‖2L2 + C‖∆S‖2L2 .

(2.23)
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For the treatment of the second term B we apply the logarithmic Sobolev inequality (Propo-
sition 1) originated with the works of Brezis–Gallouet [68] and Brezis–Wainger [69]

∫
Ω

(WS − SW ) : ∆S dx ≤ 2‖∇v‖L2‖S‖L∞‖∆S‖L2

≤︸︷︷︸
B-D ineq.

C‖∇v‖L2

(
1 + ‖∇S‖L2

(
ln+(‖S‖W 2,2)

) 1
2

)
‖∆S‖L2

≤ C‖∇v‖L2‖∆S‖L2 + C‖∇v‖L2‖∇S‖L2

(
ln+(‖∆S‖L2)

) 1
2 ‖∆S‖L2

≤ C
(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C‖∇v‖L2

(
ln+(‖∆S‖L2)

) 1
2 ‖∆S‖L2

≤ C
(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C ln+(‖∆S‖L2)‖∆S‖2L2 .

(2.24)

Let us now sum up (2.22), (2.23), and (2.24)

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
≤ C

(
‖∇v‖2L2 + ‖∆S‖2L2

)
+ C ln+(‖∆S‖L2)‖∆S‖2L2 (2.25)

We increase the right hand side of (2.25) by adding some positive therms and taking advantage
of a fact that function ln+(x) ≥ 1,

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

)
≤ C

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

) (
1 + ln+

(
‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2

))
.

(2.26)

ODE

Let us denote Y = ‖∇v‖2L2 + ‖∇S‖2L2 + ‖∆S‖2L2 and rewrite (2.26) as

d

dt
Y ≤ Y + Y ln+ Y, (2.27)∫
dY

2Y (1 + ln+ Y )
≤
∫

dt.

We divide the time interval into [0, e) ∪ [e, T ) and use the definition of the function ln+∫ e

0

dY

2Y
+

∫ T

e

dY

Y (1 + lnY )
≤
∫ T

0
dt,

1

2
ln
Y (e)

Y (0)
+

∫ T

e

dY

Y (1 + lnY )
≤ T.

Let Z = 1 + lnY∫ T

e

dY

Y (1 + lnY )
=

∫ T

e

dZ

Z
= ln

Z(T )

Z(e)
⇒ Y (T ) ≤ C exp(C exp(T )).

We conclude that for ∀T <∞

v ∈ L∞(0, T ;W 1,2(Ω)), S ∈ L∞(0, T ;W 2,2(Ω)).

Note that the existence and uniqueness for the ODE corresponding to (2.27) follows from the
Osgood criterion, see Proposition 12.
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2.3.2 Galerkin approximation

Let us take (ωi)∞i=1 and (wi)∞i=1 the bases of space V s and Ṽ s, respectively given by Proposition 4.
For more details on definitions and construction of basis, see [70].

Definition 4. Let T > 0 and N ≥ 1 be fixed. Functions

vN (x, t) =
N∑
i=1

cNi (t)ωi(x) and SN (x, t) =
N∑
i=1

dNi (t)wi(x)

are called the n-th Galerkin approximation, if∫
Ω

∂vN

∂t
ωi +

∫
Ω

(vN · ∇vN )ωi = −
∫

Ω
SN : ∇ωi ∀i = 1, . . . , N, (2.28a)∫

Ω

∂SN

∂t
wj +

∫
Ω
vN∇SN : wj +

∫
Ω

(SNWN −WNSN ) : wj (2.28b)

+

∫
Ω
∇∂S

N

∂t
: ∇wj =

∫
Ω
DN : wj ∀j = 1, . . . , N, (2.28c)

cNi (0) =

∫
Ω
v0ω

i, dNj (0) =

∫
Ω
S0w

j , 1 ≤ i, j ≤ N, (2.28d)

with the initial conditions

vN (x, 0) = PNv v0(x), SN (x, 0) = PNT S0(x)

where PNv and PNT are the orthogonal continuous projections of H and H̃ respectively onto the
linear hulls of the first eigenvectors ωr, r = 1, . . . , N and wr, r = 1, . . . , N .

System (2.28) can be rewritten to a system of ordinary differential equations for (cN1 , . . . , c
N
N ,

dN1 , . . . , d
N
N ). Let us recall that orthogonality of basis imply

∫
Ω ω

iωj = δij and
∫

Ωw
iwj = δij as

d
dt(cNi , d

N
j ) = Fij(t, c

N
1 , . . . , c

N
N , d

N
1 , . . . , d

N
N ),

cNi (0) =
∫

Ω v0ω
i dx 1 ≤ i ≤ N,

dNj (0) =
∫

Ω S0w
j dx, 1 ≤ j ≤ N.

We split Fij = F vij + FSij , namely

d

dt
cNi = F vij =−

∫
Ω

((
N∑
k=1

cNk ω
k

)
·

(
N∑
k=1

cNk ∇ωk
))

ωi −
∫

Ω

(
N∑
i=1

dNk w
k

)
: ∇ωi

(1 + λj)
d

dt
dNj = (1 + λj)F

s
ij =−

∫
Ω

(
N∑
k=1

cNk ω
k

)(
N∑
i=1

dNk ∇wk
)

: wj

−
∫

Ω

(
N∑
i=1

dNk w
k

)(
N∑
k=1

cNk W (ωk)

)
: wj

−
∫

Ω

(
N∑
k=1

cNk W (ωk)

)(
N∑
i=1

dNk w
k

)
: wj

+

∫
Ω

(
N∑
k=1

cNk D(ωk)

)
: wj .

(2.29)
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The standard Caratheodory theory provides the existence of continuous functions (cN1 , . . . , c
N
N ,

dN1 , . . . , d
N
N ), which are solutions to (2.28). The uniform estimates, that we will derive in the next

subsection, enable us to extend the solution onto the whole time interval [0, T ].

2.3.3 Uniform estimates

Following Section 2.3.1 we obtain following uniform estimates

sup
t∈
‖∇vN‖2L2 + ‖∇SN‖2L2 + ‖∆SN‖2L2 ≤ C.

What yields

vN ∈ L∞(0, T ;W 1,2) and SN ∈ L∞(0, T ;W 2,2).

Finally, we have shown that there exists a positive constant C = C(Ω, T,v0,S0) such that

‖vN‖L∞(0,T ;W 1,2) + ‖SN‖L∞(0,T ;W 2,2) ≤ C(Ω, T,v0,S0). (2.30)

2.3.4 Estimate of the time derivative

Estimate (2.30) is not sufficient for the limit passage. Before we apply a compactness result we
need an estimate of time derivatives.

∥∥∥∥∂vN∂t
∥∥∥∥
L2(0,T ;(W 1,2

0,div)∗)

= sup
ϕ∈L2(0,T ;W 1,2

0,div),‖ϕ‖≤1

∣∣∣∣∫ T

0

∫
Ω

∂vN

∂t
·ϕ dx dt

∣∣∣∣
= sup

ϕ∈L2(0,T ;W 1,2
0,div),‖ϕ‖≤1

∣∣∣∣∫ T

0

∫
Ω
vN∇vNϕN + SN∇ϕN dx dt

∣∣∣∣
≤ sup

ϕ∈L2(0,T ;W 1,2
0,div),‖ϕ‖≤1

[∫ T

0
‖vN‖24‖∇ϕ‖2 dt +

∫ T

0
‖SN‖2‖∇ϕ‖2 dt

]

≤ sup
ϕ∈L2(0,T ;W 1,2

0,div),‖ϕ‖≤1

C

[∫ T

0
‖vN‖2‖∇vN‖2‖∇ϕ‖2 dt

+

∫ T

0
‖SN‖2‖∇ϕ‖2 dt

]
≤ sup

ϕ∈L2(0,T ;W 1,2
0,div),‖ϕ‖≤1

C
[
‖vN‖L∞(0,T ;L2)‖∇vN‖L2(0,T ;L2)‖∇ϕ‖L2(0,T ;L2)

+ ‖SN‖L2(0,T ;L2)‖∇ϕ‖L2(0,T ;L2)

]
≤ C‖vN‖L∞(0,T ;L2)‖∇vN‖L2(0,T ;L2) + ‖SN‖L2(0,T ;L2) ≤ C.

For the estimation of ∂S
∂t , let us first perform an a priori estimate. We multiply (2.13c) by

the stress ∂S
∂t and integrate

∫ T

0

∫
Ω

∂S

∂t
:
∂S

∂t
dx dt +

∫ T

0

∫
Ω
v∇S :

∂S

∂t
dx dt +

∫ T

0

∫
Ω

(SW −WS) :
∂S

∂t
dx dt

−
∫ T

0

∫
Ω

∆
∂

∂t
S :

∂S

∂t
dx dt =

∫ T

0

∫
Ω
D :

∂S

∂t
dx dt.
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Again, that the co-rotational term disappears when multiplied by ∂
∂tS

−WS :
∂

∂t
S + SW :

∂

∂t
S = SijWjk

∂

∂t
Sik −WijSjk

∂

∂t
Sik = SijWjk

∂

∂t
Ski −WijSjk

∂

∂t
Ski

= tr

(
SW

∂

∂t
S

)
− tr

(
WS

∂

∂t
S

)
= tr

(
SW

∂

∂t
S

)
− tr

(
STW

∂

∂t
S

)
= 0.

We obtain

∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

+

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt ≤

∣∣∣∣∣∣∣∣
∫ T

0

∫
Ω
v∇S :

∂S

∂t
+ (SW −WS) :

∂S

∂t︸ ︷︷ ︸
=0

+D :
∂S

∂t
dx dt

∣∣∣∣∣∣∣∣ .
(2.31)

Further we estimate right hand side of (2.31)∣∣∣∣∫ T

0

∫
Ω
v∇S :

∂S

∂t
dx dt

∣∣∣∣ =

∣∣∣∣−∫ T

0

∫
Ω
vS :

∂∇S
∂t

dx dt

∣∣∣∣ ≤ ∫ T

0
‖v‖L2‖S‖L∞

∥∥∥∥∂∇S∂t
∥∥∥∥
L2

dt

≤
∫ T

0
C

(
1

ε

)
‖v‖2L2‖S‖2L∞ + ε

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt.

(2.32)

∣∣∣∣∫ T

0

∫
Ω
D :

∂S

∂t
dx dt

∣∣∣∣ ≤ ∫ T

0
‖v‖L2

∥∥∥∥∂∇S∂t
∥∥∥∥
L2

dt ≤
∫ T

0
C

(
1

ε

)
‖v‖2L2 + ε

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt (2.33)

Substituting (2.32) and (2.33) into (2.31) together with previous a priori estimates, yields∫ T

0

∥∥∥∥∂S∂t
∥∥∥∥2

L2

+

∥∥∥∥∂∇S∂t
∥∥∥∥2

L2

dt ≤ C.

Finally
∂S

∂t
∈ L2(0, T ;W 1,2). (2.34)

2.3.5 Limit passage

Let us now pass to the limit in (2.28). Due to the a priori estimates there exists v ∈ L∞(W 1,2)
with ∂v

∂t ∈ L
2((W 1,2)∗) and S ∈ L∞(W 2,2) with ∂S

∂t ∈ L
2((W 1,2)). In particular ∂

∂tS
N is uni-

formly bounded in L2((W 1,2)∗). The identification of time derivative of a function and a function
itself in the limit follows from the distributional formula for time derivative.

We have

vN ⇀∗ v in L∞(W 1,2), (2.35)
∂vN

∂t
⇀

∂v

∂t
in L2((W 1,2)∗), (2.36)

SN ⇀∗ S in L∞(W 2,2), (2.37)
∂SN

∂t
⇀

∂S

∂t
in L2((W 1,2)∗). (2.38)

In the linear terms, weak convergence in enough for the limit passage. Moreover, we have

W 1,2(Ω) ↪→↪→ L4(Ω) ↪→ (W 1,2(Ω))∗.
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Due to the Aubin-Lions compactness result, see Proposition 10, we get

SN −→ S in L2(L4),

vN −→ v in L2(L4).

This allows us to pass to the limit in nonlinear terms∫ T

0

∫
Ω

((SW −WS)− (SNWN −WNSN )) : Σ dx dt. (2.39)

We consider one part of (2.39)∫ T

0

∫
Ω

(SW − SNWN ) : Σ dx dt =

∫ T

0

∫
Ω

(SWN − SNWN − SWN + SW ) : Σ dx dt

=

∫ T

0

∫
Ω

(S − SN )WN : Σ dx dt +

∫ T

0

∫
Ω
S(W −WN ) : Σ dx dt

≤
∫ T

0
‖(S − SN )‖L4‖WN‖L2‖Σ‖L4 dt +

∫ T

0

∫
Ω

(WN −W )SΣ dx dt

≤‖(S − SN )‖L2(L4)‖W ‖L2(L2)‖Σ‖L∞(L4)

+

∫ T

0

∫
Ω

(WN −W )SΣ dx dt −→ 0.

Standard strategy is involved in the limit passage for convective terms.
We have proven the existence of a weak solution to (2.13).

2.3.6 Lp−estimates

This section is dedicated to formal estimates in Lp−spaces for the system that includes vorticity

div v = 0, (2.40a)
ω = curlv, (2.40b)

∂ω

∂t
+ v∇ω = curl divS, (2.40c)

∂S

∂t
+ v∇S + WS − SW−∆

∂S

∂t
= D. (2.40d)

We start with the vorticity equation (2.40c), multiply by ω|ω|p−2 for p > 2,

1

p

d

dt
‖ω(t)‖pLp ≤

∫
Ω
|curl divS(t)||ω(t)|p−1 dx ≤ ‖S(t)‖W 2,p‖ω(t)‖p−1

Lp

≤ εp 1

p
‖S(t)‖p

W 2,p +

(
1

ε

) p
p−1 p− 1

p
‖ω(t)‖pLp ,

where we used ε−version of the Young’s inequality and ε = ε(p). By integration over time we get

‖ω(t)‖pLp ≤
∫ T

0
εp‖S(t)‖p

W 2,p +

(
1

ε

) p
p−1

(p− 1)‖ω(t)‖pLp dt + ‖ω(0)‖pLp .

Let us recall the estimate of the velocity gradient by vorticity, see Yudovic [65]
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Proposition 2. For any p >1, the following estimate holds:

‖∇v‖p ≤
Cp2

p− 1
‖ω‖p. (2.41)

Proposition 2 yields

‖v‖p
W 1,p ≤ cpY

∫ T

0
εp‖S‖p

W 2,p +

(
1

ε

) p
p−1

(p− 1)‖v‖p
W 1,p dt + cv(0),

where cY = cY (p) = Cp2

p−1 and cv(0) = ‖ω(0)‖pLp .
Further we focus on the stress evolution equation (2.40d), we integrate over time and take

p−th power of Lp−norm

‖S −∆S‖pLp ≤ ‖
∫ T

0
D − v∇S −WS + SW dt + S(0)−∆S(0)‖pLp .

By the Jensen’s inequality we get

‖S −∆S‖pLp ≤
∫ T

0
‖D‖pLp + ‖v∇S‖pLp + 2‖∇vS‖pLp dt + ‖S(0)−∆S(0)‖pLp .

For the left hand side we use
‖S‖p

W 2,p ≤ c0‖S −∆S‖pLp ,

which follows form the maximal regularity of the problem f = S −∆S.
By Hölder inequality we obtain

‖S‖p
W 2,p ≤ c0

∫ T

0
‖v‖p

W 1,p + ‖v‖p
L2p‖∇S‖pL2p + 2‖∇v‖pLp‖S‖

p
L∞ dt + ‖S(0)−∆S(0)‖pLp .

Moreover, embedding W 1,2 ↪→ L2p, v ∈ L∞(0, T ;W 1,2) and S ∈ L∞(0, T ;W 2,2) provide

‖S‖p
W 2,p ≤ c0

∫ T

0
‖v‖p

W 1,p + ce‖v‖pW 1,2‖S‖pW 2,2 + 2c‖∇v‖pLp dt + ‖S(0)−∆S(0)‖pLp ,

‖S‖p
W 2,p ≤ c0

∫ T

0
‖v‖p

W 1,p + c ce + 2c‖∇v‖pLp dt + cS(0).

We conclude

‖S‖p
W 2,p+‖v‖pW 1,p ≤

∫ T

0
(cpY ε

p)‖S‖p
W 2,p+

(
cpY

(
1

ε

) p
p−1

(p− 1) + c0 + 2c

)
‖v‖p

W 1,p dt+cv(0)+cS(0).

‖S‖p
W 2,p + ‖v‖p

W 1,p ≤ C̃(p)0

∫ T

0

(
‖S‖p

W 2,p + ‖v‖p
W 1,p + c

)
dt + c(0), (2.42)

where C̃(p) = max

{
cεp2

p−1 ,
cp2

p−1

((
1
ε

) p
p−1 (p− 1) + c

) 1
p

}
.

Our idea was to try to control this constant by a proper choice of ε(p). This is a negative result
that shows that the presented approach does not lead to the bound formulated by Yudovich (2.7).
Constant C̃(p) grows at least linearly with respect to p and is not admissible by the Yudovich
uniqueness theory, see [64].



68 CHAPTER 2. MATHEMATICAL ANALYSIS OF A RATE-TYPE FLUID MODEL

2.3.7 Higher order local estimates

In this section we provide the higher order local estimates to system (2.13), namely the estimates
on the third spatial derivatives of both v and S. We apply D3 to (2.13b) and multiply by D3v:

∫
Ω
D3∂v

∂t
·D3v dx +

∫
Ω
D3(v∇v) ·D3v dx +

∫
Ω
D3∇p ·D3v dx =

∫
Ω
D3divS ·D3v dx,

1

2

d

dt
‖D3v‖2L2

+

∫
Ω
D3(v∇v) ·D3v dx =

∫
Ω
D3divS ·D3v dx.

Analogously, we apply D3 to (2.13c) and multiply by D3S. This leads to∫
Ω
D3∂S

∂t
: D3S dx +

∫
Ω
D3(v∇S) : D3S dx−

∫
Ω
D3 ∂

∂t
∆S : D3S dx

+

∫
Ω
D3(SW −WS) : D3S dx =

∫
Ω
D3D : D3S dx,

1

2

d

dt

(
‖D3S‖2L2 + ‖D4S‖2L2

)
+

∫
Ω
D3(v∇S) : D3S dx

+

∫
Ω
D3(SW −WS) : D3S dx =

∫
Ω
D3D : D3S dx.

The convective terms are estimated in the standard way. Important feature is the cancellation
of the highest order term, as in (2.20)∫

Ω
D3(v∇v) ·D3v dx ≤ ‖D3v‖3L2 ,∫

Ω
D3(v∇S) : D3S dx ≤ ‖D3v‖L2‖D3S‖2L2 .

The co-rotational term∣∣∣∣∫
Ω
D3(SW −WS) : D3S dx

∣∣∣∣ =

∣∣∣∣∫
Ω
D2(SW −WS) : D4S dx

∣∣∣∣
reads as follows∣∣∣∣∫

Ω
D2(SW −WS) : D4S dx

∣∣∣∣ ≤c‖∇v‖L2‖D2S‖L∞‖D4S‖L2 + c‖D2v‖L2‖DS‖L∞‖D4S‖L2

+ c‖D3v‖L2‖S‖L∞‖D4S‖L2 .

Therefore∣∣∣∣∫
Ω
D3(SW −WS) : D3S dx

∣∣∣∣ ≤ c‖D3v‖L2‖D4S‖2L2 ≤ c
(
‖D3v‖2L2 + ‖D4S‖4L2

)
.

Finally we obtain the estimate which provides the local in time bounds for higher order derivatives
of v and S

d

dt

(
‖D3v‖2L2 + ‖D3S‖2L2 + ‖D4S‖2L2

)
≤ C

(
‖D3v‖2L2 + ‖D3S‖2L2 + ‖D4S‖2L2

)2
.
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2.4 Regularization by ∆S

The second regularization to the system (2.1), namely ∆S, gives us local in time existence and
global in time existence for small initial data. We investigate the following system:

div v = 0, (2.43a)
∂v

∂t
+ v∇v +∇p = divS, (2.43b)

∂S

∂t
+ v∇S + WS − SW−∆S = D. (2.43c)

2.4.1 A priori estimates

Let us now present formal a priori estimates for system (2.43) on a two dimensional periodic
domain Ω. We mainly focus on the differences between regularization presented in Section 2.3.1.

The first a priori estimate reads

1

2

∫ T

0

d

dt
‖v‖2L2

dt = −
∫ T

0

∫
Ω
D : S dx dt,

1

2

∫ T

0

d

dt
‖S‖2L2 dt +

∫ T

0
‖∇S‖2L2 dt =

∫ T

0

∫
Ω
D : S dx dt.

The integration over time yields

sup
t∈[0,T )

‖v(t)‖22 + sup
t∈[0,T )

‖S(t)‖22 + 2

∫ T

0
‖∇S‖22 dt = ‖v(0)‖22 + ‖S(0)‖22 a.e. t ∈ (0, T ). (2.44)

Equation (2.44) indicates, by the Gronwall inequality, that

v ∈ L∞(0, T ;L2(Ω)), S ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)).

The second estimate, yield

1

2

∫ T

0

d

dt
‖∇v‖2L2 dt =

∫ T

0

∫
Ω
∇(divS) : ∇v dx dt, (2.45)

1

2

∫ T

0

d

dt

(
‖∇S‖2L2

)
dt +

∫ T

0
‖∆S‖2L2 dt =−

∫ T

0

∫
Ω

([∇v]∇S) : ∇S dx︸ ︷︷ ︸
A

dt

+

∫ T

0

∫
Ω

(WS − SW ) : ∆S dx︸ ︷︷ ︸
B

dt

+

∫ T

0

∫
Ω
∇D : ∇S dx dt.

(2.46)

Estimation of convective and co–rotational terms, differs from the previous case.



70 CHAPTER 2. MATHEMATICAL ANALYSIS OF A RATE-TYPE FLUID MODEL

Term A∫
Ω

([∇v]∇S) : ∇S dx ≤ ‖∇v‖L2‖∇S‖L4‖∇S‖L4 ≤ ‖∇v‖L2‖S‖2W 1,4 ≤︸︷︷︸
embedding

‖∇v‖L2‖S‖2
W

3
2 ,2

‖∇v‖L2‖S‖2
W

3
2 ,2

≤︸︷︷︸
interpolation

‖∇v‖L2‖S‖W 1,2‖S‖W 2,2 ≤ c
(

1

ε

)
‖∇v‖2L2‖∇S‖2L2 + c(ε)‖∆S‖2L2

(2.47)

Term B∫
Ω

(WS − SW ) : ∆S dx ≤ 2‖∇v‖L2‖S‖L∞‖∆S‖L2 ≤︸︷︷︸
Agmon’s ineq.

c‖∇v‖L2‖S‖
1
2

W 1,2‖S‖
1
2

W 2,2‖∆S‖L2

≤ ‖∇v‖L2‖∇S‖
1
2

L2‖∆S‖
3
2

L2 ≤︸︷︷︸
Young’s ineq.

c

(
1

ε

)
‖∇v‖4L2‖∇S‖2L2 + c(ε)‖∆S‖2L2

(2.48)

Let us now sum up (2.45), (2.46), (2.47) and (2.48)

1

2

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2

)
+c‖∆S‖2L2 ≤ c

(
‖∇v‖2L2 + ‖∇v‖4L2

)
‖∇S‖2L2 ≤ c

(
‖∇v‖2L2 + ‖∇S‖2L2

)2
.

(2.49)

ODE

Option 1 Let us denote X =
(
‖∇v‖2L2 + ‖∇S‖2L2

)
and Y = c‖∆S‖2L2 , thus (2.49) became

d

dt
X + Y ≤ X2,

d

dt
X ≤ X2 =⇒ X(t) ≤ 1

1
X(O) − ct

,

so

X(t) +

∫ T

0
T ≤ CT

(
X(0)

1− cTX(0)

)2

.

Thus, we conclude that for T < 1
cX(0)

v ∈ L∞(0, T ;W 1,2(Ω)), S ∈ L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)).

Remark 1. One can show that (2.49) holds for arbitrary exponent greater then one

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2

)
+ c‖∆S‖2L2 ≤ c

(
‖∇v‖2L2 + ‖∇S‖2L2

)α for α > 1.

What gives us a clue concerning global in time existence.
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Option 2 Using slightly different inequality than (2.49), namely

d

dt

(
‖∇v‖2L2 + ‖∇S‖2L2

)
+ c‖∆S‖2L2 ≤ c

(
‖∇v‖2L2 + ‖∇v‖4L2

)
‖∇S‖2L2

≤ c
(
‖∇v‖2L2 + ‖∇S‖2L2

)2 ‖∇S‖2L2 ≤ c
(
‖∇v‖2L2 + ‖∇S‖2L2

)2 ‖∆S‖2L2 ,

(2.50)

with the notation introduced for previous case, we obtain

d

dt
X + Y ≤ X2Y,

d

dt
X + (1−X2)Y ≤ 0. (2.51)

Let us assume that the initial data are small, namely

1− δ > X2 =
(
‖∇v‖2L2 + ‖∇S‖2L2

)2
.

Proposition 3. Let 1− δ > X2, then ∀t, 1−X2(t) > δ

Proof. We assume by contradiction that ∃t∗ such that 1 − X2(t∗) = δ. Integrating (2.51) over
time on (0, t∗) yields

X(t∗)−X(0) +

∫ t∗

0
(1−X2)Y dt ≤ 0.

From the assumption we get estimate

X(t∗) + δ

∫ t∗

0
Y dt ≤ X(0).

Therefore
X(t∗) ≤ X(0)⇒ 1−X(t∗)2 ≥ 1−X(0)2 > δ.

What completes the proof.

Proposition 3 provides global in time estimates for ‖∇v‖2L2 and ‖∇S‖2L2 under the small
initial data assumption. Knowing that

(
‖∇v‖2L2 + ‖∇S‖2L2

)
is globally bounded in time, we can

show that ‖∆S‖2L2 is also bounded independently of time.
Further steps: Galerkin approximation, uniform estimates, estimates of time derivative, and

limit passage, proceed in a standard way.
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Chapter 3

Finite Element Formulation

In the last 25 years, the Crystal Plasticity Finite Element Method (CPFEM) has been exten-
sively studied. The recent overview by Roters et al. [71, 72] summarize applications of the
CPFE method. Authors cover simulation of: shear band formation, shape memory, non-uniform
deformation texture formation, anisotropy, among others. Most of the methods that have been
developed are structural, formulated in Lagrangian coordinates and based on the virtual work
principle. Even for large deformations the increments of the deformation gradient are computed,
what is typical for Lagrangian description, see [73].

In this chapter we present fully Eulerian finite element study of crystal plasticity. To solve
the full system of equations (3.1) we discretize it in time with an implicit second order θ-scheme
and in space with proper finite element method. We propose a monolithic method/solver .

An Eulerian approach in the context of crystal plasticity was studied by Cazacu and Ionescu
[74, 75] where authors confine to rigid body motions and plane strains. Moreover, by using fluid-
like approach we can overcome typical Lagrangian bounds and simulate very large deformation
as well as topology changes like contact, see [76, 77].

Simplicial elements are used to discretize the system in space. The finite element discretization
of the rate type visco-elasto-plastic models leads to several numerical problems. The proper choice
of elements to satisfy the discrete Ladyzhenskaya, Babuška and Brezzi (LBB) condition [78] on
a velocity-pressure-stress (v, p,S). The mixed formulation containing the stress tensor result in
a twofold saddle point type problems, which were studied in [79, 80]. The presence of convective
term in the differential constitutive law reflects the hyperbolic nature of this equation. It can be
solved by using appropriate stabilization technique, such as streamline upwind Petrov Galerkin
(SUPG) [81] or discontinuous finite elements [82]. Moreover, we have to deal with problems
arising from the strong non-linear nature of the model. The review of the finite element methods
for visco-elastic flow can be found in [83].

Let us recall the strong form of the incompressible system that we discretize into the Galerkin
system and consequently solve using finite element method

div v = 0, (3.1a)
∂

∂t
v + v∇v − divS +∇p = 0, (3.1b)

∂

∂t
S + v∇S + SW −WS = 2µe(D), (3.1c)

∂

∂t
ai = [∇v]ai. (3.1d)

73
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The system is satisfied inside the domain Ω, the boundary ∂Ω consists of two non-intersecting
parts ΓD and ΓN corresponding to the Dirichlet and the Neumann boundary conditions, respec-
tively. It holds that v = vD on ΓD and Sn = t on ΓN . Moreover, the initial condition reads,
v(x, 0) = v0(x), S(x, 0) = S0(x), p(x, 0) = p0(x) and ai(x, 0) = ai0(x).

The implementation is done in the software package FEniCS [84, 85]. The FEniCS is a col-
lection of open source finite element software for automated solution of differential equations.
Computational examples are given in Chapter 4.

3.1 The mesh

The domain Ω ∈ Rd is approximated by a simplical triangulation Th. We introduce the partition
of the domain as a finite set of cells Th with disjoint interiors such that⋃

K∈Th

K = Ω. (3.2)

We define hK := diam(K) and %K := sup{diam(B) : B is a ball with B ⊂ K} and require
that the triangles are shape regular, namely there exists a positive real number α ∈ R, indepen-
dent of hK , K ∈ Th , such that for all K ∈ Th

hK
%K
≤ α. (3.3)

3.2 Space discretization

To discretize (3.1) by the means of finite elements we test the strong formulation with arbitrary
functions, which are called test functions, and integrate over the domain Ω.

V = H1
0 (Ω,Rd) = {v ∈ H1(Ω,Rd);v = 0 on ΓD}, (3.4a)

P = L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω
q dx = 0}, (3.4b)

S = L2(Ω,Rd×d
sym), (3.4c)

A = L2(Ω,R). (3.4d)

We denote test functions by zv, zp, ZS , and zai . We call

(v, p,S,a1, . . . ,ad) ∈ V× P× S× A× · · · × A

a weak solution to (3.1) when the following system holds

∫
Ω

div v zp dx = 0, (3.5a)∫
Ω

(
∂

∂t
v + v∇v − divS +∇p

)
· zv dx = 0, (3.5b)∫

Ω

(
∂

∂t
S + v∇S + SWe −WeS

)
: ZS dx =

∫
Ω

2µeDe : ZS dx, (3.5c)∫
Ω

∂

∂t
ai · zai dx =

∫
Ω
Leai · zai dx. (3.5d)
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We integrate by parts the following terms,∫
Ω
∇p · zv dx = −

∫
Ω
pI : ∇zv dx,

−
∫

Ω
divS · zv dx =

∫
Ω
S : ∇zv dx−

∫
ΓN

t · zv dS.

Finite element method is based on the weak formulation (3.5). Let us introduce finite di-
mensional spaces Vh ⊂ V,Ph ⊂ P, Sh ⊂ S,Ah ⊂ A and corresponding bases {φvj}

Nv
j=1, {φpj}

Np
j=1,

{φSj}
NS
j=1, {φaj}

Na
j=1. The finite element expansion of the discrete solutions reads

vh − vDh =

Nv∑
j=1

vj(t)φvj , for vDh = vD on ΓD, (3.6a)

ph =

Np∑
j=1

pj(t)φpj , (3.6b)

Sh =

NS∑
j=1

Sj(t)φSj , (3.6c)

aih =

Na∑
j=1

aij (t)φaj , i ∈ {1, 2, 3}, (3.6d)

where vj , pj , Sj , aij are the nodal values and φvj , φpj , φSj , φaj are basis functions. We denote
vectors of coefficients by

V = (v1, v2, . . . , vNv) , (3.7a)
P =

(
p1, p2, . . . , pNp

)
, (3.7b)

S = (S1, S2, . . . , SNS ) , (3.7c)
A =

(
a11 , a12 , . . . , a1Na , a21 , a22 , . . . , a2Na , a31 , a32 , . . . , a3Na

)
. (3.7d)

We define the Galerkin approximation system. Find

(vh, ph,Sh,a1h,a2h,a3h) ∈ Vh × Ph × Sh × Ah × Ah × Ah

satisfying

∫
Ω

div vh zp dx = 0, (3.8a)∫
Ω

(
∂

∂t
vh + vh∇vh

)
· zv dx +

∫
Ω

(Sh − phI) : ∇zv dx =

∫
ΓN

th · zv dS, (3.8b)∫
Ω

(
∂

∂t
Sh + vh∇Sh + ShWeh −WehSh − 2µeDeh

)
: ZS dx = 0, (3.8c)∫

Ω

(
∂

∂t
aih −Lehaih

)
· zai dx = 0, i ∈ {1, 2, 3}. (3.8d)
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3.3 Time discretization

The time interval [0, T ] is divided into a set of discrete points {tk} such that t0 = 0 and tK = T .
The time increment

∆t = tk+1 − tk ∀k. (3.9)

We are looking for a solution uk+1 at a time level k+ 1 with given solution uk. Problem is solved
using FEM described in the rest of the Chapter.

We employ implicit time schemes, namely for θ ∈ (0, 1]

uk+1 − uk

∆t
+ θA(uk+1) + (1− θ)A(uk) = 0. (3.10)

For θ = 1 we obtain the first order unconditionally stable backward Euler scheme:

uk+1 − uk

∆t
+A(uk+1) = 0. (3.11)

For θ = 1
2 the second order conditionally stable Crank-Nicolson scheme:

uk+1 − uk

∆t
+

1

2
A(uk+1) +

1

2
A(uk) = 0. (3.12)

Visco-elestic problems are often solved with more exact time schemes i.e. fractional step θ-
scheme which is second order unconditionally stable time scheme or implicit Glowinski three-step
scheme for θ = 1−

√
2/2, almost the third order conditionally stable time scheme. For reference

see [86, 87].
We discretize (3.8) with one step backward Euler scheme. For given (vkh, p

k
h,S

k
h,a1

k
h,a2

k
h,a3

k
h)

and the time step ∆t find a solution (vh, ph,Sh,a1h,a2h,a3h) satisfying

∫
Ω

div vh zp dx = 0, (3.13a)∫
Ω

(
vh − vkh

∆t
+ vh∇vh

)
· zv dx +

∫
Ω
Sh : ∇zv dx−

∫
Ω
ph div zv dx =

∫
ΓN

th · zv dS, (3.13b)∫
Ω

(
Sh − Skh

∆t
+ vh∇Sh + ShWeh −WehSh − 2µeDeh

)
: ZS dx = 0, (3.13c)∫

Ω

(
aih − ai

k
h

∆t
−Lehaih

)
· zai dx = 0, i ∈ {1, 2, 3}, (3.13d)

where

Leh = ∇vh −Lph = ∇vh −
N∑
α=1

sgn (Sh : s
(α)
h ⊗m

(α)
h )

(
|Sh : s

(α)
h ⊗m

(α)
h |
)1/m

s
(α)
h ⊗m

(α)
h .

3.4 The discrete problem

We have not specified the test functions yet, let us put

zv = φvl for l = 1, . . . , Nv, (3.14a)
zp = φpl for l = 1, . . . , Np, (3.14b)
ZS = φSl for l = 1, . . . , NS , (3.14c)
za = φal for l = 1, . . . , Na. (3.14d)
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Substituting (3.6) and (3.14) into (3.13) yields

∑
j

vj

∫
Ω

div φvj φpl dx︸ ︷︷ ︸
Bjl

= 0, for l ∈ 1, . . . , Np

∑
j

vj

∫
Ω
φvjφvl dx︸ ︷︷ ︸
Ajl

−
∫

vkhφvj dx︸ ︷︷ ︸
F1l

+∆t

∫
Ω

∑
j

vjφvj

∑
j

vj∇φvj

φvl dx

︸ ︷︷ ︸
N1(V )jl

+

∆t
∑
j

Sj

∫
Ω
φSj∇φvl dx︸ ︷︷ ︸

Cjl

−∆t
∑
j

pj

∫
Ω
φpjdiv φvl dx︸ ︷︷ ︸
−Blj

= 0, for l ∈ 1, . . . , Nv,

∑
j

Sj

∫
Ω
φSjφSl dx︸ ︷︷ ︸
Ejl

−
∫

Ω
SkhφSl dx︸ ︷︷ ︸
F2l

+∆t

∫
Ω

∑
j

vjφvj

∑
j

Sj∇φSj

φSl dx

︸ ︷︷ ︸
N2(V,S)jl

+ ∆t

∫
Ω

∑
j

SjφSj

∑
j

vjskew(∇φvj )−Lph

−
∑

j

vjskew(∇φvj )−Lph

∑
j

SjφSj

 : φSl dx

︸ ︷︷ ︸
N3(V,S)jl

− 2µe∆t
∑
j

vj

∫
Ω

(sym(∇φvj ))φSl dx︸ ︷︷ ︸
Gij

= 0, for l ∈ 1, . . . , NS ,

∑
j

aij

∫
Ω
φajφal dx︸ ︷︷ ︸
Hjl

−
∫

Ω
ai
kφal dx︸ ︷︷ ︸
F3l

−∆t
∑
j

vj

∫
Ω

∑
j

vj(∇φvj )−Lph

φal dx

︸ ︷︷ ︸
Kjl

= 0, for l ∈ 1, . . . , Na, i ∈ {1, 2, 3},

where

Lph =
N∑
α=1

sgn (Sh : s
(α)
h ⊗m

(α)
h )

(
|Sh : s

(α)
h ⊗m

(α)
h |
)1/m

s
(α)
h ⊗m

(α)
h .

Let us denote the solution vector by U = (V ,P ,S,A), the above system can be rewritten
as a system of Nt = Nv +Np +NS + dNa nonlinear algebraic equations

A(U)U =


A+ ∆tN1(V ) +BT + ∆tC

∆tB
∆t(N2(V, S) +N3(V, S))− 2µe∆tG+ E

H −∆tK



V
P
S
A

 =


F1

0
F2

F3

 , (3.15)

where we denote the right hand side by B = (F1, 0, F2, F3)T .
For brevity we reformulate (3.15)
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F (U) = A(U)U − B. (3.16)

Note that residuum equals
R = −F (U) = B −AU .

3.4.1 The Newton solver

We formulate the Newton’s method for the system

Fi(U1, . . . , UNt) = 0, for i = 1, . . . , Nt,

where by Fi we understand
Fi = F (U1, . . . , UNt ;ϕi),

where ϕi is a test function from a mixed space.
To solve nonlinear system we define Jacobian of F (U)

J =
DF (U)

DU

and solve linear system of equations using the Newton’s method for an unknown Ũ =
∑Nt

j=1 Ũjϕj ,

Nt∑
j=1

DFi
DUj

Ũj = −Fi, for i = 1, . . . , Nt.

We finish the k−th Newton iteration by update of a solution

Uk+1 = Uk + ωŨ ,

where ω ∈ (0, 1] is a relaxation parameter. The original Newton’s method has ω = 1, but to
improve the convergence, one can adaptively choose a smaller step ω .

To start the Newton’s method an initial guess U0 have to be provided. Moreover, stopping
criterion on the absolute and relative L2−norm of the residual is applied. The implementation
details are given in the following Chapter.

3.5 The choice of finite element space

The choice of proper set of finite elements is crucial to obtain reliable numerical approximation.
Let us recall the well known Ladyzhenskaya, Babuška and Brezzi (LBB) velocity-pressure

stability condition [78, 88] to the Navier-Stokes system, given in a discrete form,

∃β ∈ R such that 0 < β ≤ inf
ph∈Ph

sup
vh∈Vh

∫
Ω div vh ph dx

‖ph‖Ph‖vh‖Vh
. (3.17)

Moreover, we require
div vh ∈ Ph.
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The velocity-pressure-stress approximations

Working with a stress as an additional variable in a weak formulation requires further compati-
bility constraints onto the choice of the discrete spaces for the triple velocity-pressure-stress [80]

∃β ∈ R such that 0 < β ≤ inf
vh∈Vh

sup
Sh∈Sh

∫
Ω divSh vh dx

‖Sh‖Sh‖vh‖Vh
. (3.18)

We refer to a paper of Fortin and Pierre [89], because authors consider a case without a viscous
contribution as in the system (3.1). It is shown that the following conditions must be satisfied:

• The velocity-pressure spaces must be compatible with classical LBB condition (3.17).

• Discontinuous approximation of the stress imposes condition

sym(∇vh) ∈ S for all vh ∈ V. (3.19)

• Continuous approximation of the stress requires that the number of local degrees of freedom
must be larger than that used for the velocity space.

To satisfy condition (3.17) we choose the continuous P2 − P1 Taylor-Hood elements [90].
The requirement (3.19) can be fulfilled by using a P1−discontinuous approximation. On the other
hand, in the continuous case we put P2 for the stress space. Figure 3.1 presents P2P1P1-disc and
P2P1P2 velocity-pressure-stress triples.

Figure 3.1: Discretization schemes

Finite element spaces are given by

Vh = {vh ∈W 1,2(Ω;Rd);v|K ∈ P2(K)d ∀K ∈ Th},
Ph = {%h ∈ L2

0(Ω) ∩ C0(Ω;R); %h|K ∈ P1(K) ∀K ∈ Th},
Sh = {Sh ∈ L2(Ω;Rd×d

sym); Sh|K ∈ P1(K)d×d ∀K ∈ Th},
Sh = {Sh ∈ H1

0 (Ω;Rd×d
sym); Sh|K ∈ P2(K)d×d ∀K ∈ Th}.
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For admissible discretizations on quadrilateral elements we refer to triples, such as bi-quadratic
velocity, discontinuous linear pressure, and discontinuous quadratic stress elements of Fortin and
Fortin [91] or bi-quadratic velocity, bi-linear pressure, and bi-linear stress sub-elements of Marchal
and Croche [81].

Moreover, when viscous contribution is present, the LBB condition (3.18) does not need to
be satisfied, see [92].

Crystal plasticity basis

What remains is to specify the discrete space for crystal plasticity basis Ah. Working with system
(3.13) we discretize equation (3.13d) in a monolithic setting by P1 elements

Ah = {ah ∈ L2(Ω)d ∩ C0(Ω;Rd); ah|K ∈ P1(K) ∀K ∈ Th}.

It is worth to mention that instead of computing (3.13d) namely set of vectorial equations,
one can replace that by one tensorial equation (1.116)

∫
Ω

(
∇vh −

d∑
i=1

ν
(α)
h ȧih ⊗ ai

h −
N∑
α=1

s
(α)
h ⊗m

(α)
h

)
: Za dx = 0, (3.20)

where

ν
(α)
h = ν0sgn (Sh : s

(α)
h ⊗m

(α)
h )

(
|Sh : s

(α)
h ⊗m

(α)
h |
)1/m

and the test function

Za =

za1

...
zad

 .

On the other hand, since the discrete system of equations is relatively large, for the sake of
computational cost, we can perform the explicit update of the lattice basis vectors

aih = ai
k
h + ∆tLe

k
hai

k
h, for i = 1, . . . , d, (3.21)

where

Le
k
h = ∇vkh −

N∑
α=1

sgn (Skh : s
(α)k
h ⊗m

(α)
h )

(
|Skh : s

(α)k
h ⊗m

(α)k
h |

)1/m
s

(α)k
h ⊗m

(α)k
h .

This approach is used to the channel die compression, where slip systems (s(α),m(α)) were
updated explicitly after each time step, see Section 4.1.

Moreover, in the case of two dimensional 2-turn equal channel angular extrusion, instead of
introducing crystal plasticity basis, we reduced number of unknowns to one angle. Description
of the evolution of three slip systems is equivalent to the evolution of the lattice orientation, see
Section 4.3.
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3.5.1 Stress evolution stabilization

Let us rewrite system (3.13) in a compact way

(div vh, zp) = 0, (3.22a)(
vh − vkh

∆t
+ vh∇vh, zv

)
+ (Sh,∇zv)− (ph,div zv) = (th, zv)ΓN , (3.22b)(

O
Sh −2µeDeh,ZS

)
= 0, (3.22c)(

aih − ai
k
h

∆t
−Lehaih, zai

)
= 0, i ∈ {1, 2, 3}. (3.22d)

The need for stabilizing the stress comes from the hyperbolic nature of equation (3.22c). We
would like to present two possible ways, how to overcome this problem.

First we mention streamline-upwind/Petrov-Galerkin method of Brooks and Hughes [93], first
applied in the context of viscoelastic fluids in [81](

O
Sh −2µeDeh,ZS + αzv∇ZS

)
= 0, (3.23)

where α stands for a parameter that is of the form α = h
U with characteristic mesh size h and

characteristic velocity U .
The second method was proposed by Marchal and Crochet [81]. The idea is to apply stabi-

lization only to the convective term(
O
Sh −2µeDeh,ZS

)
+ (vh∇Sh, αzv∇ZS) = 0. (3.24)

3.6 Arbitrary Lagrangian-Eulerian approach

We devote this section to the introduction of the arbitrary Lagrangian Eulerian (ALE) method,
for details we refer to [94, 95, 96]. We employ ALE to deal with free boundary and avoid mesh
damages, see Chapter 4.

The arbitrary Lagrangian Eulerian (ALE) is a finite element formulation in which the com-
putational system is not a priori fixed in space (Eulerian) or attached to material (Lagrangian).
In fact we can formulate our problem on an arbitrary domain defined Ωx (i.e. moving, time
dependent domain) and define ALE mapping φ between fixed computational domain Ωa and an
arbitrary domain Ωx, φ : Ωa −→ Ωx. ALE mapping is the key to transform our system to the
fixed computational domain. For this sake proper definition of the ALE mapping is of a great
importance. The class of ALE methods is widely applied, e.g. to fluid structure interaction
problems.

As shown in Figure 3.2 we define arbitrary configuration in between Lagrangian and Eulerian
coordinates. Let us introduce following dependencies and notation:

x = χ(X, t) = φ(a, t) = φ(ψ(X, t), t), χ = φ ◦ ψ. (3.25)

The ALE displacement, the ALE velocity, and the ALE deformation gradient read as follows

ua(a, t) = x− a, va(a, t) =
∂φ

∂t
, F a =

∂φ

∂a
. (3.26)
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. x = χ(X,t) 
     = Φ(a,t) 

χ

ALE coordinates

. a = ψ(X,t)

ψ Φ

Figure 3.2: ALE formulation

Similarly to Section 1.1.2 we present a correspondence between the Eulerian and the ALE
coordinates

∇aϕ = Fa
T∇ϕ, ∇aϕ = ∇ϕFa. (3.27)

Let us derive a relation between time derivatives

v =
∂χ(X, t)

∂t
=
∂φ(ψ(X, t), t)

∂t
=
∂φ

∂t
+
∂φ(a, t)

∂a

∂ψ(X, t)

∂t
= va + F a

∂ψ(X, t)

∂t
.

Let us define the convective velocity c and w by

c = v − va = F aw = F a
∂ψ

∂t
. (3.28)

For any function ϕ we have

∂ϕ

∂t a
=
∂ϕ(a, t)

∂t
=
∂ϕ(φ(a, t), t)

∂t
=
∂ϕ

∂t
|x +

∂ϕ

∂x

∂φ

∂t
=
∂ϕ

∂t
|x + va∇ϕ. (3.29)

Thus we obtain

d

dt
ϕ =

∂ϕ

∂t x
+ v∇ϕ =

∂ϕ

∂t a
+ (v − va)∇ϕ

=
∂ϕ

∂t a
+ (v − va)∇aϕF−1

a

=
∂ϕ

∂t a
+ F−1

a c∇aϕ

=
∂ϕ

∂t a
+ w∇aϕ.

3.6.1 Balance equations in the ALE coordinates

In Section 1.7 we formulated the system of equations (1.136). Note that, in contrary to previous
systems in this Chapter, the system (3.30) describes compressible material. Now we are ready to
rewrite it into the ALE framework
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∂%

∂t a
+ (v − va) · ∇a%F−1

a + %tr (∇avF−1
a ) = 0, (3.30a)

%

(
∂v

∂t a
+ (v − va) · ∇avF−1

a

)
− (∇a%S)F−Ta = 0, (3.30b)

∂S

∂t a
+ (v − va) · ∇aSFe

−1 −∇vF−1
a S − SF−Ta ∇vT = LeF

−1
a + F−Ta Le

T (3.30c)

∇avF−1
a =

N∑
α=1

ν(α)
(
s(α) ⊗m(α)

)
+

d∑
i=1

ȧi ⊗ ai. (3.30d)

To obtain a weak formulation we need to transform the integrals over Ωx to the integrals
over Ωa. Important point in application of the integral substitution theorem is to use the Piola
identity that states

div a

(
(detF a)F

−T
a

)
= 0.

3.7 Implementation

The methods described in this chapter are implemented as a FEniCS based Python module
[85, 97]. We use following linear algebra backends: PETSc - Portable, Extensible Toolkit for
Scientific Computation [98] and MUMPS: a MUltifrontal Massively Parallel sparse direct Solver
[99].
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Chapter 4

Numerical examples

We give a detailed description of performed numerical simulations. Two different deformation
settings were considered: uniaxial compression and channel extrusion. The first case consist of
an uniaxial compression of a pillar-shaped sample and plane strain compression in a channel die.
The second focuses on 2-turn equal channel angular extrusion in two and three dimensions.

Similar – an Eulerian approach to crystal plasticity has been presented in Cazacu and Ionescu
[74]. Viscoplastic law is obtained from Schmid law by using an overstress approach, in contrary
to our research where the power law is adopted (1.120). To describe the lattice evolution authors
consider only one differential equation. Analogous approach is studied in [100], however extended
compressible materials and the 2-turn ECAP setting.

Moreover in [75] authors proposed a numerical algorithm that is refereed to as Augmented
Lagrangian method. A mixed finite element – finite volume strategy was used: the equation for
the velocity field is discretized using the finite element method while a finite volume method,
with an upwind choice of the flux, is adopted for the hyperbolic equation related to the lattice
orientation. The results of two-dimensional numerical simulations of equal-channel die extrusion
and channel die compression are reported.

The algorithms presented in this chapter differs from the Augmented Lagrangian method
described above. We provide thermodynamic derivation of the complete system (1.136) and solve
a fully coupled problem by means of finite elements. Furthermore we do not confine to plain
strains, see Section 4.2.

We argue that the Eulerian formulation is very well suited for flow-like problems, as for
the 2-turn Equal Channel Angular Extrusion experiment [100], and with little adjustments for
compression of single crystal [101].

4.1 Plane strain compression of a single crystal

4.1.1 Channel-die compression

We consider a rectangular-shaped single crystal with two or three slip systems, that is subjected
to channel-die compression under plane strain conditions as shown in Figure 4.1.

85
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Figure 4.1: Channel-die compression scheme

Three slip systems are oriented as in Figure 4.2, where ϕ = 55◦. In the case of two slip
systems we omit the third slip system, perpendicular to compression axis.
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Figure 4.2: Scheme of slip systems

The initial boundary conditions are taken as in (4.4), with ΓD = Γ1 ∪ Γ3 and ΓN = Γ2 ∪ Γ4.
Namely, for the velocity (v = (v1, v2)) and the Cauchy stress are assumed to be

v2 = V on Γ1, v2 = 0 on Γ3, Tn = 0 on Γ2 ∪ Γ4.

Characteristic values are set to satisfy following ratios

E

τ0
= 1000,

ν0L

V
= 1, (4.1)

where E stands for Young’s modulus and V , L, ν0 are reference: velocity, length and slip rate,
respectively. Note, that τ0 was defined in (1.121).

The set of value of parameters of compressed material, which satisfies (4.1), were chosen
following numerical studies in [27], namely: the density %0 = 3000 kg/m3, the velocity V =
10−5 m/s = 10 µm/s, the length L = 10−2 m, the reference slip rate ν0 = 10−3 1/s, the reference
stress τ0 = 123 MPa, the Poisson’s ratio νpois = 0.3, and the rate sensitivity parameter is between
m ∈ [0.005, 0.05] that is 1/m ∈ [20, 200]. The rotation of the slip systems are described by the
angles of lattice rotation αi, with initial values (α1

0, α
2
0, α

3
0) = (α0 + ϕ, α0 − ϕ, α0 + π

2 ), where
ϕ = 54.74◦. In double slip case third slip system is omitted.

In the case of plane strain compression we formulate the system of equations consist of (1.53a),
(1.53b), (D.8) and the evolution of slip systems. The unknowns are density %, the velocity v,
the Cauchy stress tensor T , the slip directions s(α), and the normal to slip planes m(α), which is
given by the system of equations
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%̇+ %div v = 0, (4.2a)
%v̇ − divT = 0, (4.2b)

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp), (4.2c)

ṡ(α) =

(
∇v −

N∑
α=1

ν(α)s(α) ⊗m(α)

)
s(α), (4.2d)

ṁ(α) =

(
∇v −

N∑
α=1

ν(α)s(α) ⊗m(α)

)−T
m(α), (4.2e)

where

ν(α) = ν0 sgn(τ (α))

(
|τ (α)|
τ

(α)
c

)1/m

, with τ̇c(α) =

N∑
β=1

Hαβ |ν(β)| , τ (α)
c |t=0 = τ0. (4.3)

In the two dimensional case the evolution of the slip systems is computed directly. In contrary
to three dimensional case where we used the lattice basis. Note that in two dimensions we consider
up to three slip systems, thus the number of unknown will not increase when you compare number
of slip system with lattice basis vectors.

The system (4.2) holds for all x ∈ Ω and all t ∈ [0,∞) and is endowed with the initial and
boundary conditions

%(x, 0) = %0(x) for x ∈ Ω,

s(α)(x, 0) = (cos(α
(α)
0 (x)), sin(α

(α)
0 (x))), for x ∈ Ω,

m(α)(x, 0) = (− sin(α
(α)
0 (x)), cos(α

(α)
0 (x))), for x ∈ Ω,

T (x, 0) = 0 for x ∈ Ω,

v(x, t) = v0(x, t) for x ∈ ΓD × [0,∞),

T (x, t)n = 0 for x ∈ ΓN × [0,∞),

(4.4)

where ∂Ω = ΓD ∪ ΓN and %0, v0, α
(α)
0 are given functions.

Moreover, we specify right hand side of (4.2c), i.e. fourth order elasticity tensor C as

C(D −Dp) = λe(tr (D −Dp))I + 2µe(D −Dp),

where the Lame coefficients take following values

λe = 576.92τ0 and µe = 384.62τ0.

After rescaling the system (4.2) we notice that characteristic number, which multiplies the
dynamic term in the momentum equilibrium %v̇, reads R1 = %0V 2

τ0
≈ 3× 10−5. Thus, quasi-static

assumption would be justified in that case. Although we keep this therm for computational
purposes.

In what follows by strain we understand the nominal strain e = h−H0
H0

, where h and H0 stand
for current and initial height of the specimen, respectively. All the results where computed up to
nominal strain 0.3.

Simulations were conducted on a structured triangular mesh consists of 37688 vertices (74800
cells).
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4.1.2 Finite element formulation

The time is discretized by a one step finite difference and a mixed finite element discretization is
used in space. The choice of the approximations of each variable consists of P2 elements for the
velocity, P1 for the density and the lattice rotations (all continuous) and P1-discontinuous for the
Cauchy stress and the slip rates. This leads to the following definitions of the finite-dimensional
spaces

Vh = {vh ∈W 1,2(Ω;R2); v|Γ1 = (0,−1), v|Γ3 = (0, 0) v|K ∈ P2(K)2 ∀K ∈ Th},
Rh = {%h ∈W 1,2(Ω;R); %h|Γ1 = 1, %h|K ∈ P1(K) ∀K ∈ Th},
Th = {T h ∈ L2(Ω;R2×2

sym); T h|K ∈ P1(K)2×2 ∀K ∈ Th},
Nh = {νh ∈ L2(R); νh|K ∈ P1(K) ∀K ∈ Th},
Ah = {ϕh ∈W 1,2(Ω;R); ϕh|Γ1 = 0, ϕh|K ∈ P1(K) ∀K ∈ Th}.

Here, Th is the triangulation of our domain with h representing the discretization parameter, for
example the characteristic size of the triangles. The time interval (0, T ) is divided into steps of
length ∆t and by superscript k we denote the variables at the time level tk.

4.1.3 Three step algorithm

For the solution algorithm of the system (4.2) at each timestep the set of the equations is decom-
posed into two parts which are solved subsequently in three sub-steps. Given vk−1, %k−1, T k−1,
s(i)k−1, m(i)k−1, ν(i)k−1 and g(i)k−1 from previous time level we proceed as follows:

Step 1: Solve problem for vk, %k,T k, and ν(i)k

%k − %k−1

∆t
+ div (%kvk) = 0,

%k
(
vk − vk−1

∆t
+
(
vk − vk−1

mesh

)
∇vk

)
− divT k = 0,

T k − T k−1

∆t
+
(
vk − vk−1

mesh

)
∇T k + T kdiv vk

−Le
k,k−1T k − T k(Le

k,k−1)T − %kC(Dk −Dp
k,k−1) = 0,

ν(i)k − sgn (T k : s(i)k−1 ⊗m(i)k−1)

(
|T k : s(i)k−1 ⊗m(i)k−1|

g(i)k−1

)1/m

= 0 ∀i ∈ {1, 2, 3},

(4.5)
where if we use Lp

(i)k−1 = s(i)k−1⊗m(i)k−1, we define Le
k,k−1 = ∇vk−

∑N
i=1 ν

(i)kLp
(i)k−1

and Dp
k,k−1 =

∑N
i=1 ν

(i)ksym
(
Lp

(i)k−1
)
.

Step 2: Move the mesh by uk = vkmesh∆t. The velocity of the mesh motion vkmesh can be taken as
the material velocity vk which in fact leads to a Lagrangian description or it can be chosen
arbitrary with restriction that vkmesh|∂Ω = vk|∂Ω which leads to the ALE description.

Step 3: Compute the new critical stress, the slip directions, and the new normal to the slip
planes
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s(i)k − s(i)k−1

∆t
+
(
vk − vkmesh

)
∇s(i)k = Le

ks(i)k,

m(i)k −m(i)k−1

∆t
+
(
vk − vkmesh

)
∇m(i)k = (Le

k)−Tm(i)k,

g(i)k − g(i)k−1

∆t
+
(
vk − vkmesh

)
∇g(i)k =

N∑
j=1

hij |ν(j)|,

(4.6)

where Le
k = ∇vk −

∑N
i=1 sgn (T k : s(i)k ⊗m(i)k)

(
|T k:s(i)k⊗m(i)k|

g(i)k

)1/m
s(i)k ⊗m(i)k.

The systems (4.5) and (4.6) are formulated in standard weak sense, discretized by means of
the mixed FE spaces mentioned above. To solve the systems we employ a non-linear Newton-
Raphson solver with an analytic evaluation of the Jacobian and use sparse direct solver MUMPS
for solving the linear systems. Implementation is done in the software package FEniCS [84].

4.1.4 Comparison with experimental data

To verify the ability of the proposed algorithm to model crystal plasticity phenomena the simula-
tion results are compared with Harren et al. experiments [27]. X-ray measurements were carried
out by them to determine the lattice reorientation of the single crystals of various initial crys-
tallographic orientations in plane strain compression (PSC) in a channel die before macroscopic
shear bands appeared, i.e. to the engineering strain ≈ 0.3-0.9. It was observed that except for
crystals oriented symmetrically with respect to the compression and extension axes, the crystals
exhibited an overall common behavior. After yield, all these crystals started to reorient in such
a way that the their crystallographic direction [110] approached the compression axis and the
direction [001] became parallel to the extension axis along the channel, i.e. these reorientations
tend to bring the crystals toward the (110)[001] orientation. The (110)[001] geometry coincides
with a stable state of symmetric slip on four slip systems: (111)[101̄], (111)[011̄] and (111̄)[101],
(111̄)[011]. The net shearing systems associated with this symmetric state are then [112̄] in (111)
and [112] in (111̄), and hence the resulting deformation of this symmetric state is aligned with
the channel; the state of the plane strain crystallographic deformation is approached. In order
to simulate the compression tests of single crystals, Harren et al. [27] employed two-dimensional
single crystal model with two considered slip systems (111)[112̄] and (111̄)[112]. The orientation
of the slip systems with respect to compression axis is φ = arccos ≈ 55◦. The experimental ob-
servations and the computed deformation response are in a close agreement. To test the present
approach we use the same two-dimensional single crystal plane strain compression.

4.1.5 The influence of the rate sensitivity

In [27] the imperfection of the specimen was introduce by perturbation of the right-hand side of
the boundary, namely

x1|Γ2 = x1 + 5× 10−6 cos

(
πx2

L0

)
. (4.7)

The method presented in Section 4.1.2 was employed to solve initial boundary value problem
(4.2) with the rate sensitivity parameter m = 0.005 and Γ2 given by (4.7).

The values of the magnitude of the velocity, the density, and the slip rates for three different
strains are presented in Figure 4.3.
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Figure 4.3: The evolution of the velocity (top-left), the density (top-right),
and the slip rates (bottom) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c).

4.1.6 Influence of initial angle of lattice rotation

In this section we address the problem of the compression of double-slip single crystal with the
non zero initial angle of the lattice rotation. The presented method is not able to capture the case
presented in Section 4.1.5 for initial angle different than zero. Thus to investigate the influence of
initial angle of lattice rotation we consider the rate sensitivity parameter significantly smaller than
0.005, namely 0.05. In Figure 4.4 we present result of simulations with different initial orientation
for square and rectangular shaped domains. Initial orientations were set at 0.2 rad = 11.46◦ and
0.4 rad = 22.9◦.

We observe that the angle of lattice rotation has a tendency to decrease, namely during
die-compression orientation of slip systems approaches the symmetric orientation.

For similar computational studies we refer to [74], where authors consider 3 slip systems with
initial orientation of 0.417 rad.



4.1. PLANE STRAIN COMPRESSION OF A SINGLE CRYSTAL 91

Figure 4.4: The evolution of the angle of the lattice rotation of double-slip single crystal for
initial lattice rotation 0.2 rad (1) and 0.4 rad (2) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c).

4.1.7 Activity of slip systems

Figure 4.5 shows the behaviour of individual slip systems. There is a measurable difference
between the alignment of slip activity regions (shear bands) between square and rectangle shaped
domains. It is also worth of noticing that the third slip system is almost inactive.
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Figure 4.5: Velocity field and slip rates on individual slip systems for single crystal
with initial lattice rotation 0.2 rad at nominal strain 0.3.

4.1.8 Stress-strain behaviour

Nominal stress reads n = T 22. In Figure 4.1.8 we present stress strain dependency.

Figure 4.6: Nominal stress vs. nominal strain, for numerical simulations
described in Section 4.1.5 (a) and Section 4.1.6 (b).
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4.2 Micropillar compression

In the case of simple compression we deal with a free boundary problem. Here we employ the
Arbitrary Lagrangian Eulerian (ALE) approach in the sense that we use our Eulerian formulation
on a moving mesh which captures the free boundary. ALE method was introduced in Section 3.6.

The compression testing methodology is shown schematically in Figure 4.7. The setting
mimics the compression experiment commonly performed on macroscopic samples [102, 103],
[26].

We recall the system of equations (1.136). Unknowns are the density %, the velocity v, the
Kirchhoff stress S, and the lattice vectors a1, a2, a3 (s(α) and m(α) are given through lattice
vectors)

%̇+ %div v = 0, (4.8a)
%v̇ = div (%S), (4.8b)

O
S = C

(
D −

N∑
α=1

ν(α)sym
(
s(α) ⊗m(α)

))
, (4.8c)

∇v =
N∑
α=1

ν(α)
(
s(α) ⊗m(α)

)
+

d∑
i=1

ȧi ⊗ ai, (4.8d)

ν(α) = ν0sgn
(
s(α) : Sm(α)

)(
s(α) : Sm(α)

) 1
m
. (4.8e)

The rate sensitivity parameter m is taken to be 0.05, the hardening effects are neglected.
The system (4.8) is equipped with the following initial and boundary conditions:

%(x, 0) = 1 for x ∈ Ω,

v(x, t) = v0(x, t) for x ∈ ΓD × [0,∞),

S(x, t)n = 0 for x ∈ ΓN × [0,∞),

S(x, 0) = 0 for x ∈ Ω,

a1(x, 0) = (1, 0, 0), for x ∈ Ω,

a2(x, 0) = (0, 1, 0), for x ∈ Ω,

a3(x, 0) = (0, 0, 1), for x ∈ Ω,

where ∂Ω = ΓD ∪ ΓN and v0 is a given functions.
The set of value of parameters of compressed material, corresponds to the experimental and

numerical works [104, 26]. The ratio between the height L0 and diameter D is selected to be 2.3.
The elastic constants are chosen to be c11 = 280.5GPa, c12 = 188.5MPa, and c44 = 133.5GPa,
see (1.104). The reference values reads: the length l0 = 10µm, the velocity v0 = 1µm/s, the
reference slip rate ν0 = 0.1s, the stress τ0 = 420MPa.

Although the values do not refer to any specific material, these material parameters are
those for a single-crystal Ni-base superalloy, i.e. Rene N5, a Ni-base superalloy commonly used
in turbine blade applications, which has a nominal composition of Ni–8Co–7Cr–7Ta–6.2Al–5
W–3Re–2Mo–0.2Hf, see [26].

Two kinds of the top velocity boundary condition are considered, see Figure 4.8. In the
first case we fix the velocity on the top boundary Γ1, v0(x, t)|Γ1 = (0, 0,−1). This condition
is refer to as constrained and setting mimics the case where the loading axis is very stiff and
the friction between the top surface and the plunder is extremely high. The second case is
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Figure 4.7: Scheme of micropillar compression, dashed lines represent the shape of compressed
sample

called unconstrained and we allow the top surface to move in the plane perpendicular to z-axis,
v0z(x, t)|Γ3 = −1 . This simply mimics the case where there is no friction between the top surface
and the plunger.

In rest of the Dirichlet boundary, namely Γ3 the velocity is fixed v0(x, t)|Γ3 = (0, 0, 0). More-
over, we put the Neumann boundary condition S(x, t)n = 0 on the lateral surface Γ2.

Figure 4.8: Scheme of micropillar compression boundary conditions, constrained (left) and un-
constrained (right)

4.2.1 Slip systems

The crystal orientation is relative to the fixed sample coordinates in the reference configuration.
The lattice basis vectors coincide with the systems of coordinates axis. The definitions of slip
systems are given in Table 4.2.1. The primary slip system is number 2, (111)[101̄].
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α Slip direction
√

2s(α) Slip plane normal
√

3m(α)

1 [1̄10] (111)

2 [101̄] (111)

3 [01̄1] (111)

4 [1̄1̄0] (11̄1̄)

5 [101] (11̄1̄)

6 [011̄] (11̄1̄)

7 [110] (1̄11̄)

8 [1̄01] (1̄11̄)

9 [01̄1̄] (1̄11̄)

10 [11̄0] (1̄1̄1)

11 [1̄01̄] (1̄1̄1)

12 [011] (1̄1̄1)

Table 4.1: Slip systems for three dimensional micropilliar compression

4.2.2 Finite element formulation

The time is discretized by a one step finite difference and a mixed finite element discretization is
used in space. The choice of the approximations of each variable consists of P2 elements for the
velocity, P1 for the density and the lattice basis vectors, and P2 for the Kirchhoff stress. This
leads to the following definitions of the finite-dimensional spaces

Vh = {vh ∈W 1,2(Ω;Rd);v|Γ1 = (0, 0,−1), v|Γ3 = (0, 0, 0),v|K ∈ P2(K)d ∀K ∈ Th},
Ph = {%h ∈ L2

0(Ω) ∩ C0(Ω;R); %h|K ∈ P1(K) ∀K ∈ Th},
Sh = {Sh ∈ H1

0 (Ω;Rd×d
sym); Sh|K ∈ P2(K)d×d ∀K ∈ Th}

Ah = {ah ∈ L2(Ω)d ∩ C0(Ω;Rd); ah|K ∈ P1(K) ∀K ∈ Th}.

Here, Th is the triangulation of our domain with h representing the discretization parameter,
for example the characteristic size of tetrahedra. The time interval (0, T ) is divided in to steps
of length ∆t and by superscript k we denote the variables at the time level tk.

4.2.3 Two step algorithm

For the solution algorithm of the system (4.8) at each time step we perform two actions. Given
vk, %k, Sk, ai

k from previous time level we proceed as follows:

Step 1: Solve problem for vk+1, %k+1,Sk+1, and ai
k+1

(
%k+1 − %k

∆t
+ div (%k+1vk+1), z%

)
= 0,
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vk+1
h − vkh

∆t
+
(
vk+1
h − vkmesh

)
∇vk+1

h , zv

)
+
(
Sk+1
h ,∇zv

)
= 0,(

O
S
k+1

h −2µeDe
k+1
h ,ZS

)
= 0,(

ai
k+1
h − ai

k
h

∆t
−Le

k+1
h ai

k+1
h , zai

)
= 0, i ∈ {1, 2, 3}.

Step 2: Move the mesh by uk = vkmesh∆t. The velocity of the mesh motion vkmesh can be taken as
the material velocity vk which in fact leads to a Lagrangian description or it can be chosen
arbitrary with restriction that vkmesh|∂Ω = vk|∂Ω which leads to the ALE description.

4.2.4 Experimental Results

We present the experimental results by Shade et al. [26]. Authors performed uni-axial mechan-
ical tests on micrometer-scale specimens that can operate inside a scanning electron microscope
(SEM). Figure 4.9 (A) shows SEM images at various strain levels during a representative con-
strained experiment. By comparison, images at various strain levels from an unconstrained
experiment are shown in Figure 4.9 (B).

In the next section we present numerical simulations of micropilliar compression under con-
strained and unconstrained boundary conditions.

Figure 4.9: The results of compression experiments on Rene N5 microcrystals [26]. Three SEM
images at various strain levels for constrained and unconstrained experiments and corresponding
stress–strain curves.

4.2.5 Results

Since computations are conducted in the Eulerian coordinates primary variable is the velocity. In
Figure 4.10 we present the velocity field in the whole sample together with an x−axis cross-section.
There is a measurable difference between the alignment of slip activity regions (shear bands)
between constrained and unconstrained domains, see Figure 4.11. Figures 4.13 and 4.12 show
the behaviour of individual slip systems, constrained and unconstrained boundary conditions. It
is also worth of noticing that some of the slip system are almost inactive.
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(a)

(b)

(c)

(d)

Figure 4.10: The evolution of the velocity, the whole sample and cross-section for nominal strains
0.1 (a), 0.2 (b), 0.3 (c), and 0.4 (d), constrained domain (left), unconstrained (right).
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(a)

(b)

(c)

(d)

A B

Figure 4.11: The evolution of the accumulated slip for two cross-sections A and B, for nominal
strains 0.1 (a), 0.2 (b), 0.3 (c), and 0.4 (d), constrained domain (left), unconstrained (right).
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(a)

(b)

(c)

(d)

Figure 4.12: The evolution of the accumulated slip for two cross-sections A and B, for nominal
strains 0.1 (a), 0.2 (b), 0.3 (c), and 0.4 (d), constrained domain (left), unconstrained (right).
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(a)

(b)

(c)

(d)

Figure 4.13: The evolution of the accumulated slip for two cross-sections A and B, for nominal
strains 0.1 (a), 0.2 (b), 0.3 (c), and 0.4 (d), constrained domain (left), unconstrained (right).
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4.3 2-turn Equal Channel Angular Extrusion

ECAE is based on forcing a specimen through an L-shape channel of a constant cross-section.
Simple shear takes place in the thin layer at the channel turn. The process is repeated a couple of
times (typically up to 10) in order to obtain a very large (severe) plastic deformation and a fine
grain structure. The description of the ECAE facility is given in Section 0.2.1. The first report
on the use of a 2-turn channel is due to [105]. Later the idea was extended to multi-pass ECAE
by [106].

shear plane

undeformed
 element

deformed element

unpenetrable, 
frictionless boundary

Γ1

Γ3

Γ2

Figure 4.14: Scheme of 2-turn ECAE experiment

The Eulerian system of equations that consists of (1.53a), (1.53b), (1.95) and the evolution
of slip systems, allows us to consider more than one turn in a single domain. We chose a 2-turn
channel to show the main features of the presented approach. For experimental and numerical
studies of a 2-turn ECAE we refer to [28, 29].

4.3.1 Evolution of slip systems

By taking the time derivative of the relation s(α) = Fes
(α)
0 and substituting Ḟe from (1.75), we

obtain the equation that describes the evolution of the slip directions

ṡ(α) =

(
∇v −

∑
α

ν(α)s(α) ⊗m(α)

)
s(α). (4.9)

In Section 4.3 we will restrict ourselves to the plane strain case. We consider projections of
three dimensional slip systems onto the plane. Due to the geometrical restrictions of the in-plane
model of FCC crystal, we will consider only three slip systems (for detailed discussion see [74]).
Two dimensional vectors corresponding to the α−th slip system can be described by their angle
of lattice rotation ϕα and the scalars sα, mα responsible for elastic stretching. Since all three
slip systems are rotating together, we can characterise the rotation by specifying the angles ϕα
for α ∈ {1, 2, 3} as ϕ1 = ϕ+ φ, ϕ2 = ϕ, and ϕ3 = ϕ− φ, where φ = 54.7◦,

s(α) = sα(cosϕα, sinϕα), m(α) = mα(− sinϕα, cosϕα). (4.10)
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s(1)m(1)

m(2)

s(2)

m(3)

s(3)

Figure 4.15: Scheme of slip systems

We reformulate the vectorial equations (4.9) in terms of the scalar unknowns (ϕ, s1, m1, s2,
m2, s3, m3), for α ∈ {1, 2, 3} we have

ϕ̇ = (− sinϕ, cosϕ) ·

(
∇v −

3∑
α=1

ν(i)s(α) ⊗m(α)

)
s2(cosϕ, sinϕ), (4.11)

ṡα = (cosϕα, sinϕα) ·

(
∇v −

3∑
α=1

ν(α)s(α) ⊗m(α)

)
sα(cosϕα, sinϕα), (4.12)

ṁα = (− sinϕα, cosϕα) ·

(
∇v −

3∑
α=1

ν(α)s(α) ⊗m(α)

)
mα(− sinϕα, cosϕα). (4.13)

4.3.2 Initial-boundary Value Problem

Our domain Ω is the 2-turn channel (see Figure 4.14). In the Eulerian description of plane-strain
crystal plasticity the unknowns are: the velocity v(x, t), the Cauchy stress T (x, t), the density
%(x, t), and the orientation of the lattice ϕ(x, t). The boundary of the domain is divided into
three parts: the inflow boundary Γ1, the impenetrable boundary Γ2 and the outflow boundary
Γ3. The boundary conditions are set to be: the Dirichlet inflow condition on the velocity and the
lattice orientation, v|Γ1 = vin = (0,−1), ϕ|Γ1 = ϕin = 0, the perfect-slip on Γ2, and the stress free
condition on Γ3. The material parameters and characteristic values are taken to be: the density
%0 = 3000 kg

m3 , the velocity V = 10−5m
s = 10µms , the length L = 10−2m, the reference slip rate

ν0 = 10−3 1
s , the reference stress τ0 = 70MPa, the Young’s modulus E = 1000τ0, the Poisson’s

ratio νpois = 0.35, and the rate sensitivity parameter m = 0.05 (1/m = 20). The material
parameters correspond to aluminium and the characteristic values reflect ECAE experiments.
As initial values we put v(x, 0) = 0, T (x, 0) = 0, τc(x, 0) = τ0, %(x, 0) = 1, ϕ(x, 0) = 0 and
mα(x, 0) = sα(x, 0) = 1, ∀α ∈ {1, 2, 3}.

After rescaling of the system we get the following set of equations

%,t +div (%v) = 0,

R1%v̇ − divT = 0,

Ṫ + Tdiv v + WT − TW = %C(D −Dp),

ϕ̇ = (− sinϕ, cosϕ) ·

(
∇v −R2

3∑
α=1

ν(α)s(α) ⊗m(α)

)
s2(cosϕ, sinϕ),

(4.14)

where D∗, ν(α), mα, sα and τ̇c(α) are given by (1.114), (1.120), (4.12), (4.13) and (1.121), respec-
tively.
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Two characteristic numbers appear in the system, R1 = %0V 2

Lτ0
≈ 10−12 and R2 = Lν0

V = 1.
The very small value of R1 justifies the restriction to the quasi-static case, which is common in
plasticity. However we keep the time derivative in the balance equation (1.53).

Moreover, we specify the hardening matrix Hij = H = H0sech2
(
H0νacc
τs−τ0

)
, where the initial

hardening rate H0 = 8.9τ0, the saturation strength τs = 1.8τ0 and the accumulated slip νacc(t) =∑
α

∫ t
0 |ν

(α)|dt, see [21].

4.3.3 Finite Element Formulation

Inspired by the numerical methods of fluid dynamics, a finite element Eulerian representation is
formulated and applied to a solution of the flow adjustment initial-boundary value problem for
the 2-turn equal channel angular extrusion, see Section 4.3.2.

The domain Ω is approximated by a simplical triangulation Th. Time is discretized by a one
step finite difference. The discretization in space consists of P2 elements for the velocity, P1 for
the density and the lattice rotations (all continuous) and P1-discontinuous for the Cauchy stress
and the slip rates. We define the finite-dimensional spaces

Vh = {vh ∈W 1,2(Ω;R2); v|Γ1 = (0,−1), v|K ∈ P2(K)2 ∀K ∈ Th},
Rh = {%h ∈W 1,2(Ω;R); %h|Γ1 = 1, %h|K ∈ P1(K) ∀K ∈ Th},
Th = {T h ∈W 1,2(Ω;R2×2

sym);T h|K ∈ P1(K)2×2 ∀K ∈ Th},
Nh = {νh ∈ L2(R); νh|1 ∈ P1(K) ∀K ∈ Th},
Ah = {ϕh ∈W 1,2(Ω;R); ϕh|Γ1 = 0, ϕh|K ∈ P1(K) ∀K ∈ Th}.

The slip rates are added to the system (4.14) as variables. We discretize the system (4.14) in
a mixed finite element space and solve the following problem. Find

(vh, %h,T h, ν1h, ν2h, ν3h, ϕh) ∈ Vh × Rh × Th × Nh × Nh × Nh × Ah,

such that
(%h,t , z%) + (vh∇%h, z%) + (%hdiv (vh), z%) = 0 ∀z% ∈ Rh0,

R1 (%hv̇h, zv) + (T h,∇(zv)) + (T hn · n, zv · n)Γ2
+
β

h
(vh · n, zv · n)Γ2

= 0 ∀zv ∈ Vh0,(
Ṫ h + T hdiv vh + W hT h − T hW h,ZT

)
− (%C(Dh −D∗h),ZT ) + (ZTn · n,vh · n)Γ2

= 0 ∀ZT ∈ Th,ν(α)
h − sgn (T h : s

(α)
h ⊗m

(α)
h )

(
|T h : s

(α)
h ⊗m

(α)
h |

τ
(α)
c

)20

, zνα

 = 0 ∀zνα ∈ Nh and α ∈ {1, 2, 3},

(
ϕ̇h − (− sinϕh, cosϕh)T

(
∇vh −R2

3∑
i=1

ν
(α)
h s

(α)
h ⊗m

(α)
h

)
s2h(cosϕh, sinϕh), zϕ

)
= 0 zϕ ∈ Ah,

(4.15)

where (·, ·) is the standard L2 inner product. The boundary conditions on the impenetrable,
frictionless boundary Γ2 are imposed by the Nitsche’s method:
(ZTn · n,v · n)Γ2 + (Tn · n, zv · n)Γ2 + β

h (v · n, zv · n)Γ2 with β = 10, see [107].
To solve the system (4.15) we employ a non-linear Newton-Ralphson solver with an analytic

Jacobian. Implementation is done in the software package FEniCS [84]. A linear system is solved
by a direct solver.

Moreover, the critical resolved shear stresses and the stretch of slip directions are updated
after each time step according to (1.121), (4.12), and (4.13).
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4.3.4 Results

We present the results of computations at the moment when a steady state is reached (see Figure
4.16). We treat the plastic material as a fluid so it fills the entire domain, as opposed to models
where empty zones (close to outer turn) are reported [29]. The velocity profile is typical of flow
problems.

We can observe that plastic slip occurs only in the vicinity of shear planes where the channel
turns. The accumulated slip has its highest values close to the inner turns. Its density is almost
constant, although it changes in the neighbourhood of the curved part of the boundary and it
is higher before the first turn than in the rest of the domain. The lattice rotation also changes
nearby the shear planes in the direction of turn.

In Figure 4.17 we observe the behaviour of individual slip systems. The arrangement of slip
directions is presented in Figure 4.15. We notice that the activation of a particular slip system
depends on its position relative to the shear plane. The second slip system is almost inactive but
we need to take it into account due to compressibility.

Simulations were conducted for two different meshes: 5278 vertices (10252 cells) and 21289
vertices (41974 cells). We conclude that the problem is mesh independent. The presented results
were computed with the finer mesh.

Figure 4.16: Computed variables: velocity magnitude (top-left), accumulated slip (top-right),
density (bottom-left), lattice rotation (bottom-right).
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Figure 4.17: Behaviour of slip rates on individual slip systems in the 2-turn channel.
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Chapter 5

Conclusions

In this chapter we discuss results obtained in the whole dissertation. We have concentrated in
this study on derivation, analysis and simulations of plastic material treated as highly viscous
fluid. The aim of this work was to provide an Eulerian description of crystal plasticity and prove
that the proposed approach is suitable for describing large deformations in typical severe plastic
deformations settings.

Modelling

In Chapter 1 we showed a new way of deriving thermodynamically compatible rate-type fluid
model for crystal plastic material. The derivation is based on the multiplicative decomposition
of the deformation gradient, the Gibbs potential, and the principle of maximum rate of entropy
production. Main contributions read as follows:

• Two approaches to modelling large deformations plasticity has been compared. Multiplica-
tive decomposition by Kröner and natural configuration by Rajagopal, we showed that both
lead to the additive decomposition of the deformation gradient.

• We employed the Gibbs potential to derive rate-type stress-strain constitutive law. It is
worth to emphasise that for an anisotropic material presented procedure gives the objective
rate of stress. On the other hand, for isotropic material we can apply so called objectivity
trick, see Section 1.3.4. In addition in Appendix D we discussed derivation based on the
Helmhotz potential.

• The description of the evolution of crystal structure in Eulerian system of coordinates is
covered. We introduced the lattice basis and provide the equation (1.113) that describes
the evolution of basis vectors, see also [36]. It is important, because in crystal plasticity
literature the evolution of the crystal lattice is mostly described in Lagrangian frame. To
the best of our knowledge, the only Eulerian based description of crystal plasticity, by
Cazacu and Ionescu [74, 75], considers evolutions of slip directions in two dimensions. This
approach is equivalent but computationally inefficient in three dimensions.

• Furthermore, we propose possible extensions of the flow rule by a rate independent implicit
constitutive relation, namely rewrite perfect plastic flow rule as an implicit scalar equation.
Several variants of an implicit formulae and description of preliminary numerical studies
are given.

107
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• We apply the maximum rate of the dissipation principle to crystal plasticity. The method
allows us to avoid single crystal hypothesis by postulating proper rate of dissipation - one
scalar function. Moreover, some other entropy production functions and corresponding
constitutive relation are presented in Appendix F.

Analysis

Chapter 2 addresses mathematical properties of the incompressible version of a reduced (sim-
plified) model. We proposed regularizations to the rate type equation that enables us to prove
following results:

• Global-in-time existence of a weak solution to the ∆ ∂
∂tS−regularised system.

• Local-in-time existence and global existence for small initial data of a weak solution to the
∆S−regularised system.

The proofs rely on the logarithmic Sobolev inequality and second order a priori estimates.
The regularization can be arbitrary small. We were unable to prove local in time existence to the
system without regularization. The reasons are explained in Appendix B.

Simulations

Chapters 3 and 4 cover numerical tools used (finite element method) and the results of numerical
simulations, respectively. Three numerical examples have been considered: channel-die compres-
sion, micropilliar compression, and 2-turn equal channel angular extrusion.

• We formulated a finite element discretization schemes, which has been used to solve the
fully coupled problem. Our solver is monolithic.

• In the case of compression the Arbitrary Lagrangian Eulerian (ALE) approach has been
used in the sense that we use the Eulerian formulation on a moving mesh which captures the
free boundary. We developed new algorithms for two and three dimensional compression.

• Among the novel ingredients of the model and in consequence a numerical method is the
use of an Eulerian form of the evolution of the lattice basis. This allows for efficient three
dimensional computations of the material with full set of slip systems, e.g. 12 slip system
in the case of FCC structure.

• To test the proposed approach based on ALE method we considered the two-dimensional sin-
gle crystal plane strain compression and three-dimensional micropilliar compression. Cho-
sen settings refer to the literature, see Harren et al. [27] and Shade et al. [26] respectively.

• The results of channel-die compression simulations are in agreement with experimental
observations. Our model predicts that the lattice reorientation of the single crystals of
various initial crystallographic orientations tends to bring the crystals toward the geometry
coincided with a stable state of symmetric slip. The simulations in the case of symmetric
double slip lead to the formation of the shear bands, which corresponds to Harren’s et al.
results [27].

• The method is able to reproduce a solutions obtained by Lagrangian based methods, and
exceed them to higher strains. In the case of compression strains up to 0.2 are reported
[27, 26], however our method is able proceed up to 0.4.
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• 2-turn channel enables us to introduce high strains within one ECAP pass. For this setting
the introduction of the elastic stretches was important. They allow us to reduce high values
of stress in the vicinity of inner turns. This result extends [29, 74], where rigid plastic
material was considered.

• Since our method is based on Eulerian formulation we proved that it is capable of solving
deformations with very large strains for suitably defined problems. The reason is that the
priority is not the displacement and the strain but the velocity of the material flow and the
distortion of the crystal lattice space.

Further work

As the direction for the future work we plan focus our efforts on the following tasks.
First is to extend the modelling part and consider higher-order gradient crystal plasticity the-

ory, i.e. add the gradients of the geometrically necessary dislocation densities, see [108, 109, 110].
This direction seems promising to capture formation of special kinds of deformation, in partic-
ular controlling the thickness of shear bands. The modelling goal, that was not reached, is to
observe grain refinement and structure formation. The applied method is macroscopic and thus
unable to capture such effects. Therefore, for this purpose one need to combine a microscopic
model. Interesting approach has been proposed in Kowalczyk et al. [111], where authors com-
bine deformation paths for different initial locations of a material element that are computed
for a non-hardening material by means of the Eulerian based finite element method with the
self-consistent viscoplastic method of grain-to-polycrystal scale transition.

Moreover, the plastic behaviour is commonly described by a rate-dependent constitutive equa-
tion. We plan to extend Section 1.4.5 and develop numerical schemes able to capture a yield
condition in perfect plastic material. In [24, 44, 45] authors developed a mathematical theory for
models involving implicit constitutive relations. In the paper [46] finite element approximations
of implicit power-law-like models for viscous incompressible fluids have been shown. We aim to
provide rigorous numerical analysis of rate-independent crystal plasticity model.

The main perspective for the mathematical analysis is to release the regularization assumption
and establish the local-in-time existence of a weak solution to the system (2.1).

Modelling of crystalline solids is challenging for numerical methods. We met this challenge by
performing numerical simulations i.e. three dimensional compression of FCC crystal. To extend
simulations we plan to investigate shear band localization under simple shear conditions. We aim
to incorporate a discontinuous Galerkin approach. It seems that this extension would be a key
factor in dealing with a yield condition. Continuous finite elements are unable to capture jumps
in the velocity field.
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Appendix A

Functional spaces and technical lemmas

In this appendix we provide statements of well known lemmas and theorems, which were used in
proofs of the previous results.

A.1 Definition of functional spaces

Let s ≥ 0, p > 1 and Ω ∈ Rd be a bounded Lipschitz domain, let us define

V = {ϕ ∈ C∞per(Ω)d, divϕ = 0,

∫
Ω
ϕ dx = 0}, (A.1a)

Ṽ = {Σ ∈ C∞per(Ω)d×d, Σ = ΣT ,

∫
Ω

Σ dx = 0}, (A.1b)

H = the closure of V in the L2(Ω)d-norm, (A.1c)

H̃ = the closure of Ṽ in the L2(Ω)d×d-norm, (A.1d)

Vp = the closure of V in W 1,p(Ω)d with ‖∇(·)‖p -norm , (A.1e)

Ṽp = the closure of Ṽ in W 1,p(Ω)d×d with ‖∇(·)‖p -norm , (A.1f)

V s = the closure of V in W s,2(Ω)d-norm, (A.1g)

Ṽ s = the closure of Ṽ in W s,2(Ω)d×d-norm. (A.1h)

The scalar product in H is marked by (·, ·) while the scalar product in V s is marked by 〈·, ·〉.

A.2 Bases consisting of eigenfunctions of an elliptic operator

Let us consider the following spectral problem: find ωr ∈ V s and λr ∈ Rd satisfying

〈ωr, ϕ〉 = λr(ω
r, ϕ), ∀ϕ ∈ V s. (A.2)

Proposition 4. Existence of a basis. There exists a countable set {λr}∞r=1 and a corresponding
family of eigenvectors {ωr}∞r=1 solving the problem (A.2) such that

• (ωr, ωs) = δrs, ∀r, s ∈ N,

• 1 ≤ λ1 ≤ λ2 ≤ . . . and λr →∞ as r →∞, ∀r, s ∈ N,

•
〈

ωr√
λr
, ωs√

λs

〉
= δrs,
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• {ωr}∞r=1 forms a basis in V s.

Moreover, defining
HN = span{ω1, . . . , ωN}

and

PN (v) :=

N∑
i=1

(v, ωi)ωi : V s → HN ,

we get

‖PN‖L(V s,V s) ≤ 1,

‖PN‖L((V s)∗,(V s)∗) ≤ 1,

‖PN‖L(H,H) ≤ 1.

Proof. See Málek et al. [70]

The same results hold if we replace V s by Ṽ s.

A.3 Embedding theorems

Proposition 5. Sobolev’s imbedding theorem. Let k > 0, 1 ≤ p ≤ ∞ and Ω be a bounded
Lipschitz domain. Then

W k,p(Ω) ↪→ Lq(Ω), where
1

q
=

1

p
− k

N
, if k <

N

p
,

W k,p(Ω) ↪→ Lq(Ω), for all q ∈ [1,∞), if k =
N

p
,

W k,p(Ω) ↪→ C
0,k−N

p (Ω), if
N

p
< k <

N

p
+ 1,

W k,p(Ω) ↪→ C0,α(Ω), for all α ∈ (0, 1) if k =
N

p
+ 1,

W k,p(Ω) ↪→ C0,1(Ω), if k >
N

p
+ 1.

Moreover,

W k+s,p(Ω) ↪→W s,q(Ω), where
1

q
=

1

p
− k

N
, if k <

N

p
.

In particular
W

3
2
,2(Ω) ↪→W 1,4(Ω).

Proof. See Kufner et al. [112].
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Proposition 6. Kondrashov’s theorem on compact imbedding. Let k > 0, 1 ≤ p ≤ ∞. Then

W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1, p∗) with
1

p∗
=

1

p
− k

N
, if k <

N

p
,

W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1,∞), if k =
N

p
,

W k,p(Ω) ↪→↪→ C(Ω), if k > N.

Proof. See Kufner et al. [112].

A.4 Inequalities in Sobolev spaces

Proposition 7. Interpolation inequality. Ω ∈ Rd be a domain and 0 ≤ sj < ∞, 1 ≤ pj < ∞,
j = 0, 1, 0 ≤ θ ≤ 1, s = (1− θ)s0 + θs1 , 1

p = 1−θ
p0

+ θ
p1
. Then there is a constant C > 0 such that

‖u‖W s,p ≤ C‖u‖1−θW s0,p0‖u‖θW s1,p1 , for u ∈W s0,p0 ∩W s1,p1 .

In particular

‖u‖
W

3
2 ,2
≤ C‖u‖

1
2

W 1,2‖u‖
1
2

W 2,2 .

Proof. See Triebel [113].

Proposition 8. Agmon’s inequality. Let u ∈ H2(Ω) ∩H1
0 (Ω), where Ω ⊂ R3, then there exists

a constant C > 0, such that

‖u‖L∞ ≤ C‖u‖
1
2

W 1,2‖u‖
1
2

W 2,2 .

For Ω ⊂ R2 holds

‖u‖L∞ ≤ C‖u‖
1
2

L2‖u‖
1
2

W 2,2 .

Proposition 9. Young’s inequality. For a, b ≥ 0 and p, q > 1 such that 1
p + 1

q = 1 holds

ab ≤ ap

p
+
bq

q
.

A.5 Compactness result

Proposition 10. Aubin-Lions. Let X ↪→↪→ B ↪→ Y be Banach spaces and {fn} a sequence
bounded in Lq(I,B) ∩ L1(I,X), (1 < q ≤ ∞) and { d

dtfn} bounded in L1(I, Y ). Then {fn} is
relatively compact in Lp(I,B) for any 1 ≤ p < q.

Proof. See Simon [114].
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A.6 Ordinary Differential equations

Proposition 11. Caratheodory Theorem. Let c : [t0 − δ, t0 + δ] → Rd the system of ordinary
differential equations 

d
dtc(t) = F (t, c(t)) , t ∈ [t0 − δ, t0 + δ],

c(t0) = c0 ∈ Rd.
(A.3)

We assume that F : [t0 − δ, t0 + δ]×K, where K = {c ∈ Rd, |c− c0| < β}, for some β > 0. If F
satisfies the Caratheodory conditions:

1. t 7→ Fi(t, c) is measurable for all i = 1, . . . , d and for all c ∈ K,

2. c 7→ Fi(t, c) is continuous for almost all t ∈ [t0 − δ, t0 + δ],

3. there exists an integrable function G : [t0 − δ, t0 + δ]→ R such that

|Fi(t, c)| ≤ G(t), ∀(t, c) ∈ [t0 − δ, t0 + δ]×K,∀i = 1, . . . , d,

then there exists δ′ ∈ (0, δ) and a continuous function c : [t0 − δ′, t0 + δ′]→ Rd such that

1. d
dtc exists for almost all t ∈ [t0 − δ′, t0 + δ′],

2. c solves (A.3).

Proof. See Walter [115].

Definition 5. Osgood condition. We say that a continuous nondecreasing function ω : [0,∞)→ [0,∞)
with ω(0) = 0 and ω(ξ) > 0 for ξ>0 satisfies Osgood’s condition if∫ 1

0

1

ω(ξ)
dξ =∞.

Proposition 12. Osgood criterion. Let U ⊂ R be open. Let f : U × [0, T ]→ R be a continuous
function and ω : [0,∞)→ [0,∞) be a function satisfying the Osgood condition. Assume

|f(x1, t)− f(x2, t)| ≤ ω(|x1 − x2|) for all (x1, t), (x2, t) ∈ U.

Then, for any x0 ∈ U there is a δ > 0 and x : [0, δ]→ U that is a unique solution to the ordinary
differential equation ẋ(t) = f(x(t), t) with x(0) = x0.

Proof. See Osgood [116].

Note that the classical Cauchy-Lipschitz theorem gives the same conclusion under the stronger
assumption that there is a constant M such that |f(x1, t)− f(x2, t)| ≤M |x1−x2|. The function
f = x lnx satisfies Osgood’s criterion, but do not satisfy the assumptions of the Cauchy-Lipschitz
theorem, and the bound

|f(x1, t)− f(x2, t)| ≤ |x1 − x2|| ln |x1 − x2||

holds.



A.6. ORDINARY DIFFERENTIAL EQUATIONS 117

Proposition 13. Divergence theorem. Let Ω be a closed region with smooth boundary ∂Ω and
let ϕ, ϕ, and A be smooth scalar, vector, and tensor-valued fields on Ω, respectively, Then∫

Ω
∇ϕdx =

∫
∂Ω
ϕndS,∫

Ω
divϕdx =

∫
∂Ω

ϕ · ndS,∫
Ω

divA dx =

∫
∂Ω

AndS,

(A.4)

where n is the unit outward normal vector on ∂Ω.
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Appendix B

Analysis of two dimensional system

The aim of this appendix is to show where are, in our opinion, the fundamental difficulties that
do not allow us to establish the local-in-time existence of a weak solution to the system (2.1).

Let us recall the system (2.1) that is in the center of our attention

div v = 0, (B.1a)
∂v

∂t
+ v∇v +∇p = divS, (B.1b)

∂S

∂t
+ v∇S + WS − SW = D. (B.1c)

We are interested to solve the spatially periodic problem. We can treat the equation (B.1b)
as an Euler equation with the right hand side divS. Therefore, we apply the strategy that was
used to show the local-in-time existence of a weak solution to the Euler equation, namely perform
first a priori estimates and the estimates for the third derivatives. The first a priori estimate is
the same as in Section 2.3.1. We multiply (B.1b) by the velocity v and integrate

∫ T

0

∫
Ω

∂v

∂t
· v dx dt +

∫ T

0

∫
Ω
v∇v · v dx dt +

∫ T

0

∫
Ω
∇p · v dx dt =

∫ T

0

∫
Ω

divS · v dx dt,

which leads to

1

2

∫ T

0

d

dt
‖v‖2L2

dt = −
∫ T

0

∫
Ω
S : ∇v dx dt = −

∫ T

0

∫
Ω
S : D dx dt. (B.2)

Further, we multiply (2.13c) by S and integrate over (0, T )× Ω∫ T

0

∫
Ω

∂S

∂t
: S dx dt+

∫ T

0

∫
Ω
v∇S : S dx dt+

∫ T

0

∫
Ω

(SW−WS) : S dx dt =

∫ T

0

∫
Ω
D : S dx dt,

1

2

∫ T

0

d

dt
‖S‖2L2 dt =

∫ T

0

∫
Ω
D : S dx dt. (B.3)

We sum up (2.15) and (2.17) and obtain

‖v(t)‖2L2 + ‖S(t)‖2L2 = ‖v(0)‖2L2 + ‖S(0)‖2L2 a.e. t ∈ (0, T ). (B.4)

Equation (2.18) gives the uniform a priori estimates on v and S in the following function
spaces

v ∈ L∞(0, T ;L2(Ω)), S ∈ L∞(0, T ;L2(Ω)).
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Note that in contrary to the Oldroyd-type models the first a priori estimate did not give us
a bound for a gradient of the velocity.

Next, we proceed to the estimates on the third spatial derivatives of both v and S. We apply
D3 to (B.1b) and multiply by D3v:

∫ T

0

∫
Ω
D3∂v

∂t
·D3v dx dt +

∫ T

0

∫
Ω
D3(v∇v) ·D3v dx dt

+

∫ T

0

∫
Ω
D3∇p ·D3v dx dt =

∫ T

0

∫
Ω
D3divS ·D3v dx dt,

1

2

∫ T

0

d

dt
‖D3v‖2L2

dt +

∫ T

0

∫
Ω
D3(v∇v) ·D3v dx dt =

∫ T

0

∫
Ω
D3divS ·D3v dx dt.

Analogously, we apply D3 to (B.1c) and multiply by D3S. This leads to∫ T

0

∫
Ω
D3∂S

∂t
: D3S dx dt +

∫ T

0

∫
Ω
D3(v∇S) : D3S dx dt

+

∫ T

0

∫
Ω
D3(SW −WS) : D3S dx dt =

∫ T

0

∫
Ω
D3D : D3S dx dt,

1

2

∫ T

0

d

dt
‖D3S‖2L2 dt +

∫ T

0

∫
Ω
D3(v∇S) : D3S dx dt

+

∫ T

0

∫
Ω
D3(SW −WS) : D3S dx dt =

∫ T

0

∫
Ω
D3D : D3S dx dt.

The convective terms are estimated in the standard way. Important feature is the cancellation
of the highest order term, as in (2.20)∫ T

0

∫
Ω
D3(v∇v) ·D3v dx dt ≤

∫ T

0
‖D3v‖3L2 dt,∫ T

0

∫
Ω
D3(v∇S) : D3S dx dt ≤

∫ T

0
‖D3v‖L2‖D3S‖2L2 dt.

The obstacle is the co-rotational term
∫ T

0

∫
ΩD

3(SW −WS) : D3S dx dt or more precisely
one of its terms

∫ T
0

∫
Ω(SD3W − D3WS) : D3S dx dt that contains fourth derivatives of the

velocity. Even if we restrict ourselves to planar flows, the difficulty sustains. Indeed, in two
dimensions we have

S =

 S11 S12

S12 S22

 , W =
1

2

(
∇v −∇vT

)
=

1

2

 0 ∂v1
∂x2
− ∂v2

∂x1

∂v2
∂x1
− ∂v1

∂x2
0

 =
1

2

 0 −ω
ω 0

 ,

where ω = ∂v1
∂x2
− ∂v2

∂x1
. Hence, we get

SW =
1

2
ω

 S12 −S11

S22 −S12

 , WS =
1

2
ω

 −S12 −S22

S11 S12

 ,

SW −WS =
1

2
ω

 2S12 −S11 + S22

S22 − S11 −2S12

 =:
1

2
ωS̃.
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Consequently, the most difficult term takes the form

(SD3W −D3WS) : D3S =
1

2
(D3ω)S̃ : D3S.

Despite our effort to incorporate the equation for ω and its third derivatives or to use steam
function, we have not been able to control the last term by D3v and D3S.
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Appendix C

Lagrangian and Eulerian coordinates

We provide derivation of expressions corresponding to Lagrangian-Eulerian transformation.
Formula (1.10) reads

Gradϕ =
∂ϕ

∂X
=
∂ϕ

∂x

∂χ(X, t)

∂X
= F T∇ϕ, (C.1)

Gradϕ =
∂ϕ

∂X
=
∂ϕ

∂x

∂χ(X, t)

∂X
= ∇ϕF . (C.2)

In particular applying (C.2) to the velocity field, yields

Gradv(x, t) =
∂v(x, t)

∂X
=
∂v(x, t)

∂x

∂χ(X, t)

∂X
= ∇v(x, t)F ,

Gradv(x, t) = ∇v(x, t)F .

By taking time derivative of (1.2) and by (C.2) we obtain

Ḟ =
∂

∂t
Gradχ = Grad

∂

∂t
χ = ∇vF . (C.3)

Since F is invertible, (C.3) is solved for ∇v, an we get (1.13)

∇v = Ḟ F−1.

In the proof of the Reynolds transport theorem (1.14) we used identity

d

dt
J = Jdiv v. (C.4)

To derive this expression, we apply chain rule together with identity ∂ detF
∂F = detFF−T

d

dt
J =

∂ detF

∂F
: Ḟ = JF−T : ∇vF = JFF−T : ∇v = Jdiv v.

Piola’s identity
Div(JF−T ) = 0. (C.5)
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Appendix D

Stress–strain dependence,
the Helmholtz potential approach

This section is directed to the derivation of the evolutionary equation for the Cauchy stress.
Usually a stress is defined as the derivative of a Helmholtz potential with respect to a proper
strain measure.

We assume that the Helmholtz potential depends on the elastic Green tensor Ψ = Ψ(Ee) and
that the lattice based second Piola-Kirchhoff stress Σe,

Σe = Fe
−1SFe

−T (D.1)

is the derivative of Ψ with respect to Ee

Σe =
∂Ψ(Ee)

∂Ee
. (D.2)

Differentiation of (D.2) with respect to time yields

Σ̇e =
∂2Ψ

∂Ee∂Ee
Ėe = CĖe, where C =

∂2Ψ

∂Ee∂Ee
. (D.3)

Our goal is to express relation (D.3) in terms of the Kirchhoff stress S and the symmetric
part of the velocity gradient D. Differentiating (D.1) with respect to time we get

Ṡ =
˙

FeΣeFe
T = ḞeΣeFe

T + FeΣ̇eFe
T + FeΣeḞe

T
. (D.4)

Substituting (1.86), (D.1) and (D.3) into (D.4) gives

Ṡ −LeS − SLe
T = Fe

(
CFe

T (De)Fe

)
Fe

T = CDe = C(D −Dp), (D.5)

where C is a fourth order material elasticity tensor (as a derivative of tensorial function w.r.t.
second order tensor) and C is a fourth order spatial elasticity tensor. They are related by

Cijkl = F eiKF ejLF ekMF elNCKLMN . (D.6)

On the left hand side of the formula (D.5) we obtained Truesdell rate of the Kirchhoff stress.
Equation (D.5) is equivalent to the one containing the Jaumann rate of the Kirchhoff stress

Ṡ −WeS + SWe = C(D −Dp) + DeS + SDe. (D.7)
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It is common to neglect term DeS + SDe on the right hand side of (D.7), see eg. [22].
To reformulate (D.5) in terms of the Cauchy stress we substitute S = T /% and deduce

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp). (D.8)

Moreover, we substitute the Helmholtz potential to the dissipation formula (1.52)

S : D − Ψ̇ = S : D − ∂Ψ(Ee)

∂Ee
: Ėe = S : D −Σe : Ėe

= S : D −Σe : Fe
T (D −Dp)Fe = S : D − FeΣeFe

T : (D −Dp)

= S : D − S : (D −Dp) = S : Dp.

Non-negativity of S : Dp is provided by proper assumption on the form of Dp, see Section 1.4.
This appendix shows that the phenomenological procedure of taking the time derivative of

(D.2) lead to the rate type model (D.8). However, without additional assumption the Helmholtz
potential approach does not leads to the Jaumann rate of the Kirchhoff stress, see [36].



Appendix E

Frame-indifference principle

The material frame-indifference says that the material response (constitutive relation) is inde-
pendent of an observer.

Let us define a change of frame (change of observer) at fix time t, by an time dependent orthog-
onal rotation Q(t). Spacial points x in the observed space (the current configuration/Eulerian)
change according to transformation

x∗ = y(t) + Q(t)(x− x0), (E.1)

where y(t) is a point in space and x − x0 is the position vector relative to an arbitrary origin
x0. Frame-indifference says how certain quantities transforms under the change of observer: for
kinematical quantities it can be calculated from (E.1), for other it has to be postulated.

We say that a scalar-, vector- and tensor-valued quantity is objective or frame indifferent
if it is invariant under all observer transformation (E.1). Scalars α, vectors g, and tensors G
satisfying:

α∗ = α, g∗ = g, G∗ = QGQT

are called objective.
Note that a tensor filed is frame-indifferent (objective) if for frame-indifferent vector fields

holds
h = Gg =⇒ h∗ = G∗g∗,

G∗g∗ = h∗ = Qh = QGg = QGQTg∗ =⇒ G∗ = QGQT .

For more details concerning the change of observer and the material frame-indifference, see
Martinec [117]. Moreover, recently the frame-indifference has been studied by Liu and Sampaio
in [118].
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Appendix F

Examples of the rate of entropy
production

For the sake of completeness we present four examples of the dissipation rates and resulting
models after applying the maximization of the rate of entropy production:

• ξ̂ = 1
2µ |S|

2

We maximize 1
2µ |S|

2 under the constrain ξ = S : (D−A
O
S), where

O
S denote an objective

time derivative. The maximization is done using Lagrange multipliers

L = ξ̂ + λ(ξ̂ − S : (D −A
O
S)),

∂L

∂S
= 0,

1 + λ

λ

∂ξ̂

∂S
=

∂

∂S

(
S : (D −A

O
S)

)
,

1 + λ

λ

∂ξ̂

∂S
= D −A

O
S | : S,

1 + λ

λ
=

(D −A
O
S) : S

∂ξ̂
∂S : S

=
ξ̂

1
µS : S

=
1

2
.

Finally we obtain rate-type stress-strain constitutive relation which is a Maxwell type model

1

2µ
S + A

O
S= D. (F.1)

• ξ̂ = (1 + |S|)
p′−2

2 |S|2

Following the procedure presented in Section 1.5 we obtain

λ

1 + λ
=

(1 + |S|)
p′−2

2 |S|2

p′−2
2 (1 + |S|)

p′−2
2
−1 2|S|4 + 2 (1 + |S|)

p′−2
2 |S|2

and conclude
(1 + |S|)

p′−2
2 S + A

O
S= D. (F.2)
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• ξ̂ = 1
µ |S|

p′

1

µ
|S|p′−2S + A

O
S= D (F.3)

• ξ̂ = 1
2µ(|D|2)

|S|2

1

2µ(|D|2)
S + A

O
S= D (F.4)
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